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Abstract 

Nowadays, brain scientific research progress depends on signal compression at 

high spatial resolutions, for low-rate transmission through wireless connection to the 

outside world and efficient storage. Without data compression, these data rates would 

conflict the neurophysiologic restrictions in terms of low energy and low area 

consumption. So that neural data compression at the implant site is substantial in order 

to conform with the wireless rates restrictions. In this thesis, the high spatial correlation 

is utilized to increase the data compression ratio. Then, five different proposed low-

power image compression algorithms based on discrete wavelet transform (DWT) and 

discrete cosine transform (DCT) are investigated and compared to provide the best 

trade-off between compression performance and hardware complexity. Hence, the 

Adaptive 2D-DWT algorithm is deduced as a promising solution for low-power 

implantable devices. 

Furthermore, current treatment devices need the complete waveform and history for 

every electrode to be extracted instead of extracting the special signal features only to 

be able to detect and diagnose neural brain disorders. So that it must be guaranteed that 

the detected neural data can be transmitted continuously without any stops or data loss 

and also it must be guaranteed that the compressed data can be decompressed at the 

other side with high quality without significant distortion. In this thesis, the neural 

compression algorithm is adapted according to the available harvested power budget. 

Therefore, the maximum signal to noise and distortion ratio (SNDR) is achieved based 

on the available harvested power budget without any data loss. 
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Chapter 1 Introduction 

1.1. Background 

Over the last 40 years, implantable electronic devices and systems have faced a 

significant transformation, becoming a valuable biomedical tool for measuring, 

monitoring and stimulation physiological responses using wireless communication. The 

discovery and posterior advancement of these devices have relied heavily on the 

growing knowledge related to various aspects of the human neuro system, and the 

development of electronics technologies capable of interfacing with living tissues and 

organs at microscale and nanoscale. Increasing in stability, miniaturization and lower 

power requirement of modern electronics led to a plenty of miniature wireless 

electronic devices, such as sensors and intelligent gastric, implantable cardioverter 

defibrillators, implantable cochlear, and deep brain, nerve, and bone stimulators are 

implanted in patients worldwide [29,30,31,32]. Advances in semiconductor technology, 

particular in the area of micro fluidic lab-on-chip biomedical systems and micro-

electro-mechanical systems (MEMS) have allowed for the development of units for 

rapid diagnostics, and precisely controlled pulsatile, sustained or rapid delivery of 

complex therapeutics and drugs [33]. 

Furthermore, these devices are used for the development of tissue engineering 

platforms and also have been used in regenerative medicine applications, particularly 

where nervous and muscular tissues are concerned. In addition to growing the survival 

rate and the life quality of patients globally, implantable electronic devices have 

contributed significantly to assessment of the biological processes taking place within 

the human body, including the hard mechanisms of neural control and communication, 

and greatly enhanced the understanding of how these are affected by various diseases 

and remediation. Ex MEMS and dielectric elastomer actuators have been used to 

explore the manner in which biological cells modulate their behavior, proliferate or 

differentiate in response to electrical and mechanical stimuli, knowledge which is 

fundamental for adequate tissue engineering design [34]. In addition to playing a deep 

role in the progress of biomedical sciences and regenerative medicine, communication 

technologies and implantable information drive memorable changes in the cultural and 

social attitudes of people towards technology. There, implantation is viewed beyond the 

medical context as a means to promote the experiences and abilities of healthy 

individuals. Despite of essential innovations in the application and fabrication of 

implantable biomedical electronic systems since the first implantable heart pacemakers, 

the modern implants are still faced with a number of challenges [35].  

In terms of device production, there is a strong trend to produce devices with 

ever size and weight in order to make them compatible with normal human activities 

and enhance leisure for the host. Implants that weight less than 1% of the patient‟s body 

weight are typically required. When used whether single-use batteries or rechargeable 

batteries significantly contribute to the overall dimensional size and weight of the 

device. Rechargeable batteries, like those are used in cochlear implants, can be 

recharged transcutaneously using external signals, e.g., pizoelectricaly, radio frequency 

(RF), ultrasound, infrared light, low-frequency magnetic field, and so on. More 

recently, internal charging using the energy produced by the physiological environment 
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or natural body motion has been investigated. Single-use, non-rechargeable batteries, 

like those are used to support pulse generation in deep brain stimulators and cardiac 

pacemakers, have a predetermined lifetime, at the end of which they have to be 

surgically replaced, at high cost to the patient and the healthcare system. Further 

miniaturization can be earned by means of battery-less implants, where energy 

harvested from natural or artificial power sources surrounding the patient is used 

directly to power the device [36]. Inductive and electromagnetic coupling are extremely 

used to power remotely battery less devices. In the former case, time-harmonic 

magnetic field generated by the low frequency alternating current in the external coil 

generates an alternating current in the implanted component, whereas in the latter, 

electromagnetic waves are generated from the antenna in the far field region to power 

the implanted chip. Biomedical actuators that do not base on the harvesting, traditional 

wireless delivery, accumulation and storage of power in electrical form have been 

explored for such high-energy actuation applications as mechanical adjustment in 

implantable devices and drug release. 

At the same time, there is a strong emphasis on increasing the functionality and 

reliability of these electronic devices to support complex real-time stimulation, data 

collection, data compression and reliable wireless data transmission to external world. 

This increasing complexity of signal processing electronics further increases the power 

budget of the device, which should remain very low if the device is remaining working 

for extended periods of time. For instance, a wide band technology offers high speed 

data transfer between the implanted devices, e.g., implantable electronic cardiovascular 

devices, low interference potential and the medical practitioner, yet its implementation 

is limited due to its high power consumption. 

The ability of the implanted devices, such as glucose monitors, pacemakers, and 

insulin-delivery systems, smart prosthetics, and neural stimulators, to be easily 

interrogated by health practitioners also makes these systems susceptible to hacking 

[37]. In addition to having access to secret patient data, the systems can be 

reprogrammed, interfering with the correct device operations. Therefore, firewalls, 

including security check protocols, security measures, restricted network access and 

data encryption should be seriously considered.  

Application of molecular-scale and nano-scale technologies for fabrication and 

design of the implantable circuits can lead to remarkable progress in power dissipation 

and integration density, enabling nano-biorobotics and neuroelectronic interfacing. 

However, current biomedical technologies are still faced with challenges, like relatively 

high standby power consumption, lower reliability, and electron leakage due to 

insufficient insulation.  

Furthermore, in an effort to improve the resolution of the collected biological 

signals, the increasing number of electrodes demands more energy to be delivered to 

the electrode array, thus potentially growing the thermal energy dissipated within the 

implant circuitry. Given the high cost and time associated with the surgical 

implantation of the device and the recovery of the patient, long-term reliability of the 

device is fateful.  

The drive towards small, light and flexible devices may reduce mechanical 

robustness of the implant; offensive cleaning procedures used on the devices prior to 

implantation may further contribute to weakening of the organic layers. The ensuing in 

loss of integrity and vivo degradation may be harmful to the performance of the system, 

leading to the system failure, e.g., subsequent surgical removal and electrical shorting. 

The implanted device and its degradation by-products may stimulate activation of a 
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range of invulnerable mechanisms, leading to inflammation, which in turn may further 

contribute to the implant degradation.  

 Achieving suitable biocompatibility is a hard matter, due to the dynamic 

multifaceted nature of the host biological response to synthetic and organic materials 

used in device fabrication. Where in vivo stimulation or sensing is required for a short 

period of time, resorbable implantable electronic systems can provide a solution to 

overcome inflammation and infections associated with long term implant utilization. 

The premise is that the materials used in system fabrication are biodegradable and 

undergo controlled dissociation over time under normal in vivo physiological 

conditions. The degradation by-products forbidden minimal toxic response and are 

removed from the peri-implantation site by means of normal metabolic activity [39]. 

However, fabricating a high performing electronic device from entirely biodegradable, 

non-toxic set of materials is a difficult undertaking, particularly at small scales. A 

combination of reliable and robust non-biodegradable silicon electronics with 

bioresorbable polymer platform offers both sufficient bulk degeneration and the 

flexibility of the device that the invulnerable response to the remaining material is 

minimal [40].  

For the technology to be clinically implemented, however, the challenges 

associated with integration of sensitive electronics functions with the fabrication 

techniques used for production of biodegradable component, and the control over 

degradation kinetics and biocompatibility of the device should be addressed. In spite of 

many reports detailing the biological activity and degradation behavior of many 

commonly used materials in vitro and in vivo, the appreciation of these complex 

processes is yet to be adequate. The aim of this background is to discuss the challenges 

faced by modern implantable electronic systems and give a brief overview of the 

solutions that have been proposed, investigated and implemented in order to overcome 

these challenges. 

When designing an implantable electronic device, several general requirements 

need to be addressed, namely minimal weight and size, low power consumption, high 

reliability, high data rate and data latency. As the case with any commercial product, 

the design of the implantable systems is heavily influenced by the demands and 

preferences of their consumers. 

 In addition to being less invasive to the patient body during the implantation, 

lighter and smaller devices are likely to result in less pain and discomfort to the host 

during recovery and use. The extravagant size and weight may be harmful to the 

recovery process by putting pressure on the adjacent tissues that have already been 

damaged as a result of surgery, contributing to the inflammatory processes within the 

peri-implant space. Light and small devices are less restrictive in terms of normal level 

of human activity, and thus sustain better quality of life to the patients. The power 

source and encapsulation components remain the major contributors to the overall size 

and weight of the device, whereas the electric circuitry components have decreased 

dramatically with the advancements in nanotechnology and MEMS. Coupling 

capacitors used to ensure charge balance and effectively minimize current leakage may 

further increase the volume of the implantable module. Lower power consumption is 

important in terms of both the long-term performance of the device and the safety to the 

patient.  

Furthermore, the power use by interface electronics should be minimized to 

ensure longevity of the implants with single-use batteries, as the replacement of such a 

device would require a costly and invasive surgical procedure. Although using a 

rechargeable battery may require the need for battery replacement surgical interference, 
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the need for frequent charging may be inconvenient, resource-consuming activity and 

time-consuming. 

Electrocorticography (ECoG) is a type of electrophysiological monitoring that 

uses electrodes placed directly on the naked surface of the brain to record electrical 

activity from the cerebral cortex. But, conventional EEG electrodes monitor this 

activity from the exposed surface of the cortex (outside the skull). ECoG can be 

performed either extra operative ECoG (outside of surgery) or intraoperative ECoG 

(during surgery in the operating room). Because a surgical incision into the skull 

(craniotomy) is required to implant the electrode grid, ECoG is an invasive procedure. 

Electrocorticography (ECoG) signals are composed of local field potentials, 

recorded directly from outside the skill. The potentials occur primarily in 

cortical pyramidal cells, In addition, thus should be conducted through several layers of 

the cerebral cortex, arachnoid mater and cerebrospinal fluid before reaching subdural 

recording electrodes (placed just below outer cranial membrane). However, to reach the 

scalp electrodes of a conventional EEG, electrical signals should also be conducted 

through the skull, where potentials rapidly reduce due to the bone low conductivity. 

Hence, the Electrocorticography (ECoG) spatial resolution is higher than conventional 

EEG, a critical imaging advantage for presurgical planning [41].Electrocorticography 

has a spatial resolution of 1 cm and a temporal resolution of approximately 5 ms [42]. 

Using depth electrodes, the local field potential gives a measure of a neural population 

in a sphere with a radius of 0.5:3 mm around the tip of the electrode [17]. With a 

sufficiently high sampling rate (more than about 10 kHz), depth electrodes can also 

measure action potentials. In which case the spatial resolution is down to individual 

neurons, and the field of view of an individual electrode is approximately 0.05-

0.35 mm [17]. 

Nowadays, electroencephalogram classification has become an important 

problem in several fields. In the medicine field, EEG detection could be incredibly 

promising for stroke or seizure detection in patients that are oversensitive to such 

conditions, and a great deal of research has already been put into solving this problem. 

Other medical applications include manufacturing transportation devices for patients 

with limited motor abilities to control using simply their thoughts or extremely tender 

facial movements. Both of these will pick up EEG and an accurate and classifier will 

lead to successful creation of such a system which would change the patients‟ lives 

with such a failure. Yet other neuroscience and psychology applications, 

Electrocorticography classification can give insight into the human brain inner 

workings.  

In the biomedical engineering field, neural data recording has a considerable 

importance especially by employing neuroprosthetic devices and brain machine 

interfaces. Furthermore, multichannel neural recording is essentially for bio analysis 

and is commonly used. However, recording big amounts of data has been a challenging 

task; for example, a typical recording experiment in which data is obtained from a 

1024-channel electrode array at the rate of 64 kHz per channel with 12-bit precision 

yields a data rate of around 768 Mbps, which is much beyond the capacity of state-of-

art wireless links that are used in neural applications. Wireless transmission and 

reception are used for conducting experiments on freely behaving primates and 

animals. Another important requirement in a neural recording system is that it must be 

able to operate with a low power. All neural chips which are implanted in living human 

bodies must be able to operate at a very low power (less than or equal to 8–10 mW), 

failing would lead to temperature increasing (exceed 1°C) and cause damage of neural 

https://en.wikipedia.org/wiki/Electrophysiology
https://en.wikipedia.org/wiki/Electrode
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Craniotomy
https://en.wikipedia.org/wiki/Local_field_potentials
https://en.wikipedia.org/wiki/Pyramidal_cells
https://en.wikipedia.org/wiki/Arachnoid_mater
https://en.wikipedia.org/wiki/Cerebrospinal_fluid
https://en.wikipedia.org/wiki/Human_skull
https://en.wikipedia.org/wiki/Bone
https://en.wikipedia.org/wiki/Local_field_potential
https://en.wikipedia.org/wiki/Electrocorticography#cite_note-Logothetis_2003-7
https://en.wikipedia.org/wiki/Action_potentials
https://en.wikipedia.org/wiki/Electrocorticography#cite_note-Logothetis_2003-7
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tissue. Thus, a compression algorithm which prepared for neural applications must be 

simple, such as in brain-machine interfaces. 
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1.2. System Architecture 

Figure 1-1 shows the full implantable neural measurement system architecture. This 

neural system consists of multielectrode array, analog frontend (amplifiers), analog to 

digital converter, data compression and signal processing, power supply, low power 

wireless transceiver. All these implantable blocks must be low-power, small area, safe 

on the human body. Neural signals have been recorded from the implantable 

multielectrode array will be amplified in the analog front-end (AFE) and converted to 

digital neural data using analog to digital (ADC) block. Subsequently, the digital data 

runs into the main digital module where data compression and signal processing take 

place. Hence, the low-rate wireless transceiver transmits the compressed neural data to 

the outside world (reconstruction base station), where signal reconstruction and 

decompression are performed. Since the system is fully implantable, energy has to be 

available from implantable power supply (rechargeable battery or harvesting system). 

 

In neural implantable measurement devices the wireless link to the outside world is 

always the functional bottleneck in terms of a very limited data rate of a few MBit/s or 

in terms of limited available energy. For the transmission of neural stream data, 

wireless data rates in the order of 200 MBit/s (1000 electrodes with a sample rate of 20 

kS/second/channel and 10 Bit of resolution) could easily occur. In addition to, in neural 

implantable measurement devices for raw data transmission, complete waveforms are 

needed instead of extracted signal features. Especially in medical diagnostics 

information preservation, neural data could be beneficial such as detection of epileptic 

disorders. In order to overcome these bandwidth and energy restrictions, data 

compression at the implant site is one possibility of addressing this obstacle. Hence, 

data compression block is a mandatory block in the neural implantable measurement 

system.  

 

 

Figure 1-1: Neural System Full Architecture 
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1.3. Motivation 

Neural implantable recording systems are widely utilized to treat neural 

disorders as Parkinson and Epilepsy diseases. To diagnose and detect these disorders, 

the complete waveform for every electrode needs to be extracted instead of extracting 

the special signal features only. Hence, data compression at the implant site is 

necessary to be able to transmit these huge sizes. To conform to the implantable 

subsystem requirements such as limited wireless transmission bandwidth with the 

outside world and low received electric power despite of huge number of recording 

channels, which reaches up to 1024 channels and even more to cover finer spatial 

resolution of the recordings [21], a low-power and efficient compression algorithm is 

needed.  

In this thesis, high resolution neural signals is targeted whether Electrocorticography 

(ECOG) or Electroencephalography (EEG) or any other high resolution neural signals. 

Spatial space reaches up to 0.5 mm between the neighboring electrodes. Temporal 

sampling rate reaches up to 20 KSample/s/channel. These high resolution signals 

characterized high spatial domain correlation as well.  

In neural measurement systems the wireless transmission node is the functional 

bottleneck in terms of a very limited data rate of a few MBit/s [4]. For the transmission 

of high resolution neural raw data for 1024 electrodes, and electrode resolution is 8-bit 

with previous mentioned high rate (20 KSample/s/channel), wireless data rates are in 

order of 200 MBit/s. Hence, Powerful and efficient compression algorithms at the 

implant site to comply with this huge increase in neural data size is required.  

In the implantable embedded devices, powerful compression algorithms and higher 

compression ratios are not the unique metrics, but also the hardware efficiency (Low-

Power and Area-Efficient) is considered, because power consumption is the major 

parameter in implantable devices. In addition, the high sampling rate places another 

restriction on the hardware latency of the target compression algorithm to not violate 

the real-time processing. Hence, all these restrictions should be combined as design 

guidelines to choose the most suitable compression algorithm.  

Neural Data compression has an important feature which is 2D correlation, so that both 

spatial and temporal compression need to be considered. Hence, a better compression 

performance can be gained. Most of compression techniques which have been proposed 

for multichannel ECOG or EEG are based on the similarity between neural data 

compression and image compression [1,3,6].Image compression algorithms utilize the 

spatial correlation between adjacent electrodes only like JPEG and JPEG2000. It is 

obvious that these algorithms could not be used directly because they are very complex 

and could not achieve the low-power and real time restrictions. However, these 

algorithms should be modified to make them suitable for the implantable devices 

requirements.  

Implantable devices need an efficient power source to supply it with the enough energy 

for the electrodes, analog interfacing and digital classification. Implantable devices are 

powered using couple of methods: power harvesting and implantable batteries. 

Implantable batteries provide the power for implantable neural devices. However, 

batteries have limited life time, fixed energy density, large size and chemical side 

effects. Thus, researchers have developed various methods to harvest energy for 

implantable neural devices. Devices powered by harvested energy provide more safety 

and comfort and have longer lifetime than conventional devices. Energies that may be 

scavenged include thermal energy, solar energy, infrared radiant energy, wind energy, 

waves energy, gravity energy, vibration energy, and body motion energy, wireless RF 
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radiation energy and transfer energy. Energy harvesting devices produce electric energy 

from their surroundings through direct energy conversion. The energy harvesting from 

environmental sources or human has been provided to be an effective alternative [13]. 

1.4. Neural Data Characteristics 

To evaluate the compression algorithms performance for high-resolution neural data, 

virtual recorded data is used with the same signals characteristics (spatial and temporal 

correlation) of real data, because there is no available high resolution recorded data 

with these large sizes yet (1024 channels and more). Accordingly virtual data for 1024 

channels with almost the same correlation of smaller sizes high resolution systems is 

used [1,3]. 

In order to measure the correlation between two signals X1 and X2, the Pearson 

Product-Moment Coefficient is used [11], as shown in Eq. (1). 

 

rx1x2
=

𝐸[(𝑥1−μ𝑥1
)(𝑥2−μ𝑥2

)]

𝜎𝑥1𝜎𝑥2

                                                  (1) 

The correlation coefficient rx1x2
between two random variables X1 and X2  with Mean 

values μx1
 and μx2

 and standard deviations σx1
and σx2

. 

The degree of correlation is classified in to [3]: 

 0    < r < 0.2   : weak correlation 

 0.2 < r < 0.5   : medium correlation 

 0.5 < r < 1      : strong correlation 

 

The current model consists of 1024 channels organized in 32x32 grid. It has a strong 

average spatial correlation between adjacent channels of 0.6130 and maximum of 

0.996, and goes lower when channels are spatially apart. In addition, it has a strong 

average temporal correlation between consecutive frames of 0.8250 and maximum of 

0.9702, and goes lower when frames are not consecutive. 

1.5. Contribution 

This dissertation of this work includes the following contributions: 

• Provide a review on different Compression designs, their architectures, 

simulation and test results.  

• Compare between five compression designs that depend on two well-known 

bases and evaluate their performance, area, time and power. These bases are the 

two main transform coding methods which are used in image compression. They 

are (DCT) and (DWT). These two bases are widely used to compress images, 

videos and neural data. 

• Introduce a new method which can control the compression algorithm according 

to available harvested power. Hence, maximum signal to noise and distortion ratio 

(SNDR) based on the available harvested power can be achieved without any data 

loss. 

https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Standard_deviation


 

16 
 

1.6. Organization of the Thesis 

The remainder of this thesis is organized as follows. Chapter 2 introduces a 

literature survey of the main compression algorithms. Chapter 3 provides a HW design 

and simulation results of the five proposed compression algorithms with their 

architecture, then makes a unified comparison between them with available system 

design code and HW design code. Chapter 4 introduces a harvested power adaptive 

high-resolution neural data compression algorithm as a most suitable compression 

algorithm to achieve the highest possible SNDR based on available harvesting power 

without any data loss or discontinuity in transmission to outside world. Then the thesis 

conclusion and future work are revealed in Chapter 5. 

. 

Finally, Appendix A shows a detailed description for the: 

- System Level design   
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Chapter 2 Literature Survey of The Main Neural 

Compression Algorithms  

2.1. Introduction 

Image compression algorithms utilize the spatial correlation between adjacent 

electrodes. However, video compression algorithms utilize the spatial correlation and 

temporal correlation between consecutive frames, as well.  

These bases are the two main transform coding methods which are used in image 

compression. They are (DCT) and (DWT). These two bases are widely used to 

compress images, videos and neural data. 

It is obvious that these algorithms could not be used directly because they are very 

complex and could not achieve the low-power and real time restrictions. However, 

these algorithms should be modified to be suitable for the implantable devices 

requirements.   

Finally, the comparison between all these proposed algorithms is made to provide the 

best trade-off between compression performance and hardware complexity.  

2.2. Transform Coding  

The five proposed compression algorithms that depend on two well-known bases are 

applied and evaluated their performance, area, time and power. These bases are the two 

main transform coding methods which are used in image and video compression. They 

are discrete wavelet transform (DWT), discrete Fourier transform (DFT) and discrete 

cosine transform (DCT). These two bases are widely used to compress images, videos 

and neural data. 

 

2.2.1. Discrete Fourier Transform (DFT) 

The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier 

transform for discrete signals known. Discrete Fourier transform introduces the most 

popular base in digital signal processing, which transforms a discrete signal into a set of 

coefficients of a finite combination of complex sinusoids. The discrete Fourier 

transform is a base with the terms of a geometric progression in each column „c‟ and 

row „r‟, which defines the DFT matrix entries, as shown in Eq. (2). 

 

fr,c = (𝑒−𝑗2/𝑁)𝑟𝑐                                                    (2)                           

 

where c/N denotes the sinusoids frequencies. If the original signal „x‟ is evaluated for N 

= rT samples for all integers r = {0, ….N − 1} and the sampling period „T‟, then the 

resulting infinite sequence is a periodic extension of the DFT periodic in „N‟. 
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2.2.2. Discrete Cosine Transform (DCT) 

The discrete cosine transform (DCT) is a mechanism for converting a signal into 

elementary frequency components [24,26]. DCT is similar to Discrete Fourier 

Transform (DFT) but with real coefficients instead of complex coefficients [7]. DCT-II 

is widely used for compression. The entries of the DCT matrix are given in Eq. (3). 

𝑪𝒎,𝒏 =  
𝟐

𝑵
∗ 𝒄𝒐𝒔  

𝝅𝒎 𝒏+
𝟏

𝟐
 

𝑵
                                              (3) 

With m, n = 0, 1, 2 ... N−1 if m ≠{0, N} and 1/ 2 otherwise. 
 

The two-dimensional DCT is used in JPEG image compression and MJPEG video 

compression. It computes the i, j𝑡ℎ  entry of the DCT of an image, as shown in Eq. (4). 
 

𝐷 𝑖, 𝑗 =
1

 2N
c i  c j  p x, y 𝑁−1

𝑥 ,𝑦=0 𝑐𝑜𝑠  
𝜋 𝑚  +1 

2𝑁
 𝑐𝑜𝑠  

𝜋 𝑛  +1 

2𝑁
                       (4) 

With m, n = 0, 1, 2... N−1 and c (k) = 1 if k ≠ {0, N} and 1/ 2  otherwise. 
 

The common procedure, 2D-DCT of NxN block is computed and the result is quantized 

then entropy coded. Typically, N equals 8 and the DCT formula is applied to each row 

and column of the block. The result is an 8×8 frequency components matrix in which 

the top-left is the DC component and increase gradually horizontally and vertically to 

represent higher horizontal and vertical frequencies. 

2.2.3. Discrete Wavelet Transform (DWT) 

The two-dimensional Discrete Wavelet Transform (2D-DWT) is an effective 

mechanism for image compression and hence attracts much attention in recent years. It 

is used in JPEG2000 image compression [5,9,22,23]. DWT is any wavelet transform for 

which the wavelets are discretely sampled. The major difference between the Fourier 

Transform and the DWT is that Fourier transform decomposes the signal into cosines 

and sines, but the wavelet transform decomposes the signal into mutually orthogonal set 

of local wavelets.  

 

There are three main types of DWT: 

 

- HAAR DWT: is the simplest DWT which divides an image into four sub-bands 

by addition and subtraction. The procedure for two-dimensional Haar DWT is 

described as follows: 

 

(1) Vertical division: Vertical division divides an image to two separated 

divisions. The first part is the sums of two adjacent columns, which is stored as 

low frequency coefficients in left side. The other part is the differences of two 

adjacent columns, which is stored as high frequency coefficients in right side.  

https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/MJPEG
https://en.wikipedia.org/wiki/Video_compression
https://en.wikipedia.org/wiki/Video_compression
https://en.wikipedia.org/wiki/Video_compression
https://en.wikipedia.org/wiki/Quantization_(signal_processing)
https://en.wikipedia.org/wiki/Entropy_encoding
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Wavelet_transform
https://en.wikipedia.org/wiki/Wavelet
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(2) Horizontal division: once the vertical division is done, the horizontal 

division divides the image into four parts. Sums of two adjacent rows are stored 

as low frequency coefficients in upper side. The other part is the differences of 

two adjacent rows are stored as high frequency coefficients in lower side. 

 

- UNIFORM DWT: is a common DWT in the most of image processing 

algorithms like JPEG2000 and it‟s used to transform the frame to frequency 

domain. The DWT output is divided to 4 sub-bands, denoted as LL, LH, HL 

and HH. Then uses a uniform quantizer with one quantization value to 

compress the DWT sub-bands.  

 

- ADAPTIVE DWT: is the same as uniform DWT, but it uses different 

quantization values to compress the DWT sub-bands. LL is the most important 

quarter so that it divided by the lowest quantization value. Then LH and HL are 

divided by intermediate quantization value. Finally, HH has the lowest 

importance so that it's divided by the highest quantization value. 

 

 

There are two degrees of freedom to select the performance of DWT.  

 

 Mother wavelets: like Daubechies 1-8, Symlets 4-8, Coiflets 1 and 2 and etc. 

Every wavelet has specific filter bank coefficients and specific performance. 

 Levels: 2D-DWT generates 4 sub-bands, denoted as LL, HL, LH, and HH, „L‟ 

stands for Low and „H‟ stands for High. The low frequency sub-band LL 

preserves essential visional features for the original image and can be re-

performed to decompose the second level of DWT if multi-resolution 

representation is required and so-on, as shown in Figure 2-1. Since the role of 

LL is more crucial than that of the other three sub-bands, finer quantization 

(more quantization intervals) should be applied on it. This improves the 

compression ratio without decreasing the image quality. Furthermore, within 

any single sub-band, if some values like left interval width, right interval width, 

and median can be computed in advance, they assist the implementation for a 

much more efficient quantization scheme. This is the essentially inspiration for 

the proposed approach and the execution steps are described in section 3 in 

details. 
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Figure 2-1: 2D-DWT decomposition into two levels [8].  
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Chapter 3  Analytical Comparison of Proposed Neural 

Compression Algorithms 

3.1. Introduction 

In this chapter, five proposed compression algorithms are introduced based on the 

similarity between neural data compression and image (video) compression 

[1,3,6,25,27] and evaluate their performance, area, time and power. 

Video frames are generated such that the first frame consists of one sample from every 

channel with its order to combine together the first image then second frame consists of 

next sample from every channel with the same order to combine the second image and 

so on. 

Image compression algorithms utilize the spatial correlation between adjacent 

electrodes only like JPEG and JPEG2000. However, video compression algorithms 

utilize the spatial correlation and temporal correlation between consecutive frames, as 

well, like H.264.  

It is obvious that these algorithms could not be used directly because they are very 

complex and could not achieve the low-power and real time restrictions. However, 

these algorithms should be modified to be suitable for the implantable devices 

requirements.   

Finally, the comparison between all these proposed algorithms is made to provide the 

best trade-off between compression performance and hardware complexity.  

3.2. COMPRESSION ALGORITHMS 

3.2.1. 2D-DCT8x8 Based Compression Method 

The 2D-DCT8x8 algorithm is divided to 4 main steps, as shown in Figure 3-1: 

- Discrete cosine transform 

- Quantization 

- Zigzag reorder 

- Huffman 
 

Figure 3-1: 2D-DCT8x8 Based Compression procedure 
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Electrodes are collected together to form the neural time instant frame. This frame of 

channels is divided into 8x8 blocks, working from left to right, top to bottom. Block 

size 8x8 has high hardware complexity but it has high compression ratio. 

The 2D-DCT is applied on each block separately to be converted to frequency 

representation. The two-dimensional Discrete Cosine Transform is performed by 

coefficients matrix multiplication [6]. 

 

𝐷 = 𝑇 𝑃 𝑇′                                                              (5) 

 

As shown in Eq. (5), matrix p (the neural data 8*8 block) is left multiplied by the DCT 

coefficients matrix T8x8, as shown in Figure 3-2, this to transform the rows. Then, the 

result is multiplied by the transpose of DCT coefficients matrix T′8x8 to transform the 

columns. 

 
 
 
 
 
 
 
 
. 3536    .3536    .3536    .3536    .3536    .3536    .3536    .3536
. 4904    .4157    .2778    .0975 −.0975 −.2778 −.4157    .4904
 .4619    .1913 −.1913 −.4619 −.4619 −.1913    .1913    .4619
. 4157 −.0975    .4904 −.2778    .2778    .4904    .0975 −.4157
. 3536 −.3536 −.3536    .3536    .3536 −.3536 −.3536    .3536
. 2778 −.4904    .0975    .4157 −.4157 −.0975    .4904 −.2778
. 1913 −.4619    .4619 −.1913 −.1913    .4619 −.4619    .1913
. 0975 −.2778    .4157 −.4904    .4904 −.4157    .2778 −.0975 

 
 
 
 
 
 
 

 

Figure 3-2:𝐓𝟖𝐱𝟖Coefficients Matrix 

Then, the 8x8 block of DCT frequency components is ready for quantization, as shown 

in Figure 3-2. This stage is the main stage to control the compression ratio and quality 

level. Quantization is the only lossy stage duo to rounding process, as shown in Eq. (5). 

That means without this stage, the data size can‟t be shrunk and the data can‟t be 

decompressed without any lossless. And this quantization is applied by rounding 

process after data scaling as shown in Eq. (6).    

 

𝐴 = 𝑟𝑜𝑢𝑛𝑑 (
𝐷 ∗ 𝑄𝑢𝑎𝑙𝑖𝑡  𝑙𝑒𝑣𝑒𝑙

𝑄_𝑚𝑎𝑡𝑟𝑖𝑥
)                                                        (6) 

Here a scalar constant 'Quality Level' is used as a quality controller, it changes from 1 

to 10. For a highest quality and the lowest compression ratio select '10' and for a lowest 

quality and the highest compression select '1'. Then, it divided by the quantization value 

according to Q_matrix, as shown in Figure 3-3. 

 

 
 
 
 
 
 
 
 
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 36 55 64 81 194 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99  

 
 
 
 
 
 
 

 

Figure 3-3: 𝐐_𝐦𝐚𝐭𝐫𝐢𝐱𝟖𝐱𝟖 
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Quantizer output should have a lot of zeros components in the right bottom corner and 

decrease gradually to be minimum at the left top side, so that JPEG standard block 

ZIGZAG reorder is proposed to be used to reorder the components from lower 

probability to be zero to higher probability to be zero to get higher compression ratio in 

the Entropy stage, as shown in Figure 3-4. It needs a memory size 64B to reorder the 

8x8 quantized block.  

 

Figure 3-4: Zigzag Order 8x8 

 

Entropy stage is a lossless stage replaces nonzero components to a stream of binary 

bits. Huffman coding is a common method to encode the DCT components with 

variable length codes according to common tables that are assigned according to 

statistical probabilities. A frequently used symbol will be encoded with a short code, 

while symbols that are rarely used are represented by a long code. 

JPEG standard uses up to 4 tables divided to 2 sets luminance (DC and AC) and 

chrominance (DC and AC). The luminance tables are proposed to be used because 

Neural signals DCT components have a similar behavior of luminance DCT 

components. 

This stage is implemented by storing these tables in Lookup Tables and accesses it 

sample by sample to be encoded. 

 

3.2.2. 2D-DCT4x4 Based Compression Method 

The 2D-DCT8x8 based algorithm requires high computation power and large area, and 

thus is not a suitable choice for implantable devices. Correspondingly, the same 

algorithm with smaller block 4x4 is used. 
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Figure 3-5: 2D-DCT8x8 Based Compression procedure. 

4x4 2D-DCT is performed by matrix multiplication too with coefficients matrix T4x4, 

as shown in Figure 3-6. 
 

 

. 5    .5    .5    .5
. 6353    .2706    − .2706  −.6353

. 5   −.5 −.5 . 5
. 2706 −.6533    .6533 −.2706

  

Figure 3-6: 𝑻𝟒𝒙𝟒 Coefficients Matrix 

Then the DCT frequency components are quantized with the same procedure as 8x8 

2D_DCT based algorithm with the proposed Q_marix_4x4, as shown in Figure 3-7. 
 

 

 

 

16 16 17 21
16 17 21 24
17 21 24 36
21 24 36 57

  

Figure 3-7: 𝐐_𝐦𝐚𝐭𝐫𝐢𝐱𝟒𝐱𝟒 

Quantizer output should have a lot of zeros components in the right bottom corner and 

decrease gradually to be minimum at the left top side, ZIGZAG Reorder to reorder the 

components from lower probability to be zero to higher probability to be zero to get 

higher compression ratio in the Entropy stage, as shown in Figure 3-8. 
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Figure 3-8: Zigzag Order 4x4 

Then a memory size 16B is needed to apply ZIGZAG reorder procedure on the 4x4 

quantized block. Then, the output is Huffman encoded, as shown in Figure 3-5. 

In 4x4 2D-DCT, the same Entropy stage (Huffman coding) is used to replaces nonzero 

components to a stream of binary bits. Huffman coding is a common method to encode 

the DCT components with variable length codes according to common tables that are 

assigned according to statistical probabilities in 4x4 blocks as well. A frequently used 

symbol will be encoded with a short code, while symbols that are rarely used are 

represented by a long code. 

 

In 4x4 2D-DCT, the same 4 tables which are used in JPEG standard are used, these 

tables are divided to 2 sets luminance (DC and AC) and chrominance (DC and AC). 

The luminance tables are proposed to be used because Neural signals DCT components 

have a similar behavior of luminance DCT components. 

This stage is implemented by storing these tables in Lookup Tables and accesses it 

sample by sample to be encoded. 

3.2.3. ADAPTIVE 2D-DWT Based Compression Method 

 The main differences between DWT-based and DCT-based methods are the two-

dimension transformation block and the quantizer block but the entropy stage (Huffman 

Coding) is the same in 2 algorithms, as shown in Figure 3-9. Input data are directly 2D-

DWT transformed as a one block without division to smaller blocks. That means the 

2D-DWT block size is the same as the neural frame size.  

 

Figure 3-9: Adaptive DWT based Compression procedure. 
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In this work the Adaptive quantization DWT compression algorithm is proposed to be 

used instead of regular DWT (uniform quantization), because it achieves higher 

performance than regular DWT [2], with a small hardware overhead. The complexity of 

DWT depends on the length of the filter coefficients and the number of levels. Hence, 

1-level DWT with the biorthogonal spline 5/3 filter is a suitable solution for this case 

[1]. 2D-DWT is used to transform the frame to frequency domain. The 2D-DWT output 

is divided to 4 sub-bands, denoted as LL, LH, HL and HH as shown in Figure 3-10. 
 

 

Figure 3-10: 1-level DWT Decomposition 

The Adaptive quantizer uses different quantization values to compress the DWT sub-

bands. LL is the most important quarter so that it divided by the lowest quantization 

value. Then LH and HL are divided by intermediate quantization value. Finally, HH 

has the lowest importance so that it's divided by the highest quantization value. To 

perform the adaptive quantization algorithm, left interval width, the right interval width 

and median for each sub-band have to be computed in advance [2] 
 

 

Figure 3-11: Adaptive DWT Procedure 

Qi,j = sign(Ci,j)  
 C i ,j−Median  

Quant .Interval
                                  (7) 

Quantized value of 2D-DWT output is calculated, as shown in Eq. (7). Quantization 

Interval will equal the right interval width divided by the quantization step if the DWT 

component is larger than the median, or will equal the left interval width divided by the 

quantization step if the DWT component is smaller than the median, as shown in Figure 

3-11. Quantization step is used to control in the compression ratio. If it's large the 

compression ratio will be small, and vice versa.  

After quantization, a lot of zeros should be in HH sub-band, and less in HL and LH 

sub-bands, then LL has a lowest number of zeros. So that the Quantization outputs LL, 
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HL, LH and HH respectively are reordered to be ready for Huffman encoder, as shown 

in Figure 3-12. 

 

 

 
 

Figure 3-12: DWT Zigzag Order 

 

 

 

 

In Adaptive 2D-DWT algorithm, the same 4 tables which are used in JPEG standard are 

used, these tables are divided to 2 sets luminance (DC and AC) and chrominance (DC 

and AC). The luminance tables are proposed to be used because Neural signals DWT 

components have a similar behavior of luminance DCT components. 

This stage is implemented by storing these tables in Lookup Tables and accesses it 

sample by sample to be encoded. 

 

3.2.4. Diff-2D-DCT8x8 Based Compression Method 

To utilize the temporal correlation between consecutive samples at the same electrode 

(channel) as the spatial correlation between channels is utilized, a three dimensions 

algorithm needs to be applied like video compression algorithms to compress in three-

dimensions, but these algorithms require high computation power and large storage.  

To utilize the correlation between 8 frames together, 8KB memory size is needed for 

1024 channels to store 8 consecutive neural frames to be processed simultaneous. And 

thus are not suitable for implantable devices. So that difference between consecutive 

frames algorithm is proposed to be used. In this algorithm, the 2D-DCT is applied on 

the frames difference to utilize the correlation between the consecutive time instants 

[1]. It needs 1KB only to store the last frame to be subtracted from the next frame. 
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Then, complete the remaining path as 2D-DCT8x8 based algorithm, as shown in Figure 

3-13. 

 

 

Figure 3-13: DF-2D-DCT8x8 Based Compression procedure 

First frame is stored in the frame buffer waiting the second frame. After sampling the 

second frame, it will be subtracted from the first one and it will be stored in the buffer 

at the same time instead of the first frame to be processed with the next frame. The 

output from the subtraction operation will be divided into 8x8 blocks, working from 

left to right, top to bottom. Block size 8x8 has high hardware complexity but it has 

high compression ratio. 

 

The Diff-2D-DCT is applied on each block separately to be converted to frequency 

representation. The two-dimensional Discrete Cosine Transform is performed by 

coefficients matrix multiplication [6]. 

The frequency components will be quantized with the same 8x8 matrix like 2D-DCT 

compression algorithm and the output will be zigzag reordered before Huffman 

encoding stage. Huffman coding uses the same 4 tables which are used in 2D-DCT 

compression algorithm. 

 

3.2.5. Diff-2D-DCT4x4 Based Compression Method 

In Diff-2D-DCT4x4compression algorithm, the goal is to utilize the spatial correlation 

on smaller area 4x4 instead of 8x8 with the temporal correlation at the same time to 

reduce the power and save the area and storage, as shown in Figure 3-14. 
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Figure 3-14: DF-2D-DCT4x4 Based Compression procedure 

First frame is stored in the frame buffer waiting the second frame. After sampling the 

second frame, it will be subtracted from the first one and it will be stored in the buffer 

at the same time instead of the first frame to be processed with the next frame. The 

output from the subtraction operation will be divided into 4x4 blocks, working from 

left to right, top to bottom. Block size 4x4 has lower hardware complexity but it has 

lower compression ratio. 

 

3.3. Result Comparison And Discussion 

In order to evaluate the proposed compression algorithms three performance metrics are 

used: 

 Compression ratio (R): to measure the ratio between compressed data size and 

original data size, as shown in Eq. (8). 

 

  R =
Compressed  data  size  

Original  data  size  
                                                (8) 

 

 Signal to Noise and Distortion Ratio (SNDR): to measure the quality of 

reconstruction data D  after compression and decompression again compared to 

original data D [3], as shown in Eq. (9). 

 

SNDR = 10dB . log  
 D 2

2

 D−D  
2

2                                       (9) 
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 Figure of Merit (FOM): The SNDR measures the quality only. But there is 

another performance measurement to be compared and it's not less importance 

than SNDR especially in implantable devices. This parameter is the hardware 

complexity (area or power). Both can be used to express the hardware 

complexity. In this thesis, area is used as an indicator on the hardware 

complexity. Area (Power) cannot be used alone, because it can be decreased at 

the expense of output Latency and vice versa by changing the level of 

pipelining. So that the hardware block latency should be included, as well, in 

the consideration to be fair comparison, as shown in Eq. (10). 

 

FOM = 10dB .  

log 
 D 2

2

 D−D  2
2 

Latency  .  Area
                                       (10) 

Figure 3-15 shows the SNDR for all previous compression algorithms for different 

compression ratios. 

 

a) 8x8 2D-DCT  

b) 4x4 2D-DCT 

c) 8x8 DF-2D-DCT 

d) 4x4 DF-2D-DCT 

e) 2D-DWT  

 

 

 

 

Figure 3-16 shows the FOM for all previous compression algorithms for different 

compression ratios. 

 

a) 8x8 2D-DCT  

b) 4x4 2D-DCT 

c) 8x8 DF-2D-DCT 

d) 4x4 DF-2D-DCT 

e) 2D-DWT  
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(a) 

(b) 

(c) 
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(e) 

(d) 

Figure 3-15: SNDR vs compression ratios for all algorithms 
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(a) 

(b) 

(c) 
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(d) 

(e) 

Figure 3-16: SNDR/(LATENCY*AREA) vs compression ratios for allalgorithms 
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Figure 3-17.a shows the signal-to-noise and distortion ratio (SNDR) for all proposed 

compression algorithms for different compression ratios. Spatiotemporal compression 

algorithms whether DF_DCT_8*8 or DF_DCT_4*4 consistently achieve higher SNDR 

than spatial only algorithms for a wide range of compression ratios. Because 

spatiotemporal algorithms utilize the temporal correlation between consistence frames, 

but spatial 2D algorithms whether DCT_8*8 or DCT_4*4 utilize the spatial correlation 

between adjacent channels only. 

In addition, it's obvious that DCT_8*8 achieve better performance than DCT_4*4 duo 

to larger block size. Block size 8*8 utilizes the correlation between 64 channels but 4*4 

block utilize the correlation between 16 channels only. But DCT_8*8 algorithm it's not 

a perfect compression algorithm to be used in implantable devices duo to its hardware 

complexity as will be discussed later. Adaptive quantization DWT algorithm achieves 

better compression performance than DCT_4*4 compression algorithms whether 

spatial or spatiotemporal for a wide range of compression ratios till SNDR value at or 

above 45 dB. But it's still lower than DCT_8*8 compression algorithms whether spatial 

or spatiotemporal. 

 

The above comparison among the compression algorithms is based on the performance 

(SNDR). Now the hardware implementation area and hardware latency should be 

included into the comparison to give real design insights. In order to get them, the 

following steps are conducted: 

 The area of the hardware design is measured on 130 nm technology for ASIC 

implementation. And calculate the needed SRAM memory for every 

compression algorithm then multiply it by 6-transistor SRAM area for the same 

technology.  

 Hardware latency per frame (1024 channels) is used as a reference in the 

comparison. 

 Area and latency is used normalized to the maximum value. 

 

Table 3-1 lists the performance metrics for the algorithms and the following design 

insights are extracted from the table:  

 DWT algorithm has the smallest area and power, but it has the largest latency 

per frame.  

 DF_DCT_8*8 has the largest area and power (triple of DF_DCT_4*4), but it 

has the smallest latency per frame. 

 The major difference between spatiotemporal algorithms and spatial algorithms 

is the required memory size. 

 

Figure 3-17.b shows the FOM for all previous compression algorithms for different 

compression ratios. Adaptive DWT compression algorithm is deduced as the best 

algorithm for all compression ratios duo to its hardware simplicity and all DCT based 

algorithms is worse for all compression ratios duo to its hardware complexity. In 

addition, spatial only compression algorithms achieve higher FOM than spatiotemporal 
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algorithms because they add extra area overhead more than their effect on the SNDR 

performance.  

Finally, the Adaptive Quantization DWT algorithm is recommended as the most 

suitable compression algorithm for low-power implantable devices for neural data 

compressing. To reconstruct the data without performance degradation SNDR more 

than 42 dB needs to be achieved. Then, the size of compressed data will be 19% from 

the original data size. For the seizure detection, SNDR around 30 dB is adequate. Then, 

the size of reconstructed data will be 2.5% from the original data size.  
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Table 3-1: Hardware Performance Summary of the compression algorithm 

(a)        (b)   

Figure 3-17: Comparison of the performance of the compression algorithms 

 

  

 Area 
(um) 

Memory (KB) Memory 
(μm)  

Total Area (μm) Power 
(mw) 

Latency Per 
Frame (clock 

cycle)  

DCT 8*8 726923 0.086 1710 728633 96.94 3280 

DF DCT 8*8 721770 1.08 21617 743387 95.62 3280 

DWT 110639 1 19906 130545 11.36 5888 

DCT 4*4 232939 0.02 427 233366 32.06 3648 

DF DCT 4*4 235855 1.02 20334 256189 31.06 3648 
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Chapter 4 : Harvested Power Adaptive High-Resolution 

Neural Data Compression(PANDCA) 

4.1. Introduction 

The main goal of any implantable compression device is to get the smallest data 

size to be transmitted to the outside world with lowest distortion and data loss at 

receiver side. In this work, the neural compression algorithm is adapted according to 

the available harvested power budget. Therefore, the maximum signal to noise and 

distortion ratio (SNDR) is achieved based on the available harvested power budget 

without any data loss. 

 

Implantable devices need an efficient power source to supply them with enough energy 

to power the electrodes, analog interfacing and digital classification as will be described 

later. Implantable devices are usually powered by a rechargeable battery that is charged 

by using a micro-scale energy harvesting system. These implantable rechargeable 

batteries provide the energy for implantable biomedical devices. However, batteries 

have limited lifetime, fixed energy density, large size and chemical side effects. Thus, 

researchers have developed various methods to harvest energy for implantable neural 

devices.  

 

Devices powered by harvested energy provide more safety and comfort and have longer 

lifetime than conventional devices. Energies that may be scavenged include: 

 

- Thermal energy  

 

The body temperature changes when it receives or transmits energy. In this 

situation, the molecules are in constant motion, and this excitation is measured 

by temperature. Only by temperature difference can extract energy from a 

thermal reservoir (human body) be guaranteed. The conversion possibility 

between heat and work has been restricted to thermal machines. 

 

- Solar energy  

 

Solar energy is the conversion of energy from light into electricity, either 

using concentrated solar power(indirectly) or using photovoltaics(directly). 

Concentrated solar power systems use mirrors or lenses and tracking systems to 

be able to focus a large area of sunlight into a small beam. Photovoltaic (PV) 

cells convert light into an electric current using the PV effect. 

 

- Body motion energy (Piezoelectric energy)  

 

Brothers Pierre and Jacques Curie discovered the piezoelectric effect in quartz 

crystals in 1880. In general, can be defined as the conversion of mechanical 

energy to electrical energy (direct effect) or conversion of electrical energy to 

mechanical energy (inverse effect) [21]. The direct piezoelectric effect provides 

that an electrical charge is generated when it subjected to a mechanical energy, 

https://en.wikipedia.org/wiki/Energy_transformation
https://en.wikipedia.org/wiki/Sunlight
https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/Concentrated_solar_power
https://en.wikipedia.org/wiki/Photovoltaics
https://en.wikipedia.org/wiki/Mirrors
https://en.wikipedia.org/wiki/Lens_(optics)
https://en.wikipedia.org/wiki/Solar_tracking
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Photovoltaic_effect
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whether delivered from traction, compression or just vibration. In turn, the 

inverse piezoelectric effect is the piezoelectric material ability to generate 

mechanical energy when subjected to an electrical charge in opposite sides [21]. 

 

- Gravity energy  

 

- Infrared radiant energy  

 

 

Energy harvesting devices from their surroundings produce electric energy through 

direct energy conversion. The energy harvesting from environmental sources or human 

body has been provided to be an effective alternative [13]. 

 

In this work, piezoelectric energy harvesting is proposed, which uses a direct energy 

conversion from vibrations and mechanical deformation to electrical energy. This is a 

promising technique to supply power sources in implantable biomedical devices, since 

it has higher energy conversion efficiency and a simple structure.  

Recently, various technologies, such as micro- and macro-mechanics, advanced 

materials, and electric circuit design, have been emerged and investigated to improve 

the performance and the conversion efficiency of the piezoelectric energy harvesters. In 

this work, the focus is on recent progress of piezoelectric energy harvesting 

technologies based on PbZrTi (PZT) materials, which have the most outstanding 

piezoelectric properties. The higher output energy density of the (PZT) piezoelectric 

energy harvester is 231 mW/cm2 [14,15].  

 

 

In all the transmission rates and power calculations the TI chip CC3100MOD is used as 

a reference in this work [16]. This chip is a low-power Wi-Fi for Internet of Things 

(IoT) applications and operates in two modes: 

 

- Standby mode: with current up to 140 μA and average power up to 504 μW. 

 

- Low Power Tx mode: with current up to 223 mA and average power up to 

802.8 mW. 

 

The main transmission protocols:  

 

- User Datagram Protocol (UDP)      

- Transmission Control Protocol (TCP) 

 

The TCP is one of the major the Internet protocol suite protocols. It originated in the 

initial network implementation in which it complemented the Internet Protocol (IP). 

Hence, the entire suite is commonly referred to as TCP/IP. TCP provides error-checked, 

ordered, and reliable delivery of a stream of bits between applications running on hosts 

communicating by an IP network. But TCP is a relatively complex protocol, with a lot 

of features that come at a cost. It imposes some overhead in terms of packet size. The 

TCP handshake also takes some extra latency compared to simpler protocols. So User 

Datagram Protocol (UDP) transmission mode is used in this work. This protocol was 

designed by David Reed in 1980 and formally defined as a main network protocol. 

With UDP, computer applications can send messages, in this case referred to as neural 

https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Error_detection_and_correction
https://en.wikipedia.org/wiki/Reliability_(computer_networking)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/David_P._Reed
https://en.wikipedia.org/wiki/Datagram
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compressed data, to other hosts on an Internet Protocol (IP) network. Prior 

communications are not needed in order to set updata paths or transmission channels. 

This protocol is a simpler message-based connectionless protocol. Connectionless 

protocols do not set up a dedicated end-to-end connection. Communication is held by 

information transmission in one direction from source to destination without waiting to 

acknowledge from the receiver. The UDP mode is preferred to be used in independent 

packets transmission such as sound packets and neural data packets. The proposed 

reference chip achieves a UDP actual throughput up to 16 Mbps. 

 

In this work, a feedback from the power harvesting device is needed to be able to know 

the input current level (power level), because PANDCA utilizes it as an input, as will 

be described later. Hence, a current sensor is adopted to detect the input current level. 

This input is quantized to suitable number of levels according to the power harvesting 

device. Then, used as an indicator for the available power level to the compression 

block.  

  

https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Transmission_channel
https://en.wikipedia.org/wiki/Connectionless_protocol
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4.2. Motivation 

Ordinary implantable biomedical devices have 3 scenarios to utilize the available 

harvested power budget to transmit the compressed neural data to the outside world:  

 

 

- First scenario is to transmit the neural compressed data with fixed low 

compression ratio continuously with low rate to guarantee that the minimum 

available power is enough to transmit the compressed data over all the time. 

 

- Second scenario is to transmit a defined period of neural data when a 

predefined triggering event occurs such as seizure spikes if there is enough 

available harvested power budget to transmit this period to the outside world. 

Otherwise, this triggering event is discarded if there is not enough harvested 

power budget to transmit this period. 

 

- Third scenario is to send neural data continuously without dependence on any 

special event with suitable rate as long as there is enough harvested power 

budget to send it continuously. Otherwise, if there is not enough harvested 

power budget to continue the transmission, it stops the transmission till 

producing enough power from harvesting power source then starts the 

transmission again. 

 

However, all these scenarios are not efficient enough for the current biomedical 

implantable devices constrains. Current treatment devices need the complete waveform 

and history for every electrode to be extracted instead of extracting the special signal 

features only to be able to detect and diagnose neural brain disorders. Accordingly, it 

should be guaranteed that the detected neural data can be transmitted continuously 

without any pauses or data loss. In addition, the compressed data can be decompressed 

at the other side with high quality without significant distortion.  

 

In this work, PANDCA is proposed to use the available harvested power budget to 

adapt the compression algorithm ratio. Therefore, the proposed technique allows 

transmitting the compressed neural data continuously. Hence, it achieves maximum 

signal noise and distortion ratio (SNDR) according to available harvested power budget 

without any data loss. 

4.3. Selected Compression Algorithm 

Despite of Adaptive 2D-DWT algorithm is a most suitable solution for low-power 

implantable devices. But 2D-DCT compression algorithm is selected to be used in 

PANDCA due to the linearity characteristic in the target region as shown in Figure 4-1. 

This characteristic is very important in PANDCA to be able to divide it to equal steps, 

as will be described later.  
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Figure 4-1: SNDR vs compression ratios for all algorithms  

(a) 

(c) 

(b) 
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4.4. Power Oriented Algorithm 

4.4.1. Neural System Power Components 

The main power hungry blocks in neural implantable devices are the wireless 

transmitters [18] and the data compressors [19]. Thus, the large percentage of the 

harvested power budget is dedicated to the wireless transmitter and compression block 

as shown in Figure 4-2. 

 

 

Figure 4-2: Neural system Power Tree 

 

Compression Block Power:  

 

If the number of channels (electrodes) is constant, compression block consumes 

constant power regardless of the compression ratio. After RTL Hardware 

Implementation on 130nm technology for ASIC implementation, PANDCA consumes 

32.06 mW.  This power consumption is drawn from the power budget as a constant 

value and the remaining power budget is used by the wireless transmitter. 

 

Miscellaneous Power Consumers: 

 

Neural Implantable devices have a lot of blocks which consume power such as 

electrodes, analog interfacing, and digital controllers. However, the main characteristic 

which combines them is that they consume fixed power regardless any change in 
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quality factor. So this power consumption is drawn from the power budget too as a 

constant value and the remaining power budget is used by the wireless transmitter. 

 

Wireless Transmission Power: 

 

Low power WIFI chips support data rates up to 16 Mbps. The TI chip 

CC3100MOD in transmission only mode is always sleep except when there is available 

data to be transmitted. In sleep mode, the absorbing current consumption is very small 

compared to transmission mode so that it can be negligible. 

Therefore, the power consumption duration is in the TX mode duration only. 

Hence, the size of data to be transmitted is the main parameter in power consumption. 

When this data size increases, the duration of Tx mode increases, so is the current 

(power) consumption. On the other hand, when this data size decreases, the duration of 

the Tx mode decreases so is the current (power) consumption as shown in Figure 4-3. 

 
 

 

 

Data size = x    Active Time = t     Absorbing Power = y 

 

Data size = 2x    Active Time = 2t   Absorbing Power = 2y 

 

Data size = 3x    Active Time = 3t   Absorbing Power = 3y 

 

Figure 4-3: Transmission Timing Scheduling 

As shown in (7), absorbing current (power) is linearly proportional with time.   
 

 𝑃 = 𝑉𝐼 = 𝑉  
𝑉

𝑅
. 𝑡 =  

𝑉2

𝑅
 . 𝑡                                                    (7) 

In this work, data size is assumed to be linearly proportional to the duration of 

transmission (absorbed Power), assuming that the traffic is idle, especially because TI 

WIFI chip is used in UDP mode [16]. Hence, absorbing power can be controlled 

according to compressed data size. 
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4.4.2. Quality Factor Effect 

In the proposed compression algorithm, the quality of compressed data (SNDR) is 

controlled according to quality factor which varies from 1 to 10. This range is selected 

because SNDR is approximately linearly proportional with quality factor in this range 

only, as shown in Figure 4-4 and this characteristic is important in the proposed 

PANDCA as will be analyzed.  Hence, there are 10 quality levels and according to this 

quality factor change, the compressed data size changes.  

 
 

 

Figure 4-4: Quality Factor Effect 

As shown in Figure 4-4: 

 

 When quality factor increases, the compression ratio (compressed data size divided 

by original data size) increases and vice versa.  

 When Quality Factor increases, the SNDR increases and vice versa. 

 

Hence, the output compressed data size and its quality (SNDR) are controlled according 

to quality factor level. 
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4.4.3. Power Oriented Algorithm 

 

Figure 4-5: Power Oriented Design 

As shown in Figure 4-5, this is the proposed algorithm to control the compression 

algorithm quality factor (compressed data size) according to available harvested power 

budget: 

 

1. Subtract the needed power for the compression block and other needs from the total 

available harvested power budget to get the available power budget to transmit the 

compressed data. 

2. Select the size of compressed data which can be transmitted with this available 

power (according to WIFI chip specifications). 

3. Calculate the needed compression ratio (needed size of compressed data / size of 

original data). 
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4. Select the initial quality factor from the saved data in Table 4-1, this data is 

obtained from the previous results with the same correlation, resolution and number 

of electrodes (channels). This table should be recalculated if any parameter is 

changed. 

5. If the actual compressed data size is equal to, or less than, the suggested 

compressed size with a specific limit, the compression algorithm should continue 

with the same quality factor in the next frames. 

6. If it is larger than the calculated size or less with a specific limit, the compression 

algorithm will increment or decrement the quality factor level with quantized steps 

according to the error step size. 

7. The selected quality factor will be in use until the power harvested budget is 

changed. Once the available harvested power budget is changed repeat again from 

step 1. 

4.5. Results and Discussions 

 

The (64-channel) results are discussed and explained in details. Then, the other channel 

resolutions results are provided and compared to (64-channel) results. 

Table 4-1 shows the suggested initial saved values to start with at step 4 according to 

available power budget to transmit. Then, go up and down in the next frames according 

to error step, this table is for (64-channels) results: 

 Column 1 divides the quality factors to 10 levels from 1 to 10, when the quality 

factor increases, the SNDR increases and the compressed data size increases.  

 Column 2 is the compressed frame sizes according to quality factor level. It is 

calculated after hundreds of trials on the brain neural data. 

 Column 3 is the frame (64-channel) sampling rate if the channel (electrode) rate 

is 20 Ksps. 

 Column 4 is the needed transmission duration per one second with transmission 

rate 16 Mbps. 

 Column 5 is the needed transmission power if the sleep duration is ignored 

according to the reference TI WIFI chip CC3100MOD transmission current and 

voltage. 

All these values should be changed if any parameter from electrodes resolution, 

electrodes correlation, electrode sampling rate, number of channels, transmission rate or 

WIFI chip is changed. 

Figure 4-6 shows four cases of available harvested power budget profile and the 

performance of the proposed PANDCA based on the harvested power scenario. 
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Constant harvesting power profile (Figure 4-6.a): 

In this case, the available harvested power budget to transmit is 90 mW and it is fixed 

on this value over all the duration. 

The proposed RANDCA searches on the nearest power entry on the saved table (Table 

4-1), and selects entry number 6 as an initial value, because it is the lower nearest entry 

from available power. 

To achieve this target power of 88.3 mW, the proposed compression algorithm needs to 

be adapted initially to quality factor level 5, to get compressed frame size around (11 

B), frame rate around (220 Kbps) and  transmission  duration around .11 second to get 

the target power of 88.3 mW.  

After starting with quality factor level 5, a compressed size (11 B), and this value is 

lower than the suggested size acceptable range, then it increases the quality factor to 

level 6 at the next frame trying to enter this acceptable range. 

In the second frame, a compressed size (12 B), and this value is more than suggested 

size acceptable range, then it decreases the quality factor to level 6 again at the next 

frame trying to enter this acceptable range. This continues till entering the acceptable 

range and settles the quality factor level or continues in trying mode around the 

acceptable range.   

 

Figure 4-6.a: Constant Power Adaptive Performance 
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Increasing harvesting power profile (Figure 4-6.b): 

 

In this case, the available harvested power budget to transmit at the first frame is 60 

mW and it is increasing linearly over all the duration. 

The proposed PANDCA searches on the nearest power entry on the saved table (Table 

4-1), and selects entry number 2 as an initial value, because it is the lower nearest entry 

from available power. 

To achieve this target power of 56.2 mW , the proposed compression algorithm needs 

to be adapted initially to quality factor level 2, to get compressed frame size in around 

(7 B), frame rate around (140 Kbps) and  transmission  duration around .07 second to 

get the target power of 56.2 mW.  

After starting with quality factor level 2, a compressed size (7 B), and this value is 

more than suggested size acceptable range, then the quality factor is decreased to level 

1 at the next frame trying to enter this acceptable range. 

In the second frame, the proposed compression algorithm faces increase in the available 

harvesting power level, then the new comparison will be against larger suggested power 

due to this increase, but this increase can be handled by increasing the quality factor 

level trying to enter this acceptable range. This continues till entering the acceptable 

range and settles the quality factor level or continues in trying mode around the 

acceptable range.   

 

Figure 4-6.b: Increasing Power Adaptive Performance 
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Decreasing harvesting power profile (Figure 4-6.c): 

 

In this case, the available harvested power budget to transmit at the first frame is 90 

mW and it is decreasing linearly over all the duration. 

The proposed PANDCA searches on the nearest power entry on the saved table (Table 

4-1), and selects entry number 11 as an initial value, because it is the lower nearest 

entry from available power. 

To achieve this target power of 88.3 mW , the proposed compression algorithm needs 

to be adapted initially to quality factor level 5, to get compressed frame size in around 

(11 B), frame rate around (220 Kbps) and  transmission duration around .11 second to 

get the target power of 88.3 mW.  

After starting with quality factor level 5, a compressed size (11 B), and this value is less 

than suggested size acceptable range, then the quality factor is increased to level 12 at 

the next frame trying to enter this acceptable range. 

In the second frame, the proposed compression algorithm faces decrease in the 

available harvesting power level, then the new comparison will be against lower 

suggested power due to this decrease, but this decrease can be handled by decreasing 

the quality factor level trying to enter this acceptable range. This continues till entering 

the acceptable range and settles the quality factor level or continues in trying mode 

around the acceptable range.   

 

Figure 4-6.c: Decreasing Power Adaptive Performance 
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Real harvesting power profile (Figure 4-6.d): 

 

In this case, the available harvested power budget to transmit at the first frame is 90 

mW and it is decreasing linearly over all the duration. 

The proposed PANDCA searches on the nearest power entry on the saved table (Table 

4-1), and selects entry number 11 as an initial value, because it is the lower nearest 

entry from available power. 

To achieve this target power of 88.3 mW , the proposed compression algorithm needs 

to be adapted initially to quality factor level 5, to get compressed frame size in around 

(11 B), frame rate around (220 Kbps) and  transmission duration around .11 second to 

get the target power of 88.3 mW.  

After starting with quality factor level 5, a compressed size (11 B), and this value is less 

than suggested size acceptable range, then the quality factor is increased to level 12 at 

the next frame trying to enter this acceptable range. 

After few frames, the proposed compression algorithm faces decrease in the available 

harvesting power level, then the new comparison will be against lower suggested power 

due to this decrease, but this decrease can be handled by decreasing the quality factor 

level trying to enter this acceptable range. This continues till entering the acceptable 

range and settles the quality factor level or continues in trying mode around the 

acceptable range.   

After few frames, the proposed compression algorithm faces increase in the available 

harvesting power level, then the new comparison will be against larger suggested power 

due to this increase, but this increase can be handled by increasing the quality factor 

level trying to enter this acceptable range. This continues till entering the acceptable 

range and settles the quality factor level or continues in trying mode around the 

acceptable range, as shown in Figure 4-6.d. 

 



 

52 
 

 

Figure 4-6.d: Real Power Adaptive Performance 

 

 

As shown on these four case studies, the proposed (PANDCA) achieves the highest 

possible SNDR based on the available harvested power budget. In Table 4-2, the 

comparison between conventional algorithm which compresses the neural data with 

fixed compression ratio to be able to produce a suitable compressed data size to be 

transmitted to the outside world without any discontinuity against the proposed 

PANDCA. It is obvious that there is a significant enhanced performance of the 

proposed algorithm compared to the conventional algorithm especially in cases (b, c 

and d) because the harvested power is variable with time and conventional algorithms 

are not adaptive to these cases. Knowing that normally in the implantable devices for 

neural data compression, the harvested energy exhibits different profiles based on the 

environmental conditions   

 

Table 4-3 and Table 4-4 show the results for two other model sizes (32-channels) and 

(8-channels) respectively with high resolution grid too, these small model sizes are 

compressed with 2D-DCT as well but with 4x4 block size. 

 

     Finally, the harvested power adaptive high-resolution neural data compression 

algorithm (PANDCA) is the most suitable compression algorithm for low-power 

implantable devices for neural data compressing. To reconstruct the data without 

performance degradation, higher possible SNDR over all the time should be achieved 

and the only obstacle to achieve that is the available harvested power. 
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Q_F 

Index 

Sp 

(Byte) 

Frame rate (KBps)  

ch. Rate = 20 Ksps 

Tx. Duration per (1s)  

with rate 16 Mbps (s) 

Tx. Power 

(mW) 

1 4 80 0.04 32.112 

2 7 140 0.07 56.196 

3 9 180 0.09 72.252 

4 10 200 0.1 80.28 

5 11 220 0.11 88.308 

6 12 240 0.12 96.336 

7 13 260 0.13 104.364 

8 14 280 0.14 112.392 

9 15 300 0.15 120.42 

10 16 320 0.16 128.448 

 

Table 4-1: 64-channel results 

 

Constant Power 

(case a) 

Increasing Power 

(case b) 

Decreasing Power 

(case c) 

Real Power  

(case d) 

Avg. 

SNDR 

Number 

of Tx 

Bytes per 

60 Frame 

Avg. 

SNDR 

Number 

of Tx 

Bytes per 

60 Frame 

Avg. 

SNDR 

Number 

of Tx 

Bytes per 

60 Frame 

Avg. 

SNDR 

Number 

of Tx 

Bytes per 

60 Frame 

Normal 

Compression 

Algorithms 

40 660 34 240 34 240 34 360 

Power 

Adaptive 

Algorithm 

41 690 38 520 36 492 38 451 

Table 4-2: Performance Comparison 
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Q_F 

Index 
Sp (Byte) 

Frame rate (KBps)  

ch. rate = 20 Ksps 

Tx. Duration per (1s)  

with rate 16 Mbps (s) 

Tx. Power 

 (mW) 

1 2 40 0.02 16.056 

2 4 80 0.04 32.112 

3 4.5 90 0.045 36.126 

4 5 100 0.05 40.14 

5 5.5 110 0.055 44.154 

6 5.6 112 0.056 44.9568 

7 5.7 114 0.057 45.7596 

8 6 120 0.06 48.168 

9 6.5 130 0.065 52.182 

10 7.5 150 0.075 60.21 

Table 4-3: 32-channel results 
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Q_F 

Index 
Sp (Byte) 

Frame rate (KBps)  

ch. rate = 20 Ksps 

Tx. Duration per (1s)  

with rate 16 Mbps (s) 

Tx. Power 

 (mW) 

1 1 20 0.01 8.028 

2 1.25 25 0.0125 10.035 

3 2 40 0.02 16.056 

4 2.1 42 0.021 16.8588 

5 2.25 45 0.0225 18.063 

6 2.5 50 0.025 20.07 

7 2.75 55 0.0275 22.077 

8 3 60 0.03 24.084 

9 3.25 65 0.0325 26.091 

10 3.5 70 0.035 28.098 

 

Table 4-4: 16-channel results 

4.6. Summary 

Neural data research has a wide application today and it heavily depends on data 

compression to be able to extract all signal waveforms with finer resolution for further 

processing. This work proposes a harvested power adaptive high-resolution neural data 

compression (PANDCA) as the most suitable compression algorithm candidate to 

achieve the highest possible SNDR based on available harvested power budget without 

any data loss or discontinuity in the transmission to the outside world. 
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Chapter 5 Conclusions and Future Work 

5.1. Discussion and Conclusions 

This Thesis is divided to two main parts: 

- A Low-Power Area-Efficient Design and Analysis for Neural Data 

Compression. 

- Harvested Power Adaptive High-Resolution Neural Data Compression 

(PANDCA). 

In the first part, five compression algorithms are proposed, investigated and compared, 

to utilize both spatial correlation between adjacent electrodes and temporal correlation 

between consecutive samples. These algorithms are: 

a) 8x8 2D-DCT  

b) 4x4 2D-DCT 

c) 8x8 DF-2D-DCT 

d) 4x4 DF-2D-DCT 

e) Adaptive 2D-DWT  

These proposed algorithms‟ performance, area, time and power are evaluated and 

compared to provide the best trade-off between hardware complexity and compression 

performance.   

The conclusion from performance (SNDR) comparison among the compression 

algorithms is that the spatiotemporal algorithm (DF-DCT 8x8) is the best algorithm for 

most of compression ratios. 

However, after hardware implementation area and hardware latency is included into the 

comparison to give real design insights. Adaptive DWT compression algorithm is 

deduced as the best algorithm for all compression ratios duo to its hardware simplicity. 

On the other hand, all DCT based algorithms is worse for all compression ratios duo to 

its hardware complexity. In addition, spatial only compression algorithms achieve 

higher FOM than spatiotemporal algorithms because they add extra area overhead more 

than their effect on the SNDR performance.  

Finally, the Adaptive Quantization DWT algorithm is recommended as the most 

suitable compression algorithm for low-power implantable devices for neural data 

compressing. To reconstruct the data without performance degradation SNDR more 

than 42 dB needs to be achieved. Then, the size of compressed data will be 19% from 

the original data size. For the seizure detection, SNDR around 30 dB is adequate. Then, 

the size of reconstructed data will be 2.5% from the original data size. 

 

In the second part, the goal is to get the smallest data size to be transmitted to the 

outside world with lowest distortion and data loss at receiver side. A new methodology 

is introduced to control the compression algorithm according to available harvested 
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power. Hence, maximum signal to noise and distortion ratio (SNDR) is achieved based 

on the available harvested power without any data loss. 

Despite of Adaptive 2D-DWT algorithm is a most suitable solution for low-power 

implantable devices. But 2D-DCT compression algorithm is selected to be used in 

harvested power adaptive algorithm due to the linearity characteristic in the target 

region. And this characteristic is very important in the harvested power adaptive 

algorithm to be able to divide it to equal steps.   

The PANDCA algorithm can achieve the highest possible SNDR based on available 

harvested power. After comparison between ordinary algorithm which compress with 

fixed compression ratio which can produce a suitable compressed data size to be 

transmitted to outside world without any discontinuity and PANDCA. A significant 

effect of PANDCA than the ordinary algorithm is deduced especially in case of 

unstable power source because the harvesting power is variable with time and ordinary 

algorithms can‟t handle these cases.   

Finally, the power harvesting oriented high-resolution neural data compression 

algorithm is the most suitable compression algorithm for low-power implantable 

devices for neural data compressing. To reconstruct the data without performance 

degradation, higher possible SNDR over all the time should be achieved and the only 

obstacle to achieve that is the available harvested power. 

5.2. Future Work 

5.2.1. FPGA Demo Implementation 

Figure1-1 shows the full system architecture of the implantable neural measurement 

system. Neural signals recorded from the multielectrode array will be amplified in the 

analog front-end (AFE) and converted to digital neural data using analog to digital 

(ADC) block. Subsequently, the neural data runs into the main digital module where 

data compression and signal processing take place. Hence, the low-rate wireless 

transceiver transmits the compressed neural data to the outside world (reconstruction 

base station), where signal reconstruction and decompression are performed. Since the 

system is fully implantable, energy has to be harvested using PZT harvesting system. 

 

Most of digital blocks include (electrode neural data combining, compression algorithm 

and compressed data streaming) are ready. Once the remaining blocks: 

- Analog blocks (AFE and ADC) 

- Low-rate wireless transceiver (TI chip and its software application) 

- PZT Harvesting device 

are available. Then, this work can be hardware implemented using FPGA and some 

peripherals.  
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5.2.2. Neural  Data Encryption before compression 

Neural data should be secure and protected from any hacking because any interrupt in 

patient neural data from outside world may lead to wrong stimulation or seizure 

detection failure. Also neural data should be secret and no parasitical can analyze it 

except the specialized doctor. Therefore, firewalls, including security check protocols, 

security measurement, restricted network access and data encryption should be 

seriously considered to avoid corruption of the secret patient data. There are a lot of 

low power security algorithms can be used. However, the main milestone is the power 

consumption because security algorithms are power hungry. 

5.2.3. Adaptive 2D_DWT Performance Linearization 

Despite of Adaptive 2D-DWT algorithm is a most suitable solution for low-power 

implantable devices. But 2D-DCT compression algorithm is selected to be used in 

PANDCA due to the linearity characteristic in the target region as shown in Figure 3-1. 

This characteristic is very important in PANDCA to be able to divide it to equal steps, 

as described previously. Hence, Adaptive 2D-DWT algorithm needs to be linearized to 

be applicable with PANDCA. Hence, PANDCA can gain better performance (SNDR) 

than current version.   

5.2.4. Real High Resolution Neural  Data Simulation 

 To evaluate the performance of the compression algorithms for high resolution neural 

data, virtual recorded data is used with the same signals characteristics (spatial 

correlation and temporal correlation) of real data, because there is no available high 

resolution recorded data with these large sizes yet (1024 channels and more). So that, 

the proposed algorithms need to be re-simulated again once the real high resolution 

neural data be available to be confirmed.  
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Appendix A: System Design Code and HDL Design 

Code 

A.1. System Codes 

 

1- DCT 4*4:  

 

/////////////////////////////////////////////////////////////////////////////////////////// 
clc 
clear all 
%clearvars -except f_in 

 
close all 
figure 

 
row_aspect = 32 ; 
col_aspect = 32 ; 

 
%AXIS([0.1 0.3 32 48]) 
%time  = [3,3,3,3,1,1]; 
%power = [148,146,56,55,13,13]; 
time  = [.75 .75 .67 .67 1]; 
power = [.31,.34,.98,1,.18,1]; 
% power = [1,1,1,1,1,1]; 
% time  = [1,1,1,1,1,1]; 
f_in = func_DATA_IN(row_aspect,col_aspect); 
%f_in = func_DATA_IN_2; 
for k = 1 : 1 : 7; 
f_in{k} = round(f_in{k});  
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ; 
end 
DWT_func = 1; 

 
DCTQ=[... 
      16   16   17   21  ;... 
      16   17   21   24  ;... 
      17   21   24   36  ;... 
      21   24   36   57  ;]; 
z=[5 2 3 6 9 13 10 7 4 8 11 14 15 12 16]; 
quality_factor = [1:1:10]; 
f_out{1} = zeros(row_aspect,col_aspect); 
for  type = 1 : 2 
        hold on  
if(type == 1 ) 
quality_factor = [.5:.5:5]; 
elseif(type == 2 ) 
quality_factor = [1:1:10]; 
        end 
        for index = 1:1:10 

 
            for frame = 1:1:4 

 
                stream = [] ; 
                if (type == 1) 
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                    in = f_in{frame+1}; 
                else  
                    in = f_in{frame+1}-f_in{frame}; 
                end     
                k=0; 
                for i=1:4:row_aspect 
                    for j=1:4:col_aspect 
                        in4_4=in(i:i+3,j:j+3); 
 %                       int = dct(in4_4,4); 
 %                       dct_out = dct(transpose(int),4); 
dct_out = dct_fixed(in4_4',4);        %s9.1 
                        if (type == 1) 
DCTQ_mux = DCTQ ; 
                            mask = ones(4,4); 
                        else  
%                                 DCTQ_mux = DCTQ ; 
%                                 mask = ones(4,4);  
DCTQ_mux = round(DCTQ ) ; 
                            mask = [1   1   1   1  
                                    1   1   1   0  
                                    1   1   0   0   
                                    1   0   0   0]; 
                        end     

 
out_mask = dct_out .* mask ; 
DCTQ_mux_inv = 1 ./ DCTQ_mux; 
DCTQ_mux_inv = fixptc('0.13','CLIP_S',DCTQ_mux_inv) ; 
                        

tc2hex(DCTQ_mux_inv,0,13,'DCTQ_mux_inv.txt',0); 
                        temp = (out_mask*quality_factor(index)) .* 

DCTQ_mux_inv   ; 
                        %temp = (round(temp.*2)./2); 
                        temp = fixptc('s9.0','CLIP_S',temp) ; %%9.0 

%9.1 is critical in performance % this change afteer bit-matching 
out_enc(i:i+3,j:j+3) = temp; 
                        k=k+1; 
zig_zag_dc(k,1) = temp(1,1)*(2^0); %% 
zig_zag_ac(k,1:15) = temp(z)*(2^0); %% 
                    end 
                end 

 
                %% Huffman Compression 

 
dpcm(1,1)=zig_zag_dc(1,1); 
                

stream=cat(2,stream,huffman_dc(dpcm(1,1)),huffman_ac(zig_zag_ac(1,1:15

))); 
                for m=2:k 
dpcm(m,1)=zig_zag_dc(m,1)-zig_zag_dc(m-1,1); 
                    

stream=cat(2,stream,huffman_dc(dpcm(m,1)),huffman_ac(zig_zag_ac(m,1:15

))); 
                end 

 
Compressed_image_size(frame)=floor(length(stream)/8); 
        %         Compression_Ratio(quality_factor) = 

Compressed_image_size/(1024); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
                %% Decoding 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

 
                for i=1:4:row_aspect 
                    for j=1:4:col_aspect 
out_mask = out_enc(i:i+3,j:j+3) .* DCTQ_mux ./ quality_factor(index); 
inv_int = idct(out_mask,4);  
inv_out(i:i+3,j:j+3) = idct(transpose(inv_int),4); 
                        end 
                end 

 
f_out{frame+1} = inv_out; 

 
                out =  f_out{frame+1} ; 

 
                for i = 1:1:row_aspect 
                    for j = 1:1:col_aspect 
                            if(f_in{frame+1}(i,j) ~= 0 && 

abs(f_in{frame+1}(i,j)-f_out{frame+1}(i,j)) ~= 0) 
                                SNDR(i,j) = 

10*log10((abs(f_in{frame+1}(i,j))^2)/(abs(f_in{frame+1}(i,j)-

f_out{frame+1}(i,j))^2)); 
                            else 
                                SNDR(i,j) = 0; 
                            end 
                    end 
                end 
                M_SNDR = mean(SNDR) ; 
Mean_SNDR(frame) = mean(M_SNDR) ; 
Mean_SNDR(frame) = Mean_SNDR(frame);  

 
                Q=255; 
                PSNR(frame) =  10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect)); 
            end 

 

 
Mean_frames_SNDR(index) = mean(Mean_SNDR) ; 

 
Compressed_frames_size=sum(Compressed_image_size); 
Compression_Ratio(index) = 

Compressed_frames_size/(row_aspect*col_aspect*frame); 

 
fprintf('done!\n'); 
fprintf('-----------   Performance   ----------------\n'); 

 
fprintf('The bitrate is %.2f bpp \n', 

length(stream)/row_aspect/col_aspect); 

 
            Q = 255; 
            MSE = sum(sum((f_out{2}-

f_in{2}).^2))/row_aspect/col_aspect; 
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE)); 

 



 

65 
 

Mean_PSNR(index) = mean(PSNR); 
        end 
        hold on  

plot(Compression_Ratio,smooth((Mean_PSNR/(time(1)*power(1)))),'o

-') 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 
legend ('DCT 4*4','Location','SouthEast'); %error 
xlabel ('Compressed data/Original data'); 
ylabel ('SNDR/(LATENCY*AREA)'); 
%ylabel ('SNDR'); 
grid on 

 

/////////////////////////////////////////////////////////////////////////////////////////// 
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2- Differential DCT 4*4: 

 

/////////////////////////////////////////////////////////////////////////////////////////// 
clc 
clear all 
%clearvars -except f_in 

 
close all 
figure 

 
row_aspect = 32 ; 
col_aspect = 32 ; 

 
%AXIS([0.1 0.3 32 48]) 
%time  = [3,3,3,3,1,1]; 
%power = [148,146,56,55,13,13]; 
time  = [.75 .75 .67 .67 1]; 
power = [.31,.34,.98,1,.18,1]; 
% power = [1,1,1,1,1,1]; 
% time  = [1,1,1,1,1,1]; 
f_in = func_DATA_IN(row_aspect,col_aspect); 
%f_in = func_DATA_IN_2; 
for k = 1 : 1 : 7; 
f_in{k} = round(f_in{k});  
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ; 
end 
DWT_func = 1; 

 
DCTQ=[... 
      16   16   17   21  ;... 
      16   17   21   24  ;... 
      17   21   24   36  ;... 
      21   24   36   57  ;]; 
z=[5 2 3 6 9 13 10 7 4 8 11 14 15 12 16]; 
quality_factor = [1:1:10]; 
f_out{1} = zeros(row_aspect,col_aspect); 
for  type = 1 : 2 
        hold on  
if(type == 1 ) 
quality_factor = [.5:.5:5]; 
elseif(type == 2 ) 
quality_factor = [1:1:10]; 
        end 
        for index = 1:1:10 

 
            for frame = 1:1:4 

 
                stream = [] ; 
                if (type == 1) 
                    in = f_in{frame+1}; 
                else  
                    in = f_in{frame+1}-f_in{frame}; 
                end     
                k=0; 
                for i=1:4:row_aspect 
                    for j=1:4:col_aspect 
                        in4_4=in(i:i+3,j:j+3); 
 %                       int = dct(in4_4,4); 
 %                       dct_out = dct(transpose(int),4); 
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dct_out = dct_fixed(in4_4',4);        %s9.1 
                        if (type == 1) 
DCTQ_mux = DCTQ ; 
                            mask = ones(4,4); 
                        else  
%                                 DCTQ_mux = DCTQ ; 
%                                 mask = ones(4,4);  
DCTQ_mux = round(DCTQ ) ; 
                            mask = [1   1   1   1  
                                    1   1   1   0  
                                    1   1   0   0   
                                    1   0   0   0]; 
                        end     

 
out_mask = dct_out .* mask ; 
DCTQ_mux_inv = 1 ./ DCTQ_mux; 
DCTQ_mux_inv = fixptc('0.13','CLIP_S',DCTQ_mux_inv) ; 
                        

tc2hex(DCTQ_mux_inv,0,13,'DCTQ_mux_inv.txt',0); 
                        temp = (out_mask*quality_factor(index)) .* 

DCTQ_mux_inv   ; 
                        %temp = (round(temp.*2)./2); 
                        temp = fixptc('s9.0','CLIP_S',temp) ; %%9.0 

%9.1 is critical in performance % this change afteer bit-matching 
out_enc(i:i+3,j:j+3) = temp; 
                        k=k+1; 
zig_zag_dc(k,1) = temp(1,1)*(2^0); %% 
zig_zag_ac(k,1:15) = temp(z)*(2^0); %% 
                    end 
                end 

 
                %% Huffman Compression 

 
dpcm(1,1)=zig_zag_dc(1,1); 
                

stream=cat(2,stream,huffman_dc(dpcm(1,1)),huffman_ac(zig_zag_ac(1,1:15

))); 
                for m=2:k 
dpcm(m,1)=zig_zag_dc(m,1)-zig_zag_dc(m-1,1); 
                    

stream=cat(2,stream,huffman_dc(dpcm(m,1)),huffman_ac(zig_zag_ac(m,1:15

))); 
                end 

 
Compressed_image_size(frame)=floor(length(stream)/8); 
        %         Compression_Ratio(quality_factor) = 

Compressed_image_size/(1024); 

 

 

 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
                %% Decoding 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

 
                for i=1:4:row_aspect 
                    for j=1:4:col_aspect 



 

68 
 

out_mask = out_enc(i:i+3,j:j+3) .* DCTQ_mux ./ quality_factor(index); 
inv_int = idct(out_mask,4);  
inv_out(i:i+3,j:j+3) = idct(transpose(inv_int),4); 
                        end 
                end 

 
f_out{frame+1} = f_out{frame}+inv_out;  

 
                out =  f_out{frame+1} ; 

 
                for i = 1:1:row_aspect 
                    for j = 1:1:col_aspect 
                            if(f_in{frame+1}(i,j) ~= 0 && 

abs(f_in{frame+1}(i,j)-f_out{frame+1}(i,j)) ~= 0) 
                                SNDR(i,j) = 

10*log10((abs(f_in{frame+1}(i,j))^2)/(abs(f_in{frame+1}(i,j)-

f_out{frame+1}(i,j))^2)); 
                            else 
                                SNDR(i,j) = 0; 
                            end 
                    end 
                end 
                M_SNDR = mean(SNDR) ; 
Mean_SNDR(frame) = mean(M_SNDR) ; 
Mean_SNDR(frame) = Mean_SNDR(frame);  

 
                Q=255; 
                PSNR(frame) =  10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect)); 
            end 

 

 
Mean_frames_SNDR(index) = mean(Mean_SNDR) ; 

 
Compressed_frames_size=sum(Compressed_image_size); 
Compression_Ratio(index) = 

Compressed_frames_size/(row_aspect*col_aspect*frame); 

 
fprintf('done!\n'); 
fprintf('-----------   Performance   ----------------\n'); 

 
fprintf('The bitrate is %.2f bpp \n', 

length(stream)/row_aspect/col_aspect); 

 
            Q = 255; 
            MSE = sum(sum((f_out{2}-

f_in{2}).^2))/row_aspect/col_aspect; 
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE)); 

 
Mean_PSNR(index) = mean(PSNR); 
        end 
        hold on  
 

 plot(Compression_Ratio,smooth((Mean_PSNR/(time(2)*power(2)))),'x

-') 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
legend ('DF DCT 4*4','Location','SouthEast'); %error 
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xlabel ('Compressed data/Original data'); 
ylabel ('SNDR/(LATENCY*AREA)'); 
%ylabel ('SNDR'); 
grid on 

 

 

/////////////////////////////////////////////////////////////////////////////////////////// 
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3- DCT 8*8:  

 

/////////////////////////////////////////////////////////////////////////////////////////// 
clc 
clear all 
%clearvars -except f_in 

 
close all 
figure 

 
row_aspect = 32 ; 
col_aspect = 32 ; 

 
%AXIS([0.1 0.3 32 48]) 
%time  = [3,3,3,3,1,1]; 
%power = [148,146,56,55,13,13]; 
time  = [.75 .75 .67 .67 1]; 
power = [.31,.34,.98,1,.18,1]; 
% power = [1,1,1,1,1,1]; 
% time  = [1,1,1,1,1,1]; 
f_in = func_DATA_IN(row_aspect,col_aspect); 
%f_in = func_DATA_IN_2; 
for k = 1 : 1 : 7; 
f_in{k} = round(f_in{k});  
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ; 
end 
DWT_func = 1; 
DCTQ=[... 
      16   11   10   16   24   40   51   61   ;... 
      12   12   14   19   26   58   60   55   ;... 
      14   13   16   24   40   57   69   56   ;... 
      14   17   22   29   51   87   80   62   ;... 
      18   22   37   56   68   109  103  77   ;... 
      24   36   55   64   81   194  113  92   ;... 
      49   64   78   87   103  121  120  101  ;... 
      72   92   95   98   112  100  103  99   ;]; 
z=[... 
    9 2 3 10 17 25 18 11 4 5 12 19 26 ... 
    33 41 34 27 20 13 6 7 14 21 28 35 ... 
    42 49 57 50 43 36 29 22 15 8 16 23 ... 
    30 37 44 51 58 59 52 45 38 31 24 32 ... 
    39 46 53 60 61 54 47 40 48 55 62 63 56 64]; 
quality_factor = [1:1:10]; 
f_out{1} = zeros(row_aspect,col_aspect); 
for  type = 1 : 1 
        hold on  
if(type == 1) 
quality_factor = [.5:1:10.5]; 
elseif(type == 2) 
quality_factor = [1:2:20]; 
        end 
        for index = 1:1:10 

 
            for frame = 1:1:4 

 
                stream = [] ; 
                if (type == 1) 
                    in = f_in{frame+1};                     %s7.0 
                else  
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                    in = f_in{frame+1}-f_in{frame};         %s7.0 
                end     
                k=0; 
                for i=1:8:row_aspect 
                    for j=1:8:col_aspect 
                        in8_8=in(i:i+7,j:j+7);              %s7.0 
 %                       int = dct(in8_8,8); 
 %                       dct_out = dct(transpose(int),8); 
dct_out = dct_fixed(in8_8',8);        %s9.1 
                        if (type == 1) 
DCTQ_mux = DCTQ ; 
                            mask = ones(8,8); 
                        else  
DCTQ_mux = round(DCTQ ) ; 
                            mask = [1   1   1   1   1   1   1   0  
                                    1   1   1   1   1   1   0   0  
                                    1   1   1   1   1   0   0   0  
                                    1   1   1   1   0   0   0   0  
                                    1   1   1   0   0   0   0   0  
                                    1   1   0   0   0   0   0   0  
                                    1   0   0   0   0   0   0   0  
                                    0   0   0   0   0   0   0   0 ]; 
                        end     
out_mask = dct_out .* mask ; 
DCTQ_mux_inv = 1 ./ DCTQ_mux; 
DCTQ_mux_inv = fixptc('0.13','CLIP_S',DCTQ_mux_inv) ; 
                        

%tc2hex(DCTQ_mux_inv,0,13,'DCTQ_mux_inv.txt',0); 
                        temp = (out_mask*quality_factor(index)) .* 

DCTQ_mux_inv   ; 
                        %temp = (round(temp.*2)./2); 
                        temp = fixptc('s9.0','CLIP_S',temp) ; %%9.0 

%9.1 is critical in performance % this change afteer bit-matching 
out_enc(i:i+7,j:j+7) = temp; 
                        k=k+1; 
zig_zag_dc(k,1) = temp(1,1)*(2^0); 
zig_zag_ac(k,1:63) = temp(z)*(2^0); 
                    end 
                end 

 
                %% Huffman Compression 

 
dpcm(1,1)=zig_zag_dc(1,1); 
                

stream=cat(2,stream,huffman_dc(dpcm(1,1)),huffman_ac(zig_zag_ac(1,1:63

))); 
                for m=2:k 
dpcm(m,1)=zig_zag_dc(m,1)-zig_zag_dc(m-1,1); 
                    

stream=cat(2,stream,huffman_dc(dpcm(m,1)),huffman_ac(zig_zag_ac(m,1:63

))); 
                end 

 
Compressed_image_size(frame)=floor(length(stream)/8); 
        %         Compression_Ratio(quality_factor) = 

Compressed_image_size/(1024); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
                %% Decoding 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

 
                for i=1:8:row_aspect 
                    for j=1:8:col_aspect 
out_mask = out_enc(i:i+7,j:j+7) .* DCTQ_mux ./ quality_factor(index); 
inv_int = idct(out_mask,8);  
inv_out(i:i+7,j:j+7) = idct(transpose(inv_int),8); 
                    end 
                end 

 
                if (type == 1) 
f_out{frame+1} = inv_out; 
                else  
f_out{frame+1} = f_out{frame}+inv_out; 
                end  

 
                out =  f_out{frame+1} ; 

 
                for i = 1:1:row_aspect 
                    for j = 1:1:col_aspect 
                            if(f_in{frame+1}(i,j) ~= 0 && 

abs(f_in{frame+1}(i,j)-f_out{frame+1}(i,j)) ~= 0) 
                                SNDR(i,j) = 

10*log10((abs(f_in{frame+1}(i,j))^2)/(abs(f_in{frame+1}(i,j)-

f_out{frame+1}(i,j))^2)); 
                            else 
                                SNDR(i,j) = 0; 
                            end 
                    end 
                end 
                M_SNDR = mean(SNDR) ; 
Mean_SNDR(frame) = mean(M_SNDR) ; 
Mean_SNDR(frame) = Mean_SNDR(frame);  

 
                Q=255; 
                PSNR(frame) =  10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect)); 
            end 

 

 
Mean_frames_SNDR(index) = mean(Mean_SNDR) ; 

 
Compressed_frames_size=sum(Compressed_image_size); 
Compression_Ratio(index) = 

Compressed_frames_size/(row_aspect*col_aspect*frame); 

 
fprintf('done!\n'); 
fprintf('-----------   Performance   ----------------\n'); 

 
fprintf('The bitrate is %.2f bpp \n', 

length(stream)/row_aspect/col_aspect); 

 
            Q = 255; 
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            MSE = sum(sum((f_out{2}-

f_in{2}).^2))/row_aspect/col_aspect; 
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE)); 

 
Mean_PSNR(index) = mean(PSNR); 
        end 
        hold on  
if(type == 1) 
            

plot(Compression_Ratio,smooth((Mean_PSNR/(time(3)*power(3)))),'ro-') 
elseif(type == 2) 
            

plot(Compression_Ratio,smooth((Mean_PSNR/(time(4)*power(4)))),'rx-') 
        end 
    end 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
legend ('DCT 8*8','Location','SouthEast'); %error 
xlabel ('Compressed data/Original data'); 
ylabel ('SNDR/(LATENCY*AREA)'); 
%ylabel ('SNDR'); 
grid on 

 

/////////////////////////////////////////////////////////////////////////////////////////// 
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4- Differential DCT 8*8: 

 

/////////////////////////////////////////////////////////////////////////////////////////// 
 

clc 
clear all 
%clearvars -except f_in 

 
close all 
figure 

 
row_aspect = 32 ; 
col_aspect = 32 ; 

 
%AXIS([0.1 0.3 32 48]) 
%time  = [3,3,3,3,1,1]; 
%power = [148,146,56,55,13,13]; 
time  = [.75 .75 .67 .67 1]; 
power = [.31,.34,.98,1,.18,1]; 
% power = [1,1,1,1,1,1]; 
% time  = [1,1,1,1,1,1]; 
f_in = func_DATA_IN(row_aspect,col_aspect); 
%f_in = func_DATA_IN_2; 
for k = 1 : 1 : 7; 
f_in{k} = round(f_in{k});  
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ; 
end 
DWT_func = 1; 
DCTQ=[... 
      16   11   10   16   24   40   51   61   ;... 
      12   12   14   19   26   58   60   55   ;... 
      14   13   16   24   40   57   69   56   ;... 
      14   17   22   29   51   87   80   62   ;... 
      18   22   37   56   68   109  103  77   ;... 
      24   36   55   64   81   194  113  92   ;... 
      49   64   78   87   103  121  120  101  ;... 
      72   92   95   98   112  100  103  99   ;]; 
z=[... 
    9 2 3 10 17 25 18 11 4 5 12 19 26 ... 
    33 41 34 27 20 13 6 7 14 21 28 35 ... 
    42 49 57 50 43 36 29 22 15 8 16 23 ... 
    30 37 44 51 58 59 52 45 38 31 24 32 ... 
    39 46 53 60 61 54 47 40 48 55 62 63 56 64]; 
quality_factor = [1:1:10]; 
f_out{1} = zeros(row_aspect,col_aspect); 
for  type = 2 : 2 
        hold on  
if(type == 1) 
quality_factor = [.5:1:10.5]; 
elseif(type == 2) 
quality_factor = [1:2:20]; 
        end 
        for index = 1:1:10 

 
            for frame = 1:1:4 

 
                stream = [] ; 
                if (type == 1) 
                    in = f_in{frame+1};                     %s7.0 
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                else  
                    in = f_in{frame+1}-f_in{frame};         %s7.0 
                end     
                k=0; 
                for i=1:8:row_aspect 
                    for j=1:8:col_aspect 
                        in8_8=in(i:i+7,j:j+7);              %s7.0 
 %                       int = dct(in8_8,8); 
 %                       dct_out = dct(transpose(int),8); 
dct_out = dct_fixed(in8_8',8);        %s9.1 
                        if (type == 1) 
DCTQ_mux = DCTQ ; 
                            mask = ones(8,8); 
                        else  
DCTQ_mux = round(DCTQ ) ; 
                            mask = [1   1   1   1   1   1   1   0  
                                    1   1   1   1   1   1   0   0  
                                    1   1   1   1   1   0   0   0  
                                    1   1   1   1   0   0   0   0  
                                    1   1   1   0   0   0   0   0  
                                    1   1   0   0   0   0   0   0  
                                    1   0   0   0   0   0   0   0  
                                    0   0   0   0   0   0   0   0 ]; 
                        end     
out_mask = dct_out .* mask ; 
DCTQ_mux_inv = 1 ./ DCTQ_mux; 
DCTQ_mux_inv = fixptc('0.13','CLIP_S',DCTQ_mux_inv) ; 
                        

%tc2hex(DCTQ_mux_inv,0,13,'DCTQ_mux_inv.txt',0); 
                        temp = (out_mask*quality_factor(index)) .* 

DCTQ_mux_inv   ; 
                        %temp = (round(temp.*2)./2); 
                        temp = fixptc('s9.0','CLIP_S',temp) ; %%9.0 

%9.1 is critical in performance % this change afteer bit-matching 
out_enc(i:i+7,j:j+7) = temp; 
                        k=k+1; 
zig_zag_dc(k,1) = temp(1,1)*(2^0); 
zig_zag_ac(k,1:63) = temp(z)*(2^0); 
                    end 
                end 

 
                %% Huffman Compression 

 
dpcm(1,1)=zig_zag_dc(1,1); 
                

stream=cat(2,stream,huffman_dc(dpcm(1,1)),huffman_ac(zig_zag_ac(1,1:63

))); 
                for m=2:k 
dpcm(m,1)=zig_zag_dc(m,1)-zig_zag_dc(m-1,1); 
                    

stream=cat(2,stream,huffman_dc(dpcm(m,1)),huffman_ac(zig_zag_ac(m,1:63

))); 
                end 

 
Compressed_image_size(frame)=floor(length(stream)/8); 
        %         Compression_Ratio(quality_factor) = 

Compressed_image_size/(1024); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
                %% Decoding 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

 
                for i=1:8:row_aspect 
                    for j=1:8:col_aspect 
out_mask = out_enc(i:i+7,j:j+7) .* DCTQ_mux ./ quality_factor(index); 
inv_int = idct(out_mask,8);  
inv_out(i:i+7,j:j+7) = idct(transpose(inv_int),8); 
                    end 
                end 

 
                if (type == 1) 
f_out{frame+1} = inv_out; 
                else  
f_out{frame+1} = f_out{frame}+inv_out; 
                end  

 
                out =  f_out{frame+1} ; 

 
                for i = 1:1:row_aspect 
                    for j = 1:1:col_aspect 
                            if(f_in{frame+1}(i,j) ~= 0 && 

abs(f_in{frame+1}(i,j)-f_out{frame+1}(i,j)) ~= 0) 
                                SNDR(i,j) = 

10*log10((abs(f_in{frame+1}(i,j))^2)/(abs(f_in{frame+1}(i,j)-

f_out{frame+1}(i,j))^2)); 
                            else 
                                SNDR(i,j) = 0; 
                            end 
                    end 
                end 
                M_SNDR = mean(SNDR) ; 
Mean_SNDR(frame) = mean(M_SNDR) ; 
Mean_SNDR(frame) = Mean_SNDR(frame);  

 
                Q=255; 
                PSNR(frame) =  10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect)); 
            end 

 

 
Mean_frames_SNDR(index) = mean(Mean_SNDR) ; 

 
Compressed_frames_size=sum(Compressed_image_size); 
Compression_Ratio(index) = 

Compressed_frames_size/(row_aspect*col_aspect*frame); 

 
fprintf('done!\n'); 
fprintf('-----------   Performance   ----------------\n'); 

 
fprintf('The bitrate is %.2f bpp \n', 

length(stream)/row_aspect/col_aspect); 

 
            Q = 255; 
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            MSE = sum(sum((f_out{2}-

f_in{2}).^2))/row_aspect/col_aspect; 
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE)); 

 
Mean_PSNR(index) = mean(PSNR); 
        end 
        hold on  
if(type == 1) 
            

plot(Compression_Ratio,smooth((Mean_PSNR/(time(3)*power(3)))),'ro-') 
elseif(type == 2) 
            

plot(Compression_Ratio,smooth((Mean_PSNR/(time(4)*power(4)))),'rx-') 
        end 
    end 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

legend ('DF DCT 8*8','Location','SouthEast'); %error 
xlabel ('Compressed data/Original data'); 
ylabel ('SNDR/(LATENCY*AREA)'); 
%ylabel ('SNDR'); 
grid on 

 

/////////////////////////////////////////////////////////////////////////////////////////// 
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5- Adaptive DWT: 

 

/////////////////////////////////////////////////////////////////////////////////////////// 
clc 
clear all 
%clearvars -except f_in 

 
close all 
figure 

 
row_aspect = 32 ; 
col_aspect = 32 ; 

 
%AXIS([0.1 0.3 32 48]) 
%time  = [3,3,3,3,1,1]; 
%power = [148,146,56,55,13,13]; 
time  = [.75 .75 .67 .67 1]; 
power = [.31,.34,.98,1,.18,1]; 
% power = [1,1,1,1,1,1]; 
% time  = [1,1,1,1,1,1]; 
f_in = func_DATA_IN(row_aspect,col_aspect); 
%f_in = func_DATA_IN_2; 
for k = 1 : 1 : 7; 
f_in{k} = round(f_in{k});  
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ; 
end 
DWT_func = 1; 

 
if (row_aspect == 32) 
    

z1=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,33,34,35,36,37,38,39,40,41,

42,43,44,45,46,47,48,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,9

7,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,129,130,13

1,132,133,134,135,136,137,138,139,140,141,142,143,144,161,162,163,164,

165,166,167,168,169,170,171,172,173,174,175,176,193,194,195,196,197,19

8,199,200,201,202,203,204,205,206,207,208,225,226,227,228,229,230,231,

232,233,234,235,236,237,238,239,240,257,258,259,260,261,262,263,264,26

5,266,267,268,269,270,271,272,289,290,291,292,293,294,295,296,297,298,

299,300,301,302,303,304,321,322,323,324,325,326,327,328,329,330,331,33

2,333,334,335,336,353,354,355,356,357,358,359,360,361,362,363,364,365,

366,367,368,385,386,387,388,389,390,391,392,393,394,395,396,397,398,39

9,400,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,

449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,481,48

2,483,484,485,486,487,488,489,490,491,492,493,494,495,496,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,31,32,49,50,51,52,53,54,55,56,57,58,59,6

0,61,62,63,64,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,113,114,

115,116,117,118,119,120,121,122,123,124,125,126,127,128,145,146,147,14

8,149,150,151,152,153,154,155,156,157,158,159,160,177,178,179,180,181,

182,183,184,185,186,187,188,189,190,191,192,209,210,211,212,213,214,21

5,216,217,218,219,220,221,222,223,224,241,242,243,244,245,246,247,248,

249,250,251,252,253,254,255,256,273,274,275,276,277,278,279,280,281,28

2,283,284,285,286,287,288,305,306,307,308,309,310,311,312,313,314,315,

316,317,318,319,320,337,338,339,340,341,342,343,344,345,346,347,348,34

9,350,351,352,369,370,371,372,373,374,375,376,377,378,379,380,381,382,

383,384,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,41

6,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,465,

466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,497,498,49

9,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,

517,518,519,520,521,522,523,524,525,526,527,528,545,546,547,548,549,55

0,551,552,553,554,555,556,557,558,559,560,577,578,579,580,581,582,583,
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584,585,586,587,588,589,590,591,592,609,610,611,612,613,614,615,616,61

7,618,619,620,621,622,623,624,641,642,643,644,645,646,647,648,649,650,

651,652,653,654,655,656,673,674,675,676,677,678,679,680,681,682,683,68

4,685,686,687,688,705,706,707,708,709,710,711,712,713,714,715,716,717,

718,719,720,737,738,739,740,741,742,743,744,745,746,747,748,749,750,75

1,752,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,

801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,833,83

4,835,836,837,838,839,840,841,842,843,844,845,846,847,848,865,866,867,

868,869,870,871,872,873,874,875,876,877,878,879,880,897,898,899,900,90

1,902,903,904,905,906,907,908,909,910,911,912,929,930,931,932,933,934,

935,936,937,938,939,940,941,942,943,944,961,962,963,964,965,966,967,96

8,969,970,971,972,973,974,975,976,993,994,995,996,997,998,999,1000,100

1,1002,1003,1004,1005,1006,1007,1008,529,530,531,532,533,534,535,536,5

37,538,539,540,541,542,543,544,561,562,563,564,565,566,567,568,569,570

,571,572,573,574,575,576,593,594,595,596,597,598,599,600,601,602,603,6

04,605,606,607,608,625,626,627,628,629,630,631,632,633,634,635,636,637

,638,639,640,657,658,659,660,661,662,663,664,665,666,667,668,669,670,6

71,672,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704

,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,753,7

54,755,756,757,758,759,760,761,762,763,764,765,766,767,768,785,786,787

,788,789,790,791,792,793,794,795,796,797,798,799,800,817,818,819,820,8

21,822,823,824,825,826,827,828,829,830,831,832,849,850,851,852,853,854

,855,856,857,858,859,860,861,862,863,864,881,882,883,884,885,886,887,8

88,889,890,891,892,893,894,895,896,913,914,915,916,917,918,919,920,921

,922,923,924,925,926,927,928,945,946,947,948,949,950,951,952,953,954,9

55,956,957,958,959,960,977,978,979,980,981,982,983,984,985,986,987,988

,989,990,991,992,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,101

9,1020,1021,1022,1023,1024;]; 
elseif (row_aspect == 24)     
    

z1=[1,2,3,4,5,6,7,8,9,10,11,12,25,26,27,28,29,30,31,32,33,34,35,36,49,

50,51,52,53,54,55,56,57,58,59,60,73,74,75,76,77,78,79,80,81,82,83,84,9

7,98,99,100,101,102,103,104,105,106,107,108,121,122,123,124,125,126,12

7,128,129,130,131,132,145,146,147,148,149,150,151,152,153,154,155,156,

169,170,171,172,173,174,175,176,177,178,179,180,193,194,195,196,197,19

8,199,200,201,202,203,204,217,218,219,220,221,222,223,224,225,226,227,

228,241,242,243,244,245,246,247,248,249,250,251,252,265,266,267,268,26

9,270,271,272,273,274,275,276,13,14,15,16,17,18,19,20,21,22,23,24,37,3

8,39,40,41,42,43,44,45,46,47,48,61,62,63,64,65,66,67,68,69,70,71,72,85

,86,87,88,89,90,91,92,93,94,95,96,109,110,111,112,113,114,115,116,117,

118,119,120,133,134,135,136,137,138,139,140,141,142,143,144,157,158,15

9,160,161,162,163,164,165,166,167,168,181,182,183,184,185,186,187,188,

189,190,191,192,205,206,207,208,209,210,211,212,213,214,215,216,229,23

0,231,232,233,234,235,236,237,238,239,240,253,254,255,256,257,258,259,

260,261,262,263,264,277,278,279,280,281,282,283,284,285,286,287,288,28

9,290,291,292,293,294,295,296,297,298,299,300,313,314,315,316,317,318,

319,320,321,322,323,324,337,338,339,340,341,342,343,344,345,346,347,34

8,361,362,363,364,365,366,367,368,369,370,371,372,385,386,387,388,389,

390,391,392,393,394,395,396,409,410,411,412,413,414,415,416,417,418,41

9,420,433,434,435,436,437,438,439,440,441,442,443,444,457,458,459,460,

461,462,463,464,465,466,467,468,481,482,483,484,485,486,487,488,489,49

0,491,492,505,506,507,508,509,510,511,512,513,514,515,516,529,530,531,

532,533,534,535,536,537,538,539,540,553,554,555,556,557,558,559,560,56

1,562,563,564,301,302,303,304,305,306,307,308,309,310,311,312,325,326,

327,328,329,330,331,332,333,334,335,336,349,350,351,352,353,354,355,35

6,357,358,359,360,373,374,375,376,377,378,379,380,381,382,383,384,397,

398,399,400,401,402,403,404,405,406,407,408,421,422,423,424,425,426,42

7,428,429,430,431,432,445,446,447,448,449,450,451,452,453,454,455,456,

469,470,471,472,473,474,475,476,477,478,479,480,493,494,495,496,497,49

8,499,500,501,502,503,504,517,518,519,520,521,522,523,524,525,526,527,
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528,541,542,543,544,545,546,547,548,549,550,551,552,565,566,567,568,56

9,570,571,572,573,574,575,576]; 
elseif (row_aspect == 16)     
    z1 = 

[1,2,3,4,5,6,7,8,17,18,19,20,21,22,23,24,33,34,35,36,37,38,39,40,49,50

,51,52,53,54,55,56,65,66,67,68,69,70,71,72,81,82,83,84,85,86,87,88,97,

98,99,100,101,102,103,104,113,114,115,116,117,118,119,120,9,10,11,12,1

3,14,15,16,25,26,27,28,29,30,31,32,41,42,43,44,45,46,47,48,57,58,59,60

,61,62,63,64,73,74,75,76,77,78,79,80,89,90,91,92,93,94,95,96,105,106,1

07,108,109,110,111,112,121,122,123,124,125,126,127,128,129,130,131,132

,133,134,135,136,145,146,147,148,149,150,151,152,161,162,163,164,165,1

66,167,168,177,178,179,180,181,182,183,184,193,194,195,196,197,198,199

,200,209,210,211,212,213,214,215,216,225,226,227,228,229,230,231,232,2

41,242,243,244,245,246,247,248,137,138,139,140,141,142,143,144,153,154

,155,156,157,158,159,160,169,170,171,172,173,174,175,176,185,186,187,1

88,189,190,191,192,201,202,203,204,205,206,207,208,217,218,219,220,221

,222,223,224,233,234,235,236,237,238,239,240,249,250,251,252,253,254,2

55,256;] 
elseif (row_aspect == 8)  
    z1 = 

[1,2,3,4,9,10,11,12,17,18,19,20,25,26,27,28,5,6,7,8,13,14,15,16,21,22,

23,24,29,30,31,32,33,34,35,36,41,42,43,44,49,50,51,52,57,58,59,60,37,3

8,39,40,45,46,47,48,53,54,55,56,61,62,63,64]; 
end 

 
quality_factor = [1:1:10]; 
f_out{1} = zeros(row_aspect,col_aspect); 
for  type = 1  
if(type == 1) 
            Q1 = [2 4 8 12 13 15 16 16 18 20]; 
            Q2 = [2 2 2 2 2  2  3  4  9  10]; 
            Q3 = [2 2 2 2 3  3  3  4  9  10]; 
            Q4 = [.1 .1 .1 .1 .1  .1  .1  .1  .1  .1]; 
%             Q1 = [ 1  2  3  4  5  8 10   2   2   3   3   4   4   5   

5   8   8  10  10   2   2   3   3   4   4   5   5   8   8  10  10  2  

3  4  5  8 10  2  3  4  5  8 10  2  3  4   4  6  8  10 4  6  8  10 4  

6  8  10    2  3  4  5  2  3  4  5  2  3  4   4  6  8  10 4  6  8  10 

4  6  8  10  ]; 
%             Q2 = [.1 .1 .1 .1 .1 .1 .1   1  .1   1  .1   1  .1   1  

.1   1  .1   1  .1   1   1   1   1   1   1   1   1   1   1   1   1  2  

2  2  2  2  2  1  1  1  1  1  1  2  2  2   4  4  4  4  1  1  1  1  4  

4  4  4     2  2  2  2  1  1  1  1  2  2  2   4  4  4  4  1  1  1  1  

4  4  4  4   ]; 
%             Q3 = [.1 .1 .1 .1 .1 .1 .1  .1   1  .1   1  .1   1  .1   

1  .1   1  .1   1   1   1   1   1   1   1   1   1   1   1   1   1  1  

1  1  1  1  1  2  2  2  2  2  2  2  2  2   1  1  1  1  4  4  4  4  4  

4  4  4     1  1  1  1  2  2  2  2  2  2  2   1  1  1  1  4  4  4  4  

4  4  4  4   ]; 
%             Q4 = [ 1 .1 .1 .1 .1 .1 .1  .1  .1  .1  .1  .1  .1  .1  

.1  .1  .1  .1  .1  .1  .1  .1  .1  .1  .1  .1  .1  .1  .1  .1  .1 .1 

.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1  .1 .1 .1 .1 .1 .1 .1 .1 .1 

.1 .1 .1     1  1  1  1  1  1  1  1  1  1  1   1  1  1  1  1  1  1  1  

1  1  1  1   ]; 

 

 
elseif(type == 2) 
%             Q1 = [2 2 4 4 4 8 8 16 16 16 ]; 
%             Q2 = [1 2 1 2 4 4 8  8  8 16 ]; 
%             Q3 = [1 2 1 2 4 4 8  8  8 16 ]; 
%             Q4 = [1 2 1 1 1 2 2  2  4  4 ]; 
            Q1 = [2 4 6 8 10 12 14 16 18 20]; 
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            Q2 = [2 2 3 4 5  6  7  8  9  10]; 
            Q3 = [2 2 3 4 5  6  7  8  9  10]; 
            Q4 = [.1 .1 .1 .1 .1  .1  .1  .1  .1  .1]; 
        end 
        for index = 1:1:10 

 
            for frame = 1:1:4 

 
                stream = [] ; 
                if (type == 1) 
                    in = f_in{frame+1}; 
                else  
                    in = f_in{frame+1}-f_in{frame}; 
                end 

 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
filter_type = 'bior5.5';   %wavelet basis 
                level = 1; 
                [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(filter_type); 
                if (DWT_func == 0) 
                    [img_wavedata, S] = func_DWT(in, level, Lo_D, 

Hi_D); 
                    LL = img_wavedata(1               :(row_aspect/2) 

, 1               :(col_aspect/2)); 
                    HL = img_wavedata(1               :(row_aspect/2) 

, (col_aspect/2)+1: col_aspect)   ; 
                    LH = img_wavedata((row_aspect/2)+1: row_aspect    

, 1               :(col_aspect/2)); 
                    HH = img_wavedata((row_aspect/2)+1: row_aspect    

, (col_aspect/2)+1: col_aspect)    
elseif (DWT_func == 1) 
filter_type = 'bior3.5';   %wavelet basis 
                    [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(filter_type); 
%                     [LL,LH,HL,HH] = dwt2(in,Lo_D,Hi_D,'mode','per'); 
                    tc2hex(in',7,0,'in.txt',0); 
                    for r = 1: 1 :row_aspect 
                        [L1(r,:),H1(r,:)] = 

dwt_fix(in(r,:),Lo_D,Hi_D,'mode','per'); 
                    end 
                    for c = 1: 1 :col_aspect/2 
                        [LL(:,c),LH(:,c)] = 

dwt_fix(L1(:,c),Lo_D,Hi_D,'mode','per'); 
                        [HL(:,c),HH(:,c)] = 

dwt_fix(H1(:,c),Lo_D,Hi_D,'mode','per');  %s8.1  
                    end 
                end     
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
                for k = 1 : 1 : 4 
                    if k == 1     
                        XX = LL ; 
                        Q = Q1(index) ; 
elseif k == 2 
                        XX = LH ; 
                        Q = Q2(index) ; 
elseif k == 3 
                        XX = HL ; 
                        Q = Q3(index) ; 
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                    else 
                        XX = HH ; 
                        Q = Q4(index) ; 
                    end     
                    median = 

floor(mean(reshape(XX,1,(row_aspect*col_aspect/4)))*2)/2; %s8.1 
XX_median = XX - median ; %s8.1 
max_width = abs(max(max(XX_median))/Q); 
min_width = abs(min(min(XX_median))/Q); 
max_width = fixptc('s8.5','CLIP_S',max_width) ; 
min_width = fixptc('s8.5','CLIP_S',min_width) ; 
XX_comp   = zeros((row_aspect/2),(col_aspect/2)); 
                    for i = 1:1:(row_aspect/2) 
                        for j = 1:1:(col_aspect/2) 
                            if XX_median(i,j) > 0 
XX_temp = (XX_median(i,j)/max_width); 
XX_comp(i,j) = sign(XX_median(i,j))*abs(XX_temp); 
XX_comp(i,j) = fixptc('s9.0','CLIP_S',XX_comp(i,j)) ; 
elseifXX_median(i,j) < 0   
XX_temp = (XX_median(i,j)/min_width); 
XX_comp(i,j) = sign(XX_median(i,j))*abs(XX_temp); 
XX_comp(i,j) = fixptc('s9.0','CLIP_S',XX_comp(i,j)) ; 
                            end 
                        end 
                    end 

 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
                %% Decoding 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

 
                    for i = 1:1:(row_aspect/2) 
                        for j = 1:1:(col_aspect/2) 
                            if XX_comp(i,j) >= 0 
XX_re(i,j) = (XX_comp(i,j)*max_width)+median; 
                            else 
XX_re(i,j) = (XX_comp(i,j)*min_width)+median; 
                            end 
                        end 
                    end 
                    if k == 1     
LL_re = XX_re; 
LL_comp = XX_comp; 
elseif k == 2 
LH_re = XX_re; 
LH_comp = XX_comp; 
elseif k == 3 
HL_re = XX_re; 
HL_comp = XX_comp; 
                    else 
HH_re = XX_re; 
HH_comp = XX_comp; 
                    end     
                end 

 
                if (DWT_func == 0) 
img_wavedata_dec = [LL_re,HL_re;LH_re,HH_re]; 
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                    Xrec2 = func_InvDWT(img_wavedata_dec, S, Lo_R, 

Hi_R, level); 
elseif (DWT_func == 1) 
                    Xrec2 = 

idwt2(LL_re,LH_re,HL_re,HH_re,Lo_R,Hi_R,'mode','per'); 
                end     
inv_out = Xrec2 ; 
                %% Huffman Compression 

 
                temp = [LL_comp,LH_comp;HL_comp,HH_comp]; 
                stream = []; 
                zig_zag_ac1(1:row_aspect*col_aspect) = temp(z1);     
                

stream=huffman_ac(zig_zag_ac1(1:row_aspect*col_aspect)); 
Compressed_image_size(frame)=floor(length(stream)/8); 

 
                if (type == 1) 
f_out{frame+1} = inv_out; 
                else  
f_out{frame+1} = f_out{frame}+inv_out; 
                end  

 
                Q=255; 
                PSNR(frame) =  10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect)); 
            end 

 
Compressed_frames_size=sum(Compressed_image_size); 
Compression_Ratio(index) = 

Compressed_frames_size/(row_aspect*col_aspect*frame); 

 
Mean_PSNR(index) = mean(PSNR); 
        end 
        hold on  
if(type == 1) 
            

plot(Compression_Ratio,smooth((Mean_PSNR/(time(5)*power(5)))),'kx-') 
elseif(type == 2) 
            

plot(Compression_Ratio,smooth((Mean_PSNR/(time(6)*power(6)))),'gx-') 
        end 
    end 

 
legend ('Adaptive DWT','Location','SouthEast'); %error 
xlabel ('Compressed data/Original data'); 
ylabel ('SNDR/(LATENCY*AREA)'); 
%ylabel ('SNDR'); 
grid on 

 

/////////////////////////////////////////////////////////////////////////////////////////// 
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6- PANDCA: 
 

/////////////////////////////////////////////////////////////////////////////////////////// 
clc 
clear all 
%clearvars -except f_in 

 
close all 
figure 

 
row_aspect = 32 ; 
col_aspect = 32 ; 

 
%AXIS([0.1 0.3 32 48]) 
%time  = [3,3,3,3,1,1]; 
%power = [148,146,56,55,13,13]; 
time  = [.75 .75 .67 .67 1]; 
power = [.31,.34,.98,1,.18,1]; 
% power = [1,1,1,1,1,1]; 
% time  = [1,1,1,1,1,1]; 
f_in = func_DATA_IN(row_aspect,col_aspect); 
%f_in = func_DATA_IN_2; 
for k = 1 : 1 : 7; 
f_in{k} = round(f_in{k});  
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ; 
end 
DWT_func = 1; 
DCTQ=[... 
      16   11   10   16   24   40   51   61   ;... 
      12   12   14   19   26   58   60   55   ;... 
      14   13   16   24   40   57   69   56   ;... 
      14   17   22   29   51   87   80   62   ;... 
      18   22   37   56   68   109  103  77   ;... 
      24   36   55   64   81   194  113  92   ;... 
      49   64   78   87   103  121  120  101  ;... 
      72   92   95   98   112  100  103  99   ;]; 
z=[... 
    9 2 3 10 17 25 18 11 4 5 12 19 26 ... 
    33 41 34 27 20 13 6 7 14 21 28 35 ... 
    42 49 57 50 43 36 29 22 15 8 16 23 ... 
    30 37 44 51 58 59 52 45 38 31 24 32 ... 
    39 46 53 60 61 54 47 40 48 55 62 63 56 64]; 
quality_factor = [1:1:10]; 
f_out{1} = zeros(row_aspect,col_aspect); 
for  type = 1 : 1 
        hold on  
if(type == 1) 
quality_factor = [.5:1:10.5]; 
elseif(type == 2) 
quality_factor = [1:2:20]; 
        end 
        for index = 1:1:10 

 
            for frame = 1:1:4 

 
                stream = [] ; 
                if (type == 1) 
                    in = f_in{frame+1};                     %s7.0 
                else  
                    in = f_in{frame+1}-f_in{frame};         %s7.0 
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                end     
                k=0; 
                for i=1:8:row_aspect 
                    for j=1:8:col_aspect 
                        in8_8=in(i:i+7,j:j+7);              %s7.0 
 %                       int = dct(in8_8,8); 
 %                       dct_out = dct(transpose(int),8); 
dct_out = dct_fixed(in8_8',8);        %s9.1 
                        if (type == 1) 
DCTQ_mux = DCTQ ; 
                            mask = ones(8,8); 
                        else  
DCTQ_mux = round(DCTQ ) ; 
                            mask = [1   1   1   1   1   1   1   0  
                                    1   1   1   1   1   1   0   0  
                                    1   1   1   1   1   0   0   0  
                                    1   1   1   1   0   0   0   0  
                                    1   1   1   0   0   0   0   0  
                                    1   1   0   0   0   0   0   0  
                                    1   0   0   0   0   0   0   0  
                                    0   0   0   0   0   0   0   0 ]; 
                        end     
out_mask = dct_out .* mask ; 
DCTQ_mux_inv = 1 ./ DCTQ_mux; 
DCTQ_mux_inv = fixptc('0.13','CLIP_S',DCTQ_mux_inv) ; 
                        

%tc2hex(DCTQ_mux_inv,0,13,'DCTQ_mux_inv.txt',0); 
                        temp = (out_mask*quality_factor(index)) .* 

DCTQ_mux_inv   ; 
                        %temp = (round(temp.*2)./2); 
                        temp = fixptc('s9.0','CLIP_S',temp) ; %%9.0 

%9.1 is critical in performance % this change afteer bit-matching 
out_enc(i:i+7,j:j+7) = temp; 
                        k=k+1; 
zig_zag_dc(k,1) = temp(1,1)*(2^0); 
zig_zag_ac(k,1:63) = temp(z)*(2^0); 
                    end 
                end 

 
                %% Huffman Compression 

 
dpcm(1,1)=zig_zag_dc(1,1); 
                

stream=cat(2,stream,huffman_dc(dpcm(1,1)),huffman_ac(zig_zag_ac(1,1:63

))); 
                for m=2:k 
dpcm(m,1)=zig_zag_dc(m,1)-zig_zag_dc(m-1,1); 
                    

stream=cat(2,stream,huffman_dc(dpcm(m,1)),huffman_ac(zig_zag_ac(m,1:63

))); 
                end 

 
Compressed_image_size(frame)=floor(length(stream)/8); 
        %         Compression_Ratio(quality_factor) = 

Compressed_image_size/(1024); 

 

 

 



 

86 
 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
                %% Decoding 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

 
                for i=1:8:row_aspect 
                    for j=1:8:col_aspect 
out_mask = out_enc(i:i+7,j:j+7) .* DCTQ_mux ./ quality_factor(index); 
inv_int = idct(out_mask,8);  
inv_out(i:i+7,j:j+7) = idct(transpose(inv_int),8); 
                    end 
                end 

 
                if (type == 1) 
f_out{frame+1} = inv_out; 
                else  
f_out{frame+1} = f_out{frame}+inv_out; 
                end  

 
                out =  f_out{frame+1} ; 

 
                for i = 1:1:row_aspect 
                    for j = 1:1:col_aspect 
                            if(f_in{frame+1}(i,j) ~= 0 && 

abs(f_in{frame+1}(i,j)-f_out{frame+1}(i,j)) ~= 0) 
                                SNDR(i,j) = 

10*log10((abs(f_in{frame+1}(i,j))^2)/(abs(f_in{frame+1}(i,j)-

f_out{frame+1}(i,j))^2)); 
                            else 
                                SNDR(i,j) = 0; 
                            end 
                    end 
                end 
                M_SNDR = mean(SNDR) ; 
Mean_SNDR(frame) = mean(M_SNDR) ; 
Mean_SNDR(frame) = Mean_SNDR(frame);  

 
                Q=255; 
                PSNR(frame) =  10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect)); 
            end 

 

 
Mean_frames_SNDR(index) = mean(Mean_SNDR) ; 

 
Compressed_frames_size=sum(Compressed_image_size); 
Compression_Ratio(index) = 

Compressed_frames_size/(row_aspect*col_aspect*frame); 

 
fprintf('done!\n'); 
fprintf('-----------   Performance   ----------------\n'); 

 
fprintf('The bitrate is %.2f bpp \n', 

length(stream)/row_aspect/col_aspect); 

 
            Q = 255; 
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            MSE = sum(sum((f_out{2}-

f_in{2}).^2))/row_aspect/col_aspect; 
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE)); 

 
Mean_PSNR(index) = mean(PSNR); 
        end 
        hold on  
if(type == 1) 
            

plot(Compression_Ratio,smooth((Mean_PSNR/(time(3)*power(3)))),'ro-') 
elseif(type == 2) 
            

plot(Compression_Ratio,smooth((Mean_PSNR/(time(4)*power(4)))),'rx-') 
        end 
    end 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
legend ('DCT 8*8','Location','SouthEast'); %error 
xlabel ('Compressed data/Original data'); 
ylabel ('SNDR/(LATENCY*AREA)'); 
%ylabel ('SNDR'); 
grid on 

 

/////////////////////////////////////////////////////////////////////////////////////////// 

/////////////////////////////////////////////////////////////////////////////////////////// 

/////////////////////////////////////////////////////////////////////////////////////////// 
 

Sc        = 

[4,4,4,4;7,7,7,7;9,9,9,8;10,10,10,10;11,11,11,10;12,13,12,11;13,13,12,

11;13,13,14,13;13,14,15,13;14,15,17,16;]; %results from previous part 

  

Sc_frames = [ Sc(:,1),Sc(:,2),Sc(:,3),Sc(:,4),Sc(:,3),Sc(:,2)];   

  

Sc_frames = repmat (Sc_frames,1,10); 

  

H_p = repmat(97.427808,1,60);  

% Sp = repmat(11.5,1,60); 

% Q_F(1) = 5;  

% Sp = (5:.13:14) 

% Q_F(1) = 2;  

% Sp = (12:-.13:3) 

Sp = [10 10 10 (10:-.13:6) 6 6 6 6 6 (6:.13:8) 8 8 8 8 8] 

Q_F(1) = 5;  

for i = 1:1:60 

    if(Sc_frames(Q_F(i)) > Sp(i)) 

        Q_F(i+1) = Q_F(i) - 1; 

    elseif(Sc_frames(Q_F(i)) < Sp(i)) 

        Q_F(i+1) = Q_F(i) + 1;  

    elseif(Sc_frames(Q_F(i)) == Sp(i)) 

        Q_F(i+1) = Q_F(i);  

    end 

Sc_saved(i) = Sc_frames(Q_F(i));  

end 

%plot ([1:1:61],Q_F) 

ylim([4 13]) 

hold on  

plot ([1:1:60],Sp(1:1:60),'r.-') 
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hold on  

plot ([1:1:60],Sc_saved(1:1:60),'bx-') 

legend ('Suggested Frame Size (Sp)','Actual Frame Size 

(Sc)','Location','SouthEast'); %error 

xlabel ('Frame Number'); 

ylabel ('Size (Byte)'); 

grid on 

  

 

 



 

 
 

الرسالة ممخص  
 

 الإشارة ضغط عمىيو الدماغ الانشطو في البحثي العممي التقدم يعتمد ،رالحاض الوقت في
 الاتصال من لمتمكن النقل معدل وخفض الفعال التخزين أجل من ، الدقوالعاليةالعصبيو الدماغيو 

. الخارجي بالعالم اللاسمكي
 الفيزيولوجية العصبية القيود مع تتعارض سوف ىذه البيانات معدلات فإن البيانات، ضغط وبدون

. ساحو الرقائق الالكترونيوم استيلاك وانخفاض الطاقة انخفاض حيث من
 معدلات للالقيود مع التوافق أجل من ضروري الزرع موقع في العصبية البيانات ضغط يكون بحيث

. البيانات ضغط نسبة لزيادة العالي المكاني الارتباط استخدام يتم الأطروحة، ىذه في .لاسمكيةا
 أساس عمى المقترحة المنخفضة الطاقة ضغط لمختمفة خوارزميات خمسة ومقارنة بالتحقيق نقوم ثم

 الأجيزة تعقيد بين مقايضة أفضل لتوفير منفصمة الالمويجات وتحويل منفصمة الالتمام جيب تحويل
 حل الىو الثنائى الابعاد منفصمة الالمويجات تحويل خوارزمية أن ينستنتج وبالتال. الضغطكفاءه و
 .الطاقة خفض اجل من المزروعو للأجيزة واعدال

 من بدلانوات الق لكله لذاكره طويمو كاملعمومات الاستخراج الم إلى تحتاج الحالية العلاج أجيزة
 العصبيو ضطرابات الاوتشخيص الكشف عمى قادرة لتكون فقط خاصة ةيإشار ميزات استخراج
 أو توقف أي دون باستمرار تنتقل أن يمكن العصبية البيانات أن نضمن أن يجب لذلك. يوالدماغ
 الجانب في ضغطيا فك يمكن المضغوطة البيانات أن نضمن أن يجب وأيضا البيانات فقدان
. كبير تشويو دون عالية جودة بالآخر

 ضغطنا خوارزمية لتكيف المتاحة المحصودة الطاقة ميزانية استخدام ،اقترحنا اليدف ىذا من
 الكفاءه لنقل من قدر أقصى وتحقيق باستمرار المضغوطة العصبية البيانات نقل عمى قادرة لتكون

 .لبيانات لفقدان أي دون المتاحة حصاد الطاقة الميزانية وفق شارةالإ

 

 

 

 

 

 

 

 



 

 
 

:دسـمهن  محمد أشرف حسن إينال 
:تاريخ الميلاد  ١٩٩١\٠٩\٢١ 

:الجنسية  مصرية 
:تاريخ التسجيل  ٢٠١٤\٣\١ 

:تاريخ المنح  \٢٠١٧ --\-- 
:القسم والاتصالات الكيربية ىندسة الإلكترونيات   
:الدرجة  ماجستير العموم 

:المشرفون   
احمد العدوى. د.أ   
حسن مصطفي حسن مصطفي. د   
  

:الممتحنون   
(المشرف الرئيسي)احمد العدوى .د.أ   
(الممتحن الداخمي)-------------- .د.أ   
(الممتحن الخارجي)-------------- . د.أ   

 
  
 

:عنوان الرسالة  
 

الدقة عالية العصبيو البيانات لضغط الطاقو مع لمتكيف قابل نموذج تصميم  
 
 
 

  
:الكممات الدالة   

 التصميم الموفر لمطاقو، التصميم الموفر لممساحو، ضغط البيانات العصبيو 
 

:ممخـص الرسالة   
 العصبيو الدماغيو الإشارة ضغط عمىيو الدماغ الانشطو في البحثي العممي التقدم يعتمد ،رالحاض الوقت في

 وبدون .الخارجي بالعالم اللاسمكي الاتصال من لمتمكن النقل معدل وخفض الفعال التخزين أجل من ، الدقوالعالية
 انخفاض حيث من الفيزيولوجية العصبية القيود مع تتعارض سوف ىذه البيانات معدلات فإن البيانات، ضغط
 الزرع موقع في العصبية البيانات ضغط يكون بحيث .ساحو الرقائق الالكترونيوم استيلاك وانخفاض الطاقة

 العالي المكاني الارتباط استخدام يتم الأطروحة، ىذه في .لاسمكية امعدلات للالقيود مع التوافق أجل من ضروري
 المقترحة المنخفضة الطاقة ضغط لمختمفة خوارزميات خمسة ومقارنة بالتحقيق نقوم ثم .البيانات ضغط نسبة لزيادة
 الأجيزة تعقيد بين مقايضة أفضل لتوفير منفصمة الالمويجات وتحويل منفصمة الالتمام جيب تحويل أساس عمى



 

 
 

 للأجيزة واعد الحل الىو الثنائى الابعاد منفصمة الالمويجات تحويل خوارزمية أن ينستنتج وبالتال. الضغطكفاءه و
 .الطاقة خفض اجل منالمزروعو 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

الدقة عالية العصبيه البيانات لضغط الطاقه مع للتكيف قابل نموذج تصميم  
 

 

 

 اعداد 

 محمد أشرف حسن إٌنال

 

إلى مقدمة رسالة  

القاهرة جامعة –الهندسة  كلٌة  

درجة على الحصول متطلبات من كجزء  

 ماجستٌر العلوم

 فً

والاتصالات الكهربٌة هندسة الإلكترونٌات  

 

 

:ٌعتمد من لجنة الممتحنٌن  

 

المشرف الرئٌسىاحمد العدوى : الاستاذ الدكتور  

 

الممتحن الداخلً------------------ : الاستاذ الدكتور  

 

الممتحن الخارجً------------------- :الاستاذ الدكتور  

( ---------------------------------------------------------------)  

 

القاهــرة جامعــة - الهندســة كلٌــة  

مصـرالعربٌــة جمهورٌـة - الجٌـزة  

٢٠١٧ 
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 اعداد 

  أشرف حسن إٌنالمحمد

 

 

إلى مقدمة رسالة  

القاهرة جامعة –الهندسة  كلٌة  

علىدرجة الحصول متطلبات من كجزء  

 ماجستٌر العلوم

 فً

والاتصالات الكهربٌة هندسة الإلكترونٌات  

 

 

 تحت اشراف 

 

حسن مصطفً حسن مصطفً. د احمد العدوى. د.أ   

 مدرس

  قسم هندسة الإلكترونٌات

 والاتصالات الكهربٌة

القاهــرة جامعــة - الهندســة كلٌــة  

 أستاذ

  قسم هندسة الإلكترونٌات

 والاتصالات الكهربٌة

جامعــةالقاهــرة - الهندســة كلٌــة  

 

 

 

 

 

القاهــرة  جامعــة - الهندســة كلٌــة     

مصـرالعربٌــة جمهورٌـة - الجٌـزة  

٢٠١٧ 

  



 

 
 

  
 

 

 

الدقة عالية العصبيه البيانات لضغط الطاقه مع للتكيف قابل نموذج تصميم  
 

 

 

 اعداد 

 محمد أشرف حسن إٌنال

 

 

القاهرة جامعة –الهندسة  كلٌة إلى مقدمة رسالة  

درجةي عل الحصول متطلبات من كجزء  

 ماجستٌر العلوم

 فً

والاتصالات الكهربٌة هندسة الإلكترونٌات  

 

 

 

 

 

 

 

 

 

القاهــرة جامعــة - الهندســة كلٌــة   

مصـرالعربٌــة جمهورٌـة -الجٌـزة  

٢٠١٧ 

 


