

DESIGN GUIDELINES FOR THE IMPLEMENTATION

OF EMBEDDED NETWORK ON CHIP (NOC) IN FPGAS

By

Noha Gamal Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2017

DESIGN GUIDELINES FOR THE IMPLEMENTATION

OF EMBEDDED NETWORK ON CHIP (NOC) IN FPGAS

By

Noha Gamal Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Hossam A. H. Fahmy

 Dr. Hassan Mostafa

Professor

Electronics and Communications

Engineering Department

Faculty of Engineering, Cairo University

 Assistant Professor

Electronics and Communications

Engineering Department

Faculty of Engineering, Some University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2017

DESIGN GUIDELINES FOR THE IMPLEMENTATION

OF EMBEDDED NETWORK ON CHIP (NOC) IN FPGAS

By

Noha Gamal Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the

Examining Committee

Prof. Dr. Hossam A. H. Fahmy, Thesis Main Advisor

Prof. Dr. Amin Nassar, Internal Examiner

Prof. Dr. Mohab Anis, External Examiner
(Electronics and Communications Engineering, The American University in Cairo)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2017

Engineer’s Name: Noha Gamal Mohamed

Date of Birth: 21/01/1987

Nationality: Egyptian

E-mail: noha_gamal@mentor.com

Phone: +20 1003826997

Address: Electronics and Communications

Engineering Department,

Cairo University, Giza 12613, Egypt

Registration Date: 01/10/2011

Awarding Date: --/--/2017

Degree: Master of Science

Department: Electronics and Communication Engineering

Supervisors:

 Prof. Dr. Hossam A. H. Fahmy

Dr. Hassan Mostafa

Examiners:

 Prof. Dr. Hossam A. H. Fahmy (Thesis main advisor)

 Prof. Dr. Amin Nassar (Internal examiner)

 Porf. Dr. Mohab Anis (External examiner)

(Electronics and Communications Engineering, The

American University in Cairo)

Title of Thesis:

Design Guidelines for the Implementation of Embedded Network on Chip (NoC) for

FPGAs

Key Words:

Network on Chip; Fields Programmable Gate Array

Summary:

In this thesis, a literature survey of existing Networks-on-Chips is presented, then a

comparative review between the NoCs with available source code from area and speed

respective is provided. Efficiency gaps between hard and soft implementations using

FPGA-embedded NoC have been analyzed and designs recommendations have been

proposed. Finally two soft implantations are introduced to attempt the maximum

reduction of either the delay gap or the power gap between soft and hard

implementations.

mailto:noha_gamal@mentor.com

i

Acknowledgments

First of all, I would like to thank Prof. Hossam Fahmy and Dr. Hassan Mostafa for

giving me the opportunity to work onto this subject which interests me a lot and

enhances my knowledge and career. I would also like to thank Dr. Hassan for his help,

suggestions and support.

ii

Table of Contents

ACKNOWLEDGMENTS .. I

TABLE OF CONTENTS .. II

LIST OF TABLES ... V

LIST OF FIGURES ... VI

NOMENCLATURE ... VII

ABSTRACT .. VIII

CHAPTER 1 : INTRODUCTION .. 1

1.1. MOTIVATION .. 1

1.2. CONTRIBUTION .. 2

1.3. ORGANIZATION OF THE THESIS .. 2

CHAPTER 2 : LITERATURE SURVEY OF EXISTING NETWORKS-ON-

CHIPS .. 3

2.1. INTRODUCTION .. 3

2.2. FPGA VERSUS ASIC ... 3

2.2.1. Unit Costs ... 3

2.2.2. Non Recurring Engineering Costs... 4

2.2.3. Time to Market ... 4

2.2.4. System Re-Usability ... 5

2.2.5. Design Cycle ... 5

2.2.6. ASIC versus FPGA Summary ... 6

2.3. NOCS OVERVIEW ... 6

2.3.1. Switching ... 8

2.3.2. Flow Control ... 8

2.3.3. Virtual Channel ... 9

2.3.4. Allocator .. 9

2.3.5. Implementation ... 9

2.4. PREVIOUS WORKS .. 9

2.4.1. NoCem .. 9

2.4.2. PNoC .. 10

2.4.3. Dual Crossbar Router ... 12

2.4.4. HW NoC .. 14

2.4.5. SOTA .. 15

2.4.6. CONNECT ... 16

2.4.7. Split and Merge PS ... 18

2.4.8. FLNR .. 20

2.4.9. RROCN .. 23

2.5. COMPARATIVE REVIEW BETWEEN NOCS WITH OPEN-SOURCE CODE 25

2.5.1. Comparison Work Flow ... 25
2.5.1.1. Frequency ... 25

iii

2.5.1.2. LUTs Usage ... 27
2.5.1.3. Registers Usage .. 29

2.6. SUMMARY AND FUTURE WORKS ... 30

CHAPTER 3 : SOFT AND HARD IMPLEMENTATIONS FOR FPGA-

EMBEDDED NOC ... 33

3.1. INTRODUCTION .. 33

3.2. METHODOLOGY ... 33

3.2.1. Soft Implementation Flow ... 33

3.2.2. Hard Implementation Flow ... 34

3.3. RESULTS AND DISCUSSIONS ... 34

3.3.1. Input Module ... 35

3.3.2. Output Module ... 35

3.3.3. Routing Module ... 38

3.3.4. Allocator .. 38

3.3.5. Switch .. 38

3.3.6. Module and System levels comparisons ... 38

3.4. DESIGN RECOMMENDATION ... 39

3.5. SUMMARY .. 40

CHAPTER 4 : TWO SOFT IMPLEMENTATIONS FOR FPGA-EMBEDDED

NOC ... 41

4.1. INTRODUCTION .. 41

4.2. METHODOLOGY ... 41

4.2.1. LUT Combining ... 41

4.2.2. Optimize Instantiated Primitives ... 42

4.2.3. Power Reduction ... 42

4.2.4. Maximum Compression ... 43

4.2.5. Memory Elements ... 43

4.3. RESULTS AND DISCUSSIONS ... 44

4.3.1. Buffer Depth ... 44

4.3.2. Data Width ... 44

4.3.3. Number of VCs ... 46

4.3.4. Number of Ports ... 46

4.3.5. Module and System Levels Comparisons ... 47

4.4. DESIGN RECOMMENDATION ... 47

4.5. SUMMARY .. 47

DISCUSSION AND CONCLUSIONS .. 48

REFERENCES ... 50

APPENDIX A: POWER AND AREA ESTIMATION IN SOFT

IMPLEMENTATION .. 53

A.1. POWER ESTIMATION .. 53

A.2. AREA ESTIMATION ... 53

A.3. HDL MODIFICATIONS .. 54

iv

APPENDIX B: EFFICIENCY MEASUREMENTS AUTOMATION IN SOFT

IMPLEMENTATION .. 56

v

List of Tables

Table 2-1: Asymptic Cost Functions [4] .. 7

Table 2-2: PNoC Router Implementation Results [3] .. 11
Table 2-3: PNoC Comparison to Packet-Switched Network of Bartic et al [3] 12
Table 2-4: Configurable Router for Embedded NoC Results for FPGA and ASIC [7] . 14
Table 2-5: CONNECT Area and Performance Comparison with some SOTA Routers

[10] ... 18

Table 2-6: Implementation Results for CONNECT & Split-Merge [12] 20
Table 2-7: FLNR Performance and Area Comparison with some Previous NoC Routers

[13] ... 23

Table 2-8: RRCON Implementation Results on Four Configurations [17] 25
Table 3.1: Estimated FPGA Resources Area ... 33
Table 3-2: FPGA/ASIC Ratios ... 39
Table 4-1: Speed and Power Target configurations ... 43
Table 4-2: Speed vs Power Setups FPGA/ASIC Ratios .. 47

vi

List of Figures

Figure 2-1: FPGA vs. ASIC Cost ... 3

Figure 2-2: ASIC NRE Cost ... 4
Figure 2-3: FPGA vs. ASIC Time-to-Market... 4
Figure 2-4: FPGA vs. ASIC Design Cycle ... 5
Figure 2-5: ASIC vs. FPGA Production Cycle .. 6
Figure 2-6: FPGA vs. ASIC Summary ... 6

Figure 2-7: FPGA Routing and Logic Power Consumption .. 7
Figure 2-8: NoCem Architecture [5] .. 10

Figure 2-9: PNoC Router Block Diagram [3] ... 11

Figure 2-10: Configurable Router for Embedded NoC Block Diagram [7] 13
Figure 2-11: Configurable Router for Embedded NoC FPGA Resource utilization

breakdown [7] ... 14
Figure 2-12: Hard and Soft NI Shell [8] ... 15
Figure 2-13: SOTA Arcitecture [9] ... 16

Figure 2-14: CONNECT Router Architecture [10] .. 17

Figure 2-15: Split-Merge PS Architecture [12] .. 18
Figure 2-16: Packet Format of Split-Merge and CONNECT Networks 19

Figure 2-17: Cycle Comparison between CONNECT and Split- Merge PS NoC [12] 20
Figure 2-18: FLNR Packet Format ... 21
Figure 2-19: FLNR Block Diagram [13] .. 21

Figure 2-20: Synthesis Results for FLNR [13]... 22

Figure 2-21: FLNR Performance and Area Comparison with some Previous NoC

Routers [13] .. 23
Figure 2-22: RRCON Router Block Diagram [17] .. 24

Figure 2-23: RRCON Crossbar Architecture [17].. 24
Figure 2-24: Frequency vs Buffer Depth .. 26

Figure 2-25: Frequency vs Data Width .. 26
Figure 2-26: Frequency vs VC ... 27
Figure 2-27: LUTs usage vs Buffer Depth ... 28
Figure 1-28: LUTs usage vs Data Width .. 28

Figure 2-29: LUTs usage vs VC ... 29
Figure 2-30: Registers usage vs Buffer Depth ... 29

Figure 2-31: Registers usage vs Data Width .. 30
Figure 2-32: Registers usage vs VC ... 30
Figure 3-1: FPGA memory buffers using three implementation alternatives 36
Figure 3-2: FPGA/ASIC Area Ratios ... 36
Figure 3-3: FPGA/ASIC Delay Ratios ... 37

Figure 3-4: FPGA/ASIC Power Ratios. ... 37
Figure 4-1: Speed vs Power Setups FPGA/ASIC Area Ratios....................................... 45
Figure 4-2: Speed vs Power Setups FPGA/ASIC Delay Ratios. 45
Figure 4-3: Speed vs Power Setups FPGA/ASIC Power Ratios 46
Figure A-1: ISE Timing Constraint .. 53

Figure B-1: Source Files Hierarchy .. 70
Figure B-2: Output Files Hierarchy .. 71

vii

Nomenclature

ASIC Application Specific Integrated Circuits

ASSP Application Specific Standard Products

BRAM Block RAM

BSV Bluespec System Verilog

CLB Configurable Logic Blocks

DOR Dimension Ordered Routing

DRAM Distributed RAM

DSP Digital Signal Processing

FF Flip Flop

FPGA Field Programmable Gate Arrays

FPSoC Fields Programmable Systems on Chip

HoL Head of Line

IP Intellectual Property

LUT Look Up Table

NCD Native Circuit Description

NI Network Interface

NoC Network on Chip

NRE Non Recurring Engineering

PAR Place and Route

PCF Physical Constraints File

PDR Partial Dynamic Reconfiguration

QoS Quality of Service

RLOC Relative Location Constraints

SAMQ Statically Allocated Multi Queue

SoC Systems on Chip

VC Virtual Channel

WSF West Side First

viii

Abstract

The continuous increases in the complexity of semiconductor manufacturing from

technical and economical perspectives become a main concern to the applications

dominated by application-specific integrated circuits (ASICs) and application-specific

standard products (ASSPs). In contradiction to the increasing cost, complexity and risks

of the dependancy on ASIC implementation process, field-programmable gate arrays

(FPGAs) costs and time-to-market are looking very promising. FPGA industry has been

developed gradually to minimize the risk and time consumed in the development of

new products and increase the life time of the product in the marketing due to its

flexibility of being reconfigurable, which consequently decrease the threat of being

obsolete caused by introducing into the market same products with new generations.

Earlier FPGAs were only useful for applications with low densities or for ASIC

prototyping. Nowadays, FPGAs serve as Fields Programmable Systems on Chip

(FPSoC) and are widely used to implement computationally intensive world

applications.

One of the major challenges of the FPGAs is the limited routing and logic

resources. Moving towards newer FPGA technologies, the consumed power in routing

becomes more than the power consumed in logic. Moreover; as the number of

components in FPSoCs increases, traditional bus based and point-to-point interconnect

schemes become bottlenecks in satisfying systems requirements. Consequently,

embedding an efficient NoCs within FPGAs becomes essential to implement SoCs

designs.

We first review several NoC designs based on their contributions, architectures,

implementations and future works. We also make our comparison between three of

these routes to analyze the effect of varying NoC parameters on the operating frequency

and area utilization to help choosing the appropriate NoC based on system

requirements. Then we use FPGA-embedded NoC design and compare implementing

its components on soft and hard implementations to analyze the efficiency gap in area,

frequency and power between the two design flows (i.e., FPGA flow and ASIC flow)

and get the design constraints in this space. Finally we propose two different

configurations in soft implementation using the FPGA-embedded NoC, one

configuration attempts reducing the delay gap as much as possible between hard and

soft implementations and the second configuration relaxes the delay gap constraint for a

significant power reduction.

1

Chapter 1 : Introduction

1.1. Motivation

Implementation medium is one the important factors impacting the Systems on

Chips (SoCs) configurations and their interconnect mechanisms in terms of

performance and cost. Recently, FPGAs are gradually replacing ASICs because of

FPGAs strength points of being easy to be upgraded, having short time to market and

low development costs, providing immediate results and fast design cycles which make

them the appropriate candidates for research proposes and removing the burdens of IC

fabrication involvement and manufacturing operations. Although there are always

continuous enhancements in FPGAs to reduce their weakness points and increase their

capabilities, they always consume more power and area; operate on lower frequencies

than ASIC and have limited and fixed resources. These are challenges for FPGAs to

satisfy some systems’ requirements.

Basic elements in FPGA are the programmable logic element for performing logic

calculations and interconnect for data transfer. Recent FPGAs contain hardware and

software blocks, such as memories, processors and Digital Signal Processing (DSP)

blocks.

As systems complexity increases, bus-based interconnections become a bottleneck

since they are unable to meet systems requirements. ARM’s AMBA [1] bus and IBM’s

CoreConnect [2] are shared buses; they allow reusing intellectual property (IP) and

support working with modular designs that have standard interfaces. But they are not

suitable for large systems because of the performance degradation. Consequently FPGA

vendors introduced an enhanced architecture that provides original standard shared bus

besides direct module to module communication. This architecture is called hybrid

bus/direct interconnection. These enhancements came with the cost of reducing systems

modularity and adding more effort for customizing hardware designs for the module to

module connection which complicates design process. Bus segments architecture was

introduced to rebalance the load of the bus. It is suitable for modules communicating on

the same segment with no congestion to the rest of the bus. However this complicates

the design process and reduces systems scalability and flexibility [3].

Network on Chip (NoC) is the candidate as a subsystem for the communication

between IP cores in a system on chip to overcome all previous problems. Strength

points of NoCs are scalability and flexibility because of the optimization and the

independent implementations between layers. They can work in both synchronous and

asynchronous clock domains, support different topologies. They provide interface

interoperability using simplified customization per application. They also enable

interface with high speed inputs/outputs like PCI-Express.

Embedded hardware, software blocks and customizable logic blocks within the

FPGA architecture make it the typical choice for NoCs designs. Implementing NoC

with low area overhead in FPGAs and choosing the appropriate set of NoC parameters

are necessary because of the limited routing and logic resources.

2

NoCs on FPGAs enable implementing one of the most promising features which is

partial dynamic reconfiguration (PDR). It is the ability to change the logic of one of

FPGA blocks without interrupting the other blocks while they are running.

1.2. Contribution

This dissertation of this work includes the following contributions:

• Provide a review on different NoC designs, their architectures, simulation and

test results.

• Compare between three open-source NoCs to analyze the behavior of the NoC

with varying NoCs parameters and to help selecting the NoC design that would match

to system requirements using soft implementation.

• Choose FPGA-embedded NoC and measure area allocation, maximum

operating frequency and power consumption on the sub-module level of the router in

both hard and soft implementations and compare between the results of soft and hard

implementations. Then provide design suggestions whether each module in the NoC is

more suitable to be harden or to be reconfigurable. And investigate whether the NoC

would give better results in soft implementations if it is designed to target FPGA than

NoCs designed for ASIC or not.

• Introduce two different configurations for the soft implementation. First

configuration attempts reducing the delay gap between soft and hard implementations

as much as possible. The second configuration results in a significant reduction of

consumed power with a small increase in area and delay gaps. Results are measured on

the network level.

1.3. Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 provides a detailed

survey of the most recent NoCs with their architecture and simulation results, then

makes a unified comparison between NoCs with available open source code . Chapter 3

uses FPGA-embedded NoC and compares its behavior under soft and hard

implementations on sub-module level, then gives design recommendation for each

module for best implementation. Chapter 4 introduces two soft implementations for the

FPGA-embedded NoC and studies the two configurations behavior on network level to

give design suggestions which configuration to use according to the target applications.

Then the thesis conclusion and future work are revealed in “Discussion and Conclusion”

section.
Finally, Appendix A shows the steps required for accurate estimation of power and

area in soft implementation. While, Appendix B gives a detailed description for the created

scripts used for automating the measurement of the efficiency parameters.

3

Chapter 2 : Literature Survey of Existing Networks-on-

Chips

2.1. Introduction

In this chapter, we give an overview of FPGA and ASIC advantages and

disadvantages, and then highlight the importance of NoCs especially for FPGA. Then

we explore previous works of different NoCs designs that represent the core of most

NoCs designs in the literature recently. We show their contributions, architectures,

implementation, test results and future works. Finally we make our comparison

between three NoCs across different values of the NoC parameters to give design

recommendation to help choosing the appropriate NoC according to system

requirements.

2.2. FPGA versus ASIC

FPGAs and ASICs address different market requirements. In the past, FPGA used

to be dominant for only prototyping and applications with low complexity, speed and

volume. Currently FPGAs replace ASICs for low and medium applications due to the

major enhancements introduced to FPGA’s operating frequency, chip density and

fabrication cost. Although ASICs have better performance characteristics (speed, area

and power), FPGAs keep pushing ASICs from market mainly because of their

flexibility and quick time-to-market values.

2.2.1. Unit Costs

Although ASIC has higher R&D design costs, in high volume applications, it has

lower costs of manufacturing than FPGA as shown in Figure 2-1.

Figure 2-1: FPGA vs. ASIC Cost

4

2.2.2. Non Recurring Engineering Costs

Non Recurring Engineering (NRE) refers to the one-time cost of researching,

designing, and testing a new product, which is generally associated with ASICs. Figure

2-2 shows that NRE costs increase with the decrease of process geometry. No such

thing is associated with FPGA. Hence FPGA designs are cost effective.

Figure 2-2: ASIC NRE Cost

2.2.3. Time to Market

Nowadays, time-to-market is an incremental bottleneck problem for ASIC with

process geometry decrease. This leads to longer design cycles because of the deep sub-

micron effects. On the other hand; introducing a new feature into FPGA takes a long

time, but this time is still less than implementing the feature using ASIC as shown in

Figure 2-3 because using FPGA; once the feature is implemented, it is deployed by a

software upgrade to the system without the need to any line cards or new hardware.

Figure 2-3: FPGA vs. ASIC Time-to-Market

5

2.2.4. System Re-Usability

ASIC designs cannot be reused because once it is fabricated; the internal chip

constructs layouts become fixed and cannot be modified. On the other hand, FPGA can

be reconfigured and used for different set of applications. This makes FPGA much

more flexible than ASIC.

2.2.5. Design Cycle

Figure 2-4 illustrates the FPGA and ASIC design cycles. FPGA designs consumes

less time and have smaller designed cycles than ASIC because for FPGA, most of the

timing, routing and placement are handled by software.

ASIC designs have to do time consuming and complex floor planning and

advanced verifications, whereas in FPGA the designs logic is already synthesized to be

placed onto an already verified, characterized FPGA device.

Figure 2-4: FPGA vs. ASIC Design Cycle

Figure 2-5 shows the difficulty in introducing late changes in ASIC flow over

FPGA flow.

6

Figure 2-5: ASIC vs. FPGA Production Cycle

2.2.6. ASIC versus FPGA Summary

Figure 2-6 shows a summary of FPGA versus ASIC evaluation factors.

Figure 2-6: FPGA vs. ASIC Summary

2.3. NoCs Overview

Main components of NoCs are routers, links and a network interface. Routers and

links can be hard implemented or soft implemented. There are several reasons to base

the future of FPGA on NoC. First reason is the spatial reuse, which allows for scalable

power cost compared to the increased routing matrix that is used in traditional FPGA.

As shown in Figure 2-7, Routing power becomes slightly larger than logic power in

28nm technology.

7

Figure 2-7: FPGA Routing and Logic Power Consumption

In [4], area, power and frequency costs of NoC and different interconnect

architectures which are segmented bus (S-Bus), non-segmented bus (NS-Bus) and point

to point interconnection (PTP) have been analyzed. Table 2-1 summarizes the

analytical expression of each architecture and its complexity with increasing the

number of modules (n) in the system on chip (SoC). The analysis proves that NoC is

more scalable than all other interconnect solutions. Moreover, FPGAs are often used as

prototypes for ASIC. If the ASIC is migrating to NoC, the FPGA architecture should

support NoC as well.

Table 2-1: Asymptic Cost Functions [4]

Architecture Total Area Power Dissipation Operating Frequency

NS-Bus 𝑂(𝑛3√𝑛) 𝑂(𝑛√𝑛) 𝑂(
1

𝑛2
)

S-Bus 𝑂(𝑛2√𝑛) 𝑂(𝑛√𝑛) 𝑂(
1

𝑛
)

NoC 𝑂(𝑛) 𝑂(𝑛) 𝑂(1)

PTP 𝑂(𝑛2√𝑛) 𝑂(𝑛√𝑛) 𝑂(
1

𝑛
)

This section gives an overview of some of the terms and practices of networking

and NoCs before going through the NoCs routers.

0.363

0.273

0.183
0.127 0.098

0.637

0.359

0.240

0.161

0.097

0

0.2

0.4

0.6

0.8

1

1.2

Stratix II
(90nm, 1.2V)

Stratix III
(65nm, 1.1V)

Stratix III
(65nm, 0.9V)

Stratix IV
(40nm, 0.9V)

Stratix V
(28nm, 0.85V)

N
o

rm
a

li
z
e

d
 D

y
n

a
m

ic
 P

o
w

e
r

FPGA Dynamic Power Comparison: Routing vs. Logic

Routing dynamic power Logic dynamic power

8

2.3.1. Switching

Network architecture is divided into two categories, packet switching and circuit

switching. In a packet switching approach, the data is broken into packets consisting of

smaller elements known as flits, each flit contains routing information. These packets

are injected into the network where they are independently routed to the desired

destination. Packet switching networks often allow for high aggregate system

bandwidth, as many packets are routed at a given instant. However they require

congestion control and packet processing. NoCs include buffers to queue-up the

packets waiting for the availability of the routing resources. In a circuit switching

approach, a dedicated connection path which is known as virtual circuit between two

nodes is established before communication takes place. Once the virtual circuit is

established, raw data freely transferred with very low overhead between the modules

until the virtual circuit is no longer needed, at this time it is closed. As a result the

circuitry required for a circuit-switched network is relatively simple and appropriate for

use in even small systems. On the other hand, circuit switching suffers from two main

problems. First, setup latency, the time required to build a virtual circuit, must be

incurred before any communication between nodes takes place. Second, idle time on

communication links, this happens when connections have been established but no data

transfers are taking place.

2.3.2. Flow Control

Flow control algorithm is responsible of resources allocation needed to transfer the

packets through the network. It is a key parameter for determining network

performance by using the available resources as efficient as possible. Buffers

backpressure mechanisms should be included to eliminate dropping packets caused by

buffers overflow. Buffer space availability of downstream nodes should be stored at

upstream nodes to decide whether to send the packets or wait for buffer availability.

There are multiple algorithms for flow control. Credits-based & ON-OFF flow

controls are two widely used algorithms to implement flow control.

In credit-based flow control, the upstream node has a counter to store credits of the

downstream node. And with every successful transfer of a flit, this counter is

decremented by one. It stops forwarding any further flits when the counter value

reaches zero, because this means that the buffers at downstream node are full. After the

downstream node finishes processing and handling the incoming flit, it sends a credit to

the upstream node, which in turns increments its credit counter and start sending

buffered flits.

In on-off flow control, when the number of free entries of the buffer at downstream

node reaches a minimum threshold, it sends OFF signal to all other nodes. So they stop

sending to this node any flit until they receive ON signal from it when the number of its

free buffers becomes larger than the maximum threshold. This eliminates the need for

credit counters that need to be maintained for each node.

9

2.3.3. Virtual Channel

Multiple flits can share the same physical channel using Virtual Channel (VC)

technique which divides input port into multiple queues. This approach reduces

congestion and latency and improves channel utilization and network throughput. VCs

enables the support of Quality-of-Service (QoS) by assigning a high priority for one of

logical channels; so flits coming from it will get more attention and pass in less time

than other flits. VC was first proposed with wormhole routing to combat head-of-line

(HOL) blocking but it also can be applied to any flow control. Buffer allocation for

logical channels is required for VCs leading to more area and power usage and latency

increase. But proper implementations of VCs overcome these drawbacks.

2.3.4. Allocator

Allocator’s functionality is matching between requesters and available resources.

The requester grants the resource only if the following three conditions are satisfied:

- No resources are granted to requesters unless a request is fired

- At most one resource is assigned to each requester

- Each resource is assigned to at most one requester

Allocator efficiency has a direct impact on the resources utilization. However there

is a tradeoff between the maximum possible matching and the design’s area, delay and

power. Because as long as the allocator’s logic becomes more complicated, it consumes

more area, power and introduces more delay.

Most routers that apply virtual channel technique need to use switch allocation and

virtual channel allocation; according to the routers designs, the proper allocation

algorithm is used.

2.3.5. Implementation

NoCs are implemented either in a hard network or in a soft network. Once hard

routers are implemented, they cannot be changed and the device is manufactured

according to the design specifications. This is why hard routers are more area and

power efficient and deliver higher performance; also hard implementation reduces

compilation time. Soft routers are implemented using reconfigurable resources on the

FPGA which give them flexibility over silicon routers but make them operate at lower

frequencies, consume more area and power.

2.4. Previous Works

2.4.1. NoCem

NoCem is a NoC emulation tool. G. Schelle and D. Grunwald [5] proposed it with

configurable network topology, channel FIFO depth, data width and packet length. To

guarantee the flexible integration with required tools, it provides common external

interface.

10

Figure 2-8: NoCem Architecture [5]

Figure 2-8 shows NoCem architecture components, which are:

 VC: Each physical channel has a number of VCs to divide it into multiple

lanes which leads to higher throughput.

 Node Arbitration: It handles VC and switch allocations so that all incoming and

outgoing are capable of taking the proper arbitration decisions. Flit-reservation

algorithm is used for flow control.

 Node Switch: It is an all-to-all multiplexer. This module is responsible of

allowing simultaneous multiple paths of communication.

The main parameters of the NoCem architecture are data width, network topology,

channel FIFO depth, and packet length.

NoCem is implemented and tested using Xilinx Virtex-II Pro FPGA. In [5], it is

compared with a simple NoC that does not have VC, has buffers with single word

capacity per channel and a simple switch. The comparison is done across three

applications; cryptographic accelerator, a synthetic benchmarking application and

802.11 transmitter. The comparisons using the cryptographic accelerator and synthetic

benchmarking applications show that using complex NoC is not always necessary for

better performance. On the other hand, VC implementation is very efficient for data

flow applications demonstrated by the 802.11 transmitter.

2.4.2. PNoC

C. Hilton and B. Nelson [3] introduced FPGA-embedded circuit switched NoC. It

can be configured with different topologies and data paths. Also it has standard network

interfaces and simple network protocols.

PNoC consists of a group of subsets; each subset contains a router that applies

circuit switching between multiple nodes. Each node connects to a single router by a

router port interface. The main components of PNoC router are shown in Figure 2-9.

11

Figure 2-9: PNoC Router Block Diagram [3]

PNoC components functionalities are as follows:

• Table Arbiter: It receives the multiple connection requests and schedules access

to the routing table. Also it manages the routing table update requests.

• Routing Table: It receives the required module address and uses it as an index

that points to candidate ports. These ports are used in the connections.

• Port Queue: It keeps the order of connection requests.

• Port Arbiter: When the destination is free, the port arbiter establishes the desired

connection and updates the signals that represent the status of connected ports for the

flow control mechanism.

• Switch Box: It forms the actual connections between modules.

One main difference between PNoC and the previous architectures is that PNoC

excludes the central crossbar (which consumes large area and affects the performance

remarkably). Instead, it defines the connections by using distributed routers across the

system; and sets up the router parameters which are number of ports, data width and

buffer depth.

Partial dynamic reconfiguration was taken into consideration in PNoC design. In

case of adding a new module to the system, its local router will be notified; which will

update the routing table of the system. Same behavior is used when a module is

removed.

Xilinx Virtex-II Pro FPGA (xcv2p30-7) is used to implement PNoC blocks. Table

2-2 shows area and speed results for the router with multiple configurations of different

numbers of ports and different port data widths. One Block RAM (BRAM) is used to

implement the routing table. Note that the area of the routing table and the node

interface hardware are not included in the results.

 Table 2-2: PNoC Router Implementation Results [3]

Number of ports Data width Area (Slices) Frequency (MHz)

12

2 8 83 160

4 8 249 151

8 8 1113 138

2 32 131 145

4 32 366 138

8 32 1305 126

Image binarisation example is an algorithm that quantizes gray scale image pixels

to binary black and white values; by computing median values at three hierarchical

levels, then use them as a quantization threshold. This algorithm was used to evaluate

PNoC and two different bus-based implementations. Results show that; for concurrent

data transfers applications, the performance of PNoC is similar to direct interconnect.

It was difficult for authors to perform a direct comparison with multiple packet-

switched approaches, due to the few publications of papers covering packet-switched

NoCs. However an approach presented by Bartic et al. [6] was selected to represent the

packet-switched NoCs. Table 2-3 shows that PNoC consumes around half of the area

with a triple increase in the clock rate.

Table 2-3: PNoC Comparison to Packet-Switched Network of Bartic et al [3]

Architecture Routers Ports Slices BRAM Frequency

(MHz)

Bartic [6] 8 10 2400 8 50

PNoC [3] 1 8 1223 1 134

2.4.3. Dual Crossbar Router

R. Pau and N. Manjikian [7] attempted to implement a configurable router for

embedded network on chip using dual crossbar instead of one full crossbar using a hard

router to reduce router area.

The configurable router consists of control logic and five bidirectional ports: Local,

North, East, South, and West. The local port is used to establish the connection with

associated node elements. On the other hand, the other four ports are used for different

network topologies. The control logic is responsible for all the switching activities and

channel arbitration based on the selected routing algorithm which is deterministic XY

routing by using the first crossbar to handle the X direction routing while the second

crossbar do the Y direction routing.

The router uses two 3x3 crossbar instead of one 5x5 crossbar, each one contains

three bidirectional connections: Local, Left, and Right as shown in Figure 2-10.

13

Figure 2-10: Configurable Router for Embedded NoC Block Diagram [7]

The routing of the packets is done as follows:

 Outgoing packets from the node element that is attached to the overall

router pass through the local connection of the first crossbar.

 Incoming packets that arrive through the North/South ports are switched

directly to the attached node.

 Incoming packets that arrive through the East/West ports must first be

switched to the second crossbar to reach the required node.

A pair of handshaking signals is associated with the data bus for each port which

used to acknowledge the packet from the received node.

The implementation is done on Altera Stratix FPGA using Altera Quartus v6.1 and

ASIC TSMC 0.18 micrometer, Synopsys Design Compiler V-2004.06-SP1 and

Cadence First Encounter v4.10.

The comparison between dual crossbar and full crossbar with different

interconnection widths is shown in Figure 2-11.

14

Figure 2-11: Configurable Router for Embedded NoC FPGA Resource utilization

breakdown [7]

The above results show that the dual crossbar gives more area efficient due to less

logic elements used, but it slows down the circuit as shown in Table 2-4.

Table 2-4: Configurable Router for Embedded NoC Results for FPGA and ASIC

[7]

 Altera Stratix ASIC

Logic Area reduction 24% 22%

Average Operating Frequency 123 MHz 340 MHz

Operating Frequency Reduction 19% 4%

2.4.4. HW NoC

K. Goossens, M. Bennebroek3, J. Y. Hur and M. A. Wahlah [8] compared HW

NoC design to conventional FPGA one. They found that HW NoC has better area,

bandwidth and performance with a factor 150 or more over the soft NoC.

NoCs contain two kinds of components: routers that move data around (usually

packets), and network interfaces (NI) that convert the NoC internal data format (e.g.

packets) to the protocol required by the NoC clients, NI is kernel or shell. NI kernels

and shells are either hard or soft. One IP is attached to one or more NIs, such as

functional IO as shown in Figure 2.12.

15

Figure 2-12: Hard and Soft NI Shell [8]

NoC routers are best implemented as hard due to large FPGA to ASIC overhead

ratio of arbiters and allocators.

The NI shell is soft for two reasons, first the port protocol depends on the

application IP that is different from one application to another, and second the channel

FIFO depth depends on the required bandwidth and latency that differ also from one

application to another.

2.4.5. SOTA

Input buffers in SOTA [9] are implemented using dual-ported memory elements

organized as statically allocated multi-queue (SAMQ) so that the memory is shared

between the VCs equally. Flit width and memory width have the same size to guarantee

that writing and reading flits will fit in one clock cycle. Each flit is routed in two phases

using Valiant's routing algorithm to improve loading balance. In the first phase, the flit

is transferred to intermediate node, in the second phase it is routed to its destination.

16

Dimension-ordered routing algorithm is applied in each phase using two or three stages

depending on whether the speculative switch allocation is successful or not. Flits are

transferred from input nodes to output nodes via crossbar which is 4x4 multiplexer.

SOTA architecture is shown on Figure 2-13.

Figure 2-13: SOTA Arcitecture [9]

2.4.6. CONNECT

CONNECT is a soft router designed for FPGA [10-11], added new features like

virtual link and peak flow control, maximize routing resources utilization by using

wider buses between routers.

It is an open source configurable RTL-based router designed for FPGA with

architecture shown in Figure 2-14.

17

Figure 2-14: CONNECT Router Architecture [10]

Data is packetized while passing through the network. Each packet is divided into

multiple flits. Routing information besides the data are included in each flit.

CONNECT router supports two flow control mechanisms. Credit-based flow

control and a similar mechanism to ON-OFF algorithm called peek flow control.

With every clock cycle, the router receives a new flit from its input ports and

forwards to the output ports the flit that was received from previous clock cycle. For

each incoming flit to input ports the routing module evaluates - using lookup tables that

store output ports of all possible destinations in the network - which output port the flit

will go through; then the router appends to the flit data, a stamp that indicates the path

the flit would follow to reach its destination. Meanwhile the router stores the flit in one

of the buffers of the VCs per input port. According to the allocation algorithm, free

buffers space availability and priorities, the router selects the flit that will go the output

port passing through the switch. Every input and output module has two channels, one

for transmitting data flits and the second one to hold flow control signals.

Four separable input-output allocation algorithms are supported in CONNECT.

The router can be configured with different set of parameters which are number of

virtual channels, input ports and output ports, buffer depth, flit data width, network

topology and flow control algorithms.

In addition to prioritizing flits using flow control credits, CONNECT introduces

using virtual links to guarantee once ports starts receiving flits from a packet, it won’t

receive flits from any other packets till this packet finishes.

CONNECT is implemented using Bluespec System Verilog (BSV) which provides

a flexible parameterizable design.

In [10], CONNECT is compared with SOTA [9] using Xilinx Virtex-6 LX240T

and LX760 FPGAs. In terms of LUTs usage, CONNECT routers save about fifty

percentages of equivalent SOTA routers as shown in Table 2-5.

18

Table 2-5: CONNECT Area and Performance Comparison with some SOTA

Routers [10]

Design Xilinx LX240T Xlinix LX760

4x4 Mesh/4VCs Area

LUTs %

Frequency

MHz

Area

LUTs %

Frequency

MHz

SOTA (32-bit) 36% 158 12% 181

CONNECT (32-

bit)

15% 101 5% 113

CONNECT

(128-bit)

36% 98 12% 113

2.4.7. Split and Merge PS

Y. Huan and A. DeHon [12] were interested in analyzing NoCs that are designed to

target FPGA rather than ASIC. Their study was compared to two designs; first design is

CONNECT, which has been covered in previous section and the second one is Split-

Merged Packet Switched (PS) NoC which is stated in next section. Their analysis

results under different benchmarks shows that Split-Merged PS gives about three times

higher frequency and throughput but with the cost of using more area.

CONNECT uses only one single stage pipelining to reduce the effect of long wires

delay but this point was a main concern to Y. Huan and A. DeHon, since by this way;

the abundance of the FPGA registers was ignored. On the other hand, multiple stage

pipelining is used in Split-Merge PS to get better results in performance and

throughput.

Split-Merge architecture is shown in Figure 2-15.

Figure 2-15: Split-Merge PS Architecture [12]

The functionality of Split-Merge router components:

 Buffers: implemented by shift registers as FIFO queues.

19

 Split Primitive: detects the flit header and routes input packets to the proper

output port.

 Merge Primitive: receives and reconstructs packets coming from different

input ports to a specific output port and sends them to that port.

 Flow Control: valid/backup pressure flow control is used (which is very

similar to the peek flow control that is used in CONNECT).

 Routing Algorithm: Two deadlock free algorithms are used

o Dimension Ordered Routing (DOR) routes the packet along the X

side then the Y dimension but in some cases this introduces long

routes.

o The West-Side First (WSF) routing offers more flexibility to avoid

long routes in case of local congestion.

Using Xilinx Virtex 6 FPGA (XC240T-1), Split-Merge is compared with

CONNECT. The used configuration is a mesh topology with flit width of 32 bits and

buffer depth of 16 bits. CONNECT is configured by peek flow control rather than

credit-based flow control since peek flow control is similar to back pressure flow

control used in Split-Merge, given that peek flow control consumes less area and gives

higher frequency than credit-based. Also virtual link is activated in CONNECT to give

same functionality of Split-Merge.

According to packets format of CONNECT and Split-Merge in Figure 2-16.

CONNECT adds 10 bits over Split-Merge for routing information, so Split-Merge

switch was tested with 42 bits channel width besides the 32 bits to give direct

comparison with CONNECT.

Figure 2-16: Packet Format of Split-Merge and CONNECT Networks

20

Results in Table 2-6 show that Split-Merge has the advantage of higher speed, but

with the cost of more area consumption.

Table 2-6: Implementation Results for CONNECT & Split-Merge [12]

 Register Logic

(LUT)

Memory

(LUT)

Frequency

MHz

CONNECT

1 clock

2VC; 32bit 635 1369 166 104

2VC; 64bit 1265 1926 288 92

Split-Merge

1 pipe

2 clocks

DOR; 32bit 541 1449 336 220

DOR; 42bit 641 1686 462 219

WSF; 32bit 579 1839 400 217

WSF; 42bit 679 2139 550 216

Split-Merge

2 pipe

4 clocks

DOR; 32bit 1262 1157 336 303

DOR; 42bit 1572 1302 462 201

WSF; 32bit 1545 1491 400 298

DOR; 42bit 1804 1666 5501 213

Simulation results in Figure 2-17 show that under low congestion CONNECT

works with lower average delay. On the other hand, Split-Merge achieves higher

performance under congested traffic.

Figure 2-17: Cycle Comparison between CONNECT and Split- Merge PS NoC

[12]

2.4.8. FLNR

A. Imbewa and M. A. S. Khalid [13] introduced a fast lightweight NoC router

designed for FPGAs with the objectives of using minimum resources and obtaining

high performance.

21

Packet has been modified to minimize the control fields, by removing the control

fields from its body and removing the tail flit as shown in Figure 2-18. This yields to

FIFO width reduction, so buffer area and power consumption will be reduced as well.

Figure 2-18: FLNR Packet Format

In FLNR design, the router decision time is only one clock cycle; also it takes one

clock cycle to write the body flits since credit-based flow control is used. This yields to

buffer depth reduction and high performance.

As shown in Figure 2-19, each router is connected to the surroundings (North,

East, South, and West) IPs/routers, as well as the local IP core.

Figure 2-19: FLNR Block Diagram [13]

FLNR components and their functionalists:

 Arbiter: It receives the notifications (flit headers that contain packet

information including destination address) coming from input ports and

serves them in North, East, South, West, and Local orders using Round

Robin. Also it detects the head flit and payload end.

22

 Direction Decoder: It receives the destination address of the packet and

calculates the routing directions using XY routing (the cheapest schema to

have deadlock free network).

 FIFO Depth: The minimum depth is the number of possible flits that are

stored during routing decision time. If there is no blocking, only two

buffers (one for head flit, one for body flit) are enough to get the minimum

latency.

 Switch: Finally the switch assigns the coming packets from input ports to

available channels. Simply the switch is a five 5–to-1 multiplexers that

support all possible connections between input and output buffers.

Router parameters are input buffer size and flit size.

FLNR was implemented on Altera Stratix II EP2S15F672I4 FPGA. The synthesis

results for FLNR with three hops and buffer size of eight flits are shown in Figure 2-20.

Figure 2-20: Synthesis Results for FLNR [13]

The comparison with other routers (HERMES [14], ICN [15] and Bartic [16]) is

done by calculating the port bandwidth (maximum throughput) for each design, then

calculating the best case latency based on the same case study. Figure 2-21 and Table

2-7 give the comparison results. FLNR significantly outperforms the other routers with

lower area, latency and higher frequency. Furthermore, the number of clock cycles

consumed to finish the routing decision (𝑅𝑑) is only one cycle.

23

Figure 2-21: FLNR Performance and Area Comparison with some Previous NoC

Routers [13]

Table 2-7: FLNR Performance and Area Comparison with some Previous NoC

Routers [13]

Design Flit Size Flit/Cycle Slices Frequency

(MHz)

𝑹𝒅 BW

(Mbps)

HERMES

[14]

8 0.5 406 25 10 100

ICN [15] 16 0.5 326 40 2 320

Batric [16] 16 1 807 50 3 800

FLNR 8 1 150 54 1 435

2.4.9. RROCN

HY. Luo, SJ. Wei, and DH. Guo [17] introduced an on-chip network with regular

reconfigurable topology (RROCN) which contains both routed network and shared bus

by disabling and bypassing the unwanted nodes of the routed network and reorganize

them as a shared bus, this leads to suitable throughput and power consumption for

application with different bandwidth demands.

The main goal of RROCN is to provide a reconfigurable suitable bandwidth NoC

with low cost.

The RROCN architecture consists of several nodes, each one contains a router,

where a CPU core is attached to the network through the local port of the router while

24

the peripherals are located around the network which gives a NxN 2D mesh topology as

the largest topology that RROCN constructs with different MxH shapes but must be

less than N.

The main components of RROCN router are shown in Figure 2-22.

Figure 2-22: RRCON Router Block Diagram [17]

PRCON components functionalities:

 Reconfiguration Controller: configures the crossbar and the multiplexers

using the information that is received from the previous router, after that it

generates new configuration information which is passed to the next router.

 Crossbar: responsible for connecting the input port to the output port of the

router. It consists of five ports. One for local port and the others are

processor and peripheral group as shown in Figure 2-23.

 Arbiter: handles only the requests from the peripherals group and constructs

the connections for it using the priorities inside the configuration

information.

Figure 2-23: RRCON Crossbar Architecture [17]

The reconfiguration process is started at the run time from the processor by first

selecting an original node to be the starting point of the network, and then the

configuration information spreads inside the network to reach each node using

25

reconfiguration controllers in each node using an YX constructive algorithm. After

constructing the network, a modified self-adaptive XY routing algorithm is used.

As shown in Table 2-8, hybrid circuit switching NoC is compared with the

RROCN in terms of area, power consumption, clock period, latency and maximum

throughput in four configurations. Four configurations topology, the coordinate

(1,1,1,1) based on the original node 44 is defined as 1111_44.

Table 2-8: RRCON Implementation Results on Four Configurations [17]

 0000_00 0000_33 3030_11 5050_11

Larger clock period

(%)

104.0 35.9 37.4 9.7

Less power

consumption)%(

52.7 59.3 41.3 14.1

Lower zero-load

latency with equal

frequency (%)

77.8 73.4 34.5 14.1

Lower zero-load

latency with

maximum

frequency (%)

54.7 63.8 10.0 5.8

Lower maximum

frequency (%)

51.0 26.4 52.4 28.9

2.5. Comparative Review between NoCs with Open-Source

Code

In this section, we select the NoC designs [4], [9] and [10] with available open

source code, make our comparison between them and analyze their operating

frequencies, FPGA resources allocation across different values of buffer depth, data

width and VCs numbers to help selecting the suitable NoC that fits system

requirements.

2.5.1. Comparison Work Flow

We compare between the three architectures across different numbers of VCS, data

width and buffer depth and analyze their effects on frequency and LUTs and registers

usage. Network configuration is 4x4 mesh topology with five input and output ports.

The routers are implemented using Xilinx ISE v14.4 tool targeting Virtex6

XC6VLX240T FPGA. During the synthesis stage, RAM extraction option is disabled

to guarantee fairness among the three routers.

2.5.1.1. Frequency

 Buffer Depth: Increasing buffer depth improves the capability of storing

more packets. Consequently, this adds extra logic to handle the queuing

26

process and decreases the operating frequency. Figure 2-24 shows that

NoCem has the highest operating frequency across all values of buffer

depth and it is the most sensitive router to changes in buffer depth.

Figure 2-24: Frequency vs Buffer Depth

 Data Width: Data width change does not have high impact on the operating

frequency of the three routers as shown in Figure 2-25. CONNECT is the

most sensitive router to this parameter, whereas SOTA operating frequency

is almost fixed. NoCem is the router with the highest operating frequency

for all data width values.

Figure 2-25: Frequency vs Data Width

27

 Number of VCs: As shown in Figure 2-26, increasing VCs decreases the

operating frequency for all routers because adding VCs leads to more

combinational delays of switching algorithms and arbiters. NoCem has the

highest operating frequency, however it supports only up to four VC.

CONNECT is the most sensitive router to VCs increase.

Figure 2-26: Frequency vs VC

2.5.1.2. LUTs Usage

 Buffer Depth: From Figure 2-27, for all values of buffer depth, SOTA

consumes the least number of LUTs, whereas NoCem has the largest LUTs

consumption.

28

Figure 2-27: LUTs usage vs Buffer Depth

 Data Width: Increasing data width does not introduce extra logic, so this

parameter does not have high impact on number of LUTs used for logic

implementation. As shown in Figure 2-28, for 8 and 16 bits data width,

NoCem is the most efficient in LUTs consumption, whereas it consumes

the largest number of LUTs when the data width is 32 bits.

Figure 1-28: LUTs usage vs Data Width

 Number of VCs: Adding VCs introduces more logic for routing

computation, which increases LUTs consumption. Figure 2-29 shows that

29

NoCem consumes more LUTs than SOTA and CONNECT for all VCs

numbers. For VC count larger than three, SOTA consumes less LUTs than

CONNECT.

Figure 2-29: LUTs usage vs VC

2.5.1.3. Registers Usage

More memory elements are needed with the increase of any of the three parameters

(buffer depth, data width and number of VCs) as shown in Figures 2-30, 2-31 and 2-32.

SOTA is the most efficient in registers consumption and NoCem consumes the largest

number of registers.

Figure 2-30: Registers usage vs Buffer Depth

30

Figure 2-31: Registers usage vs Data Width

Figure 2-32: Registers usage vs VC

2.6. Summary and Future Works

PNoC [3] is a circuit-switched approach applied to FPGA-based systems. It

provides a flexible, lightweight and easy design. Its performance is similar to direct

interconnect. PNoC design can be used for partial dynamic reconfiguration by updating

the routing table of the system with added and removed modules. But on other hand; it

will not be suitable for applications subjected to conflicting flows, since in the circuit-

switched connections, once established, no other modules are able to communicate.

31

Future work is to explore the use of multiple routers, topologies and subnets in a

system. Perform a detailed comparison with packet-switched NoCs. And apply more

tests to check its suitability for partial dynamic reconfiguration.

The configurable [7] router provides the flexibility in supporting a variety of

network topologies with a simple three bit input for configuration. A dual crossbar

arrangement gives lower area with some reduction in operating frequency.

In future work, router's configuration is improved to include:

 Virtual channels to achieve higher throughput under conditions of high

traffic congestion.

 Using the concept of middle-buffering to achieve smaller designs and

superior performance than output buffering.

 Using custom memory block for buffer implementation.

In [12], detailed comparison between Split-Merged PS approach and CONNECT

has been introduced using different sets of benchmarks. Results show that Split-Merged

PS system reaches up to 300 MHz which is three times higher frequency and

throughput than CONNECT but with an increase in area usage.

FLNR [13] is a NoC router for FPGA that minimizes the area, maintains fast

performance by minimizing the control fields in the packets to decrease the buffer

width, decreases the routing decision time and delivers each flit in one clock cycle.

Future work is to implement a dual-clock wormhole router to forward the body flits

at faster frequency than the head flits.

Also, we think that authors should consider comprising FLNR results with more

recent NoC approaches e.g. CONNECT and SOTA. Since there is no open source code

for FLNR, we could not make this comparison.

RROCN [17] is proposed for chip-multiprocessors to achieve lower power

consumption under a demanded throughput. The RROCN was evaluated with four

specific reconfiguration topologies and compared with HCS network. RROCN is

suitable for specific applications, for example if we have application with specific

throughput demand, the RROCN is configured with a topology that provides suitable

throughput with less power consumption and lower zero-load latency and the same

thing happens if we have application requires lower latency or less power consumption.

The reconfiguration process is used to compromise between throughput, latency and

power consumption or optimize for one of them.

Future work was to improve the router design to include other network topologies

other than mesh topology and make further optimization to increase the maximum

throughput using the concept of virtual channels.

In this chapter, we also have compared between three NoC from the respective of

maximum operating frequency, registers consumed as memory elements and LUTs for

logic computation across three NoC parameters which are data width, buffer depth and

number of VCs. The comparison results help in choosing the appropriate NoC

according to system requirements:

 If the operating frequency is the most important factor, NoCem is the best

choice with the cost of more LUTs consumption with increasing buffer

depth or number of VCs.

32

 For networks with small numbers of VCs, CONNECT is the most efficient

in LUTs consumption. On the other hand, it has the lowest operating

frequency across all NoC parameters.

 If the target is improving the QoS of the network, this means that increasing

number of VCs is needed and SOTA is the most suitable router. As we

increase data width, buffer depth or VCs, it consumes the least amount of

registers. Increasing data width in SOTA is more suitable in case of

requiring high data transfer rate.

33

Chapter 3 : Soft and Hard Implementations for FPGA-

Embedded NoC

3.1. Introduction

We study the behavior of FPGA-embedded CONNECT NoC sub-modules which

are input, output, router, allocator and switch; while changing the NoC parameters

which are data width, buffer depth and number of VCs and ports. With every run, we

change a single parameter and keep other parameters fixed, then measure the area,

delay and dynamic power gaps between soft and hard implementations.

3.2. Methodology

Five input and output ports, two VCs, 32 bits data word and 10 words buffer are

the baseline values of NoC parameters.

For soft implementation, Virtex5 FPGA (xc5vlx110t) [19, 20] is used and UMC’s

65 nm ASIC process technology [21] is used for hard implementation. UMC’s 65 nm

technology is selcted to follow the same methodology in [22, 23]. One FPGA from

Virtex5 family is used because of two reasons. 1) This family is fabricated by 65nm

process technology and 2) the availability of area resources of this family in [24, 25].

Table 3-1 shows FPGA resources with the equivalent silicon area.

Table 3.1: Estimated FPGA Resources Area

Resource Equivalent Number of

Gates

Silicon Area in mm2

Register 7 0.000341

LUT 24 0.001171

IO 100 0.004882

BRAM - 0.025436

3.2.1. Soft Implementation Flow

The used software for soft implementation is ISE v14.4. We force the tool to reach

the maximum available frequency by:

1- Setting time constraints to high frequency (1 GHz)

2- Using all available speed optimization options

3- Applying physical synthesis [26] to decrease the critical path with the cost of

small area increase.

Only the clock signal at the top module is connected to IO buffers, because in

integrated system, all input and output signals will be connected to their corresponding

signals of other routers based on the NoC configuration.

34

The tool calculates area utilization and maximum frequency after every stage. We

are only concerned with results after place and route (PAR) because of their accuracy

after this stage. Also, because combining and packing FPGA resources due to

optimization options are taken into account after PAR. Exact routing and component

delays are generated in this stage.

Dynamic and static power consumptions [27] are measured using integrated tool

within ISE called xPower Analyzer [28]. For power extraction, the tool uses:

- The Native Circuit Description File (NCD) file. It is generated after PAR

and describes the physical design of the FPGA.

- The Physical Constraints (PCF) file. It is created during mapping stage and

consists of two sections. The first part includes the physical constraints

created by the mapper. The second section is for the physical constraints

specified by the user. Information in PCF file is used to determine clock

frequencies. And providing it to xPower Analyzer tool is very important for

accurate estimation of dynamic power consumption.

3.2.2. Hard Implementation Flow

Synopsys design compiler 2008.09 is used for hard implementation with typical

case process library and 1V supply voltage. The used wire load model is endorsed

model.

In soft implementation, the components of the FPGA are fixed and the used

resources are selected according to the design and its constraints. While on hard

implementation the used constraints affect dramatically the area utilization especially

on buffers insertion and cells upsizing. That is why the area, delay and power results

are gathered across two steps. At first, we set the tool with very tight timing constraints,

enable the “scan” option to get more realistic timing measurement and use ultra-

compilation for high optimization of area and clock. The scannable flip-flops replace

the non-scannable flip flops during compilation. At the end of this step the value of

negative slack is extracted from timing reports generated by the tool. In the second step,

these negative slack values are used as a target for timing constraint. Then after

recompilation, area and power consumptions are extracted. And the final delay

measurement takes into account if there is a positive or negative value for the slack.

3.3. Results and Discussions

CONNECT requires data buffering to store flits till the destination is ready to

receive packets and to store routing tables and other information required for successful

transmission. 2D flip flop array is always used to implement memory buffers on ASIC.

FPGA has three types of resources that can be used as memory elements [29]. These

resources are:

1- Register: it is a group of flip flops for storing a bit pattern. Consequently, when

registers are used for data storing, there is no waste at all.

2- Distributed RAM (DRAM): look up tables (LUTs) are normally used for logic

functions, but LUTs can be grouped together and configured as small memory

elements called DRAMs.

35

3- Block RAM (BRAM): it is a dedicated component in the FPGA for storing

data.

3.3.1. Input Module

Input module is responsible of

- Logic calculations required for data control and routing

- Memory buffers for storing the data coming to the router till its destination

is ready for receiving.

This module was implemented to target only DRAM but we modified it so that its

memory buffers can target the three buffering options in soft implementations.

Figures 3-1a, 3-1b and 3-1c show area utilization of input module across the three

buffering options with changing buffer depth, data width and number of VCs.

Register is not the suitable selection for implementing memory buffers because

number of registers increases rapidly specially with data width increase.

Under small values of buffer depth, data with and number of VCs, there is a small

increase of DRAM area consumption than BRAM, but with increasing any of them,

DRAM becomes worse than BRAM. On the other hand BRAM area consumption is

almost constant across the parameters.

The disadvantages of using BRAM and DRAM is the possibility of bits waste of

these resources if the module instantiated them without using all their bits.

So based on silicon area results shown in Figures 3-1a, 3-1b and 3-1c, BRAM is

the most suitable choice for input module across all parameters followed by DRAM

under small values of buffer depth, data width and number of VCs.

Comparing input module using BRAM implementation with other modules, it

depends on data width, buffer depth and VCs number. It has the least gabs in area,

delay and power as shown in Figures 3-2, 3-3 and 3-4. Increasing data width and buffer

depth reduces power and area gaps. While adding more VCs adds more delay gap but

decreases area and power gaps.

3.3.2. Output Module

Output module is independent on data width and the number of VCs. While it

changes with buffer depth and number of ports with more sensitivity to buffer depth

than number of ports because with buffer depth increase, more registers and

combinational logic are required which justifies the large power and area gabs as shown

in Figures 3-2, 3-3 and 3-4.

36

Figure 3-1: FPGA memory buffers using three implementation alternatives

Figure 3-2: FPGA/ASIC Area Ratios

37

Figure 3-3: FPGA/ASIC Delay Ratios

Figure 3-4: FPGA/ASIC Power Ratios.

38

3.3.3. Routing Module

Routing module consists of

- Logic part for determining routing paths.

- Memory buffers that are used to hold information about available input and

output ports.

We modified this module so that its memory buffers can target the three buffering

options in soft implementations and analyzed their behaviors with changing number of

ports. Figure 3-1d shows that starting from four ports; DRAM is the best choice for this

module since it has the best silicon area besides that area consumption is almost

constant across all ports numbers. This is because routing module use memory buffers

to store information about input and output ports availability which makes the needed

memory size very small compared to input module that holds the data itself besides

other information used for transferring the flits through the network.

Figures 3-2d, 3-3d and 3-4d show FPGA to ASIC ratios for this module with

DRAM memory buffers across available ports numbers. Its area, delay and power

values in hard implementation increase with ports number increase while in soft

implementation, their values are almost fixed across ports numbers. This is because the

resources allocation in FPGA of four ports setup would be the same for five to fifteen

ports setup.

3.3.4. Allocator

This module depends on the number of ports. Its area, speed and power values

increase rapidly in both hard and soft implementations with increasing ports numbers as

shown in Figures 3-2d, 3-3d and 3-4d. But their values increase faster in soft

implementation mainly because of the combinational logic besides that the module

consists of multiple logic elements that communicate with each other using

interconnects which are well known of consuming area and power and increasing the

critical path.

3.3.5. Switch

Because of the pure combinational logic of the switch module, registers were

inserted at the module output. This is mandatory for the tool to force timing analysis.

Switch module depends on the number of ports. As shown in Figure 3-3d, delay gap is

insensitive to ports numbers and is almost fixed. While Figure 3-4d shows that

increasing ports numbers decreases power gap.

3.3.6. Module and System levels comparisons

Geometric means of soft-hard ratios of area, delay and power gaps are shown in

Table 3-2. Geometric mean is the suitable mean for comparing normalized values [30].

Input modules geometric means are 1.8x, 2.9x and 5.3x respectively. These are the

least gaps across all modules. Delay geometric mean for output module is 3.5x and it

has very large area and power geometric means 54.7x and 38.1x.

39

The geometric mean of area gap is 27.3x for routing module; while it has large

delay and power gaps 4.6x and 44.8x respectively. These large gaps may be because of

the restrictions of fixed fabrications of the FPGA which affects the optimization of

placement and routing. While ASIC is much more flexible with more efficient

optimizations options, for example scanning to upsize cells.

Allocator module is more sensitive to the number of ports increase in soft

implementation than hard implementation. That is why it has large geometric mean

67.7x for area, 4x for delay and 38.6x for power.

Switch module has the largest geometric means 90x for area, 7x for delay and

52.8x for power gap. This is because this module is purely combinational and ASIC is

much faster than FPGA in combinatorial logic implementation due to the following:

1- FPGA would need several in series LUTs while in ASIC it is possible to

implement wider input functions with significant decrease in delay than FPGA

due to the fine-grain architecture of ASIC.

2- FPGA has programmable routing structure while ASIC has dedicated routing

structure.

Table 3-2: FPGA/ASIC Ratios

Module FPGA/ASIC Area Ratio FPGA/ASIC Delay Ratio FPGA/ASIC Power

Ratio

Min. Max. Geometric

Mean

Min. Max. Geometric

Mean

Min. Max. Geometric

Mean

Input 1 6 1.8 2.5 3.9 2.9 2.7 17.8 5.3

Output 45.4 67.5 54.4 2.8 4 3.5 23.7 75.4 38.1

Routing 9 135 27.3 3.8 5.4 4.7 14.5 204.4 44.8

Allocator 42.6 82.5 67.7 2.5 5.6 4 28.3 77.1 38.6

Encoder 78.8 129.3 90 7 7 7 41.4 107.3 52.8

Total

Router

2.8 45.2 9 3 4.3 3.7 5.8 425.5 12

3.4. Design Recommendation

1- Routing module needs small memory buffers, so DRAM implementation is

more suitable for this module. On the other hand, input module needs large

memory buffers and BRAM is the best choice for it. The area utilization is

almost similar across different values of VCs number, data width and buffer

depth.

2- To get higher bandwidth for input module, increasing data width is better than

increasing the number of VCs. Also increasing data width reduces area and

power gaps. Area gap is reduced from 6x to 1x and power gap drops from 12x

to 6x. Using small number of VCs increases area and power gaps for input

module.

40

3- It is recommended not to increase the number of ports if the main concern is

the speed results. As shown in Figures 3-2 and 3-3 and Table 3-2, increasing

ports numbers adds significant increase in allocators speed gap (raises from

2.5x to 5.6x) and area gap (changes from 41x to 82x) while the impact on

power gap in not high. Ports numbers change has less effect on encoder and

output modules. On the other hand increasing the number of ports reduces

speed, delay and power gaps of the routing module. Speed gap reduced from

5.4x to 3.8x, power gap falls from 204.5x to 14.5x and area gap changes from

135x to 9x.

4- Given that the switch and the allocator modules have the largest speed, area

and power gaps, they are more suitable to be harden than being soft

implemented. Also this might indicate that more enhancements may be needed

for these modules on soft implementations.

5- Comparing our work with SOTA [9] in Table 3-2 proves that when the NoC is

designed to be FPGA-embedded NoC, it would utilize bandwidth and area

better than NoCs designed to target ASIC (30x area gap and 3.6x speed gap).

3.5. Summary

In this chapter, we provided a comparison on the sub-module level between soft

and hard implementations using FPGA-embedded NoC and measured the efficiency

gaps between the two implementations. In soft implementations, it is more efficient to

use BRAM in input module as memory elements. On the other hand DRAM is more

suitable for routing module. Increasing data width is better than adding more VCs for

better operating frequency. Switches and allocators are not efficient in soft

implementation since they consume large area and power and increase the critical path.

When the NoC is designed to target FPGA, its efficiency gaps in soft

implementation are better than the efficiency gaps of NoC designed for ASIC.

41

Chapter 4 : Two Soft Implementations For FPGA-

Embedded NoC

4.1. Introduction

Our contribution in this chapter is introducing two different configurations for the

soft implementation using the CONNECT FPGA-embedded NoC. In each

configuration, we measure area, speed and power gaps on the network level between

soft and hard implementations. First configuration targets reducing the delay gap

between soft and hard implementations as much as possible, whereas in the second

configuration the soft implementation has significant reduction of consumed power

with the cost of small increase in the delay and area gaps.

4.2. Methodology

We follow the same methodology in previous chapter for soft and hard

implementations.

We study the effect of changing FPGA synthesis, mapping and place and routing

properties on the NoC router besides modifying specific components of the NoC to

reduce the gap between soft and hard implementations. In the first setup, we select

properties and modify specific components to get the least delay gap between soft and

hard implementations. In the second setup, we modify these options and components to

reduce the power gap between soft and hard implementations. Following that, we

measure the effect of these changes on the area and speed gaps. For each setup, we

change one of the NoC parameters which are buffer depth, data width, number of VCs

and number of ports then measure the router’s area, delay and power.

The following section clarifies the options used for speed-target and power-target

configurations. The two configurations are summarized in Table 4-1.

4.2.1. LUT Combining

The main resources for implementing sequential and combinational logic in FPGA

are “The Configurable Logic Blocks (CLBs). Each CLB in Virtex-5 FPGA consists of

two slices. Each slice has four 6-input lookup tables (LUTs), four flip-flops (FFs), three

multiplexers, and a length-4 carry chain comprising of multiplexers and XOR gates.

LUTs are standard elements that are used for executing combinational logic. They work

as a small memory that holds the truth table of outputs for all inputs combinations.

Each 6-input LUT can be used as two 5-input LUT with two outputs; this is called dual

output mode. Therefore, each slice can be used to either implement one function with

six inputs or two independent functions sharing five or less inputs with two separate

outputs. This will reduce the required resources of LUTs for circuits that consist of

small logic functions, giving better utilization with less dynamic power consumption.

Unfortunately this causes performance degradation.

Dual output mode can be enabled or disabled using LUT combining option in

synthesis and mapping stages [31, 32]. It may be disabled or may be set with two other

42

values called “Area” and “Auto”. Setting it to “Area” combines LUTs as much as

possible ignoring the resulted performance degradation. On the other hand, setting it to

“Auto” balances between area optimization and design speed. For power-target

configuration, this option is set to “Auto” during synthesis; and set to “Area” in

mapping stage. These selections are based on multiple tests that showed that this

combination compromises between saving the power as much as possible with

reasonable performance degradation. Other combinations don not improve power

consumption. On the other hand, they have negative impact on the design operating

frequency and cause more performance degradation. In speed-target configuration; the

option is disabled in both synthesis and mapping to avoid any performance degradation.

4.2.2. Optimize Instantiated Primitives

Most FPGA vendors provide various synthesis options that have remarkable effects

on the designs results [33]. In most of the cases, setting the options is enough for the

FPGA to follow the set rules. However in some cases, setting the synthesis options is

not enough and designers must rewrite the HDL code to force insertion of specific

FPGA components [34]. Better method is to target FPGA-embedded primitive

instantiation. This method is effective for design optimization and sometimes it

becomes the only way to achieve the required target or to make work around a bug in

the synthesis tool. In addition, it makes the design less dependent on the synthesis tool.

On the other hand, the design will be more difficult to maintain and less portable.

Practically these disadvantages have less impact on designs because in most of the

cases, the target FPGA is already defined before writing the HDL code. Moreover,

most of the new FPGA families provide backward compatibility to older FPGA

versions. One example of the manual instantiation is to force the distributed RAM to be

used instead of the BRAM to save power.

The tool does not optimize instantiated primitives unless this synthesis option is set

to “True” [31]. This optimization is limited by multiple conditions [35]. For example, if

there are specific constraints like Relative Location Constraints (RLOC) applied on

those instantiated primitives, no optimization will be conducted. Also the tool does not

optimize some hardware elements such as BRAM and DSP48. This option is disabled

in speed-target configuration and enabled in power-target configuration.

4.2.3. Power Reduction

Using the default settings; the tool attempts to reduce the consumed power.

Performance, area, power and runtime are the different strategies that can be applied by

the tool. According to the selected strategy, the tool applies the proper algorithms for

power reduction. Because of the trade-offs between these strategies, user should

configure the tool with the most important strategy according to his design

specifications.

The tool provides power reduction switches in synthesis, mapping and routing

stages to enhance power results at the expense of longer run time, performance

degradation and sometimes more area consumption. The general rule in the relation

between power and area results is that the function would consume less power as long

as it uses fewer resources for its implementation. However in some cases there is a

43

contradiction between them; because there are power reduction algorithms that require

more logic or resources [36].

At synthesis stage, the tool has different algorithms for power reduction that can be

applied globally, per module or per function. At mapping stage; the tool works on

improving the placement to achieve less power consumption. It starts with choosing a

layout for the design that satisfies timing constraints, and then runs time analysis to

check if there is timing slack. If timing slack is found, the tool modifies the placement

to get better results. At PAR stage; the tool works first on meeting timing constraints;

then reducing power on nets that are not part of the critical path. This stage also

includes optimizations of logic that does not affect functionality or timing but achieves

better power results. In other words mapping minimizes routing by enabling time

driven packing and PAR reduces power consumption by optimizing routing.

Mapping and PAR power reduction options yield to improving power results with

10-15% [37]. However these options increase the running time by 15% with

performance degradation. As long as the timing constraints are tighter, power

reductions algorithms will not be able to make sufficient changes in order not to affect

timing. Power reductions options in the three stages are disabled in speed-target

configuration and enabled in power-target configuration.

4.2.4. Maximum Compression

It is a mapping option that packs the logic of the design with the most possible

density [32]. This saves area and power consumption with the cost of performance

degradation. This option is enabled in power-target configuration and disabled in

speed-target configuration.

4.2.5. Memory Elements

One of the experiments implemented in previous chapter is using three different

implementations for memory elements. In each implementation, area consumption of

each component was measured across NoC parameters. These three implementation

target Registers, DRAMs and BRAMs respectively. Results showed that using registers

as memory elements is not efficient at all across all parameters. BRAM is the most

efficient implementation for input module specially with increasing buffer depth, data

width and number of VCs. DRAMs is more suitable for routing module because this

module needs small memory elements for storing the information of available input and

output ports. In speed-target configuration, input module is modified to target BRAMs,

whereas in power-target configuration the module uses DRAMs.

Table 4-1: Speed and Power Target configurations

Option Stage Speed-target Power-target

LUT Combining

Synthesis Off Auto

Mapping Off Area

Optimize Instantiated

Primitives

Synthesis Disabled Enabled

44

Maximum Compression Mapping Disabled Enabled

Power Reduction Synthesis Disabled Enabled

Mapping Disabled Enabled

PAR Disabled Enabled

4.3. Results and Discussions

4.3.1. Buffer Depth

The simulation results in previous chapter showed that output and input

components depend on changing buffer depth parameter. Moreover, output module in

soft implementation consumes more area and power than hard implementation at small

buffer depths. As previously mentioned; in speed-target setup, the input module was

modified so that it can be allocated in BRAMs and in power-target setup, the module

uses DRAMs. Using BRAMs and setting the tool with speed-target configuration make

soft implementation consumes less area than power-target setup for all values of buffer

depth as shown in Figure 4-1. However it comes with a high cost of power

consumption especially for small values of buffer depth (Figure 4-3). This is justified

because using BRAMs consumes more power than DRAMs. Figure 4-2 shows that

starting from 30 words buffer depth the two setups have similar delay gap and for

values less than 30 words speed-target setup has less delay gap than power-target setup.

4.3.2. Data Width

Input module is the component that depends on data width changes. For small

values of data width, area consumptions of BRAMs and DRAMs are close and with

increasing data width, DRAMs start consuming more area. This justifies Figure 4-1

where speed-target and power-target setups have similar area ratios for small data

width; then for higher data width, the area gap increases in power-target setup. Using

BRAMs in speed-target setup and DRAMs in power-target setup illustrate Figures 4-2

and 4-3 where in speed-target setup the soft implementation has less delay and

consumes more power.

45

Figure 4-1: Speed vs Power Setups FPGA/ASIC Area Ratios

Figure 4-2: Speed vs Power Setups FPGA/ASIC Delay Ratios.

46

4.3.3. Number of VCs

Input component depends on the used number of VCs. Similar to the data width

analysis that has just been covered; for small numbers of VCs, BRAMs and DRAMs

consume similar amount of resources, BRAMs are more efficient with increasing VCs.

Number of VCs does not affect the output component itself. However number of

created instances of the module depends on the number of VCs. Figures 4-1 and 4-2

show that speed-target setup has more area consumption and better performance than

power-target setup. However their values are still close to each other. But from power

respective, power-target setup satisfies high power reduction across all numbers of VCs

due to using DRAMs for input module in this setup.

4.3.4. Number of Ports

All NoC components except the input component depend on the number of ports.

Number of created instances of all components depends on number of ports except the

allocator module; one instance of it is created for the whole router. Results in Figure 4-

1 show that across all components, changing number of ports for speed-target and

power-target setups does not have high impact on area. From Figure 4-2, speed-target

setup has better performance results than power-target setup. From power respective

soft implementation in speed-target setup consumes almost the double values of power-

target setup as shown in Figure 4-3.

Figure 4-3: Speed vs Power Setups FPGA/ASIC Power Ratios

47

4.3.5. Module and System Levels Comparisons

Minimum, maximum and geometric means of area, delay and power gaps for soft

and hard implementations at both speed and power target setups are shown in Table 4-

2. Setting FPGA with speed-target configuration reduces the delay gap to a factor of

5.5x between soft and hard implementations with a very high cost of the power

consumption 12.2x and 5.9x area usage. Configuring the FPGA with power-target setup

decreases the power gap to only 4.5x with a small increases in the speed and power

gaps 6.3x and 6.9x respectively.

Table 4-2: Speed vs Power Setups FPGA/ASIC Ratios

Setup FPGA/ASIC Area Ratio FPGA/ASIC Delay Ratio FPGA/ASIC Power

Ratio

Min. Max. Geometric

Mean

Min. Max. Geometric

Mean

Min. Max. Geometric

Mean

Speed-

Target

2.8 21.4 5.9 3.5 10.4 5.5 6 24.9 12.2

Power-

Target

4.2 20.2 6.9 3.8 12.8 6.3 1.7 13 4.5

4.4. Design Recommendation

Based on the previous results; for applications that are concerned with reducing the

delay gap as much as possible between soft and hard implementations, speed-target

options in Table 4-1 are recommended be used for soft implementation. But this will

increase the power consumption gap to by a factor of 12.2x. This power gap can be

reduced from 12.2x to only 4.5x with the cost of increasing the delay gap from 5.5x to

6.3x and increasing the area gap from 5.9x to 6.9x. The power reduction can be fulfilled

by configuring the FPGA with power-target options in Table 4-1 besides using DRAMs

for input module instead of using BRAMs. Power-target configuration is more

appropriate for applications with power limitations.

4.5. Summary

We choose FPGA-embedded NoC and propose two configurations for soft

implementation. In each configuration we analyze efficiency gaps between soft and

hard implementations on network level. One configuration targets the minimum delay

gap (5.5x) between soft and hard implementations, this leads to 12.2x power gap and

5.9x area gap. The other configuration targets reducing the power gap to 4.5x, leading

to 6.9x area gap and 6.3x delay gap. Choosing the appropriate configuration depends on

the application type. It is recommended to use the power-target configuration for

applications that require power saving, since the impacts on the area and delay gaps are

limited.

48

Discussion and Conclusions

Integrating NoCs within FPGAs becomes a main factor for improving data

communication especially for high speed IOs interfaces, and partial dynamic

reconfiguration and for improving bandwidth utilization, decreasing the compilation

time and increasing designs efficiency and scalability.

The thesis contribution is in three phases. In Chapter 2, there is an overview about

networking principles then, provide a survey of the following NoCs routers:

 NoCem

 PNoC

 Dual Crossbar Router

 HW NoC

 SOTA

 CONNECT

 Split and Merge PS

 FLNR

 RROCN

 For these NoCs, we show their architectures, implementations, simulation, test

results and future works. Then we make our comparisons using a unified

implementation for NoCs with available open-source code which are NoCem, SOTA

and CONNECT. The comparison analyzed the behavior of the three NoCs operating

frequencies and resources utilization of LUTs and registers across different values of

the NoC parameters which are data width, buffer depth and number of VCs to help

choosing the suitable NoC design according to target applications. Results show that:

 NoCem has the highest operating frequency advantage. On the other hand,

it consumes more LUTs with increasing number of VCs or buffer depth

 CONNECT has the lowest operating frequency for all NoC parameters. For

networks with low number of VCs, it consumes the least amount of LUTs

 SOTA consumes the least amount of registers with increasing buffer depth,

data width or number of VCs

In Chapter 3, we use FPGA-embedded NoC (CONNECT) and study its behavior

on the sub-module level in soft and hard implementations. Based on analyzing the

power, area and delay of each module in soft and hard implementations across different

values of buffer depth, data width, number of VCs and number of ports, we give design

guidelines for embedded NoCs on FPGAs.

For soft NoCs, using BRAMs for input modules gives high area utilization while

LUTRAMs are more suitable for routing module. To utilize bandwidth, it is better to

increase the data width than increasing the number of VCs or ports. Allocators and

switches have larger area, delay and power in soft implementation which make them

unsuitable for soft implementation. NoCs designed for FPGA in soft implementations

would utilize area better than NoCs designed for ASIC.

Finally in Chapter 4, we use the same FPGA-embedded NoC and propose two

configurations for the soft implementation. The differences between the two

configurations are in the following parameters:

49

 “LUT Combining” in synthesis and mapping stages

 “Optimize Instantiated Primitives”

 “Maximum Compression”

 “Power Reduction” in synthesis, mapping and PAR stages

 “RAM Extraction” for Input Module

For each configuration, the NoC efficiency gaps on the network level for soft and

hard implementations have been analyzed. One configuration attempts minimizing the

delay gap between soft and hard implementations. The second configuration targets

reducing the power gap as much as possible with a limited increase for area and delay

gaps. System constraints

According to system constraints, the relevant configuration will be used for FPGA

setup.

Many of the experiments, results and their conclusions in this thesis are published

in [38, 39 and 40].

As extension to this work, the following points are recommended for the future

work:

 According to the results of the sub-module level efficiency gaps, design a

new FPGA-embedded router optimized for soft implementation.

 Measure the efficiency gaps at the sub-module level between soft and hard

implementations using different technologies and analyze the effect of

changing the technology on the results.

 Modify the FPGA-embedded NoC to include the Round Robin arbiter

proposed in [41], then measure its effect on the NoC efficiency gaps.

 Investigate the ability to develop a hybrid NoC with specific modules in

hard implementation and the other modules in soft implementation.

 Upgrade the FPGA-embedded router to perform its functionality as 3D-

NoC for FPGA, then identify whether hard or soft implantation is the best

choice for 3D routers.

 Evaluate modifying the router to eliminate using buffers for flow control or

buffering, since measurements in previous chapters show that buffers in the

networks on chips consume significant area and power and increase the

design complexity. Bufferless routers handle contention by deflecting or

dropping flits which leads to a simpler flow control mechanism and no

deadlock or livelock, however this approach reduces the bandwidth and

increases the latency; besides increasing the buffering complexity at the

receiver side because flits may reach their destinations out of order.

50

References

1. ARM: “Amba specification”, Technical report, ARM, Revision 2.0, 1999

2. Coreconnect: “Coreconnect bus architecture”, Technical report, IBM Cooperation,

1999

3. C. Hilton and B. Nelson. “PNoC: A Flexible Circuit-Switched NoC for FPGA-

based Systems”, IEE Proceedings Computers and Digital Techniques, Vol. 153, pp.

181-188, 2006.

4. E. Bolotin, I. Cidon and R. Ginosar, “Cost Considerations in Network on Chip”,

Integration, the VLSI Journal, Vol. 38, pp. 19-42, 2004.

5. G. Schelle and D. Grunwald, “Exploring FPGA network on chip implementations

across various application and network loads”, international conference on Field

Programmable logic and applications, pp. 41–46, 2008.

6. F. Moraes, A. Mello, L. Möller, L. Ost and N. Calazans. “Hermes: an Infrastructure

for Low Area Overhead Packet-Switching Networks on Chip”, Integration, the

VLSI Journal, Vol. 38, pp. 69-93, 2004.

7. R. Pau and N. Manjikian, “Implementation of a configurable router for embedded

network-on-chip support in FPGAs”, M.Sc. Thesis, College of Engineering,

Queen’s University, Kingston, Ontario, Canada September 2008

8. K. Goossens, M. Bennebroek3, J. Y. Hur and M. A. Wahlah, “Hardwired Networks

on Chip in FPGAs to Unify Functional and Configuration Interconnects”, NOCS

'08 Proceedings of the Second ACM/IEEE International Symposium on Networks-

on-Chip, pp. 45-54, 2008.

9. Daniel U. Becker. “Efficient Microarchitecture for Network-on-Chip Router”,

Ph.D. dissertation, Stanford University, 2012.

10. M. K. Papamichael and J. C. Hoe, “CONNECT: Re-Examining Conventional

Wisdom for Designing NoCs in the Context of FPGAs”, 20th ACM/SIGDA

International Symposium on FPGA, pp. 37–46, 2012.

11. M. K. Papamichael and J. C. Hoe, “CONNECT: CONfigurable NEtwork Creation

Tool”, http://users.ece.cmu.edu/mpapamic/connect/ , 2012.

12. Y. Huan1 and A. DeHon2, “FPGA Optimized Packet-Switched NoC using Split

and Merge Primitives”, IEEE International Conference on Field-Programmable

Technology, pp. 47-52, 2012.

13. A. Imbewa and M. A. S. Khalid. FLNR: “A Fast Light-Weight NoC Router for

FPGAs”, Research Centre for Integrated Microsystems (RCIM), Department of

Electrical and Computer Engineering, University of Windsor, pp. 445-448, 2013.

14. F. Moraes, A. Mello, L. Möller, L. Ost and N. Calazans. “Hermes: an Infrastructure

for Low Area Overhead Packet-Switching Networks on Chip”, Integration, the

VLSI Journal, Vol. 38, pp. 69-93, 2004.

http://users.ece.cmu.edu/mpapamic/connect/

51

15. T. Marescaux, T. Bartic, D. Verkest, S. Vernalde and R. Lauwereins.

“Interconnection Networks Enable Fine-Grain Dynamic Multi-Tasking on FPGAs”,

International Conference on Field-Programmable Logic and Applications, pp. 795-

805, 2002.

16. T. Bartic, J-Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vemalde and R.

Lauwereins. “Highly Scalable Network on Chip for Reconfigurable Systems”, Proc.

IEEE International Symposium on System-on-Chip, pp. 79-82, 2003.

17. HY. Luo, SJ. Wei, and DH. Guo, “RROCN: An on-chip network with regular

reconfigurable topology for chip-multiprocessors”, Journal of computers, No.1, pp.

36-46, 2013.

18. Helal, K. A., S. Attia, T. Ismail, and H. Mostafa, "Comparative Review of NOCs in

the Context of ASICs and FPGAs", ISCAS, pp. 1866-1869, 2015.

19. Xilinx Inc., ”Virtex-5 Family Overview”, 2009.

20. Xilinx Inc., ”Virtex-5 FPGA User Guide”, 2012.

21. UMC, “UMK65LSCLLMVBBR_B UMC 65nm Low-K Multi-Voltage Low

Leakage RVT Tapless Standard Cell Library Databook”, 2011

22. M. S. Abdelfattah and V. Betz, “Design Tradeoffs for Hard and Soft FPGA-based

Networks-on-Chip”, FPT, pp. 95–103, 2012.

23. M. S. Abdelfattah and V. Betz, “THE POWER OF COMMUNICATION: Energy

efficient NOCs for FPGAs”, FPL, pp. 1–8, 2013.

24. https://www.xilinx.com/training/downloads/what-is-the-difference-between-an-

fpga-and-an-asic.pptx

25. F. Arnaud et. al., “A Functional 0.69 µ𝑚2 Embedded 6T-SRAM bit cell for 65nm

CMOS platform”, the Digest of Technical Papers of the Symposium on VLSI

Technology, pp. 65-66, 2003.

26. Xilinx Inc., “Physical Synthesis and Optimization with ISE 9.1i”, 2007.

27. Xilinx Inc., “Virtex-5 FPGA System Power Design Considerations”, 2008.

28. www.csee.umbc.edu/~tinoosh/cmpe691/slides/power-estimation.ppt

29. Xilinx Inc., “Virtex-5 Libraries Guide for HDL Designs”, 2011.

30. http://www.investopedia.com/terms/g/geometricmean.asp

31. http://www.xilinx.com/itp/xilinx10/isehelp/pp_db_xilinx_specific_options.htm

32. http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pp_db_map_p

roperties.htm

33. http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_xst_perf

ormance_strategies.htm

34. Mourad Fakhfakh, Esteban Tlelo-Cuautle, Patrick Siarry, “Computational

Intelligence in Digital and Network Designs and Applications”, Springer

International Publishing, 2015.

35. Ehliar. A, “Optimizing Xilinx designs through primitive instantiation: Guidelines,

techniques, and tips”, 7th FPGA world Conference, pp. 20-27, 2010.

36. Xilinx Inc., “Virtex-5 FPGA System Power Design Recommendation”, 2008.

http://www.csee.umbc.edu/~tinoosh/cmpe691/slides/power-estimation.ppt
http://www.investopedia.com/terms/g/geometricmean.asp
http://www.xilinx.com/itp/xilinx10/isehelp/pp_db_xilinx_specific_options.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pp_db_map_properties.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pp_db_map_properties.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_xst_performance_strategies.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_xst_performance_strategies.htm

52

37. http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_xst_pow

er_reduction_strategies.htm

38. Salaheldin, A., K. Abdallah, N. Gamal, and H. Mostafa, “Review of NoC-Based

FPGAs Architectures”, IEEE International Conference on Energy Aware

Computing Systems and Applications, pp. 1-4, 2015.

39. Gamal, N., H. Fahmy, Y. Ismail, and H. Mostafa, "Design Guidelines for

Embedded NoCs on FPGAs", IEEE International Conference on Quality Electronic

Design, pp. 69-74, 2016.

40. Gamal, N., H. A. H. Fahmy, Y. Ismail, T. Ismail, M. Mohie-Eldin, and H. Mostafa,

"Design Guidelines for Soft Implementations to Embedded NoCs of FPGAs", IEEE

International Design and Test Symposium, pp. 1-6, 2016.

41. Helal, K., S. Attia, T. Ismail, and H. Mostafa, "Priority-Select Arbiter: An Efficient

Round-Robin Arbiter", IEEE International New Circuits and Systems Conference,

pp. 1-4, 2015.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_xst_power_reduction_strategies.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_xst_power_reduction_strategies.htm

53

Appendix A: Power and Area Estimation in Soft

Implementation

A.1. Power Estimation

As previously mentioned in Chapter 3, xPower Analyzer tool requires two files for

static and dynamic power estimation. First one is the Physical Design File (NCD)

which is mandatory for power estimation. The second file is The Physical Constraints

(PCF). This file is optional, however if this file is not included, dynamic power values

will be almost Zero. Also if this file is included without timing information, dynamic

power values will be inconsistent. A PCF is automatically generated from the User

Constraints File (UCF) by MAP process.

To create UCF in order to generate PCF, use “The Constraints Editor” as follows:

1- In the Processes view, expand User Constraints.

2- Double-click on Create Timing Constraints.

 Add the required timing constraints from Constraints Editor as shown

in Figure A-1, then save them using File > Save.

 To update the design with the new or modified constraints, run

the Translate process.

 Run the MAP process to generate the PFC file.

Figure A-1: ISE Timing Constraint

A.2. Area Estimation

To connect only the clock signal of the top module to IO buffers as mentioned

in 3.2.1, the following steps should be done:

1- In the Process view, right click on Synthesis item and select Process

Properties to open Process Properties Window.

54

2- Press on Xilinx Specific Options, and set Add I/O Buffers to true.

3- Create Xilinx Constraint File (XCF) and set the buffer type property for all the

input and output signals of the top module except the clock to false, then set the

keep property to all signals to true in order not to remove any signals during

optimizations:

BEGIN MODEL <module_name>

NET "signal_name" buffer_type = none;

NET "*" s = true;

END;

4- Open Process Properties Window and enable Synthesis Constraint File

option, then load the XCF file created in previous step.

A.3. HDL Modifications

Input and Routing modules of CONNECT router were implemented to target only

DRAM but we modified them so that their memory buffers can target the three

buffering options in soft implementations.

In this section we show the original memory implementation of the input module

that targets DRAM only, then the modification to the module so that it can target either

BRAM or DRAM

1- Original Implementation:

///

`ifdef BSV_ASSIGNMENT_DELAY

`else

 `define BSV_ASSIGNMENT_DELAY

`endif

module RegFile_1port(CLK, rst_n,

 ADDR_IN, D_IN, WE,

 ADDR_OUT, D_OUT

);

 parameter data_width = 1;

 parameter addr_width = 1;

 parameter depth = 1<<addr_width;

 input CLK;

 input rst_n;

 input [addr_width - 1 : 0] ADDR_IN;

 input [data_width - 1 : 0] D_IN;

 input WE;

 input [addr_width - 1 : 0] ADDR_OUT;

 output [data_width - 1 : 0] D_OUT;

 reg [data_width - 1 : 0] arr[0 : depth-1];

 always@(posedge CLK)

 begin

 if (WE)

 arr[ADDR_IN] <= `BSV_ASSIGNMENT_DELAY D_IN;

 end

55

 assign D_OUT = arr[ADDR_OUT];

endmodule

///

2- Modified Implementation:

///

`ifdef BSV_ASSIGNMENT_DELAY

`else

 `define BSV_ASSIGNMENT_DELAY

`endif

module RegFile_1port(CLK, rst_n,

 ADDR_IN, D_IN, WE,

 ADDR_OUT, D_OUT

);

 parameter data_width = 1;

 parameter addr_width = 1;

 parameter depth = 1<<addr_width;

 input CLK;

 input rst_n;

 input [addr_width - 1 : 0] ADDR_IN;

 input [data_width - 1 : 0] D_IN;

 input WE;

 input [addr_width - 1 : 0] ADDR_OUT;

 output [data_width - 1 : 0] D_OUT;

 reg [data_width - 1 : 0] arr[0 : depth-1];

 reg [addr_width - 1 : 0] ADD;

 always@ (posedge CLK)

 begin

 if (WE)

 arr[ADDR_IN] <= `BSV_ASSIGNMENT_DELAY D_IN;

 ADD <= ADDR_OUT;

 end

 assign D_OUT = arr[ADD];

endmodule

///

56

Appendix B: Efficiency Measurements Automation in

Soft Implementation

Chapter 3 and Chapter 4, there have been a huge number of runs for gathering the

efficiency gaps between soft and hard implementations across the network level and

sub-module level among NoC’s parameters. Doing this by using the tools in Graphical

User Interface (GUI) mode is very timing consuming and error prone. To save time and

avoid errors, we used the tools in batch mode and automated generating efficiency

parameters by creating scripts written in Tool Command Language (TCL). This

scripting language is already supported by the tools.

ISE generates TCL scripts for creating and running projects. This can be done

through Project menu item then selecting Generate Tcl Script item. We modified

the generated TCL script and created another TCL script to automate calling the

script generated by the tool.

We modified the generated TCL script by ISE in order to be generic and

could be used with different settings as follows:

Project automation script

Created for ISE version 14.4

This file contains several Tcl procedures (procs) that you can use to automate

your project by running from xtclsh or the Project Navigator Tcl console.

This script is generated assuming your project has HDL sources.

Several of the defined procs won't apply to an EDIF or NGC based project.

If that is the case, simply remove them from this script.

You may also edit any of these procs to customize them. See comments in each

proc for more instructions.

This file contains the following procedures:

Top Level procs (meant to be called directly by the user):

run_process: you can use this top-level procedure to run any processes

that you choose to by adding and removing comments, or by

adding new entries.

rebuild_project: you can alternatively use this top-level procedure

to recreate your entire project, and the run selected processes.

Lower Level (helper) procs (called under in various cases by the top level procs):

show_help: print some basic information describing how this script works

add_source_files: adds the listed source files to your project.

set_project_props: sets the project properties that were in effect when this

script was generated.

57

create_libraries: creates and adds file to VHDL libraries

that were defined when

this script was generated.

set_process_props: set the process properties as they were set for your project

when this script was generated.

set myProject $::iseProject

set myScript "configPrj.tcl"

Main (top-level) routines

run_process

This procedure is used to run processes on an existing project.

You may comment or

uncomment lines to control which processes are run. This routine is set up to run

the Implement Design and Generate Programming File processes by default.

This proc

also sets process properties as specified in the "set_process_props" proc. Only

those properties which have values different from their current settings

in the project

file will be modified in the project.

proc run_process {} {

 global myScript

 global myProject

 ## put out a 'heartbeat' - so we know something's happening.

 puts "\n$myScript: running ($myProject)...\n"

 if { ! [open_project] } {

 return false

 }

 set_process_props

 #

 # Remove the comment characters (#'s) to enable the following commands

 process run "Synthesize"

 process run "Translate"

 process run "Map"

 process run "Place & Route"

 #

 #set task "Implement Design"

 #if { ! [run_task $task] } {

 # puts "$myScript: $task run failed, check run output for details."

 # project close

 #return

58

 #}

 #set task "Generate Programming File"

 #if { ! [run_task $task] } {

 # puts "$myScript: $task run failed, check run output for details."

 # project close

 #return

 #}

 puts "Run completed (successfully)."

 project close

}

rebuild_project

This procedure renames the project file (if it exists) and recreates the project.

It then sets project properties and adds project sources as specified by the

set_project_props and add_source_files support procs. It recreates VHDL

Libraries

as they existed at the time this script was generated.

It then calls run_process to set process properties and run selected processes.

proc rebuild_project {} {

 global myScript

 global myProject

 project close

 ## put out a 'heartbeat' - so we know something's happening.

 puts "\n$myScript: Rebuilding ($myProject)...\n"

 set proj_exts [list ise xise gise]

 foreach ext $proj_exts {

 set proj_name "${myProject}.$ext"

 if { [file exists $::projPath/$proj_name] } {

 file delete $proj_name

 }

 }

 project new $::projPath/$myProject

 set_project_props

 add_source_files

 create_libraries

 puts "$myScript: project rebuild completed."

 run_process

59

}

Support Routines

proc run_task { task } {

 # helper proc for run_process

 puts "Running '$task'"

 set result [process run "$task"]

 #

 # check process status (and result)

 set status [process get $task status]

 if { (($status != "up_to_date") && \

 ($status != "warnings")) || \

 ! $result } {

 return false

 }

 return true

}

show_help: print information to help users understand the options available when

running this script.

proc show_help {} {

 global myScript

 puts ""

 puts "usage: xtclsh $myScript <options>"

 puts " or you can run xtclsh and then enter 'source $myScript'."

 puts ""

 puts "options:"

 puts " run_process - set properties and run processes."

 puts " rebuild_project - rebuild the project from scratch and run processes."

 puts " set_project_props - set project properties (device, speed, etc.)"

 puts " add_source_files - add source files"

 puts " create_libraries - create vhdl libraries"

 puts " set_process_props - set process property values"

 puts " show_help - print this message"

 puts ""

}

proc open_project {} {

 global myScript

60

 global myProject

 if { ! [file exists ${myProject}.xise] } {

 ## project file isn't there, rebuild it.

 puts "Project $myProject not found. Use project_rebuild to recreate it."

 return false

 }

 project open $myProject

 return true

}

set_project_props

This procedure sets the project properties as they were set in the project

at the time this script was generated.

proc set_project_props {} {

 global myScript

 if { ! [open_project] } {

 return false

 }

 puts "$myScript: Setting project properties..."

 project set family "Virtex5"

 project set device "xc5vlx110t"

 project set package "ff1738"

 project set speed "-3"

 project set top_level_module_type "HDL"

 project set synthesis_tool "XST (VHDL/Verilog)"

 project set simulator "ISim (VHDL/Verilog)"

 project set "Preferred Language" "Verilog"

 project set "Enable Message Filtering" "false"

}

add_source_files

This procedure add the source files that were known to the project at the

time this script was generated.

proc add_source_files {} {

61

 global myScript

 if { ! [open_project] } {

 return false

 }

 puts "$myScript: Adding sources to project..."

 foreach srcFile $::srcFiles { xfile add "$srcFile" -copy }

 # Set the Top Module as well...

 project set top "$::topTitle"

 puts "$myScript: project sources reloaded."

} ; # end add_source_files

create_libraries

This procedure defines VHDL libraries and associates files with those libraries.

It is expected to be used when recreating the project. Any libraries defined

when this script was generated are recreated by this procedure.

proc create_libraries {} {

 global myScript

 if { ! [open_project] } {

 return false

 }

 puts "$myScript: Creating libraries..."

 # must close the project or library definitions aren't saved.

 project save

} ; # end create_libraries

set_process_props

This procedure sets properties as requested during script generation (either

all of the properties, or only those modified from their defaults).

proc set_process_props {} {

 global myScript

 if { ! [open_project] } {

62

 return false

 }

 puts "$myScript: setting process properties..."

 project set "Compiled Library Directory" "\$XILINX/<language>/<simulator>"

 project set "Global Optimization" "Off" -process "Map"

 project set "Pack I/O Registers/Latches into IOBs" "Off" -process "Map"

 project set "Place And Route Mode" "Route Only" -process "Place & Route"

 project set "Number of Clock Buffers" "32" -process "Synthesize - XST"

 project set "Max Fanout" "100000" -process "Synthesize - XST"

 project set "Use Clock Enable" "Auto" -process "Synthesize - XST"

 project set "Use Synchronous Reset" "Auto" -process "Synthesize - XST"

 project set "Use Synchronous Set" "Auto" -process "Synthesize - XST"

 project set "Regenerate Core" "Under Current Project Setting" -process

"Regenerate Core"

 project set "Filter Files From Compile Order" "true"

 project set "Last Applied Goal" "Balanced"

 project set "Last Applied Strategy" "Xilinx Default (unlocked)"

 project set "Last Unlock Status" "false"

 project set "Manual Compile Order" "false"

 project set "Placer Effort Level" "High" -process "Map"

 project set "LUT Combining" "Off" -process "Map"

 project set "Combinatorial Logic Optimization" "true" -process "Map"

 project set "Starting Placer Cost Table (1-100)" "1" -process "Map"

 project set "Power Reduction" "false" -process "Map"

 project set "Report Fastest Path(s) in Each Constraint" "true" -process "Generate

Post-Place & Route Static Timing"

 project set "Generate Datasheet Section" "true" -process "Generate Post-Place &

Route Static Timing"

 project set "Generate Timegroups Section" "false" -process "Generate Post-Place

& Route Static Timing"

 project set "Report Fastest Path(s) in Each Constraint" "true" -process "Generate

Post-Map Static Timing"

 project set "Generate Datasheet Section" "true" -process "Generate Post-Map

Static Timing"

 project set "Generate Timegroups Section" "false" -process "Generate Post-Map

Static Timing"

 project set "Project Description" ""

 project set "Property Specification in Project File" "Store all values"

 project set "Reduce Control Sets" "Auto" -process "Synthesize - XST"

 project set "Case Implementation Style" "None" -process "Synthesize - XST"

 project set "Decoder Extraction" "true" -process "Synthesize - XST"

 project set "Priority Encoder Extraction" "Yes" -process "Synthesize - XST"

 project set "Mux Extraction" "Yes" -process "Synthesize - XST"

 project set "RAM Extraction" "$::ramExtract" -process "Synthesize - XST"

 project set "ROM Extraction" "true" -process "Synthesize - XST"

 project set "FSM Encoding Algorithm" "Auto" -process "Synthesize - XST"

 project set "Logical Shifter Extraction" "true" -process "Synthesize - XST"

63

 project set "Optimization Goal" "Speed" -process "Synthesize - XST"

 project set "Optimization Effort" "High" -process "Synthesize - XST"

 project set "Resource Sharing" "true" -process "Synthesize - XST"

 project set "Shift Register Extraction" "true" -process "Synthesize - XST"

 project set "XOR Collapsing" "true" -process "Synthesize - XST"

 project set "User Browsed Strategy Files"

"D:/Prog_Setup/14.4/ISE_DS/ISE/virtex5/data/virtex5_area_with_physicalsynthesis.xd

s"

 project set "VHDL Source Analysis Standard" "VHDL-93"

 project set "Input TCL Command Script" "" -process "Generate Text Power

Report"

 project set "Load Physical Constraints File" "Default" -process "Analyze Power

Distribution (XPower Analyzer)"

 project set "Load Physical Constraints File" "Default" -process "Generate Text

Power Report"

 project set "Load Simulation File" "Default" -process "Analyze Power

Distribution (XPower Analyzer)"

 project set "Load Simulation File" "Default" -process "Generate Text Power

Report"

 project set "Load Setting File" "" -process "Analyze Power Distribution (XPower

Analyzer)"

 project set "Load Setting File" "" -process "Generate Text Power Report"

 project set "Setting Output File" "" -process "Generate Text Power Report"

 project set "Produce Verbose Report" "false" -process "Generate Text Power

Report"

 project set "Other XPWR Command Line Options" "" -process "Generate Text

Power Report"

 project set "Essential Bits" "false" -process "Generate Programming File"

 project set "JTAG to System Monitor Connection" "Enable" -process "Generate

Programming File"

 project set "User Access Register Value" "None" -process "Generate

Programming File"

 project set "Other Bitgen Command Line Options" "" -process "Generate

Programming File"

 project set "Maximum Signal Name Length" "20" -process "Generate IBIS

Model"

 project set "Show All Models" "false" -process "Generate IBIS Model"

 project set "Disable Detailed Package Model Insertion" "false" -process

"Generate IBIS Model"

 project set "Launch SDK after Export" "true" -process "Export Hardware Design

To SDK with Bitstream"

 project set "Launch SDK after Export" "true" -process "Export Hardware Design

To SDK without Bitstream"

 project set "Target UCF File Name" "$::projPath/$::topTitle.ucf" -process "Back-

annotate Pin Locations"

 project set "Ignore User Timing Constraints" "false" -process "Map"

 project set "Use RLOC Constraints" "Yes" -process "Map"

 project set "Other Map Command Line Options" "" -process "Map"

 project set "Use LOC Constraints" "true" -process "Translate"

 project set "Other Ngdbuild Command Line Options" "" -process "Translate"

64

 project set "Use 64-bit PlanAhead on 64-bit Systems" "true" -process "Floorplan

Area/IO/Logic (PlanAhead)"

 project set "Use 64-bit PlanAhead on 64-bit Systems" "true" -process "I/O Pin

Planning (PlanAhead) - Pre-Synthesis"

 project set "Use 64-bit PlanAhead on 64-bit Systems" "true" -process "I/O Pin

Planning (PlanAhead) - Post-Synthesis"

 project set "Ignore User Timing Constraints" "false" -process "Place & Route"

 project set "Other Place & Route Command Line Options" "" -process "Place &

Route"

 project set "Use DSP Block" "No" -process "Synthesize - XST"

 project set "BPI Reads Per Page" "1" -process "Generate Programming File"

 project set "Configuration Pin Busy" "Pull Up" -process "Generate Programming

File"

 project set "Configuration Clk (Configuration Pins)" "Pull Up" -process

"Generate Programming File"

 project set "UserID Code (8 Digit Hexadecimal)" "0xFFFFFFFF" -process

"Generate Programming File"

 project set "Configuration Pin CS" "Pull Up" -process "Generate Programming

File"

 project set "DCI Update Mode" "As Required" -process "Generate Programming

File"

 project set "Configuration Pin DIn" "Pull Up" -process "Generate Programming

File"

 project set "Configuration Pin Done" "Pull Up" -process "Generate Programming

File"

 project set "Create ASCII Configuration File" "false" -process "Generate

Programming File"

 project set "Create Binary Configuration File" "false" -process "Generate

Programming File"

 project set "Create Bit File" "true" -process "Generate Programming File"

 project set "Enable BitStream Compression" "false" -process "Generate

Programming File"

 project set "Run Design Rules Checker (DRC)" "true" -process "Generate

Programming File"

 project set "Enable Cyclic Redundancy Checking (CRC)" "true" -process

"Generate Programming File"

 project set "Create IEEE 1532 Configuration File" "false" -process "Generate

Programming File"

 project set "Create ReadBack Data Files" "false" -process "Generate

Programming File"

 project set "Configuration Pin HSWAPEN" "Pull Up" -process "Generate

Programming File"

 project set "Configuration Pin Init" "Pull Up" -process "Generate Programming

File"

 project set "Configuration Pin M0" "Pull Up" -process "Generate Programming

File"

 project set "Configuration Pin M1" "Pull Up" -process "Generate Programming

File"

 project set "Configuration Pin M2" "Pull Up" -process "Generate Programming

File"

65

 project set "Configuration Pin Program" "Pull Up" -process "Generate

Programming File"

 project set "Power Down Device if Over Safe Temperature" "false" -process

"Generate Programming File"

 project set "Configuration Rate" "2" -process "Generate Programming File"

 project set "Configuration Pin RdWr" "Pull Up" -process "Generate

Programming File"

 project set "SelectMAP Abort Sequence" "Enable" -process "Generate

Programming File"

 project set "JTAG Pin TCK" "Pull Up" -process "Generate Programming File"

 project set "JTAG Pin TDI" "Pull Up" -process "Generate Programming File"

 project set "JTAG Pin TDO" "Pull Up" -process "Generate Programming File"

 project set "JTAG Pin TMS" "Pull Up" -process "Generate Programming File"

 project set "Unused IOB Pins" "Pull Down" -process "Generate Programming

File"

 project set "Watchdog Timer Mode" "Off" -process "Generate Programming

File"

 project set "Security" "Enable Readback and Reconfiguration" -process

"Generate Programming File"

 project set "Done (Output Events)" "Default (4)" -process "Generate

Programming File"

 project set "Drive Done Pin High" "false" -process "Generate Programming File"

 project set "Enable Outputs (Output Events)" "Default (5)" -process "Generate

Programming File"

 project set "Wait for DCI Match (Output Events)" "Auto" -process "Generate

Programming File"

 project set "Wait for DLL Lock (Output Events)" "Default (NoWait)" -process

"Generate Programming File"

 project set "Release Write Enable (Output Events)" "Default (6)" -process

"Generate Programming File"

 project set "FPGA Start-Up Clock" "CCLK" -process "Generate Programming

File"

 project set "Enable Internal Done Pipe" "false" -process "Generate Programming

File"

 project set "Allow Logic Optimization Across Hierarchy" "false" -process "Map"

 project set "Optimization Strategy (Cover Mode)" "Speed" -process "Map"

 project set "Maximum Compression" "false" -process "Map"

 project set "Generate Detailed MAP Report" "true" -process "Map"

 project set "Map Slice Logic into Unused Block RAMs" "false" -process "Map"

 project set "Perform Timing-Driven Packing and Placement" "false"

 project set "Trim Unconnected Signals" "false" -process "Map"

 project set "Create I/O Pads from Ports" "false" -process "Translate"

 project set "Macro Search Path" "" -process "Translate"

 project set "Netlist Translation Type" "Timestamp" -process "Translate"

 project set "User Rules File for Netlister Launcher" "" -process "Translate"

 project set "Allow Unexpanded Blocks" "false" -process "Translate"

 project set "Allow Unmatched LOC Constraints" "false" -process "Translate"

 project set "Allow Unmatched Timing Group Constraints" "false" -process

"Translate"

66

 project set "Perform Advanced Analysis" "false" -process "Generate Post-Place

& Route Static Timing"

 project set "Report Paths by Endpoint" "3" -process "Generate Post-Place &

Route Static Timing"

 project set "Report Type" "Verbose Report" -process "Generate Post-Place &

Route Static Timing"

 project set "Number of Paths in Error/Verbose Report" "3" -process "Generate

Post-Place & Route Static Timing"

 project set "Stamp Timing Model Filename" "" -process "Generate Post-Place &

Route Static Timing"

 project set "Report Unconstrained Paths" "" -process "Generate Post-Place &

Route Static Timing"

 project set "Perform Advanced Analysis" "false" -process "Generate Post-Map

Static Timing"

 project set "Report Paths by Endpoint" "3" -process "Generate Post-Map Static

Timing"

 project set "Report Type" "Verbose Report" -process "Generate Post-Map Static

Timing"

 project set "Number of Paths in Error/Verbose Report" "3" -process "Generate

Post-Map Static Timing"

 project set "Report Unconstrained Paths" "" -process "Generate Post-Map Static

Timing"

 project set "Add I/O Buffers" "true" -process "Synthesize - XST"

 project set "Global Optimization Goal" "AllClockNets" -process "Synthesize -

XST"

 project set "Keep Hierarchy" "No" -process "Synthesize - XST"

 project set "Register Balancing" "No" -process "Synthesize - XST"

 project set "Register Duplication" "true" -process "Synthesize - XST"

 project set "Asynchronous To Synchronous" "false" -process "Synthesize - XST"

 project set "Automatic BRAM Packing" "true" -process "Synthesize - XST"

 project set "BRAM Utilization Ratio" "100" -process "Synthesize - XST"

 project set "Bus Delimiter" "<>" -process "Synthesize - XST"

 project set "Case" "Maintain" -process "Synthesize - XST"

 project set "Cores Search Directories" "" -process "Synthesize - XST"

 project set "Cross Clock Analysis" "false" -process "Synthesize - XST"

 project set "DSP Utilization Ratio" "100" -process "Synthesize - XST"

 project set "Equivalent Register Removal" "true" -process "Synthesize - XST"

 project set "FSM Style" "LUT" -process "Synthesize - XST"

 project set "Generate RTL Schematic" "Yes" -process "Synthesize - XST"

 project set "Generics, Parameters" "" -process "Synthesize - XST"

 project set "Hierarchy Separator" "/" -process "Synthesize - XST"

 project set "HDL INI File" "" -process "Synthesize - XST"

 project set "LUT Combining" "No" -process "Synthesize - XST"

 project set "Library Search Order" "" -process "Synthesize - XST"

 project set "Netlist Hierarchy" "As Optimized" -process "Synthesize - XST"

 project set "Optimize Instantiated Primitives" "false" -process "Synthesize -

XST"

 project set "Pack I/O Registers into IOBs" "Auto" -process "Synthesize - XST"

 project set "Power Reduction" "false" -process "Synthesize - XST"

 project set "Read Cores" "true" -process "Synthesize - XST"

67

 project set "Slice Packing" "true" -process "Synthesize - XST"

 project set "LUT-FF Pairs Utilization Ratio" "100" -process "Synthesize - XST"

 project set "Use Synthesis Constraints File" "true" -process "Synthesize - XST"

 project set "Verilog Include Directories" "" -process "Synthesize - XST"

 project set "Verilog 2001" "true" -process "Synthesize - XST"

 project set "Verilog Macros" "" -process "Synthesize - XST"

 project set "Work Directory" "$::projPath/xst" -process "Synthesize - XST"

 project set "Write Timing Constraints" "true" -process "Synthesize - XST"

 project set "Other XST Command Line Options" "" -process "Synthesize - XST"

 project set "Timing Mode" "Performance Evaluation" -process "Map"

 project set "Generate Asynchronous Delay Report" "false" -process "Place &

Route"

 project set "Generate Clock Region Report" "false" -process "Place & Route"

 project set "Generate Post-Place & Route Power Report" "true" -process "Place

& Route"

 project set "Generate Post-Place & Route Simulation Model" "false" -process

"Place & Route"

 project set "Power Reduction" "false" -process "Place & Route"

 project set "Place & Route Effort Level (Overall)" "High" -process "Place &

Route"

 project set "Auto Implementation Compile Order" "true"

 project set "Equivalent Register Removal" "true" -process "Map"

 project set "Placer Extra Effort" "None" -process "Map"

 project set "Power Activity File" "" -process "Map"

 project set "Register Duplication" "On" -process "Map"

 project set "Generate Constraints Interaction Report" "false" -process "Generate

Post-Map Static Timing"

 project set "Synthesis Constraints File" "$::projPath/$::topTitle.xcf" -process

"Synthesize - XST"

 project set "Mux Style" "Auto" -process "Synthesize - XST"

 #project set "RAM Style" "Block" -process "Synthesize - XST"

 project set "RAM Style" "$::ramStyle" -process "Synthesize - XST"

 project set "Maximum Number of Lines in Report" "1000" -process "Generate

Text Power Report"

 project set "Encrypt Bitstream" "false" -process "Generate Programming File"

 project set "Output File Name" "$::topTitle" -process "Generate IBIS Model"

 project set "Timing Mode" "Performance Evaluation" -process "Place & Route"

 project set "Cycles for First BPI Page Read" "1" -process "Generate

Programming File"

 project set "Enable Debugging of Serial Mode BitStream" "false" -process

"Generate Programming File"

 project set "Create Logic Allocation File" "false" -process "Generate

Programming File"

 project set "Create Mask File" "false" -process "Generate Programming File"

 project set "Watchdog Timer Value" "0x000000" -process "Generate

Programming File"

 project set "Allow SelectMAP Pins to Persist" "false" -process "Generate

Programming File"

 project set "Enable Multi-Threading" "Off" -process "Map"

68

 project set "Generate Constraints Interaction Report" "false" -process "Generate

Post-Place & Route Static Timing"

 project set "Move First Flip-Flop Stage" "true" -process "Synthesize - XST"

 project set "Move Last Flip-Flop Stage" "true" -process "Synthesize - XST"

 project set "ROM Style" "Auto" -process "Synthesize - XST"

 project set "Safe Implementation" "No" -process "Synthesize - XST"

 project set "Power Activity File" "" -process "Place & Route"

 project set "Extra Effort (Highest PAR level only)" "None" -process "Place &

Route"

 project set "AES Initial Vector" "" -process "Generate Programming File"

 project set "AES Key (Hex String)" "" -process "Generate Programming File"

 project set "Input Encryption Key File" "" -process "Generate Programming File"

 project set "Fallback Reconfiguration" "Enable" -process "Generate

Programming File"

 project set "Enable Multi-Threading" "Off" -process "Place & Route"

 project set "Functional Model Target Language" "Verilog" -process "View HDL

Source"

 project set "Change Device Speed To" "-3" -process "Generate Post-Place &

Route Static Timing"

 project set "Change Device Speed To" "-3" -process "Generate Post-Map Static

Timing"

 puts "$myScript: project property values set."

} ; # end set_process_props

proc main {} {

 set option $::runOption

 switch $option {

 "show_help" { show_help }

 "run_process" { run_process }

 "rebuild_project" { rebuild_project }

 "set_project_props" { set_project_props }

 "add_source_files" { add_source_files }

 "create_libraries" { create_libraries }

 "set_process_props" { set_process_props }

 default { puts "unrecognized option: $option"; show_help }

 }

}

if { $tcl_interactive } {

 show_help

} else {

 if {[catch {main} result]} {

 puts "$myScript failed: $result."

 }

}

69

Previous script is called from the following script as follows:

set ::topTitle "mkNetwork" ; #Top Name

set hdlConfig "Block Distributed None" ; # Memory Target Options

set nestedDir build

set mainRunPath "E:/FPGA/SoftFlow" ;

set pathOption "BufferDepth DataWidth Ports VC" ; # NoCs Design Parameters

foreach pathOptionEle $pathOption {

 set runPath "$mainRunPath/$pathOptionEle"

 set srcCodePath "$runPath/srcDir"

 set srcList [glob -directory $srcCodePath -type d *]

 foreach connectPrj $srcList {

 set ::sourceFilesPath $connectPrj/$nestedDir

 set modFiles [glob -directory $runPath/commonFiles *]

 foreach modifiedFile $modFiles {

 # Copy modified files from common directory to source

directory

 file copy -force $modifiedFile $::sourceFilesPath

 }

 puts "Now in project $connectPrj"

 # Source files used by ISE

 set ::srcFiles "[glob -directory $::sourceFilesPath *{.v,.hex,.ucf,.xcf}] "

 set connectPrjTiltle [split $connectPrj "/"]

 set prjTitle [lindex $connectPrjTiltle end]

 puts "prjTitle = $prjTitle"

 set baseDir $runPath/$prjTitle

 # Create a directory for ISE project

 file mkdir $baseDir

 set ::projPath $baseDir

 set ::iseProject $prjTitle

 # Create Logging directory

 set logDir "$baseDir/Run"

 file mkdir $logDir

 # "rebuild_project" is ISE command for a new a project

 set ::runOption rebuild_project

 foreach config_ele $hdlConfig {

 if {$config_ele == "None"} {

 # Use only registers as memory elements

 set ::ramExtract false

 } else {

 set ::ramExtract true

 # Use either BRAM or DRAM as memory elements

 set ::ramStyle $config_ele

 }

 puts "Start running $config_ele RAM Style"

 source configPrj.tcl ; # Configuration File generated by ISE

 puts "Finish running $config_ele RAM Style"

 puts "Copy files ..."

70

 set fileExt "[glob -path [file rootname $::topTitle] .*] [glob -path

[file rootname $::topTitle] _*] [glob -type f *{pwr,power}*]"

 set logDirElement $logDir/$config_ele

 # Create a directory for each memory configuration type

 file mkdir $logDirElement

 foreach fileToCpy $fileExt {

 # Copy output files into logging directory

 file copy -force $baseDir/$fileToCpy $logDirElement

 }

 # "run_process" is ISE command to rerun a project

 set ::runOption run_process

 }

 }

}

To run the previous script successfully, the folders hierarchy shown in Figure B-1

should be followed

 For example: “VC” directory includes two sub directories:

- srcDir: It includes a list of directories. Each one is corresponding to the

configuration of a specific VC number and contains the source files of the

NoC for this design parameter under “build” directory.

- commonFiles: It contains all common files that will be used among any

number of VCs such as timing constraints file, synthesis and mapping

constraints files.

 “BufferDepth”, “DataWidth” and “Ports” directories follow the same folders

hierarchy.

Figure B-1: Source Files Hierarchy

71

Running the script from ISE xtclsh creates a separate project for each value of the

NoC parameters. Inside this project, “Run” directory is created with three sub

directories. Each sub directory contains the log files generated by the tool for each

configured memory element as shown in Figure B-2.

Figure B-2: Output Files Hierarchy

Finally the following script is used to gather all area, speed and frequency results

and log them in excel files.

set benchmarksPath "E:/FPGA/SoftFlow"; # ISE Project Directories

set benchmarkParam "BufferDepth DataWidth Ports VC"; # Memory elements

options

set nestedDir Run

set extractType "Block Distributed None"

set moduleInstance mkNetwork

Area file name and extract parameter

set area_file_name ${moduleInstance}_map.mrp

set area_srchKey $moduleInstance

set area_exp $area_srchKey\\/

#Freq file name and extract parameter

set freq_file_name ${moduleInstance}.twr

set freq_srchKey "Maximum frequency"

set freq_exp $freq_srchKey

#Power file name and extract parameter

set pwr_file_name ${moduleInstance}.pwr

72

set pwr_srcKey "Supply Power"

set pwr_exp $pwr_srcKey

set pwrValue 0

array unset resourceIndex

array unset resourceValue

array set resourceIndex {

reg 4

luts 5

lutram 6

bram 7

}

array set resourceValue {

reg 0

luts 0

lutram 0

bram 0

}

proc GetNumber {totalName} {

 regsub {^[a-zA-Z]+} $totalName "" num

 return $num

}

proc InitializeResources {hash_resourceValue} {

upvar 1 $hash_resourceValue resourceValue

foreach ele [array name resourceValue] {set resourceValue($ele) 0}

}

proc LogAreaIntoFile {hash_resourceValue filePath fileName prjTitle module} {

 set out_file_id [open $filePath/$fileName.$module.csv "a"]

 upvar 1 $hash_resourceValue resourceValue

 set result $prjTitle

 foreach resource [lsort -decreasing [array name resourceValue]] {

 puts "total $resource value = $resourceValue($resource)"

 append result ", $resourceValue($resource)"

 }

 puts $out_file_id $result

 close $out_file_id

}

proc LogFreqPwrIntoFile {filePath fileName prjTitle value module} {

 set out_file_id [open $filePath/$fileName.$module.csv "a"]

 puts $out_file_id "$prjTitle, $value"

 close $out_file_id

}

proc ExtractAreaRes {filePath fileName exp hash_resourceIndex

hash_resourceValue} {

 upvar 1 $hash_resourceIndex resourceIndex

 upvar 1 $hash_resourceValue resourceValue

 set file_id [open $filePath/$fileName]

 while {[gets $file_id line] != -1} {

73

 if {[regexp $exp $line all value]} {

 puts "size = [llength $line]"

 set item [split $line "|"]

 foreach ele $item {puts $ele}

 foreach index [lsort -decreasing [array name resourceIndex]] {

 set ratio [lindex $item $resourceIndex($index)]

 set absValue [lindex [split $ratio "/"] 1]

 puts "$index = $ratio & absValue = $absValue"

 set resourceValue($index) [expr $resourceValue($index)

+ $absValue]

 }

 break

 }

 }

 close $file_id

}

proc ExtractPowerRes {filePath fileName exp } {

 set pwrIndex 3

 set file_id [open $filePath/$fileName]

 set pwrValue 0

 while {[gets $file_id line] != -1} {

 if {[regexp $exp $line all value]} {

 set item [split $line "|"]

 set pwrValue [lindex $item $pwrIndex]

 }

 }

 puts $pwrValue

 close $file_id

 return $pwrValue

}

proc ExtractFreq {filePath fileName exp} {

 set freq 0

 set file_id [open $filePath/$fileName]

 while {[gets $file_id line] != -1} {

 if {[regexp $exp $line all value]} {

 puts "size = [llength $line]"

 set freqString [lindex $line [expr [llength $line] - 1]]

 set freq [string map {MHz) ""} $freqString]

 }

 }

 close $file_id

 puts "freq = $freq"

 return $freq

}

set i 0

foreach benchmarkParamEle $benchmarkParam {

 set benchmarksDirs [glob -directory $benchmarksPath/$benchmarkParamEle -

type d *]

74

 set module $benchmarkParamEle

 foreach extraxtEle $extractType {

 puts "********** Start extracting $extraxtEle resources

************"

 foreach dir $benchmarksDirs {

 puts "&&& Now in $dir &&&"

 incr i

 set filePath $dir/$nestedDir/$extraxtEle

 set projectPath [split $dir "/"]

 set prjTitle [lindex $projectPath [expr [llength $projectPath] -1

]]

 if {[file isdirectory $filePath]} {

 ############# AREA #############

 ExtractAreaRes $filePath $area_file_name $area_exp

resourceIndex resourceValue

 LogAreaIntoFile resourceValue $benchmarksPath

$extraxtEle.area [GetNumber [lindex [split $prjTitle "_"] end]] $module

 InitializeResources resourceValue

 ############# FREQ ##############

 LogFreqPwrIntoFile $benchmarksPath $extraxtEle.freq

[GetNumber [lindex [split $prjTitle "_"] end]] [ExtractFreq $filePath $freq_file_name

$freq_exp] $module

 ############# POWER ##############

 LogFreqPwrIntoFile $benchmarksPath $extraxtEle.pwr

[GetNumber [lindex [split $prjTitle "_"] end]] [ExtractPowerRes $filePath

$pwr_file_name $pwr_exp] $module

 puts "++++++++++ PASS"

 } else {puts "------------- Fail"}

 }

 }

}

 أ

 الرسالة ملخص

الزيادة المستمرة في صعوبة تصنيع أشباه الموصلات تقنيا و اقتصاديا أصبحت محط للقلق
المستخدمة لتكنولوجيا الدوائر المصنعة لتطبيقات محددة. و علي النقيض من زيادة للتطبيقات

التكلفة و الصعوبة والمخاطر في الاعتماد علي تكنولوجيا الدوائر المصنعة لتطبيقات محددة تبدو
تكلفة دوائر المصفوفات القابلة للبرمجة و سرعة تواجد تطبيقاتها في السوق واعدة. تطورت صناعة

ائر المصفوفات القابلة للبرمجة تدريجيا لتقليل المخاطر و الوقت المستهلك فى تصنيع تطبيقات دو
جديدة و تزيد من عمر التطبيق في السوق و ذلك نتيجة لقابليتها لأعادة البرمجة و الذي يقلل من

 نتج.خطورة أن يتوقف استخدام السوق للتطبيقات المعتمدة عليها مع طرح جيل جديد من نفس الم
كانت دوائر المصفوفات القابلة للبرمجة تستخدم سابقا في التطبيقات ذات الأحجام الصغيرة و

كنموذج مبدئى للدوائر المصنعة لتطبيقات محددة. حاليا يتم استخدامها في التطبيقات ذات
 العمليات الحسابية شديدة الضخامة.

مجة من أكبر التحديات التي تواجهها. و مع تعد الموارد المحدودة لدوائر المصفوفات القابلة للبر
ظهور تقنيات جديدة لدوائر المصفوفات القابلة للبرمجة تزداد الطاقة المستهلكة في نقل و توجيه
المعلومات و الطاقة المستهلكة في العمليات المنطقية . بالأضافة الي ذلك أنه مع ازدياد عدد

تصبح طرق توصيل المعلومات ةإلكترونيعلي رقائق مكونات نظم المصفوفات القابلة للبرمجة
التقليدية مثل نقلها علي التوازي أو نقلها من نقطة الي نقطة غير قابلة علي تلبية احتياجات

التطبيقات . و نتيجة لذلك أصبح من الضروري وجود شبكة لتوصيل المعلومات بداخل دوائر
 .ةإلكترونيلي رقائق المصفوفات القابلة للبرمجة لتصنيع البرامج ع

في تلك الرسالة نقوم بعرض العديد من التصميمات المختلفة لشبكة توصيل المعلومات علي رقائق
بناء علي اسهامتهم و طرق تصميمهم و تطبيقهم و الأعمال المستقبلية لتحسين أدائهم. ةإلكتروني

أثير تغيير عناصر التحكم كما نقوم أيضا بتقديم مقارنة بين ثلاث من هذه التصميمات لقياس ت
علي المساحة و التردد المستخدمين للمساعدة في ةإلكترونيبشبكة توصيل المعلومات علي رقائق

 تحديد الأفضل فيما بينهم بناء علي متطلبات النظم المستخدمة لهم.

 ب

 بعد ذلك نستخدم شبكة توصيل معلومات معدّة خصيصا لدوائر المصفوفات القابلة للبرمجة
ونقسمها لأجزاء متعددة و نقوم بتطبيقهن علي نظم المصفوفات القابلة للبرمجة و الدوائر
المصنعة لتطبيقات محددة ثم ندرس الفجوة بين نظم المصفوفات القابلة للبرمجة و الدوائر

المصنعة لتطبيقات محددة من حيث المساحة المستخدمة و التردد و الطاقة المستهلكة. كما
د تصميم كل جزء علي حدة.وفي النهاية نقترح طريقتي اعداد مختلفتين لشبكة توصيل نعرض قيو

المعلومات علي دوائر المصفوفات القابلة للبرمجة. الاعداد الأول يهدف الي تقليل فجوة التردد بين
اني نظم المصفوفات القابلة للبرمجة و الدوائر المصنعة لتطبيقات محددة بقدر الامكان. الاعداد الث

 يقلل من أهمية فجوة التردد قليلا في سبيل تقليل الفجوة بينهم في الطاقة المستهلكة.

 نهي جمال محمد سيد فراج :دسـمهن
 ١٩٨٧\٠١\٢١ تاريخ الميلاد:

 مصرية الجنسية:
 ٢٠١١\١٠\٠١ تاريخ التسجيل:

 ٢٠١٧\--\-- تاريخ المنح:
 ت الكهربيةلاتصالاوا اتلكترونيالإهندسة القسم:

 العلوم ماجستير الدرجة:
 المشرفون:

 فهمي علي حسن حسام.د. أ
 حسن مصطفي حسن مصطفيد.

 الممتحنون:
 (المشرف الرئيسي) حسام علي حسن فهمي أ.د.
)الممتحن الداخلي(أمين نصار .أ.د
 والاتصالات تالالكترونيا هندسة((الممتحن الخارجي) أنيسمهاب أ.د.

 (بالقاهرة الأمريكية بالجامعة

 عنوان الرسالة:

نظم المصفوفات القابلة في إلكترونيةشبكات توصيل المعلومات علي رقائق ارشادات التصميم لتطبيق
 للبرمجة

 الكلمات الدالة:
 إلكترونية توصيل المعلومات علي رقائق ةشبك، نظم المصفوفات القابلة للبرمجة

 :رسالةملخـص ال

الموجودة ويتم المقارنة من إلكترونيةتوصيل المعلومات علي رقائق اتشبكتقدم هذه الأطروحة نبذة عن ال
توصيل المعلومات المتوفر عنهن طريقة اعدادهن. كما يتم اتشبكحيث المساحة المستخدمة والتردد بين

 ةشبكباستخدام نظم المصفوفات القابلة للبرمجة و الدوائر المصنعة لتطبيقات محددةدراسة فروق الكفاءة بين
مع طرح التوصيات نظم المصفوفات القابلة للبرمجةمخصصة ل كترونيةإلتوصيل المعلومات علي رقائق

نظم مصممة ل إلكترونيةتوصيل المعلومات علي رقائق ةشبكاللازمة لاعدادها. أخيرا تم طرح طريقتي اعداد ل
نظم للحصول علي أقل فرق اما في التردد أو في الطاقة المستهلكة بين المصفوفات القابلة للبرمجة

 . المصفوفات القابلة للبرمجة و الدوائر المصنعة لتطبيقات محددة

في إلكترونيةارشادات التصميم لتطبيق شبكات توصيل المعلومات علي رقائق

 نظم المصفوفات القابلة للبرمجة

 اعداد

 نهي جمال محمد سيد فراج

 إلى مقدمة رسالة

 القاهرة جامعة - الهندسة كلية

 درجة على الحصول متطلبات من كجزء

 العلوم ماجستير

 في

 ت الكهربيةتصالاالاو اتلكترونيالإهندسة

 :يعتمد من لجنة الممتحنين

 المشرف الرئيسى حسام علي حسن فهميالاستاذ الدكتور:

 الممتحن الداخلي أمين نصارالاستاذ الدكتور:

 بهندسة ستاذ دكتورا) الممتحن الخارجي مهاب أنيسالاستاذ الدكتور:

 اتلكترونيالإ

 تتصالاالاو

 بالجامعة الأمريكية

 بالقاهرة(

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

٢٠١٧

في إلكترونيةارشادات التصميم لتطبيق شبكات توصيل المعلومات علي رقائق

 نظم المصفوفات القابلة للبرمجة

 اعداد

 نهي جمال محمد سيد فراج

 إلى مقدمة رسالة

 القاهرة جامعة - الهندسة كلية

 درجة على الحصول متطلبات من كجزء

 العلوم ماجستير

 في

 ت الكهربيةتصالاالاو اتلكترونيالإهندسة

 تحت اشراف

 فهمي علي حسن أ.د. حسام د. حسن مصطفي حسن مصطفي

 مدرس

 اتلكترونيالإهندسة قسم

 ت الكهربيةتصالاالاو

 القاهــرة جامعــة - الهندســة كليــة

 أستاذ

 اتلكترونيالإهندسة قسم

 ت الكهربيةتصالاالاو

 القاهــرة جامعــة - الهندســة كليــة

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

٢٠١٧

في إلكترونيةارشادات التصميم لتطبيق شبكات توصيل المعلومات علي رقائق

 نظم المصفوفات القابلة للبرمجة

 اعداد

 نهي جمال محمد سيد فراج

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 درجة على الحصول متطلبات من كجزء

 العلوم ماجستير

 في

 ت الكهربيةتصالاالاو اتلكترونيالإهندسة

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

٢٠١٧

