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Abstract— This paper introduces the hardware
implementation of one of the most popular spiking neuron
models which is Izhikevich model. The main target of this
implementation is to reduce area and power consumed by
the Spiking Neural Network (SNN) neurons as the SNN
consists of a large number of neurons to mimic the human
brain. Therefore, stochastic computing techniques are
used to perform the squaring term that consumes much of
the power in the Izhikevich neuron model equations. A
hardware implementation of the model is proposed to
show the area and power consumption to help the SNN
designers to choose between stochastic-based multipliers
and the approximate multipliers considering their power,
area, and accuracy constraints.

Keywords— spiking neural networks, Izhikevich model,
Stochastic computing, ASIC.

I. INTRODUCTION

Spiking neural networks (SNNis) are the third generation of
artificial neural networks (ANN). The main concept of these
networks is to understand how the brain works and to mimic
the natural neural networks. This topic has become an
interesting field due to the importance of building systems that
can learn to perform tasks without being programmed. Thus,
these systems are complementary systems to Von-Neumann
systems that reached its peak as there are a lot of computations
and tasks that cannot be performed by the traditional Von-
Neumann architectures. In addition, even if these computations
such as image recognition are performed by using Von-
Neumann architectures, they will take much more time than
neural systems and consume huge amount of power [1].

There are three types of learning for these systems:
Supervised, unsupervised and semi-supervised. In supervised
learning, the network is given a set of labelled training data and
the algorithm learns to predict the output from the input data
such as a set of faces and a set of non-faces and it can then
learn to decide whether an image contains a face or not.
Whereas in the unsupervised learning, the network is provided
by a set of unlabelled data and the algorithm learns to inherent
structure from the input data. In the semi-supervised learning,
most of the data is unlabelled [1].

In spiking neural networks, neurons communicate by
sequence of spikes [1]. When the membrane potential of the
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neuron reaches a specific value (threshold voltage), the neuron
fires a spike and resets its potential. When a neuron fires, it
generates a signal which travels to other neuron which, in turn,
increase or decrease their potential in accordance to this signal.

One of the trending research topics is neuron modelling
which is a mathematical representation of the properties of the
neuron and one category of these models is spiking neural
networks models [2]. There are a lot of models that vary in
their complexity and accuracy.

The main focus of this paper is on the hardware
implementation of one of the least-complex and most popular
models which is Izhikevich model [3]. The main objective is to
reduce the area and power consumed by the squaring term in
the Izhikevich model. A lot of approximate techniques have
been performed to minimize the hardware, power consumption
and area needed to implement this model such as in [4] and [5].
In [6] and [7], piecewise linear models (PWL) are introduced
to approximate the quadratic part of the Izhikevich model by
crossed lines. This reduces the area and power at the expense
of accuracy degradation. CORDIC approximation is introduced
in [5] and [8] to approximate this quadratic term.

In this paper, stochastic computing (SC) technique is used
to perform the squaring operation. Stochastic computing
performs operations using probability instead of arithmetic [9].
A basic feature of SC is that numbers are represented by bit-
streams that are processed by simple circuits, whereas the
numbers themselves are interpreted as probabilities under both
normal and faulty conditions. For example, a bit-stream S
containing 25% 1s and 75% 0Os denotes the number p = 0.25. P
depends on the ratio of 1s to the length of the bit stream, not on
their positions so (1,0,0,0), (0,1,0,0), and (0,1,0,0,0,1,0,0) are
all possible representations of 0.25 [9]. Other forms of
stochastic-based implementations of SNN neuron models are
introduced in [10]-[12] where the stochastic features of the
memristor device [10] are exploited.

The paper is organized as follows, Section II gives an
overview on Izhikevich model, and the stochastic computing
techniques. In Section III, the stochastic squaring circuit is
introduced to implement the multiplier with accuracy
degradation simulations. Section IV presents the hardware
implementation results of the proposed SC Izhikevich neuron
model. Moreover, a comparison among Stochastic, CORDIC
and PWL Izhikevich models [8] is given in Section IV. Finally,
a conclusion is drawn in Section V.

978-1-5386-8167-1/18/$31.00 ©2018 IEEE

327



2018 30th International Conference on Microelectronics (ICM)

II. BACKGROUND

A. Izhikevich Model

Izhikevich model is a reduced version of the accurate
biologically plausible model Hodgkin-Huxley [3]. It consists of
two dimensional system of ordinary differential equations:

{1}=0.04v2+5v+140—u+1 (1
u = albv — u)
with the auxiliary after-spike resetting equations:
VecC
vaz30mV,then{u<_u+d (2)

where v is the membrane potential and u is the membrane
recovery variable. Variables a, b, ¢ and d are dimensionless
parameters which determine the spiking type and I represents
the synaptic currents or injected dc-currents [3].

B. Stochastic computing

The main importance of SC is that it enables very simple
and low-cost implementations of arithmetic operations using
standard logic elements. For example, if we have two bit
streams at the input of an AND gate and where the probability
of finding 1 in the first bit stream is P; and the probability of
finding 1 in the second bit stream is P, then the probability of
finding 1 at the output stream is P; x P, , assuming the two bit
streams are independent and uncorrelated, therefore
multiplication of two numbers represented in the unipolar
representation can be performed by a stochastic circuit
consisting only of a single AND gate. Since probability can
only take values in the interval [0, 1], stochastic computing is
performed only on fractions. Correspondingly, to multiply
integer numbers, they should be normalized first and then
denormalized after multiplication.

Another motivation to use SC is its immunity to noise as a
single bit flip in a long bit-stream will result in a small change
in the value of the stochastic number. On the other hand, SC
has several problems as the increase in the precision of a
stochastic computation requires an exponential increase in the
bit-stream length, which results in a corresponding exponential
increase in computation time [9].

III. SC MULTIPLIER DESIGN

A. SC Multiplier Design

In this section the design of the SC multiplier used to
calculate the term 0.04v? in (1) is presented. Fig.1 shows the
multiplier design which was originally proposed by Gupta and
Kumaresan [9] with a modification of using two Linear
Feedback Shift Registers (LFSRs) for the two Stochastic
number generators (SNG) instead of one for better accuracy.
Then, a counter is used to convert stochastic number output to
binary number.

In this design, the output takes (2™) cycles and therefore, as
n increases, the computational time also increases. However, as
n increases, the error decreases and the accuracy is better and
accordingly, there is a tradeoff between the computational time
and the accuracy. To see the effect of changing the number of
bits, a variable word length consisting of two parts (fixed
integer bits (10 bits) and variable fractional bits) is adopted and

a MATLAB simulation is conducted at different number of
fractional bits to show the impact of the variable word length
on the accuracy of calculating the squaring term as shown in
Fig. 2.
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Fig. 1. Stochastic based multiplier design
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Fig. 2. Output from the stochastic multiplier versus the exact output at
different word lengths (n) (a) n=16, (b) n=17, (c) n=18, and (d) n =19

B. Error Simulation

To see the effect of introducing the SC multiplier on the
whole neuron model, the fast spiking response is obtained at
different number of bits as shown in Fig.3 and the following
model errors, stated in [8], are calculated:
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Fig. 3. Fast spiking response at different word lengths

1) Mean Absolute Error (MAE): Calculates the average of
the differences between f{2) curves for both the original and
the approximated models over the range of #[8].

f(2)=0.04v2 + 50+ 140 3)
MAE = > (vi)lexact—lfn(vi)Iupproximute )

2) Relative Spike Energy Error (RSEE): Inspired by a
common concept in signal processing called “Signal Energy”
which is an indication for the resemblance in shape between
the spikes generated from both the original and the
approximated models [8].

RSEE = Yi|vE|exact-3|v? |approximate «

100 )

Yi|vE|exact
3) Mean Error in Time (MERR?): ERRt measures the time
difference between only the first two consecutive spikes. To
make the error definition more realistic, ERRt is applied on all
the spikes fired in a specific time interval where MERRt is the
mean value of ERRt [4], [8].
|Atp—At,
ERRt = [*2==2e

x 100 (6)

MERRt = — Y™ ERRY; 7
Where m is the window of time taken and the error is
averaged over it.

IV. HARDWARE IMPLEMENTATION

Hardware implementation of the proposed design is done
using VHDL along with Modelsim 10.4a for simulation and for
comparing results against Matlab model. Then ASIC synthesis
was performed by using industrial hardware-calibrated TSMC
0.13um CMOS technology to get the area and power at
different number of bits. In addition, a figure of merit (FOM)
[7] is defined to show the trade-off among the average error
(ERR), area and power and also to find the optimal number of
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Fig. 4. FOM versus different word lengths

bits to use which is the number at which the FOM is minimum.
FOM= ERR x power x area ®)
ERR=0.5 x (MEERt + RSEE) O]

Fig.4. shows the FOM obtained at different word lengths
for the SC-based design, the CORDIC-based design and the
PWL-based design. It is clear that the optimal number of
fraction bits equals 8 (word length n =18) to minimize the
FOM. 1t is also obvious that the FOM in the stochastic-based
design is better than the PWL-based design [8] in the whole
range of n and better than the CORDIC-based design [8] in the
range from n=17 bits to n=20 bits. Correspondingly, all the
following simulation results are based on using n = 18.

Table I shows the error results for the different responses.
The MEERt error is higher in the mixed mode as the time
difference is high between each two consecutive spikes in the
proposed and original models as shown in fig.5 (b), while the
RSEE is higher in the Tonic spiking response.

TABLE L MEERT AND RSEE FOR FAST SPIKING, TONIC SPIKING AND
MIXED MODE RESPONSES OF STOCHASTIC-BASED IZHIKEVICH MODEL
MERRt (%) | RSEE (%)
Fast spiking 4.82 0.08
Tonic spiking 333 7.04
Mixed mode 26.73 0.79
Average error 11.63 2.63

Table II shows a comparison between the results of the
hardware implementation of the proposed SC-based design, the
original design, the CORDIC-based design and the PWL-based
design in terms of power, area and error. The results of the
three later designs are introduced in [8]. It is clear that the area
of the stochastic-based design is 0.57 the area of the CORDIC
design and 0.597 the area of the PWL design, while the power
is 0.0813 the power of the CORDIC and 0.089 power of the
PWL. On the other hand, the average MEERt error in the
stochastic is 8.3 times greater than the CORDIC and 3.8 times
greater than the PWL and the average RSEE error in the
stochastic is 3.6 times greater than the CORDIC and 1.13 times
greater than the PWL.
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Fig. 5. Original output and output from the Stochastic-based design for,
a) Fast spiking response. b) Mixed mode response. ¢) Tonic spiking responses

V. CONCLUSION

In this paper, the 0.04 * v? term in Izhikevich model has
been calculated using stochastic computing technique.
Moreover, a hardware implementation and ASIC synthesis
have been carried out for different model responses to get the
area and power and a comparison is made between the original,
Stochastic-based, CORDIC-based and PWL-based Izhikevich
models. The Stochastic-based Izhikevich model has shown
much less area and power compared to the other models. On
the other hand, the error is higher due to correlation between
the inputs to the stochastic multiplier. Using stochastic
computing has reduced the area by 70.1% and the power by
75.5% at the expense of some accuracy loss.

TABLE I1. COMPARISON BETWEEN THE ORIGINAL, STOCHASTIC-BASED,
CORDIC-BASED AND PWL-BASED IZHIKEVICH MODELS

Original | Stochastic | CORDIC | PWL
Area (um?) 42059 12584 22088 21076
Power (mW) 0.11 0.0268 0.33 0.3
MEERt (%) - 11.63 1.39 3.1
RSEE (%) - 2.63 0.72 2.32
MAE (%) - 0.4672 0.17 46.85
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