
DESIGN OF A CONFIGURABLE 3D NETWORK ON
CHIP BASED ON THE DIRECT ELEVATOR 3D

ROUTING ALGORITHM

By

Maha Ramadan Mohamed Beheiry

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications

FACULTY OF ENGINEERING , CAIRO UNIVERSITY
GIZA, EGYPT

OCTOBER 2017

DESIGN OF A CONFIGURABLE 3D NETWORK ON
CHIP BASED ON THE DIRECT ELEVATOR 3D

ROUTING ALGORITHM

By

Maha Ramadan Mohamed Beheiry

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications

Under the Supervision of

Prof. Ahmed M. Soliman Dr. Hassan Mostafa
Emeritus Professor Assistant Professor

Electronics and Communications Department Electronics and Communications Dept.

Faculty of Engineering , Cairo University Faculty of Engineering , Cairo University

FACULTY OF ENGINEERING , CAIRO UNIVERSITY
GIZA, EGYPT

OCTOBER 2017

DESIGN OF A CONFIGURABLE 3D NETWORK ON
CHIP BASED ON THE DIRECT ELEVATOR 3D

ROUTING ALGORITHM

By

Maha Ramadan Mohamed Beheiry

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications

Approved by the Examining Committee:

Prof. First S. Name, External Examiner

Prof. Second S. Name, Internal Examiner

Prof. Ahmed M. Soliman, Thesis Main Advisor

FACULTY OF ENGINEERING , CAIRO UNIVERSITY
GIZA, EGYPT

OCTOBER 2017

Engineer’s Name: Maha Ramadan Mohamed Beheiry
Date of Birth: 25/6/1990
Nationality: Egyptian
E-mail: mahabehiry@gmail.com
Phone: 01064479725
Address:
Registration Date: 20/9/2012
Awarding Date: –/–/2017
Degree: Master of Science
Department: Electronics and Communications

Supervisors:
Prof. Ahmed M. Soliman
Dr. Hassan Mostafa

Examiners:
Prof. First S. Name (External examiner)
Prof. Second S. Name (Internal examiner)
Prof. Ahmed M. Soliman (Thesis main advisor)

Title of Thesis:

Design of a Configurable 3D Network on Chip Based on the Direct Elevator
3D Routing Algorithm

Key Words:

3D technology; 3D routing algorithm; SoCs; 3D-NoCs tool; 3D-NoCs gener-
ator.

Summary:
The main goal of the thesis is to provide the designers with a tool to create
different configurations of the Three-Dimensional Network-On-Chips. These
different configurational Three Dimensional (3D) Network-On-Chips (NoCs)
will be then evaluated to determine which configuration is the best for a
specific design or application. The 3D-NoCs are implemented based on a 3D
routing algorthim denoted by Direct Elevator algorithm.

Table of Contents

List of Tables iv

List of Figures v

Acknowledgements viii

Dedication ix

Abstract x

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Organization of The Thesis . 3

2 Literature Review 4
2.1 3D Routing Algorithms . 4

2.1.1 LA-XYZ: A high throughput look-ahead routing algorithm 4
2.1.2 Topology Aware Adaptive Routing for irregular Mesh 3D-NoC

systems . 10
2.1.3 Layered Routing in Irregular Networks 12
2.1.4 Elevator-First Routing Algorithm 13

2.2 Simulators and Tools to Create Various 3D-NoCs 18
2.2.1 Booksim Simulator . 18
2.2.2 Noxim Simulator . 21
2.2.3 NIRGAM: A simulator tool for NoC interconnect routing 22
2.2.4 CONNECT tool to create different 2D-NoCs 23

3 An Overview About The Three Dimensional Network-On-Chips 28
3.1 Three Dimensional Technology . 28

3.1.1 3D Stacking Technologies . 28
3.1.2 Vertical Interconnects Technologies 29

3.2 Different Implementations and Applications with 3D Technology 30
3.2.1 3D Chip Structure with an iA32 Microprocessor 31
3.2.2 CMOS Based Image Sensors Using 3D Technology 31

3.3 Challenges of the 3D Integration Technology 32
3.4 Network-On-Chips . 33
3.5 The Architecture of NoCs . 34

3.5.1 Router Design . 34
3.5.2 Network Design . 35

3.6 Partial Reconfiguration Using NoCs . 35
3.7 The Three Dimensional Network-On-Chips 36

3.7.1 The Architecture os 3D-NoCs 36

i

4 Introduction To The Network-On-Chip Methodology in FPGAs 38
4.0.1 A comparison between the soft NoC and hard NoC on FPGA . . . 38

4.0.1.1 Router Architecture in the NoC hard implementations . 39
4.0.2 Area Results . 40
4.0.3 Power Results . 41

4.1 Impact of NoC parameters on the FPGA Network-On-Chips (NoCs) . . . 42
4.2 A NoC design with debug features on Field-Programmable Gate Array

(FPGA) . 42

5 The Direct Elevator Three Dimensional Routing Algorithm 45
5.1 Introduction . 45
5.2 Elevator-First Three Dimensional Routing Algorithm 47
5.3 The Direct-Elevator Three Dimensional Routing Algorithm 48

5.3.1 A packet routing path using Elevator-First mechanism 48
5.3.2 A packet routing path using Direct-Elevator mechanism 49

5.4 Comparative Performance Analysis . 50
5.4.1 Network Load . 51
5.4.2 Vertical Complexity . 52
5.4.3 Tier Complexity . 53

5.4.3.1 Regular Distributed 3D-NoC 53
5.4.3.2 Hierarchical Distributed 3D-NoC 55

5.5 Summary . 55

6 3D-NOCET: A Tool for Implementing 3D-NoCs based on Direct-Elevator
Algorithm 56
6.1 Introduction . 56
6.2 The 3D-NOCET Tool User Guide . 58

6.2.1 Automation Infrastructure Scripts 58
6.2.2 Register Transfer Level Design files 59
6.2.3 The 3D-NOCET tool implementation and execution flow 60
6.2.4 How to use the 3D-NOCET tool suite 81

7 Discussion on A Comparative and Performance Study for Different Struc-
tures of 3D-NoCs 82
7.1 Introduction . 82
7.2 Comparative Results Analysis . 82

7.2.1 Vertical Network Complexity . 82
7.2.1.1 Impact of Vertical Complexity on The Latency 82
7.2.1.2 Impact of Vertical Complexity on The Power 83
7.2.1.3 Impact of Vertical Complexity on The Area 84

7.2.2 Tier Network Complexity . 85
7.2.2.1 Impact of Tier Complexity on The Latency 86
7.2.2.2 Impact of Tier Complexity on The Power 86
7.2.2.3 Impact of Tier Complexity on The Area 87

7.3 Work Conclusion . 89
7.4 Future Work . 89

ii

References 90

Appendix A 3D-NOCET Tool Source Files 93

iii

List of Tables

2.1 Some Parameters of the Booksim Simulator (Available in both versions of
Booksim)[1] . 20

2.2 Different NoC simulator and synthesizers[2] 26
2.3 A comparison between different simulators[2] 27
2.4 Nomenclature of the comparison table[2] 27

3.1 Comparison between different stacking techniques[3] 29
3.2 Comparison of vertical interconnect technologies[4] 29

4.1 The evaluated hard NoC implementations[5] 38
4.2 Router areas[5] . 40

iv

List of Figures

1.1 Moore’s law effect[6] . 1

2.1 Conventional XYZ routing algorithm[7] 5
2.2 LA-XYZ routing algorithm flow[7] . 5
2.3 Step 1: LA-XYZ routing algorithm[7] 6
2.4 Step 2: LA-XYZ routing algorithm[7] 8
2.5 By-pass in LA-XYZ routing algorithm[7] 9
2.6 The architecture of the 3D-NoC’s router[7] 9
2.7 The module of input-port[7] . 10
2.8 Larger path variety in TAAR routing aglorithm[8] 11
2.9 Operation flowchart of a transport layer and a network layer[8] 11
2.10 (a) Packet B is waiting for Packet A, (b) Packet A is prepared to retrans-

mitted, and (c) Packet B start to enter the temporal storage[8] 11
2.11 (a) Operation flow of TAMRA, and (b) An example[8] 12
2.12 Vertically partially connected 3D-NoC[9] 13
2.13 Different routers in Vertically partially connected 3D-NoC systems[9] . . 14
2.14 X-First 2D and Elevator-First Routing Algorithms[9] 15
2.15 Elevator First Routing in LOCAL input ports[9] 16
2.16 Elevator First Routing in 2D input ports[9] 17
2.17 Different routers in Vertically partially connected 3D-NoC systems[9] . . 18
2.18 Module hierarchy of the simulator[1] . 19
2.19 Top-level block diagram of the simulator[1] 19
2.20 Router module of Booksim tool[1] . 20
2.21 Internal architecture of hub nodes with wireless communication[10] . . . 21
2.22 NIRGAM Simulator Flow Diagram[11] 22
2.23 CONNECT Router Architecture[12] . 23
2.24 CONNECT Tool[12] . 24
2.25 Comparison between FPGA cost of SOTA and CONNECT router[12] . . 25

3.1 Illustration of vertical interconnect technologies: wire bonded (a); mi-
crobump3D package (b) and face-to-face (c); contactlesscapacitive with
buried bumps (d) and inductive (e); through viabulk (f) and silicon on
insulator (g)[4] . 30

3.2 3D Structure[13] . 31
3.3 A cross-section of an imager die schematic[14] 32
3.4 SAM image[14] . 32
3.5 Cooling used over a 3D structure[15] . 33
3.6 Example of a NoC[16] . 34
3.7 Two Inputs/Two Outputs router Implementation[17] 35
3.8 A NoC DPR Architecture[18] . 36
3.9 3D Mesh based network[19] . 37
3.10 Fat Tree Model[20] . 37

4.1 Three NoC implementations[5] . 40

v

4.2 Percentage of router area to chip area[21] 41
4.3 Hard NoC and Soft NoC power consumption[21] 41
4.4 SonicsGN NoC Architecture [22] . 42
4.5 The location of the performance tool in the SonicsGN NoC[22] 43
4.6 The Architecture of the performance and monitoring tool[22] 44

5.1 TSV interconnect with landing pad[23] 45
5.2 TSVA cell occupying three standard cell rows (KOZ = 1.205 m) and TSVB

cell occupying four standard cell rows (KOZ = 2.44 m)[24] 46
5.3 Elevator-First 3D Router[9] . 47
5.4 Elevator-First routing mechanism[25] 49
5.5 Direct-Elevator routing mechanism[25] 50
5.6 Throughput Vs. Packets (random test case)[25] 51
5.7 Throughput Vs. Packets (worst path test case)[25] 51
5.8 Throughput Vs. Tiers (random test case)[25] 52
5.9 Throughput Vs. Tiers (worst path test case)[25] 53
5.10 Throughput Vs. Routers/Tier (random test case)[25] 54
5.11 Throughput Vs. Routers/Tier (worst path test case)[25] 54
5.12 Hierarchical Structure of a 3D-NoC example 55

6.1 The Graphical User interface of the 3D-NOCET tool 57
6.2 The 3D-NoC in 2D Mesh Topology . 58
6.3 The 3D-NoC in 2D Ring Topology . 58
6.4 The 3D-NOCET tool final information message 59
6.5 The flow chart of the 3D-NOCET tool implementation 60
6.6 The main GUI window structure and the different valid topologies 61
6.7 The implementation of the functionality buttons 61
6.8 Selection of the topology type . 62
6.9 Evaluating the parameters in the header file 62
6.10 Determining the script flow according to the toplology type 63
6.11 Evaluating the number of wire in the 3D-NoC system using mesh topology 64
6.12 Creating the connections between the routers in the mesh topology 65
6.13 The instantiaions of the mesh routers . 66
6.14 Adding the mesh routers’ instantiaions into the SystemVerilog top design file 66
6.15 Creating address for each router in mesh topology 67
6.16 Creating the routing tables in mesh topology 68
6.17 The router address . 69
6.18 Evaluating the number of wire in the 3D-NoC system using ring topology 69
6.19 Creating the connections between the routers in the ring topology 70
6.20 The instantiaions of the ring routers . 71
6.21 Adding the ring routers instantiaions into the SystemVerilog top design file 71
6.22 Creating address for each router in ring topology 72
6.23 The router instantiations in the top module design 73
6.24 The data in the routing table . 73
6.25 The global parameters of the 3D-NoC system 73
6.26 The testbench for simulations . 74
6.27 The parameters of the mesh router module 75

vi

6.28 The implementation of the 2D routing with mesh topology 76
6.29 The implementation of the Direct-Elevator algorithm in the 3D mesh

router module . 77
6.30 The parameters of the mesh router module 78
6.31 The implementation of the 2D routing with ring topology 79
6.32 The implementation of the Direct-Elevator algorithm in the ring router

module . 79
6.33 The final information message . 80
6.34 Design files directory . 81

7.1 Latency in Clock Cycles Vs. Number of Tiers in NoC 83
7.2 Power in Watts Vs. Number of Tiers in NoC 84
7.3 Number of Luts Vs. Number of Tiers in NoC 85
7.4 Number of FlipFlops Vs. Number of Tiers in NoC 85
7.5 Latency in Clock Cycles Vs. Number of Routers in Tier 86
7.6 Power in Watts Vs. Number of Routers in Tier 87
7.7 Number of Luts Vs. Number of Routers in Tier 88
7.8 Number of FlipFlops Vs. Number of Routers in Tier 88

vii

Acknowledgements
I would like first to thank my thesis supervisor Dr. Hassan Mostafa and Prof. Ahmed

Soliman for their continuous support, patience and motivation. Besides my advisors, I
would like to express my sincere gratitude to my awesome manager Rasha El Atfy for her
generous support and encouragement. I would also like to thank my amazing workmates
who helped me alot with their immense knowledge Hanan Moharam, Hager Fathy, Ali
Mahgoub, Ahmed Emara and Rami Ahmed. Also, I am so grateful to Mennatallah Amer
and Ahmed Maher for reviewing most of my work and give me insigthful comments.
Furthermore, My sincere thanks goes to my husband Ahmed Aly for helping me with his
knowledge to implement and develop many ideas into my thesis and supporting me to
finish this. Finally, I would like to thank my mother for her spiritual support throughout
my life.

viii

Dedication
This work is dedicated to my lovely parents, to my wonderful brothers, and my beloved

husband who always keeps pushing me out of all my comfort zones.

ix

Abstract
Three Dimensional integration technology offers a huge opportunity to implement

different powerful applications. Moreover, the Network-On-Chip methodology solves
the new challenges with the long wiring with new communication approach between the
different nodes in one chip. Combining the 3D integration technology and the NoCs leads
to such an attractive solution for many applications that have been impossible before.
The 3D-NoCs come with variety of research challenges in maintaining the performance
efficieny, the vertical interconnections design and placement, and manufacturing process
steps. The routing challenge is one of the most vital challenges in implementing the 3D-
NoCs. Therefore, implementing and developing a flexible and reliable routing algorithm
to communicate between the different 3D stacked tiers is essential. As a part of this thesis
work, a 3D routing algorithm, Direct-Elevator, based on the Elevator-First 3D routing
algorithm is proposed. The Direct-Elevator algorithm is independent on the number of
the number of interconnects, placement of interconnects and the planar network topology.
The Direct-Elevator is tailored for the 3D-NoC different structures. It offers a lower
communication latency approach in comparison to Elevator-First routing algorithm.

A new tool is proposed in this thesis to provide a solution for the implementation of
generic Three Dimensional (3D) Network-on-Chips (NoCs) to serve different applications
and designs. The proposed tool denoted by 3D-NOCET, is based on the 3D Direct-Elevator
routing algorithm. The 3D-NOCET tool allows the user to create different combinations
of 3D-NoCs based on the 2D-routing topology, number of tiers and number of routers per
each tier through a fully automation infrastructure.
That paves the road to perform diverse experimental evaluations for the different 3D-NoC
structures. The future experimental evaluations and the performance comparative analyses
help to find the optimal network configuration for different applications.

x

Chapter 1: Introduction
1.1 Motivation
The Three Dimensional (3D) technology becomes very essential in overcoming the new
design challenges. As the size of the transistor keeps shrinking, Moore’s law continues to
yield high transistor density with each new generation[26] as shown in Figure 1.1. The 3D
technology enables the designer to stack and fabricate multiple dies in one chip. The 3D
technology is such a powerful solution, but it comes with many other research challenges
such as the thermal effect, the parastic capacitance between the vertical links and the floor
planning techniques.

Figure 1.1: Moore’s law effect[6]

On the other hand, The Network-On-Chip methodology offers vital solutions to the new
wiring challenges in the chip fabrication process.The physical wiring connect the different
cores in the System-On-Chip (SoC). The wires become thicker and longer in the top level
of the design, which leads at last to very lossy global wiring[27]. The Network-On-Chip
(NoC) technique introduces a new a new approach to communicate between the different
cores in one chip. The NoC depends on different routers which communicate together
to transfer the data from different sources to different destinations on the chip. The NoC
design depends on different metrics such as: the router design, the network topology, the
switching technique and other factors.

1

The NoC in the Field-Programmable Gate Array (FPGA) methodology is widely used in
many applications. The NoCs in FPGA is able to enhance the system efficiency, increase
the design production and reduce the system compilation time.The NoCs on FPGAs open
the door to many innovative approaches such as the parial dynamic reconfiguration (PDR),
in which the user can reconfigure a part of the FPGA while other parts are operating
normally.

The combination between the 3D and the NoC approaches yields into a very powerful
solution for many design challenges as illustrated above. The Three-Dimensional Network-
On-Chips (3D-NoCs) have innumerous configurations based on many factors such as the
network topology, the number of vertical stacked tiers, the number of routers per each tier
and the switching techniques. The ability to create different configuration of the 3D-NoCs
paves the road to the designers to explore the optimal configural 3D-NoC design that suits
the most their applications. Moreover, creating these different configural 3D-NoCs using
automated solution saves a lot of time and certainly gives a wide flexbility for performing
many experiments. That is the main motivation behind this thesis work which is providing
the designers with a powerful tool to create synthesizable 3D-NoCs.

1.2 Contribution
This work includes the following contribution:

• Implementing a 3D routing algorithm denoted by Direct-Elevator based on Elevator-
First routing algorithm. The routing algorithm Direct-Elevator is used to route the
packets vertically between the source and destination nodes. It is proved that it
offers a lower communication latency than the Elevator-First algorithm.

• The two routing algorithms Elevator-First and Direct-Elevator are implemented
using C programming language and a comparison study had been conduced to
compare between the two algorithms.

• Creating a new tool denoted by 3D-NOCET to create different configural synthesiz-
able 3D-NoCs based on the number of tiers in the system, the number of routers in
each tier and the network planar topology.

• An analysis study has been conducted to evaluate different configurations for the 3D-
NoCs and study the effect while varying the system aspects which are the number
of tiers, the number of routers per each tier and the planar topology.

• A simple Graphical User Interface has been implemented for the tool to ease the
usage and also to elaborate more on how the tool works.

2

1.3 Organization of The Thesis
This thesis is oranized as follows. Chapter 2 contains a survey of the most significant
previous work. The survey includes details different implemented 3D routing mechanisms
and variety of distinct developed simulator and tools which are used to create 3D-NoCs
and 2D-NoCs. Chapter 3 provides a detailed overview about the 3D-NoCs. In which,
an overview about the 3D technology is presented followed by a brief about the NoC
methodology. Then, a deep elaboration on the powerful combination between the 3D
technology and NoC methodology is detailed.
Chapter 4 includes a specific introduction to the NoC on FPGAs. The introduction
highlights the benefits using the NoC methdology on the FPGA and also the new challenges
in designing the NoC for FPGAs.While in Chapter 5, the Direct-Elevator 3D routing
mechanism is illustrated. The illustration spots the main differences between the two
routing algorithms Elevator-First and Direct-Elevator. Moreover, a detailed comparison
study is presented to evaluate the two routing algorithm with respect to the system total
latency while changing the number of transmitted packets, the number of routers per each
tier and the number of tiers in the system.
Chapter 6 presents the 3D-NOCET tool though a detailed user’s guide that illustrates how
the tool works exactly. Eventually, Chapter 7 contains a comparative and performance
study on differnet configurations for the 3D-NoCs. The study illustrates the effect of
the vertical network and tier network complexitiy on the 3D-NoC design. Moreover, it
concludes the whole thesis work in a conclution section and also the future work that can
be done.

3

Chapter 2: Literature Review
2.1 3D Routing Algorithms
Many research work has been conducted to solve the challenges appear while using the
3D-NoCs. One of these challenges is developing and implementing a 3D routing algorithm
to route the packets through the 3D stacked chips. The main target of the developed routing
mechanisms is to keep the flexibility and utilization provided by the 3D-NoCs.

2.1.1 LA-XYZ: A high throughput look-ahead routing algorithm
This routing algorithm is developed to minimize the system communication latency and
power consumption, also to improve the system overall throughput The 3D-NoC systems
mainly depend on the Dimension Order Routing (DOR) XYZ algorithm. The routing
algorithm routes the first packet flit to the X dimension, then to the Y and eventually to
the Z dimension to reach its target.The output port is determined in this algorithm by
comparing the processing node with the address of the final destination node[7]. Despite
the face of that the routing algorithm is simple to be implemented and also free of lifelock
and deadlock, but it has problems with inefficiency in the pipelining.
Figure 2.1 shows a router pipleline based on the XYZ routing in which the virtual channels
are not considered to enhance the performance of the routing algorithm. The router pipline
in Figure 2.1 is consisted of four pipelining as follows:

• Buffer Writing (BW).

• Routing Calculation (RC).

• Switch Arbitration (SA),

• Crossbar Traversal stage (CT).

The router introduces a latency overhead and power consumption as the packet needs to
pass by all these four stages to reach its final destination. That will cause a very large
decay in the performance of the whole system, also this problem is related propotionally
to the network size.

To solve this problem, the authors in this work proposed a Look-Ahead-XYZ routing
algorithm which is denoted by LA-XYZ[7]. In this routing algorithm, a precomputition to
the next port direction of the router is done then adds this information to the packet.
When the packet arrives at the downstream node, the switch arbiter will use the next port
identifier added to the packet to route the packet to the neighbour node. At the same time
the routing calculation works in parallel to determine the next output port that the packet
will take. This parallel procedure optimizes the pipelining time in the LA-XYZ routing
algorithm as shown in Figure 2.2.

4

Figure 2.1: Conventional XYZ routing algorithm[7]

Figure 2.2: LA-XYZ routing algorithm flow[7]

The LA-XYZ routing algorithm mainly takes two steps to route the packets as follows:

1. Extracting the information of the next output port which is embedded in the packet.
According to the direction of the output port, the address of the next node is
calculated to be used in the next step. This step is illustrated in Figure 2.3.

5

Figure 2.3: Step 1: LA-XYZ routing algorithm[7]

6

2. A comparison takes place between the current processing node and the destination
address to know if the packet reaches its target or not. This step is illustrated in
Figure 2.4.

7

Figure 2.4: Step 2: LA-XYZ routing algorithm[7]

8

As an optimization approach in the LA-XYZ routing algorithm, a no-load bypass approach
is taken as shown inFigure 2.5. The number of the pipelining stages can be optimized by
overlapping the buffer writing stage. In this approach, if the input FIFO buffer is empty,
the packet does not need to e stored and it will continue its path straight to the routing
calculation and switch arbiteration stages which are still done in parallel.

Figure 2.5: By-pass in LA-XYZ routing algorithm[7]

Figure 2.6, a full 3D-NoC’s router system is shown. The architecture contains seven
input modules for every direction in addition to the switch allocator and crossbar mod-
ules. While the input-port module is shown in Figure 2.7, each module contains two
componenets: input buffer and router module[7].

Figure 2.6: The architecture of the 3D-NoC’s router[7]

9

Figure 2.7: The module of input-port[7]

The 3D-NoC system which is using the LA-XYZ routing algorithm is evaluated with
respect to the area utilization, power consumption and clock frequency. The authors used
two famous benchmarks to evaluate their work which are as follows:

1. JPEG encoder application. The application is suitable to be used in evaluating the
3D-NoCs[28]. Additionally, the JPEG is a small application that can be mapped
into eight nodes only.
That can show the benefits of the 3D-NoC and the LA-XYZ routing algorithm
clearly.

2. Matrix multiplication application. This application has the potential in reaching the
best performance in parallel architectures and also creating enough netowork traffic
to evaluate the system performance.

2.1.2 Topology Aware Adaptive Routing for irregular Mesh 3D-NoC
systems

The thermal issue is such a critical challenge in the 3D-NoC systems. Therefore, the
topology in these systems becomes irregular mesh topology. The routing algorithm here
is proposed to balance the traffic load in the irregular Mesh 3D-NoCs[8]. The routing
algorithm is denoted by Topology Aware Adaptive Routing (TAAR).
The traffic becomes more in balance in the irregular mesh systems as shown in Figure 2.8
because of the larger path variety in the proposed routing algorithm.

10

Figure 2.8: Larger path variety in TAAR routing aglorithm[8]

For the diversity of the packet routing path, an adjustment is proposed, denoted by
Topology-Aware Multiple Routing Adjustment (TAMRA)[8]. In another adopted routing
algorithms, the virtual channels technique is used to solve the deadlock issue. This
technique comes with a very large area cost. In TAAR routing algorithm after considering
the area issue caused by the virtual channels, a Store-and-Forward (SAF) policy is used to
avoid the deadlock problem in the routing algorithm by cutting the violated turn as shown
in Figure 2.9. The TAMRA has two stages of serial routing as shown in Figure ??[8], the
routed packets are temporarily saved in a network interface first.
The switching takes place, if there are two packets request the same output port direction.
For the rerouted packets, an overhead latency happens due to the switching process.
The worse case is when each router transmits one packet per cycle, the excess overhead of
the latency will equal to (the largest packet size) x 3 clock cycles. While comparing this
worst case overhead latency to the overhead of the SAF policy which is at least 10 to the
power seven cycles, the re-routed packets can be easily neglected.

Figure 2.9: Operation flowchart of a transport layer and a network layer[8]

Figure 2.10: (a) Packet B is waiting for Packet A, (b) Packet A is prepared to retransmitted,
and (c) Packet B start to enter the temporal storage[8]

11

The flow charts of the TAMRA is shown in Figure 2.11. The first routing stage, the
adaptive routing mechanism is used to reliver the routed packet from the source node S to
the intermediated node M. The routing mode is then will be detemined according to the
topology, then the packet will be routed from the M node to the final destination[8].

Figure 2.11: (a) Operation flow of TAMRA, and (b) An example[8]

2.1.3 Layered Routing in Irregular Networks
In this routing algorithm, the authors proposed a routing algorithm with groups of virtual
channels in each network layer. For each virtual channels group, some source and
destination address pairs are assigned[29]. That distribution in the traffic leads to an
increase in the routing efficiency in the whole system.
The routing algorithm is easy to be implemented with no extra switch features than the
already exist virtual channels.
The routing algorithm divides the the physical network intro number of layers. Each layer
represent a virtual network with the same connection to the original physical network.
The packets will remain in each layer where they are first injected. Moreover, a routing
function will include all the necessary information on the routing in a specific layer. As a
conclusion, the routing algorithm provides no restrictions on the paths that the packet may
take through the network. Meanwhile, the deadlock issue is avoided by forcing the packets
to use specific layers. That leads to a shortest path routing with also a load balancing
routing approach.
The routing algorithm can be used in many applications. The simulation results show
that the used techniques lead to a significant performance gains in comparison with the
standard UpDown routing algorithm.

12

2.1.4 Elevator-First Routing Algorithm
The Elevator-First routing algorithm is the most flexiable and generic routing algorithm
proposed in all the previous mentioned routing algorithms. It is designed for vertically
partially connected in regular 2D dies as shown in Figure 2.12, the different regular 2D
dies can be in various shapes and sizes such as mesh, ring, star and torus.

Figure 2.12: Vertically partially connected 3D-NoC[9]

The authors proved that the routing algorithm is fully independent of the shapes and
dimensions of the 2D topologies, and also the number and location of the TSVs in the
3D-NoC system. A Vertically-Partially-Connected 3DNoC which is supported by this
routing mechanism can come with different numbe, placement and location of the vertical
interconnects, as well as the topology in each stacked die. Figure 2.13, shows an example
of such architecture in which the routers are divided into four types as follows:

1. 2D routers which have five conventional ports.

2. 3D routers which have up links to connect the stacked dies together.

3. 3D routers which have down links to connect the stacked dies together.

4. 3D routers which have both up and down links

13

Figure 2.13: Different routers in Vertically partially connected 3D-NoC systems[9]

When issuing a packet through the 3D-NoC, if the source and destination nodes are in
the same tier. Then, the packet will be routed directly according to the 2D topology
in this tier. Otherwise, if the source and destination nodes are not in the same tier, an
algorithmic dimension routing technique such as Z-first algorithm[9]. Figure 2.14 shows
the Elevator-First algorithm flow, In tier two, a node S1 transmits a packet to a destination
node D1 in an upper tier from the S1 node’s tier. S1 has no direct vertical interconnect
to the destination node D1. So, S1 will route the packet first to the Elevator Z+ in the
same tier. It adds a temporary header to the packet that includes: Elevator address and two
other flags. T and U flags are set to one, which means that the Elevator Z+ is not the final
destination and that the packet is going up in the 3D-NoC. When the Elevator gets the
packet and by checking the flag T. It realized that the header is temporary and will route
the packet up as U flag is set to one.
The packet will be forwarded to the upper link and gets into the intermediate stage through
a mediatory node M. The check will then occur again to see if the M and D nodes are
on the same tier, if not same sequence of logic will take place[9]. The flow charts of the
Elevator-First algorithm are shown in Figure 2.15, Figure 2.16 and Figure 2.17[9].

14

Figure 2.14: X-First 2D and Elevator-First Routing Algorithms[9]

15

Figure 2.15: Elevator First Routing in LOCAL input ports[9]

16

Figure 2.16: Elevator First Routing in 2D input ports[9]

17

Figure 2.17: Different routers in Vertically partially connected 3D-NoC systems[9]

As a further work to implementing the Elevator-First algorithm, a 3D router is implemented
to support the Elevator-First algorithm functionalities. The Elevator-First routing algorithm
is the base of the Direct-Elevator algorithm which is proposed in this work which is
illustrated in Chapter 4.

2.2 Simulators and Tools to Create Various 3D-NoCs

2.2.1 Booksim Simulator
Booksim simulator tool is proposed to create different NoC architectures. A simulator is
implemented to be a cycle-accurate simulator for the NoCs, it can also model the inter-
connects between the network nodes. The author released two versions of the tool. First.
Booksim1 was a simulator that produces a generic networks that did not target the NoCs
environmental setup. consequently, the simulator has been used in many network contexts.
Also, it has been used to study many network aspects such as network topology, routing
technique, flow control, router architecture and the quality of the networks. From the
perspective of the system, Booksim offers a wide flexibility, that comes from paramitizing
all the network components within the tool.

The simulator is designed in modules to ease the modification process that may take
place in any module of the system. However, the benefits provided by Booksim1, yet it did
not support some important features and topologies which are implemented in Booksim2.
Booksim2 was implemented and developed to include many other modifications as it
reflects in a better way the state-of-art in the NoC research. Specifically, its features are
more detailed in moduling the router architecture, the communication channel delay and
support for the additional traffic load models.
As a simlator overview, the booksim is divided into hierarchical modules that imeplement
different functionalities supported by the simulator as shown in Figure 2.18. Each module
of these simulator modules has an interface which eases the replacement and modification
of the module implementations without affecting other parts in the hierarchy.

18

Moreover, a top level block diagram is shown in Figure 2.19. The top lebel modules
of Booksim are the traffic manager and the network. The traffic manager is a wrapper
around the network that model the source and destination endpoints in the network. The
wrapper injects packets into the network according to the user selected configruation
which depends on the traffic pattern, packet size, packet injection rate and other aspects.
The traffic manager is also responsible for ejecting the packets out of the network from
the destination endpoints and terminating the simulation.
The network top level includes a group of routers and channels, which are connected
according to the selected topology. The communication between all nodes accross the
channels.

Figure 2.18: Module hierarchy of the simulator[1]

Figure 2.19: Top-level block diagram of the simulator[1]

19

A router has been implemented to support the Booksim tool funcionalities. The compo-
nents of the router are divided into four stage pipelined design as shown in Figure 2.20.

Figure 2.20: Router module of Booksim tool[1]

The tool comes with alot of parameters as shown in Table 2.1, that provides the user with
a large range of possible networks. The tool is available as open source tool in which the
user can also access its source files[1].

Table 2.1: Some Parameters of the Booksim Simulator (Available in both versions of
Booksim)[1]

20

2.2.2 Noxim Simulator
Noxim simulator is developed based on SystemC, which is a system description library
written in C++[10]. The main motivation behind implementing Noxim tool is allowing
a scalable performances to the different generated NoCs. The architecture of the NoCs
depends on two components which are as follows:

• The network nodes: which represent the main items of the Noxim architecture.
Howeverthe network nodes are always related to the input and storage elements,
buut they are also required to support different funcionalities related ro the data
distribution.

• Processing elements: which are considered as the main components that actually
performing storage and computation functionalities. The processing elements are
also responsible for generating and consuming the data network packets.

• Routers: which are responsible for routing the data packets, communication tech-
niques in the network and also implementing the flow control through the whole
network system.

• Hubs: These components are playing a vital role in Noxim tool architecture as
they allow the communications between any two non-adjacent nodes. The hub
acts as an intermediate stage between the two nodes. The Noxim also provides an
interesting possible architecture which is Hub-to-Hub wireless connection as shown
in Figure 2.21.

Figure 2.21: Internal architecture of hub nodes with wireless communication[10]

21

• Channels: in which the packet is transmitted using a known wireless frequency. The
frequency of the transmittion is taken by only one hub at a time.

Noxim offers a wide range of the NoCs that can be evaluated with respect to the power
and performance. It is also available on the web as an open source tool for users.

2.2.3 NIRGAM: A simulator tool for NoC interconnect routing
NIRGAM tool is implemented based on SystemC, which allow the user to experiment and
evaluate different applicationd and routing mechanisms. It enables the user to analyze the
performance with respect to the latency and the throughput[11]. Currently, the NIRGAM
simulator supports mesh and torus topologies with wormhole switching technique.
The users can choose of the available embedded routing algorithms such as deterministic
XY, deadlock free odd-even, source and Q-routing[11]. The Quality of Service is also
taken into consideration as the user can reserve a certain amount of the available band
width for Guaranteed Throughput (GT) load traffic.

Figure 2.22shows the flow diagram of the NIRGAM tool and its different modules.

Figure 2.22: NIRGAM Simulator Flow Diagram[11]

Currently the following parameters are supported by the NIRGAM simulator as follows:

• Topology: 2D Mesh and 2D Torus.

• Switching mechanism: Wormhole.

• Routing Algorithms: Source routing, deterministic XY and adaptive Odd-Even
(OE).

• Applications: sender, reciever and traffic generator.

22

• Plug in to support network routers.

• Plug in to support the applications.

NIRGAM tool is also available on the web for downloading and usage

2.2.4 CONNECT tool to create different 2D-NoCs
CONNECT is a NoC generator that provide the user with synthesizable RTL designs.
The NoCs produced from CONNECT are evaluated against high-quality RTL NoC based
on ASICs. CONNECT NoC is meant to be part of an FPGA system[12]. Therefore, the
CONNECT NoCs have to balance between two main tradeoffs:

1. Providing efficient performance to satisfy the application requirements.

2. Minimizing the usage of the FPGA resources to utilize them for the rest of the
system components.

CONNECT takes both tradeoffs into consideration by makeing the NoC implementation
as efficient as possible.
A router has been implemented for the communications over the NoCs created by CON-
NECT. The routers are configurable due to many parameters, the router architecture is
shown inFigure 2.23.

Figure 2.23: CONNECT Router Architecture[12]

23

The CONNECT tool comes with a web-based Graphical User Interface (GUI) as shown
in Figure 2.24 that allows the user to enter all the 2D-NoC specifications regarding the
following components:

• Network topology.

• Number of Endpoints.

• Router type.

• Number of virtual channels.

• Flow control type.

• Flit data width.

Figure 2.24: CONNECT Tool[12]

As mentioned before CONNECT is tailored to be used on FPGAs. The FPGA has a
reconfigurable nature which represents the main difference between them and ASICs.
Implementing NoCs using FPGA creates very unique oppotynities as well as challenges.
The CONNECT tool provides NoCs which uses the FPGA reconfigurability in many of its
applications.

The architecture of CONNECT NoC has two main routing design decisions which are
as follows:

• Single pipeline stage: CONNECT uses a single stage router pipleline instead of the
common three or five stages router. That leads to a low hardware cost, low latency
and also a more efficient buffer usage dut to the reduction in the round trip between
the network routers.

• Tightly coupled routers: CONNECT tool maximizes the wire usage by using wider
interfaces that leads to thinner coupling routers.

The most important advance features of the CONNECT tool are as follows:

24

• Topology-agnostic: The tool provides a flexbility related to the routing algorithm
which gives the ability to use different topologies.

• Virtual Channels: CONNECT tool uses the virtual channels to avoid the deadlock
problem that may occur in routing the packet through the NoC system.

• Virtual Links: These links facilitiate the implementation of the NoC’s endpoints.
This feature guarantees transmitting and delivery of multi-flit packets.

The synthesis results of CONNECT tool are evaluated using Xilinx XST technology.
Additionally, all results are compared against a high quality virtual channel based router
called SOTA to consider the hardware cost and network efficieny of CONNECT as shown
in Figure 2.25.

Figure 2.25: Comparison between FPGA cost of SOTA and CONNECT router[12]

In this thesis, a tool is proposed to create synthesizable 3D-NoCs structures as the 2D-NoC
created by the CONNECT tool.

The simulators in general are very useful for the following purposes:

• Evaluating different hardware implementationd without the cost of fabricating the
hardware physically.

• Debugging the problems through a fully controlled environment.

• Obtaining a detailed performance analysis with respect to most of the important
metrics.

A valuable survey is conducted on the different NoCs tools[2]. The survey compares
between many tools whether they are developed from research groups or from the industry.
The NoC tools are classified into two main categories: synthesizers and simulators. For the
synthesizers, the quality of generated NoCs with respect to area and power consumption
is usually discussed. Also, synthesizers come in industrial commercial versions such as
FlexNoC[30] and INOC[31].
On the other side, the simulators are mainly focused on the network performance with
respect to the output throughput, latency and the overall system reliability.

25

The authors show a precise comparison between different simulators and synthesizers
in this survery[2]. Many NoCs simulators and synthesizers are shown in this survery in
Table 2.2.

Table 2.2: Different NoC simulator and synthesizers[2]

26

Table 2.3 shows a general comparison between different other simulators, while the
NOMENCLATURE of the comparison can be found in Table 2.4.

Table 2.3: A comparison between different simulators[2]

Table 2.4: Nomenclature of the comparison table[2]

27

Chapter 3: An Overview About The
Three Dimensional Network-On-Chips
3.1 Three Dimensional Technology
Three Dimensional (3D) technology is a new trend in which a stack of many dies are
fabricated in one chip. As the transistor’s size keeps shrinking, Moore’s law continues to
yield higher transistor density with each new process transistor generation. That leads to
multi-core Chip Multi Processors (CMPs) with hundreds of interconnects in one chip[26].
The 3D technology becomes more vtial to solve the Moore’s law challenges. Moreover,
The 3D intergation technology combines the diverse ability of System in a Package (SiP)
while expanding the intergration capabilities of the System-On-Chips (SoCs)[32].

3.1.1 3D Stacking Technologies
The 3D integration technology has four types of stacking as follows[3]:

1. Package stacking:
In this techonlogy, the different dies are packaged individually then stacked together
in one 3D chip The number of 3D interconnects in this case is in the range of hun-
dredrs of micrometers. So, that puts a constraint on the number of 3D interconnects.
The advantages of this technology are the moderate design time and also fabrication
cost.

2. Die Stacking:
In this technique, the connection of the dies is using Through Silicon Vias (TSVs)
and micro bumps. The difference of the die stacking than the other stacking tech-
nologies, is that die stacking stack dies individually in the substrate. However, the
density of the TSV interconnects is still in the range of micrometers.

3. Wafer Stacking:
This stacking technique stacks first the wafers then cut the wafers into dies. It
requires shorter time when it is compared to the die stacking. The main issue with
this technique is the low production yield.

4. Device Stacking:
This stacking technology is done by fabricating the active layers at low temperature
VLSI steps[33]. It offers a more communication channels between the different
layers. Therefore, It gives the best solution for the high density storage and parallel
processing applications.

28

A comparison between the different types of stacking technology is shown inTable 3.1.

Table 3.1: Comparison between different stacking techniques[3]

3.1.2 Vertical Interconnects Technologies
The 3D technology comes with many types of vertical interconnections. Table 3.2 shows
a brief about the several 3D interconnections. A comparison in terms of assembly level,
maximum number of tiers in 3D structure, interconnect pitch, and the connected routing
resources. While in Figure 3.1, each interconnecting technique is illustrated[4].

Table 3.2: Comparison of vertical interconnect technologies[4]

29

Figure 3.1: Illustration of vertical interconnect technologies: wire bonded (a); mi-
crobump3D package (b) and face-to-face (c); contactlesscapacitive with buried bumps (d)
and inductive (e); through viabulk (f) and silicon on insulator (g)[4]

The vertical inteconnects as shown in Figure 3.1 can be in various types as illustrated
below:

• Wire bonded: Most famous technique, in which the wires connect each die in the
stack of the 3D structure.

• Microbump: Microbump approach uses gold or solder bumps on the surface of each
die to make the required connections.

• Contactless: This technique uses capacitive of inductive coupling to communicate
between different dies in the vertical dimension.

• Through via bulk: The TSV approach provides the maximum possible interconnect
density. In which the interconnection can be done whether face-to-face or face-to-
back.

3.2 Different Implementations and Applications with 3D
Technology

The 3D technology offers a large scale of new implementations and applications. In
this section, two interesting applications and implementations using the 3D structure are
illustrated.

30

3.2.1 3D Chip Structure with an iA32 Microprocessor
In this implementation, the 3D structure is evaluated while it is applied to a iA32 micro-
processor. A design database for the microprocessor is evaluated while floor planning it
for 3D structure[13]. InFigure 3.2, the 3D structure is shown. Two dies are connected
together in a face-to-face shape with a vertical interconnect.
The vertical interconnects are located on top of the metal stack for each die. The heat is
used here to bond the two stacked dies together. The backside vias are used to connect
the input/output to the two stack dies. The power then is delivered across these backside
interconnects.

Figure 3.2: 3D Structure[13]

3.2.2 CMOS Based Image Sensors Using 3D Technology
The demand of thinner and lighter devices such as tablets, laptops and mobiles is increasing,
so developing smaller and better resolution CMOS image sensors becomes vital for such
industries. In this application, the 3D technology is used for the imager applications
with a low temperature oxide to oxide and TSV interconnection. The process enables
electrically the stacking and connection of two chips- illuminated imager chip abovr an
image processing chip.

The proposed approach is based on low temperature oxide-oxide bonding and TSV pro-
cess as shown in Figure 3.3 which represents a schematic cross-section of the design[14].
The bonding quality in the 3D structure of the application is studied by a SAM (scanning
acoustic microscope) approach. This can spot any defect at the oxide-oxide bonding
interface. Figure 3.4 is a SAM image of a 200mm wafer pair after the bonding is done,
the black color shows the good quality of the bonding interface[14].

31

Figure 3.3: A cross-section of an imager die schematic[14]

Figure 3.4: SAM image[14]

3.3 Challenges of the 3D Integration Technology
Nevertheless,The new technology comes with several benefits, it comes with very chal-
lenging research problems. In this section, the most vital challenges are going to be
discussed.

• Cooling is required according to the high power and circuit density. Moreover, for
large applications with high performance effective cooling techniques to control the
temperature while keeping the high performance due to the short vertical connections
used to connect the 3D stacked chips as shown in Figure 3.5.

32

Figure 3.5: Cooling used over a 3D structure[15]

• The usage of TSVs introduces new challenges in the fabrication process such as:
etching technique, metallization, and shape of the TSV[15].

• The wafer bonding introduces a very important challenge which is the alignment
accuracy between the stacked dies in the 3D structure. The bonding misalignment
can be measured using Vernier-type structure[34].

3.4 Network-On-Chips
The networking techniques are applied to the SoC designs to solve the wiring challenges
in the fabrication process. Physical wires are the comunication channels between the
different cores in the SoC design. Wiring width increases in higher wiring level, that
leades to thicker and wider wires in the top levels than the low levels.
The increase in the wiring width decreases the wire resistance, also the spaces between
the different wires keep the capacitance effect from growing.
Additionally, at the same time the inductance effect increases relatively to the resistance
and capacitance effects do.

Therefore, global wires will become very lossy[27]. Network On Chip (NoC) approach
introduces a solution for this global wiring growth issue, by providing interconnection
networks between the different chips. Figure 3.6 shows a NoC which has different cores
connected together via routers nodes.

33

Figure 3.6: Example of a NoC[16]

.

3.5 The Architecture of NoCs
Building a NoC that is most convenient for a specific application requires decisions about
the router and network designs[17].

3.5.1 Router Design
The router design depends on mainly the number IPs connected to it, as it reflects directly
on the number of input and output ports and whether they are different or equal[17]. There
are some aspects related to the router design as follows:

• Switching technique such as the virtual cut through switching technique in which the
packets are routed directly once they arrive if there is an available output channel.

• Routing algorithm.

• Router Implementation. The router contains input and output blocks as shown
in Figure 3.7 to support the routing algorithm functionalities and communicate
between different IPs[17].

34

Figure 3.7: Two Inputs/Two Outputs router Implementation[17]

3.5.2 Network Design
Network design depends on many aspects such as the number of cores, the number of
routers and the network topology. Network topology is considered a very important aspect
in network designing as it gives the opportiunity to create different structures of NoCs
such as mesh, star and torus topologies.

3.6 Partial Reconfiguration Using NoCs
The Dynamic Partial Reconfiguration is considered one of the most vital applications
of using the NoCs. It can be used to reach high hardware flexibility, reliability and
utilization[18]. In DPR, part of the circuit can by dynamically reconfigured while other
parts of the circuits are operational at the same time.
The DPR is implemented on Field Programmable Gate Array (FPGA) and based on the
NoC methodology of communication between the different cores.Figure ?? shows the
architecture of a NoC DPR, it is composed of NoC which includes router and Resource
Interface[18].

35

Figure 3.8: A NoC DPR Architecture[18]

3.7 The Three Dimensional Network-On-Chips
As Illustrated earlier in this chapter, the 3D intergation technology and the NoCs have
numerous benefits individually. The Three Dimensional Network-On-Chips (3D-NoCs)
combine the benefits from the two technologies and create opportunities for new applica-
tions.

As mentioned before, the NoC methodology solved the perfomance constraints arising
with the long interconnects across the chips. Also, it allows the intergration of many IPs in
one single SoC chip. On the other hand, the floorplanning of the 2D chips puts restrictions
on the enhancements that can be provided by the NoC[35].
Therefore, the 3D technology enables new possible architectures that were very hard to be
implemented before a long with the NoCs.

3.7.1 The Architecture os 3D-NoCs
The new vertical dimension allows a large freedom in selecting the topology for each
stacked NoCs. There are different 3D-NoCs structures as follows:

• Mesh based network: It is the most common 2D-NoC structures. A 3D mesh
network is shown in Figure 3.9.

36

Figure 3.9: 3D Mesh based network[19]

.

• Tree based network: there are two tree based network architectures such as butterfly
fat tree which is shown in Figure 3.10.

Figure 3.10: Fat Tree Model[20]

.

The different architectures of the 3D-NoCs introduce different problems regarding the
power consumption of the whole system, the placement of the routers, and the placement
and number of the vertical interconnects.
Many studies have been conducted to evaluate the different 3D-NoCs architecture with
different 3D routing algorithms.

37

Chapter 4: Introduction To The
Network-On-Chip Methodology in
FPGAs
As mentioned in the previous chapter the vital role of the NoC methodology in general
design chips becomes very important. The introduction of the NoC concept to the FPGAs
is one of the main motivations behind this thesis work.
In this work, a tool is proposed to create synthesizble 3D-NoCs that can be evaluated
accross the latency, area and power aspects. The 3D-NoCs created are also tailored to
be part of an FPGA. Therefore, highlighting the importance of the NoC approach in the
FPGAs has to be part of this thesis background.
In the previous chapter the architecture of NoCs and the partial configuration concept are
presented shortly as a part of the introduction to the 3D-NoCs in general. In this chapter, a
detailed study about the NoC in FPGAs is going to be conducted.

Adding the NoCs within the FPGAs has the ability not only to enhance the system
efficiency of the interconnections between the different nodes in the system, but also to
increase the design production and reduce the compilation time using a higher level of
abstraction in the communication through the system. The interconnections in the FPGA
faces lately many challenges which we can summerize as follows:

• Poor interconnection scaling due to the increasing in wire resistance while decreas-
ing in the transistor performance.

• The time consumption is really high due to the high interconnect delay in the system
which leads to a difficulty in detemining the critical path in the functional design
description.

• Large interconnection amounts are consumed due to the new high speed input/output
interfaces.

• The low level of the abstraction for the interconnects leads to a large compilation
time which affects the whole design efficiency.

According to these challenges, the NoC methodology is introduced within the FPGA as
a solution. Many studies have been performed to evaluate the methodology and its all
implemented components.

4.0.1 A comparison between the soft NoC and hard NoC on FPGA
A study has been conducted to compare between the tradeoffs of the soft and hard
implementations for NoC[5]. Authors present three different FPGA architectures and
implementations of a hard NoC implementation. Then, these three implementations are
compared to a soft NoC implementation to detemine the advantages from each one.
All implementations have hard routers and two of them have additional hardware to
support the Time-Division Multiplexed (TDM) wiring feature. The third implemention is a
a standard FPGA based on hard routers. All implementations are illustrated in Table 4.1.

38

Table 4.1: The evaluated hard NoC implementations[5]

The TDM feature enables the time multiplexing between the hard blocks which include the
network routers. That certainly leads to better area utilization. Hard routers for FPGA have
been proven to be more area and power efficient, and also give a better performance[21].
Otherwise the soft routers consume large area, yet they give more flexibility in the
implementation process in silicon.

4.0.1.1 Router Architecture in the NoC hard implementations

A router with switched circuit is implemented due to its input buffer resources. Despite
that these routers have poor ability in sharing resources, yet with wiring flexbility on the
FPGA and known traffic patterns, this makes the designer able to solve this problem. To
give flexibility in the used topology, any router port can be connected to any part on the
FPGA through a configurable wiring.

The router is mapped to StratixII and and Virtex4 boards. In which, a 90 nm technology
is used which ehables to translate the configurable resources on the FPGA into area. The
interconnections are classified into three types: short, medium and long. The design
depends mainly on the medium length interconnections, that gives a good comparison
basis.
The three evaluated implementations are shown in Figure 4.1.

39

Figure 4.1: Three NoC implementations[5]

4.0.2 Area Results
The area is calculated to include the Look-Up table (LUT), router area and wiring area.
The silicon are of each router is shown in Table 4.2.

Table 4.2: Router areas[5]

The hard routers area will vary more while using different topologies as they consume a
smaller proportion of the overall network area than the soft routers. The percentage of
network area which is consumed from the whole chip area for different routers are shown
in Figure 4.2.

40

Figure 4.2: Percentage of router area to chip area[21]

The hard and soft router consume 1% and 10% of their network areas respectively.

4.0.3 Power Results
The power is evaluated by adding two data circuits across thr router and transmitting router
data into the network. Figure 4.3 shows the power consumption which is consisted of two
parts: router power consumption and wiring power consumption. The soft NoC consumed
power which is greater than the hard NoC with TDM wiring by four times.

Figure 4.3: Hard NoC and Soft NoC power consumption[21]

As a conclusion to the study above, the soft NoC uses less than three percent of the whole
chip area. While the hard NoC does not exceed one percent. The cost of the un-used
hardware has been minimized by using the TDM wiring approach.
Regarding the power consumption, the soft NoC shows very bad performance while
comparing it with hard NoC. Most of FPGAs use the hard NoC implementation for its
better performance regarding the area and power aspects.

41

4.1 Impact of NoC parameters on the FPGA Network-
On-Chips (NoCs)

Developing a method for evaluating the effect of the fundumental NoC parameters in the
FPGA based NoC, gives the designer a more clear picture. The effects of buffer flit depth,
data flit width and the virtual channels parameters are evaluated[36].
The study shows that the data flit width and buffer flit depth have the greates effect on the
FPGA area and clock frequency. Meanwhile, keeping the virtual channels equal to four
provides the best performance with good efficiency for the mesh and torus topologies.

4.2 A NoC design with debug features on Field-Programmable
Gate Array (FPGA)

The NoC design on the FPGA comes with many tradeoffs, the monitoring of all variable
NoC parameters facilitiate finding the optimal intersection point between all aspects that
suits each application or design.
SonicsGN is a NoC than enables high speed networks and it is used in vital applications
including smart phones, battery and home devices as shown in Figure 4.4.

Figure 4.4: SonicsGN NoC Architecture [22]

42

Additionally to the NoC architecture, a performance monitor and hardware trace module
is implemented[22]. The performance monitor tools provides a system visibility and
debugging environment across the network interconnections. The tool visualizes all the
interactions which occue on the chip. Moreover, the system utilization and the latency can
be measure during the runtime.

The performance tools can be located in the SonicsGN NoC as shown in Figure 4.5.

Figure 4.5: The location of the performance tool in the SonicsGN NoC[22]

43

While the performance monitoring tool architecture can be shown in Figure 4.6.

Figure 4.6: The Architecture of the performance and monitoring tool[22]

The performance and monitoring tool can work in several working modes as follows:

• Enable phase.

• Program phase.

• Run phase.

• Post process phase.

As illustrated in this chapter, the FPGA based on NoC methodology solves many design
challenges, but it comes with another challengs and tradeoffs. Therefore, many router
architectures are evaluated and also many studies have been conducted on the different
network metrics and their effects on the FPGA performance regarding the area and power
utilizations.

44

Chapter 5: The Direct Elevator Three
Dimensional Routing Algorithm
5.1 Introduction
Nevertheless The 3D-NoCs combine the benefits from the 3D technology and NoCs,
they certainly introduce new research challenges. One of the most important challenges
is to implement a flexible 3D routing algorithm that will provide the communications
between the vertical layers in the third dimension via the Through-Silicon Via (TSV)
interconnection model.

Although 3D Integration technology offers a whole new set of powerful applications
and designs, the use of TSVs as an interconnection model also introduces two new design
issues. Firstly, the TSV interconnect pitchs, repesented in the pads consume a large area
overhead than the corresponding horizontal 2D wires and also much larger than the gates
and memory cells as shown in Figure 5.1 and Figure 5.2.

Figure 5.1: TSV interconnect with landing pad[23]

.

45

Figure 5.2: TSVA cell occupying three standard cell rows (KOZ = 1.205 m) and TSVB
cell occupying four standard cell rows (KOZ = 2.44 m)[24]

.
Secondly,The cost of manufacturing a 3D integrated circuit using TSV technology is
relativly high. Also, each extra fabrication step introduces a high risk for design defects,
that results in yield reduction in the fabrication process. The yield is an exponential
function of the number of TSVs and the frequnecy of defects. Thus, the yield exponentially
decreases when the number of TSVs increases beyound a certain limit.
The cost effieciency of the manufacturing process introduces an essential tradeoff between
the short and fast TSV interconnects, and a constraint on the number of possible farbicated
TSVs in the 3D intergrated circuit. As mentioned before in the first chapter, 3D Integration
technology enables the integration of different fabricated intergrated circuits with several
technologies. Maintaining the same topology for all the vertical tiers of such dies and
using a regular 3D network topology is absolutly hard. To support the network topology
diversity of the design tiers and reduce the number of TSVs needed by the network to
keep the yield efficency at its acceptable limit.

A 3D dead-lock routing algorithm, denoted by ”Elevator-First Algorithm” has been
implemented to connect a 2D chips vertically and partially[37]. The 2D chips are con-
nected in the planar level with usual topologies such as mesh topology, star topology, ..etc.
The goal of the design of such a 3D routing algorithm is not to determine a fixed number
of vertical connections TSVs or even their locations in the design.
This flexibility gives the designer the ability to determine the most convenient design and
topology of each tier, also the number and location of TSV interconnects. In addition to
the routing algorithm, a 3D router has been implemented to support the functionality of
the 3D routing algorithm Elevator-First.

46

5.2 Elevator-First Three Dimensional Routing Algorithm
As mentioned before the Elevator-First algorithm is independent on the number and
locations of the vertical interconnects (TSVs), also the planar topology used in each tier.
That allows inhomogeneous network tiers to be combined in one 3D intergrated chip.
Additionally, the routing decision in the Elevator-First routing algorithm is taken based
on the final destination which is available in the header of the transmitted packet and the
current node. There are two possibilities of the routing in the system. First, if the current
node and the destination node are in the same planar tier, in this case a usual 2D routing
algorithm such as mesh will be used to route the packet. Second, the current node and
the destination nodes are not located in the same tier, in this case the usual 2D routing
algorithm is not applicable anymore.

The routing mechanism in this case works as follows: if a router issues a packet which
has a destination node located in a different tier, the router adds a new header to the
packet that includes the address of the elevator 3D router and a flag to indicate that the
elevator router is not the final destination node of this packet. The location of the elevator
router is read directly from a register. The elevator flag is tested when the router is the
destination. If it is set, the current router is only an intermediate node between the source
and destination nodes and not the final packet target.
Then the extra header will be deleted and the packet will be transmitted through a vertical
link with its original header. Eventually, if the elevetor flag is not set, the current router
will be the packet target and will consume it.The Elevator-First routing algorithm is
implemented with two virtual channels per one link to provide a deadlock freedom in the
design. Besides the implementation and design of the Elevator-First, a 3D router has been
implemented to provide the essential hardware, as shown in Figure 5.3, that needed to
support the routing algorithm. The router comes with a low overheard in comparison of a
router in a fully mesh connected 3D-NoC[9].

Figure 5.3: Elevator-First 3D Router[9]

47

In the thesis work, a 3D routing algorithm, Direct-Elevator, which is based on the
Elevator-First routing algorithm is proposed[25]. The Direct-Elevator is also independent
of the network planar topology, number of the vertical interconnects and placement of
them. The Direct-Elevator has all the benefits of the Elevator-First algorithm, but with a
low lateny approach.

5.3 The Direct-Elevator Three Dimensional Routing Al-
gorithm

The Direct-Elevator algorithm also operates on partially vertically conncected 2D chips.
The routing mechanism of the Direct-Elevator is slightly different from the routing mecha-
nism of the Elevator-First algorithm which leads to an optimization in the communication
latency between the tiers in the 3D system.

The Elevator-First algorithm relies on elevator nodes to connect the vertical tiers. In
order to transmit a packet from a node to another node which is located in a different tier,
the packet needs to be transmitted to the elevator node first. To illustrate and elaborate
more on the differrence between the two routing mechanisms, a full routing path will be
followed using both routing algorithms.

5.3.1 A packet routing path using Elevator-First mechanism
A packet path is from the source node S1 to the destination node D3 as shown in Figure 5.4.
When a source issues a packets, it firstly checks if the destination is located with it in the
same planar tier or not. Accordingly, if the destination and source nodes are in the same
tier, the source routes the packet directly using the 2D topology which is a fully connected
mesh in this example. In this case, S1 and D3 are located in two different tiers. Hence,
S1 routes the packet to the elevator router E1. Additional flit will be added to the packet
including the address of E1 router. A T flag will be set to indicate whether the elevator is
the packet final target or not. Also, a U flag will be set indicating whether the packet is
ascending or descending in the 3D system.
Then, the packet reaches the intermediate adjacent tier through an intermediate node
M. Moreover, M acts as a new source and the previous steps will be repeated again. In
this routing scheme, a packet cannot be routed directly from the source node S1 to the
destination node D3. It has to go through multiple nodes in between the routing path.

48

Figure 5.4: Elevator-First routing mechanism[25]

5.3.2 A packet routing path using Direct-Elevator mechanism
The Direct-Elevator algorithm is based on a smarter approach that has a effective impact
on the system latency consumed in the packets routing. In case of routing a packet from S1
to D3 as shown in Figure 5.5. Once S1 issues a packet, it decides whether the destination is
on the same tier or not. If it is not as in this case, it routes the packet to the elevator router.
The elevator router then direclty routes the packet to the tier in which the destination node
located.
The elevator nodes in the Direct-Elevator algorithm as directly connected to form a real
elevator. Therefore, the Direct-Elevator algorithm saves the time of adding and removing
the temporary elevator header flit to the original packet. Regardless the location of the
destination tier or how far it is from the source tier, this procedure is done once during the
routing path.
Accordingly, the Direct-Elevator routing algorithm can be simply considered as a special
case tailored from the Elevator-First routing algorithm.

49

Figure 5.5: Direct-Elevator routing mechanism[25]

5.4 Comparative Performance Analysis
To compare the performance between the Elevator-First and Direct-Elevator algorithms,
comparative experiments were conducted. For a reliable performance evaluation and
fair efficient comparison, the environment has been unified represented in the following
toolset:

• C programming language

• GNU Compiler Collection (GCC) under Cygwin

Each experiment measures the network throuhput in the following two cases:

1. Random packet transmission.

2. Packet transmission over the worst network path.

The network throughput is defined as the successful received packets per second. While
the network worst path is defined as the longest path between two nodes in the 3D-NoC
system. For each conducted experiment the impact of network load, the vertical complexity
and the tier complexity on the network throughput by varying three aspects respectively
which are:

• The number of transmitted packets acrross the 3D-NoC.

• The number of tiers in the 3D-NoC.

• The number of routers per each tier in the 3D-NoC.

50

5.4.1 Network Load
The network load is evaluated by testing the 3D-NoC while increasing the number of
transmitted packets accross the system. The packets are transmitted in the network at
random basis and over the network’s worst path. In these simulations, the number of
routers per each tier and number of tiers is fixed to four.
As the network load is only tested in this case, the other metrics need to be fixed. Figure 5.6
shows the throughput of the two algorithms over a random range of transmitted packets
which varies from 50,000 to 200,000 packets. Additionally, Figure 5.7[25] shows the
throughput of the two algorithms over the same range of the packets over the network’s
worst path.

Figure 5.6: Throughput Vs. Packets (random test case)[25]

Figure 5.7: Throughput Vs. Packets (worst path test case)[25]

51

In Figure 5.6 and Figure 5.7[25], the network throughput of the two algorithms changes
slightly over the range of the transmitted packets. Hence, this behaviour reflects the
stability offered by the two algorithms.

5.4.2 Vertical Complexity
The vertical complexity meausres the impact of increasing the number of tiers in the 3D-
NoCs on the network throughput. Figure 5.8 shows the throughput of the two algorithms
while changing the number of tiers from three to six.
In these simulations, the random network transmitted packets and number of routers per
each tier are fixed to 100,000 and four, respectively. On the other hand, Figure 5.9 shows
the throuhputs of the two algorithms over a range of tiers varies from three to six. The
number of random transmitted packets over the worst path is 100,00, while the number of
routers per each tier in the 3D-NoC is four.

Figure 5.8: Throughput Vs. Tiers (random test case)[25]

52

Figure 5.9: Throughput Vs. Tiers (worst path test case)[25]

In Figure 5.8, the throughput decreases while increasing the number of tiers in the 3D-
NoC. As while increasing the number of tiers in the system, the vertical interconnects
become longer which causes this significant drop in the network throughput. Moreover
in Figure 5.9[25], the throughput decays more as all packets are routed accross the worst
path.

5.4.3 Tier Complexity
The tier complexity measures the impact of varying the number of routers per each tier
on the throughput. In the 3D-NoCs, the routers per tiers can be distributed regularly or
hierarchically.

5.4.3.1 Regular Distributed 3D-NoC

A regular distrubuted 3D-NoC has the same number of routers per each tier in the sys-
tem.Figure 5.10 shows the throughputs of the two algorithms over a range of routers per
each tier from four to 32. Here in these simulations, the random transmitted packets are
fixed to 100,000 and the number of tiers in the 3D-NoC is equal to four. Additionally,
Figure 5.11[25] shows the two throughputs over a varying range of routers per tier from
four to 32. Here, the number of transmitted packets over the worst path are 100,000, while
the number of system tiers are fixed to four.

53

Figure 5.10: Throughput Vs. Routers/Tier (random test case)[25]

Figure 5.11: Throughput Vs. Routers/Tier (worst path test case)[25]

As shown in Figure 5.10 and Figure 5.11, the throughput changes slightly with increasing
the number routers per each tier.

54

5.4.3.2 Hierarchical Distributed 3D-NoC

In a hierarchical structure of a 3D-NoC contains four tiers, the routers are distributed as
four routers in the first tier, eight routers in the second tier, 16 routers in the third tier and
32 routers in the fourth tier as shown in Figure 5.12. In this case, the transmitted random
packets are 100,000. The throughput of the Direct-Elevator is measured to be higher than
the throughput of the Elevator-First algorithm at the same conditions by 5.3 percent. On
the other hand, while transmitting the same number of packets over the worst path, the
throughput of the Direct-Elevator algorithm is higher than the Elevator-First algorithm
with 43 percent.

Figure 5.12: Hierarchical Structure of a 3D-NoC example

5.5 Summary
The two algorithms are implemented using the same software environment. The Direct-
Elevator has been proved to have a better performance in the latency aspect than the
Elevator-First algorithms.The Direct-Elevator saves the processing time which is taken by
the system to add and remove extra temporary header, to differ between the intermediate
elevator node and the destination node that leads to a significant optimization in the
network latency.
The number of the elevators in the Direct-Elevator algorithm can be definitely adjusted
according to the requirements of each application[25].

55

Chapter 6: 3D-NOCET: A Tool for
Implementing 3D-NoCs based on
Direct-Elevator Algorithm
6.1 Introduction
Implementing the flexible 3D routing algorithm, Direct-Elevator, paves the route to
implement a tool which provides different configurational 3D-NoCs structures. The
proposed tool denoted by 3D-NOCET which is based on the Direct-Elevator, enables
the user to create different structures of the 3D-NoCs based on the number of routers
per tier, number of tiers and the 2D network topology. Experimental evaluations and
performance analyses then will be conducted to determine which is the most convenient
3D-NoC configuration for the application.
The 3D-NOCET tool offers diverse synthesizble configurational 3D-NoCs through a fully
automated processes. The user is able to create different 3D-NoCs strucutes by choosing
the number of routers per each tier, the number of tiers and the 2D network topology.
Many tools were implemented to provide the users with different 3D-NoCs, but most of
them were providing a SystemC designs like Noxim and NIRGAM. 3D-NOCET tool
provides Register-transfer level (RTL) designs for its 3D-NoCs. Therefore it allows the
user to evaluate the 3D-NoC with respect to the area, power and latency which gives the
complete picture of the most important design tradoffs.

The tool works through an easy-to-use Graphical User interface (GUI). The tool GUI
allows the designer to select the number of routers per each tier separately, the number
of tiers and the 2D topology whether it is mesh topology or ring topology. The tools
then creates the RTL design files for the 3D-NoC system according to the application
specifications through an automation implemented infrastructure.Figure 6.1 shows the
GUI of the 3D-NOCET tool, the user in this case selects a 3D-NoC structure with the
following specifications:

• Four routers per each tier.

• Four tiers in the 3D-NoC structure.

• Mesh topology as the 2D routing topology.

56

Figure 6.1: The Graphical User interface of the 3D-NOCET tool

The tool has been implemented and developed with hardware limitations as follows:

• Maximum number of routers per tier equals to 255.

• Maximum number of tiers in the 3D-NoC equals to 16.

• Minmum number of tiers in the 3D-NoC equals to two.

• Two 2D topologies, mesh and ring.

The tool has been implemented using the following toolset and environmental settings:

1. TK/TCL.

2. Shell scripting.

3. Red-Hat 5 Linux machine- 64bits.

The tool implemented all the 3D-NoCs with two vertical interconnections that connect
all the elevators together accross the system’s tiers. The vertical interconnects route the
packets directly through the system in the 3D dimension. Moreover, the 2D routing
mechanism varies according to the supported network topology in this case whether it is
mesh topology or ring. The tool provides two main categories of the 3D-NoCs as shown
in Figure 6.2 and in Figure 6.3.

57

Figure 6.2: The 3D-NoC in 2D Mesh Topology

Figure 6.3: The 3D-NoC in 2D Ring Topology

6.2 The 3D-NOCET Tool User Guide
In this section, the flow of all the automation infrastructure and the System Verilog designs
within the tool implementation and developement will be illustrated. The tools mainly
contains two components as following:

1. Automation infrastructure that has been implemented using different scripts to
guarnantee the flexibility of creating different configurational 3D-NoCs.

2. A 3D router design that has been implemented to support the Direct-Elevator routing
algorithm functionalities, and also the two 2D topologies (mesh and ring).

6.2.1 Automation Infrastructure Scripts
The automation infrastructure is based on different developed scripts to provide the 3D-
NOCET tool with the ability to create generic and flexiable configurational range of
3D-NoCs at a high speed and efficiency.
As the number of routers per tier, the number of tiers per 3D-NoC and the 2D topology
change, the implementation of the connections certainly change.
The automation infrastructure contains the following scripts:

• Startup.tcl: a TK/TCL script that has been created to implement an easy friendly
Graphical User Interface (GUI) for the tool as shown inFigure 6.1.

58

• Master Script.sh: a shell script that has been created to call either the Mesh or Ring
flow scripts according to the selected topology by the user.

• Mesh RoutingTables Add.bash: a shell script which is responsible of creating the
addresses for all the routers in the network, the mesh connections between them in
the 2D and 3D levels, and also routing tables.

• Mesh Topology.sh: a shell script which is responsible of creating the right syntax
of instantiations of the router module with mesh topology then append them in the
design top module file. Also, the parameters in the parameters header file according
to the user entries.

• Ring RoutingTables Add.bash: a shell script which is responsible of creating the
addresses for all the routers in the network and also the mesh connections between
them in the 2D and 3D levels.

• Ring Topology.sh: a shell script which is responsible of creating the right syntax
of instantiations of the router module with ring topology then append them in the
design top module file. Also, the parameters in parameters header file according to
the user entries. The ring routers have no routing tables.

• Final msg.tcl: a tcl script to display the final information (info) message after
creating the design is done as shown in Figure 6.4.

Figure 6.4: The 3D-NOCET tool final information message

6.2.2 Register Transfer Level Design files
The design files are created to support the user specifications dynamically. The 3D router
support the logic of a mesh or a ring 2D topology, and also the Direct-Elevator routing
mechanism. The design files implemented for the 3D-NoC are as follows:

• param.h: the parameters header file which includes the initial parameters of the
design files. This file is automatically editable according to the user entries by the
automation infrastructure flow.

• topmod.sv: the design top module that includes the router instantiations. This file is
automatically editable according to the user entries by the automation scripts above.

59

• testBn.sv: a test bench to test the network in the Questa simulations by sending
packets from a reserved address all ones.

• router module mesh.sv: the Mesh router module design.

• router module ring.sv: the ring router module design.

6.2.3 The 3D-NOCET tool implementation and execution flow
The automation infrastructure scripts work in a certain flow to create the 3D-NoC design
files to match the user selected configurations. In Figure 6.5, a flow chart for how the
3D-NOCET tool is shown and illustrated to elaborate more on how and when every script
is used to create the 3D-NoC design files.

Launching the Tool
GUI using (Startup.tcl)

Calling Mesh or ring
flow according to the

user’s entry
(Master_script.sh)

Which topology
Mesh or Ring ?

Calling
“Mesh_RoutingTables_Add.bash”

script to create addresses,
connections between routers and

routing tables.

Calling
“Ring_RoutingTables_Add.bash
script” to create addresses, and

connections.

Calling “Mesh_Topology.sh” to
create the design parameters and
mesh router instantiations in the

design top module file

Calling “Ring_Topology.sh: script to
create the design parameters and

ring router instantiations in the
design top module file

Creating the top module designe file
“top_mod.sv” and parameters header file

“param.h” in the design files directory.

Issuing the final information message to notify the
user that the design files are ready.

Figure 6.5: The flow chart of the 3D-NOCET tool implementation

60

The flow chart consists of the following items:

• Launching the tool GUI using the Stratup.tcl script: The Startup.tcl script contains
the structure of the GUI main window. It also shows all the possible selections of
mesh and ring topologies as shown in Figure 6.6.

Figure 6.6: The main GUI window structure and the different valid topologies

Then, The number of tiers and number of routers per each tier are implemented and
placed in the main window within the script as shown in Figure 6.7.

Figure 6.7: The implementation of the functionality buttons

61

• Calling the mesh or ring flow according to the user’s entry: The ”Master Script.sh”
is implemented to choose between the two different possible flows either mesh or
ring. It also parses the user entries and evaluate the number of routers per each tier
and adds the parameters in the header file. Then it calls the group of scripts that
matches either the ring and mesh topology as shown in Figure 6.8, Figure 6.9 and
Figure 6.10.

Figure 6.8: Selection of the topology type

Figure 6.9: Evaluating the parameters in the header file

62

Figure 6.10: Determining the script flow according to the toplology type

63

• Creating the implementation according to the mesh topology including the router
instantiations and other design parameters: The ”Mesh Topology” script first calcu-
lates the number of total wires needed by the system according to the user’s entries
which are represented in the number of tiers and the number of routers per each tier
as shown in Figure 6.11.

Figure 6.11: Evaluating the number of wire in the 3D-NoC system using mesh topology

64

Additionally, the script then creates the connection between the routers to match the
selected topology, in this case the mesh topology as shown in Figure 6.12. Then
Figure 6.13, shows the instantiations of the mesh routers to be then added in the
SystemVerilog file.

Figure 6.12: Creating the connections between the routers in the mesh topology

65

Figure 6.13: The instantiaions of the mesh routers

Eventually in the script, the instantiations are added in the top level design of the
system as shown in Figure 6.14.

Figure 6.14: Adding the mesh routers’ instantiaions into the SystemVerilog top
design file

66

The ”Mesh Routing Tables Add.bash” script then will be called to create an address
for each router in the system and its routing table as shown in Figure 6.15 and
Figure 6.16.

Figure 6.15: Creating address for each router in mesh topology

67

Figure 6.16: Creating the routing tables in mesh topology

68

The router address length is two bytes. the Most significant byte defines the number
of tier in which the router is located, while the least significant one defines the order
of the router in this tier as illustrated in Figure 6.17. This router is located in the
first tier and it comes as the second router in this tier. Also, the two first routers
in each tier are reserved to be 3D elevator routers.Other than these two routers, all
routers are 2D routers.

Figure 6.17: The router address

• Creating the implementation according to the ring topology including the router
instantiations and other design parameters: The ”Ring Topology” script first calcu-
lates the number of total wires needed by the system according to the user’s entries
which are represented in the number of tiers and the number of routers per each tier
as shown in Figure 6.18.

Figure 6.18: Evaluating the number of wire in the 3D-NoC system using ring topology

69

Additionally, the script then creates the connection between the routers to match
the selected topology, in this case the ring topology as shown in Figure 6.19. Then
Figure 6.20, shows the instantiations of the ring routers to be then added in the
SystemVerilog file.

Figure 6.19: Creating the connections between the routers in the ring topology

70

Figure 6.20: The instantiaions of the ring routers

Eventually in the script, the instantiations are added in the top level design of the
system as shown in Figure 6.21.

Figure 6.21: Adding the ring routers instantiaions into the SystemVerilog top design file

71

The ”Ring Routing Tables Add.bash” script then will be called to create an address
for each router in the system as shown in Figure 6.22.

Figure 6.22: Creating address for each router in ring topology

• Creating the top module file ”top mod.sv” and the head parameters in ”param.h”
files: As illusrated above the connections between routers, the router instantiations
and the header file parameters are evaluated through an automation infrastructure.
These data are added to the top level design file and header file to create different
configurable 3D-NoCs.

1. Top level design file: The top design file includes the instantiations of the
routers both in mesh or ring according to the user’s entry as shown in Fig-
ure 6.23. Also, it includes only in the case of the mesh topology, the entries to
be stored in the routing table as shown in Figure 6.24.

72

Figure 6.23: The router instantiations in the top module design

Figure 6.24: The data in the routing table

2. Parameters header file: The header file includes the common parameters of the
design that are adjusted according to the user’s entry as shown Figure 6.25.

Figure 6.25: The global parameters of the 3D-NoC system

73

3. Testbench SystemVerilog file The testbench file is used only in the simulations
to send a packet to be routed through the 3D-NoC system Figure 6.26. The
packets are transmitted from a reserved address of all ones.

Figure 6.26: The testbench for simulations

74

4. The mesh router module The mesh router module includes the important
parameters which are needed for this simple structure as shown in Figure 6.27.
The implementation of the 2D routing based on the mesh topology is shown
in Figure 6.28, while the logic of the Direct-Elevator 3D routing algorithm is
shown in Figure 6.29.

Figure 6.27: The parameters of the mesh router module

75

Figure 6.28: The implementation of the 2D routing with mesh topology

76

Figure 6.29: The implementation of the Direct-Elevator algorithm in the 3D
mesh router module

77

5. The ring router module The ring router module includes the important pa-
rameters which are needed for this simple structure as shown in Figure 6.30.
The implementation of the 2D routing based on the ring topology is shown
in Figure 6.31, while the logic of the Direct-Elevator 3D routing algorithm is
shown in Figure 6.32.

Figure 6.30: The parameters of the mesh router module

78

Figure 6.31: The implementation of the 2D routing with ring topology

Figure 6.32: The implementation of the Direct-Elevator algorithm in the ring
router module

79

• Issuing a message to notify the uder that the design files are now ready: A TK script
as shown in Figure 6.33 is then implemented to issue an information message to the
user that the design files are now ready.

Figure 6.33: The final information message

80

6.2.4 How to use the 3D-NOCET tool suite
To use the 3D-NOECT tool suite, the user needs to make sure about the following
prerequisities:

• If the user uses a Windows machine, the user needs to install ”Cygwin” to able to
run the TK/TCL and Shell scripts.

• The user can use a Linux machine directly without installing any other tool.

• Providing a working area to unzip the tool bundle in and create the design files.

A user needs to follow the next steps in order to create the required 3D-NoC:

1. Copy the tool bundle into the working area.

2. Unzip the tool bundle into the working area.

3. Launch the tool GUI by the command ”wish Startup.tcl”

4. Enter the specifications of the 3D-NoC by entering the number of routers per each
tier, number of tiers and the 2D network topology.

5. Press ”create design files” button within the GUI window.

6. Check the ”Design files” directory under the working area, the following files can
be found as shown in Figure 6.34

Figure 6.34: Design files directory

7. The design files of the 3D-NoC are now ready for synthesis.

81

Chapter 7: Discussion on A
Comparative and Performance Study
for Different Structures of 3D-NoCs
7.1 Introduction
A Comparative and Performance study has been performed in order to evaluate and
compare between the performance of the different 3D-NoCs structures.
The study compare the diverse 3D-NoCs with respect to latency, power and area factors.
The Synthesis processes have been all performed in the same environmental settings to
guarantee a fair evaluation for the 3D-NoCs. The unified environmental settings are as
follows:

1. Questa Simulation tool.

2. Xilinx-Virtex7 technology.

3. All designs are synthesized at frequency of 100MHz.

7.2 Comparative Results Analysis
All the calculations are taken at the worst conditions. Therefore, the power is calculated as
the worst possible power can be consumed by the 3D-NoC, also the latency is calculated
over the worst network path between two nodes in the system.
The impact of the vertical complexity, tier complextiy and changing the 2D network
topology is measured on the latency, power and area respectively.

7.2.1 Vertical Network Complexity
The vertical complexity measures the impact of increasing the number of tiers on the
3D-NoC system. This impact is measured with respect to the latency, power and area
aspects while varying the 2D network topology between mesh and ring.

7.2.1.1 Impact of Vertical Complexity on The Latency

The Latency is calculated over the worst path while increasing the number of tiers from
two to 16.Figure 7.1 shows the latency in clock cycles.

The latency in the mesh network topology increases linearly while increasing the
number of the 3D-NoC tiers. Additionally, No change happens if the number of the routers
per tier doubled from four to eight routers, because the routers in each tier are connected
in a fully-mesh network. Meanwhile, the latency in the ring network topology increases
linearly with the number of tiers, yet the latency increases in the case of doubling the
number of routers. While doubling the number of routers which are connected in ring
network topology that lengthen the network worst path which reflects certainly reflects on
the network latency.

82

Figure 7.1: Latency in Clock Cycles Vs. Number of Tiers in NoC

.

7.2.1.2 Impact of Vertical Complexity on The Power

the power is calculated in Watts to measure the worst consumption. Figure 7.2 shows that
while increasing the number of tiers in the 3D-NoC system,The number of tiers increases
slightly.
Moreover, while doubling the number of routers per each tier, the system becomes more
complex, this complexity reflects on increasing the system power consumption.
On the other hand, the power in the ring topology remains almost constant and relatively
small while increasing the number of tiers in the vertical dimension. Also, after doubling
the number of routers per each tier, the extra number of interconnects does not leave a
significant effect on the power consumption.

83

Figure 7.2: Power in Watts Vs. Number of Tiers in NoC

.

7.2.1.3 Impact of Vertical Complexity on The Area

The area is represented in the number of Lookup Tables (LUTs) and the number of
FlipFlops (FFs). InFigure 7.3 and Figure 7.4, the number of Luts and FFs increase
rapidly while doubling the number of of routers in the mesh topology. The number of
interconnections increase exponentially while adding an extra router in each tier, that
definitely reflects on the high increase of the number of LUTs and FFs. Otherwise, the ring
topology provides a moderate number of interconnects between the router in the planar
level and that certainly affects the consumed area positively.

84

Figure 7.3: Number of Luts Vs. Number of Tiers in NoC

.

Figure 7.4: Number of FlipFlops Vs. Number of Tiers in NoC

.

7.2.2 Tier Network Complexity
The tier complexity measure the effect of increasing the number of routers per each tier
whether the routers are connected in the 2D level with mesh network topology or ring.
The effect is studied on latency, power and area aspects.

85

7.2.2.1 Impact of Tier Complexity on The Latency

The latency is fixed accross the variation of the number of routers per each tier as shown
in Figure 7.5. Meanwhile, it increases while doubling the number of tiers in the 3D-NoC,
yet it remains constant in the function of the number of routers per each tier. The Latency
is constant in the mesh topology, as it depends only on the numer of vertical interconnects
between tiers which remains constant.

On the other hand, when the routers are connected in ring topology, the latency
increases linearly with the increase in the number of routers per each tier. As by adding
an extra router in the tier, that will increase the number of interconnections between the
routers.

Figure 7.5: Latency in Clock Cycles Vs. Number of Routers in Tier

.

7.2.2.2 Impact of Tier Complexity on The Power

InFigure 7.6, the power consumption is shown accross increasing the number of routers
per each tier. The power consumption increases while increasing the number of routers
per each tier in case of the routers are connected in mesh topology. Meanwhile, the power
consumption remains at a low level while connecting the routers in a ring topology.
Therefore, the ring topology in this case proves to be less complex and more efficient
when it comes to increasing the tier complexitiy.

86

Figure 7.6: Power in Watts Vs. Number of Routers in Tier

.

7.2.2.3 Impact of Tier Complexity on The Area

The implementation of the 3D-NoC in which the routers in each tier are connected in 2D
mesh network topology, requires a large hardware to support all the interconnections in
the system. That appears clearly in Figure 7.7 and Figure 7.8 while increasing the number
of routers per tier, the consumed area increases. Moreover, the consumed area in the case
of using the ring topology becomes less because of the moderate interconnections between
the routers in each tier.

87

Figure 7.7: Number of Luts Vs. Number of Routers in Tier

.

Figure 7.8: Number of FlipFlops Vs. Number of Routers in Tier

.

88

7.3 Work Conclusion
Implementing a tool to create different structures of 3D-NoCs gives clear insights about
the different network aspects and tradeoffs.
The user can easily for one application try many diverse configurations of a 3D-NoCs and
study the tradoffs regarding the latency, power and area. The tool also enables different
distributions for the 3D-NoC whether it is regular or hierarchal that widens the range of
the experimental evaluations.

Using a fully-mesh topology as a 2D network topology guarantees a faster 3D-NoC,
but with a high area cost. Meanwhile, the ring topology offers a relatively low area and
power consumption in the 3D-NoC system, yet the system becomes slower in routing the
packets.

7.4 Future Work
Nevertheless,The 3D-NOCET tool provides a flexible and generic solution to create
different 3D-NoCs, there are many ideas that can be applied to improve and stenghten the
tool functionality which are as follows:

• Adding the support of other 2D network topology such as partially mesh, star, and
torus topologies, that will enable the user to create 3D-NoCs with more configura-
tions.

• Another router implementations can be added instead of the simple proposed router
to test the dependency of the tool on the different router.

• Optimizing the necessary hardware to implement the fully-mesh and ring 2D topolo-
gies.

• Creating a web-based Graphical User Interface for the tool to be more friendly.

89

References

[1] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelogiannakis, and
J. Kim, “A detailed and flexible cycle-accurate Network-on-Chip simulator,” in 2013
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 86–96, April 2013.

[2] A. B. Achballah and S. B. Saoud, “A Survey of Network-On-Chip Tools,” in
(IJACSA) International Journal of Advanced Computer Science and Applications,
pp. 132–135, Sept 2013.

[3] Y.-C. Lu, “3D technology based circuit and architecture design,” in 2009 International
Conference on Communications, Circuits and Systems, pp. 1124–1128, July 2009.

[4] W. Davis, Wilson, J., S. Mick, J. Xu, H. Hua, C. Mineo, A. Sule, M. Steer, and
P. Franzon, “Demystifying 3D ICs: the Pros and Cons of Going Vertical,” Design
Test of Computers, IEEE, vol. 22, pp. 498–510, Nov 2005.

[5] R. Francis and S. Moore, “Exploring hard and soft networks-on-chip for FPGAs,” in
2008 International Conference on Field-Programmable Technology, pp. 261–264,
Dec 2008.

[6] http://www.cringely.com. Accessed: 2019-06-17.

[7] A. Ahmed and A. Abdallah, “LA-XYZ: Low Latency, High Throughput Look-Ahead
Routing Algorithm for 3D Network-on-Chip (3D-NoC) architecture,” in 2012 IEEE
6th International Symposium on Embedded Multicore Socs (MCSoC), pp. 167–174,
Sept 2012.

[8] K.-C. Chen, S.-Y. Lin, H.-S. Hung, and A. Wu, “Topology-Aware Adaptive Routing
for Nonstationary Irregular Mesh in Throttled 3D NoC Systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, pp. 2109–2120, Oct 2013.

[9] B. M., S. A., P. F., D. F., and D. P., “A 3D-NoC Router Implementation Exploiting
Vertically-Partially-Connected Topologies,” in 2012 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 9–14, Aug 2012.

[10] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Noxim: An open,
extensible and cycle-accurate network on chip simulator,” in 2015 IEEE 26th Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP), pp. 162–163, July 2015.

[11] M.S.Gaur, B.M.Al-Hashimi, V.Laxmi, N. R, N. Choudhary, L. Jain, M. Ahmed, K. K.
Paliwal, Varsha, Rekha, and Vineetha, “NIRGAM:A Simulator for NoC Interconnect
Routing and Applications Modeling,” p. 27, 2007.

[12] Papamichael, M. K., and J. C. Hoe, “CONNECT: Re-examining Conventional
Wisdom for Designing NoCs in the Context of FPGAs,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA
’12, (New York, NY, USA), pp. 37–46, ACM, 2012.

90

http://www.cringely.com

[13] B. Black, Nelson, D.W., Webb, C., and N. Samra, “3D Processing Technology
and its Impact on iA32 Microprocessors,” in VLSI in Computers and Processors,
2004. ICCD 2004. Proceedings. IEEE International Conference on Computer Design,
pp. 316–318, Oct 2004.

[14] N. P. Pham, N. Tutunjyan, D. Volkaerts, L. Peng, G. Jamison, and D. S. Tezcan, “3D
integration technology using W2w direct bonding and TSV for CMOS based image
sensors,” in 2015 IEEE 17th Electronics Packaging and Technology Conference
(EPTC), pp. 1–5, Dec 2015.

[15] Knickerbocker, J.U., A. P.S., C. E., D. B., D. T., G. X., H. C., J. C., L. Y., M. J.,
P. R.J., T. C.K., T. L., W. B.C., W. L., and W. S.L., “2.5D and 3D Technology Chal-
lenges and Test Vehicle Demonstrations,” in Electronic Components and Technology
Conference (ECTC), 2012 IEEE 62nd, pp. 1068–1076, May 2012.

[16] http://www.amd.e-technik.uni-rostock.de/noc. Accessed: 2019-06-17.

[17] T. A. Bartic, J. Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde,
and R. Lauwereins, “Highly scalable network on chip for reconfigurable systems,”
in Proceedings. 2003 International Symposium on System-on-Chip (IEEE Cat.
No.03EX748), pp. 79–82, Nov 2003.

[18] J. Wang, Z. Zhang, and J. Lai, “A NoC Architecture for high-speed Dynamic Partial
Reconfiguration,” in 2012 IEEE 11th International Conference on Solid-State and
Integrated Circuit Technology, pp. 1–3, Oct 2012.

[19] B. S. Feero and P. P. Pande, “Networks-on-Chip in a Three-Dimensional Envi-
ronment: A Performance Evaluation,” IEEE Transactions on Computers, vol. 58,
pp. 32–45, Jan 2009.

[20] http://www.cs.colostate.edu. Accessed: 2019-06-17.

[21] K. Goossens, M. Bennebroek, J. Y. Hur, and M. A. Wahlah, “Hardwired Networks
on Chip in FPGAs to Unify Functional and Configuration Interconnects,” in Second
ACM/IEEE International Symposium on Networks-on-Chip (nocs 2008), pp. 45–54,
April 2008.

[22] E. Todorovich, M. Leonetti, and R. Brinks, “An advanced NoC with debug services
on FPGA,” in 2014 IX Southern Conference on Programmable Logic (SPL), pp. 1–6,
Nov 2014.

[23] https://cacm.acm.org/magazines. Accessed: 2019-06-17.

[24] http://electroiq.com. Accessed: 2019-06-17.

[25] M. Beheiry, A. Aly, H. Mostafa, and A. M. Soliman, “Direct-Elevator: A mod-
ified routing algorithm for 3D-NoCs,” in 2015 27th International Conference on
Microelectronics (ICM), pp. 222–225, Dec 2015.

[26] H. Kim, A. Vitkovskiy, P. V. Gratz, and V. Soteriou, “Use it or lose it: Wear-
out and lifetime in future chip multiprocessors,” in 2013 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 136–147, Dec 2013.

91

http://www.amd.e-technik.uni-rostock.de/noc
http://www.cs.colostate.edu
https://cacm.acm.org/magazines
http://electroiq.com

[27] B. L. and D. M. G., “Networks on Chips: A New SoC Paradigm,” Computer, vol. 35,
pp. 70–78, Jan 2002.

[28] Y. L. Lee, J. W. Yang, and J. M. Jou, “Design of a distributed JPEG encoder on a
scalable NoC platform,” in 2008 IEEE International Symposium on VLSI Design,
Automation and Test (VLSI-DAT), pp. 132–135, April 2008.

[29] L. O., S. T., R. S.-A., and T. I., “Layered Routing in Irregular Networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 17, pp. 51–65, Jan 2006.

[30] http://www.arteris.com. Accessed: 2019-06-17.

[31] http://www.inocs.com. Accessed: 2019-06-17.

[32] R. Gutmann, A. Zeng, S. Devarajan, J.-Q. Lu, , and K. Rose, “Wafer-Level Three-
Dimensional Monolithic Integration for Intelligent Wireless Terminals,” in JOUR-
NAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.4, NO.3,
Sept 2004.

[33] S.-M. Jung, Y. Rah, T. Ha, H. Park, C. Chang, S. Lee, J. Yun, W. Cho, H. Lim,
J. Park, J. Jeong, B. Son, J. Jang, B. Choi, H. Cho, and K. Kim, “Highly cost effective
and high performance 65nm S3 (stacked single-crystal si) SRAM technology with
25F2, 0.16um2 cell and doubly stacked SSTFT cell transistors for ultra high density
and high speed applications,” in Digest of Technical Papers. 2005 Symposium on
VLSI Technology, 2005., pp. 220–221, June 2005.

[34] L. P., de Crecy F., F. M., C. B., E. T., Z. M., J. B., J.-C. Barbe, K. N., S. N.,
M. S., and L. D., “Challenges for 3D IC integration: Bonding Quality and Thermal
Management,” in International Interconnect Technology Conference, IEEE 2007,
pp. 210–212, June 2007.

[35] B. S. Feero and P. P. Pande, “Networks-on-Chip in a Three-Dimensional Envi-
ronment: A Performance Evaluation,” IEEE Transactions on Computers, vol. 58,
pp. 32–45, Jan 2009.

[36] S. Abba and J. A. Lee, “Examining the Performance Impact of NoC Parameters for
Scalable and Adaptive FPGA-Based Network-on-Chips,” in 2013 Fifth International
Conference on Computational Intelligence, Modelling and Simulation, pp. 364–372,
Sept 2013.

[37] D. F., S. A., P. F., and B. M., “Elevator-First: A Deadlock-Free Distributed Routing
Algorithm for Vertically Partially Connected 3D-NoCs,” IEEE Transactions on
Computers, vol. 62, pp. 609–615, March 2013.

92

http://www.arteris.com
http://www.inocs.com

Appendix A: 3D-NOCET Tool Source
Files
This appendix includes the 3D-NOCET tool SystemVerilog

files and automation scripts

*Automation Scripts

*Startup.tcl

#Description: a TK/TCL script that has been created to

#implement an easy friendly Graphical User Interface (GUI)

#for the tool.

#Author: Maha Beheiry

#!/usr/local/bin/wish

lappend auto_path [file dirname [info script]]

package require Tk

package require BWidget

#Main Window size, title and formatting

wm title . "3D NoCs Design"

set x [expr { ([winfo vrootwidth .] - 800) / 2 }]

set y [expr { ([winfo vrootheight .] - 800) / 2 }]

wm geometry . 800x800+$x+$y

wm protocol . WM_DELETE_WINDOW {

destroy .

}

set family Courier

set font "$family 14 bold"

set font_small "$family 12 bold"

frame .home -borderwidth 10 -width 500 -height 500

pack .home -side top -fill both

label .home.topo -font $font -wraplength 4i -justify left

-text "Select Topology:"

checkbutton .home.mesh -text "Mesh" -variable mesh

-command {set ring 0}

checkbutton .home.ring -text "Ring" -variable ring

-command {set mesh 0}

place .home.topo -x 0 -y 0

place .home.mesh -x 250 -y 0

place .home.ring -x 320 -y 0

label .home.text -font $font -wraplength 4i -justify left

-text "Select Number of tiers:"

place .home.text -x 0 -y 50

frame .home.pad

grid .home.pad -column 0 -row 0 -pady 50

93

frame .home.pad1

grid .home.pad1 -column 0 -row 1

frame .home.tmp1

checkbutton .home.tmp1.tier1 -text "Tier#1" -variable tier1

-command {packmyrouters .home.tmp1 $tier1 1}

pack .home.tmp1.tier1

grid .home.tmp1 -column 0 -row 2 -pady 20

frame .home.tmp2

checkbutton .home.tmp2.tier2 -text "Tier#2" -variable tier2

-command {packmyrouters .home.tmp2 $tier2 2}

pack .home.tmp2.tier2

grid .home.tmp2 -column 1 -row 2 -sticky nw -pady 20

frame .home.tmp3

checkbutton .home.tmp3.tier3 -text "Tier#3" -variable tier3

-command {packmyrouters .home.tmp3 $tier3 3}

pack .home.tmp3.tier3

grid .home.tmp3 -column 2 -row 2 -sticky nw -pady 20

frame .home.tmp4

checkbutton .home.tmp4.tier4 -text "Tier#4" -variable tier4

-command {packmyrouters .home.tmp4 $tier4 4}

pack .home.tmp4.tier4

grid .home.tmp4 -column 3 -row 2 -sticky nw -pady 20

frame .home.tmp5

checkbutton .home.tmp5.tier5 -text "Tier#5" -variable tier5

-command {packmyrouters .home.tmp5 $tier5 5}

pack .home.tmp5.tier5

grid .home.tmp5 -column 0 -row 3 -sticky nw -pady 20

frame .home.tmp6

checkbutton .home.tmp6.tier6 -text "Tier#6" -variable tier6

-command {packmyrouters .home.tmp6 $tier6 6}

pack .home.tmp6.tier6

grid .home.tmp6 -column 1 -row 3 -sticky nw -pady 20

frame .home.tmp7

checkbutton .home.tmp7.tier7 -text "Tier#7" -variable tier7

-command {packmyrouters .home.tmp7 $tier7 7}

pack .home.tmp7.tier7

grid .home.tmp7 -column 2 -row 3 -sticky nw -pady 20

frame .home.tmp8

checkbutton .home.tmp8.tier8 -text "Tier#8" -variable tier8

-command {packmyrouters .home.tmp8 $tier8 8}

pack .home.tmp8.tier8

grid .home.tmp8 -column 3 -row 3 -sticky nw -pady 20

frame .home.tmp9

checkbutton .home.tmp9.tier9 -text "Tier#9" -variable tier9

-command {packmyrouters .home.tmp9 $tier9 9}

94

pack .home.tmp9.tier9

grid .home.tmp9 -column 0 -row 4 -sticky nw -pady 20

frame .home.tmp10

checkbutton .home.tmp10.tier10 -text "Tier#10" -variable tier10

-command {packmyrouters .home.tmp10 $tier10 10}

pack .home.tmp10.tier10

grid .home.tmp10 -column 1 -row 4 -sticky nw -pady 20

frame .home.tmp11

checkbutton .home.tmp11.tier11 -text "Tier#11" -variable tier11

-command {packmyrouters .home.tmp11 $tier11 11}

pack .home.tmp11.tier11

grid .home.tmp11 -column 2 -row 4 -sticky nw -pady 20

frame .home.tmp12

checkbutton .home.tmp12.tier12 -text "Tier#12" -variable tier12

-command {packmyrouters .home.tmp12 $tier12 12}

pack .home.tmp12.tier12

grid .home.tmp12 -column 3 -row 4 -sticky nw -pady 20

frame .home.tmp13

checkbutton .home.tmp13.tier13 -text "Tier#13" -variable tier13

-command {packmyrouters .home.tmp13 $tier13 13}

pack .home.tmp13.tier13

grid .home.tmp13 -column 0 -row 5 -sticky nw -pady 20

frame .home.tmp14

checkbutton .home.tmp14.tier14 -text "Tier#14" -variable tier14

-command {packmyrouters .home.tmp14 $tier14 14}

pack .home.tmp14.tier14

grid .home.tmp14 -column 1 -row 5 -sticky nw -pady 20

frame .home.tmp15

checkbutton .home.tmp15.tier15 -text "Tier#15" -variable tier15

-command {packmyrouters .home.tmp15 $tier15 15}

pack .home.tmp15.tier15

grid .home.tmp15 -column 2 -row 5 -sticky nw -pady 20

frame .home.tmp16

checkbutton .home.tmp16.tier16 -text "Tier#16" -variable tier16

-command {packmyrouters .home.tmp16 $tier16 16}

pack .home.tmp16.tier16

grid .home.tmp16 -column 3 -row 5 -sticky nw -pady 20

button .b1 -text "Create Design Files" -width 20

-command { createFiles }

place .b1 -x 300 -y 600 -anchor nw

proc packmyrouters {frame var arg} {

global routers_tier_1

global routers_tier_2

global routers_tier_3

95

global routers_tier_4

global routers_tier_5

global routers_tier_6

global routers_tier_7

global routers_tier_8

global routers_tier_9

global routers_tier_10

global routers_tier_11

global routers_tier_12

global routers_tier_13

global routers_tier_14

global routers_tier_15

global routers_tier_16

set family Courier

set font_small "$family 9 bold"

if { $var == 1 } {

if { [winfo exists $frame.text] != 1 } {

label $frame.text -font $font_small -wraplength 4i

-justify left -text "#Routers:"

entry $frame.router -textvar routers_tier_$arg

-width 5 -bg white

}

pack $frame.text

pack $frame.router

} else {

pack forget $frame.text

pack forget $frame.router

}

}

proc createFiles {} {

global routers_tier_1

global routers_tier_2

global routers_tier_3

global routers_tier_4

global routers_tier_5

global routers_tier_6

global routers_tier_7

global routers_tier_8

global routers_tier_9

global routers_tier_10

global routers_tier_11

global routers_tier_12

global routers_tier_13

global routers_tier_14

global routers_tier_15

96

global routers_tier_16

global topology

set topology 0

global ring

global mesh

set myList {}

array set arr {}

for {set i 1} {$i < 17} {incr i} {

if { [info exists routers_tier_$i] == 1} {

lappend myList [set routers_tier_$i]

}

}

if { $mesh == 1} {

set topology Mesh

}

if { $ring == 1} {

set topology Ring

}

lappend myList $topology

#puts $topology

#exec "bash" Master_Script.sh "$myList"

catch {exec bash Master_Script.sh "$myList"} res

puts $res

}

*Master_Script.sh

#!/bin/sh

#Description:a shell script that has been created to call

#either the Mesh or Ring flow scripts according to

#the selected topology by the user.

#Author: Maha Beheiry

##########################

####Clean up

rm -rf no_routers_tiers.txt

#user entries

#Number_of_Routers_per_tier=("$@")

Number_of_Routers_per_tier=();

in=0;

topology="";

for i in $1

do

if [$i == "Mesh"] || [$i == "Ring"]

then

97

topology=$i;

break;

fi

Number_of_Routers_per_tier[in]=$i

in=$(($in+1));

done

#Creating the parameters of routers per tier in the

#param.h file

param_file=Design_files/param.h

count_tier=1;

x=0;

for x in "${Number_of_Routers_per_tier[@]}"

do

echo "\‘define NO_OF_ROUTERS_"$count_tier"_TIER "$x""

>> no_routers_tiers.txt

count_tier=$(($count_tier+1))

done

sed -i ’/routers_tier/,/end_tiers/{//!d}’ $param_file

sed -i ’/routers_tier/rno_routers_tiers.txt’ $param_file

rm -rf no_routers_tiers.txt

################################

if [$topology == "Mesh"]

then

#SOURCE scripts of Mesh topologies to create the topmod.sv

#and param.h files

. Mesh_RoutingTables_Add.bash

"${Number_of_Routers_per_tier[@]}"

. Mesh_Topology.sh "${Number_of_Routers_per_tier[@]}"

elif [$topology == "Ring"]

then

#SOURCE Sscipts of Ring toplogies to create the topmod.sv

#and param.h files

. Ring_RoutingTables_Add.bash

"${Number_of_Routers_per_tier[@]}"

. Ring_Topology.sh "${Number_of_Routers_per_tier[@]}"

else

echo "Please enter a valid topology for the system

Mesh or Ring."

fi

#cleaning up the working directory

rm -rf routing_tables.txt

rm -rf addresses.txt

*Mesh_RoutingTables_Add.bash

#!/bin/sh

#Description:a shell script which is responsible of creating

#the addresses for all the routers in the network and also the

98

mesh connections between them in the 2D and 3D levels

#and routing tables.

#Author: Maha Beheiry

##########################

#Cleaning up the current working directory

rm -rf addresses.txt

rm -rf add_inter.txt

rm -rf inter_routing.txt

rm -rf routing_tables.txt

##############################

#Converting from Dec to Bin.

Number_of_Routers_per_tier=("$@")

tiers=${#Number_of_Routers_per_tier[@]}

last_tier=$(($tiers - 1))

D2B=({0..1}{0..1}{0..1}{0..1}{0..1}{0..1}{0..1}{0..1})

last_tier_bin=${D2B[$last_tier]}

before_last=$(($last_tier - 1))

before_last_bin=${D2B[$before_last]}

tier_count_0=0

###############################

#Creating the addresses for all routers in the network

for i in "${Number_of_Routers_per_tier[@]}"

do

Number_of_routers=$i

for ((j = 0 ; j < $Number_of_routers; j++))

do

D2B=({0..1}{0..1}{0..1}{0..1}{0..1}{0..1}{0..1}{0..1})

tier_no=${D2B[$tier_count_0]}

address_no=${D2B[$j]}

echo "$tier_no""$address_no" >> addresses.txt

done

tier_count_0=$(($tier_count_0+1))

done

################################

#Creating the routing table for each router

count=0;

while read add; do

rm -rf add_inter.txt

most_add=${add:0:8}

most_add_dec=$(echo "ibase=2;$most_add" | bc)

les_add=${add:8:16}

grep "ˆ$most_add" addresses.txt >> add_inter.txt

sed -i "/$add/d" add_inter.txt

#Check if the tier is the first one

if [[$les_add == "00000000"]] &&

[[$most_add == "00000000"]]

99

then

echo "0000000100000000" >> add_inter.txt

elif [[$les_add == "00000001"]] &&

[[$most_add == "00000000"]]

then

echo "0000000100000001" >> add_inter.txt

#check if the tier is the last one

elif [[$les_add == "00000000"]] &&

[[$most_add == $last_tier_bin]]

then

echo ""$before_last_bin"00000000" >> add_inter.txt

elif [[$les_add == "00000001"]] &&

[[$most_add == $last_tier_bin]]

then

echo ""$before_last_bin"00000001" >> add_inter.txt

#check if the tier is intermediate one

elif (($most_add > 0)) &&

(($most_add < $last_tier_bin))

then

if [$les_add == "00000000"]

then

upper_tier=$((most_add_dec+1))

upper_tier_bin=${D2B[$upper_tier]}

lower_tier=$((most_add_dec-1))

lower_tier_bin=${D2B[$lower_tier]}

echo ""$lower_tier_bin"00000000" >> add_inter.txt

echo ""$upper_tier_bin"00000000" >> add_inter.txt

elif [$les_add == "00000001"]

then

upper_tier=$((most_add_dec+1))

upper_tier_bin=${D2B[$upper_tier]}

lower_tier=$((most_add_dec-1))

lower_tier_bin=${D2B[$lower_tier]}

echo ""$lower_tier_bin"00000001" >> add_inter.txt

echo ""$upper_tier_bin"00000001" >> add_inter.txt

fi

fi

#Creating the routing tables format to append them to

#top module file

sed -i -e "s/ˆ/16’b/" add_inter.txt

count=$(($count+1))

paste -d, -s add_inter.txt >> inter_routing.txt

done < addresses.txt

no_router=0;

line_add=0;

while read line_add; do

100

echo "assign ram_values_"$no_router" = {"$line_add"};"

>> routing_tables.txt

no_router=$(($no_router+1))

done < inter_routing.txt

#Cleaning up

rm -rf add_inter.txt

rm -rf inter_routing.txt

*Mesh_Topology.sh

#!/bin/sh

#Description: a shell script which is responsible of

#creating the right syntax of instantiations of the

#Router_mesh module and the routers routing tables then

#append them in the topmod.sv file. Also, the parameters

#in the param.h according to the user entries.

#Author: Maha Beheiry

#Argument bypassed through the GUI

Number_of_Routers_per_tier=("$@")

##

#Cleaning up the current working directory

rm -rf connections.txt

rm -rf inter.txt

rm -rf inter_rev.txt

rm -rf mesh_connections.txt

rm -rf wires_number.txt

rm -rf wires_decl.txt

##

#Counting all the wires required in the system

design_file=Design_files/topmod.sv

param_file=Design_files/param.h

Number_of_wires_in_system=0;

Number_of_routers=0;

total_routers=0;

for i in "${Number_of_Routers_per_tier[@]}"

do

Number_of_routers=$i

Number_of_wires_in_system=$(((2 + (($Number_of_routers -1)

* $Number_of_routers) / 2) + $Number_of_wires_in_system))

total_routers=$(($total_routers+$Number_of_routers))

done

Number_of_wires_in_system=$(($Number_of_wires_in_system - 2))

echo "\‘define NUM_OF_WIRES "$Number_of_wires_in_system""

>> wires_number.txt

total_routers=$(($total_routers-1))

echo "output [63:0] R_packet ["$total_routers":0];"

>>routers_total.txt

101

#Append here number of wires to the param.h file

#and all router number

sed -i ’/wires/,/end_here/{//!d}’ $param_file

sed -i ’/wires/rwires_number.txt’ $param_file

sed -i ’/r_packet/,/end_r/{//!d}’ $design_file

sed -i ’/r_packet/rrouters_total.txt’ $design_file

rm -rf wires_number.txt

rm -rf routers_total.txt

###

for ((n = 0 ; n < $Number_of_wires_in_system ; n++))

do

wires[$n]=$n

done

###

m=0;

tier_count=0;

for i in "${Number_of_Routers_per_tier[@]}"

do

tier_count=$(($tier_count+1))

Number_of_routers=$i

###

#2D_connections

for ((j = 0 ; j < $Number_of_routers -1 ; j++))

do

k=$j+1

for ((k = $j+1 ; k < $Number_of_routers ; k++))

do

printf "R["$j"] "$tier_count" links["${wires[$m]}"],\n"

>> connections.txt

printf "R["$k"] "$tier_count" links["${wires[$m]}"],\n"

>> connections.txt

m=$(($m+1))

done

done

done

##

#3D_connections

for ((l = 1 ; l < $tier_count ; l++))

do

printf "R[0] "$l" links["${wires[$m]}"],\n"

>> connections.txt

printf "R[0] "$(($l+1))" links["${wires[$m]}"],\n"

>> connections.txt

printf "R[1] "$l" links["${wires[$(($m+1))]}"],\n"

>> connections.txt

printf "R[1] "$(($l+1))" links["${wires[$(($m+1))]}"],\n"

102

>> connections.txt

m=$(($m +2))

done

##

#Preparing the final connections

tier_count_1=0;

for i in "${Number_of_Routers_per_tier[@]}"

do

Number_of_routers=$i

tier_count_1=$(($tier_count_1+1))

for ((h = 0 ; h < $Number_of_routers ; h++))

do

grep -w "R\["$h"\] "$tier_count_1"" connections.txt

| awk ’{print}’ ORS=’ ’>> inter.txt

echo $’\n’ >> inter.txt

sed -i ’s/, $//’ inter.txt

sed -i ’/ˆ$/d’ inter.txt

sed -i ’s/R\[[0-9][0-9]*\] [0-9][0-9]* //g’ inter.txt

sed -i ’s/ //g’ inter.txt

done

done

##

#Rearranging each line from MS to LS

while read line; do

conct=$line

IFS=’, ’ read -a array <<< "$conct"

length=${#array[*]}

for ((i=${#array[@]}-1; i>=0; i--)); do

printf ""${array[$i]}"," >> inter_rev.txt

done

echo $’\n’ >> inter_rev.txt

sed -i ’s/,$//’ inter_rev.txt

sed -i ’/ˆ$/d’ inter_rev.txt

done < inter.txt

##

#Adding the addresses to an array

IFS=$’\n’ read -d ’’ -r -a addresses < addresses.txt

#Preparing the final version of the mesh_connections for

#each router per each tier with Verilog required syntax

lines_count=0

tier_count_0=0

a=0;

tiers=${#Number_of_Routers_per_tier[@]}

while read line; do

lines[$a]=$line

a=$(($a +1))

103

done < inter_rev.txt

b=0

for i in "${Number_of_Routers_per_tier[@]}"

do

tier_count_0=$(($tier_count_0+1))

Number_of_routers=$i

for ((j = 0 ; j < $Number_of_routers; j++))

do

add=${addresses[$b]}

if [$j == "0"] && [$b == "0"] && [$tier_count_0 == "1"]

then

printf "Router_mesh #(.address(16’b"$add"),

.ramSize(\‘NO_OF_ROUTERS_"$tier_count_0"_TIER)) router_"$b"

(.port({"${lines[$lines_count]}"}),.clk(clk),

.packet(packet),.ram_values(ram_values_"$b"),

.R_packet(R_packet ["$b"]));\n" >> mesh_connections.txt

printf "wire [15:0] ram_values_"$b"

[\‘NO_OF_ROUTERS_"$tier_count_0"_TIER-1:0];\n" >> wires_decl.txt

elif [$j == "0"] && [$b != "0"] && [$tier_count_0 == "1"]

then

printf "Router_mesh #(.address(16’b"$add"),

.ramSize(\‘NO_OF_ROUTERS_"$tier_count_0"_TIER))

router_"$b" (.port({"${lines[$lines_count]}"}),.clk(clk),

.packet(),.ram_values(ram_values_"$b"),

.R_packet(R_packet ["$b"]));\n" >> mesh_connections.txt

printf "wire [15:0] ram_values_"$b"

[\‘NO_OF_ROUTERS_"$tier_count_0"_TIER-1:0];\n"

>> wires_decl.txt

elif [$j == "1"] && [$tier_count_0 == "1"]

then

printf "Router_mesh #(.address(16’b"$add"),

.ramSize(\‘NO_OF_ROUTERS_"$tier_count_0"_TIER))

router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(),.ram_values(ram_values_"$b"),

.R_packet(R_packet ["$b"]));\n" >> mesh_connections.txt

printf "wire [15:0] ram_values_"$b"

[\‘NO_OF_ROUTERS_"$tier_count_0"_TIER-1:0];\n"

>> wires_decl.txt

elif [$j == "0"] && [$b == "0"] &&

[$tier_count_0 == $tiers]

then

printf "Router_mesh #(.address(16’b"$add"),

.ramSize(\‘NO_OF_ROUTERS_"$tier_count_0"_TIER))

router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(packet),.ram_values(ram_values_"$b"),

.R_packet(R_packet ["$b"]));\n" >> mesh_connections.txt

104

printf "wire [15:0] ram_values_"$b"

[\‘NO_OF_ROUTERS_"$tier_count_0"_TIER-1:0];\n"

>> wires_decl.txt

elif [$j == "0"] && [$b != "0"]

&& [$tier_count_0 == $tiers]

then

printf "Router_mesh #(.address(16’b"$add"),

.ramSize(\‘NO_OF_ROUTERS_"$tier_count_0"_TIER))

router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(),.ram_values(ram_values_"$b"),

.R_packet(R_packet ["$b"]));\n"

>> mesh_connections.txt

printf "wire [15:0] ram_values_"$b" [

\‘NO_OF_ROUTERS_"$tier_count_0"_TIER-1:0];\n"

>> wires_decl.txt

elif [$j == "1"] && [$tier_count_0 == $tiers]

then

printf "Router_mesh #(.address(16’b"$add"),

.ramSize(\‘NO_OF_ROUTERS_"$tier_count_0"_TIER))

router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(),.ram_values(ram_values_"$b"),

.R_packet(R_packet ["$b"]));\n" >> mesh_connections.txt

printf "wire [15:0] ram_values_"$b"

[\‘NO_OF_ROUTERS_"$tier_count_0"_TIER-1:0];\n"

>> wires_decl.txt

elif [$j == "0"] && [$b == "0"] &&

[$tier_count_0 != "1"]

then

printf "Router_mesh #(.address(16’b"$add"),

.ramSize(\‘NO_OF_ROUTERS_"$tier_count_0"_TIER+1))

router_"$b" (.port({"${lines[$lines_count]}"})

,.clk(clk),

.packet(packet),.ram_values(ram_values_"$b"),

.R_packet(R_packet ["$b"]));\n"

>> mesh_connections.txt

printf "wire [15:0] ram_values_"$b"

[\‘NO_OF_ROUTERS_"$tier_count_0"_TIER:0];

\n" >> wires_decl.txt

elif [$j == "0"] && [$b != "0"] &&

[$tier_count_0 != "1"]

then

printf "Router_mesh #(.address(16’b"$add"),

.ramSize(\‘NO_OF_ROUTERS_"$tier_count_0"_TIER+1))

router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(),.ram_values(ram_values_"$b"),

.R_packet(R_packet ["$b"]));\n" >> mesh_connections.txt

105

printf "wire [15:0] ram_values_"$b"

[\‘NO_OF_ROUTERS_"$tier_count_0"_TIER:0];\n" >>

wires_decl.txt

elif [$j == "1"] && [$tier_count_0 != "1"]

then

printf "Router_mesh #(.address(16’b"$add"),

.ramSize(\‘NO_OF_ROUTERS_"$tier_count_0"_TIER+1))

router_"$b" (.port({"${lines[$lines_count]}"}),.clk(clk),

.packet(),.ram_values(ram_values_"$b"),.R_packet(R_packet

["$b"]));\n" >> mesh_connections.txt

printf "wire [15:0] ram_values_"$b"

[\‘NO_OF_ROUTERS_"$tier_count_0"_TIER:0];\n"

>> wires_decl.txt

else

printf "Router_mesh #(.address(16’b"$add"),

.ramSize(\‘NO_OF_ROUTERS_"$tier_count_0"_TIER-1))

router_"$b" (.port({"${lines[$lines_count]}"}),.clk(clk),.

packet(),.ram_values(ram_values_"$b"),.R_packet(R_packet ["$b"]));

\n" >> mesh_connections.txt

printf "wire [15:0] ram_values_"$b"

[\‘NO_OF_ROUTERS_"$tier_count_0"_TIER-2:0];\n"

>> wires_decl.txt

fi

lines_count=$(($lines_count +1))

b=$(($b +1))

done

done

###

#Append to the design file

sed -i ’/ROUTER INSTANCES/,/END_Routers/{//!d}’ $design_file

sed -i ’/Lookup_tables/,/end_luts/{//!d}’ $design_file

sed -i ’/Wires_declartion/,/end_wires/{//!d}’ $design_file

sed -i ’/ROUTER INSTANCES/rmesh_connections.txt’ $design_file

sed -i ’/Lookup_tables/rrouting_tables.txt’ $design_file

sed -i ’/Wires_declartion/rwires_decl.txt’ $design_file

###

#Cleaning up

rm -rf connections.txt

rm -rf mesh_connections.txt

rm -rf inter.txt

rm -rf inter_rev.txt

rm -rf addresses.txt

rm -rf routing_tables.txt

rm -rf wires_decl.txt

###

#popup a finished message in the tcl window

106

tclsh final_msg.tcl

*Ring_RoutingTables_Add.bash

#!/bin/sh

#Description:a shell script which is responsible of creating

#the addresses for all the routers in the network and also

#the ring connections between them in the 2D and 3D levels.

#Author: Maha Beheiry

###Printing the all the routers’ addresses

#Clean up old addresses file

rm -rf addresses.txt

rm -rf add_inter.txt

rm -rf add_inter_all.txt

rm -rf inter_routing.txt

rm -rf routing_tables.txt

###########################

Number_of_Routers_per_tier=("$@")

D2B=({0..1}{0..1}{0..1}{0..1}{0..1}{0..1}{0..1}{0..1})

tiers=${#Number_of_Routers_per_tier[@]}

last_tier=$((tiers-1))

last_tier_bin=${D2B[$last_tier]}

before_last=$((last_tier-1))

before_last_bin=${D2B[$before_last]}

tier_count_0=0

for i in "${Number_of_Routers_per_tier[@]}"

do

Number_of_routers=$i

for ((j = 0 ; j < $Number_of_routers; j++))

do

D2B=({0..1}{0..1}{0..1}{0..1}{0..1}{0..1}{0..1}{0..1})

tier_no=${D2B[$tier_count_0]}

address_no=${D2B[$j]}

echo "$tier_no""$address_no" >> addresses.txt

done

tier_count_0=$(($tier_count_0+1))

done

################################

#Creating the routing table for each router

while read add; do

rm -rf add_inter.txt

rm -rf add_inter_all.txt

most_add=${add:0:8}

most_add_dec=$(echo "ibase=2;$most_add" | bc)

les_add=${add:8:16}

#2D connection in routing table

grep "ˆ$most_add" addresses.txt >> add_inter_all.txt

107

IFS=$’\n’ read -d ’’ -r -a array_add < add_inter_all.txt

number_add=${#array_add[@]}

last_add_2d=0;

prev_last=0;

last_add_2d=$(($number_add-1))

prev_last=$(($last_add_2d-1))

if [$add == ${array_add[0]}]

then

echo ${array_add[1]} >> add_inter.txt

echo ${array_add[$last_add_2d]} >> add_inter.txt

elif [$add == ${array_add[$last_add_2d]}]

then

echo ${array_add[0]} >> add_inter.txt

echo ${array_add[$prev_last]} >> add_inter.txt

else

q=0;

count_array=0;

for q in "${array_add[@]}"

do

next_one=0;

prev_one=0;

if ["$q" == "$add"] ; then

next_one=$(($count_array+1))

prev_one=$(($count_array-1))

echo ${array_add[$prev_one]} >> add_inter.txt

echo ${array_add[$next_one]} >> add_inter.txt

fi

count_array=$(($count_array+1))

done

fi

#3D connections in routing table

#Check if the tier is the first one

if [[$les_add == "00000000"]] && [[$most_add == "00000000"]]

then

echo "0000000100000000" >> add_inter.txt

elif [[$les_add == "00000001"]] && [[$most_add == "00000000"]]

then

echo "0000000100000001" >> add_inter.txt

#check if the tier is the last one

elif [[$les_add == "00000000"]] &&

[[$most_add == $last_tier_bin]]

then

echo ""$before_last_bin"00000000" >> add_inter.txt

elif [[$les_add == "00000001"]] &&

[[$most_add == $last_tier_bin]]

108

then

echo ""$before_last_bin"00000001" >> add_inter.txt

#check if the tier is intermediate one

elif [$most_add_dec \> 0] &&

[$most_add_dec \< $last_tier]

then

upper_tier=$((most_add_dec+1))

upper_tier_bin=${D2B[$upper_tier]}

lower_tier=$((most_add_dec-1))

lower_tier_bin=${D2B[$lower_tier]}

if [$les_add == "00000000"]

then

echo ""$lower_tier_bin"00000000" >> add_inter.txt

echo ""$upper_tier_bin"00000000" >> add_inter.txt

elif [$les_add == "00000001"]

then

echo ""$lower_tier_bin"00000001" >> add_inter.txt

echo ""$upper_tier_bin"00000001" >> add_inter.txt

fi

fi

#Creating the routing tables format to append them

#to top module file

sed -i -e "s/ˆ/16’b/" add_inter.txt

routing_line="$(paste -d, -s add_inter.txt)"

echo $routing_line >> inter_routing.txt

done < addresses.txt

count=0

echo "initial" >> routing_tables.txt

echo "begin" >> routing_tables.txt

while read line_route; do

echo "router_"$count".ram={"$line_route"};"

>> routing_tables.txt

count=$((count+1))

done < inter_routing.txt

echo "end" >> routing_tables.txt

#Cleaning up

rm -rf add_inter.txt

rm -rf add_inter_all.txt

rm -rf inter_routing.txt

*Ring_Topology.sh

#!/bin/sh

#Description: a shell script which is responsible of creating

#the right syntax of instantiations of the Router_ring

#module then append them in the topmod.sv file.

109

#Also, the parameters in the param.h according to the user

#entries. Please note that the ring routers have no routing tables.

#Author: Maha Beheiry

#Argument bypassed through the GUI

Number_of_Routers_per_tier=("$@")

##

#Cleaning up the current working directory

rm -rf connections.txt

rm -rf inter.txt

rm -rf inter_rev.txt

rm -rf ring_connections.txt

##

#Counting all the wires required in the system

param_file=Design_files/param.h

Number_of_wires_in_system=0;

total_routers=0;

Number_of_routers=0;

for i in "${Number_of_Routers_per_tier[@]}"

do

Number_of_routers=$i

Number_of_wires_in_system=$(((2 + $Number_of_routers

+ $Number_of_wires_in_system)))

total_routers=$(($total_routers+$Number_of_routers))

done

Number_of_wires_in_system=$(($Number_of_wires_in_system - 2))

echo "\‘define NUM_OF_WIRES "$Number_of_wires_in_system""

>> wires_number.txt

total_routers=$(($total_routers-1))

echo "output [63:0] R_packet ["$total_routers":0];"

>>routers_total.txt

#Append here number of wires to the param.h file

sed -i ’/wires/,/end_here/{//!d}’ $param_file

sed -i ’/wires/rwires_number.txt’ $param_file

sed -i ’/r_packet/,/end_r/{//!d}’ $design_file

sed -i ’/r_packet/rrouters_total.txt’ $design_file

rm -rf routers_total.txt

rm -rf wires_number.txt

###

for ((n = 0 ; n < $Number_of_wires_in_system ; n++))

do

wires[$n]=$n

done

###

m=0;

tier_count=0;

for i in "${Number_of_Routers_per_tier[@]}"

110

do

tier_count=$(($tier_count+1))

Number_of_routers=$i

###

#2D_connections

last_router=0;

for ((j = 0 ; j < $Number_of_routers -1 ; j++))

do

next_router=0;

next_router=$(($j+1))

if [$j == "0"]

then

d=$(($m+1))

last_router=$(($Number_of_routers-1))

printf "R["$j"] "$tier_count" links["${wires[$m]}"],\n"

>> connections.txt

printf "R["$last_router"] "$tier_count" links["${wires[$m]}"]

,\n" >> connections.txt

printf "R["$j"] "$tier_count" links["${wires[$d]}"]

,\n" >> connections.txt

printf "R["$next_router"] "$tier_count" links["${wires[$d]}"]

,\n" >> connections.txt

m=$(($m+2))

else

printf "R["$j"] "$tier_count" links["${wires[$m]}"]

,\n" >> connections.txt

printf "R["$next_router"] "$tier_count" links["${wires[$m]}"]

,\n" >> connections.txt

m=$(($m+1))

fi

done

done

##

#3D_connections

for ((l = 1 ; l < $tier_count ; l++))

do

printf "R[0] "$l" links["${wires[$m]}"],\n" >> connections.txt

printf "R[0] "$(($l+1))" links["${wires[$m]}"],\n" >> connections.txt

printf "R[1] "$l" links["${wires[$(($m+1))]}"],\n" >> connections.txt

printf "R[1] "$(($l+1))" links["${wires[$(($m+1))]}"],\n"

>> connections.txt

m=$(($m +2))

done

##

#Preparing the final connections

tier_count_1=0;

111

for i in "${Number_of_Routers_per_tier[@]}"

do

Number_of_routers=$i

tier_count_1=$(($tier_count_1+1))

for ((h = 0 ; h < $Number_of_routers ; h++))

do

grep -w "R\["$h"\] "$tier_count_1"" connections.txt|

awk ’{print}’ ORS=’ ’>> inter.txt

echo $’\n’ >> inter.txt

sed -i ’s/, $//’ inter.txt

sed -i ’/ˆ$/d’ inter.txt

sed -i ’s/R\[[0-9][0-9]*\] [0-9][0-9]* //g’ inter.txt

sed -i ’s/ //g’ inter.txt

done

done

###

#Rearranging each line from MS to LS

count_occ=1;

var=links;

while read line1; do

number_occ[$count_occ]=$(echo $line1 |grep -o "links"| wc -l)

count_occ=$(($count_occ+1))

done < inter.txt

for ((f=0; f<${#number_occ[@]}; f++));

do

if [[${number_occ[$f]} = "2"]]

then

u=$(($f+1))

number_occ[$u]="*"

f=$(($f+1))

fi

done

occ=1;

while read line; do

conct=$line

if [[${number_occ[$occ]} = "*"]]

then

IFS=’, ’ read -a array <<< "$conct"

length=${#array[*]}

for ((i=${#array[@]}-1; i>=0; i--)); do

printf ""${array[$i]}"," >> inter_rev.txt

done

echo $’\n’ >> inter_rev.txt

sed -i ’s/,$//’ inter_rev.txt

sed -i ’/ˆ$/d’ inter_rev.txt

else

112

echo $line >> inter_rev.txt

fi

occ=$(($occ+1))

done < inter.txt

###

#Adding the addresses to an array

IFS=$’\n’ read -d ’’ -r -a addresses < addresses.txt

#Preparing the final version of the ring_connections for each router per

#each tier with Verilog required syntax

lines_count=0

tier_count_0=0

a=0;

tiers=${#Number_of_Routers_per_tier[@]}

while read line; do

lines[$a]=$line

a=$(($a +1))

done < inter_rev.txt

b=0

for i in "${Number_of_Routers_per_tier[@]}"

do

tier_count_0=$(($tier_count_0+1))

Number_of_routers=$i

for ((j = 0 ; j < $Number_of_routers; j++))

do

add=${addresses[$b]}

if [$j == "0"] && [$b == "0"] && [$tier_count_0 == "1"]

then

printf "Router_ring #(.address(16’b"$add"),.ramSize(3))

router_"$b" (.port({"${lines[$lines_count]}"}),.clk(clk)

,.packet(packet),

.R_packet(R_packet ["$b"]));\n" >> ring_connections.txt

elif [$j == "0"] && [$b != "0"] && [$tier_count_0 == "1"]

then

printf "Router_ring #(.address(16’b"$add"),

.ramSize(3)) router_"$b" (.port({"${lines[$lines_count]}"}),.

clk(clk),.packet(),.R_packet(R_packet ["$b"]));\n"

>> ring_connections.txt

elif [$j == "1"] && [$tier_count_0 == "1"]

then

printf "Router_ring #(.address(16’b"$add")

,.ramSize(3)) router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(),.R_packet(R_packet ["$b"]));\n"

>> ring_connections.txt

elif [$j == "0"] && [$b == "0"] && [$tier_count_0 == $tiers]

then

113

printf "Router_ring #(.address(16’b"$add")

.ramSize(3)) router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(packet),.R_packet(R_packet ["$b"]));\n"

>> ring_connections.txt

elif [$j == "0"] && [$b != "0"] && [$tier_count_0 == $tiers]

then

printf "Router_ring #(.address(16’b"$add"),

.ramSize(3)) router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(),.R_packet(R_packet ["$b"]));\n"

>> ring_connections.txt

elif [$j == "1"] && [$tier_count_0 == $tiers]

then

printf "Router_ring #(.address(16’b"$add"),

.ramSize(3)) router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(),.R_packet(R_packet ["$b"]));\n

>> ring_connections.txt

elif [$j == "0"] && [$b == "0"] && [$tier_count_0 != "1"]

then

printf "Router_ring #(.address(16’b"$add"),.ramSize(4))

router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(packet));\n" >> ring_connections.txt

elif [$j == "0"] && [$b != "0"] &&

[$tier_count_0 != "1"]

then

printf "Router_ring #(.address(16’b"$add"),

.ramSize(4)) router_"$b"

(.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(),.R_packet(R_packet ["$b"]));\n"

>> ring_connections.txt

elif [$j == "1"] && [$tier_count_0 != "1"]

then

printf "Router_ring #(.address(16’b"$add"),

.ramSize(4)) router_"$b" (.port({"${lines[$lines_count]}"})

,.clk(clk),.packet(),.R_packet

(R_packet ["$b"]));\n" >> ring_connections.txt

else

printf "Router_ring #(.address(16’b"$add"),.

ramSize(2)) router_"$b" (.port({"${lines[$lines_count]}"}),

.clk(clk),.packet(),.R_packet

(R_packet ["$b"]));\n" >> ring_connections.txt

fi

lines_count=$(($lines_count +1))

b=$(($b +1))

done

done

###

114

#Append to the design file

design_file=Design_files/topmod.sv

sed -i ’/ROUTER INSTANCES/,/END_Routers/{//!d}’ $design_file

sed -i ’/ROUTING TABLES/,/END_Tables/{//!d}’ $design_file

sed -i ’/ROUTER INSTANCES/rring_connections.txt’ $design_file

sed -i ’/Wires_declartion/,/end_wires/{//!d}’ $design_file

sed -i ’/Lookup_tables/,/end_luts/{//!d}’ $design_file

#sed -i ’/ROUTING TABLES/rrouting_tables.txt’ $design_file

###

#Cleaning up

rm -rf connections.txt

rm -rf ring_connections.txt

rm -rf inter.txt

rm -rf inter_rev.txt

rm -rf addresses.txt

###

#popup a finished message in the tcl window

tclsh final_msg.tcl

*final_msg.tcl

#Description: a tcl script to display

the final info message after creating the design files.

#Author: Maha Beheiry

#!/usr/local/bin/wish

package require Tk

#package require BWidget

#frame .message

set ans [tk_messageBox -icon info -title

"3D NoCs Designs" -message

"Please check the design files created

under Design_files directory." -type ok]

switch -- $ans {

ok { destroy . }

}

*Design Files

*param.h

//This file includes the paramters needed to the design.

//Number of routers per tier in the design,

//they vary according to the user entry.

//routers_tier

‘define NO_OF_ROUTERS_1_TIER 4

//end_tiers

//wires

‘define NUM_OF_WIRES 6

*topmod.sv

115

//This file is the top module for the design which

// includes the instantiation of the routers and its routing tables.

‘include "param.h"

module topmod (packet, clk, R_packet);

input [63:0] packet;

input clk;

wire [63:0] links [‘NUM_OF_WIRES-1:0];

//r_packet

output [63:0] R_packet [3:0];

//end_r

//Wires_declartion

wire [15:0] ram_values_0 [‘NO_OF_ROUTERS_1_TIER-1:0];

wire [15:0] ram_values_1 [‘NO_OF_ROUTERS_1_TIER-1:0];

wire [15:0] ram_values_2 [‘NO_OF_ROUTERS_1_TIER-2:0];

wire [15:0] ram_values_3 [‘NO_OF_ROUTERS_1_TIER-2:0];

//end_wires

//ROUTER INSTANCES

Router_mesh #(.address(16’b0000000000000000),

.ramSize(‘NO_OF_ROUTERS_1_TIER))

router_0 (.port({links[2],links[1],links[0]}),

.clk(clk),.packet(packet),

.ram_values(ram_values_0),.R_packet(R_packet [0]));

Router_mesh #(.address(16’b0000000000000001),

.ramSize(‘NO_OF_ROUTERS_1_TIER))

router_1 (.port({links[4],links[3],links[0]}),

.clk(clk),.packet(),

.ram_values(ram_values_1),.R_packet(R_packet [1]));

Router_mesh #(.address(16’b0000000000000010),

.ramSize(‘NO_OF_ROUTERS_1_TIER-1)) router_2

(.port({links[5],links[3],links[1]}),.clk(clk),

.packet(),.ram_values(ram_values_2),.R_packet(R_packet [2]));

Router_mesh #(.address(16’b0000000000000011),

.ramSize(‘NO_OF_ROUTERS_1_TIER-1))

router_3 (.port({links[5],links[4],links[2]}),

.clk(clk),.packet(),.ram_values(ram_values_3),.R_packet(R_packet [3]));

//END_Routers

//Lookup_tables

assign ram_values_0 = {16’b0000000000000001,16’b0000000000000010,

16’b0000000000000011,16’b0000000100000000};

assign ram_values_1 = {16’b0000000000000000,16’b0000000000000010,

16’b0000000000000011,16’b0000000100000001};

assign ram_values_2 = {16’b0000000000000000,16’b0000000000000001,

16’b0000000000000011};

assign ram_values_3 = {16’b0000000000000000,16’b0000000000000001,

16’b0000000000000010};

//end_luts

116

endmodule

*testBn.sv

//This file includes the packets to be sent through

//the network in series

//TestBench

‘include "param.h"

module testBn ();

reg [63:0] pp ;

reg clk;

topmod temp(.packet(pp), .clk(clk), .R_packet());

initial

begin

10

pp = 64’b11111111_11111111_00000001_00000011__11111111_

11111111_11111111_11111111 ;

//# 10

//pp = 64’b11111111_11111111_00000000_00000011__11111111_

11111111_11111111_11111111 ;

//# 10

//pp = 64’b11111111_11111111_00000010_00000001__11111111_

11111111_11111111_11111111 ;

//# 10

// pp = 64’b11111111_11111111_00000001_00000000__11111111_

11111111_11111111_11111111 ;

// # 10

// pp = 64’b11111111_11111111_00000001_00000001__11111111_

11111111_11111111_11111111 ;

// # 10

// pp = 64’b11111111_11111111_00000001_00000010__11111111_

11111111_11111111_11111111 ;

// # 10

// pp = 64’b11111111_11111111_00000001_00000011__11111111_

11111111_11111111_11111111 ;

10

pp= ’bz;

end

//Clock

initial

begin

clk = 0;

forever #5 clk = ˜clk;

end

endmodule

117

//end_here

*router_module_mesh.sv

//This file includes the router module in the mesh topology

‘include "param.h"

module Router_mesh (port, clk, packet, ram_values, R_packet);

//Module inputs,outputs and parameters

/////////////////////////////////

//Design inputs

input [63:0] packet; //packet transmitted

input clk;

//Design parameters

parameter ramSize=0; //ramsize

parameter [15:0] address=16’b0;//Router address

//Design inputs/outputs

inout [63:0] port [ramSize-1:0]; // Router ports

input [15:0] ram_values [ramSize-1:0];

output [63:0] R_packet;

//Design registers

wire [15:0] ram [ramSize-1:0];// memory cells (16Bit Wide)

//Routing Table

reg [ramSize-1:0] enable ;

reg [63:0] outlatch[ramSize-1:0];

reg [63:0] inlatch[ramSize:0];

reg [63:0] R_packet;

//Design bits

bit flg; //Flag for 3D routers round robin

assign ram = ram_values;

////////////////////////////////////

genvar m;

generate

for(m=0; m<ramSize; m=m+1)

assign port [m]= enable[m] ? outlatch[m]:64’bz;

endgenerate

generate

for(m=0; m<ramSize; m=m+1)

assign inlatch [m]= port[m];

assign inlatch [ramSize]= packet;

endgenerate

// Logic of 3D Routing algorithm goes here with each clock rising edge

always @ (posedge clk)

118

begin

integer i;

integer j;

integer k;

enable = ’b0;

for(k=0;k<ramSize+1;k=k+1)

//status <= "--";

for(k=0;k<ramSize+1;k=k+1)

begin

if (address == inlatch[k][47:32])

begin

$display("I am the destination");

R_packet <= inlatch[k];

//status[k] <= "destination";

// Save the packet in the inlatch of the router

//to keep it. (inlatch or final_destination register)

end

else if (address == inlatch[k][63:48])

begin

$display("I am the source");

//status[k] <= "source";

//

end

else if (address [15:8] != inlatch[k][47:40])

//Case of the source and destination not in the same tier.

begin

//status[k] <= "DTier-2DS";

if (˜(address [7:0] == 8’b00000000 ||

address [7:0] == 8’b00000001)) // 2D router case

begin

for (i = 0; i<ramSize; i++)

begin

if (ram [i][7:0] == 0 && flg == 0)

begin

outlatch[i] <= inlatch[k];

//Packet to be output on the inlatch

//connected to the router

outlatch[i][63:48] <= address;

enable[i]<=1;

flg<=1;

end

else if (ram [i][7:0] == 1 && flg == 1)

119

begin

outlatch[i] <= inlatch[k];

//Packet to be output on the inlatch connected to the router

outlatch[i][63:48] <= address;

enable[i]<=1;

flg<=0;

end

end

end

else if (address [7:0] == 8’b00000000

|| address [7:0] == 8’b00000001) //3D router case

//status[k] <= "DTier-3DS";

begin

if (address [15:8] < inlatch[k][47:40])

begin

for (i = 0; i < ramSize; i++)

begin

if (ram [i][15:8] > address [15:8])

begin

//status[k] <= "DTier-3DS-down";

outlatch[i] <= inlatch[k];

//Packet to be output on the inlatch connected to the router

outlatch[i][63:48] <= address;

enable[i] <=1;

end

end

end

else if(address [15:8] > inlatch[k][47:40])

begin

for (i = 0; i<ramSize; i++)

begin

//status[k] <= "DTier-3DS-UP";

if (ram [i][15:8] < address [15:8])

begin

outlatch[i] <= inlatch[k];

//Packet to be output on the inlatch connected to the router

outlatch[i][63:48] <= address;

enable[i]<=1;

end

end

end

end

end

//

else if (address [15:8] == inlatch[k][47:40])

120

//Case of the soure and destination in the same tier

begin

$display("Destination and soure are in the same tier");

//status [k] <= "STier";

for (j = 0; j<ramSize; j++)

begin

if (ram[j] == inlatch[k][47:32])

begin

outlatch [j] <= inlatch[k];

//Packet to be output on the port connected to the router

outlatch [j][63:48] <= address;

enable [j] <=1;

end

end

end

end

end

endmodule

*router_module_ring.sv

//This file includes the router module in the ring topology

‘include "param.h"

module Router_ring (port, clk, packet, R_packet);

//Module inputs,outputs and parameters

/////////////////////////////////

//Design inputs

input [63:0] packet; //packet transmitted

input clk;

//Design parameters

parameter ramSize=0; //ramsize

parameter [15:0] address=16’b0;//Router address

//Design inputs/outputs

inout [63:0] port [ramSize-1:0]; // Router ports

output [63:0] R_packet;

//Design registers

reg [15:0] ram [ramSize-1:0];

// memory cells (16Bit Wide) //Routing Table

//reg [500:0] status [ramSize:0];

reg [ramSize-1:0] enable ;

reg [63:0] outlatch[ramSize-1:0];

reg [63:0] inlatch[ramSize:0];

reg [63:0] R_packet;

//////////////////////////////

genvar m;

generate

for(m=0; m<ramSize; m=m+1)

121

assign port [m]= enable[m] ? outlatch[m]:64’bz;

endgenerate

generate

for(m=0; m<ramSize; m=m+1)

assign inlatch [m]= port[m];

assign inlatch [ramSize]= packet;

endgenerate

// Logic of 3D Routing algorithm goes here with each clock rising edge

always @ (posedge clk)

begin

integer i;

integer j;

integer k;

enable = ’b0;

for(k=0;k<ramSize+1;k=k+1)

//status <= "--";

for(k=0;k<ramSize+1;k=k+1)

begin

if (address == inlatch[k][47:32])

begin

$display("I am the destination");

R_packet <= inlatch[k];

//status[k] <= "destination";

// Save the packet in the inlatch of the router to keep it.

//(inlatch or final_destination register)

end

else if (address == inlatch[k][63:48])

begin

$display("I am the source");

//status[k] <= "source";

//

end

else if (address [15:8] != inlatch[k][47:40])

//Case of the source and destination not in the same tier.

begin

//status[k] <= "DTier-2DS";

if (˜(address [7:0] == 8’b00000000 ||

address [7:0] == 8’b00000001)) // 2D router case

begin

122

$display("Destination and soure are in the same tier");

//status [k] <= "STier";

outlatch [1] <= inlatch[k];

//Packet to be output on the port connected to the router

outlatch [1][63:48] <= address;

enable [1] <=1;

end

else if (address [7:0] == 8’b00000000 ||

address [7:0] == 8’b00000001) //3D router case

//status[k] <= "DTier-3DS";

begin

if (address [15:8] > inlatch[k][47:40])

begin

outlatch [2] <= inlatch[k];

//Packet to be output on the port connected to the router

outlatch [2][63:48] <= address;

enable [2] <=1;

end

else if(address [15:8] < inlatch[k][47:40])

begin

outlatch [ramSize-1] <= inlatch[k];

//Packet to be output on the port connected to the router

outlatch [ramSize-1][63:48] <= address;

enable [ramSize-1] <=1;

end

end

end

//end

///

else if (address [15:8] == inlatch[k][47:40])

//Case of the soure and destination in the same tier

begin

$display("Destination and soure are in the same tier");

//status [k] <= "STier";

outlatch [1] <= inlatch[k];

//Packet to be output on the port connected to the router

outlatch [1][63:48] <= address;

enable [1] <=1;

end

end

end

endmodule

123

 أ

 ملخصال

لي جانب ، ا و قوية عةمتنو رة لتنفيذ تطبعيقات تتيح فرصة كبعي بعاا""ن تكنولوجيا "التكامل ثلاثي الأإ
تح"يات الج"ي"ة المتالقة بعطول الأسلاك عن طريق التكنولوجيا "الشبعكة علي الرقاقة" تحلذلك

 تكنولوجيا "ماجإ و من ثم فإن. نفسها بعين النقاط المختفلة علي الرقاقة ما مبعتكرةوسيلة اتصال
"التكامل ثلاثي الأبعاا"" مع "الشبعكة علي الرقاقة" يؤ"ي لظهور حل ج"ي" للا"ي" من التطبعيقات التي

 .صابعة المنال من قبعلكانت تبع"و

تكنولوجيا "الشبعكة علي الرقاقة" ثلاثية الأبعاا" تأتي مع الا"ي" من التح"يات البعحثية للحفاظ

نياها. كذلك طريقة تص وطريقة تصميمها ووضاها و التوصيلات الامو"يةمثل ة الأ"اء،علي كفاء
رها لتكون تطوين تح"ي "خورازمية التوجية" يا" أح" أهم التح"يات في تنفيذ تلك الخورازمية و إ

 .بعين الطبعقات ثلاثية الأبعاا" لتنجز التواصل الهام مرنة و موثوق بعها

ية خوارزميتم تق"يم من الامل علي تلك الرسالة، و بعناءاً على ما سبعق و كجزء أصيل
للتوجية ثلاثي الأبعاا")المصا" المبعاشر(الماتم" علي خورازمية)المصا" أولا ثلاثي الأبعاا"(

وصيلات كم التلا تاتم" علي خورازمية)المصا" المبعاشر(م لحل المشكلات سابعقة الذكر.كم"خل مه
نها إ ة.للتركيبعات ثلاثية الأبعاا" المختلف مصنوعة خصيصاً أو مكانها أو بعنية الشبعكة ، كذلك فهي

 خوارزمية "المصا" أولا ثلاثي الأبعاا"". بعة وقت استجابعة أقل مقارنكذلك تتيح

ثية الأبعاا" حل لتنفيذ شبعكات ثلا و مبعتكرة يتم توفير من خلالهاأ"اة ج"ي"ة تطرح تلك الرسالة
من خلال الرسالة و "اة المطروحةالتصميمات. الألخ"مة مختلف التطبعيقات و و ذلك بعشكل عام

 علي خوارزمية)المصا" المبعاشر(. تاتم" "3D-NOCET" المسماه
 ا" ماتم"اً ية الأبعاللمستخ"م أن يصنع تشكيلات مختلفة من الشبعكات ثلاث" تسمح 3D-NOCETأ"اة "

ك عن . كل ذلكل طبعقة في الموجهاتع"" الطبعقات و ع"" و الأبعاا" ثنائيعلي خوارزمية التوجية
 لهذا الغرض.خصيصاً مصممة تيكية تماماً طريق بعنية تحتية اوتوما

 ب

تلك عة.مختبعرية مختلفة للشبعكات ثلاثية الأبعاا" المتنو و قياسات هذا يمه" الطريق للقيام بعتقييمات
يجا" التركبعيات علي االتحليل الأ"ائي المقارن سيساع"ا بع"ورهما التقييمات المختبعرية المستقبعلية و

 الشبعكية الأفضل للتطبعيقات المختلفة.

 مها رمضان محم" بعحيري :دسـمهن
 1990\6\25 تاريخ الميلاد:

 مصرية الجنسية:
 2012\9\20 تاريخ التسجيل:

 2017/--/-- تاريخ المنح:
 الكهربعية والاتصالات الإلكترونياتهن"سة القسم:
 الالوم ماجستير الدرجة:

 المشرفون:
 أحم" محم" سليمانا.".

 حسن مصطفي حسن مصطفي".

 الممتحنون:
)الممتحن الخارجي(أ.".
)الممتحن ال"اخلي(أ."
)المشرف الرئيسي(أ.".
 أ.".)عضو(

 عنوان الرسالة:
اه بعالمصا" المبعاشر الأبعاا" بعاستخ"ام خوارزمية التوجيه المسم رقاقة ثلاثية تصميم شبعكة قابعلة للضبعط على

".ثلاثي الأبعاا

 الكلمات الدالة:

شبعكات علي اقة ثلاثية الأبعاا"، مول" لرقشبعكات علي ،خوارزمية توجيه ثلاثية الأبعاا" ،تكنولوجيا ثلاثية الأبعاا"
 رقاقة ثلاثية الأبعاا".

 :رسالةملخـص ال

بااد رقاقة ثلاثية الأ على داة لتكوين تركيبات متغيرة لشبكةالرئيسي من هذه الرسالة هو مساعدة المصممين بأالهدف

هذه الآداة ستستخدم لتحديد أفضل التركيبات لتصميم أو تطبيق محدد ، و قد تم بناء تصميم هذه الآداة بناءاً على خوارزمية

في هذة الرسالة يتم عرض تحليل مفصل لهذة الأداة و يشمل لاثي الأبااد التوجيه الماروفة اسماً بالمصاد المباشر ث

 حالات مختبرية عديدة لتقييم المرونة و الفاعلية الخاصة بها

ت من خلال الوق نات الي تم تنفيذها من خلال محاكات ما بين المصاد المباشر و المصاد أولاً و يتم أيضا عرض المقار

 في توجية المالومات خلال الشبكات المتنوعة ل الخوارزميات لستنفذة خلال عمساحة و الطاقة امو ال

 ضع صورتك هنا

ارزمية باستخدام خو رقاقة ثلاثية الأبعاد تصميم شبكة قابلة للضبط على
 ده بالمصعد المباشر ثلاثي الأبعاامالتوجيه المس

 اعداد

 مها رمضان محمد بحيري

 القاهرة جاماة - الهندسة كلية إلى مقدمة رسالة

 الالومماجستير درجة على الحصول متطلبات من كجزء

 في

 الكهربية الاتصالات و الإلكترونيات هندسة

 :ياتمد من لجنة الممتحنين

 الممتحن الخارجي الاستاذ الدكتور:

 خليادالممتحن ال الاستاذ الدكتور:

 المشرف الرئيسى الاستاذ الدكتور:

 الاستاذ الدكتور: عضو

 القاهــرة جاماــة - الهندســة كليــة

 الاربيــة مصـر جمهوريـة - الجيـزة

 سنة –شهر

ارزمية باستخدام خو رقاقة ثلاثية الأبعاد للضبط علىتصميم شبكة قابلة
 ده بالمصعد المباشر ثلاثي الأبعاامالتوجيه المس

 اعداد

 مها رمضان محمد بحيري

 القاهرة جاماة - الهندسة كلية إلى مقدمة رسالة

 الالومماجستير درجة على الحصول متطلبات من كجزء

 في

 الكهربية الاتصالات و الإلكترونيات هندسة

 تحت اشراف

 اسم المشرف اسم المشرف

 مصطفى حسن مصطفى حسن .د
 مدرس

 الاتصالات و الإلكترونيات هندسة قسم

 الكهربية

 القاهرة جاماة - الهندسة كلية

 سليمان محمد أحمد .د.أ
 متفرغ أستاذ

 الاتصالات و الإلكترونيات هندسة قسم

 الكهربية

 القاهرة جاماة - الهندسة كلية

 القاهــرة جاماــة - الهندســة كليــة

 الاربيــة مصـر جمهوريـة - الجيـزة

 سنة –شهر

ارزمية باستخدام خو رقاقة ثلاثية الأبعاد تصميم شبكة قابلة للضبط على
 ده بالمصعد المباشر ثلاثي الأبعاامالتوجيه المس

 اعداد

 مها رمضان محمد بحيري

 القاهرة جاماة - الهندسة كلية إلى مقدمة رسالة

 ماجستير الالوم درجة على الحصول متطلبات من كجزء

 في

 الكهربية الاتصالات و الإلكترونيات هندسة

 القاهــرة جاماــة - الهندســة كليــة

 الاربيــة مصـر جمهوريـة - الجيـزة

 سنة –شهر

