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Abstract

The continuous increases in the complexity of semiconductor manufacturing from
technical and economical perspectives become a main concern to the applications
dominated by application-specific integrated circuits (ASICs) and application-specific
standard products (ASSPs). In contradiction to the increasing cost, complexity and risks
of the dependancy on ASIC implementation process, field-programmable gate arrays
(FPGAS) costs and time-to-market are looking very promising. FPGA industry has been
developed gradually to minimize the risk and time consumed in the development of
new products and increase the life time of the product in the marketing due to its
flexibility of being reconfigurable, which consequently decrease the threat of being
obsolete caused by introducing into the market same products with new generations.

Earlier FPGAs were only useful for applications with low densities or for ASIC
prototyping. Nowadays, FPGAs serve as Fields Programmable Systems on Chip
(FPSoC) and are widely used to implement computationally intensive world
applications.

One of the major challenges of the FPGAs is the limited routing and logic
resources. Moving towards newer FPGA technologies, the consumed power in routing
becomes more than the power consumed in logic. Moreover; as the number of
components in FPSoCs increases, traditional bus based and point-to-point interconnect
schemes become bottlenecks in satisfying systems requirements. Consequently,
embedding an efficient NoCs within FPGAs becomes essential to implement SoCs
designs.

We first review several NoC designs based on their contributions, architectures,
implementations and future works. We also make our comparison between three of
these routes to analyze the effect of varying NoC parameters on the operating frequency
and area utilization to help choosing the appropriate NoC based on system
requirements. Then we use FPGA-embedded NoC design and compare implementing
its components on soft and hard implementations to analyze the efficiency gap in area,
frequency and power between the two design flows (i.e., FPGA flow and ASIC flow)
and get the design constraints in this space. Finally we propose two different
configurations in soft implementation using the FPGA-embedded NoC, one
configuration attempts reducing the delay gap as much as possible between hard and
soft implementations and the second configuration relaxes the delay gap constraint for a
significant power reduction.
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Chapter 1 : Introduction

1.1. Motivation

Implementation medium is one the important factors impacting the Systems on
Chips (SoCs) configurations and their interconnect mechanisms in terms of
performance and cost. Recently, FPGAs are gradually replacing ASICs because of
FPGAs strength points of being easy to be upgraded, having short time to market and
low development costs, providing immediate results and fast design cycles which make
them the appropriate candidates for research proposes and removing the burdens of IC
fabrication involvement and manufacturing operations. Although there are always
continuous enhancements in FPGAS to reduce their weakness points and increase their
capabilities, they always consume more power and area; operate on lower frequencies
than ASIC and have limited and fixed resources. These are challenges for FPGASs to
satisfy some systems’ requirements.

Basic elements in FPGA are the programmable logic element for performing logic
calculations and interconnect for data transfer. Recent FPGAs contain hardware and
software blocks, such as memories, processors and Digital Signal Processing (DSP)
blocks.

As systems complexity increases, bus-based interconnections become a bottleneck
since they are unable to meet systems requirements. ARM’s AMBA [1] bus and IBM’s
CoreConnect [2] are shared buses; they allow reusing intellectual property (IP) and
support working with modular designs that have standard interfaces. But they are not
suitable for large systems because of the performance degradation. Consequently FPGA
vendors introduced an enhanced architecture that provides original standard shared bus
besides direct module to module communication. This architecture is called hybrid
bus/direct interconnection. These enhancements came with the cost of reducing systems
modularity and adding more effort for customizing hardware designs for the module to
module connection which complicates design process. Bus segments architecture was
introduced to rebalance the load of the bus. It is suitable for modules communicating on
the same segment with no congestion to the rest of the bus. However this complicates
the design process and reduces systems scalability and flexibility [3].

Network on Chip (NoC) is the candidate as a subsystem for the communication
between IP cores in a system on chip to overcome all previous problems. Strength
points of NoCs are scalability and flexibility because of the optimization and the
independent implementations between layers. They can work in both synchronous and
asynchronous clock domains, support different topologies. They provide interface
interoperability using simplified customization per application. They also enable
interface with high speed inputs/outputs like PCI-Express.

Embedded hardware, software blocks and customizable logic blocks within the
FPGA architecture make it the typical choice for NoCs designs. Implementing NoC
with low area overhead in FPGAs and choosing the appropriate set of NoC parameters
are necessary because of the limited routing and logic resources.



NoCs on FPGAs enable implementing one of the most promising features which is
partial dynamic reconfiguration (PDR). It is the ability to change the logic of one of
FPGA blocks without interrupting the other blocks while they are running.

1.2. Contribution

This dissertation of this work includes the following contributions:

« Provide a review on different NoC designs, their architectures, simulation and
test results.

« Compare between three open-source NoCs to analyze the behavior of the NoC
with varying NoCs parameters and to help selecting the NoC design that would match
to system requirements using soft implementation.

* Choose FPGA-embedded NoC and measure area allocation, maximum
operating frequency and power consumption on the sub-module level of the router in
both hard and soft implementations and compare between the results of soft and hard
implementations. Then provide design suggestions whether each module in the NoC is
more suitable to be harden or to be reconfigurable. And investigate whether the NoC
would give better results in soft implementations if it is designed to target FPGA than
NoCs designed for ASIC or not.

« Introduce two different configurations for the soft implementation. First
configuration attempts reducing the delay gap between soft and hard implementations
as much as possible. The second configuration results in a significant reduction of
consumed power with a small increase in area and delay gaps. Results are measured on
the network level.

1.3. Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 provides a detailed
survey of the most recent NoCs with their architecture and simulation results, then
makes a unified comparison between NoCs with available open source code . Chapter 3
uses FPGA-embedded NoC and compares its behavior under soft and hard
implementations on sub-module level, then gives design recommendation for each
module for best implementation. Chapter 4 introduces two soft implementations for the
FPGA-embedded NoC and studies the two configurations behavior on network level to
give design suggestions which configuration to use according to the target applications.
Then the thesis conclusion and future work are revealed in “Discussion and Conclusion”
section.

Finally, Appendix A shows the steps required for accurate estimation of power and
area in soft implementation. While, Appendix B gives a detailed description for the created
scripts used for automating the measurement of the efficiency parameters.



Chapter 2 : Literature Survey of Existing Networks-on-
Chips

2.1. Introduction

In this chapter, we give an overview of FPGA and ASIC advantages and
disadvantages, and then highlight the importance of NoCs especially for FPGA. Then
we explore previous works of different NoCs designs that represent the core of most
NoCs designs in the literature recently. We show their contributions, architectures,
implementation, test results and future works. Finally we make our comparison
between three NoCs across different values of the NoC parameters to give design
recommendation to help choosing the appropriate NoC according to system
requirements.

2.2. FPGA versus ASIC

FPGAs and ASICs address different market requirements. In the past, FPGA used
to be dominant for only prototyping and applications with low complexity, speed and
volume. Currently FPGAs replace ASICs for low and medium applications due to the
major enhancements introduced to FPGA’s operating frequency, chip density and
fabrication cost. Although ASICs have better performance characteristics (speed, area
and power), FPGAs keep pushing ASICs from market mainly because of their
flexibility and quick time-to-market values.

2.2.1. Unit Costs

Although ASIC has higher R&D design costs, in high volume applications, it has
lower costs of manufacturing than FPGA as shown in Figure 2-1.

Total cost

ASIC .15

ASIC Costs
Start higher,
but slope is flatter

For each technology advance,
crossover volume moves higher

Figure 2-1: FPGA vs. ASIC Cost
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2.2.2. Non Recurring Engineering Costs

Non Recurring Engineering (NRE) refers to the one-time cost of researching,
designing, and testing a new product, which is generally associated with ASICs. Figure
2-2 shows that NRE costs increase with the decrease of process geometry. No such
thing is associated with FPGA. Hence FPGA designs are cost effective.

$4,000,000
$3,000,000

$2,000,000
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©
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Figure 2-2: ASIC NRE Cost

2.2.3. Time to Market

Nowadays, time-to-market is an incremental bottleneck problem for ASIC with
process geometry decrease. This leads to longer design cycles because of the deep sub-
micron effects. On the other hand; introducing a new feature into FPGA takes a long
time, but this time is still less than implementing the feature using ASIC as shown in
Figure 2-3 because using FPGA; once the feature is implemented, it is deployed by a
software upgrade to the system without the need to any line cards or new hardware.

Potential profit if you

come early to the market
What you get if you
design with an ASIC
and come late to the market

End of market

Time

Missing the market window will wipe out all savings from
development and production

Figure 2-3: FPGA vs. ASIC Time-to-Market



2.2.4. System Re-Usability

ASIC designs cannot be reused because once it is fabricated; the internal chip
constructs layouts become fixed and cannot be modified. On the other hand, FPGA can
be reconfigured and used for different set of applications. This makes FPGA much
more flexible than ASIC.

2.2.5. Design Cycle

Figure 2-4 illustrates the FPGA and ASIC design cycles. FPGA designs consumes
less time and have smaller designed cycles than ASIC because for FPGA, most of the
timing, routing and placement are handled by software.

ASIC designs have to do time consuming and complex floor planning and
advanced verifications, whereas in FPGA the designs logic is already synthesized to be
placed onto an already verified, characterized FPGA device.

ASIC

Fuctional Fuctional
Specification Specification

¥

HDL

Behavioral l_, Behavioral
Simulation Simulation

DFT .
- Synthesis
Insertion y —

Static Timing
Analysis

Place & Route Hand-0ff
to Foundry: Equivalency

— . .
Wait 1-3 Months Checking
Analysis Place & Route ——

— ]
Static Timing
Analysis

Download and
Verify in Circuit

Equivalency
Checking

Verification of
2nd & 3rd
Order Effects

Verify in Gircuit

Figure 2-4: FPGA vs. ASIC Design Cycle

Figure 2-5 shows the difficulty in introducing late changes in ASIC flow over
FPGA flow.



Freeze design lterations?
ASIC - = W

Spec  Design & verifidation Silicon System Production  First
Prototype Integration Ship

F desi
EPGA reeze e&gnl’:
BN EE

Spec  Design and System Produclion  First
verification Integration ! Ship

Figure 2-5: ASIC vs. FPGA Production Cycle

2.2.6. ASIC versus FPGA Summary

Figure 2-6 shows a summary of FPGA versus ASIC evaluation factors.

anysilicon @I C )

Time to Market Slow
NRE High

Design Flow Complex
Unit Cost D Lo
Performance v > <L High
Power Consumption | [NENHIGRINN > < Low
Unit Size .~ Medium Low

Figure 2-6: FPGA vs. ASIC Summary

2.3. NoCs Overview

Main components of NoCs are routers, links and a network interface. Routers and
links can be hard implemented or soft implemented. There are several reasons to base
the future of FPGA on NoC. First reason is the spatial reuse, which allows for scalable
power cost compared to the increased routing matrix that is used in traditional FPGA.
As shown in Figure 2-7, Routing power becomes slightly larger than logic power in
28nm technology.
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Figure 2-7: FPGA Routing and Logic Power Consumption

In [4], area, power and frequency costs of NoC and different interconnect
architectures which are segmented bus (S-Bus), non-segmented bus (NS-Bus) and point
to point interconnection (PTP) have been analyzed. Table 2-1 summarizes the
analytical expression of each architecture and its complexity with increasing the
number of modules (n) in the system on chip (SoC). The analysis proves that NoC is
more scalable than all other interconnect solutions. Moreover, FPGAs are often used as
prototypes for ASIC. If the ASIC is migrating to NoC, the FPGA architecture should
support NoC as well.

Table 2-1: Asymptic Cost Functions [4]

Architecture | Total Area | Power Dissipation | Operating Frequency
NS-Bus 0(n3vn) 0(nvVn) 1
03
S-Bus 0(n*Vn) 0(nvn) 0 (1)
n
NoC 0(n) 0(n) 0(1)
PTP 0(n?Vn) 0 (nv/n) 0
n

This section gives an overview of some of the terms and practices of networking
and NoCs before going through the NoCs routers.



2.3.1. Switching

Network architecture is divided into two categories, packet switching and circuit
switching. In a packet switching approach, the data is broken into packets consisting of
smaller elements known as flits, each flit contains routing information. These packets
are injected into the network where they are independently routed to the desired
destination. Packet switching networks often allow for high aggregate system
bandwidth, as many packets are routed at a given instant. However they require
congestion control and packet processing. NoCs include buffers to queue-up the
packets waiting for the availability of the routing resources. In a circuit switching
approach, a dedicated connection path which is known as virtual circuit between two
nodes is established before communication takes place. Once the virtual circuit is
established, raw data freely transferred with very low overhead between the modules
until the virtual circuit is no longer needed, at this time it is closed. As a result the
circuitry required for a circuit-switched network is relatively simple and appropriate for
use in even small systems. On the other hand, circuit switching suffers from two main
problems. First, setup latency, the time required to build a virtual circuit, must be
incurred before any communication between nodes takes place. Second, idle time on
communication links, this happens when connections have been established but no data
transfers are taking place.

2.3.2. Flow Control

Flow control algorithm is responsible of resources allocation needed to transfer the
packets through the network. It is a key parameter for determining network
performance by using the available resources as efficient as possible. Buffers
backpressure mechanisms should be included to eliminate dropping packets caused by
buffers overflow. Buffer space availability of downstream nodes should be stored at
upstream nodes to decide whether to send the packets or wait for buffer availability.

There are multiple algorithms for flow control. Credits-based & ON-OFF flow
controls are two widely used algorithms to implement flow control.

In credit-based flow control, the upstream node has a counter to store credits of the
downstream node. And with every successful transfer of a flit, this counter is
decremented by one. It stops forwarding any further flits when the counter value
reaches zero, because this means that the buffers at downstream node are full. After the
downstream node finishes processing and handling the incoming flit, it sends a credit to
the upstream node, which in turns increments its credit counter and start sending
buffered flits.

In on-off flow control, when the number of free entries of the buffer at downstream
node reaches a minimum threshold, it sends OFF signal to all other nodes. So they stop
sending to this node any flit until they receive ON signal from it when the number of its
free buffers becomes larger than the maximum threshold. This eliminates the need for
credit counters that need to be maintained for each node.



2.3.3.  Virtual Channel

Multiple flits can share the same physical channel using Virtual Channel (VC)
technique which divides input port into multiple queues. This approach reduces
congestion and latency and improves channel utilization and network throughput. VCs
enables the support of Quality-of-Service (QoS) by assigning a high priority for one of
logical channels; so flits coming from it will get more attention and pass in less time
than other flits. VC was first proposed with wormhole routing to combat head-of-line
(HOL) blocking but it also can be applied to any flow control. Buffer allocation for
logical channels is required for VCs leading to more area and power usage and latency
increase. But proper implementations of VCs overcome these drawbacks.

2.3.4. Allocator

Allocator’s functionality is matching between requesters and available resources.
The requester grants the resource only if the following three conditions are satisfied:

- No resources are granted to requesters unless a request is fired

- At most one resource is assigned to each requester

- Each resource is assigned to at most one requester

Allocator efficiency has a direct impact on the resources utilization. However there
is a tradeoff between the maximum possible matching and the design’s area, delay and
power. Because as long as the allocator’s logic becomes more complicated, it consumes
more area, power and introduces more delay.

Most routers that apply virtual channel technique need to use switch allocation and
virtual channel allocation; according to the routers designs, the proper allocation
algorithm is used.

2.3.5. Implementation

NoCs are implemented either in a hard network or in a soft network. Once hard
routers are implemented, they cannot be changed and the device is manufactured
according to the design specifications. This is why hard routers are more area and
power efficient and deliver higher performance; also hard implementation reduces
compilation time. Soft routers are implemented using reconfigurable resources on the
FPGA which give them flexibility over silicon routers but make them operate at lower
frequencies, consume more area and power.

2.4. Previous Works

24.1. NoCem

NoCem is a NoC emulation tool. G. Schelle and D. Grunwald [5] proposed it with
configurable network topology, channel FIFO depth, data width and packet length. To
guarantee the flexible integration with required tools, it provides common external
interface.
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Figure 2-8: NoCem Architecture [5]

Figure 2-8 shows NoCem architecture components, which are:

e VC: Each physical channel has a number of VCs to divide it into multiple
lanes which leads to higher throughput.

e Node Arbitration: It handles VC and switch allocations so that all incoming and
outgoing are capable of taking the proper arbitration_decisions. Flit-reservation
algorithm is used for flow control.

e Node Switch: It is an all-to-all multiplexer. This module is responsible of
allowing simultaneous multiple paths of communication.

The main parameters of the NoCem architecture are data width, network topology,
channel FIFO depth, and packet length.

NoCem is implemented and tested using Xilinx Virtex-1l Pro FPGA. In [5], it is
compared with a simple NoC that does not have VC, has buffers with single word
capacity per channel and a simple switch. The comparison is done across three
applications; cryptographic accelerator, a synthetic benchmarking application and
802.11 transmitter. The comparisons using the cryptographic accelerator and synthetic
benchmarking applications show that using complex NoC is not always necessary for
better performance. On the other hand, VC implementation is very efficient for data
flow applications demonstrated by the 802.11 transmitter.

24.2. PNoC

C. Hilton and B. Nelson [3] introduced FPGA-embedded circuit switched NoC. It
can be configured with different topologies and data paths. Also it has standard network
interfaces and simple network protocols.

PNoC consists of a group of subsets; each subset contains a router that applies

circuit switching between multiple nodes. Each node connects to a single router by a
router port interface. The main components of PNoC router are shown in Figure 2-9.
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Figure 2-9: PNoC Router Block Diagram [3]

PNoC components functionalities are as follows:

 Table Arbiter: It receives the multiple connection requests and schedules access
to the routing table. Also it manages the routing table update requests.

 Routing Table: It receives the required module address and uses it as an index
that points to candidate ports. These ports are used in the connections.

* Port Queue: It keeps the order of connection requests.

* Port Arbiter: When the destination is free, the port arbiter establishes the desired
connection and updates the signals that represent the status of connected ports for the
flow control mechanism.

» Switch Box: It forms the actual connections between modules.

One main difference between PNoC and the previous architectures is that PNoC
excludes the central crossbar (which consumes large area and affects the performance
remarkably). Instead, it defines the connections by using distributed routers across the
system; and sets up the router parameters which are number of ports, data width and
buffer depth.

Partial dynamic reconfiguration was taken into consideration in PNoC design. In
case of adding a new module to the system, its local router will be notified; which will
update the routing table of the system. Same behavior is used when a module is
removed.

Xilinx Virtex-1l Pro FPGA (xcv2p30-7) is used to implement PNoC blocks. Table
2-2 shows area and speed results for the router with multiple configurations of different
numbers of ports and different port data widths. One Block RAM (BRAM) is used to
implement the routing table. Note that the area of the routing table and the node
interface hardware are not included in the results.

Table 2-2: PNoC Router Implementation Results [3]

| Number of ports | Data width | Area (Slices) | Frequency (MHz) |

11



2 8 83 160
4 8 249 151
8 8 1113 138
2 32 131 145
4 32 366 138
8 32 1305 126

Image binarisation example is an algorithm that quantizes gray scale image pixels
to binary black and white values; by computing median values at three hierarchical
levels, then use them as a quantization threshold. This algorithm was used to evaluate
PNoC and two different bus-based implementations. Results show that; for concurrent
data transfers applications, the performance of PNoC is similar to direct interconnect.

It was difficult for authors to perform a direct comparison with multiple packet-
switched approaches, due to the few publications of papers covering packet-switched
NoCs. However an approach presented by Bartic et al. [6] was selected to represent the
packet-switched NoCs. Table 2-3 shows that PNoC consumes around half of the area
with a triple increase in the clock rate.

Table 2-3: PNoC Comparison to Packet-Switched Network of Bartic et al [3]

Architecture | Routers Ports Slices | BRAM | Frequency
(MH2z2)
Bartic [6] 8 10 2400 8 50
PNoC [3] 1 8 1223 1 134

2.4.3. Dual Crossbar Router

R. Pau and N. Manjikian [7] attempted to implement a configurable router for
embedded network on chip using dual crossbar instead of one full crossbar using a hard
router to reduce router area.

The configurable router consists of control logic and five bidirectional ports: Local,
North, East, South, and West. The local port is used to establish the connection with
associated node elements. On the other hand, the other four ports are used for different
network topologies. The control logic is responsible for all the switching activities and
channel arbitration based on the selected routing algorithm which is deterministic XY
routing by using the first crossbar to handle the X direction routing while the second
crossbar do the Y direction routing.

The router uses two 3x3 crossbar instead of one 5x5 crossbar, each one contains
three bidirectional connections: Local, Left, and Right as shown in Figure 2-10.

12
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Figure 2-10: Configurable Router for Embedded NoC Block Diagram [7]

The routing of the packets is done as follows:

e Outgoing packets from the node element that is attached to the overall
router pass through the local connection of the first crossbar.

e Incoming packets that arrive through the North/South ports are switched
directly to the attached node.

e Incoming packets that arrive through the East/West ports must first be
switched to the second crossbar to reach the required node.

A pair of handshaking signals is associated with the data bus for each port which
used to acknowledge the packet from the received node.

The implementation is done on Altera Stratix FPGA using Altera Quartus v6.1 and
ASIC TSMC 0.18 micrometer, Synopsys Design Compiler V-2004.06-SP1 and
Cadence First Encounter v4.10.

The comparison between dual crossbar and full crossbar with different
interconnection widths is shown in Figure 2-11.
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Figure 2-11: Configurable Router for Embedded NoC FPGA Resource utilization
breakdown [7]

The above results show that the dual crossbar gives more area efficient due to less
logic elements used, but it slows down the circuit as shown in Table 2-4.

Table 2-4: Configurable Router for Embedded NoC Results for FPGA and ASIC

[7]
Altera Stratix ASIC
Logic Area reduction 24% 22%
Average Operating Frequency 123 MHz | 340 MHz
Operating Frequency Reduction 19% 4%

24.4. HW NoC

K. Goossens, M. Bennebroek3, J. Y. Hur and M. A. Wahlah [8] compared HW
NoC design to conventional FPGA one. They found that HW NoC has better area,
bandwidth and performance with a factor 150 or more over the soft NoC.

NoCs contain two kinds of components: routers that move data around (usually
packets), and network interfaces (NI) that convert the NoC internal data format (e.g.
packets) to the protocol required by the NoC clients, NI is kernel or shell. NI kernels
and shells are either hard or soft. One IP is attached to one or more NIs, such as

functional 10 as shown in Figure 2.12.
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Figure 2-12: Hard and Soft NI Shell [8]

NoC routers are best implemented as hard due to large FPGA to ASIC overhead
ratio of arbiters and allocators.

The NI shell is soft for two reasons, first the port protocol depends on the
application IP that is different from one application to another, and second the channel

FIFO depth depends on the required bandwidth and latency that differ also from one
application to another.

24.5. SOTA

Input buffers in SOTA [9] are implemented using dual-ported memory elements
organized as statically allocated multi-queue (SAMQ) so that the memory is shared
between the VCs equally. Flit width and memory width have the same size to guarantee
that writing and reading flits will fit in one clock cycle. Each flit is routed in two phases
using Valiant's routing algorithm to improve loading balance. In the first phase, the flit
is transferred to intermediate node, in the second phase it is routed to its destination.
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Dimension-ordered routing algorithm is applied in each phase using two or three stages
depending on whether the speculative switch allocation is successful or not. Flits are
transferred from input nodes to output nodes via crossbar which is 4x4 multiplexer.
SOTA architecture is shown on Figure 2-13.

» VC Allocator

»  Switch Allocator

v

__,.Llll__p —+5® »

5
Crossbar Switch | | =~
Input Modules Output Modules

Figure 2-13: SOTA Arcitecture [9]

2.4.6. CONNECT

CONNECT is a soft router designed for FPGA [10-11], added new features like
virtual link and peak flow control, maximize routing resources utilization by using

wider buses between routers.
It is an open source configurable RTL-based router designed for FPGA with

architecture shown in Figure 2-14.
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Figure 2-14: CONNECT Router Architecture [10]

Data is packetized while passing through the network. Each packet is divided into
multiple flits. Routing information besides the data are included in each flit.

CONNECT router supports two flow control mechanisms. Credit-based flow
control and a similar mechanism to ON-OFF algorithm called peek flow control.

With every clock cycle, the router receives a new flit from its input ports and
forwards to the output ports the flit that was received from previous clock cycle. For
each incoming flit to input ports the routing module evaluates - using lookup tables that
store output ports of all possible destinations in the network - which output port the flit
will go through; then the router appends to the flit data, a stamp that indicates the path
the flit would follow to reach its destination. Meanwhile the router stores the flit in one
of the buffers of the VCs per input port. According to the allocation algorithm, free
buffers space availability and priorities, the router selects the flit that will go the output
port passing through the switch. Every input and output module has two channels, one
for transmitting data flits and the second one to hold flow control signals.

Four separable input-output allocation algorithms are supported in CONNECT.

The router can be configured with different set of parameters which are number of
virtual channels, input ports and output ports, buffer depth, flit data width, network
topology and flow control algorithms.

In addition to prioritizing flits using flow control credits, CONNECT introduces
using virtual links to guarantee once ports starts receiving flits from a packet, it won’t
receive flits from any other packets till this packet finishes.

CONNECT is implemented using Bluespec System Verilog (BSV) which provides
a flexible parameterizable design.

In [10], CONNECT is compared with SOTA [9] using Xilinx Virtex-6 LX240T

and LX760 FPGAs. In terms of LUTs usage, CONNECT routers save about fifty
percentages of equivalent SOTA routers as shown in Table 2-5.
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Table 2-5: CONNECT Area and Performance Comparison with some SOTA
Routers [10]

Design Xilinx LX240T Xlinix LX760
4x4 Mesh/4VCs Area Frequency Area Frequency
LUTs % MHz LUTs % MHz
SOTA (32-bit) 36% 158 12% 181
CONNECT (32- 15% 101 5% 113
bit)
CONNECT 36% 98 12% 113
(128-bit)
2.4.7. Splitand Merge PS

Y. Huan and A. DeHon [12] were interested in analyzing NoCs that are designed to
target FPGA rather than ASIC. Their study was compared to two designs; first design is
CONNECT, which has been covered in previous section and the second one is Split-
Merged Packet Switched (PS) NoC which is stated in next section. Their analysis
results under different benchmarks shows that Split-Merged PS gives about three times
higher frequency and throughput but with the cost of using more area.

CONNECT uses only one single stage pipelining to reduce the effect of long wires
delay but this point was a main concern to Y. Huan and A. DeHon, since by this way;
the abundance of the FPGA registers was ignored. On the other hand, multiple stage
pipelining is used in Split-Merge PS to get better results in performance and

throughput.

Split-Merge architecture is shown in Figure 2-15.

The functionality of Split-Merge router components:

Input
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Figure 2-15: Split-Merge PS Architecture [12]

e Buffers: implemented by shift registers as FIFO queues.

1
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e Split Primitive: detects the flit header and routes input packets to the proper
output port.
e Merge Primitive: receives and reconstructs packets coming from different
input ports to a specific output port and sends them to that port.
e Flow Control: valid/backup pressure flow control is used (which is very
similar to the peek flow control that is used in CONNECT).
e Routing Algorithm: Two deadlock free algorithms are used
o Dimension Ordered Routing (DOR) routes the packet along the X
side then the Y dimension but in some cases this introduces long
routes.
o The West-Side First (WSF) routing offers more flexibility to avoid
long routes in case of local congestion.

Using Xilinx Virtex 6 FPGA (XC240T-1), Split-Merge is compared with
CONNECT. The used configuration is a mesh topology with flit width of 32 bits and
buffer depth of 16 bits. CONNECT is configured by peek flow control rather than
credit-based flow control since peek flow control is similar to back pressure flow
control used in Split-Merge, given that peek flow control consumes less area and gives
higher frequency than credit-based. Also virtual link is activated in CONNECT to give
same functionality of Split-Merge.

According to packets format of CONNECT and Split-Merge in Figure 2-16.
CONNECT adds 10 bits over Split-Merge for routing information, so Split-Merge
switch was tested with 42 bits channel width besides the 32 bits to give direct
comparison with CONNECT.

31 , , o
1)1 dest_IDI pkt_lenl data |
Pl !

valid 1:Head; 0:Body
‘
110 data ‘

Packet Format of Split-Merge Network

31 0
1,0 dest_ID | VC_ID | data |
il | | |

valid  0:Body; 1:Tail
B | :

‘1‘1|dest_ID Ve ‘ data \

Packet Format of CONNECT Network

Figure 2-16: Packet Format of Split-Merge and CONNECT Networks
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Results in Table 2-6 show that Split-Merge has the advantage of higher speed, but
with the cost of more area consumption.

Table 2-6: Implementation Results for CONNECT & Split-Merge [12]

Register Logic Memory Frequency

(LUT) (LUT) MHz

CONNECT | 2VC; 32bit 635 1369 166 104
1 clock 2VC; 64bit 1265 1926 288 92
Split-Merge | DOR; 32bit 541 1449 336 220
1 pipe DOR; 42bit 641 1686 462 219

2 clocks WSF; 32bit 579 1839 400 217
WSF; 42bit 679 2139 550 216

Split-Merge | DOR; 32bit 1262 1157 336 303
2 pipe DOR; 42bit 1572 1302 462 201

4 clocks WSF; 32bit 1545 1491 400 298
DOR; 42bit 1804 1666 5501 213

Simulation results in Figure 2-17 show that under low congestion CONNECT
works with lower average delay. On the other hand, Split-Merge achieves higher
performance under congested traffic.
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Figure 2-17: Cycle Comparison between CONNECT and Split- Merge PS NoC

2.4.8.

FLNR

[12]

A. Imbewa and M. A. S. Khalid [13] introduced a fast lightweight NoC router
designed for FPGAs with the objectives of using minimum resources and obtaining
high performance.




Packet has been modified to minimize the control fields, by removing the control
fields from its body and removing the tail flit as shown in Figure 2-18. This yields to
FIFO width reduction, so buffer area and power consumption will be reduced as well.

Dest_ID PacketLength Body Flit
.‘.
Head Flit

Figure 2-18: FLNR Packet Format

In FLNR design, the router decision time is only one clock cycle; also it takes one

clock cycle to write the body flits since credit-based flow control is used. This yields to
buffer depth reduction and high performance.

As shown in Figure 2-19, each router is connected to the surroundings (North,
East, South, and West) IPs/routers, as well as the local IP core.
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Figure 2-19: FLNR Block Diagram [13]

FLNR components and their functionalists:

e Arbiter: It receives the notifications (flit headers that contain packet
information including destination address) coming from input ports and
serves them in North, East, South, West, and Local orders using Round
Robin. Also it detects the head flit and payload end.
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e Direction Decoder: It receives the destination address of the packet and
calculates the routing directions using XY routing (the cheapest schema to
have deadlock free network).

e FIFO Depth: The minimum depth is the number of possible flits that are
stored during routing decision time. If there is no blocking, only two
buffers (one for head flit, one for body flit) are enough to get the minimum
latency.

e Switch: Finally the switch assigns the coming packets from input ports to
available channels. Simply the switch is a five 5-to-1 multiplexers that
support all possible connections between input and output buffers.

Router parameters are input buffer size and flit size.

FLNR was implemented on Altera Stratix 1l EP2S15F67214 FPGA. The synthesis
results for FLNR with three hops and buffer size of eight flits are shown in Figure 2-20.

Synthesis Results for FLNR

m FLNR Frequency (MHz) FLNR Areu (ALUTS)

Oplimuized lor Area

Optimized for Speed
306

Figure 2-20: Synthesis Results for FLNR [13]

The comparison with other routers (HERMES [14], ICN [15] and Bartic [16]) is
done by calculating the port bandwidth (maximum throughput) for each design, then
calculating the best case latency based on the same case study. Figure 2-21 and Table
2-7 give the comparison results. FLNR significantly outperforms the other routers with
lower area, latency and higher frequency. Furthermore, the number of clock cycles
consumed to finish the routing decision (R, ) is only one cycle.
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Comparison with some NoC Roulters
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Figure 2-21: FLNR Performance and Area Comparison with some Previous NoC
Routers [13]

Table 2-7: FLNR Performance and Area Comparison with some Previous NoC
Routers [13]

Design Flit Size | Flit/Cycle Slices Frequency Ry BW
(MH2z) (Mbps)
HERMES 8 0.5 406 25 10 100
[14]

ICN [15] 16 0.5 326 40 2 320

Batric [16] 16 1 807 50 3 800

FLNR 8 1 150 54 1 435
249. RROCN

HY. Luo, SJ. Wei, and DH. Guo [17] introduced an on-chip network with regular
reconfigurable topology (RROCN) which contains both routed network and shared bus
by disabling and bypassing the unwanted nodes of the routed network and reorganize
them as a shared bus, this leads to suitable throughput and power consumption for
application with different bandwidth demands.

The main goal of RROCN is to provide a reconfigurable suitable bandwidth NoC
with low cost.

The RROCN architecture consists of several nodes, each one contains a router,
where a CPU core is attached to the network through the local port of the router while
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the peripherals are located around the network which gives a NxN 2D mesh topology as
the largest topology that RROCN constructs with different MxH shapes but must be
less than N.

The main components of RROCN router are shown in Figure 2-22.
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Figure 2-22: RRCON Router Block Diagram [17]

PRCON components functionalities:

e Reconfiguration Controller: configures the crossbar and the multiplexers
using the information that is received from the previous router, after that it
generates new configuration information which is passed to the next router.

e Crossbar: responsible for connecting the input port to the output port of the
router. It consists of five ports. One for local port and the others are
processor and peripheral group as shown in Figure 2-23.

e Arbiter: handles only the requests from the peripherals group and constructs
the connections for it using the priorities inside the configuration
information.

(Processor group) Go o
Come from I > Processors
Processors

— _[ =
Come from .
penpherals ——}l arbiter I I Fm to
I) peripherals
(penpheral group) >
—>
Input | crossbar Output
port 4 port4

Figure 2-23: RRCON Crossbar Architecture [17]

The reconfiguration process is started at the run time from the processor by first
selecting an original node to be the starting point of the network, and then the
configuration information spreads inside the network to reach each node using
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reconfiguration controllers in each node using an YX constructive algorithm. After
constructing the network, a modified self-adaptive XY routing algorithm is used.

As shown in Table 2-8, hybrid circuit switching NoC is compared with the
RROCN in terms of area, power consumption, clock period, latency and maximum
throughput in four configurations. Four configurations topology, the coordinate
(1,1,1,1) based on the original node 44 is defined as 1111 44.

Table 2-8: RRCON Implementation Results on Four Configurations [17]

00 0000 33 0000 11 3030 11 5050
Larger clock period 104.0 35.9 374 9.7
(%)
Less power 52.7 59.3 41.3 14.1
consumption (%)
Lower zero-load 77.8 73.4 345 14.1
latency with equal
frequency (%)
Lower zero-load 54.7 63.8 10.0 5.8
latency with
maximum
frequency (%)
Lower maximum 51.0 26.4 52.4 28.9
frequency (%)

2.5. Comparative Review between NoCs with Open-Source
Code

In this section, we select the NoC designs [4], [9] and [10] with available open
source code, make our comparison between them and analyze their operating
frequencies, FPGA resources allocation across different values of buffer depth, data
width and VCs numbers to help selecting the suitable NoC that fits system
requirements.

2.5.1. Comparison Work Flow

We compare between the three architectures across different numbers of VCS, data
width and buffer depth and analyze their effects on frequency and LUTs and registers
usage. Network configuration is 4x4 mesh topology with five input and output ports.

The routers are implemented using Xilinx ISE v14.4 tool targeting Virtex6
XC6VLX240T FPGA. During the synthesis stage, RAM extraction option is disabled
to guarantee fairness among the three routers.

2.5.1.1. Frequency

e Buffer Depth: Increasing buffer depth improves the capability of storing
more packets. Consequently, this adds extra logic to handle the queuing
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process and decreases the operating frequency. Figure 2-24 shows that
NoCem has the highest operating frequency across all values of buffer
depth and it is the most sensitive router to changes in buffer depth.
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Figure 2-24: Frequency vs Buffer Depth

e Data Width: Data width change does not have high impact on the operating
frequency of the three routers as shown in Figure 2-25. CONNECT is the
most sensitive router to this parameter, whereas SOTA operating frequency
is almost fixed. NoCem is the router with the highest operating frequency
for all data width values.
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Figure 2-25: Frequency vs Data Width
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e Number of VCs: As shown in Figure 2-26, increasing VCs decreases the
operating frequency for all routers because adding VCs leads to more
combinational delays of switching algorithms and arbiters. NoCem has the
highest operating frequency, however it supports only up to four VC.
CONNECT is the most sensitive router to VCs increase.
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Figure 2-26: Frequency vs VC

2.5.1.2. LUTs Usage
e Buffer Depth: From Figure 2-27, for all values of buffer depth, SOTA

consumes the least number of LUTs, whereas NoCem has the largest LUTs
consumption.
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Figure 2-27: LUTs usage vs Buffer Depth

Data Width: Increasing data width does not introduce extra logic, so this
parameter does not have high impact on number of LUTs used for logic
implementation. As shown in Figure 2-28, for 8 and 16 bits data width,
NoCem is the most efficient in LUTs consumption, whereas it consumes
the largest number of LUTs when the data width is 32 bits.

LUTs vs Data¥Vidth 16P-4%C

100 ! ; ; !
Connect : 5 5

go H BIOCBIT |- oo s e L H
Sota

LUTs

Ak e .............. e .............. .............
a0 _ .............. O .............. L P
5 10 15 20 28 30 35
Datatidth

Figure 1-28: LUTSs usage vs Data Width

e Number of VCs: Adding VCs introduces more logic for routing
computation, which increases LUTs consumption. Figure 2-29 shows that
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NoCem consumes more LUTs than SOTA and CONNECT for all VCs
numbers. For VC count larger than three, SOTA consumes less LUTSs than

CONNECT.
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Figure 2-29: LUTSs usage vs VC

2.5.1.3. Registers Usage

More memory elements are needed with the increase of any of the three parameters

(buffer depth, data width and number of VVCs) as shown in Figures 2-30, 2-31 and 2-32.
SOTA is the most efficient in registers consumption and NoCem consumes the largest

number of registers.
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Figure 2-30: Registers usage vs Buffer Depth
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Figure 2-31: Registers usage vs Data Width
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Figure 2-32: Registers usage vs VC

2.6. Summary and Future Works

PNoC [3] is a circuit-switched approach applied to FPGA-based systems. It
provides a flexible, lightweight and easy design. Its performance is similar to direct
interconnect. PNoC design can be used for partial dynamic reconfiguration by updating
the routing table of the system with added and removed modules. But on other hand; it
will not be suitable for applications subjected to conflicting flows, since in the circuit-
switched connections, once established, no other modules are able to communicate.
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Future work is to explore the use of multiple routers, topologies and subnets in a
system. Perform a detailed comparison with packet-switched NoCs. And apply more
tests to check its suitability for partial dynamic reconfiguration.

The configurable [7] router provides the flexibility in supporting a variety of
network topologies with a simple three bit input for configuration. A dual crossbar
arrangement gives lower area with some reduction in operating frequency.

In future work, router's configuration is improved to include:
e Virtual channels to achieve higher throughput under conditions of high
traffic congestion.
e Using the concept of middle-buffering to achieve smaller designs and
superior performance than output buffering.
e Using custom memory block for buffer implementation.

In [12], detailed comparison between Split-Merged PS approach and CONNECT
has been introduced using different sets of benchmarks. Results show that Split-Merged
PS system reaches up to 300 MHz which is three times higher frequency and
throughput than CONNECT but with an increase in area usage.

FLNR [13] is a NoC router for FPGA that minimizes the area, maintains fast
performance by minimizing the control fields in the packets to decrease the buffer
width, decreases the routing decision time and delivers each flit in one clock cycle.

Future work is to implement a dual-clock wormhole router to forward the body flits
at faster frequency than the head flits.

Also, we think that authors should consider comprising FLNR results with more
recent NoC approaches e.g. CONNECT and SOTA. Since there is no open source code
for FLNR, we could not make this comparison.

RROCN [17] is proposed for chip-multiprocessors to achieve lower power
consumption under a demanded throughput. The RROCN was evaluated with four
specific reconfiguration topologies and compared with HCS network. RROCN is
suitable for specific applications, for example if we have application with specific
throughput demand, the RROCN is configured with a topology that provides suitable
throughput with less power consumption and lower zero-load latency and the same
thing happens if we have application requires lower latency or less power consumption.
The reconfiguration process is used to compromise between throughput, latency and
power consumption or optimize for one of them.

Future work was to improve the router design to include other network topologies
other than mesh topology and make further optimization to increase the maximum
throughput using the concept of virtual channels.

In this chapter, we also have compared between three NoC from the respective of
maximum operating frequency, registers consumed as memory elements and LUTSs for
logic computation across three NoC parameters which are data width, buffer depth and
number of VCs. The comparison results help in choosing the appropriate NoC
according to system requirements:

e If the operating frequency is the most important factor, NoCem is the best
choice with the cost of more LUTs consumption with increasing buffer
depth or number of VCs.
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For networks with small numbers of VCs, CONNECT is the most efficient
in LUTs consumption. On the other hand, it has the lowest operating
frequency across all NoC parameters.

If the target is improving the QoS of the network, this means that increasing
number of VCs is needed and SOTA is the most suitable router. As we
increase data width, buffer depth or VCs, it consumes the least amount of
registers. Increasing data width in SOTA is more suitable in case of
requiring high data transfer rate.
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Chapter 3 : Soft and Hard Implementations for FPGA-
Embedded NoC

3.1. Introduction

We study the behavior of FPGA-embedded CONNECT NoC sub-modules which
are input, output, router, allocator and switch; while changing the NoC parameters
which are data width, buffer depth and number of VCs and ports. With every run, we
change a single parameter and keep other parameters fixed, then measure the area,
delay and dynamic power gaps between soft and hard implementations.

3.2. Methodology

Five input and output ports, two VCs, 32 bits data word and 10 words buffer are
the baseline values of NoC parameters.

For soft implementation, Virtex5 FPGA (xcbvIx110t) [19, 20] is used and UMC’s
65 nm ASIC process technology [21] is used for hard implementation. UMC’s 65 nm
technology is selcted to follow the same methodology in [22, 23]. One FPGA from
Virtex5 family is used because of two reasons. 1) This family is fabricated by 65nm
process technology and 2) the availability of area resources of this family in [24, 25].
Table 3-1 shows FPGA resources with the equivalent silicon area.

Table 3.1: Estimated FPGA Resources Area

Resource Equivalent Number of Silicon Area in mma2
Gates
Register 7 0.000341
LUT 24 0.001171
10 100 0.004882
BRAM - 0.025436

3.2.1. Soft Implementation Flow

The used software for soft implementation is ISE v14.4. We force the tool to reach
the maximum available frequency by:

1- Setting time constraints to high frequency (1 GHz)

2- Using all available speed optimization options

3- Applying physical synthesis [26] to decrease the critical path with the cost of

small area increase.

Only the clock signal at the top module is connected to IO buffers, because in
integrated system, all input and output signals will be connected to their corresponding
signals of other routers based on the NoC configuration.
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The tool calculates area utilization and maximum frequency after every stage. We
are only concerned with results after place and route (PAR) because of their accuracy
after this stage. Also, because combining and packing FPGA resources due to
optimization options are taken into account after PAR. Exact routing and component
delays are generated in this stage.

Dynamic and static power consumptions [27] are measured using integrated tool
within ISE called xPower Analyzer [28]. For power extraction, the tool uses:

- The Native Circuit Description File (NCD) file. It is generated after PAR
and describes the physical design of the FPGA.

- The Physical Constraints (PCF) file. It is created during mapping stage and
consists of two sections. The first part includes the physical constraints
created by the mapper. The second section is for the physical constraints
specified by the user. Information in PCF file is used to determine clock
frequencies. And providing it to xPower Analyzer tool is very important for
accurate estimation of dynamic power consumption.

3.2.2. Hard Implementation Flow

Synopsys design compiler 2008.09 is used for hard implementation with typical
case process library and 1V supply voltage. The used wire load model is endorsed
model.

In soft implementation, the components of the FPGA are fixed and the used
resources are selected according to the design and its constraints. While on hard
implementation the used constraints affect dramatically the area utilization especially
on buffers insertion and cells upsizing. That is why the area, delay and power results
are gathered across two steps. At first, we set the tool with very tight timing constraints,
enable the “scan” option to get more realistic timing measurement and use ultra-
compilation for high optimization of area and clock. The scannable flip-flops replace
the non-scannable flip flops during compilation. At the end of this step the value of
negative slack is extracted from timing reports generated by the tool. In the second step,
these negative slack values are used as a target for timing constraint. Then after
recompilation, area and power consumptions are extracted. And the final delay
measurement takes into account if there is a positive or negative value for the slack.

3.3. Results and Discussions

CONNECT requires data buffering to store flits till the destination is ready to
receive packets and to store routing tables and other information required for successful
transmission. 2D flip flop array is always used to implement memory buffers on ASIC.
FPGA has three types of resources that can be used as memory elements [29]. These
resources are:

1- Register: it is a group of flip flops for storing a bit pattern. Consequently, when

registers are used for data storing, there is no waste at all.

2- Distributed RAM (DRAM): look up tables (LUTSs) are normally used for logic

functions, but LUTs can be grouped together and configured as small memory
elements called DRAMs.
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3- Block RAM (BRAM): it is a dedicated component in the FPGA for storing
data.

3.3.1. Input Module

Input module is responsible of
- Logic calculations required for data control and routing
- Memory buffers for storing the data coming to the router till its destination
is ready for receiving.

This module was implemented to target only DRAM but we modified it so that its
memory buffers can target the three buffering options in soft implementations.

Figures 3-1a, 3-1b and 3-1c show area utilization of input module across the three
buffering options with changing buffer depth, data width and number of VCs.

Register is not the suitable selection for implementing memory buffers because
number of registers increases rapidly specially with data width increase.

Under small values of buffer depth, data with and number of VVCs, there is a small
increase of DRAM area consumption than BRAM, but with increasing any of them,
DRAM becomes worse than BRAM. On the other hand BRAM area consumption is
almost constant across the parameters.

The disadvantages of using BRAM and DRAM is the possibility of bits waste of
these resources if the module instantiated them without using all their bits.

So based on silicon area results shown in Figures 3-1a, 3-1b and 3-1c, BRAM is
the most suitable choice for input module across all parameters followed by DRAM
under small values of buffer depth, data width and number of VCs.

Comparing input module using BRAM implementation with other modules, it
depends on data width, buffer depth and VCs number. It has the least gabs in area,
delay and power as shown in Figures 3-2, 3-3 and 3-4. Increasing data width and buffer
depth reduces power and area gaps. While adding more VCs adds more delay gap but
decreases area and power gaps.

3.3.2.  Output Module

Output module is independent on data width and the number of VCs. While it
changes with buffer depth and number of ports with more sensitivity to buffer depth
than number of ports because with buffer depth increase, more registers and
combinational logic are required which justifies the large power and area gabs as shown
in Figures 3-2, 3-3 and 3-4.

35



35 —H— Register

—&— LUTRAM
—+— BRAM

w

Buffer Area (mr'r?)
o
5] n

in

05

i S s,

30 40
Buffer Depth (words)

(a)

Input Module
15 T T

=

w
n

—HB— Registar
—&— LUTRAM
—+— BRAM

w

)
n

Buffer Arsa (mire)

Murber of WCs (bits)
(c)

70

4 a B 7 8

Buffer Area (mr'r?

Buffer Arsa (mre)

Input Module

7 . . .
—E&— Register
L | —e—LUTRAM

e | —+—BRaM 1

il i i |
[u] a0 100 180 200 250 300
Data Width (bits)
(b)
Routing Module
0.08 T T T T T T
: : —E&— Register
007k —&— LUTRAM
—+— BRAM

0.08

0.05

o
o
E

=2
=
[n]

o
=1
=]

0.071g

: : :
2 4 [ 8 10 12 14 16
Mumber of Ports

(d)

Figure 3-1: FPGA memory buffers using three implementation alternatives
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Figure 3-2: FPGA/ASIC Area Ratios
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3.3.3.  Routing Module

Routing module consists of
- Logic part for determining routing paths.
- Memory buffers that are used to hold information about available input and
output ports.

We modified this module so that its memory buffers can target the three buffering
options in soft implementations and analyzed their behaviors with changing number of
ports. Figure 3-1d shows that starting from four ports; DRAM is the best choice for this
module since it has the best silicon area besides that area consumption is almost
constant across all ports numbers. This is because routing module use memory buffers
to store information about input and output ports availability which makes the needed
memory size very small compared to input module that holds the data itself besides
other information used for transferring the flits through the network.

Figures 3-2d, 3-3d and 3-4d show FPGA to ASIC ratios for this module with
DRAM memory buffers across available ports numbers. Its area, delay and power
values in hard implementation increase with ports number increase while in soft
implementation, their values are almost fixed across ports numbers. This is because the
resources allocation in FPGA of four ports setup would be the same for five to fifteen
ports setup.

3.3.4. Allocator

This module depends on the number of ports. Its area, speed and power values
increase rapidly in both hard and soft implementations with increasing ports numbers as
shown in Figures 3-2d, 3-3d and 3-4d. But their values increase faster in soft
implementation mainly because of the combinational logic besides that the module
consists of multiple logic elements that communicate with each other using
interconnects which are well known of consuming area and power and increasing the
critical path.

3.3.5.  Switch

Because of the pure combinational logic of the switch module, registers were
inserted at the module output. This is mandatory for the tool to force timing analysis.
Switch module depends on the number of ports. As shown in Figure 3-3d, delay gap is
insensitive to ports numbers and is almost fixed. While Figure 3-4d shows that
increasing ports numbers decreases power gap.

3.3.6. Module and System levels comparisons

Geometric means of soft-hard ratios of area, delay and power gaps are shown in
Table 3-2. Geometric mean is the suitable mean for comparing normalized values [30].

Input modules geometric means are 1.8x, 2.9x and 5.3x respectively. These are the
least gaps across all modules. Delay geometric mean for output module is 3.5x and it
has very large area and power geometric means 54.7x and 38.1x.
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The
delay an

geometric mean of area gap is 27.3x for routing module; while it has large
d power gaps 4.6x and 44.8x respectively. These large gaps may be because of

the restrictions of fixed fabrications of the FPGA which affects the optimization of

placeme

nt and routing. While ASIC is much more flexible with more efficient

optimizations options, for example scanning to upsize cells.
Allocator module is more sensitive to the number of ports increase in soft
implementation than hard implementation. That is why it has large geometric mean

67.7x fo

Swi

r area, 4x for delay and 38.6x for power.

tch module has the largest geometric means 90x for area, 7x for delay and

52.8x for power gap. This is because this module is purely combinational and ASIC is
much faster than FPGA in combinatorial logic implementation due to the following:

1-

2-

FPGA would need several in series LUTs while in ASIC it is possible to
implement wider input functions with significant decrease in delay than FPGA
due to the fine-grain architecture of ASIC.

FPGA has programmable routing structure while ASIC has dedicated routing
structure.

Table 3-2: FPGA/ASIC Ratios

Module | FPGAJ/ASIC Area Ratio | FPGA/ASIC Delay Ratio FPGAJ/ASIC Power
Ratio
Min. | Max. | Geometric | Min. | Max. | Geometric | Min. | Max. | Geometric
Mean Mean Mean
Input 1 6 1.8 2.5 3.9 2.9 27 | 17.8 5.3
Output | 45.4 | 67.5 54.4 2.8 4 35 23.7 | 754 38.1
Routing 9 135 27.3 3.8 54 4.7 145 | 204.4 44.8
Allocator | 42.6 | 82.5 67.7 2.5 5.6 4 283 | 771 38.6
Encoder | 78.8 | 129.3 90 7 7 7 41.4 | 107.3 52.8
Total 2.8 | 45.2 9 3 4.3 3.7 5.8 | 4255 12
Router

3.4. Design Recommendation

1-

Routing module needs small memory buffers, so DRAM implementation is
more suitable for this module. On the other hand, input module needs large
memory buffers and BRAM is the best choice for it. The area utilization is
almost similar across different values of VCs number, data width and buffer
depth.

To get higher bandwidth for input module, increasing data width is better than
increasing the number of VCs. Also increasing data width reduces area and
power gaps. Area gap is reduced from 6x to 1x and power gap drops from 12x
to 6x. Using small number of VCs increases area and power gaps for input
module.
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3-

It is recommended not to increase the number of ports if the main concern is
the speed results. As shown in Figures 3-2 and 3-3 and Table 3-2, increasing
ports numbers adds significant increase in allocators speed gap (raises from
2.5x to 5.6x) and area gap (changes from 41x to 82x) while the impact on
power gap in not high. Ports numbers change has less effect on encoder and
output modules. On the other hand increasing the number of ports reduces
speed, delay and power gaps of the routing module. Speed gap reduced from
5.4x to 3.8x, power gap falls from 204.5x to 14.5x and area gap changes from
135x to 9x.

Given that the switch and the allocator modules have the largest speed, area
and power gaps, they are more suitable to be harden than being soft
implemented. Also this might indicate that more enhancements may be needed
for these modules on soft implementations.

Comparing our work with SOTA [9] in Table 3-2 proves that when the NoC is
designed to be FPGA-embedded NoC, it would utilize bandwidth and area
better than NoCs designed to target ASIC (30x area gap and 3.6x speed gap).

3.5. Summary

In this chapter, we provided a comparison on the sub-module level between soft
and hard implementations using FPGA-embedded NoC and measured the efficiency
gaps between the two implementations. In soft implementations, it is more efficient to
use BRAM in input module as memory elements. On the other hand DRAM is more
suitable for routing module. Increasing data width is better than adding more VCs for
better operating frequency. Switches and allocators are not efficient in soft
implementation since they consume large area and power and increase the critical path.

When the NoC is designed to target FPGA, its efficiency gaps in soft
implementation are better than the efficiency gaps of NoC designed for ASIC.
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Chapter 4 : Two Soft Implementations For FPGA-
Embedded NoC

4.1. Introduction

Our contribution in this chapter is introducing two different configurations for the
soft implementation using the CONNECT FPGA-embedded NoC. In each
configuration, we measure area, speed and power gaps on the network level between
soft and hard implementations. First configuration targets reducing the delay gap
between soft and hard implementations as much as possible, whereas in the second
configuration the soft implementation has significant reduction of consumed power
with the cost of small increase in the delay and area gaps.

4.2. Methodology

We follow the same methodology in previous chapter for soft and hard
implementations.

We study the effect of changing FPGA synthesis, mapping and place and routing
properties on the NoC router besides modifying specific components of the NoC to
reduce the gap between soft and hard implementations. In the first setup, we select
properties and modify specific components to get the least delay gap between soft and
hard implementations. In the second setup, we modify these options and components to
reduce the power gap between soft and hard implementations. Following that, we
measure the effect of these changes on the area and speed gaps. For each setup, we
change one of the NoC parameters which are buffer depth, data width, number of VCs
and number of ports then measure the router’s area, delay and power.

The following section clarifies the options used for speed-target and power-target
configurations. The two configurations are summarized in Table 4-1.

4.2.1. LUT Combining

The main resources for implementing sequential and combinational logic in FPGA
are “The Configurable Logic Blocks (CLBs). Each CLB in Virtex-5 FPGA consists of
two slices. Each slice has four 6-input lookup tables (LUTSs), four flip-flops (FFs), three
multiplexers, and a length-4 carry chain comprising of multiplexers and XOR gates.
LUTs are standard elements that are used for executing combinational logic. They work
as a small memory that holds the truth table of outputs for all inputs combinations.
Each 6-input LUT can be used as two 5-input LUT with two outputs; this is called dual
output mode. Therefore, each slice can be used to either implement one function with
six inputs or two independent functions sharing five or less inputs with two separate
outputs. This will reduce the required resources of LUTs for circuits that consist of
small logic functions, giving better utilization with less dynamic power consumption.
Unfortunately this causes performance degradation.

Dual output mode can be enabled or disabled using LUT combining option in
synthesis and mapping stages [31, 32]. It may be disabled or may be set with two other
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values called “Area” and “Auto”. Setting it to “Area” combines LUTs as much as
possible ignoring the resulted performance degradation. On the other hand, setting it to
“Auto” balances between area optimization and design speed. For power-target
configuration, this option is set to “Auto” during synthesis; and set to “Area” in
mapping stage. These selections are based on multiple tests that showed that this
combination compromises between saving the power as much as possible with
reasonable performance degradation. Other combinations don not improve power
consumption. On the other hand, they have negative impact on the design operating
frequency and cause more performance degradation. In speed-target configuration; the
option is disabled in both synthesis and mapping to avoid any performance degradation.

4.2.2. Optimize Instantiated Primitives

Most FPGA vendors provide various synthesis options that have remarkable effects
on the designs results [33]. In most of the cases, setting the options is enough for the
FPGA to follow the set rules. However in some cases, setting the synthesis options is
not enough and designers must rewrite the HDL code to force insertion of specific
FPGA components [34]. Better method is to target FPGA-embedded primitive
instantiation. This method is effective for design optimization and sometimes it
becomes the only way to achieve the required target or to make work around a bug in
the synthesis tool. In addition, it makes the design less dependent on the synthesis tool.
On the other hand, the design will be more difficult to maintain and less portable.
Practically these disadvantages have less impact on designs because in most of the
cases, the target FPGA is already defined before writing the HDL code. Moreover,
most of the new FPGA families provide backward compatibility to older FPGA
versions. One example of the manual instantiation is to force the distributed RAM to be
used instead of the BRAM to save power.

The tool does not optimize instantiated primitives unless this synthesis option is set
to “True” [31]. This optimization is limited by multiple conditions [35]. For example, if
there are specific constraints like Relative Location Constraints (RLOC) applied on
those instantiated primitives, no optimization will be conducted. Also the tool does not
optimize some hardware elements such as BRAM and DSP48. This option is disabled
in speed-target configuration and enabled in power-target configuration.

4.2.3. Power Reduction

Using the default settings; the tool attempts to reduce the consumed power.
Performance, area, power and runtime are the different strategies that can be applied by
the tool. According to the selected strategy, the tool applies the proper algorithms for
power reduction. Because of the trade-offs between these strategies, user should
configure the tool with the most important strategy according to his design
specifications.

The tool provides power reduction switches in synthesis, mapping and routing
stages to enhance power results at the expense of longer run time, performance
degradation and sometimes more area consumption. The general rule in the relation
between power and area results is that the function would consume less power as long
as it uses fewer resources for its implementation. However in some cases there is a
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contradiction between them; because there are power reduction algorithms that require
more logic or resources [36].

At synthesis stage, the tool has different algorithms for power reduction that can be
applied globally, per module or per function. At mapping stage; the tool works on
improving the placement to achieve less power consumption. It starts with choosing a
layout for the design that satisfies timing constraints, and then runs time analysis to
check if there is timing slack. If timing slack is found, the tool modifies the placement
to get better results. At PAR stage; the tool works first on meeting timing constraints;
then reducing power on nets that are not part of the critical path. This stage also
includes optimizations of logic that does not affect functionality or timing but achieves
better power results. In other words mapping minimizes routing by enabling time
driven packing and PAR reduces power consumption by optimizing routing.

Mapping and PAR power reduction options yield to improving power results with
10-15% [37]. However these options increase the running time by 15% with
performance degradation. As long as the timing constraints are tighter, power
reductions algorithms will not be able to make sufficient changes in order not to affect
timing. Power reductions options in the three stages are disabled in speed-target
configuration and enabled in power-target configuration.

4.2.4. Maximum Compression

It is a mapping option that packs the logic of the design with the most possible
density [32]. This saves area and power consumption with the cost of performance
degradation. This option is enabled in power-target configuration and disabled in
speed-target configuration.

4.2.5. Memory Elements

One of the experiments implemented in previous chapter is using three different
implementations for memory elements. In each implementation, area consumption of
each component was measured across NoC parameters. These three implementation
target Registers, DRAMSs and BRAMs respectively. Results showed that using registers
as memory elements is not efficient at all across all parameters. BRAM is the most
efficient implementation for input module specially with increasing buffer depth, data
width and number of VCs. DRAMs is more suitable for routing module because this
module needs small memory elements for storing the information of available input and
output ports. In speed-target configuration, input module is modified to target BRAMs,
whereas in power-target configuration the module uses DRAMs.

Table 4-1: Speed and Power Target configurations

Option Stage Speed-target Power-target
LUT Combining Synthesis Off Auto
Mapping Off Area
Optimize Instantiated Synthesis Disabled Enabled
Primitives
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Maximum Compression Mapping Disabled Enabled
Power Reduction Synthesis Disabled Enabled
Mapping Disabled Enabled

PAR Disabled Enabled

4.3. Results and Discussions

4.3.1. Buffer Depth

The simulation results in previous chapter showed that output and input
components depend on changing buffer depth parameter. Moreover, output module in
soft implementation consumes more area and power than hard implementation at small
buffer depths. As previously mentioned; in speed-target setup, the input module was
modified so that it can be allocated in BRAMSs and in power-target setup, the module
uses DRAMs. Using BRAMs and setting the tool with speed-target configuration make
soft implementation consumes less area than power-target setup for all values of buffer
depth as shown in Figure 4-1. However it comes with a high cost of power
consumption especially for small values of buffer depth (Figure 4-3). This is justified
because using BRAMs consumes more power than DRAMSs. Figure 4-2 shows that
starting from 30 words buffer depth the two setups have similar delay gap and for
values less than 30 words speed-target setup has less delay gap than power-target setup.

4.3.2. Data Width

Input module is the component that depends on data width changes. For small
values of data width, area consumptions of BRAMs and DRAMs are close and with
increasing data width, DRAMSs start consuming more area. This justifies Figure 4-1
where speed-target and power-target setups have similar area ratios for small data
width; then for higher data width, the area gap increases in power-target setup. Using
BRAMs in speed-target setup and DRAMSs in power-target setup illustrate Figures 4-2
and 4-3 where in speed-target setup the soft implementation has less delay and
consumes more power.
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4.3.3. Number of VCs

Input component depends on the used number of VCs. Similar to the data width
analysis that has just been covered; for small numbers of VCs, BRAMs and DRAMSs
consume similar amount of resources, BRAMs are more efficient with increasing VCs.
Number of VCs does not affect the output component itself. However number of
created instances of the module depends on the number of VCs. Figures 4-1 and 4-2
show that speed-target setup has more area consumption and better performance than
power-target setup. However their values are still close to each other. But from power
respective, power-target setup satisfies high power reduction across all numbers of VCs
due to using DRAMs for input module in this setup.

4.3.4. Number of Ports

All NoC components except the input component depend on the number of ports.
Number of created instances of all components depends on number of ports except the
allocator module; one instance of it is created for the whole router. Results in Figure 4-
1 show that across all components, changing number of ports for speed-target and
power-target setups does not have high impact on area. From Figure 4-2, speed-target
setup has better performance results than power-target setup. From power respective
soft implementation in speed-target setup consumes almost the double values of power-

target setup as shown in Figure 4-3.
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4.3.5. Module and System Levels Comparisons

Minimum, maximum and geometric means of area, delay and power gaps for soft
and hard implementations at both speed and power target setups are shown in Table 4-
2. Setting FPGA with speed-target configuration reduces the delay gap to a factor of
5.5x between soft and hard implementations with a very high cost of the power
consumption 12.2x and 5.9x area usage. Configuring the FPGA with power-target setup
decreases the power gap to only 4.5x with a small increases in the speed and power
gaps 6.3x and 6.9x respectively.

Table 4-2: Speed vs Power Setups FPGA/ASIC Ratios

Setup | FPGA/ASIC Area Ratio | FPGA/ASIC Delay Ratio FPGA/ASIC Power
Ratio
Min. | Max. | Geometric | Min. | Max. | Geometric | Min. | Max. | Geometric
Mean Mean Mean
Speed- | 2.8 | 21.4 5.9 35 | 104 5.5 6 24.9 12.2
Target
Power- | 4.2 | 20.2 6.9 3.8 | 12.8 6.3 1.7 13 45
Target

4.4. Design Recommendation

Based on the previous results; for applications that are concerned with reducing the
delay gap as much as possible between soft and hard implementations, speed-target
options in Table 4-1 are recommended be used for soft implementation. But this will
increase the power consumption gap to by a factor of 12.2x. This power gap can be
reduced from 12.2x to only 4.5x with the cost of increasing the delay gap from 5.5x to
6.3x and increasing the area gap from 5.9x to 6.9x. The power reduction can be fulfilled
by configuring the FPGA with power-target options in Table 4-1 besides using DRAMSs
for input module instead of using BRAMSs. Power-target configuration is more
appropriate for applications with power limitations.

4.5. Summary

We choose FPGA-embedded NoC and propose two configurations for soft
implementation. In each configuration we analyze efficiency gaps between soft and
hard implementations on network level. One configuration targets the minimum delay
gap (5.5x) between soft and hard implementations, this leads to 12.2x power gap and
5.9x area gap. The other configuration targets reducing the power gap to 4.5x, leading
to 6.9x area gap and 6.3x delay gap. Choosing the appropriate configuration depends on
the application type. It is recommended to use the power-target configuration for
applications that require power saving, since the impacts on the area and delay gaps are
limited.
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Discussion and Conclusions

Integrating NoCs within FPGAs becomes a main factor for improving data
communication especially for high speed 10s interfaces, and partial dynamic
reconfiguration and for improving bandwidth utilization, decreasing the compilation
time and increasing designs efficiency and scalability.

The thesis contribution is in three phases. In Chapter 2, there is an overview about
networking principles then, provide a survey of the following NoCs routers:
e NoCem
PNoC
Dual Crossbhar Router
HW NoC
SOTA
CONNECT
Split and Merge PS
FLNR
RROCN
For these NoCs, we show their architectures, implementations, simulation, test
results and future works. Then we make our comparisons using a unified
implementation for NoCs with available open-source code which are NoCem, SOTA
and CONNECT. The comparison analyzed the behavior of the three NoCs operating
frequencies and resources utilization of LUTs and registers across different values of
the NoC parameters which are data width, buffer depth and number of VCs to help
choosing the suitable NoC design according to target applications. Results show that:
¢ NoCem has the highest operating frequency advantage. On the other hand,
it consumes more LUTSs with increasing number of VVCs or buffer depth
e CONNECT has the lowest operating frequency for all NoC parameters. For
networks with low number of VVCs, it consumes the least amount of LUTSs
e SOTA consumes the least amount of registers with increasing buffer depth,
data width or number of VCs

In Chapter 3, we use FPGA-embedded NoC (CONNECT) and study its behavior
on the sub-module level in soft and hard implementations. Based on analyzing the
power, area and delay of each module in soft and hard implementations across different
values of buffer depth, data width, number of VCs and number of ports, we give design
guidelines for embedded NoCs on FPGAs.

For soft NoCs, using BRAMs for input modules gives high area utilization while
LUTRAMSs are more suitable for routing module. To utilize bandwidth, it is better to
increase the data width than increasing the number of VCs or ports. Allocators and
switches have larger area, delay and power in soft implementation which make them
unsuitable for soft implementation. NoCs designed for FPGA in soft implementations
would utilize area better than NoCs designed for ASIC.

Finally in Chapter 4, we use the same FPGA-embedded NoC and propose two

configurations for the soft implementation. The differences between the two
configurations are in the following parameters:
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“LUT Combining” in synthesis and mapping stages
“Optimize Instantiated Primitives”

“Maximum Compression”

“Power Reduction” in synthesis, mapping and PAR stages
“RAM Extraction” for Input Module

For each configuration, the NoC efficiency gaps on the network level for soft and
hard implementations have been analyzed. One configuration attempts minimizing the
delay gap between soft and hard implementations. The second configuration targets
reducing the power gap as much as possible with a limited increase for area and delay
gaps. System constraints

According to system constraints, the relevant configuration will be used for FPGA

setup.

Many of the experiments, results and their conclusions in this thesis are published
in [38, 39 and 40].

As extension to this work, the following points are recommended for the future

work:
[ ]

According to the results of the sub-module level efficiency gaps, design a
new FPGA-embedded router optimized for soft implementation.

Measure the efficiency gaps at the sub-module level between soft and hard
implementations using different technologies and analyze the effect of
changing the technology on the results.

Modify the FPGA-embedded NoC to include the Round Robin arbiter
proposed in [41], then measure its effect on the NoC efficiency gaps.
Investigate the ability to develop a hybrid NoC with specific modules in
hard implementation and the other modules in soft implementation.
Upgrade the FPGA-embedded router to perform its functionality as 3D-
NoC for FPGA, then identify whether hard or soft implantation is the best
choice for 3D routers.

Evaluate modifying the router to eliminate using buffers for flow control or
buffering, since measurements in previous chapters show that buffers in the
networks on chips consume significant area and power and increase the
design complexity. Bufferless routers handle contention by deflecting or
dropping flits which leads to a simpler flow control mechanism and no
deadlock or livelock, however this approach reduces the bandwidth and
increases the latency; besides increasing the buffering complexity at the
receiver side because flits may reach their destinations out of order.
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Appendix A: Power and Area Estimation in Soft
Implementation

A.1l. Power Estimation

As previously mentioned in Chapter 3, xPower Analyzer tool requires two files for
static and dynamic power estimation. First one is the Physical Design File (NCD)
which is mandatory for power estimation. The second file is The Physical Constraints
(PCF). This file is optional, however if this file is not included, dynamic power values
will be almost Zero. Also if this file is included without timing information, dynamic
power values will be inconsistent. A PCF is automatically generated from the User
Constraints File (UCF) by MAP process.

To create UCF in order to generate PCF, use “The Constraints Editor” as follows:
1- In the Processes view, expand User Constraints.
2- Double-click on Create Timing Constraints.
e Add the required timing constraints from Constraints Editor as shown
in Figure A-1, then save them using File > Save.
e To update the design with the new or modified constraints, run
the Translate process.
e Run the MAP process to generate the PFC file.
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Figure A-1: ISE Timing Constraint

A.2. Area Estimation

To connect only the clock signal of the top module to 10 buffers as mentioned
in 3.2.1, the following steps should be done:
1- In the Process view, right click on Synthesis item and select Process
Properties to open Process Properties Window.
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2- Press on Xilinx Specific Options, and set Add 1/0O Buffers to true.

3- Create Xilinx Constraint File (XCF) and set the buffer type property for all the
input and output signals of the top module except the clock to false, then set the
keep property to all signals to true in order not to remove any signals during
optimizations:

BEGIN MODEL <module_name>

NET "signal_name" buffer_type = none;
NET "*" s = true;

END;

4- Open Process Properties Window and enable Synthesis Constraint File
option, then load the XCF file created in previous step.

A.3. HDL Modifications

Input and Routing modules of CONNECT router were implemented to target only
DRAM but we modified them so that their memory buffers can target the three
buffering options in soft implementations.

In this section we show the original memory implementation of the input module
that targets DRAM only, then the modification to the module so that it can target either
BRAM or DRAM

1- Original Implementation:
T
“ifdef BSV_ASSIGNMENT_DELAY
“else
“define BSV_ASSIGNMENT_DELAY
“endif
module RegFile_1port(CLK, rst_n,
ADDR_IN, D_IN, WE,
ADDR_OUT, D_OUT

);
parameter data_width = 1;
parameter addr_width = 1;
parameter depth = 1<<addr_width;
input CLK;
input rst_n;

input [addr_width - 1 : 0] ADDR_IN;
input [data_width - 1 : 0] D_IN;
input WE;
input [addr_width - 1 : 0] ADDR_OUT;
output [data_width - 1: 0] D_OUT;

reg [data_width - 1:0] arr[O : depth-1];
always@(posedge CLK)

begin

if (WE)
arrfADDR_IN] <= 'BSV_ASSIGNMENT_DELAY D_IN;

end
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assign D_OUT =arr[ADDR_OUT |,
endmodule
e

2- Modified Implementation:
i
“ifdef BSV_ASSIGNMENT_DELAY
“else
“define BSV_ASSIGNMENT_DELAY
“endif
module RegFile_1port(CLK, rst_n,
ADDR_IN, D_IN, WE,
ADDR_OUT, D_OUT

);
parameter data_width = 1;
parameter addr_width = 1;
parameter depth = 1<<addr_width;
input CLK;
input rst_n;

input [addr_width - 1 : 0] ADDR_IN;
input [data_width - 1: 0] D_IN;
input WE;
input [addr_width - 1: 0] ADDR_OUT;
output [data_width - 1: 0] D_OUT;
reg [data_width - 1:0] arr[O : depth-1];
reg [addr_width - 1 : 0] ADD;
always@ (posedge CLK)
begin
if (WE)
arrf[ADDR_IN] <= "BSV_ASSIGNMENT_DELAY D_IN;
ADD <= ADDR_OUT;
end
assign D_OUT =arr[ADD];
endmodule
i
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Appendix B: Efficiency Measurements Automation in
Soft Implementation

Chapter 3 and Chapter 4, there have been a huge number of runs for gathering the
efficiency gaps between soft and hard implementations across the network level and
sub-module level among NoC’s parameters. Doing this by using the tools in Graphical
User Interface (GUI) mode is very timing consuming and error prone. To save time and
avoid errors, we used the tools in batch mode and automated generating efficiency
parameters by creating scripts written in Tool Command Language (TCL). This
scripting language is already supported by the tools.

ISE generates TCL scripts for creating and running projects. This can be done
through Project menu item then selecting Generate Tcl Script item. We modified
the generated TCL script and created another TCL script to automate calling the
script generated by the tool.

We modified the generated TCL script by ISE in order to be generic and
could be used with different settings as follows:

HHH R

z Project automation script

z Created for ISE version 14.4

z This file contains several Tcl procedures (procs) that you can use to automate
# your project by running from xtclsh or the Project Navigator Tcl console.

# This script is generated assuming your project has HDL sources.
# Several of the defined procs won't apply to an EDIF or NGC based project.
# If that is the case, simply remove them from this script.
#
# You may also edit any of these procs to customize them. See comments in each
# proc for more instructions.
#
# This file contains the following procedures:
#
# Top Level procs (meant to be called directly by the user):
run_process: you can use this top-level procedure to run any processes
that you choose to by adding and removing comments, or by
adding new entries.
rebuild_project: you can alternatively use this top-level procedure
to recreate your entire project, and the run selected processes.

H HHF HHH

# Lower Level (helper) procs (called under in various cases by the top level procs):
# show_help: print some basic information describing how this script works

# add_source_files: adds the listed source files to your project.

# set_project_props: sets the project properties that were in effect when this

# script was generated.
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create_libraries: creates and adds file to VHDL libraries

that were defined when
this script was generated.

set_process_props: set the process properties as they were set for your project
when this script was generated.

HoH o HHF H

set myProject $::iseProject
set myScript "configPrj.tcl"

#

# Main (top-level) routines

#

# run_process

# This procedure is used to run processes on an existing project.

# You may comment or

# uncomment lines to control which processes are run. This routine is set up to run
# the Implement Design and Generate Programming File processes by default.
# This proc

# also sets process properties as specified in the "set_process_props" proc. Only
# those properties which have values different from their current settings

# in the project

# file will be modified in the project.

#

proc run_process {} {

global myScript
global myProject

## put out a 'heartbeat' - so we know something's happening.
puts "\n$myScript: running ($myProject)...\n"

if { ! [ open_project] } {
return false

}

set_process_props

#

# Remove the comment characters (#'s) to enable the following commands
process run "Synthesize"

process run "Translate"

process run "Map"

process run "Place & Route"

#

#set task "Implement Design™

#if { ! [run_task $task] } {

# puts "$myScript: $task run failed, check run output for details."”
# project close
#return
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#}

#set task "Generate Programming File"

#if { ! [run_task $task] } {

# puts "$myScript: $task run failed, check run output for details."”
# project close
#return

#}

puts "Run completed (successfully).”
project close

rebuild_project

H H H -

# This procedure renames the project file (if it exists) and recreates the project.

# It then sets project properties and adds project sources as specified by the

# set_project _props and add_source files support procs. It recreates VHDL
Libraries

# as they existed at the time this script was generated.

#

# It then calls run_process to set process properties and run selected processes.

#

proc rebuild_project {} {

global myScript
global myProject

project close
## put out a 'heartbeat' - so we know something's happening.
puts "\n$myScript: Rebuilding ($myProject)...\n"

set proj_exts [ list ise xise gise ]
foreach ext $proj_exts {
set proj_name "${myProject}.$ext"
if { [ file exists $::projPath/$proj_name ] } {
file delete $proj_name
}
¥

project new $::projPath/$myProject
set_project_props

add_source_files

create_libraries

puts "$myScript: project rebuild completed."”

run_process
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#
# Support Routines
#

#
proc run_task { task } {

# helper proc for run_process
puts "Running '$task™
set result [ process run "$task" ]
#
# check process status (and result)
set status [ process get $task status ]
if { (($status '="up_to date" ) && \
(' $status '="warnings" ) ) || \
I $result } {
return false

}

return true

ky

#

# show_help: print information to help users understand the options available when
# running this script.

#

proc show_help {} {

global myScript

puts "

puts "usage: xtclsh $myScript <options>"

puts"  oryou can run xtclsh and then enter 'source $myScript'."
puts "

puts "options:"

puts " run_process - set properties and run processes."

puts " rebuild_project - rebuild the project from scratch and run processes.”
puts " set _project_props - set project properties (device, speed, etc.)"

puts " add_source_files - add source files"

puts " create libraries - create vhdl libraries"

puts " set_process_props - set process property values™

puts " show_help - print this message"

puts "

¥

proc open_project {} {

global myScript
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global myProject

if { 1] file exists ${myProject}.xise ] } {
## project file isn't there, rebuild it.
puts "Project $myProject not found. Use project_rebuild to recreate it."
return false

¥
project open $myProject

return true

¥
#

# set_project_props

#

# This procedure sets the project properties as they were set in the project
# at the time this script was generated.

#

proc set_project_props {} {

global myScript

if {![ open_project] }{
return false

}

puts "$myScript: Setting project properties..."

project set family "Virtex5"

project set device "xc5vIx110t"

project set package "ff1738"

project set speed "-3"

project set top_level module_type "HDL"

project set synthesis_tool "XST (VHDL/Verilog)"
project set simulator "ISim (VHDL/Verilog)"
project set "Preferred Language™ "Verilog"
project set "Enable Message Filtering" "false"

#

# add_source_files

#

# This procedure add the source files that were known to the project at the
# time this script was generated.

#

proc add_source_files {} {
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global myScript

if {![ open_project] }{
return false

}

puts "$myScript: Adding sources to project..."
foreach srcFile $::srcFiles { xfile add "$srcFile" -copy }

# Set the Top Module as well...
project set top "$::topTitle"

puts "$myScript: project sources reloaded."
}; #end add_source_files

#

# create_libraries

#

# This procedure defines VHDL libraries and associates files with those libraries.
# It is expected to be used when recreating the project. Any libraries defined

# when this script was generated are recreated by this procedure.

#

proc create_libraries {} {

global myScript

if {![ open_project] } {
return false

}

puts "$myScript: Creating libraries..."

# must close the project or library definitions aren't saved.
project save

} ; # end create_libraries

#

# set_process_props

#

# This procedure sets properties as requested during script generation (either
# all of the properties, or only those modified from their defaults).

#

proc set_process_props {} {

global myScript
if {![open_project]}{
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return false

}

puts "$myScript: setting process properties..."
project set "Compiled Library Directory” "\$XILINX/<language>/<simulator>"

project set "Global Optimization™ "Off" -process "Map"

project set "Pack 1/0 Registers/Latches into I0OBs" "Off" -process "Map"

project set "Place And Route Mode" "Route Only" -process "Place & Route"

project set "Number of Clock Buffers” "32" -process "Synthesize - XST"

project set "Max Fanout” "100000" -process "Synthesize - XST"

project set "Use Clock Enable™ "Auto™ -process "Synthesize - XST"

project set "Use Synchronous Reset” "Auto" -process "Synthesize - XST"

project set "Use Synchronous Set" "Auto" -process "Synthesize - XST"

project set "Regenerate Core" "Under Current Project Setting™ -process
"Regenerate Core"

project set "Filter Files From Compile Order

project set "Last Applied Goal" "Balanced"

project set "Last Applied Strategy" "Xilinx Default (unlocked)"

project set "Last Unlock Status” "false"

project set "Manual Compile Order" "false"

project set "Placer Effort Level" "High" -process "Map"

project set "LUT Combining" "Off" -process "Map"

project set "Combinatorial Logic Optimization" "true" -process "Map"

project set "Starting Placer Cost Table (1-100)" "1" -process "Map"

project set "Power Reduction" "false” -process "Map"

project set "Report Fastest Path(s) in Each Constraint
Post-Place & Route Static Timing"

project set "Generate Datasheet Section
Route Static Timing"

project set "Generate Timegroups Section
& Route Static Timing"

project set "Report Fastest Path(s) in Each Constraint
Post-Map Static Timing"

project set "Generate Datasheet Section
Static Timing"

project set "Generate Timegroups Section
Static Timing"

project set "Project Description

project set "Property Specification in Project File™ "Store all values™

project set "Reduce Control Sets" "Auto™ -process "Synthesize - XST"

project set "Case Implementation Style" "None™ -process "Synthesize - XST"

project set "Decoder Extraction” "true" -process "Synthesize - XST"

project set "Priority Encoder Extraction” "Yes" -process "Synthesize - XST"

project set "Mux Extraction™ "Yes" -process "Synthesize - XST"

project set "RAM Extraction" "$::ramExtract" -process "Synthesize - XST"

project set "ROM Extraction™ "true™ -process "Synthesize - XST"

project set "FSM Encoding Algorithm™ "Auto" -process "Synthesize - XST"

project set "Logical Shifter Extraction” "true" -process "Synthesize - XST"

true"

true" -process "Generate

true" -process "Generate Post-Place &

false" -process "Generate Post-Place

true" -process "Generate

true" -process "Generate Post-Map

false™ -process "Generate Post-Map
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project set "Optimization Goal" "Speed" -process "Synthesize - XST"

project set "Optimization Effort" "High™ -process "Synthesize - XST"

project set "Resource Sharing" "true" -process "Synthesize - XST"

project set "Shift Register Extraction™ "true” -process "Synthesize - XST"

project set "XOR Collapsing” "true" -process "Synthesize - XST"

project set "User Browsed Strategy Files"
"D:/Prog_Setup/14.4/ISE_DS/ISE/virtex5/data/virtex5_area_with_physicalsynthesis.xd
§"

project set "VHDL Source Analysis Standard” "VHDL-93"

project set "Input TCL Command Script" "™ -process "Generate Text Power
Report"

project set "Load Physical Constraints File" "Default” -process "Analyze Power
Distribution (XPower Analyzer)"

project set "Load Physical Constraints File™ "Default" -process "Generate Text
Power Report"

project set "Load Simulation File" "Default" -process "Analyze Power
Distribution (XPower Analyzer)"

project set "Load Simulation File™ "Default" -process "Generate Text Power
Report"

project set "Load Setting File
Analyzer)"

project set "Load Setting File" " -process "Generate Text Power Report"

project set "Setting Output File™ " -process "Generate Text Power Report™

project set "Produce Verbose Report" "false™ -process "Generate Text Power
Report"

project set "Other XPWR Command Line Options" "™ -process "Generate Text
Power Report"

project set "Essential Bits" "false" -process "Generate Programming File"

project set "JTAG to System Monitor Connection™ "Enable” -process "Generate
Programming File"

project set "User Access Register Value"™ "None" -process "Generate
Programming File"

project set "Other Bitgen Command Line Options™ " -process "Generate
Programming File"

project set "Maximum Signal Name Length" "20" -process "Generate IBIS
Model"

project set "Show All Models" "false™ -process "Generate IBIS Model"

project set "Disable Detailed Package Model Insertion” "false™ -process
"Generate IBIS Model"

project set "Launch SDK after Export
To SDK with Bitstream™

project set "Launch SDK after Export™” "true" -process "Export Hardware Design
To SDK without Bitstream™

project set "Target UCF File Name" "$::projPath/$::topTitle.ucf" -process "Back-
annotate Pin Locations”

project set "Ignore User Timing Constraints" "false™ -process "Map"

project set "Use RLOC Constraints™ "Yes" -process "Map"

project set "Other Map Command Line Options" " -process "Map"

project set "Use LOC Constraints” "true™ -process "Translate"

project set "Other Ngdbuild Command Line Options™ ™" -process "Translate"

-process "Analyze Power Distribution (XPower

true" -process "Export Hardware Design
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project set "Use 64-bit PlanAhead on 64-bit Systems" "true” -process "Floorplan
Area/lO/Logic (PlanAhead)"

project set "Use 64-bit PlanAhead on 64-bit Systems™ "true" -process "1/O Pin
Planning (PlanAhead) - Pre-Synthesis"

project set "Use 64-bit PlanAhead on 64-bit Systems™ "true" -process "1/O Pin
Planning (PlanAhead) - Post-Synthesis™

project set "Ignore User Timing Constraints” "false™ -process "Place & Route"

project set "Other Place & Route Command Line Options" ™ -process "Place &
Route"

project set "Use DSP Block™ "No" -process "Synthesize - XST"

project set "BPI Reads Per Page™ "1" -process "Generate Programming File"

project set "Configuration Pin Busy" "Pull Up" -process "Generate Programming
File"

project set "Configuration CIlk (Configuration Pins)" "Pull Up" -process
"Generate Programming File"

project set "UserID Code (8 Digit Hexadecimal)" "OXFFFFFFFF" -process
"Generate Programming File"

project set "Configuration Pin CS" "Pull Up" -process "Generate Programming

File"

project set "DCI Update Mode" "As Required™” -process "Generate Programming
File"

project set "Configuration Pin DIn" "Pull Up" -process "Generate Programming
File"

project set "Configuration Pin Done" "Pull Up" -process "Generate Programming
File"

project set "Create ASCIl Configuration File" "false" -process "Generate
Programming File"

project set "Create Binary Configuration File
Programming File"

project set "Create Bit File" "true™ -process "Generate Programming File"

project set "Enable BitStream Compression” "false" -process "Generate
Programming File"

project set "Run Design Rules Checker (DRC)" "true" -process "Generate
Programming File"

project set "Enable Cyclic Redundancy Checking (CRC)" "true™ -process
"Generate Programming File"

project set "Create IEEE 1532 Configuration File" "false™ -process "Generate
Programming File"

project set "Create ReadBack Data Files" "false” -process "Generate
Programming File"

project set "Configuration Pin HSWAPEN" "Pull Up" -process "Generate
Programming File"

project set "Configuration Pin Init" "Pull Up™ -process "Generate Programming

false" -process "Generate

File"

project set "Configuration Pin M0O" "Pull Up™ -process "Generate Programming
File"

project set "Configuration Pin M1" "Pull Up" -process "Generate Programming
File"

project set "Configuration Pin M2" "Pull Up" -process "Generate Programming
File"
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project set "Configuration Pin Program™ "Pull Up" -process "Generate
Programming File"

project set "Power Down Device if Over Safe Temperature™ "false” -process
"Generate Programming File"

project set "Configuration Rate" "2" -process "Generate Programming File"

project set "Configuration Pin RdWr" "Pull Up" -process "Generate
Programming File"

project set "SelectMAP Abort Sequence” "Enable” -process "Generate
Programming File"

project set "JTAG Pin TCK" "Pull Up" -process "Generate Programming File"

project set "JTAG Pin TDI" "Pull Up" -process "Generate Programming File"

project set "JTAG Pin TDO" "Pull Up" -process "Generate Programming File"

project set "JTAG Pin TMS" "Pull Up" -process "Generate Programming File"

project set "Unused 10B Pins" "Pull Down™ -process "Generate Programming
File"

project set "Watchdog Timer Mode" "Off" -process "Generate Programming
File"

project set "Security" "Enable Readback and Reconfiguration” -process
"Generate Programming File"

project set "Done (Output Events)" "Default (4)" -process "Generate
Programming File"

project set "Drive Done Pin High" "false" -process "Generate Programming File"

project set "Enable Outputs (Output Events)" "Default (5)" -process "Generate
Programming File"

project set "Wait for DCI Match (Output Events)" "Auto” -process "Generate
Programming File"

project set "Wait for DLL Lock (Output Events)" "Default (NoWait)" -process
"Generate Programming File"

project set "Release Write Enable (Output Events)" "Default (6)" -process
"Generate Programming File"

project set "FPGA Start-Up Clock™ "CCLK" -process "Generate Programming
File"

project set "Enable Internal Done Pipe" "false™ -process "Generate Programming
File"

project set "Allow Logic Optimization Across Hierarchy" "false™ -process "Map"

project set "Optimization Strategy (Cover Mode)" "Speed" -process "Map"

project set "Maximum Compression” "false" -process "Map"

project set "Generate Detailed MAP Report™ "true" -process "Map"

project set "Map Slice Logic into Unused Block RAMs" "false™ -process "Map"

project set "Perform Timing-Driven Packing and Placement" "false"

project set "Trim Unconnected Signals” "false™ -process "Map"

project set "Create 1/0O Pads from Ports" "false" -process "Translate"

project set "Macro Search Path™ ™ -process "Translate"

project set "Netlist Translation Type" "Timestamp™ -process "Translate"

project set "User Rules File for Netlister Launcher™ "™ -process "Translate™

project set "Allow Unexpanded Blocks" "false" -process "Translate"

project set "Allow Unmatched LOC Constraints™ "false™ -process "Translate”

project set "Allow Unmatched Timing Group Constraints” "false" -process
"Translate”
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project set "Perform Advanced Analysis" "false" -process "Generate Post-Place
& Route Static Timing"

project set "Report Paths by Endpoint™ "3" -process "Generate Post-Place &
Route Static Timing"

project set "Report Type" "Verbose Report" -process "Generate Post-Place &
Route Static Timing"

project set "Number of Paths in Error/\VVerbose Report™ "3" -process "Generate
Post-Place & Route Static Timing"

project set "Stamp Timing Model Filename™ ™" -process "Generate Post-Place &
Route Static Timing"

project set "Report Unconstrained Paths” ™' -process "Generate Post-Place &
Route Static Timing"

project set "Perform Advanced Analysis" "false™ -process "Generate Post-Map
Static Timing"

project set "Report Paths by Endpoint” "3" -process "Generate Post-Map Static
Timing"

project set "Report Type" "Verbose Report" -process "Generate Post-Map Static
Timing"

project set "Number of Paths in Error/\Verbose Report™ "3" -process "Generate
Post-Map Static Timing"

project set "Report Unconstrained Paths" "™ -process "Generate Post-Map Static
Timing"

project set "Add I/O Buffers" "true" -process "Synthesize - XST"

project set "Global Optimization Goal" "AllClockNets" -process "Synthesize -
XST

project set "Keep Hierarchy" "No" -process "Synthesize - XST"

project set "Register Balancing™ "No™ -process "Synthesize - XST"

project set "Register Duplication™ "true" -process "Synthesize - XST"

project set "Asynchronous To Synchronous™ "false” -process "Synthesize - XST"

project set "Automatic BRAM Packing" "true" -process "Synthesize - XST"

project set "BRAM Utilization Ratio™ 100" -process "Synthesize - XST"

project set "Bus Delimiter" "<>" -process "Synthesize - XST"

project set "Case™ "Maintain™ -process "Synthesize - XST"

project set "Cores Search Directories” ™" -process "Synthesize - XST"

project set "Cross Clock Analysis™ "false” -process "Synthesize - XST"

project set "DSP Utilization Ratio" "100" -process "Synthesize - XST"

project set "Equivalent Register Removal™ "true" -process "Synthesize - XST"

project set "FSM Style" "LUT" -process "Synthesize - XST"

project set "Generate RTL Schematic” "Yes" -process "Synthesize - XST"

project set "Generics, Parameters™ " -process "Synthesize - XST"

project set "Hierarchy Separator™ /" -process "Synthesize - XST"

project set "HDL INI File" ™" -process "Synthesize - XST"

project set "LUT Combining™ "No" -process "Synthesize - XST"

project set "Library Search Order” ™ -process "Synthesize - XST"

project set "Netlist Hierarchy" "As Optimized" -process "Synthesize - XST"

project set "Optimize Instantiated Primitives" "false™ -process "Synthesize -
XST

project set "Pack I/0 Registers into IOBs" "Auto™ -process "Synthesize - XST"

project set "Power Reduction™ "false™ -process "Synthesize - XST"

project set "Read Cores" "true™ -process "Synthesize - XST"
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project set "Slice Packing"” "true" -process "Synthesize - XST"

project set "LUT-FF Pairs Utilization Ratio™ "100" -process "Synthesize - XST"

project set "Use Synthesis Constraints File" "true" -process "Synthesize - XST"

project set "Verilog Include Directories” ™ -process "Synthesize - XST"

project set "Verilog 2001" "true" -process "Synthesize - XST"

project set "Verilog Macros" " -process "Synthesize - XST"

project set "Work Directory" "$::projPath/xst" -process "Synthesize - XST"

project set "Write Timing Constraints” "true™ -process "Synthesize - XST"

project set "Other XST Command Line Options™ " -process "Synthesize - XST"

project set "Timing Mode" "Performance Evaluation™ -process "Map"

project set "Generate Asynchronous Delay Report” "false™ -process "Place &
Route"

project set "Generate Clock Region Report™ "false" -process "Place & Route"

project set "Generate Post-Place & Route Power Report” "true" -process "Place
& Route"

project set "Generate Post-Place & Route Simulation Model" "false" -process
"Place & Route"

project set "Power Reduction™ "false™ -process "Place & Route"

project set "Place & Route Effort Level (Overall)" "High" -process "Place &
Route"

project set "Auto Implementation Compile Order" "true"

project set "Equivalent Register Removal™ "true" -process "Map"

project set "Placer Extra Effort" "None" -process "Map"

project set "Power Activity File" "™ -process "Map"

project set "Register Duplication” "On" -process "Map™

project set "Generate Constraints Interaction Report™ "
Post-Map Static Timing"

project set "Synthesis Constraints File" "$::projPath/$::topTitle.xcf" -process
"Synthesize - XST"

project set "Mux Style" "Auto" -process "Synthesize - XST"

#project set "RAM Style" "Block™ -process "Synthesize - XST"

project set "RAM Style" "$::ramStyle" -process "Synthesize - XST"

project set "Maximum Number of Lines in Report” "1000" -process "Generate
Text Power Report"

project set "Encrypt Bitstream" "false” -process "Generate Programming File"

project set "Output File Name™ "$::topTitle" -process "Generate IBIS Model"

project set "Timing Mode™ "Performance Evaluation” -process "Place & Route™

project set "Cycles for First BPl Page Read" "1" -process "Generate
Programming File"

project set "Enable Debugging of Serial Mode BitStream" "false™ -process
"Generate Programming File"

project set "Create Logic Allocation File" "false™ -process "Generate
Programming File"

project set "Create Mask File" "false" -process "Generate Programming File"

project set "Watchdog Timer Value™ "0x000000" -process "Generate
Programming File"

project set "Allow SelectMAP Pins to Persist” "false” -process "Generate
Programming File"

project set "Enable Multi-Threading” "Off" -process "Map"

false" -process "Generate
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project set "Generate Constraints Interaction Report” "false” -process "Generate
Post-Place & Route Static Timing"

project set "Move First Flip-Flop Stage™ "true™ -process "Synthesize - XST"

project set "Move Last Flip-Flop Stage" "true™ -process "Synthesize - XST"

project set "ROM Style" "Auto" -process "Synthesize - XST"

project set "Safe Implementation” "No" -process "Synthesize - XST"

project set "Power Activity File" " -process "Place & Route"

project set "Extra Effort (Highest PAR level only)" "None" -process "Place &
Route"

project set "AES Initial Vector" " -process "Generate Programming File"

project set "AES Key (Hex String)" "™ -process "Generate Programming File"

project set "Input Encryption Key File" " -process "Generate Programming File"

project set “Fallback Reconfiguration” "Enable" -process "Generate
Programming File"

project set "Enable Multi-Threading"” "Off" -process "Place & Route"

project set "Functional Model Target Language” "Verilog" -process "View HDL
Source"

project set "Change Device Speed To" "-3" -process "Generate Post-Place &
Route Static Timing"

project set "Change Device Speed To" "-3" -process "Generate Post-Map Static
Timing"

puts "$myScript: project property values set."

}; # end set_process_props

proc main {} {

set option $::runOption

switch $option {
"show_help" { show_help }
"run_process” { run_process }
"rebuild_project”  { rebuild_project }
"set_project_props" { set_project_props }
"add_source_files" {add_source files }
"create_libraries™ { create_libraries }
"set_process_props" { set_process_props }
default { puts "unrecognized option: $option"; show_help }

¥
ks

if { $tcl_interactive } {
show_help
}else {
if {[catch {main} result]} {
puts "$myScript failed: $result.”

¥

¥
HEHHEHH B R

68



Previous script is called from the following script as follows:

HHHHHHH R

set ::topTitle "mkNetwork™ ; #Top Name

set hdlConfig "Block Distributed None" ; # Memory Target Options

set nestedDir build

set mainRunPath "E:/FPGA/SoftFlow" ;

set pathOption "BufferDepth DataWidth Ports VC" ; # NoCs Design Parameters

foreach pathOptionEle $pathOption {
set runPath "$mainRunPath/$pathOptionEle"
set srcCodePath "$runPath/srcDir"
set srcList [glob -directory $srcCodePath -type d *]
foreach connectPrj $srcList {

directory

set ::sourceFilesPath $connectPrj/$nestedDir
set modFiles [glob -directory $runPath/commonFiles *]
foreach modifiedFile $modFiles {
# Copy modified files from common directory to source

file copy -force $modifiedFile $::sourceFilesPath
}
puts "Now in project $connectPrj"
# Source files used by ISE
set ::srcFiles "[glob -directory $::sourceFilesPath *{.v,.hex,.ucf,.xcf}] "
set connectPrjTiltle [split $connectPrj "/"]
set prjTitle [lindex $connectPrjTiltle end]
puts "prjTitle = $prjTitle"
set baseDir $runPath/$prjTitle
# Create a directory for ISE project
file mkdir $baseDir
set ::projPath $baseDir
set ::iseProject $prjTitle
# Create Logging directory
set logDir "$baseDir/Run"
file mkdir $logDir
# "rebuild_project” is ISE command for a new a project
set ::runOption rebuild_project
foreach config_ele $hdlConfig {
if {$config_ele == "None"} {
# Use only registers as memory elements
set ::ramExtract false
}else {
set ::ramExtract true
# Use either BRAM or DRAM as memory elements
set ::ramStyle $config_ele
}
puts "Start running $config_ele RAM Style"
source configPrj.tcl ; # Configuration File generated by ISE
puts "Finish running $config_ele RAM Style"
puts "Copy files ..."
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set fileExt "[glob -path [file rootname $::topTitle] .*] [glob -path
[file rootname $::topTitle] _*] [glob -type f *{pwr,power}*]"
set logDirElement $logDir/$config_ele
# Create a directory for each memory configuration type
file mkdir $logDirElement
foreach fileToCpy $fileExt {
# Copy output files into logging directory
file copy -force $bhaseDir/$fileToCpy $logDirElement

¥

# "run_process" is ISE command to rerun a project
set ::runOption run_process

ky

¥
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To run the previous script successfully, the folders hierarchy shown in Figure B-1
should be followed
For example: “VC” directory includes two sub directories:

- srcDir: It includes a list of directories. Each one is corresponding to the
configuration of a specific VC number and contains the source files of the
NoC for this design parameter under “build” directory.

- commonFiles: It contains all common files that will be used among any
number of VCs such as timing constraints file, synthesis and mapping
constraints files.

“BufferDepth”, “DataWidth” and “Ports” directories follow the same folders

hierarchy.

4 SoftFlow
BufferDepth
Data\Width
Ports
4 VC
commonFiles
4 srcDhir
4 connect_1423109054_1R-10Buff_32data_2WC
build
connect_1423109073_1R-10Buff_32data_3WC
connect_1423109082_1R-10Buff_32data_4VC
connect_1423109091_1R-10Buff_32data_5VC
connect_1423109097_1R-10Buff_32data_aWC
connect_1423109106_1R-10Buff_32data_7VC
connect_1423109112 _1R-10Buff_32data_8BWVC

Figure B-1: Source Files Hierarchy
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Running the script from ISE xtclsh creates a separate project for each value of the
NoC parameters. Inside this project, “Run” directory is created with three sub
directories. Each sub directory contains the log files generated by the tool for each
configured memory element as shown in Figure B-2.

4 Va2
_ngo
_¥msgs
iseconfig
4 Run
Block
Distributed
Mone
¥lnx_auto_0_xdb
ust
V3
e
V5
V(6
vC7
VCE

Figure B-2: Output Files Hierarchy

Finally the following script is used to gather all area, speed and frequency results
and log them in excel files.

T

set benchmarksPath "E:/FPGA/SoftFlow"; # ISE Project Directories

set benchmarkParam "BufferDepth DataWidth Ports VC"; # Memory elements
options

set nestedDir Run

set extractType "Block Distributed None"

set modulelnstance mkNetwork

# Area file name and extract parameter

set area_file_name ${modulelnstance}_map.mrp

set area_srchKey $modulelnstance

set area_exp $area_srchKey\V

#Freq file name and extract parameter

set freq_file_name ${modulelnstance}.twr
set freq_srchKey "Maximum frequency"
set freq_exp $freq_srchKey

#Power file name and extract parameter
set pwr_file_name ${modulelnstance}.pwr
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set pwr_srcKey "Supply Power"
set pwr_exp $pwr_srcKey
set pwrValue 0

array unset resourcelndex
array unset resourceValue
array set resourcelndex {

reg 4

luts 5

lutram 6

bram 7

}

array set resourceValue {
reg 0
luts 0
lutram 0
bram 0
}
proc GetNumber {totalName} {
regsub {"[a-zA-Z]+} $totalName ™" num
return $num
}
proc InitializeResources {hash_resourceValue} {
upvar 1 $hash_resourceValue resourceValue
foreach ele [array name resourceValue] {set resourceValue($ele) 0}
}
proc LogArealntoFile {hash_resourceValue filePath fileName prjTitle module} {
set out_file_id [open $filePath/$fileName.$module.csv "a"]
upvar 1 $hash_resourceValue resourceValue
set result $prjTitle
foreach resource [lsort -decreasing [array hame resourceValue]] {
puts "total $resource value = $resourceValue($resource)"
append result ", $resourceValue($resource)"
}
puts $out_file_id $result
close $out_file_id
}
proc LogFreqPwrintoFile {filePath fileName prjTitle value module} {
set out_file_id [open $filePath/$fileName.$module.csv "a"]
puts Sout_file_id "$prjTitle, $value"
close $out_file id

¥

proc  ExtractAreaRes  {filePath  fileName exp  hash_resourcelndex
hash_resourceValue} {
upvar 1 $hash_resourcelndex resourcelndex
upvar 1 $hash_resourceValue resourceValue
set file_id [open $filePath/$fileName]
while {[gets $file_id line] '=-1} {
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if {[regexp $exp $line all value ]} {

puts "size = [llength $line]"

set item [split $line "|"]

foreach ele $item {puts $ele}

foreach index [lsort -decreasing [array name resourcelndex]] {
set ratio [lindex $item $resourcelndex($index)]
set absValue [lindex [split $ratio "/"] 1]
puts "$index = $ratio & absValue = $absValue"
set resourceValue($index) [expr $resourceValue($index)

+ $absValue]
}
break
}
}
close $file_id
}

proc ExtractPowerRes {filePath fileName exp } {
set pwrindex 3
set file_id [open $filePath/$fileName]
set pwrValue 0
while {[gets $file_id line] '=-1} {
if {[regexp $exp $line all value ]} {
set item [split $line "|"]
set pwrValue [lindex $item $pwrindex]
}
}
puts $pwrValue
close $file_id
return $pwrValue
}
proc ExtractFreq {filePath fileName exp} {
set freq 0
set file_id [open $filePath/$fileName]
while {[gets $file_id line] '=-1} {
if {[regexp $exp $line all value 1} {
puts "size = [llength $line]"
set freqString [lindex $line [expr [llength $line] - 1]]
set freq [string map {MHz) "} $freqString]
}
}
close $file_id
puts "freq = $freq”
return $freq

¥

setiO
foreach benchmarkParamEle $benchmarkParam {
set benchmarksDirs [glob -directory $henchmarksPath/$benchmarkParamEle -

type d *]
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set module $benchmarkParamEle
foreach extraxtEle $extractType {
puts — "rERRERREkk o Start  extracting  $extraxtEle  resources
*khkkkkhkhkhkkhkhkikikixN
foreach dir $benchmarksDirs {
puts "&&& Now in $dir &&&"
incri
set filePath $dir/$nestedDir/$extraxtEle
set projectPath [split $dir "/"]
set prjTitle [lindex $projectPath [expr [llength $projectPath] -1
1]
if {[file isdirectory $filePath]} {
HitHHHH I AREA SHHHHH
ExtractAreaRes $filePath $area_file_name $area_exp
resourcelndex resourceValue
LogArealntoFile resourceValue $benchmarksPath
$extraxtEle.area [GetNumber [lindex [split $prjTitle " "] end]] $module
InitializeResources resourceValue
HHHH R FREQ #tataHt i
LogFregPwrintoFile $benchmarksPath $extraxtEle.freq
[GetNumber [lindex [split $prjTitle " "] end]] [ExtractFreq $filePath $freq_file_name
$freq_exp] $module
Hit#HH R POWER #HBHHHTHHH T
LogFreqPwrintoFile $henchmarksPath $extraxtEle.pwr
[GetNumber [lindex [split $prjTitle " "] end]] [ExtractPowerRes $filePath
$pwr_file_name $pwr_exp] $module
puts "++++++++++ PASS"
} else {puts "------------- Fail"}

}

¥
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