

DESIGN OF A RECONFIGURABLE POWER-ADAPTIVE

HIGH-RESOLUTION NEURAL DATA COMPRESSION

ALGORITHM

By

Mohammed Ashraf Hassan

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2017

DESIGN OF A RECONFIGURABLE POWER-ADAPTIVE

HIGH-RESOLUTION NEURAL DATA COMPRESSION

ALGORITHM

By

Mohammed Ashraf Hassan

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Ahmed Eladawy

 Dr. Hassan Mostafa

Professor

Electronics and Communications

Engineering Department

Faculty of Engineering, Cairo University

 Assistant Professor

Electronics and Communications

Engineering Department

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2017

DESIGN OF A RECONFIGURABLE POWER-ADAPTIVE

HIGH-RESOLUTION NEURAL DATA COMPRESSION

ALGORITHM

By

Mohammed Ashraf Hassan

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the

Examining Committee

Prof. Dr. Ahmed Eladawy, Thesis Main Advisor

Prof. Dr. -------------------, Internal Examiner

Prof. Dr. -------------------, External Examiner
(--)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2017

Engineer’s Name: Mohammed Ashraf Hassan Enal

Date of Birth: 21/09/1991

Nationality: Egyptian

E-mail: mohammedenal@gmail.com

Phone: +201111353779

Address: Electronics and Communications

Engineering Department,

Cairo University, Giza 12613, Egypt

Registration Date: 01/3/2014

Awarding Date: --/--/2017

Degree: Master of Science

Department: Electronics and Communication Engineering

Supervisors:

 Prof. Dr. Ahmed Eladawy

Dr. Hassan Mostafa

Examiners:

 Prof. Dr. Ahmed Eladawy (Thesis main advisor)

 Prof. --------------------(Internal examiner)

 Porf. --------------------(External examiner)

(---)

Title of Thesis:

Design of a Reconfigurable Power-adaptive High-Resolution Neural Data Compression

algorithm

Key Words:

Neural Signals; Multichannel Neural Recording; Data Compression; Image processing;

Low-power Design; Power Harvesting; HW Implementation

Summary:

In this thesis, five different proposed low-power image compression algorithms based

on discrete cosine transform (DCT) and discrete wavelet transform (DWT) are

investigated and compared to provide the best trade-off between compression

performance and hardware complexity. Finally, harvested power adaptive high-

resolution neural data compression is introduced to control the compression algorithm

according to available harvested power. Hence, maximum signal to noise and distortion

ratio (SNDR) is achieved based on the available harvested power without any data loss.

mailto:mohammedenal@gmail.com

i

Acknowledgments

First of all, I would like to thank Prof. Ahmed Eladawy and Dr. Hassan Mostafa

for giving me the opportunity to work onto this subject which interests me a lot and

enhances my knowledge and career. I would also like to thank Dr. Hassan for his help,

suggestions and support.

ii

Table of Contents

ACKNOWLEDGMENTS………..I

LIST OF TABLES………...IV

LIST OF FIGURES………..V

NOMENCLATURE………..VI

ABSTRACT…………………………..VII

CHAPTER 1 : INTRODUCTION……………………………………………8

1.1. BACKGROUND………………………………………………..8

1.2. SYSTEM ARCHITECTURE …………………………………....13

1.3. MOTIVATION……………………………………………......14

1.4. NEURAL DATA CHARACTERISTICS………………….…...….15

1.5. CONTRIBUTION……………………………………………...15

1.6. ORGANIZATION OF THE THESIS……………………………...16

CHAPTER 2 LITERATURE SURVEY OF THE MAIN NEURAL

COMPRESSION ALGORITHMS……………………………………….….17

2.1. INTRODUCTION…………………………………………........17

2.2. TRANSFORM CODING ………………………………………..17

2.2.1. DISCRETE FOURIER TRANSFORM (DFT) 17

2.2.2. DISCRETE COSINE TRANSFORM (DCT) 18

2.2.3. DISCRETE WAVELET TRANSFORM (DWT) 18

CHAPTER 3 ANALYTICAL COMPARISON OF PROPOSED NEURAL

COMPRESSION ALGORITHMS…………………………………………..21

3.1. INTRODUCTION………………………………………………21

3.2. COMPRESSION ALGORITHMS……………………….....21

3.2.1. 2D-DCT8X8 BASED COMPRESSION METHOD 21

3.2.2. 2D-DCT4X4 BASED COMPRESSION METHOD 23

3.2.3. ADAPTIVE 2D-DWT BASED COMPRESSION METHOD 25

3.2.4. DIFF-2D-DCT8X8 BASED COMPRESSION METHOD................ 27

3.2.5. DIFF-2D-DCT4X4 BASED COMPRESSION METHOD................ 28

3.3. RESULT COMPARISON AND DISCUSSION…………………….29

CHAPTER 4 : HARVESTED POWER ADAPTIVE HIGH-RESOLUTION

NEURAL DATA COMPRESSION(PANDCA)... 38

4.1. INTRODUCTION………………………………………………38

4.2. MOTIVATION………………………………………………...41

4.3. SELECTED COMPRESSION ALGORITHM………………………41

iii

4.4. POWER ORIENTED ALGORITHM……………………………...43

4.4.1. NEURAL SYSTEM POWER COMPONENTS 43

4.4.2. QUALITY FACTOR EFFECT……………………………………...45

4.4.3. POWER ORIENTED ALGORITHM .. 46

4.5. RESULTS AND DISCUSSIONS…………………………………47

4.6. SUMMARY…………………………………………………...55

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 56

5.1. DISCUSSION AND CONCLUSIONS…………………………….56

5.2. FUTURE WORK……………………………………………....57

5.2.1. FPGA DEMO IMPLEMENTATION... 57

5.2.2. NEURAL DATA ENCRYPTION BEFORE COMPRESSION 58

5.2.3. ADAPTIVE 2D_DWT PERFORMANCE LINEARIZATION 58

5.2.4. REAL HIGH RESOLUTION NEURAL DATA SIMULATION ... 58

REFERENCES………………………………………………………………..59

APPENDIX A: SYSTEM DESIGN CODE AND HDL DESIGN CODE 62

A.1. SYSTEM CODES……………………………………………...62

iv

List of Tables

Table 3-1: Hardware Performance Summary of the compression algorithm 37

Table 4-1: 64-channel results ... 53
Table 4-2: Performance Comparison.. 53
Table 4-3: 32-channel results ... 54
Table 4-4: 16-channel results ... 55

v

List of Figures

Figure 1-1: Neural System Full Architecture ... 13

Figure 3-2:𝐓𝟖𝐱𝟖Coefficients Matrix ... 22

Figure 3-3: 𝐐_𝐦𝐚𝐭𝐫𝐢𝐱𝟖𝐱𝟖 ... 22
Figure 3-4: Zigzag Order 8x8 ... 23

Figure 3-5: 2D-DCT8x8 Based Compression procedure. .. 24

Figure 3-6: 𝑻𝟒𝒙𝟒 Coefficients Matrix ... 24

Figure 3-7: 𝐐_𝐦𝐚𝐭𝐫𝐢𝐱𝟒𝐱𝟒 ... 24
Figure 3-8: Zigzag Order 4x4 ... 25

Figure 3-9: Adaptive DWT based Compression procedure. .. 25
Figure 3-10: 1-level DWT Decomposition ... 26
Figure 3-11: Adaptive DWT Procedure ... 26

Figure 3-12: DWT Zigzag Order .. 27
Figure 3-13: DF-2D-DCT8x8 Based Compression procedure 28
Figure 3-14: DF-2D-DCT4x4 Based Compression procedure 29

Figure 3-15: SNDR vs compression ratios for all algorithms .. 32
Figure 3-16: SNDR/(LATENCY*AREA) vs compression ratios for allalgorithms 34

Figure 3-17: Comparison of the performance of the compression algorithms 37
Figure 4-1: SNDR vs compression ratios for all algorithms .. 42
Figure 4-2: Neural system Power Tree ... 43

Figure 4-3: Transmission Timing Scheduling .. 44
Figure 4-4: Quality Factor Effect ... 45

Figure 4-5: Power Oriented Design .. 46

file:///D:\zeza%20lab\MST_4\Re__Biomedical_project_papers_req\Thesis\MohamedAshrafThesis-Design%20of%20a%20Reconfigurable%20Power-adaptive%20High-Resolution%20Neural%20Data%20Compression%20algorithm.docx%23_Toc485599942
file:///D:\zeza%20lab\MST_4\Re__Biomedical_project_papers_req\Thesis\MohamedAshrafThesis-Design%20of%20a%20Reconfigurable%20Power-adaptive%20High-Resolution%20Neural%20Data%20Compression%20algorithm.docx%23_Toc485599943

vi

Nomenclature

 MEMS Micro-Electro-Mechanical Systems

 EEG Electroencephalography
 DCT Discrete Cosine Transform

 DWT Discrete Wavelet Transform
 2D-DCT Two Dimension Discrete cosine Transform
 2D-DWT Two Dimension Discrete Wavelet Transform

 ECOG Electrocorticography

 EEG Electroencephalography

 JPEG Joint Photographic Experts Group

 SNDR Signal to Noise and Distortion Ratio

 HW Hardware

 HDL Hardware Define Language

 DFT Discrete Fourier Transform

 MJPEG Motion Joint Photographic Experts Group

 FOM Figure of Merit

ASIC Specific Integrated Circuits

RAM Random Access Memory

 PV Photovoltaics
 RF Radio Frequency

 PZT Lead Zirconate Titanate

 IOT Internet of Things

 TX Transmitter

 TCP Transmission Control Protocol

 UDP User Datagram Protocol

 IP Internet Protocol

https://en.wikipedia.org/wiki/Electroencephalography
https://en.wikipedia.org/wiki/MJPEG
https://en.wikipedia.org/wiki/Photovoltaics
https://en.wikipedia.org/wiki/Internet_Protocol

vii

Abstract

Nowadays, brain scientific research progress depends on signal compression at

high spatial resolutions, for low-rate transmission through wireless connection to the

outside world and efficient storage. Without data compression, these data rates would

conflict the neurophysiologic restrictions in terms of low energy and low area

consumption. So that neural data compression at the implant site is substantial in order

to conform with the wireless rates restrictions. In this thesis, the high spatial correlation

is utilized to increase the data compression ratio. Then, five different proposed low-

power image compression algorithms based on discrete wavelet transform (DWT) and

discrete cosine transform (DCT) are investigated and compared to provide the best

trade-off between compression performance and hardware complexity. Hence, the

Adaptive 2D-DWT algorithm is deduced as a promising solution for low-power

implantable devices.

Furthermore, current treatment devices need the complete waveform and history for

every electrode to be extracted instead of extracting the special signal features only to

be able to detect and diagnose neural brain disorders. So that it must be guaranteed that

the detected neural data can be transmitted continuously without any stops or data loss

and also it must be guaranteed that the compressed data can be decompressed at the

other side with high quality without significant distortion. In this thesis, the neural

compression algorithm is adapted according to the available harvested power budget.

Therefore, the maximum signal to noise and distortion ratio (SNDR) is achieved based

on the available harvested power budget without any data loss.

8

Chapter 1 Introduction

1.1. Background

Over the last 40 years, implantable electronic devices and systems have faced a

significant transformation, becoming a valuable biomedical tool for measuring,

monitoring and stimulation physiological responses using wireless communication. The

discovery and posterior advancement of these devices have relied heavily on the

growing knowledge related to various aspects of the human neuro system, and the

development of electronics technologies capable of interfacing with living tissues and

organs at microscale and nanoscale. Increasing in stability, miniaturization and lower

power requirement of modern electronics led to a plenty of miniature wireless

electronic devices, such as sensors and intelligent gastric, implantable cardioverter

defibrillators, implantable cochlear, and deep brain, nerve, and bone stimulators are

implanted in patients worldwide [29,30,31,32]. Advances in semiconductor technology,

particular in the area of micro fluidic lab-on-chip biomedical systems and micro-

electro-mechanical systems (MEMS) have allowed for the development of units for

rapid diagnostics, and precisely controlled pulsatile, sustained or rapid delivery of

complex therapeutics and drugs [33].

Furthermore, these devices are used for the development of tissue engineering

platforms and also have been used in regenerative medicine applications, particularly

where nervous and muscular tissues are concerned. In addition to growing the survival

rate and the life quality of patients globally, implantable electronic devices have

contributed significantly to assessment of the biological processes taking place within

the human body, including the hard mechanisms of neural control and communication,

and greatly enhanced the understanding of how these are affected by various diseases

and remediation. Ex MEMS and dielectric elastomer actuators have been used to

explore the manner in which biological cells modulate their behavior, proliferate or

differentiate in response to electrical and mechanical stimuli, knowledge which is

fundamental for adequate tissue engineering design [34]. In addition to playing a deep

role in the progress of biomedical sciences and regenerative medicine, communication

technologies and implantable information drive memorable changes in the cultural and

social attitudes of people towards technology. There, implantation is viewed beyond the

medical context as a means to promote the experiences and abilities of healthy

individuals. Despite of essential innovations in the application and fabrication of

implantable biomedical electronic systems since the first implantable heart pacemakers,

the modern implants are still faced with a number of challenges [35].

In terms of device production, there is a strong trend to produce devices with

ever size and weight in order to make them compatible with normal human activities

and enhance leisure for the host. Implants that weight less than 1% of the patient‟s body

weight are typically required. When used whether single-use batteries or rechargeable

batteries significantly contribute to the overall dimensional size and weight of the

device. Rechargeable batteries, like those are used in cochlear implants, can be

recharged transcutaneously using external signals, e.g., pizoelectricaly, radio frequency

(RF), ultrasound, infrared light, low-frequency magnetic field, and so on. More

recently, internal charging using the energy produced by the physiological environment

9

or natural body motion has been investigated. Single-use, non-rechargeable batteries,

like those are used to support pulse generation in deep brain stimulators and cardiac

pacemakers, have a predetermined lifetime, at the end of which they have to be

surgically replaced, at high cost to the patient and the healthcare system. Further

miniaturization can be earned by means of battery-less implants, where energy

harvested from natural or artificial power sources surrounding the patient is used

directly to power the device [36]. Inductive and electromagnetic coupling are extremely

used to power remotely battery less devices. In the former case, time-harmonic

magnetic field generated by the low frequency alternating current in the external coil

generates an alternating current in the implanted component, whereas in the latter,

electromagnetic waves are generated from the antenna in the far field region to power

the implanted chip. Biomedical actuators that do not base on the harvesting, traditional

wireless delivery, accumulation and storage of power in electrical form have been

explored for such high-energy actuation applications as mechanical adjustment in

implantable devices and drug release.

At the same time, there is a strong emphasis on increasing the functionality and

reliability of these electronic devices to support complex real-time stimulation, data

collection, data compression and reliable wireless data transmission to external world.

This increasing complexity of signal processing electronics further increases the power

budget of the device, which should remain very low if the device is remaining working

for extended periods of time. For instance, a wide band technology offers high speed

data transfer between the implanted devices, e.g., implantable electronic cardiovascular

devices, low interference potential and the medical practitioner, yet its implementation

is limited due to its high power consumption.

The ability of the implanted devices, such as glucose monitors, pacemakers, and

insulin-delivery systems, smart prosthetics, and neural stimulators, to be easily

interrogated by health practitioners also makes these systems susceptible to hacking

[37]. In addition to having access to secret patient data, the systems can be

reprogrammed, interfering with the correct device operations. Therefore, firewalls,

including security check protocols, security measures, restricted network access and

data encryption should be seriously considered.

Application of molecular-scale and nano-scale technologies for fabrication and

design of the implantable circuits can lead to remarkable progress in power dissipation

and integration density, enabling nano-biorobotics and neuroelectronic interfacing.

However, current biomedical technologies are still faced with challenges, like relatively

high standby power consumption, lower reliability, and electron leakage due to

insufficient insulation.

Furthermore, in an effort to improve the resolution of the collected biological

signals, the increasing number of electrodes demands more energy to be delivered to

the electrode array, thus potentially growing the thermal energy dissipated within the

implant circuitry. Given the high cost and time associated with the surgical

implantation of the device and the recovery of the patient, long-term reliability of the

device is fateful.

The drive towards small, light and flexible devices may reduce mechanical

robustness of the implant; offensive cleaning procedures used on the devices prior to

implantation may further contribute to weakening of the organic layers. The ensuing in

loss of integrity and vivo degradation may be harmful to the performance of the system,

leading to the system failure, e.g., subsequent surgical removal and electrical shorting.

The implanted device and its degradation by-products may stimulate activation of a

10

range of invulnerable mechanisms, leading to inflammation, which in turn may further

contribute to the implant degradation.

 Achieving suitable biocompatibility is a hard matter, due to the dynamic

multifaceted nature of the host biological response to synthetic and organic materials

used in device fabrication. Where in vivo stimulation or sensing is required for a short

period of time, resorbable implantable electronic systems can provide a solution to

overcome inflammation and infections associated with long term implant utilization.

The premise is that the materials used in system fabrication are biodegradable and

undergo controlled dissociation over time under normal in vivo physiological

conditions. The degradation by-products forbidden minimal toxic response and are

removed from the peri-implantation site by means of normal metabolic activity [39].

However, fabricating a high performing electronic device from entirely biodegradable,

non-toxic set of materials is a difficult undertaking, particularly at small scales. A

combination of reliable and robust non-biodegradable silicon electronics with

bioresorbable polymer platform offers both sufficient bulk degeneration and the

flexibility of the device that the invulnerable response to the remaining material is

minimal [40].

For the technology to be clinically implemented, however, the challenges

associated with integration of sensitive electronics functions with the fabrication

techniques used for production of biodegradable component, and the control over

degradation kinetics and biocompatibility of the device should be addressed. In spite of

many reports detailing the biological activity and degradation behavior of many

commonly used materials in vitro and in vivo, the appreciation of these complex

processes is yet to be adequate. The aim of this background is to discuss the challenges

faced by modern implantable electronic systems and give a brief overview of the

solutions that have been proposed, investigated and implemented in order to overcome

these challenges.

When designing an implantable electronic device, several general requirements

need to be addressed, namely minimal weight and size, low power consumption, high

reliability, high data rate and data latency. As the case with any commercial product,

the design of the implantable systems is heavily influenced by the demands and

preferences of their consumers.

 In addition to being less invasive to the patient body during the implantation,

lighter and smaller devices are likely to result in less pain and discomfort to the host

during recovery and use. The extravagant size and weight may be harmful to the

recovery process by putting pressure on the adjacent tissues that have already been

damaged as a result of surgery, contributing to the inflammatory processes within the

peri-implant space. Light and small devices are less restrictive in terms of normal level

of human activity, and thus sustain better quality of life to the patients. The power

source and encapsulation components remain the major contributors to the overall size

and weight of the device, whereas the electric circuitry components have decreased

dramatically with the advancements in nanotechnology and MEMS. Coupling

capacitors used to ensure charge balance and effectively minimize current leakage may

further increase the volume of the implantable module. Lower power consumption is

important in terms of both the long-term performance of the device and the safety to the

patient.

Furthermore, the power use by interface electronics should be minimized to

ensure longevity of the implants with single-use batteries, as the replacement of such a

device would require a costly and invasive surgical procedure. Although using a

rechargeable battery may require the need for battery replacement surgical interference,

11

the need for frequent charging may be inconvenient, resource-consuming activity and

time-consuming.

Electrocorticography (ECoG) is a type of electrophysiological monitoring that

uses electrodes placed directly on the naked surface of the brain to record electrical

activity from the cerebral cortex. But, conventional EEG electrodes monitor this

activity from the exposed surface of the cortex (outside the skull). ECoG can be

performed either extra operative ECoG (outside of surgery) or intraoperative ECoG

(during surgery in the operating room). Because a surgical incision into the skull

(craniotomy) is required to implant the electrode grid, ECoG is an invasive procedure.

Electrocorticography (ECoG) signals are composed of local field potentials,

recorded directly from outside the skill. The potentials occur primarily in

cortical pyramidal cells, In addition, thus should be conducted through several layers of

the cerebral cortex, arachnoid mater and cerebrospinal fluid before reaching subdural

recording electrodes (placed just below outer cranial membrane). However, to reach the

scalp electrodes of a conventional EEG, electrical signals should also be conducted

through the skull, where potentials rapidly reduce due to the bone low conductivity.

Hence, the Electrocorticography (ECoG) spatial resolution is higher than conventional

EEG, a critical imaging advantage for presurgical planning [41].Electrocorticography

has a spatial resolution of 1 cm and a temporal resolution of approximately 5 ms [42].

Using depth electrodes, the local field potential gives a measure of a neural population

in a sphere with a radius of 0.5:3 mm around the tip of the electrode [17]. With a

sufficiently high sampling rate (more than about 10 kHz), depth electrodes can also

measure action potentials. In which case the spatial resolution is down to individual

neurons, and the field of view of an individual electrode is approximately 0.05-

0.35 mm [17].

Nowadays, electroencephalogram classification has become an important

problem in several fields. In the medicine field, EEG detection could be incredibly

promising for stroke or seizure detection in patients that are oversensitive to such

conditions, and a great deal of research has already been put into solving this problem.

Other medical applications include manufacturing transportation devices for patients

with limited motor abilities to control using simply their thoughts or extremely tender

facial movements. Both of these will pick up EEG and an accurate and classifier will

lead to successful creation of such a system which would change the patients‟ lives

with such a failure. Yet other neuroscience and psychology applications,

Electrocorticography classification can give insight into the human brain inner

workings.

In the biomedical engineering field, neural data recording has a considerable

importance especially by employing neuroprosthetic devices and brain machine

interfaces. Furthermore, multichannel neural recording is essentially for bio analysis

and is commonly used. However, recording big amounts of data has been a challenging

task; for example, a typical recording experiment in which data is obtained from a

1024-channel electrode array at the rate of 64 kHz per channel with 12-bit precision

yields a data rate of around 768 Mbps, which is much beyond the capacity of state-of-

art wireless links that are used in neural applications. Wireless transmission and

reception are used for conducting experiments on freely behaving primates and

animals. Another important requirement in a neural recording system is that it must be

able to operate with a low power. All neural chips which are implanted in living human

bodies must be able to operate at a very low power (less than or equal to 8–10 mW),

failing would lead to temperature increasing (exceed 1°C) and cause damage of neural

https://en.wikipedia.org/wiki/Electrophysiology
https://en.wikipedia.org/wiki/Electrode
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Craniotomy
https://en.wikipedia.org/wiki/Local_field_potentials
https://en.wikipedia.org/wiki/Pyramidal_cells
https://en.wikipedia.org/wiki/Arachnoid_mater
https://en.wikipedia.org/wiki/Cerebrospinal_fluid
https://en.wikipedia.org/wiki/Human_skull
https://en.wikipedia.org/wiki/Bone
https://en.wikipedia.org/wiki/Local_field_potential
https://en.wikipedia.org/wiki/Electrocorticography#cite_note-Logothetis_2003-7
https://en.wikipedia.org/wiki/Action_potentials
https://en.wikipedia.org/wiki/Electrocorticography#cite_note-Logothetis_2003-7

12

tissue. Thus, a compression algorithm which prepared for neural applications must be

simple, such as in brain-machine interfaces.

13

1.2. System Architecture

Figure 1-1 shows the full implantable neural measurement system architecture. This

neural system consists of multielectrode array, analog frontend (amplifiers), analog to

digital converter, data compression and signal processing, power supply, low power

wireless transceiver. All these implantable blocks must be low-power, small area, safe

on the human body. Neural signals have been recorded from the implantable

multielectrode array will be amplified in the analog front-end (AFE) and converted to

digital neural data using analog to digital (ADC) block. Subsequently, the digital data

runs into the main digital module where data compression and signal processing take

place. Hence, the low-rate wireless transceiver transmits the compressed neural data to

the outside world (reconstruction base station), where signal reconstruction and

decompression are performed. Since the system is fully implantable, energy has to be

available from implantable power supply (rechargeable battery or harvesting system).

In neural implantable measurement devices the wireless link to the outside world is

always the functional bottleneck in terms of a very limited data rate of a few MBit/s or

in terms of limited available energy. For the transmission of neural stream data,

wireless data rates in the order of 200 MBit/s (1000 electrodes with a sample rate of 20

kS/second/channel and 10 Bit of resolution) could easily occur. In addition to, in neural

implantable measurement devices for raw data transmission, complete waveforms are

needed instead of extracted signal features. Especially in medical diagnostics

information preservation, neural data could be beneficial such as detection of epileptic

disorders. In order to overcome these bandwidth and energy restrictions, data

compression at the implant site is one possibility of addressing this obstacle. Hence,

data compression block is a mandatory block in the neural implantable measurement

system.

Figure 1-1: Neural System Full Architecture

14

1.3. Motivation

Neural implantable recording systems are widely utilized to treat neural

disorders as Parkinson and Epilepsy diseases. To diagnose and detect these disorders,

the complete waveform for every electrode needs to be extracted instead of extracting

the special signal features only. Hence, data compression at the implant site is

necessary to be able to transmit these huge sizes. To conform to the implantable

subsystem requirements such as limited wireless transmission bandwidth with the

outside world and low received electric power despite of huge number of recording

channels, which reaches up to 1024 channels and even more to cover finer spatial

resolution of the recordings [21], a low-power and efficient compression algorithm is

needed.

In this thesis, high resolution neural signals is targeted whether Electrocorticography

(ECOG) or Electroencephalography (EEG) or any other high resolution neural signals.

Spatial space reaches up to 0.5 mm between the neighboring electrodes. Temporal

sampling rate reaches up to 20 KSample/s/channel. These high resolution signals

characterized high spatial domain correlation as well.

In neural measurement systems the wireless transmission node is the functional

bottleneck in terms of a very limited data rate of a few MBit/s [4]. For the transmission

of high resolution neural raw data for 1024 electrodes, and electrode resolution is 8-bit

with previous mentioned high rate (20 KSample/s/channel), wireless data rates are in

order of 200 MBit/s. Hence, Powerful and efficient compression algorithms at the

implant site to comply with this huge increase in neural data size is required.

In the implantable embedded devices, powerful compression algorithms and higher

compression ratios are not the unique metrics, but also the hardware efficiency (Low-

Power and Area-Efficient) is considered, because power consumption is the major

parameter in implantable devices. In addition, the high sampling rate places another

restriction on the hardware latency of the target compression algorithm to not violate

the real-time processing. Hence, all these restrictions should be combined as design

guidelines to choose the most suitable compression algorithm.

Neural Data compression has an important feature which is 2D correlation, so that both

spatial and temporal compression need to be considered. Hence, a better compression

performance can be gained. Most of compression techniques which have been proposed

for multichannel ECOG or EEG are based on the similarity between neural data

compression and image compression [1,3,6].Image compression algorithms utilize the

spatial correlation between adjacent electrodes only like JPEG and JPEG2000. It is

obvious that these algorithms could not be used directly because they are very complex

and could not achieve the low-power and real time restrictions. However, these

algorithms should be modified to make them suitable for the implantable devices

requirements.

Implantable devices need an efficient power source to supply it with the enough energy

for the electrodes, analog interfacing and digital classification. Implantable devices are

powered using couple of methods: power harvesting and implantable batteries.

Implantable batteries provide the power for implantable neural devices. However,

batteries have limited life time, fixed energy density, large size and chemical side

effects. Thus, researchers have developed various methods to harvest energy for

implantable neural devices. Devices powered by harvested energy provide more safety

and comfort and have longer lifetime than conventional devices. Energies that may be

scavenged include thermal energy, solar energy, infrared radiant energy, wind energy,

waves energy, gravity energy, vibration energy, and body motion energy, wireless RF

15

radiation energy and transfer energy. Energy harvesting devices produce electric energy

from their surroundings through direct energy conversion. The energy harvesting from

environmental sources or human has been provided to be an effective alternative [13].

1.4. Neural Data Characteristics

To evaluate the compression algorithms performance for high-resolution neural data,

virtual recorded data is used with the same signals characteristics (spatial and temporal

correlation) of real data, because there is no available high resolution recorded data

with these large sizes yet (1024 channels and more). Accordingly virtual data for 1024

channels with almost the same correlation of smaller sizes high resolution systems is

used [1,3].

In order to measure the correlation between two signals X1 and X2, the Pearson

Product-Moment Coefficient is used [11], as shown in Eq. (1).

rx1x2
=

𝐸[(𝑥1−μ𝑥1
)(𝑥2−μ𝑥2

)]

𝜎𝑥1𝜎𝑥2

 (1)

The correlation coefficient rx1x2
between two random variables X1 and X2 with Mean

values μx1
 and μx2

 and standard deviations σx1
and σx2

.

The degree of correlation is classified in to [3]:

 0 < r < 0.2 : weak correlation

 0.2 < r < 0.5 : medium correlation

 0.5 < r < 1 : strong correlation

The current model consists of 1024 channels organized in 32x32 grid. It has a strong

average spatial correlation between adjacent channels of 0.6130 and maximum of

0.996, and goes lower when channels are spatially apart. In addition, it has a strong

average temporal correlation between consecutive frames of 0.8250 and maximum of

0.9702, and goes lower when frames are not consecutive.

1.5. Contribution

This dissertation of this work includes the following contributions:

• Provide a review on different Compression designs, their architectures,

simulation and test results.

• Compare between five compression designs that depend on two well-known

bases and evaluate their performance, area, time and power. These bases are the

two main transform coding methods which are used in image compression. They

are (DCT) and (DWT). These two bases are widely used to compress images,

videos and neural data.

• Introduce a new method which can control the compression algorithm according

to available harvested power. Hence, maximum signal to noise and distortion ratio

(SNDR) based on the available harvested power can be achieved without any data

loss.

https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Standard_deviation

16

1.6. Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces a

literature survey of the main compression algorithms. Chapter 3 provides a HW design

and simulation results of the five proposed compression algorithms with their

architecture, then makes a unified comparison between them with available system

design code and HW design code. Chapter 4 introduces a harvested power adaptive

high-resolution neural data compression algorithm as a most suitable compression

algorithm to achieve the highest possible SNDR based on available harvesting power

without any data loss or discontinuity in transmission to outside world. Then the thesis

conclusion and future work are revealed in Chapter 5.

.

Finally, Appendix A shows a detailed description for the:

- System Level design

17

Chapter 2 Literature Survey of The Main Neural

Compression Algorithms

2.1. Introduction

Image compression algorithms utilize the spatial correlation between adjacent

electrodes. However, video compression algorithms utilize the spatial correlation and

temporal correlation between consecutive frames, as well.

These bases are the two main transform coding methods which are used in image

compression. They are (DCT) and (DWT). These two bases are widely used to

compress images, videos and neural data.

It is obvious that these algorithms could not be used directly because they are very

complex and could not achieve the low-power and real time restrictions. However,

these algorithms should be modified to be suitable for the implantable devices

requirements.

Finally, the comparison between all these proposed algorithms is made to provide the

best trade-off between compression performance and hardware complexity.

2.2. Transform Coding

The five proposed compression algorithms that depend on two well-known bases are

applied and evaluated their performance, area, time and power. These bases are the two

main transform coding methods which are used in image and video compression. They

are discrete wavelet transform (DWT), discrete Fourier transform (DFT) and discrete

cosine transform (DCT). These two bases are widely used to compress images, videos

and neural data.

2.2.1. Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier

transform for discrete signals known. Discrete Fourier transform introduces the most

popular base in digital signal processing, which transforms a discrete signal into a set of

coefficients of a finite combination of complex sinusoids. The discrete Fourier

transform is a base with the terms of a geometric progression in each column „c‟ and

row „r‟, which defines the DFT matrix entries, as shown in Eq. (2).

fr,c = (𝑒−𝑗2/𝑁)𝑟𝑐 (2)

where c/N denotes the sinusoids frequencies. If the original signal „x‟ is evaluated for N

= rT samples for all integers r = {0, ….N − 1} and the sampling period „T‟, then the

resulting infinite sequence is a periodic extension of the DFT periodic in „N‟.

18

2.2.2. Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) is a mechanism for converting a signal into

elementary frequency components [24,26]. DCT is similar to Discrete Fourier

Transform (DFT) but with real coefficients instead of complex coefficients [7]. DCT-II

is widely used for compression. The entries of the DCT matrix are given in Eq. (3).

𝑪𝒎,𝒏 =
𝟐

𝑵
∗ 𝒄𝒐𝒔

𝝅𝒎 𝒏+
𝟏

𝟐

𝑵
 (3)

With m, n = 0, 1, 2 ... N−1 if m ≠{0, N} and 1/ 2 otherwise.

The two-dimensional DCT is used in JPEG image compression and MJPEG video

compression. It computes the i, j𝑡ℎ entry of the DCT of an image, as shown in Eq. (4).

𝐷 𝑖, 𝑗 =
1

 2N
c i c j p x, y 𝑁−1

𝑥 ,𝑦=0 𝑐𝑜𝑠
𝜋 𝑚 +1

2𝑁
 𝑐𝑜𝑠

𝜋 𝑛 +1

2𝑁
 (4)

With m, n = 0, 1, 2... N−1 and c (k) = 1 if k ≠ {0, N} and 1/ 2 otherwise.

The common procedure, 2D-DCT of NxN block is computed and the result is quantized

then entropy coded. Typically, N equals 8 and the DCT formula is applied to each row

and column of the block. The result is an 8×8 frequency components matrix in which

the top-left is the DC component and increase gradually horizontally and vertically to

represent higher horizontal and vertical frequencies.

2.2.3. Discrete Wavelet Transform (DWT)

The two-dimensional Discrete Wavelet Transform (2D-DWT) is an effective

mechanism for image compression and hence attracts much attention in recent years. It

is used in JPEG2000 image compression [5,9,22,23]. DWT is any wavelet transform for

which the wavelets are discretely sampled. The major difference between the Fourier

Transform and the DWT is that Fourier transform decomposes the signal into cosines

and sines, but the wavelet transform decomposes the signal into mutually orthogonal set

of local wavelets.

There are three main types of DWT:

- HAAR DWT: is the simplest DWT which divides an image into four sub-bands

by addition and subtraction. The procedure for two-dimensional Haar DWT is

described as follows:

(1) Vertical division: Vertical division divides an image to two separated

divisions. The first part is the sums of two adjacent columns, which is stored as

low frequency coefficients in left side. The other part is the differences of two

adjacent columns, which is stored as high frequency coefficients in right side.

https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/MJPEG
https://en.wikipedia.org/wiki/Video_compression
https://en.wikipedia.org/wiki/Video_compression
https://en.wikipedia.org/wiki/Video_compression
https://en.wikipedia.org/wiki/Quantization_(signal_processing)
https://en.wikipedia.org/wiki/Entropy_encoding
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Wavelet_transform
https://en.wikipedia.org/wiki/Wavelet

19

(2) Horizontal division: once the vertical division is done, the horizontal

division divides the image into four parts. Sums of two adjacent rows are stored

as low frequency coefficients in upper side. The other part is the differences of

two adjacent rows are stored as high frequency coefficients in lower side.

- UNIFORM DWT: is a common DWT in the most of image processing

algorithms like JPEG2000 and it‟s used to transform the frame to frequency

domain. The DWT output is divided to 4 sub-bands, denoted as LL, LH, HL

and HH. Then uses a uniform quantizer with one quantization value to

compress the DWT sub-bands.

- ADAPTIVE DWT: is the same as uniform DWT, but it uses different

quantization values to compress the DWT sub-bands. LL is the most important

quarter so that it divided by the lowest quantization value. Then LH and HL are

divided by intermediate quantization value. Finally, HH has the lowest

importance so that it's divided by the highest quantization value.

There are two degrees of freedom to select the performance of DWT.

 Mother wavelets: like Daubechies 1-8, Symlets 4-8, Coiflets 1 and 2 and etc.

Every wavelet has specific filter bank coefficients and specific performance.

 Levels: 2D-DWT generates 4 sub-bands, denoted as LL, HL, LH, and HH, „L‟

stands for Low and „H‟ stands for High. The low frequency sub-band LL

preserves essential visional features for the original image and can be re-

performed to decompose the second level of DWT if multi-resolution

representation is required and so-on, as shown in Figure 2-1. Since the role of

LL is more crucial than that of the other three sub-bands, finer quantization

(more quantization intervals) should be applied on it. This improves the

compression ratio without decreasing the image quality. Furthermore, within

any single sub-band, if some values like left interval width, right interval width,

and median can be computed in advance, they assist the implementation for a

much more efficient quantization scheme. This is the essentially inspiration for

the proposed approach and the execution steps are described in section 3 in

details.

20

Figure 2-1: 2D-DWT decomposition into two levels [8].

21

Chapter 3 Analytical Comparison of Proposed Neural

Compression Algorithms

3.1. Introduction

In this chapter, five proposed compression algorithms are introduced based on the

similarity between neural data compression and image (video) compression

[1,3,6,25,27] and evaluate their performance, area, time and power.

Video frames are generated such that the first frame consists of one sample from every

channel with its order to combine together the first image then second frame consists of

next sample from every channel with the same order to combine the second image and

so on.

Image compression algorithms utilize the spatial correlation between adjacent

electrodes only like JPEG and JPEG2000. However, video compression algorithms

utilize the spatial correlation and temporal correlation between consecutive frames, as

well, like H.264.

It is obvious that these algorithms could not be used directly because they are very

complex and could not achieve the low-power and real time restrictions. However,

these algorithms should be modified to be suitable for the implantable devices

requirements.

Finally, the comparison between all these proposed algorithms is made to provide the

best trade-off between compression performance and hardware complexity.

3.2. COMPRESSION ALGORITHMS

3.2.1. 2D-DCT8x8 Based Compression Method

The 2D-DCT8x8 algorithm is divided to 4 main steps, as shown in Figure 3-1:

- Discrete cosine transform

- Quantization

- Zigzag reorder

- Huffman

Figure 3-1: 2D-DCT8x8 Based Compression procedure

22

Electrodes are collected together to form the neural time instant frame. This frame of

channels is divided into 8x8 blocks, working from left to right, top to bottom. Block

size 8x8 has high hardware complexity but it has high compression ratio.

The 2D-DCT is applied on each block separately to be converted to frequency

representation. The two-dimensional Discrete Cosine Transform is performed by

coefficients matrix multiplication [6].

𝐷 = 𝑇 𝑃 𝑇′ (5)

As shown in Eq. (5), matrix p (the neural data 8*8 block) is left multiplied by the DCT

coefficients matrix T8x8, as shown in Figure 3-2, this to transform the rows. Then, the

result is multiplied by the transpose of DCT coefficients matrix T′8x8 to transform the

columns.

. 3536 .3536 .3536 .3536 .3536 .3536 .3536 .3536
. 4904 .4157 .2778 .0975 −.0975 −.2778 −.4157 .4904
 .4619 .1913 −.1913 −.4619 −.4619 −.1913 .1913 .4619
. 4157 −.0975 .4904 −.2778 .2778 .4904 .0975 −.4157
. 3536 −.3536 −.3536 .3536 .3536 −.3536 −.3536 .3536
. 2778 −.4904 .0975 .4157 −.4157 −.0975 .4904 −.2778
. 1913 −.4619 .4619 −.1913 −.1913 .4619 −.4619 .1913
. 0975 −.2778 .4157 −.4904 .4904 −.4157 .2778 −.0975

Figure 3-2:𝐓𝟖𝐱𝟖Coefficients Matrix

Then, the 8x8 block of DCT frequency components is ready for quantization, as shown

in Figure 3-2. This stage is the main stage to control the compression ratio and quality

level. Quantization is the only lossy stage duo to rounding process, as shown in Eq. (5).

That means without this stage, the data size can‟t be shrunk and the data can‟t be

decompressed without any lossless. And this quantization is applied by rounding

process after data scaling as shown in Eq. (6).

𝐴 = 𝑟𝑜𝑢𝑛𝑑 (
𝐷 ∗ 𝑄𝑢𝑎𝑙𝑖𝑡 𝑙𝑒𝑣𝑒𝑙

𝑄_𝑚𝑎𝑡𝑟𝑖𝑥
) (6)

Here a scalar constant 'Quality Level' is used as a quality controller, it changes from 1

to 10. For a highest quality and the lowest compression ratio select '10' and for a lowest

quality and the highest compression select '1'. Then, it divided by the quantization value

according to Q_matrix, as shown in Figure 3-3.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 36 55 64 81 194 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Figure 3-3: 𝐐_𝐦𝐚𝐭𝐫𝐢𝐱𝟖𝐱𝟖

23

Quantizer output should have a lot of zeros components in the right bottom corner and

decrease gradually to be minimum at the left top side, so that JPEG standard block

ZIGZAG reorder is proposed to be used to reorder the components from lower

probability to be zero to higher probability to be zero to get higher compression ratio in

the Entropy stage, as shown in Figure 3-4. It needs a memory size 64B to reorder the

8x8 quantized block.

Figure 3-4: Zigzag Order 8x8

Entropy stage is a lossless stage replaces nonzero components to a stream of binary

bits. Huffman coding is a common method to encode the DCT components with

variable length codes according to common tables that are assigned according to

statistical probabilities. A frequently used symbol will be encoded with a short code,

while symbols that are rarely used are represented by a long code.

JPEG standard uses up to 4 tables divided to 2 sets luminance (DC and AC) and

chrominance (DC and AC). The luminance tables are proposed to be used because

Neural signals DCT components have a similar behavior of luminance DCT

components.

This stage is implemented by storing these tables in Lookup Tables and accesses it

sample by sample to be encoded.

3.2.2. 2D-DCT4x4 Based Compression Method

The 2D-DCT8x8 based algorithm requires high computation power and large area, and

thus is not a suitable choice for implantable devices. Correspondingly, the same

algorithm with smaller block 4x4 is used.

24

Figure 3-5: 2D-DCT8x8 Based Compression procedure.

4x4 2D-DCT is performed by matrix multiplication too with coefficients matrix T4x4,

as shown in Figure 3-6.

. 5 .5 .5 .5
. 6353 .2706 − .2706 −.6353

. 5 −.5 −.5 . 5
. 2706 −.6533 .6533 −.2706

Figure 3-6: 𝑻𝟒𝒙𝟒 Coefficients Matrix

Then the DCT frequency components are quantized with the same procedure as 8x8

2D_DCT based algorithm with the proposed Q_marix_4x4, as shown in Figure 3-7.

16 16 17 21
16 17 21 24
17 21 24 36
21 24 36 57

Figure 3-7: 𝐐_𝐦𝐚𝐭𝐫𝐢𝐱𝟒𝐱𝟒

Quantizer output should have a lot of zeros components in the right bottom corner and

decrease gradually to be minimum at the left top side, ZIGZAG Reorder to reorder the

components from lower probability to be zero to higher probability to be zero to get

higher compression ratio in the Entropy stage, as shown in Figure 3-8.

25

Figure 3-8: Zigzag Order 4x4

Then a memory size 16B is needed to apply ZIGZAG reorder procedure on the 4x4

quantized block. Then, the output is Huffman encoded, as shown in Figure 3-5.

In 4x4 2D-DCT, the same Entropy stage (Huffman coding) is used to replaces nonzero

components to a stream of binary bits. Huffman coding is a common method to encode

the DCT components with variable length codes according to common tables that are

assigned according to statistical probabilities in 4x4 blocks as well. A frequently used

symbol will be encoded with a short code, while symbols that are rarely used are

represented by a long code.

In 4x4 2D-DCT, the same 4 tables which are used in JPEG standard are used, these

tables are divided to 2 sets luminance (DC and AC) and chrominance (DC and AC).

The luminance tables are proposed to be used because Neural signals DCT components

have a similar behavior of luminance DCT components.

This stage is implemented by storing these tables in Lookup Tables and accesses it

sample by sample to be encoded.

3.2.3. ADAPTIVE 2D-DWT Based Compression Method

 The main differences between DWT-based and DCT-based methods are the two-

dimension transformation block and the quantizer block but the entropy stage (Huffman

Coding) is the same in 2 algorithms, as shown in Figure 3-9. Input data are directly 2D-

DWT transformed as a one block without division to smaller blocks. That means the

2D-DWT block size is the same as the neural frame size.

Figure 3-9: Adaptive DWT based Compression procedure.

26

In this work the Adaptive quantization DWT compression algorithm is proposed to be

used instead of regular DWT (uniform quantization), because it achieves higher

performance than regular DWT [2], with a small hardware overhead. The complexity of

DWT depends on the length of the filter coefficients and the number of levels. Hence,

1-level DWT with the biorthogonal spline 5/3 filter is a suitable solution for this case

[1]. 2D-DWT is used to transform the frame to frequency domain. The 2D-DWT output

is divided to 4 sub-bands, denoted as LL, LH, HL and HH as shown in Figure 3-10.

Figure 3-10: 1-level DWT Decomposition

The Adaptive quantizer uses different quantization values to compress the DWT sub-

bands. LL is the most important quarter so that it divided by the lowest quantization

value. Then LH and HL are divided by intermediate quantization value. Finally, HH

has the lowest importance so that it's divided by the highest quantization value. To

perform the adaptive quantization algorithm, left interval width, the right interval width

and median for each sub-band have to be computed in advance [2]

Figure 3-11: Adaptive DWT Procedure

Qi,j = sign(Ci,j)
 C i ,j−Median

Quant .Interval
 (7)

Quantized value of 2D-DWT output is calculated, as shown in Eq. (7). Quantization

Interval will equal the right interval width divided by the quantization step if the DWT

component is larger than the median, or will equal the left interval width divided by the

quantization step if the DWT component is smaller than the median, as shown in Figure

3-11. Quantization step is used to control in the compression ratio. If it's large the

compression ratio will be small, and vice versa.

After quantization, a lot of zeros should be in HH sub-band, and less in HL and LH

sub-bands, then LL has a lowest number of zeros. So that the Quantization outputs LL,

27

HL, LH and HH respectively are reordered to be ready for Huffman encoder, as shown

in Figure 3-12.

Figure 3-12: DWT Zigzag Order

In Adaptive 2D-DWT algorithm, the same 4 tables which are used in JPEG standard are

used, these tables are divided to 2 sets luminance (DC and AC) and chrominance (DC

and AC). The luminance tables are proposed to be used because Neural signals DWT

components have a similar behavior of luminance DCT components.

This stage is implemented by storing these tables in Lookup Tables and accesses it

sample by sample to be encoded.

3.2.4. Diff-2D-DCT8x8 Based Compression Method

To utilize the temporal correlation between consecutive samples at the same electrode

(channel) as the spatial correlation between channels is utilized, a three dimensions

algorithm needs to be applied like video compression algorithms to compress in three-

dimensions, but these algorithms require high computation power and large storage.

To utilize the correlation between 8 frames together, 8KB memory size is needed for

1024 channels to store 8 consecutive neural frames to be processed simultaneous. And

thus are not suitable for implantable devices. So that difference between consecutive

frames algorithm is proposed to be used. In this algorithm, the 2D-DCT is applied on

the frames difference to utilize the correlation between the consecutive time instants

[1]. It needs 1KB only to store the last frame to be subtracted from the next frame.

28

Then, complete the remaining path as 2D-DCT8x8 based algorithm, as shown in Figure

3-13.

Figure 3-13: DF-2D-DCT8x8 Based Compression procedure

First frame is stored in the frame buffer waiting the second frame. After sampling the

second frame, it will be subtracted from the first one and it will be stored in the buffer

at the same time instead of the first frame to be processed with the next frame. The

output from the subtraction operation will be divided into 8x8 blocks, working from

left to right, top to bottom. Block size 8x8 has high hardware complexity but it has

high compression ratio.

The Diff-2D-DCT is applied on each block separately to be converted to frequency

representation. The two-dimensional Discrete Cosine Transform is performed by

coefficients matrix multiplication [6].

The frequency components will be quantized with the same 8x8 matrix like 2D-DCT

compression algorithm and the output will be zigzag reordered before Huffman

encoding stage. Huffman coding uses the same 4 tables which are used in 2D-DCT

compression algorithm.

3.2.5. Diff-2D-DCT4x4 Based Compression Method

In Diff-2D-DCT4x4compression algorithm, the goal is to utilize the spatial correlation

on smaller area 4x4 instead of 8x8 with the temporal correlation at the same time to

reduce the power and save the area and storage, as shown in Figure 3-14.

29

Figure 3-14: DF-2D-DCT4x4 Based Compression procedure

First frame is stored in the frame buffer waiting the second frame. After sampling the

second frame, it will be subtracted from the first one and it will be stored in the buffer

at the same time instead of the first frame to be processed with the next frame. The

output from the subtraction operation will be divided into 4x4 blocks, working from

left to right, top to bottom. Block size 4x4 has lower hardware complexity but it has

lower compression ratio.

3.3. Result Comparison And Discussion

In order to evaluate the proposed compression algorithms three performance metrics are

used:

 Compression ratio (R): to measure the ratio between compressed data size and

original data size, as shown in Eq. (8).

 R =
Compressed data size

Original data size
 (8)

 Signal to Noise and Distortion Ratio (SNDR): to measure the quality of

reconstruction data D after compression and decompression again compared to

original data D [3], as shown in Eq. (9).

SNDR = 10dB . log
 D 2

2

 D−D
2

2 (9)

30

 Figure of Merit (FOM): The SNDR measures the quality only. But there is

another performance measurement to be compared and it's not less importance

than SNDR especially in implantable devices. This parameter is the hardware

complexity (area or power). Both can be used to express the hardware

complexity. In this thesis, area is used as an indicator on the hardware

complexity. Area (Power) cannot be used alone, because it can be decreased at

the expense of output Latency and vice versa by changing the level of

pipelining. So that the hardware block latency should be included, as well, in

the consideration to be fair comparison, as shown in Eq. (10).

FOM = 10dB .

log
 D 2

2

 D−D 2
2

Latency . Area
 (10)

Figure 3-15 shows the SNDR for all previous compression algorithms for different

compression ratios.

a) 8x8 2D-DCT

b) 4x4 2D-DCT

c) 8x8 DF-2D-DCT

d) 4x4 DF-2D-DCT

e) 2D-DWT

Figure 3-16 shows the FOM for all previous compression algorithms for different

compression ratios.

a) 8x8 2D-DCT

b) 4x4 2D-DCT

c) 8x8 DF-2D-DCT

d) 4x4 DF-2D-DCT

e) 2D-DWT

31

(a)

(b)

(c)

32

(e)

(d)

Figure 3-15: SNDR vs compression ratios for all algorithms

33

(a)

(b)

(c)

34

(d)

(e)

Figure 3-16: SNDR/(LATENCY*AREA) vs compression ratios for allalgorithms

35

Figure 3-17.a shows the signal-to-noise and distortion ratio (SNDR) for all proposed

compression algorithms for different compression ratios. Spatiotemporal compression

algorithms whether DF_DCT_8*8 or DF_DCT_4*4 consistently achieve higher SNDR

than spatial only algorithms for a wide range of compression ratios. Because

spatiotemporal algorithms utilize the temporal correlation between consistence frames,

but spatial 2D algorithms whether DCT_8*8 or DCT_4*4 utilize the spatial correlation

between adjacent channels only.

In addition, it's obvious that DCT_8*8 achieve better performance than DCT_4*4 duo

to larger block size. Block size 8*8 utilizes the correlation between 64 channels but 4*4

block utilize the correlation between 16 channels only. But DCT_8*8 algorithm it's not

a perfect compression algorithm to be used in implantable devices duo to its hardware

complexity as will be discussed later. Adaptive quantization DWT algorithm achieves

better compression performance than DCT_4*4 compression algorithms whether

spatial or spatiotemporal for a wide range of compression ratios till SNDR value at or

above 45 dB. But it's still lower than DCT_8*8 compression algorithms whether spatial

or spatiotemporal.

The above comparison among the compression algorithms is based on the performance

(SNDR). Now the hardware implementation area and hardware latency should be

included into the comparison to give real design insights. In order to get them, the

following steps are conducted:

 The area of the hardware design is measured on 130 nm technology for ASIC

implementation. And calculate the needed SRAM memory for every

compression algorithm then multiply it by 6-transistor SRAM area for the same

technology.

 Hardware latency per frame (1024 channels) is used as a reference in the

comparison.

 Area and latency is used normalized to the maximum value.

Table 3-1 lists the performance metrics for the algorithms and the following design

insights are extracted from the table:

 DWT algorithm has the smallest area and power, but it has the largest latency

per frame.

 DF_DCT_8*8 has the largest area and power (triple of DF_DCT_4*4), but it

has the smallest latency per frame.

 The major difference between spatiotemporal algorithms and spatial algorithms

is the required memory size.

Figure 3-17.b shows the FOM for all previous compression algorithms for different

compression ratios. Adaptive DWT compression algorithm is deduced as the best

algorithm for all compression ratios duo to its hardware simplicity and all DCT based

algorithms is worse for all compression ratios duo to its hardware complexity. In

addition, spatial only compression algorithms achieve higher FOM than spatiotemporal

36

algorithms because they add extra area overhead more than their effect on the SNDR

performance.

Finally, the Adaptive Quantization DWT algorithm is recommended as the most

suitable compression algorithm for low-power implantable devices for neural data

compressing. To reconstruct the data without performance degradation SNDR more

than 42 dB needs to be achieved. Then, the size of compressed data will be 19% from

the original data size. For the seizure detection, SNDR around 30 dB is adequate. Then,

the size of reconstructed data will be 2.5% from the original data size.

37

Table 3-1: Hardware Performance Summary of the compression algorithm

(a) (b)

Figure 3-17: Comparison of the performance of the compression algorithms

 Area
(um)

Memory (KB) Memory
(μm)

Total Area (μm) Power
(mw)

Latency Per
Frame (clock

cycle)

DCT 8*8 726923 0.086 1710 728633 96.94 3280

DF DCT 8*8 721770 1.08 21617 743387 95.62 3280

DWT 110639 1 19906 130545 11.36 5888

DCT 4*4 232939 0.02 427 233366 32.06 3648

DF DCT 4*4 235855 1.02 20334 256189 31.06 3648

38

Chapter 4 : Harvested Power Adaptive High-Resolution

Neural Data Compression(PANDCA)

4.1. Introduction

The main goal of any implantable compression device is to get the smallest data

size to be transmitted to the outside world with lowest distortion and data loss at

receiver side. In this work, the neural compression algorithm is adapted according to

the available harvested power budget. Therefore, the maximum signal to noise and

distortion ratio (SNDR) is achieved based on the available harvested power budget

without any data loss.

Implantable devices need an efficient power source to supply them with enough energy

to power the electrodes, analog interfacing and digital classification as will be described

later. Implantable devices are usually powered by a rechargeable battery that is charged

by using a micro-scale energy harvesting system. These implantable rechargeable

batteries provide the energy for implantable biomedical devices. However, batteries

have limited lifetime, fixed energy density, large size and chemical side effects. Thus,

researchers have developed various methods to harvest energy for implantable neural

devices.

Devices powered by harvested energy provide more safety and comfort and have longer

lifetime than conventional devices. Energies that may be scavenged include:

- Thermal energy

The body temperature changes when it receives or transmits energy. In this

situation, the molecules are in constant motion, and this excitation is measured

by temperature. Only by temperature difference can extract energy from a

thermal reservoir (human body) be guaranteed. The conversion possibility

between heat and work has been restricted to thermal machines.

- Solar energy

Solar energy is the conversion of energy from light into electricity, either

using concentrated solar power(indirectly) or using photovoltaics(directly).

Concentrated solar power systems use mirrors or lenses and tracking systems to

be able to focus a large area of sunlight into a small beam. Photovoltaic (PV)

cells convert light into an electric current using the PV effect.

- Body motion energy (Piezoelectric energy)

Brothers Pierre and Jacques Curie discovered the piezoelectric effect in quartz

crystals in 1880. In general, can be defined as the conversion of mechanical

energy to electrical energy (direct effect) or conversion of electrical energy to

mechanical energy (inverse effect) [21]. The direct piezoelectric effect provides

that an electrical charge is generated when it subjected to a mechanical energy,

https://en.wikipedia.org/wiki/Energy_transformation
https://en.wikipedia.org/wiki/Sunlight
https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/Concentrated_solar_power
https://en.wikipedia.org/wiki/Photovoltaics
https://en.wikipedia.org/wiki/Mirrors
https://en.wikipedia.org/wiki/Lens_(optics)
https://en.wikipedia.org/wiki/Solar_tracking
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Photovoltaic_effect

39

whether delivered from traction, compression or just vibration. In turn, the

inverse piezoelectric effect is the piezoelectric material ability to generate

mechanical energy when subjected to an electrical charge in opposite sides [21].

- Gravity energy

- Infrared radiant energy

Energy harvesting devices from their surroundings produce electric energy through

direct energy conversion. The energy harvesting from environmental sources or human

body has been provided to be an effective alternative [13].

In this work, piezoelectric energy harvesting is proposed, which uses a direct energy

conversion from vibrations and mechanical deformation to electrical energy. This is a

promising technique to supply power sources in implantable biomedical devices, since

it has higher energy conversion efficiency and a simple structure.

Recently, various technologies, such as micro- and macro-mechanics, advanced

materials, and electric circuit design, have been emerged and investigated to improve

the performance and the conversion efficiency of the piezoelectric energy harvesters. In

this work, the focus is on recent progress of piezoelectric energy harvesting

technologies based on PbZrTi (PZT) materials, which have the most outstanding

piezoelectric properties. The higher output energy density of the (PZT) piezoelectric

energy harvester is 231 mW/cm2 [14,15].

In all the transmission rates and power calculations the TI chip CC3100MOD is used as

a reference in this work [16]. This chip is a low-power Wi-Fi for Internet of Things

(IoT) applications and operates in two modes:

- Standby mode: with current up to 140 μA and average power up to 504 μW.

- Low Power Tx mode: with current up to 223 mA and average power up to

802.8 mW.

The main transmission protocols:

- User Datagram Protocol (UDP)

- Transmission Control Protocol (TCP)

The TCP is one of the major the Internet protocol suite protocols. It originated in the

initial network implementation in which it complemented the Internet Protocol (IP).

Hence, the entire suite is commonly referred to as TCP/IP. TCP provides error-checked,

ordered, and reliable delivery of a stream of bits between applications running on hosts

communicating by an IP network. But TCP is a relatively complex protocol, with a lot

of features that come at a cost. It imposes some overhead in terms of packet size. The

TCP handshake also takes some extra latency compared to simpler protocols. So User

Datagram Protocol (UDP) transmission mode is used in this work. This protocol was

designed by David Reed in 1980 and formally defined as a main network protocol.

With UDP, computer applications can send messages, in this case referred to as neural

https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Error_detection_and_correction
https://en.wikipedia.org/wiki/Reliability_(computer_networking)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/David_P._Reed
https://en.wikipedia.org/wiki/Datagram

40

compressed data, to other hosts on an Internet Protocol (IP) network. Prior

communications are not needed in order to set updata paths or transmission channels.

This protocol is a simpler message-based connectionless protocol. Connectionless

protocols do not set up a dedicated end-to-end connection. Communication is held by

information transmission in one direction from source to destination without waiting to

acknowledge from the receiver. The UDP mode is preferred to be used in independent

packets transmission such as sound packets and neural data packets. The proposed

reference chip achieves a UDP actual throughput up to 16 Mbps.

In this work, a feedback from the power harvesting device is needed to be able to know

the input current level (power level), because PANDCA utilizes it as an input, as will

be described later. Hence, a current sensor is adopted to detect the input current level.

This input is quantized to suitable number of levels according to the power harvesting

device. Then, used as an indicator for the available power level to the compression

block.

https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Transmission_channel
https://en.wikipedia.org/wiki/Connectionless_protocol

41

4.2. Motivation

Ordinary implantable biomedical devices have 3 scenarios to utilize the available

harvested power budget to transmit the compressed neural data to the outside world:

- First scenario is to transmit the neural compressed data with fixed low

compression ratio continuously with low rate to guarantee that the minimum

available power is enough to transmit the compressed data over all the time.

- Second scenario is to transmit a defined period of neural data when a

predefined triggering event occurs such as seizure spikes if there is enough

available harvested power budget to transmit this period to the outside world.

Otherwise, this triggering event is discarded if there is not enough harvested

power budget to transmit this period.

- Third scenario is to send neural data continuously without dependence on any

special event with suitable rate as long as there is enough harvested power

budget to send it continuously. Otherwise, if there is not enough harvested

power budget to continue the transmission, it stops the transmission till

producing enough power from harvesting power source then starts the

transmission again.

However, all these scenarios are not efficient enough for the current biomedical

implantable devices constrains. Current treatment devices need the complete waveform

and history for every electrode to be extracted instead of extracting the special signal

features only to be able to detect and diagnose neural brain disorders. Accordingly, it

should be guaranteed that the detected neural data can be transmitted continuously

without any pauses or data loss. In addition, the compressed data can be decompressed

at the other side with high quality without significant distortion.

In this work, PANDCA is proposed to use the available harvested power budget to

adapt the compression algorithm ratio. Therefore, the proposed technique allows

transmitting the compressed neural data continuously. Hence, it achieves maximum

signal noise and distortion ratio (SNDR) according to available harvested power budget

without any data loss.

4.3. Selected Compression Algorithm

Despite of Adaptive 2D-DWT algorithm is a most suitable solution for low-power

implantable devices. But 2D-DCT compression algorithm is selected to be used in

PANDCA due to the linearity characteristic in the target region as shown in Figure 4-1.

This characteristic is very important in PANDCA to be able to divide it to equal steps,

as will be described later.

42

Figure 4-1: SNDR vs compression ratios for all algorithms

(a)

(c)

(b)

43

4.4. Power Oriented Algorithm

4.4.1. Neural System Power Components

The main power hungry blocks in neural implantable devices are the wireless

transmitters [18] and the data compressors [19]. Thus, the large percentage of the

harvested power budget is dedicated to the wireless transmitter and compression block

as shown in Figure 4-2.

Figure 4-2: Neural system Power Tree

Compression Block Power:

If the number of channels (electrodes) is constant, compression block consumes

constant power regardless of the compression ratio. After RTL Hardware

Implementation on 130nm technology for ASIC implementation, PANDCA consumes

32.06 mW. This power consumption is drawn from the power budget as a constant

value and the remaining power budget is used by the wireless transmitter.

Miscellaneous Power Consumers:

Neural Implantable devices have a lot of blocks which consume power such as

electrodes, analog interfacing, and digital controllers. However, the main characteristic

which combines them is that they consume fixed power regardless any change in

44

quality factor. So this power consumption is drawn from the power budget too as a

constant value and the remaining power budget is used by the wireless transmitter.

Wireless Transmission Power:

Low power WIFI chips support data rates up to 16 Mbps. The TI chip

CC3100MOD in transmission only mode is always sleep except when there is available

data to be transmitted. In sleep mode, the absorbing current consumption is very small

compared to transmission mode so that it can be negligible.

Therefore, the power consumption duration is in the TX mode duration only.

Hence, the size of data to be transmitted is the main parameter in power consumption.

When this data size increases, the duration of Tx mode increases, so is the current

(power) consumption. On the other hand, when this data size decreases, the duration of

the Tx mode decreases so is the current (power) consumption as shown in Figure 4-3.

Data size = x Active Time = t Absorbing Power = y

Data size = 2x Active Time = 2t Absorbing Power = 2y

Data size = 3x Active Time = 3t Absorbing Power = 3y

Figure 4-3: Transmission Timing Scheduling

As shown in (7), absorbing current (power) is linearly proportional with time.

 𝑃 = 𝑉𝐼 = 𝑉
𝑉

𝑅
. 𝑡 =

𝑉2

𝑅
 . 𝑡 (7)

In this work, data size is assumed to be linearly proportional to the duration of

transmission (absorbed Power), assuming that the traffic is idle, especially because TI

WIFI chip is used in UDP mode [16]. Hence, absorbing power can be controlled

according to compressed data size.

45

4.4.2. Quality Factor Effect

In the proposed compression algorithm, the quality of compressed data (SNDR) is

controlled according to quality factor which varies from 1 to 10. This range is selected

because SNDR is approximately linearly proportional with quality factor in this range

only, as shown in Figure 4-4 and this characteristic is important in the proposed

PANDCA as will be analyzed. Hence, there are 10 quality levels and according to this

quality factor change, the compressed data size changes.

Figure 4-4: Quality Factor Effect

As shown in Figure 4-4:

 When quality factor increases, the compression ratio (compressed data size divided

by original data size) increases and vice versa.

 When Quality Factor increases, the SNDR increases and vice versa.

Hence, the output compressed data size and its quality (SNDR) are controlled according

to quality factor level.

46

4.4.3. Power Oriented Algorithm

Figure 4-5: Power Oriented Design

As shown in Figure 4-5, this is the proposed algorithm to control the compression

algorithm quality factor (compressed data size) according to available harvested power

budget:

1. Subtract the needed power for the compression block and other needs from the total

available harvested power budget to get the available power budget to transmit the

compressed data.

2. Select the size of compressed data which can be transmitted with this available

power (according to WIFI chip specifications).

3. Calculate the needed compression ratio (needed size of compressed data / size of

original data).

47

4. Select the initial quality factor from the saved data in Table 4-1, this data is

obtained from the previous results with the same correlation, resolution and number

of electrodes (channels). This table should be recalculated if any parameter is

changed.

5. If the actual compressed data size is equal to, or less than, the suggested

compressed size with a specific limit, the compression algorithm should continue

with the same quality factor in the next frames.

6. If it is larger than the calculated size or less with a specific limit, the compression

algorithm will increment or decrement the quality factor level with quantized steps

according to the error step size.

7. The selected quality factor will be in use until the power harvested budget is

changed. Once the available harvested power budget is changed repeat again from

step 1.

4.5. Results and Discussions

The (64-channel) results are discussed and explained in details. Then, the other channel

resolutions results are provided and compared to (64-channel) results.

Table 4-1 shows the suggested initial saved values to start with at step 4 according to

available power budget to transmit. Then, go up and down in the next frames according

to error step, this table is for (64-channels) results:

 Column 1 divides the quality factors to 10 levels from 1 to 10, when the quality

factor increases, the SNDR increases and the compressed data size increases.

 Column 2 is the compressed frame sizes according to quality factor level. It is

calculated after hundreds of trials on the brain neural data.

 Column 3 is the frame (64-channel) sampling rate if the channel (electrode) rate

is 20 Ksps.

 Column 4 is the needed transmission duration per one second with transmission

rate 16 Mbps.

 Column 5 is the needed transmission power if the sleep duration is ignored

according to the reference TI WIFI chip CC3100MOD transmission current and

voltage.

All these values should be changed if any parameter from electrodes resolution,

electrodes correlation, electrode sampling rate, number of channels, transmission rate or

WIFI chip is changed.

Figure 4-6 shows four cases of available harvested power budget profile and the

performance of the proposed PANDCA based on the harvested power scenario.

48

Constant harvesting power profile (Figure 4-6.a):

In this case, the available harvested power budget to transmit is 90 mW and it is fixed

on this value over all the duration.

The proposed RANDCA searches on the nearest power entry on the saved table (Table

4-1), and selects entry number 6 as an initial value, because it is the lower nearest entry

from available power.

To achieve this target power of 88.3 mW, the proposed compression algorithm needs to

be adapted initially to quality factor level 5, to get compressed frame size around (11

B), frame rate around (220 Kbps) and transmission duration around .11 second to get

the target power of 88.3 mW.

After starting with quality factor level 5, a compressed size (11 B), and this value is

lower than the suggested size acceptable range, then it increases the quality factor to

level 6 at the next frame trying to enter this acceptable range.

In the second frame, a compressed size (12 B), and this value is more than suggested

size acceptable range, then it decreases the quality factor to level 6 again at the next

frame trying to enter this acceptable range. This continues till entering the acceptable

range and settles the quality factor level or continues in trying mode around the

acceptable range.

Figure 4-6.a: Constant Power Adaptive Performance

49

Increasing harvesting power profile (Figure 4-6.b):

In this case, the available harvested power budget to transmit at the first frame is 60

mW and it is increasing linearly over all the duration.

The proposed PANDCA searches on the nearest power entry on the saved table (Table

4-1), and selects entry number 2 as an initial value, because it is the lower nearest entry

from available power.

To achieve this target power of 56.2 mW , the proposed compression algorithm needs

to be adapted initially to quality factor level 2, to get compressed frame size in around

(7 B), frame rate around (140 Kbps) and transmission duration around .07 second to

get the target power of 56.2 mW.

After starting with quality factor level 2, a compressed size (7 B), and this value is

more than suggested size acceptable range, then the quality factor is decreased to level

1 at the next frame trying to enter this acceptable range.

In the second frame, the proposed compression algorithm faces increase in the available

harvesting power level, then the new comparison will be against larger suggested power

due to this increase, but this increase can be handled by increasing the quality factor

level trying to enter this acceptable range. This continues till entering the acceptable

range and settles the quality factor level or continues in trying mode around the

acceptable range.

Figure 4-6.b: Increasing Power Adaptive Performance

50

Decreasing harvesting power profile (Figure 4-6.c):

In this case, the available harvested power budget to transmit at the first frame is 90

mW and it is decreasing linearly over all the duration.

The proposed PANDCA searches on the nearest power entry on the saved table (Table

4-1), and selects entry number 11 as an initial value, because it is the lower nearest

entry from available power.

To achieve this target power of 88.3 mW , the proposed compression algorithm needs

to be adapted initially to quality factor level 5, to get compressed frame size in around

(11 B), frame rate around (220 Kbps) and transmission duration around .11 second to

get the target power of 88.3 mW.

After starting with quality factor level 5, a compressed size (11 B), and this value is less

than suggested size acceptable range, then the quality factor is increased to level 12 at

the next frame trying to enter this acceptable range.

In the second frame, the proposed compression algorithm faces decrease in the

available harvesting power level, then the new comparison will be against lower

suggested power due to this decrease, but this decrease can be handled by decreasing

the quality factor level trying to enter this acceptable range. This continues till entering

the acceptable range and settles the quality factor level or continues in trying mode

around the acceptable range.

Figure 4-6.c: Decreasing Power Adaptive Performance

51

Real harvesting power profile (Figure 4-6.d):

In this case, the available harvested power budget to transmit at the first frame is 90

mW and it is decreasing linearly over all the duration.

The proposed PANDCA searches on the nearest power entry on the saved table (Table

4-1), and selects entry number 11 as an initial value, because it is the lower nearest

entry from available power.

To achieve this target power of 88.3 mW , the proposed compression algorithm needs

to be adapted initially to quality factor level 5, to get compressed frame size in around

(11 B), frame rate around (220 Kbps) and transmission duration around .11 second to

get the target power of 88.3 mW.

After starting with quality factor level 5, a compressed size (11 B), and this value is less

than suggested size acceptable range, then the quality factor is increased to level 12 at

the next frame trying to enter this acceptable range.

After few frames, the proposed compression algorithm faces decrease in the available

harvesting power level, then the new comparison will be against lower suggested power

due to this decrease, but this decrease can be handled by decreasing the quality factor

level trying to enter this acceptable range. This continues till entering the acceptable

range and settles the quality factor level or continues in trying mode around the

acceptable range.

After few frames, the proposed compression algorithm faces increase in the available

harvesting power level, then the new comparison will be against larger suggested power

due to this increase, but this increase can be handled by increasing the quality factor

level trying to enter this acceptable range. This continues till entering the acceptable

range and settles the quality factor level or continues in trying mode around the

acceptable range, as shown in Figure 4-6.d.

52

Figure 4-6.d: Real Power Adaptive Performance

As shown on these four case studies, the proposed (PANDCA) achieves the highest

possible SNDR based on the available harvested power budget. In Table 4-2, the

comparison between conventional algorithm which compresses the neural data with

fixed compression ratio to be able to produce a suitable compressed data size to be

transmitted to the outside world without any discontinuity against the proposed

PANDCA. It is obvious that there is a significant enhanced performance of the

proposed algorithm compared to the conventional algorithm especially in cases (b, c

and d) because the harvested power is variable with time and conventional algorithms

are not adaptive to these cases. Knowing that normally in the implantable devices for

neural data compression, the harvested energy exhibits different profiles based on the

environmental conditions

Table 4-3 and Table 4-4 show the results for two other model sizes (32-channels) and

(8-channels) respectively with high resolution grid too, these small model sizes are

compressed with 2D-DCT as well but with 4x4 block size.

 Finally, the harvested power adaptive high-resolution neural data compression

algorithm (PANDCA) is the most suitable compression algorithm for low-power

implantable devices for neural data compressing. To reconstruct the data without

performance degradation, higher possible SNDR over all the time should be achieved

and the only obstacle to achieve that is the available harvested power.

53

Q_F

Index

Sp

(Byte)

Frame rate (KBps)

ch. Rate = 20 Ksps

Tx. Duration per (1s)

with rate 16 Mbps (s)

Tx. Power

(mW)

1 4 80 0.04 32.112

2 7 140 0.07 56.196

3 9 180 0.09 72.252

4 10 200 0.1 80.28

5 11 220 0.11 88.308

6 12 240 0.12 96.336

7 13 260 0.13 104.364

8 14 280 0.14 112.392

9 15 300 0.15 120.42

10 16 320 0.16 128.448

Table 4-1: 64-channel results

Constant Power

(case a)

Increasing Power

(case b)

Decreasing Power

(case c)

Real Power

(case d)

Avg.

SNDR

Number

of Tx

Bytes per

60 Frame

Avg.

SNDR

Number

of Tx

Bytes per

60 Frame

Avg.

SNDR

Number

of Tx

Bytes per

60 Frame

Avg.

SNDR

Number

of Tx

Bytes per

60 Frame

Normal

Compression

Algorithms

40 660 34 240 34 240 34 360

Power

Adaptive

Algorithm

41 690 38 520 36 492 38 451

Table 4-2: Performance Comparison

54

Q_F

Index
Sp (Byte)

Frame rate (KBps)

ch. rate = 20 Ksps

Tx. Duration per (1s)

with rate 16 Mbps (s)

Tx. Power

 (mW)

1 2 40 0.02 16.056

2 4 80 0.04 32.112

3 4.5 90 0.045 36.126

4 5 100 0.05 40.14

5 5.5 110 0.055 44.154

6 5.6 112 0.056 44.9568

7 5.7 114 0.057 45.7596

8 6 120 0.06 48.168

9 6.5 130 0.065 52.182

10 7.5 150 0.075 60.21

Table 4-3: 32-channel results

55

Q_F

Index
Sp (Byte)

Frame rate (KBps)

ch. rate = 20 Ksps

Tx. Duration per (1s)

with rate 16 Mbps (s)

Tx. Power

 (mW)

1 1 20 0.01 8.028

2 1.25 25 0.0125 10.035

3 2 40 0.02 16.056

4 2.1 42 0.021 16.8588

5 2.25 45 0.0225 18.063

6 2.5 50 0.025 20.07

7 2.75 55 0.0275 22.077

8 3 60 0.03 24.084

9 3.25 65 0.0325 26.091

10 3.5 70 0.035 28.098

Table 4-4: 16-channel results

4.6. Summary

Neural data research has a wide application today and it heavily depends on data

compression to be able to extract all signal waveforms with finer resolution for further

processing. This work proposes a harvested power adaptive high-resolution neural data

compression (PANDCA) as the most suitable compression algorithm candidate to

achieve the highest possible SNDR based on available harvested power budget without

any data loss or discontinuity in the transmission to the outside world.

56

Chapter 5 Conclusions and Future Work

5.1. Discussion and Conclusions

This Thesis is divided to two main parts:

- A Low-Power Area-Efficient Design and Analysis for Neural Data

Compression.

- Harvested Power Adaptive High-Resolution Neural Data Compression

(PANDCA).

In the first part, five compression algorithms are proposed, investigated and compared,

to utilize both spatial correlation between adjacent electrodes and temporal correlation

between consecutive samples. These algorithms are:

a) 8x8 2D-DCT

b) 4x4 2D-DCT

c) 8x8 DF-2D-DCT

d) 4x4 DF-2D-DCT

e) Adaptive 2D-DWT

These proposed algorithms‟ performance, area, time and power are evaluated and

compared to provide the best trade-off between hardware complexity and compression

performance.

The conclusion from performance (SNDR) comparison among the compression

algorithms is that the spatiotemporal algorithm (DF-DCT 8x8) is the best algorithm for

most of compression ratios.

However, after hardware implementation area and hardware latency is included into the

comparison to give real design insights. Adaptive DWT compression algorithm is

deduced as the best algorithm for all compression ratios duo to its hardware simplicity.

On the other hand, all DCT based algorithms is worse for all compression ratios duo to

its hardware complexity. In addition, spatial only compression algorithms achieve

higher FOM than spatiotemporal algorithms because they add extra area overhead more

than their effect on the SNDR performance.

Finally, the Adaptive Quantization DWT algorithm is recommended as the most

suitable compression algorithm for low-power implantable devices for neural data

compressing. To reconstruct the data without performance degradation SNDR more

than 42 dB needs to be achieved. Then, the size of compressed data will be 19% from

the original data size. For the seizure detection, SNDR around 30 dB is adequate. Then,

the size of reconstructed data will be 2.5% from the original data size.

In the second part, the goal is to get the smallest data size to be transmitted to the

outside world with lowest distortion and data loss at receiver side. A new methodology

is introduced to control the compression algorithm according to available harvested

57

power. Hence, maximum signal to noise and distortion ratio (SNDR) is achieved based

on the available harvested power without any data loss.

Despite of Adaptive 2D-DWT algorithm is a most suitable solution for low-power

implantable devices. But 2D-DCT compression algorithm is selected to be used in

harvested power adaptive algorithm due to the linearity characteristic in the target

region. And this characteristic is very important in the harvested power adaptive

algorithm to be able to divide it to equal steps.

The PANDCA algorithm can achieve the highest possible SNDR based on available

harvested power. After comparison between ordinary algorithm which compress with

fixed compression ratio which can produce a suitable compressed data size to be

transmitted to outside world without any discontinuity and PANDCA. A significant

effect of PANDCA than the ordinary algorithm is deduced especially in case of

unstable power source because the harvesting power is variable with time and ordinary

algorithms can‟t handle these cases.

Finally, the power harvesting oriented high-resolution neural data compression

algorithm is the most suitable compression algorithm for low-power implantable

devices for neural data compressing. To reconstruct the data without performance

degradation, higher possible SNDR over all the time should be achieved and the only

obstacle to achieve that is the available harvested power.

5.2. Future Work

5.2.1. FPGA Demo Implementation

Figure1-1 shows the full system architecture of the implantable neural measurement

system. Neural signals recorded from the multielectrode array will be amplified in the

analog front-end (AFE) and converted to digital neural data using analog to digital

(ADC) block. Subsequently, the neural data runs into the main digital module where

data compression and signal processing take place. Hence, the low-rate wireless

transceiver transmits the compressed neural data to the outside world (reconstruction

base station), where signal reconstruction and decompression are performed. Since the

system is fully implantable, energy has to be harvested using PZT harvesting system.

Most of digital blocks include (electrode neural data combining, compression algorithm

and compressed data streaming) are ready. Once the remaining blocks:

- Analog blocks (AFE and ADC)

- Low-rate wireless transceiver (TI chip and its software application)

- PZT Harvesting device

are available. Then, this work can be hardware implemented using FPGA and some

peripherals.

58

5.2.2. Neural Data Encryption before compression

Neural data should be secure and protected from any hacking because any interrupt in

patient neural data from outside world may lead to wrong stimulation or seizure

detection failure. Also neural data should be secret and no parasitical can analyze it

except the specialized doctor. Therefore, firewalls, including security check protocols,

security measurement, restricted network access and data encryption should be

seriously considered to avoid corruption of the secret patient data. There are a lot of

low power security algorithms can be used. However, the main milestone is the power

consumption because security algorithms are power hungry.

5.2.3. Adaptive 2D_DWT Performance Linearization

Despite of Adaptive 2D-DWT algorithm is a most suitable solution for low-power

implantable devices. But 2D-DCT compression algorithm is selected to be used in

PANDCA due to the linearity characteristic in the target region as shown in Figure 3-1.

This characteristic is very important in PANDCA to be able to divide it to equal steps,

as described previously. Hence, Adaptive 2D-DWT algorithm needs to be linearized to

be applicable with PANDCA. Hence, PANDCA can gain better performance (SNDR)

than current version.

5.2.4. Real High Resolution Neural Data Simulation

 To evaluate the performance of the compression algorithms for high resolution neural

data, virtual recorded data is used with the same signals characteristics (spatial

correlation and temporal correlation) of real data, because there is no available high

resolution recorded data with these large sizes yet (1024 channels and more). So that,

the proposed algorithms need to be re-simulated again once the real high resolution

neural data be available to be confirmed.

59

References

1. T. Kim, N. S. Artan, J. Viventi, and H. J. Chao, "Spatiotemporal Compression for

Efficient Storage and Transmission of High-Resolution Electrocorticography Data",

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society (in submission), 2012.

2. P. Chen and J. Chang, "An Adaptive Quantization Scheme for 2-D DWT

Coefficients", 2013.

3. S. Schmale, J. Hoeffmann, B. Knoop, G. Kreiselmeyer, H. Hamer, D. Peters-

Drolshagen and S. Paul, "Exploiting Correlation In Neural Signals For Data

Compression", 2014.

4. Zarlink Semiconductor (now: Microsemi), “ZL70102-Medical implantable RF

transceiver MICS RF telemetry,” June 2010.

5. B. Usevitch, “A tutorial on modern lossy wavelet image compression:foundations

of JPEG 2000”, Signal Processing Magazine, IEEE vol. 18, 2001.

6. C. Chung, L. Chen, Y. Kao and F. Jaw, “Multichannel Evoked Neural Signal

Compression Using Advanced Video Compression Algorithm”, 2009.

7. K. Rao and P. Yip,Discrete, “Cosine Transform-Algorithms, Advantageand

Applications”. Academic Press Limited, 1989.

8. A. clanku, P. Jana, “Edge detection in medical images using the Wavelet

Transform”, July 2011.

9. R. Dqueiroz, “Wavelet transforms in a JPEG-like image coder”, IEEE Trans. on

Circuits and Systems for Video Technology, vol. 7, no. 2, pp. 419-424, 1997.

10. K. Cabeen, P. Gent, “Image Compression and the Discrete Cosine Transform”,

1998.

11. L. Fahrmeir, R. K̈unstler, I. Pigeot, and G. Tutz, “Statistik: Der

WegzurDatenanalyse”, 2007.

12. S. Schmale, B. Knoop, J. Hoeffmann, D. Peters-Drolshagen, and S. Paul, “Joint

compression of neural action potentials and local field potentials,” 47th

AsilomarConference on Signals, Systems and Computers,Nov. 2013.

13. M.Billinghurst andT.Starner, “Wearable devices. New ways to manage

information”, IEEE Journals and Magazines (Computer), 1999.

14. M. Kang, W. Jung, “Recent Progress on PZT Based Piezoelectric EnergyHarvesting

Technologies”, 2016.

15. C.Choia and I.Seoa,“Relation between piezoelectricproperties of ceramics and

output power density of energy harvester”, 2011.

16. http://www.ti.com/product/CC3100MOD

17. N.Logothetis, "The underpinning of the BOLD functional magnetic resonance

imaging signal", The Journal of Neuroscience, 2003.

18. A. Yakovlev and S. Kim, “Implantable Biomedical Devices: Wireless Powering and

Communication”, April 2012.

http://www.posterus.sk/?p=10983
http://www.posterus.sk/?p=10983
http://www.posterus.sk/?p=10983
http://www.sciencedirect.com/science/article/pii/S0955221912007030
http://www.sciencedirect.com/science/article/pii/S0955221912007030
http://www.sciencedirect.com/science/article/pii/S0955221912007030
http://www.sciencedirect.com/science/article/pii/S0955221912007030
http://www.ti.com/product/CC3100MOD
http://www.jneurosci.org/content/23/10/3963.long
http://www.jneurosci.org/content/23/10/3963.long
http://www.jneurosci.org/content/23/10/3963.long
https://en.wikipedia.org/wiki/The_Journal_of_Neuroscience

60

19. M. Ashraf and H. Mostafa, “A low-power area-efficient design and comparative

analysis for high-resolution neural data compression”, Dec. 2017.

20. F. Casimiro andP. Gaspar "Aplicação do princípiopiezoeléctrico no

desenvolvimento de pavimentos para aproveitamentoenergético", In III Conferência

Nacional emMecânica de Fluidos, Termodinâmica e Energia: MEFTE - 2009,

Bragança, Setembro, 2009.

21. M.Asenwi, T. Ismail, and H. Mostafa, "Performance Analysis of Hybrid

Lossy/Lossless Compression Techniques for EEG Data", IEEE International

Conference on Microelectronics (ICM 2016), Cairo, Egypt, IEEE, pp. 1-4, 2016.

22. S. Fauvel, “An energy efficient compressed sensing framework for the compression

of electroencephalogram signals”, Sensors, vol. 14, no. 1, pp. 1474–1496, 2014.

23. G. Antoniol and P. Tonella, “Eeg data compression techniques”, Biomedical

Engineering, IEEE Transactions on, vol. 44, no. 2, pp. 105–114, 1997.

24. A. Deshlahra, G. Shirnewar, and A. Sahoo, “A comparative study of dct, dwt &

hybrid (dct-dwt) transform”, 2013.

25. S. Akhter and M. Haque, “Eeg compression using run length encoding,” in Signal

Processing Conference, 2010 18th European. IEEE, 2010.

26. D. Birvinskas and I. Jusas, “Fast dct algorithms for eeg data compression in

embedded systems”, Computer Science and Systems, vol. 12, no. 1, pp. 49–62,

2015

27. B. A. Rajoub, “An efficient coding algorithm for the compression of eeg signals

using the wavelet transform,” Biomedical Engineering, IEEE Transactions on, vol.

49, no. 4, pp. 355–362, 2002.

28. K. G. Oweiss, A. Mason, Y. Suhail, K. Thomson, and A. Kamboh, “A scalable

wavelet transform VLSI architecture for real-time signal processing in mutichannel

cortical implants”, IEEE Trans. On Circuits and Systems,June 2007.

29. S.Majerus, S. Garverick, M. Suster, P. Fletter andM. Damaser,“Wireless, ultra-low-

power implantable sensor for chronic bladder pressure monitoring. J. Emerg.

Technol” Comput. Syst, 2012.

30. A. Cheng and L.Tereshchenko, “Evolutionary innovations in cardiac pacing”, J.

Electrocardiol, 2011.

31. R.Kramme, K.Hoffmann “Springer Handbook of Medical Technology”, 2012.

32. S.Boveda, S. Garrigue andP.Ritter, “The History of Cardiac Pacemakers and

Defibrillators”, Italy, 2013.

33. E. Pararas, D. Borkholder and J. Borenstein, “Microsystems technologies for drug

delivery to the inner ear”, Adv. Drug Deliv. Rev, 2012.

34. S. Akbari,H. Shea, “An array of 100 μm × 100 μm dielectric elastomer actuators

with 80% strain for tissue engineering applications”, 2012.

35. J. Emerg, “Early history and challenges of implantable electronics”,Comput. Syst.

2012, 8, 1–9.

36. C.Occhiuzzi, G.Contri andG. Marrocco,“Design of implanted RFID tags for passive

sensing of human body” the STENTag. Antennas Propag., IEEE Trans, 2012.

http://scholar.cu.edu.eg/?q=hmostafa/publications/performance-analysis-hybrid-lossylossless-compression-techniques-eeg-data-0
http://scholar.cu.edu.eg/?q=hmostafa/publications/performance-analysis-hybrid-lossylossless-compression-techniques-eeg-data-0
http://scholar.cu.edu.eg/?q=hmostafa/publications/performance-analysis-hybrid-lossylossless-compression-techniques-eeg-data-0

61

37. M. Nkosi,F. Mekuria and S.Gejibo, “Challenges in Mobile Bio-Sensor Based

mHealth Development” In Proceedings of the 13th IEEE International Conference

on e-Health Networking Applications and Services, Columbia, MO, USA, June,

2011.

38. K. Bazaka, R. Crawford, E. Nazarenko andE. Ivanova, “Bacterial Extracellular

Polysaccharides”, 2011.

39. H. Tao, S. Hwang, M. Liu, B.Panilaitis, M.Brenckle, D. Kaplan, R. Averitt, J.

Rogers andF.Omenetto, “Fully Implantable and Resorbable Metamaterials” In

Proceedings of the 2012 Conference on Lasers and Electro-Optics, San Jose, CA,

USA, May 2012.

40. D. Kim, Y. Kim, J.Amsden, B. Panilaitis, D. Kaplan, F.Omenetto, M. Zakin andJ.

Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable

devices”, Appl. Phys. Lett, 2009.

41. K. Hashiguchi, T. Morioka, F. Yoshida, Y. Miyagi, “Correlation between scalp-

recorded electroencephalographic and electrocorticographic activities during ictal

period”, 2007.

42. E. Asano, C.Juhasz, A. Shah andO.Muzik, “Origin and propagation of epileptic

spasms delineated on electrocorticography”, 2005.

http://www.seizure-journal.com/article/S1059-1311%2806%2900248-2/fulltext
http://www.seizure-journal.com/article/S1059-1311%2806%2900248-2/fulltext
http://www.seizure-journal.com/article/S1059-1311%2806%2900248-2/fulltext
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360692
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360692

62

Appendix A: System Design Code and HDL Design

Code

A.1. System Codes

1- DCT 4*4:

///
clc
clear all
%clearvars -except f_in

close all
figure

row_aspect = 32 ;
col_aspect = 32 ;

%AXIS([0.1 0.3 32 48])
%time = [3,3,3,3,1,1];
%power = [148,146,56,55,13,13];
time = [.75 .75 .67 .67 1];
power = [.31,.34,.98,1,.18,1];
% power = [1,1,1,1,1,1];
% time = [1,1,1,1,1,1];
f_in = func_DATA_IN(row_aspect,col_aspect);
%f_in = func_DATA_IN_2;
for k = 1 : 1 : 7;
f_in{k} = round(f_in{k});
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ;
end
DWT_func = 1;

DCTQ=[...
 16 16 17 21 ;...
 16 17 21 24 ;...
 17 21 24 36 ;...
 21 24 36 57 ;];
z=[5 2 3 6 9 13 10 7 4 8 11 14 15 12 16];
quality_factor = [1:1:10];
f_out{1} = zeros(row_aspect,col_aspect);
for type = 1 : 2
 hold on
if(type == 1)
quality_factor = [.5:.5:5];
elseif(type == 2)
quality_factor = [1:1:10];
 end
 for index = 1:1:10

 for frame = 1:1:4

 stream = [] ;
 if (type == 1)

63

 in = f_in{frame+1};
 else
 in = f_in{frame+1}-f_in{frame};
 end
 k=0;
 for i=1:4:row_aspect
 for j=1:4:col_aspect
 in4_4=in(i:i+3,j:j+3);
 % int = dct(in4_4,4);
 % dct_out = dct(transpose(int),4);
dct_out = dct_fixed(in4_4',4); %s9.1
 if (type == 1)
DCTQ_mux = DCTQ ;
 mask = ones(4,4);
 else
% DCTQ_mux = DCTQ ;
% mask = ones(4,4);
DCTQ_mux = round(DCTQ) ;
 mask = [1 1 1 1
 1 1 1 0
 1 1 0 0
 1 0 0 0];
 end

out_mask = dct_out .* mask ;
DCTQ_mux_inv = 1 ./ DCTQ_mux;
DCTQ_mux_inv = fixptc('0.13','CLIP_S',DCTQ_mux_inv) ;

tc2hex(DCTQ_mux_inv,0,13,'DCTQ_mux_inv.txt',0);
 temp = (out_mask*quality_factor(index)) .*

DCTQ_mux_inv ;
 %temp = (round(temp.*2)./2);
 temp = fixptc('s9.0','CLIP_S',temp) ; %%9.0

%9.1 is critical in performance % this change afteer bit-matching
out_enc(i:i+3,j:j+3) = temp;
 k=k+1;
zig_zag_dc(k,1) = temp(1,1)*(2^0); %%
zig_zag_ac(k,1:15) = temp(z)*(2^0); %%
 end
 end

 %% Huffman Compression

dpcm(1,1)=zig_zag_dc(1,1);

stream=cat(2,stream,huffman_dc(dpcm(1,1)),huffman_ac(zig_zag_ac(1,1:15

)));
 for m=2:k
dpcm(m,1)=zig_zag_dc(m,1)-zig_zag_dc(m-1,1);

stream=cat(2,stream,huffman_dc(dpcm(m,1)),huffman_ac(zig_zag_ac(m,1:15

)));
 end

Compressed_image_size(frame)=floor(length(stream)/8);
 % Compression_Ratio(quality_factor) =

Compressed_image_size/(1024);

64

%%

%%%%%%%%
 %% Decoding

%%

%%%%%%%%

 for i=1:4:row_aspect
 for j=1:4:col_aspect
out_mask = out_enc(i:i+3,j:j+3) .* DCTQ_mux ./ quality_factor(index);
inv_int = idct(out_mask,4);
inv_out(i:i+3,j:j+3) = idct(transpose(inv_int),4);
 end
 end

f_out{frame+1} = inv_out;

 out = f_out{frame+1} ;

 for i = 1:1:row_aspect
 for j = 1:1:col_aspect
 if(f_in{frame+1}(i,j) ~= 0 &&

abs(f_in{frame+1}(i,j)-f_out{frame+1}(i,j)) ~= 0)
 SNDR(i,j) =

10*log10((abs(f_in{frame+1}(i,j))^2)/(abs(f_in{frame+1}(i,j)-

f_out{frame+1}(i,j))^2));
 else
 SNDR(i,j) = 0;
 end
 end
 end
 M_SNDR = mean(SNDR) ;
Mean_SNDR(frame) = mean(M_SNDR) ;
Mean_SNDR(frame) = Mean_SNDR(frame);

 Q=255;
 PSNR(frame) = 10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect));
 end

Mean_frames_SNDR(index) = mean(Mean_SNDR) ;

Compressed_frames_size=sum(Compressed_image_size);
Compression_Ratio(index) =

Compressed_frames_size/(row_aspect*col_aspect*frame);

fprintf('done!\n');
fprintf('----------- Performance ----------------\n');

fprintf('The bitrate is %.2f bpp \n',

length(stream)/row_aspect/col_aspect);

 Q = 255;
 MSE = sum(sum((f_out{2}-

f_in{2}).^2))/row_aspect/col_aspect;
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE));

65

Mean_PSNR(index) = mean(PSNR);
 end
 hold on

plot(Compression_Ratio,smooth((Mean_PSNR/(time(1)*power(1)))),'o

-')
 end
%%

legend ('DCT 4*4','Location','SouthEast'); %error
xlabel ('Compressed data/Original data');
ylabel ('SNDR/(LATENCY*AREA)');
%ylabel ('SNDR');
grid on

///

66

2- Differential DCT 4*4:

///
clc
clear all
%clearvars -except f_in

close all
figure

row_aspect = 32 ;
col_aspect = 32 ;

%AXIS([0.1 0.3 32 48])
%time = [3,3,3,3,1,1];
%power = [148,146,56,55,13,13];
time = [.75 .75 .67 .67 1];
power = [.31,.34,.98,1,.18,1];
% power = [1,1,1,1,1,1];
% time = [1,1,1,1,1,1];
f_in = func_DATA_IN(row_aspect,col_aspect);
%f_in = func_DATA_IN_2;
for k = 1 : 1 : 7;
f_in{k} = round(f_in{k});
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ;
end
DWT_func = 1;

DCTQ=[...
 16 16 17 21 ;...
 16 17 21 24 ;...
 17 21 24 36 ;...
 21 24 36 57 ;];
z=[5 2 3 6 9 13 10 7 4 8 11 14 15 12 16];
quality_factor = [1:1:10];
f_out{1} = zeros(row_aspect,col_aspect);
for type = 1 : 2
 hold on
if(type == 1)
quality_factor = [.5:.5:5];
elseif(type == 2)
quality_factor = [1:1:10];
 end
 for index = 1:1:10

 for frame = 1:1:4

 stream = [] ;
 if (type == 1)
 in = f_in{frame+1};
 else
 in = f_in{frame+1}-f_in{frame};
 end
 k=0;
 for i=1:4:row_aspect
 for j=1:4:col_aspect
 in4_4=in(i:i+3,j:j+3);
 % int = dct(in4_4,4);
 % dct_out = dct(transpose(int),4);

67

dct_out = dct_fixed(in4_4',4); %s9.1
 if (type == 1)
DCTQ_mux = DCTQ ;
 mask = ones(4,4);
 else
% DCTQ_mux = DCTQ ;
% mask = ones(4,4);
DCTQ_mux = round(DCTQ) ;
 mask = [1 1 1 1
 1 1 1 0
 1 1 0 0
 1 0 0 0];
 end

out_mask = dct_out .* mask ;
DCTQ_mux_inv = 1 ./ DCTQ_mux;
DCTQ_mux_inv = fixptc('0.13','CLIP_S',DCTQ_mux_inv) ;

tc2hex(DCTQ_mux_inv,0,13,'DCTQ_mux_inv.txt',0);
 temp = (out_mask*quality_factor(index)) .*

DCTQ_mux_inv ;
 %temp = (round(temp.*2)./2);
 temp = fixptc('s9.0','CLIP_S',temp) ; %%9.0

%9.1 is critical in performance % this change afteer bit-matching
out_enc(i:i+3,j:j+3) = temp;
 k=k+1;
zig_zag_dc(k,1) = temp(1,1)*(2^0); %%
zig_zag_ac(k,1:15) = temp(z)*(2^0); %%
 end
 end

 %% Huffman Compression

dpcm(1,1)=zig_zag_dc(1,1);

stream=cat(2,stream,huffman_dc(dpcm(1,1)),huffman_ac(zig_zag_ac(1,1:15

)));
 for m=2:k
dpcm(m,1)=zig_zag_dc(m,1)-zig_zag_dc(m-1,1);

stream=cat(2,stream,huffman_dc(dpcm(m,1)),huffman_ac(zig_zag_ac(m,1:15

)));
 end

Compressed_image_size(frame)=floor(length(stream)/8);
 % Compression_Ratio(quality_factor) =

Compressed_image_size/(1024);

%%

%%%%%%%%
 %% Decoding

%%

%%%%%%%%

 for i=1:4:row_aspect
 for j=1:4:col_aspect

68

out_mask = out_enc(i:i+3,j:j+3) .* DCTQ_mux ./ quality_factor(index);
inv_int = idct(out_mask,4);
inv_out(i:i+3,j:j+3) = idct(transpose(inv_int),4);
 end
 end

f_out{frame+1} = f_out{frame}+inv_out;

 out = f_out{frame+1} ;

 for i = 1:1:row_aspect
 for j = 1:1:col_aspect
 if(f_in{frame+1}(i,j) ~= 0 &&

abs(f_in{frame+1}(i,j)-f_out{frame+1}(i,j)) ~= 0)
 SNDR(i,j) =

10*log10((abs(f_in{frame+1}(i,j))^2)/(abs(f_in{frame+1}(i,j)-

f_out{frame+1}(i,j))^2));
 else
 SNDR(i,j) = 0;
 end
 end
 end
 M_SNDR = mean(SNDR) ;
Mean_SNDR(frame) = mean(M_SNDR) ;
Mean_SNDR(frame) = Mean_SNDR(frame);

 Q=255;
 PSNR(frame) = 10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect));
 end

Mean_frames_SNDR(index) = mean(Mean_SNDR) ;

Compressed_frames_size=sum(Compressed_image_size);
Compression_Ratio(index) =

Compressed_frames_size/(row_aspect*col_aspect*frame);

fprintf('done!\n');
fprintf('----------- Performance ----------------\n');

fprintf('The bitrate is %.2f bpp \n',

length(stream)/row_aspect/col_aspect);

 Q = 255;
 MSE = sum(sum((f_out{2}-

f_in{2}).^2))/row_aspect/col_aspect;
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE));

Mean_PSNR(index) = mean(PSNR);
 end
 hold on

 plot(Compression_Ratio,smooth((Mean_PSNR/(time(2)*power(2)))),'x

-')
 end
%%

legend ('DF DCT 4*4','Location','SouthEast'); %error

69

xlabel ('Compressed data/Original data');
ylabel ('SNDR/(LATENCY*AREA)');
%ylabel ('SNDR');
grid on

///

70

3- DCT 8*8:

///
clc
clear all
%clearvars -except f_in

close all
figure

row_aspect = 32 ;
col_aspect = 32 ;

%AXIS([0.1 0.3 32 48])
%time = [3,3,3,3,1,1];
%power = [148,146,56,55,13,13];
time = [.75 .75 .67 .67 1];
power = [.31,.34,.98,1,.18,1];
% power = [1,1,1,1,1,1];
% time = [1,1,1,1,1,1];
f_in = func_DATA_IN(row_aspect,col_aspect);
%f_in = func_DATA_IN_2;
for k = 1 : 1 : 7;
f_in{k} = round(f_in{k});
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ;
end
DWT_func = 1;
DCTQ=[...
 16 11 10 16 24 40 51 61 ;...
 12 12 14 19 26 58 60 55 ;...
 14 13 16 24 40 57 69 56 ;...
 14 17 22 29 51 87 80 62 ;...
 18 22 37 56 68 109 103 77 ;...
 24 36 55 64 81 194 113 92 ;...
 49 64 78 87 103 121 120 101 ;...
 72 92 95 98 112 100 103 99 ;];
z=[...
 9 2 3 10 17 25 18 11 4 5 12 19 26 ...
 33 41 34 27 20 13 6 7 14 21 28 35 ...
 42 49 57 50 43 36 29 22 15 8 16 23 ...
 30 37 44 51 58 59 52 45 38 31 24 32 ...
 39 46 53 60 61 54 47 40 48 55 62 63 56 64];
quality_factor = [1:1:10];
f_out{1} = zeros(row_aspect,col_aspect);
for type = 1 : 1
 hold on
if(type == 1)
quality_factor = [.5:1:10.5];
elseif(type == 2)
quality_factor = [1:2:20];
 end
 for index = 1:1:10

 for frame = 1:1:4

 stream = [] ;
 if (type == 1)
 in = f_in{frame+1}; %s7.0
 else

71

 in = f_in{frame+1}-f_in{frame}; %s7.0
 end
 k=0;
 for i=1:8:row_aspect
 for j=1:8:col_aspect
 in8_8=in(i:i+7,j:j+7); %s7.0
 % int = dct(in8_8,8);
 % dct_out = dct(transpose(int),8);
dct_out = dct_fixed(in8_8',8); %s9.1
 if (type == 1)
DCTQ_mux = DCTQ ;
 mask = ones(8,8);
 else
DCTQ_mux = round(DCTQ) ;
 mask = [1 1 1 1 1 1 1 0
 1 1 1 1 1 1 0 0
 1 1 1 1 1 0 0 0
 1 1 1 1 0 0 0 0
 1 1 1 0 0 0 0 0
 1 1 0 0 0 0 0 0
 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0];
 end
out_mask = dct_out .* mask ;
DCTQ_mux_inv = 1 ./ DCTQ_mux;
DCTQ_mux_inv = fixptc('0.13','CLIP_S',DCTQ_mux_inv) ;

%tc2hex(DCTQ_mux_inv,0,13,'DCTQ_mux_inv.txt',0);
 temp = (out_mask*quality_factor(index)) .*

DCTQ_mux_inv ;
 %temp = (round(temp.*2)./2);
 temp = fixptc('s9.0','CLIP_S',temp) ; %%9.0

%9.1 is critical in performance % this change afteer bit-matching
out_enc(i:i+7,j:j+7) = temp;
 k=k+1;
zig_zag_dc(k,1) = temp(1,1)*(2^0);
zig_zag_ac(k,1:63) = temp(z)*(2^0);
 end
 end

 %% Huffman Compression

dpcm(1,1)=zig_zag_dc(1,1);

stream=cat(2,stream,huffman_dc(dpcm(1,1)),huffman_ac(zig_zag_ac(1,1:63

)));
 for m=2:k
dpcm(m,1)=zig_zag_dc(m,1)-zig_zag_dc(m-1,1);

stream=cat(2,stream,huffman_dc(dpcm(m,1)),huffman_ac(zig_zag_ac(m,1:63

)));
 end

Compressed_image_size(frame)=floor(length(stream)/8);
 % Compression_Ratio(quality_factor) =

Compressed_image_size/(1024);

72

%%

%%%%%%%%
 %% Decoding

%%

%%%%%%%%

 for i=1:8:row_aspect
 for j=1:8:col_aspect
out_mask = out_enc(i:i+7,j:j+7) .* DCTQ_mux ./ quality_factor(index);
inv_int = idct(out_mask,8);
inv_out(i:i+7,j:j+7) = idct(transpose(inv_int),8);
 end
 end

 if (type == 1)
f_out{frame+1} = inv_out;
 else
f_out{frame+1} = f_out{frame}+inv_out;
 end

 out = f_out{frame+1} ;

 for i = 1:1:row_aspect
 for j = 1:1:col_aspect
 if(f_in{frame+1}(i,j) ~= 0 &&

abs(f_in{frame+1}(i,j)-f_out{frame+1}(i,j)) ~= 0)
 SNDR(i,j) =

10*log10((abs(f_in{frame+1}(i,j))^2)/(abs(f_in{frame+1}(i,j)-

f_out{frame+1}(i,j))^2));
 else
 SNDR(i,j) = 0;
 end
 end
 end
 M_SNDR = mean(SNDR) ;
Mean_SNDR(frame) = mean(M_SNDR) ;
Mean_SNDR(frame) = Mean_SNDR(frame);

 Q=255;
 PSNR(frame) = 10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect));
 end

Mean_frames_SNDR(index) = mean(Mean_SNDR) ;

Compressed_frames_size=sum(Compressed_image_size);
Compression_Ratio(index) =

Compressed_frames_size/(row_aspect*col_aspect*frame);

fprintf('done!\n');
fprintf('----------- Performance ----------------\n');

fprintf('The bitrate is %.2f bpp \n',

length(stream)/row_aspect/col_aspect);

 Q = 255;

73

 MSE = sum(sum((f_out{2}-

f_in{2}).^2))/row_aspect/col_aspect;
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE));

Mean_PSNR(index) = mean(PSNR);
 end
 hold on
if(type == 1)

plot(Compression_Ratio,smooth((Mean_PSNR/(time(3)*power(3)))),'ro-')
elseif(type == 2)

plot(Compression_Ratio,smooth((Mean_PSNR/(time(4)*power(4)))),'rx-')
 end
 end

%%

legend ('DCT 8*8','Location','SouthEast'); %error
xlabel ('Compressed data/Original data');
ylabel ('SNDR/(LATENCY*AREA)');
%ylabel ('SNDR');
grid on

///

74

4- Differential DCT 8*8:

///

clc
clear all
%clearvars -except f_in

close all
figure

row_aspect = 32 ;
col_aspect = 32 ;

%AXIS([0.1 0.3 32 48])
%time = [3,3,3,3,1,1];
%power = [148,146,56,55,13,13];
time = [.75 .75 .67 .67 1];
power = [.31,.34,.98,1,.18,1];
% power = [1,1,1,1,1,1];
% time = [1,1,1,1,1,1];
f_in = func_DATA_IN(row_aspect,col_aspect);
%f_in = func_DATA_IN_2;
for k = 1 : 1 : 7;
f_in{k} = round(f_in{k});
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ;
end
DWT_func = 1;
DCTQ=[...
 16 11 10 16 24 40 51 61 ;...
 12 12 14 19 26 58 60 55 ;...
 14 13 16 24 40 57 69 56 ;...
 14 17 22 29 51 87 80 62 ;...
 18 22 37 56 68 109 103 77 ;...
 24 36 55 64 81 194 113 92 ;...
 49 64 78 87 103 121 120 101 ;...
 72 92 95 98 112 100 103 99 ;];
z=[...
 9 2 3 10 17 25 18 11 4 5 12 19 26 ...
 33 41 34 27 20 13 6 7 14 21 28 35 ...
 42 49 57 50 43 36 29 22 15 8 16 23 ...
 30 37 44 51 58 59 52 45 38 31 24 32 ...
 39 46 53 60 61 54 47 40 48 55 62 63 56 64];
quality_factor = [1:1:10];
f_out{1} = zeros(row_aspect,col_aspect);
for type = 2 : 2
 hold on
if(type == 1)
quality_factor = [.5:1:10.5];
elseif(type == 2)
quality_factor = [1:2:20];
 end
 for index = 1:1:10

 for frame = 1:1:4

 stream = [] ;
 if (type == 1)
 in = f_in{frame+1}; %s7.0

75

 else
 in = f_in{frame+1}-f_in{frame}; %s7.0
 end
 k=0;
 for i=1:8:row_aspect
 for j=1:8:col_aspect
 in8_8=in(i:i+7,j:j+7); %s7.0
 % int = dct(in8_8,8);
 % dct_out = dct(transpose(int),8);
dct_out = dct_fixed(in8_8',8); %s9.1
 if (type == 1)
DCTQ_mux = DCTQ ;
 mask = ones(8,8);
 else
DCTQ_mux = round(DCTQ) ;
 mask = [1 1 1 1 1 1 1 0
 1 1 1 1 1 1 0 0
 1 1 1 1 1 0 0 0
 1 1 1 1 0 0 0 0
 1 1 1 0 0 0 0 0
 1 1 0 0 0 0 0 0
 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0];
 end
out_mask = dct_out .* mask ;
DCTQ_mux_inv = 1 ./ DCTQ_mux;
DCTQ_mux_inv = fixptc('0.13','CLIP_S',DCTQ_mux_inv) ;

%tc2hex(DCTQ_mux_inv,0,13,'DCTQ_mux_inv.txt',0);
 temp = (out_mask*quality_factor(index)) .*

DCTQ_mux_inv ;
 %temp = (round(temp.*2)./2);
 temp = fixptc('s9.0','CLIP_S',temp) ; %%9.0

%9.1 is critical in performance % this change afteer bit-matching
out_enc(i:i+7,j:j+7) = temp;
 k=k+1;
zig_zag_dc(k,1) = temp(1,1)*(2^0);
zig_zag_ac(k,1:63) = temp(z)*(2^0);
 end
 end

 %% Huffman Compression

dpcm(1,1)=zig_zag_dc(1,1);

stream=cat(2,stream,huffman_dc(dpcm(1,1)),huffman_ac(zig_zag_ac(1,1:63

)));
 for m=2:k
dpcm(m,1)=zig_zag_dc(m,1)-zig_zag_dc(m-1,1);

stream=cat(2,stream,huffman_dc(dpcm(m,1)),huffman_ac(zig_zag_ac(m,1:63

)));
 end

Compressed_image_size(frame)=floor(length(stream)/8);
 % Compression_Ratio(quality_factor) =

Compressed_image_size/(1024);

76

%%

%%%%%%%%
 %% Decoding

%%

%%%%%%%%

 for i=1:8:row_aspect
 for j=1:8:col_aspect
out_mask = out_enc(i:i+7,j:j+7) .* DCTQ_mux ./ quality_factor(index);
inv_int = idct(out_mask,8);
inv_out(i:i+7,j:j+7) = idct(transpose(inv_int),8);
 end
 end

 if (type == 1)
f_out{frame+1} = inv_out;
 else
f_out{frame+1} = f_out{frame}+inv_out;
 end

 out = f_out{frame+1} ;

 for i = 1:1:row_aspect
 for j = 1:1:col_aspect
 if(f_in{frame+1}(i,j) ~= 0 &&

abs(f_in{frame+1}(i,j)-f_out{frame+1}(i,j)) ~= 0)
 SNDR(i,j) =

10*log10((abs(f_in{frame+1}(i,j))^2)/(abs(f_in{frame+1}(i,j)-

f_out{frame+1}(i,j))^2));
 else
 SNDR(i,j) = 0;
 end
 end
 end
 M_SNDR = mean(SNDR) ;
Mean_SNDR(frame) = mean(M_SNDR) ;
Mean_SNDR(frame) = Mean_SNDR(frame);

 Q=255;
 PSNR(frame) = 10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect));
 end

Mean_frames_SNDR(index) = mean(Mean_SNDR) ;

Compressed_frames_size=sum(Compressed_image_size);
Compression_Ratio(index) =

Compressed_frames_size/(row_aspect*col_aspect*frame);

fprintf('done!\n');
fprintf('----------- Performance ----------------\n');

fprintf('The bitrate is %.2f bpp \n',

length(stream)/row_aspect/col_aspect);

 Q = 255;

77

 MSE = sum(sum((f_out{2}-

f_in{2}).^2))/row_aspect/col_aspect;
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE));

Mean_PSNR(index) = mean(PSNR);
 end
 hold on
if(type == 1)

plot(Compression_Ratio,smooth((Mean_PSNR/(time(3)*power(3)))),'ro-')
elseif(type == 2)

plot(Compression_Ratio,smooth((Mean_PSNR/(time(4)*power(4)))),'rx-')
 end
 end

%%

legend ('DF DCT 8*8','Location','SouthEast'); %error
xlabel ('Compressed data/Original data');
ylabel ('SNDR/(LATENCY*AREA)');
%ylabel ('SNDR');
grid on

///

78

5- Adaptive DWT:

///
clc
clear all
%clearvars -except f_in

close all
figure

row_aspect = 32 ;
col_aspect = 32 ;

%AXIS([0.1 0.3 32 48])
%time = [3,3,3,3,1,1];
%power = [148,146,56,55,13,13];
time = [.75 .75 .67 .67 1];
power = [.31,.34,.98,1,.18,1];
% power = [1,1,1,1,1,1];
% time = [1,1,1,1,1,1];
f_in = func_DATA_IN(row_aspect,col_aspect);
%f_in = func_DATA_IN_2;
for k = 1 : 1 : 7;
f_in{k} = round(f_in{k});
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ;
end
DWT_func = 1;

if (row_aspect == 32)

z1=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,33,34,35,36,37,38,39,40,41,

42,43,44,45,46,47,48,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,9

7,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,129,130,13

1,132,133,134,135,136,137,138,139,140,141,142,143,144,161,162,163,164,

165,166,167,168,169,170,171,172,173,174,175,176,193,194,195,196,197,19

8,199,200,201,202,203,204,205,206,207,208,225,226,227,228,229,230,231,

232,233,234,235,236,237,238,239,240,257,258,259,260,261,262,263,264,26

5,266,267,268,269,270,271,272,289,290,291,292,293,294,295,296,297,298,

299,300,301,302,303,304,321,322,323,324,325,326,327,328,329,330,331,33

2,333,334,335,336,353,354,355,356,357,358,359,360,361,362,363,364,365,

366,367,368,385,386,387,388,389,390,391,392,393,394,395,396,397,398,39

9,400,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,

449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,481,48

2,483,484,485,486,487,488,489,490,491,492,493,494,495,496,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,31,32,49,50,51,52,53,54,55,56,57,58,59,6

0,61,62,63,64,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,113,114,

115,116,117,118,119,120,121,122,123,124,125,126,127,128,145,146,147,14

8,149,150,151,152,153,154,155,156,157,158,159,160,177,178,179,180,181,

182,183,184,185,186,187,188,189,190,191,192,209,210,211,212,213,214,21

5,216,217,218,219,220,221,222,223,224,241,242,243,244,245,246,247,248,

249,250,251,252,253,254,255,256,273,274,275,276,277,278,279,280,281,28

2,283,284,285,286,287,288,305,306,307,308,309,310,311,312,313,314,315,

316,317,318,319,320,337,338,339,340,341,342,343,344,345,346,347,348,34

9,350,351,352,369,370,371,372,373,374,375,376,377,378,379,380,381,382,

383,384,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,41

6,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,465,

466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,497,498,49

9,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,

517,518,519,520,521,522,523,524,525,526,527,528,545,546,547,548,549,55

0,551,552,553,554,555,556,557,558,559,560,577,578,579,580,581,582,583,

79

584,585,586,587,588,589,590,591,592,609,610,611,612,613,614,615,616,61

7,618,619,620,621,622,623,624,641,642,643,644,645,646,647,648,649,650,

651,652,653,654,655,656,673,674,675,676,677,678,679,680,681,682,683,68

4,685,686,687,688,705,706,707,708,709,710,711,712,713,714,715,716,717,

718,719,720,737,738,739,740,741,742,743,744,745,746,747,748,749,750,75

1,752,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,

801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,833,83

4,835,836,837,838,839,840,841,842,843,844,845,846,847,848,865,866,867,

868,869,870,871,872,873,874,875,876,877,878,879,880,897,898,899,900,90

1,902,903,904,905,906,907,908,909,910,911,912,929,930,931,932,933,934,

935,936,937,938,939,940,941,942,943,944,961,962,963,964,965,966,967,96

8,969,970,971,972,973,974,975,976,993,994,995,996,997,998,999,1000,100

1,1002,1003,1004,1005,1006,1007,1008,529,530,531,532,533,534,535,536,5

37,538,539,540,541,542,543,544,561,562,563,564,565,566,567,568,569,570

,571,572,573,574,575,576,593,594,595,596,597,598,599,600,601,602,603,6

04,605,606,607,608,625,626,627,628,629,630,631,632,633,634,635,636,637

,638,639,640,657,658,659,660,661,662,663,664,665,666,667,668,669,670,6

71,672,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704

,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,753,7

54,755,756,757,758,759,760,761,762,763,764,765,766,767,768,785,786,787

,788,789,790,791,792,793,794,795,796,797,798,799,800,817,818,819,820,8

21,822,823,824,825,826,827,828,829,830,831,832,849,850,851,852,853,854

,855,856,857,858,859,860,861,862,863,864,881,882,883,884,885,886,887,8

88,889,890,891,892,893,894,895,896,913,914,915,916,917,918,919,920,921

,922,923,924,925,926,927,928,945,946,947,948,949,950,951,952,953,954,9

55,956,957,958,959,960,977,978,979,980,981,982,983,984,985,986,987,988

,989,990,991,992,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,101

9,1020,1021,1022,1023,1024;];
elseif (row_aspect == 24)

z1=[1,2,3,4,5,6,7,8,9,10,11,12,25,26,27,28,29,30,31,32,33,34,35,36,49,

50,51,52,53,54,55,56,57,58,59,60,73,74,75,76,77,78,79,80,81,82,83,84,9

7,98,99,100,101,102,103,104,105,106,107,108,121,122,123,124,125,126,12

7,128,129,130,131,132,145,146,147,148,149,150,151,152,153,154,155,156,

169,170,171,172,173,174,175,176,177,178,179,180,193,194,195,196,197,19

8,199,200,201,202,203,204,217,218,219,220,221,222,223,224,225,226,227,

228,241,242,243,244,245,246,247,248,249,250,251,252,265,266,267,268,26

9,270,271,272,273,274,275,276,13,14,15,16,17,18,19,20,21,22,23,24,37,3

8,39,40,41,42,43,44,45,46,47,48,61,62,63,64,65,66,67,68,69,70,71,72,85

,86,87,88,89,90,91,92,93,94,95,96,109,110,111,112,113,114,115,116,117,

118,119,120,133,134,135,136,137,138,139,140,141,142,143,144,157,158,15

9,160,161,162,163,164,165,166,167,168,181,182,183,184,185,186,187,188,

189,190,191,192,205,206,207,208,209,210,211,212,213,214,215,216,229,23

0,231,232,233,234,235,236,237,238,239,240,253,254,255,256,257,258,259,

260,261,262,263,264,277,278,279,280,281,282,283,284,285,286,287,288,28

9,290,291,292,293,294,295,296,297,298,299,300,313,314,315,316,317,318,

319,320,321,322,323,324,337,338,339,340,341,342,343,344,345,346,347,34

8,361,362,363,364,365,366,367,368,369,370,371,372,385,386,387,388,389,

390,391,392,393,394,395,396,409,410,411,412,413,414,415,416,417,418,41

9,420,433,434,435,436,437,438,439,440,441,442,443,444,457,458,459,460,

461,462,463,464,465,466,467,468,481,482,483,484,485,486,487,488,489,49

0,491,492,505,506,507,508,509,510,511,512,513,514,515,516,529,530,531,

532,533,534,535,536,537,538,539,540,553,554,555,556,557,558,559,560,56

1,562,563,564,301,302,303,304,305,306,307,308,309,310,311,312,325,326,

327,328,329,330,331,332,333,334,335,336,349,350,351,352,353,354,355,35

6,357,358,359,360,373,374,375,376,377,378,379,380,381,382,383,384,397,

398,399,400,401,402,403,404,405,406,407,408,421,422,423,424,425,426,42

7,428,429,430,431,432,445,446,447,448,449,450,451,452,453,454,455,456,

469,470,471,472,473,474,475,476,477,478,479,480,493,494,495,496,497,49

8,499,500,501,502,503,504,517,518,519,520,521,522,523,524,525,526,527,

80

528,541,542,543,544,545,546,547,548,549,550,551,552,565,566,567,568,56

9,570,571,572,573,574,575,576];
elseif (row_aspect == 16)
 z1 =

[1,2,3,4,5,6,7,8,17,18,19,20,21,22,23,24,33,34,35,36,37,38,39,40,49,50

,51,52,53,54,55,56,65,66,67,68,69,70,71,72,81,82,83,84,85,86,87,88,97,

98,99,100,101,102,103,104,113,114,115,116,117,118,119,120,9,10,11,12,1

3,14,15,16,25,26,27,28,29,30,31,32,41,42,43,44,45,46,47,48,57,58,59,60

,61,62,63,64,73,74,75,76,77,78,79,80,89,90,91,92,93,94,95,96,105,106,1

07,108,109,110,111,112,121,122,123,124,125,126,127,128,129,130,131,132

,133,134,135,136,145,146,147,148,149,150,151,152,161,162,163,164,165,1

66,167,168,177,178,179,180,181,182,183,184,193,194,195,196,197,198,199

,200,209,210,211,212,213,214,215,216,225,226,227,228,229,230,231,232,2

41,242,243,244,245,246,247,248,137,138,139,140,141,142,143,144,153,154

,155,156,157,158,159,160,169,170,171,172,173,174,175,176,185,186,187,1

88,189,190,191,192,201,202,203,204,205,206,207,208,217,218,219,220,221

,222,223,224,233,234,235,236,237,238,239,240,249,250,251,252,253,254,2

55,256;]
elseif (row_aspect == 8)
 z1 =

[1,2,3,4,9,10,11,12,17,18,19,20,25,26,27,28,5,6,7,8,13,14,15,16,21,22,

23,24,29,30,31,32,33,34,35,36,41,42,43,44,49,50,51,52,57,58,59,60,37,3

8,39,40,45,46,47,48,53,54,55,56,61,62,63,64];
end

quality_factor = [1:1:10];
f_out{1} = zeros(row_aspect,col_aspect);
for type = 1
if(type == 1)
 Q1 = [2 4 8 12 13 15 16 16 18 20];
 Q2 = [2 2 2 2 2 2 3 4 9 10];
 Q3 = [2 2 2 2 3 3 3 4 9 10];
 Q4 = [.1 .1 .1 .1 .1 .1 .1 .1 .1 .1];
% Q1 = [1 2 3 4 5 8 10 2 2 3 3 4 4 5

5 8 8 10 10 2 2 3 3 4 4 5 5 8 8 10 10 2

3 4 5 8 10 2 3 4 5 8 10 2 3 4 4 6 8 10 4 6 8 10 4

6 8 10 2 3 4 5 2 3 4 5 2 3 4 4 6 8 10 4 6 8 10

4 6 8 10];
% Q2 = [.1 .1 .1 .1 .1 .1 .1 1 .1 1 .1 1 .1 1

.1 1 .1 1 .1 1 1 1 1 1 1 1 1 1 1 1 1 2

2 2 2 2 2 1 1 1 1 1 1 2 2 2 4 4 4 4 1 1 1 1 4

4 4 4 2 2 2 2 1 1 1 1 2 2 2 4 4 4 4 1 1 1 1

4 4 4 4];
% Q3 = [.1 .1 .1 .1 .1 .1 .1 .1 1 .1 1 .1 1 .1

1 .1 1 .1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 4 4 4 4 4

4 4 4 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 4 4 4 4

4 4 4 4];
% Q4 = [1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

.1 .1 .1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1];

elseif(type == 2)
% Q1 = [2 2 4 4 4 8 8 16 16 16];
% Q2 = [1 2 1 2 4 4 8 8 8 16];
% Q3 = [1 2 1 2 4 4 8 8 8 16];
% Q4 = [1 2 1 1 1 2 2 2 4 4];
 Q1 = [2 4 6 8 10 12 14 16 18 20];

81

 Q2 = [2 2 3 4 5 6 7 8 9 10];
 Q3 = [2 2 3 4 5 6 7 8 9 10];
 Q4 = [.1 .1 .1 .1 .1 .1 .1 .1 .1 .1];
 end
 for index = 1:1:10

 for frame = 1:1:4

 stream = [] ;
 if (type == 1)
 in = f_in{frame+1};
 else
 in = f_in{frame+1}-f_in{frame};
 end

%%%
filter_type = 'bior5.5'; %wavelet basis
 level = 1;
 [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(filter_type);
 if (DWT_func == 0)
 [img_wavedata, S] = func_DWT(in, level, Lo_D,

Hi_D);
 LL = img_wavedata(1 :(row_aspect/2)

, 1 :(col_aspect/2));
 HL = img_wavedata(1 :(row_aspect/2)

, (col_aspect/2)+1: col_aspect) ;
 LH = img_wavedata((row_aspect/2)+1: row_aspect

, 1 :(col_aspect/2));
 HH = img_wavedata((row_aspect/2)+1: row_aspect

, (col_aspect/2)+1: col_aspect)
elseif (DWT_func == 1)
filter_type = 'bior3.5'; %wavelet basis
 [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(filter_type);
% [LL,LH,HL,HH] = dwt2(in,Lo_D,Hi_D,'mode','per');
 tc2hex(in',7,0,'in.txt',0);
 for r = 1: 1 :row_aspect
 [L1(r,:),H1(r,:)] =

dwt_fix(in(r,:),Lo_D,Hi_D,'mode','per');
 end
 for c = 1: 1 :col_aspect/2
 [LL(:,c),LH(:,c)] =

dwt_fix(L1(:,c),Lo_D,Hi_D,'mode','per');
 [HL(:,c),HH(:,c)] =

dwt_fix(H1(:,c),Lo_D,Hi_D,'mode','per'); %s8.1
 end
 end

%%%

 for k = 1 : 1 : 4
 if k == 1
 XX = LL ;
 Q = Q1(index) ;
elseif k == 2
 XX = LH ;
 Q = Q2(index) ;
elseif k == 3
 XX = HL ;
 Q = Q3(index) ;

82

 else
 XX = HH ;
 Q = Q4(index) ;
 end
 median =

floor(mean(reshape(XX,1,(row_aspect*col_aspect/4)))*2)/2; %s8.1
XX_median = XX - median ; %s8.1
max_width = abs(max(max(XX_median))/Q);
min_width = abs(min(min(XX_median))/Q);
max_width = fixptc('s8.5','CLIP_S',max_width) ;
min_width = fixptc('s8.5','CLIP_S',min_width) ;
XX_comp = zeros((row_aspect/2),(col_aspect/2));
 for i = 1:1:(row_aspect/2)
 for j = 1:1:(col_aspect/2)
 if XX_median(i,j) > 0
XX_temp = (XX_median(i,j)/max_width);
XX_comp(i,j) = sign(XX_median(i,j))*abs(XX_temp);
XX_comp(i,j) = fixptc('s9.0','CLIP_S',XX_comp(i,j)) ;
elseifXX_median(i,j) < 0
XX_temp = (XX_median(i,j)/min_width);
XX_comp(i,j) = sign(XX_median(i,j))*abs(XX_temp);
XX_comp(i,j) = fixptc('s9.0','CLIP_S',XX_comp(i,j)) ;
 end
 end
 end

%%

%%%%%%%%
 %% Decoding

%%

%%%%%%%%

 for i = 1:1:(row_aspect/2)
 for j = 1:1:(col_aspect/2)
 if XX_comp(i,j) >= 0
XX_re(i,j) = (XX_comp(i,j)*max_width)+median;
 else
XX_re(i,j) = (XX_comp(i,j)*min_width)+median;
 end
 end
 end
 if k == 1
LL_re = XX_re;
LL_comp = XX_comp;
elseif k == 2
LH_re = XX_re;
LH_comp = XX_comp;
elseif k == 3
HL_re = XX_re;
HL_comp = XX_comp;
 else
HH_re = XX_re;
HH_comp = XX_comp;
 end
 end

 if (DWT_func == 0)
img_wavedata_dec = [LL_re,HL_re;LH_re,HH_re];

83

 Xrec2 = func_InvDWT(img_wavedata_dec, S, Lo_R,

Hi_R, level);
elseif (DWT_func == 1)
 Xrec2 =

idwt2(LL_re,LH_re,HL_re,HH_re,Lo_R,Hi_R,'mode','per');
 end
inv_out = Xrec2 ;
 %% Huffman Compression

 temp = [LL_comp,LH_comp;HL_comp,HH_comp];
 stream = [];
 zig_zag_ac1(1:row_aspect*col_aspect) = temp(z1);

stream=huffman_ac(zig_zag_ac1(1:row_aspect*col_aspect));
Compressed_image_size(frame)=floor(length(stream)/8);

 if (type == 1)
f_out{frame+1} = inv_out;
 else
f_out{frame+1} = f_out{frame}+inv_out;
 end

 Q=255;
 PSNR(frame) = 10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect));
 end

Compressed_frames_size=sum(Compressed_image_size);
Compression_Ratio(index) =

Compressed_frames_size/(row_aspect*col_aspect*frame);

Mean_PSNR(index) = mean(PSNR);
 end
 hold on
if(type == 1)

plot(Compression_Ratio,smooth((Mean_PSNR/(time(5)*power(5)))),'kx-')
elseif(type == 2)

plot(Compression_Ratio,smooth((Mean_PSNR/(time(6)*power(6)))),'gx-')
 end
 end

legend ('Adaptive DWT','Location','SouthEast'); %error
xlabel ('Compressed data/Original data');
ylabel ('SNDR/(LATENCY*AREA)');
%ylabel ('SNDR');
grid on

///

84

6- PANDCA:

///
clc
clear all
%clearvars -except f_in

close all
figure

row_aspect = 32 ;
col_aspect = 32 ;

%AXIS([0.1 0.3 32 48])
%time = [3,3,3,3,1,1];
%power = [148,146,56,55,13,13];
time = [.75 .75 .67 .67 1];
power = [.31,.34,.98,1,.18,1];
% power = [1,1,1,1,1,1];
% time = [1,1,1,1,1,1];
f_in = func_DATA_IN(row_aspect,col_aspect);
%f_in = func_DATA_IN_2;
for k = 1 : 1 : 7;
f_in{k} = round(f_in{k});
f_in{k} = fixptc('s7.0','CLIP_S', f_in{k}) ;
end
DWT_func = 1;
DCTQ=[...
 16 11 10 16 24 40 51 61 ;...
 12 12 14 19 26 58 60 55 ;...
 14 13 16 24 40 57 69 56 ;...
 14 17 22 29 51 87 80 62 ;...
 18 22 37 56 68 109 103 77 ;...
 24 36 55 64 81 194 113 92 ;...
 49 64 78 87 103 121 120 101 ;...
 72 92 95 98 112 100 103 99 ;];
z=[...
 9 2 3 10 17 25 18 11 4 5 12 19 26 ...
 33 41 34 27 20 13 6 7 14 21 28 35 ...
 42 49 57 50 43 36 29 22 15 8 16 23 ...
 30 37 44 51 58 59 52 45 38 31 24 32 ...
 39 46 53 60 61 54 47 40 48 55 62 63 56 64];
quality_factor = [1:1:10];
f_out{1} = zeros(row_aspect,col_aspect);
for type = 1 : 1
 hold on
if(type == 1)
quality_factor = [.5:1:10.5];
elseif(type == 2)
quality_factor = [1:2:20];
 end
 for index = 1:1:10

 for frame = 1:1:4

 stream = [] ;
 if (type == 1)
 in = f_in{frame+1}; %s7.0
 else
 in = f_in{frame+1}-f_in{frame}; %s7.0

85

 end
 k=0;
 for i=1:8:row_aspect
 for j=1:8:col_aspect
 in8_8=in(i:i+7,j:j+7); %s7.0
 % int = dct(in8_8,8);
 % dct_out = dct(transpose(int),8);
dct_out = dct_fixed(in8_8',8); %s9.1
 if (type == 1)
DCTQ_mux = DCTQ ;
 mask = ones(8,8);
 else
DCTQ_mux = round(DCTQ) ;
 mask = [1 1 1 1 1 1 1 0
 1 1 1 1 1 1 0 0
 1 1 1 1 1 0 0 0
 1 1 1 1 0 0 0 0
 1 1 1 0 0 0 0 0
 1 1 0 0 0 0 0 0
 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0];
 end
out_mask = dct_out .* mask ;
DCTQ_mux_inv = 1 ./ DCTQ_mux;
DCTQ_mux_inv = fixptc('0.13','CLIP_S',DCTQ_mux_inv) ;

%tc2hex(DCTQ_mux_inv,0,13,'DCTQ_mux_inv.txt',0);
 temp = (out_mask*quality_factor(index)) .*

DCTQ_mux_inv ;
 %temp = (round(temp.*2)./2);
 temp = fixptc('s9.0','CLIP_S',temp) ; %%9.0

%9.1 is critical in performance % this change afteer bit-matching
out_enc(i:i+7,j:j+7) = temp;
 k=k+1;
zig_zag_dc(k,1) = temp(1,1)*(2^0);
zig_zag_ac(k,1:63) = temp(z)*(2^0);
 end
 end

 %% Huffman Compression

dpcm(1,1)=zig_zag_dc(1,1);

stream=cat(2,stream,huffman_dc(dpcm(1,1)),huffman_ac(zig_zag_ac(1,1:63

)));
 for m=2:k
dpcm(m,1)=zig_zag_dc(m,1)-zig_zag_dc(m-1,1);

stream=cat(2,stream,huffman_dc(dpcm(m,1)),huffman_ac(zig_zag_ac(m,1:63

)));
 end

Compressed_image_size(frame)=floor(length(stream)/8);
 % Compression_Ratio(quality_factor) =

Compressed_image_size/(1024);

86

%%

%%%%%%%%
 %% Decoding

%%

%%%%%%%%

 for i=1:8:row_aspect
 for j=1:8:col_aspect
out_mask = out_enc(i:i+7,j:j+7) .* DCTQ_mux ./ quality_factor(index);
inv_int = idct(out_mask,8);
inv_out(i:i+7,j:j+7) = idct(transpose(inv_int),8);
 end
 end

 if (type == 1)
f_out{frame+1} = inv_out;
 else
f_out{frame+1} = f_out{frame}+inv_out;
 end

 out = f_out{frame+1} ;

 for i = 1:1:row_aspect
 for j = 1:1:col_aspect
 if(f_in{frame+1}(i,j) ~= 0 &&

abs(f_in{frame+1}(i,j)-f_out{frame+1}(i,j)) ~= 0)
 SNDR(i,j) =

10*log10((abs(f_in{frame+1}(i,j))^2)/(abs(f_in{frame+1}(i,j)-

f_out{frame+1}(i,j))^2));
 else
 SNDR(i,j) = 0;
 end
 end
 end
 M_SNDR = mean(SNDR) ;
Mean_SNDR(frame) = mean(M_SNDR) ;
Mean_SNDR(frame) = Mean_SNDR(frame);

 Q=255;
 PSNR(frame) = 10*log10(Q*Q/(sum(sum((f_out{frame+1}-

f_in{frame+1}).^2))/row_aspect/col_aspect));
 end

Mean_frames_SNDR(index) = mean(Mean_SNDR) ;

Compressed_frames_size=sum(Compressed_image_size);
Compression_Ratio(index) =

Compressed_frames_size/(row_aspect*col_aspect*frame);

fprintf('done!\n');
fprintf('----------- Performance ----------------\n');

fprintf('The bitrate is %.2f bpp \n',

length(stream)/row_aspect/col_aspect);

 Q = 255;

87

 MSE = sum(sum((f_out{2}-

f_in{2}).^2))/row_aspect/col_aspect;
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE));

Mean_PSNR(index) = mean(PSNR);
 end
 hold on
if(type == 1)

plot(Compression_Ratio,smooth((Mean_PSNR/(time(3)*power(3)))),'ro-')
elseif(type == 2)

plot(Compression_Ratio,smooth((Mean_PSNR/(time(4)*power(4)))),'rx-')
 end
 end

%%

legend ('DCT 8*8','Location','SouthEast'); %error
xlabel ('Compressed data/Original data');
ylabel ('SNDR/(LATENCY*AREA)');
%ylabel ('SNDR');
grid on

///

///

///

Sc =

[4,4,4,4;7,7,7,7;9,9,9,8;10,10,10,10;11,11,11,10;12,13,12,11;13,13,12,

11;13,13,14,13;13,14,15,13;14,15,17,16;]; %results from previous part

Sc_frames = [Sc(:,1),Sc(:,2),Sc(:,3),Sc(:,4),Sc(:,3),Sc(:,2)];

Sc_frames = repmat (Sc_frames,1,10);

H_p = repmat(97.427808,1,60);

% Sp = repmat(11.5,1,60);

% Q_F(1) = 5;

% Sp = (5:.13:14)

% Q_F(1) = 2;

% Sp = (12:-.13:3)

Sp = [10 10 10 (10:-.13:6) 6 6 6 6 6 (6:.13:8) 8 8 8 8 8]

Q_F(1) = 5;

for i = 1:1:60

 if(Sc_frames(Q_F(i)) > Sp(i))

 Q_F(i+1) = Q_F(i) - 1;

 elseif(Sc_frames(Q_F(i)) < Sp(i))

 Q_F(i+1) = Q_F(i) + 1;

 elseif(Sc_frames(Q_F(i)) == Sp(i))

 Q_F(i+1) = Q_F(i);

 end

Sc_saved(i) = Sc_frames(Q_F(i));

end

%plot ([1:1:61],Q_F)

ylim([4 13])

hold on

plot ([1:1:60],Sp(1:1:60),'r.-')

88

hold on

plot ([1:1:60],Sc_saved(1:1:60),'bx-')

legend ('Suggested Frame Size (Sp)','Actual Frame Size

(Sc)','Location','SouthEast'); %error

xlabel ('Frame Number');

ylabel ('Size (Byte)');

grid on

الرسالة ممخص

 الإشارة ضغط عمىيو الدماغ الانشطو في البحثي العممي التقدم يعتمد ،رالحاض الوقت في
 الاتصال من لمتمكن النقل معدل وخفض الفعال التخزين أجل من ، الدقوالعاليةالعصبيو الدماغيو

. الخارجي بالعالم اللاسمكي
 الفيزيولوجية العصبية القيود مع تتعارض سوف ىذه البيانات معدلات فإن البيانات، ضغط وبدون

. ساحو الرقائق الالكترونيوم استيلاك وانخفاض الطاقة انخفاض حيث من
 معدلات للالقيود مع التوافق أجل من ضروري الزرع موقع في العصبية البيانات ضغط يكون بحيث

. البيانات ضغط نسبة لزيادة العالي المكاني الارتباط استخدام يتم الأطروحة، ىذه في .لاسمكيةا
 أساس عمى المقترحة المنخفضة الطاقة ضغط لمختمفة خوارزميات خمسة ومقارنة بالتحقيق نقوم ثم

 الأجيزة تعقيد بين مقايضة أفضل لتوفير منفصمة الالمويجات وتحويل منفصمة الالتمام جيب تحويل
 حل الىو الثنائى الابعاد منفصمة الالمويجات تحويل خوارزمية أن ينستنتج وبالتال. الضغطكفاءه و
 .الطاقة خفض اجل من المزروعو للأجيزة واعدال

 من بدلانوات الق لكله لذاكره طويمو كاملعمومات الاستخراج الم إلى تحتاج الحالية العلاج أجيزة
 العصبيو ضطرابات الاوتشخيص الكشف عمى قادرة لتكون فقط خاصة ةيإشار ميزات استخراج
 أو توقف أي دون باستمرار تنتقل أن يمكن العصبية البيانات أن نضمن أن يجب لذلك. يوالدماغ
 الجانب في ضغطيا فك يمكن المضغوطة البيانات أن نضمن أن يجب وأيضا البيانات فقدان
. كبير تشويو دون عالية جودة بالآخر

 ضغطنا خوارزمية لتكيف المتاحة المحصودة الطاقة ميزانية استخدام ،اقترحنا اليدف ىذا من
 الكفاءه لنقل من قدر أقصى وتحقيق باستمرار المضغوطة العصبية البيانات نقل عمى قادرة لتكون

 .لبيانات لفقدان أي دون المتاحة حصاد الطاقة الميزانية وفق شارةالإ

:دسـمهن محمد أشرف حسن إينال
:تاريخ الميلاد ١٩٩١\٠٩\٢١

:الجنسية مصرية
:تاريخ التسجيل ٢٠١٤\٣\١

:تاريخ المنح \٢٠١٧ --\--
:القسم والاتصالات الكيربية ىندسة الإلكترونيات
:الدرجة ماجستير العموم

:المشرفون
احمد العدوى. د.أ
حسن مصطفي حسن مصطفي. د

:الممتحنون
(المشرف الرئيسي)احمد العدوى .د.أ
(الممتحن الداخمي)-------------- .د.أ
(الممتحن الخارجي)-------------- . د.أ

:عنوان الرسالة

الدقة عالية العصبيو البيانات لضغط الطاقو مع لمتكيف قابل نموذج تصميم

:الكممات الدالة

 التصميم الموفر لمطاقو، التصميم الموفر لممساحو، ضغط البيانات العصبيو

:ممخـص الرسالة
 العصبيو الدماغيو الإشارة ضغط عمىيو الدماغ الانشطو في البحثي العممي التقدم يعتمد ،رالحاض الوقت في

 وبدون .الخارجي بالعالم اللاسمكي الاتصال من لمتمكن النقل معدل وخفض الفعال التخزين أجل من ، الدقوالعالية
 انخفاض حيث من الفيزيولوجية العصبية القيود مع تتعارض سوف ىذه البيانات معدلات فإن البيانات، ضغط
 الزرع موقع في العصبية البيانات ضغط يكون بحيث .ساحو الرقائق الالكترونيوم استيلاك وانخفاض الطاقة

 العالي المكاني الارتباط استخدام يتم الأطروحة، ىذه في .لاسمكية امعدلات للالقيود مع التوافق أجل من ضروري
 المقترحة المنخفضة الطاقة ضغط لمختمفة خوارزميات خمسة ومقارنة بالتحقيق نقوم ثم .البيانات ضغط نسبة لزيادة
 الأجيزة تعقيد بين مقايضة أفضل لتوفير منفصمة الالمويجات وتحويل منفصمة الالتمام جيب تحويل أساس عمى

 للأجيزة واعد الحل الىو الثنائى الابعاد منفصمة الالمويجات تحويل خوارزمية أن ينستنتج وبالتال. الضغطكفاءه و
 .الطاقة خفض اجل منالمزروعو

الدقة عالية العصبيه البيانات لضغط الطاقه مع للتكيف قابل نموذج تصميم

 اعداد

 محمد أشرف حسن إٌنال

إلى مقدمة رسالة

القاهرة جامعة –الهندسة كلٌة

درجة على الحصول متطلبات من كجزء

 ماجستٌر العلوم

 فً

والاتصالات الكهربٌة هندسة الإلكترونٌات

:ٌعتمد من لجنة الممتحنٌن

المشرف الرئٌسىاحمد العدوى : الاستاذ الدكتور

الممتحن الداخلً------------------ : الاستاذ الدكتور

الممتحن الخارجً------------------- :الاستاذ الدكتور

(---)

القاهــرة جامعــة - الهندســة كلٌــة

مصـرالعربٌــة جمهورٌـة - الجٌـزة

٢٠١٧

الدقة عالية العصبيه البيانات لضغط الطاقه مع للتكيف قابل نموذج تصميم

 اعداد

 أشرف حسن إٌنالمحمد

إلى مقدمة رسالة

القاهرة جامعة –الهندسة كلٌة

علىدرجة الحصول متطلبات من كجزء

 ماجستٌر العلوم

 فً

والاتصالات الكهربٌة هندسة الإلكترونٌات

 تحت اشراف

حسن مصطفً حسن مصطفً. د احمد العدوى. د.أ

 مدرس

 قسم هندسة الإلكترونٌات

 والاتصالات الكهربٌة

القاهــرة جامعــة - الهندســة كلٌــة

 أستاذ

 قسم هندسة الإلكترونٌات

 والاتصالات الكهربٌة

جامعــةالقاهــرة - الهندســة كلٌــة

القاهــرة جامعــة - الهندســة كلٌــة

مصـرالعربٌــة جمهورٌـة - الجٌـزة

٢٠١٧

الدقة عالية العصبيه البيانات لضغط الطاقه مع للتكيف قابل نموذج تصميم

 اعداد

 محمد أشرف حسن إٌنال

القاهرة جامعة –الهندسة كلٌة إلى مقدمة رسالة

درجةي عل الحصول متطلبات من كجزء

 ماجستٌر العلوم

 فً

والاتصالات الكهربٌة هندسة الإلكترونٌات

القاهــرة جامعــة - الهندســة كلٌــة

مصـرالعربٌــة جمهورٌـة -الجٌـزة

٢٠١٧

