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Abstract

FPGA has become a favorable platform for Systems-on-Chip (SoC). As SoC gets
larger, a Network-on-Chip (NoC) emerges as a promising solution for communications
problems between SoC’s modules. Thus, the importance of NoC on FPGAs has increased,
not only to solve SoC’s communications problems but also as a solution to FPGA’s slow
interconnects and to simplify Partial Dynamic Reconfiguration (PDR). Hard NoCs have
better performance and consume less area and power than Soft NoCs. However, they are
not configurable and they lead to a wasted area when the network is not in use. This makes
the design of hard NoCs more critical in order to get an optimum performance while min-
imizing the wasted area as much as possible. In this thesis, we evaluate various NoC
design parameters to find the best-fit parameters that can be used in the nonconfigurable
hard NoC. We also evaluate different router architectures to select the optimum one for
hard NoCs. The designed router reduces the wasted area by using minimum and share-
able resources. Moreover, we propose an efficient novel way for embedding the hard
NoC inside the FPGA. The proposed NoC provides the FPGA with a high performance
communications infrastructure at a negligible cost.
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Chapter 1

Introduction

1.1 Motivation
The extensive increase in number of transistors that can fit in one chip has enabled

large scale Systems-on-Chip (SoC). In SoC, a single chip can contain a large number of
IP modules, memories, and embedded processors. With technology scaling, SoC systems
become more complex and they can accommodate more and more modules. As the num-
ber of modules increases, the commonly used shared-bus interconnect becomes a source
of performance congestion. This is due to the increase in parasitic capacitance and resis-
tance on the bus and the complexity of arbitration.

Moreover, the interconnect delays do not scale down with technology scaling by the
same rate the gate delays do, especially global wiring delays which may increase expo-
nentially. In ultra-deep sub-micron technology, eighty percent of the critical path delay
comes from the interconnect delays [1]. All of these move the delay bottleneck from the
computation to the communication. Therefore, a lot of research has been done to solve
the interconnects problem in large scale SoCs and find an alternative for the shared-bus
interconnect.

The idea of NoC emerged in 2001 by William Dally when he proposed replacing the
dedicated global wires of chips with a general interconnection network. Long wires are re-
placed by short links connecting between routers. The various blocks on the chip commu-
nicate with each other by “routing packets not wires”. This organization is characterized
by high performance and high regularity that decreases the communication complexity of
SoCs [2].

Due to their increasing capacity and their configurability, FPGAs have become an
attractive platform for wide range of SoCs [3]. This requires also a high performance in-
terconnection network between the tens/hundreds SoC modules. Moreover, the current
FPGA’s interconnection architecture has many shortcomings that adversely affect the per-
formance, limit the speed of the FPGA, and increase the need of higher level communica-
tion protocol within the FPGA.
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The first drawback of the current FPGA programmable interconnects is that they are
getting worse with technology scaling due to the decreasing performance of pass transis-
tors, used in interconnects multiplexers, and the increasing resistance of metal wires [4, 5].
Thus, the delay is dominated by the interconnects. This leads to a second problem that you
can not predict the critical paths using only the functional description as they are mostly
dependable on the wiring delays, leading to a more complex design cycle. Moreover, hard
blocks and I/O interfaces, such as DDR, Ethernet and PCI, work at a much higher speed
than the FPGA fabric, so a very wide datapath is needed to accommodate this bandwidth
which uses a lot of interconnect and logic resources. Finally, the current low level ab-
straction of FPGA interconnects prevents the division of a design into modules that can
be independently optimized and compiled.

Consequently, a NoC as an overlay network on the top of the FPGA interconnects
emerges as a promising solution. NoCs improve wire utilization and simplifies timing
closure. The data of fast I/O interfaces can be distributed among the FPGA without the
need of excessive wires [6]. Also, the high level abstraction of NoC eases the division of
the design into modules [2]. This simplifies partial dynamic reconfiguration (PDR) [7].
In PDR, a module is replaced by another module during run-time. When using NoC, the
newly configured module needs to be connected only to an NoC interface. This eliminates
the need to route its connections within the whole design.

FPGA-based NoCs have two types: Soft NoCs [8–10] and Hard NoCs [7, 11–15].
Soft NoCs are implemented by end users using the conventional FPGA programmable
resources. On the other hand, hard NoCs are embedded blocks which are implemented
on silicon like other FPGA dedicated blocks such as embedded RAMs, multipliers and
embedded processors. Hard NoCs have several advantages over soft NoCs [6], discussed
in Chapter 2.

When firstly the idea of hard NoCs emerged, the main proposal was to divide the
FPGA into regions and connect these regions together with a hard NoC. This idea com-
pletely alters the conventional routing architecture of FPGA. It does not suit all FPGA
applications and it requires great modifications in CAD tools. Consequently, this idea
was not implemented commercially, and until now, most commercial FPGAs utilize the
conventional island-style architecture.

The idea of hard NoCs has recently emerged again but this time without any modi-
fications to the conventional FPGA routing architecture. The main proposal is to keep
the original routing resources “the roads”, but add a fast high-level communications layer
“highways” [16]. The most recent research on embedding hard NoCs is carried out in
University of Toronto [6, 15–19].

However, hard NoCs have some drawbacks. They are not configurable like soft NoCs.
Moreover, when the NoC is not used, the area consumed by hard routers are wasted area.
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In this thesis, we try to overcome these problems and optimize FPGA-based hard NoCs.
This involves finding the best-fit NoC parameters and router architecture. We try also to
reduce the wasted area by minimizing and sharing resources. We also propose an efficient
novel way of embedding hard NoCs inside the FPGA fabric.

1.2 Thesis Contributions
This thesis makes the following contributions:

• Provides design recommendations for selecting NoC parameters.

• Finds, optimizes and implements best-fit router architecture for FPGA-based hard
NoCs.

• Proposes an efficient novel way for embedding hard NoCs.

1.3 Thesis Organization
The remainder of this thesis is organized as follows:

• Chapter 2 presents background information about FPGAs and NoCs as well as a
survey of the previous soft and hard NoCs.

• Chapter 3 studies the effect of various NoC parameters on NoC performance. It
provides design recommendations for the best-fit NoC parameters. This work is
published in ISCAS 2015.

• Chapter 4 selects the router architecture and optimizes it according to the selected
NoC parameters.

• Chapter 5 describes the design of the network interface and proposes some ideas
about embedding the hard NoC inside the FPGA fabric.

• Chapter 6 evaluates the performance of the proposed hard NoC and compares it
with previous NoCs presented in literature.

• A conclusion and future work are discussed in Chapter 7.
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Chapter 2

Background and Literature Review

2.1 FPGA

2.1.1 Definition

AField Programmable Gate Array (FPGA) is a special type of integrated circuits (ICs)
that can be electrically programmed several times to implement different digital systems.
This is in contrast with Application Specific Integrated Circuits (ASIC) technologies such
as Standard-Cells or Full-Custom that are fabricated for a specific function only. To allow
this programmability, FPGA comprises logic elements and routing paths that are highly
configurable to do any function.

A logic element mainly consists of an N-input Lookup-table (LUT) and a Flip-Flop
as shown in Fig. 2.1. An N-input LUT is capable of implementing any combinational
function that has N inputs. A number of basic logic elements (BLEs) are grouped together
to form a logic cluster [20]. FPGAs nowadays contain thousands of logic clusters.

Routing channels and switch boxes are needed to provide the connections between
logic clusters. All the routing resources are configurable to create any possible connec-
tion between the logic clusters. For speed and area issues, routing channels vary in length.
Some routing channels are short connecting adjacent logic clusters, and they are called
local routing channels. Global routing channels are long, spanning multiple logic blocks.
The switch box provide the connection between the horizontal and vertical routing chan-
nels to form the signal path as shown in Fig. 2.2. To reduce its area and its complexity, the
switch box does not allow all the connections between the routing channels; only subset of
these connections is supported [21]. Fig. 2.3 shows three different switch box topologies.

The configurablity of logic elements and routing resources are provided through a
programming technology such as static memory (SRAM), EEPROM, flash and anti-fuse
[22]. SRAM is the most widely used technology as it utilizes the standard CMOS tech-
nology. SRAM cells are distributed across the whole FPGA. For example, they are used
as the selection lines of the multiplexers that drive the routing channels. They are also
used to store the data in LUTs. Upon FPGA startup, all SRAM cells are loaded with a
bitstream that program the FPGA to implement a certain function. The bitstream loading
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Figure 2.1: An FPGA logic element

Figure 2.2: A signal path between logic clusters
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Figure 2.3: Switch box topologies: Disjoint, Universal and Wilton

process is called FPGA configuration. A bitstream is generated by a CAD tool that takes
the Hardware Description Language (HDL) netlist and converts it to a bitstream targeting
a specific FPGA.

Beside logic blocks and routing resources, modern FPGAs contain also hard (non-
configurable) blocks that provide high performance functionality such as multipliers, em-
bedded memories (Block RAMs), transceivers, clock managers, I/O blocks and proces-
sors. Block RAMs are high density memory that are used for efficient and high perfor-
mance data storage or buffering.

In modern FPGAs, all the aforementioned blocks, soft and hard blocks, are arranged
in a 2-D array as shown in Fig. 2.4. This arrangement utilizes the island-style routing
architecture which provides high regularity. The island-style architecture is widely used
in commercial FPGAs. For example, Fig. 2.5 shows the floorplan of Altera Stratix-5
FPGA showing the 2-D array of logic clusters along with hard blocks such as memories
and DSP blocks. Altera and Xilinx are the two leading company in FPGA manufacturing.

2.1.2 FPGA advantages over ASIC:

FPGA has many advantages over ASIC. We can summarize these advantages in three
main points: reconfigurability, time-to-market and cost.

2.1.2.1 Reconfigurability

The most important difference between FPGA and ASIC is the reconfigurability. That
means that it can be reprogrammed indefinite times to implement various digital circuits.
While ASIC is manufactured to do a specific function only. This makes FPGA a flexi-
ble platform that can be easily used for prototyping and embedded systems. Moreover,
upgrading a FPGA-based product to a newer version can easily be done by reprogram-
ming the FPGA, while the upgrading is impossible if it is an ASIC-based product. Also,
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Figure 2.4: Island-style FPGA architecture

Figure 2.5: Altera Stratix V floorplan
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Figure 2.6: FPGA and ASIC time-to-market [23]

design’s errors are unrecoverable in ASIC. This is in contrast with FPGA, due to its re-
configurability, which permits late design changes.

2.1.2.2 Time to market

FPGA has faster time-to-market than ASIC as shown in Fig. 2.6 for many reasons.
ASIC fabrication requires masks generation and many fabrication steps that may take
more than three months. While FPGA programming is an instant process. Also, FPGA
has a shorter and simpler design cycle. This is because of CAD tools that handle much
of the design flow such as routing, placement and timing. Moreover, ASIC design cycle
involves a long period of validation and verification as it is very unforgiving process. Be-
sides shorter design cycle, FPGA provides more predictable project cycle because of the
elimination of ASIC re-spins. ASIC re-spins can delay the project by about two months
for each re-spin.

2.1.2.3 Cost

One of the most crucial issues in deciding whether to implement the design on FPGA
or ASIC is the cost. ASIC has a high non-recurring expenses (NRE). NRE costs such as
mask costs have increased exponentially with technology nodes [24]. This is one of the
greatest barrier to a profitable ASIC-based business especially for a low volume produc-
tion. Fig. 2.7 shows the dramatic increase in ASIC process costs with each technology
advance. Besides high NRE, any error in an ASIC design is considered as a disaster that
costs a lot of money. Also, ASIC re-spins not only take a lot of time but also consume
money. On the contrary, FPGA has almost no NRE. An error can be fixed at zero cost.
ASIC may have a lower unit cost at high volume production. But the question is where
is the break-even point? As technology advances, this point is moving away because of
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Figure 2.7: ASIC process cost [25]

the exponential increase in ASIC NRE [24]. This means that FPGA has become a very
promising solution economically except for extremely high volume production. Thus,
FPGA offers a higher technology at a lower cost.

2.2 Network-on-Chip

2.2.1 Definition

The NoC architecture consists of processing elements (PEs), routers, links and net-
work interfaces (NIs) as shown in Fig. 2.8. Each PE is connected to the network through
the NI that divides the data into packets and forwards them to the router. The router then
routes the packets through the network to their destination.

2.2.2 Network Parameters

2.2.2.1 Network Topology

The topology is the way the routers are physically connected to each other. Choosing
a topology is the first step in designing a network. It affects the selection of the routing
algorithm and flow-control. It can be regular or irregular. Irregular topologies are formed
of mixed types of regular ones. Examples of regular topologies, shown in Fig. 2.9, are
mesh, torus, butterfly, tree, polygon and star.
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Figure 2.8: NoC architecture

2-Dmesh and torus are themost popular topologies for NoC.Amesh topology consists
of rows and columns in which the routers are placed at their intersections. The routers’
addresses are defined easily by X-Y coordinates. A torus topology resembles a mesh but
the two ends of a row or column are connected together.

2.2.2.2 Routing algorithm

The routing algorithm determines the path taken by the packet from the source until
it reaches the required destination. It can be deterministic or adaptive. In deterministic
routing, the route taken is based only on the location of the source and destination. While
in adaptive routing, there are many legal paths between the source and destination, and the
choice of the path is determined dynamically based on link performance and congestion.
In such algorithm, the complexity of the router increases as it has to decide dynamically
the routing direction but it improves the performance under high load condition.

A deterministic routing can be table-driven routing or source-routed. In source routing,
the source provides the whole routing path in the packet header so it simplifies the decision
of the routing direction in the router. But the number of hops will be limited if the packet
header has a fixed length. In table-driven algorithm, Each router will have its routing table
that it decides the direction on it. This supports unlimited number of hops but it needs
more area.

XY routing is a famous example of deterministic routing algorithm. It suites regular
topologies such as 2-D mesh. It is a dimension-order routing; The packet is routed fully in
the x-direction and then fully in y-direction. The packet header provides information about
the remaining distance for each dimension, so that the routing direction is determined
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(a) Mesh (b) Torus

(c) Folded Torus (d) Butterfly

Figure 2.9: Network topologies [26]
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easily according to it. The XY routing is the most commonly used routing algorithm in
NoCs because of its simplicity and it is also proved to be deadlock and livelock free.

2.2.2.3 Flow control

Flow control is the mechanism that determines when the packet advances along its
route. It also determines how the network resources, such as channels and buffers, are
allocated to a packet. It is used mainly to ensure the correctness and the fairness of the
network operations. Avoiding deadlocks, that may occur in complex routing algorithms,
is the main issue in ensuring network correctness. Flow control can be divided to buffer-
less and buffered flow control.

Circuit-switching is an example of buffer-less flow control. In circuit-switching, a
route from source to destination is reserved before the transmission of the data. While
in packet-switching network, a buffered flow control, the message is divided into pack-
ets that are routed independently through the network. Each packet contains its routing
information. A packet is consisted of several flits that are transmitted in series. A flit is
the minimum amount of data that can be sent across two nodes. Packet-switching is more
commonly used in NoCs than circuit-switching.

Buffered flow control can also be divided into packet-buffer flow control and flit-buffer
flow control. The former needs large buffers such as store-and-forward and virtual cut-
through. In store-and-forward, the whole packet has to be stored in the router buffers
before it is forwarded to the next node. This requires a large buffer in the router to store
the entire packet. It has high latency as sending cannot start until the whole packet is
received. Virtual cut-through also needs large buffers but it has a lower latency.

Wormhole and Virtual Channel (VC) are two examples of flit-buffer flow control. In
the contrast of store-and-forward, flits in wormhole flow control is forwarded to the next
node as soon as possible. No need to store the entire packet. So it need smaller buffers
compared to store-and-forward. VC flow control is the splitting of the physical channel
into several logically separate channels having independent buffers. It reduces the head-of-
line blocking that happens when a not ready packet blocks the channel and prevents other
ready packets to proceed. VCs can also be used to avoid deadlocks, improve performance
and provide Quality-of-Service (QoS).

QoS has two basic types: best-effort services (BE) and guaranteed services (GS). BE
NoC provides guarantees only for correctness of the network operation. While in GSNoC,
performance guarantees are provided. A GS NoC is typically more complex than a BE
NoC.
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Figure 2.10: Router Architecture

2.2.3 Router Architecture

The router is the main block in NoC as it is responsible for routing packets between
the PEs. NoCs performance and efficiency are highly dependent on the router architecture
and implementation. The router architecture is also dependent on NoC topology, routing
algorithms and flow control mechanisms. However, we can generalize the router design
into three main components: the input port, the output port and the crossbar as shown in
Fig. 2.10.

A typical NoC router has n input/output ports: (n-1) for connecting the router with
the neighboring routers and one for connecting the router with the local PE through the
NI. The crossbar is responsible for connecting the input ports with the output ports with
some restrictions that each input port is connected to at most one output port, and vice
versa. Moreover, a typical router carries out certain crucial tasks for a successful routing
of the incoming packets such as routing computation, VC allocation, switch allocation
and switch traversal.
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Figure 2.11: SOTA router architecture [27]

After the arrival of the first flit , i.e. head flit, of the packet, the router performs
routing computation based on the routing algorithm and the packet destination to select
the appropriate output port. This step is carried only on the head flit, and the remaining
flits follow it. If a VC flow control is used, the router assigns available output VCs to the
packets waiting in input ports. This step is called VC allocation and it is performed only
on the head flit after the route computation. After an output port and an output VC, in a
VC flow control, are assigned to a packet, it is now ready for switch allocation step. In
this step, all ready flits request to traverse the crossbar. Then, granted flits successfully
traverse the crossbar to the assigned output port and leave the router.

An example of a high quality generic NoC router is the state-of-the-art router (SOTA)
developed in Stanford University [27]. To provide a way of evaluating the different config-
urations of the router architecture in terms of area, power, delay and network performance,
an open source parameterized RTL implementation, described in industry-standard Ver-
ilog hardware description language, of SOTA is presented in [28]. The router architecture
is shown in Fig. 2.11. It is a input-queued VC router that consists of input ports, output
ports, crossbar, VC allocator, switch allocator and routing logic. The input ports con-
tains FIFO buffers that hold the packets that can not be immediately forwarded. FIFO
buffers are logically divided into multiple VCs. A look-ahead routing is used to reduce
the pipeline stages into three stages only: VC allocation, switch allocation and switch
traversal. A flexible buffer management schemes is used to improve buffer utilization.
The implementation is very modular and all the blocks are highly configurable.
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2.3 FPGA-based NoCs
The FPGA-basedNoC can be implemented either on the FPGA configurable resources

(soft NoC) or on Silicon as hard blocks (hard NoC). Many Soft and hard NoCs have been
proposed in literature. In this section, we will discuss the pros and cons of the two types
of implementation and show some examples of each type.

2.3.1 Soft NoCs

Soft NoC is implemented using the configurable resources such as LUTs and rout-
ing resources. This offers great flexibility in the NoC design. The topology and the NoC
parameters can be reconfigured to match a certain application and its traffic patterns. How-
ever, this comes at the cost of the precious configurable resources that are basically used to
implement the application. Soft routers are also larger and slower than those implemented
on Silicon [6].

The literature shows a lot of work of mapping ASIC-oriented NoCs onto FPGAs, but
due to the different structure of FPGAs, NoCs that are optimized for ASIC don’t give the
optimum performance when mapped to FPGAs. Consequently, some researchers have
worked on designing FPGA tailored NoCs that take into consideration the hardware char-
acteristics of FPGAs. PNoC [9], CONNECT [8] and Split-Merge [10] are three famous
example of FPGA-oriented NoCs.

PNoC is a lightweight FPGA-friendly NoC that is used for FPGA-based applications.
However, it is a circuit-switchedNoC. So it can be used only with applications that tolerate
the tear-down and the setup delay that characterizes circuit-switched networks. It supports
partial dynamic reconfiguration. When a module is added or removed from the system,
the local router is notified to update the routing table of the system. PNoC consists of a
group of subnets. Each subnet contains multiple nodes connected to a single router that
performs the circuit switching between the nodes. The router architecture is shown in
Fig. 2.12. The table arbiter receives the connection requests and handle the access to
the routing table. The port arbiter creates the desired connection when the destination is
available.The switch box provides the actual connections between the modules.

CONfigurable NEtwork Creation Tool (CONNECT) is another FPGA-oriented NoC.
It aims to achieve sufficient network performance while minimizing the use of FPGA
resources. To target FPGAs, CONNECT router, shown in Fig. 2.13, utilizes a single
pipeline stage instead of the typical three or four stages to reduce both the hardware cost
and the latency. Moreover, CONNECT routers are tightly-coupled by using wider inter-
faces to maximize wire usage. It is implemented using Bluespec System Verilog (BSV)
language. It supports various network topologies and various router parameters such as
the number of input and output ports, the number of VCs, the flit width, the buffer depth,
the flow control and the routing algorithm. It supports the traditional credit-based flow
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Figure 2.12: PNoC router architecture [9]

control, and the “peek” flow control. The routing algorithm is table-driven where the
routing tables are implemented in Distributed RAMs. Flit buffers are organized per input
and per virtual channel. Flit buffers are implemented using Distributed RAM and each
VC FIFO is implemented as a circular buffer.

Huan proposes an FPGA optimized router which we refer to as Split-Merge. It is based
on the split and merge primitives [10]. Split-Merge has different methodology than CON-
NECT in optimizing NoC for FPGA. Huan claims that FPGA NoCs should be pipelined
heavily due to the low speed of configurable interconnects and high registers-to-logic ra-
tio in FPGAs. So, unlike CONNECT, Split-Merge is pipelined to make use of FPGA
abundant flip-flops. Moreover, as VCs tradeoff more complexity to achieve high wire uti-
lization, Split-Merge does not support virtual channels as FPGA wires are abundant. The
router is also implemented in Bluespec language. The router buffers are organized in both
input and output ports as shown in Fig 2.14. This organization eliminates the need for a
crossbar. The split module splits the incoming flits among the appropriate output buffers
according to the packet destination. The merge then arbitrates between the flits from the
multiple buffers to choose a wining flit to leave the output port. The simple backpressure
flow control is used due to the absence of virtual channels.

2.3.2 Hard NoCs

Hard NoCs have a higher performance than soft NoCs because routers and links in
hard NoCs are implemented directly on silicon, while soft NoCs are implemented on
the programmable resources which have more delay [6, 22]. Hard NoCs are also more
area-efficient [6] and power-efficient [17]. This is the same motivation behind embed-
ding dedicated blocks such as memories, DSP blocks and hard processors into the FPGA.
Moreover, hard NoCs do not consume the valuable configurable resources of the FPGA
like soft NoCs. They also enable partial dynamic reconfiguration and parallel compilation
with less effort.
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Figure 2.13: CONNECT router architecture [8]

Figure 2.14: Split-Merge router architecture [10]

18



Figure 2.15: Hecht’s proposed architecture of future FPGAs [7]

A hard NoC is almost completely disjoint from the FPGA fabric, only connecting
through router-to-fabric ports. This makes it easy to use a separate power grid for the
NoC with a lower voltage than the nominal FPGA voltage. This is desirable because we
can trade excess NoC speed for power efficiency.

The idea of embedding the FPGA with hardwired Network-on-Chip as a high-level
routing resource is showed up for the first time in [7]. The motivation behind this idea is
supporting the dynamic reconfiguration without consuming the valuable reconfigurable
FPGA resources in implementing a soft NoC. But due to the another benefits of NoC in
FPGA, the author concludes that supporting dynamic reconfiguration should be seen as
an additional advantage for NoC not the only motivation for it. The author argues that
most of the FPGA designs nowadays resembles SoC which needs SoC buses and FIFOs
so NoC will be a perfect alternative at a much lower cost. His proposed architecture of
future FPGAs is shown in Fig. 2.15. The architecture consists of tiles that communicate
only through the NoC. This architecture is modeled in systemC and no hardware imple-
mentation is given.

In [11], Goossens proposes that NoCs should be hardwired in FPGAs due to their ben-
efits over Soft NoCs. According to him, hardwired NoCs have lower implementation cost
(smaller area, higher speed and less power) and it is easier to achieve timing closure and to
exploit partial dynamic reconfiguration using hardwired NoCs. He also proposed that the
hardwired NoCwill be used for both the functional and the configuration interconnects. In
this architecture, the FPGA is partitioned into CFRs (configuration and functional regions)
as shown in Fig. 2.16. Unlike [7], the neighboring CFRs can communicate directly with-
out using the NoC. All the CFRs are connected to the unified configuration and functional
NoC through the Network Interface (NI). The NI is divided into two parts: the kernel and
the shell. The NI kernel is hardwired and it is responsible for network layer functions such
as routing, while the NI shell is soft implemented as it is responsible for transport layer
functions which depend on the application. Goossens makes use of Ethereal NoC [29] to
show the advantages of hardwired NoCs over soft NoCs. A 32-bit NoC, consisting of one
Ethereal router and five kernel/shell NIs, is implemented on Virtex-4 FPGA (soft) and on
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Figure 2.16: Goossens’s proposed FPGA architecture with unified hardwired NoC
[11]

130nm CMOS technology (hard). The area overhead of the soft NoC is 830% for a CFR
size of 1000 LUTs, while the overhead of the hard NoC is only 14% for the same CFR
size. The hard NoC operates at 500 MHz while the soft NoC operates at around 120 MHz.
This shows 149x improvement in link bandwidth per area of the hardwired NoCs over the
soft NoCs.

In [12], Francis suggests using a circuit-switched Network-on-Chip with hard routers
and reconfigurable links. The circuit-switched network is used, despite its poor perfor-
mance, because it needs small input buffers. Francis proposes that the hard routers should
replace LUTs within the cluster and have the same access to the configurable wiring as
LUTs, as shown in Fig. 2.17, inorder to maintain the homogeneity of the FPGA. As
routers implemented on silicon run much faster than soft IP cores, the hard routers are
limited by the input data rate from the cores. Therefore Francis suggests using TDM
wiring in FPGAs to connect the fast hard blocks with the soft logic. This allows time-
division multiplexing of the hard blocks and increases the efficiency of the used silicon
area. Muxes and other control circuits need to be implemented in silicon alongside the
conventional FPGA wiring to allow TDM. The author then compares the hard NoC, with
and without TDM wiring, with a soft-implemented one. The soft NoC, implemented on
Virtex-4 FPGA, consumes 4x power than hard NoC, implemented on 90nm CMOS tech-
nology. Also, the soft NoC has 12.5x larger area than the hard one.
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Figure 2.17: Francis’s proposed placement of hard routers replacing LUTs [12]

Figure 2.18: Abdelfattah’s proposed hard NoC floor plan [18]

In [6, 15, 18], Abdelfattah and Betz at university of Toronto propose augmenting FP-
GAs with embedded NoCs. They preserve the conventional architecture of FPGAs and
suggest that embedded NoCs should be seen as adding highways to the existing roads
(conventional routing resources). They use SOTA router from Stanford University to
build their NoC. They implement three versions of this NoC: soft (soft routers and soft
links), hard (hard routers and hard links) and mixed (hard routers and soft links). The
comparison between these three NoCs shows the advantages of hard NoCs. At 65 nm
technology, the hard NoC is 23x smaller, 6x faster and 11x less-power than the soft NoC.
To embed the NoC inside the FPGA fabric, they propose that the hard router replaces 9
FPGA logic clusters (equivalent area of the router) as shown in Fig. 2.18. Routers are
connected together through dedicated hard links, and they interface to the FPGA fabric
through programmable multiplexers connected to the soft interconnect.
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Chapter 3

Selecting NoC Parameters

As we propose the FPGA-based NoC to be a hard NoC, i.e. implemented on silicon,
due to the aforementioned advantages of hard NoCs over soft ones, this implies that the
designed NoC will not be configurable. Consequently, we need to study the various NoC
parameters and their effect on NoC performance to find the best-fit parameters that will
be used in designing our hard FPGA-based NoC. This work is published and presented in
IEEE ISCAS 2015 conference [30].

3.1 Performance Measures
The NoC design is evaluated by many performance measures. However, we will clas-

sify these measures into two main groups, the network group and the chip group. The
former contains performance measures dealing with the network performance which is in-
dependent on the platform on which the NoC is implemented, while the latter is concerned
with the hardware implementation of the NoC.

3.1.1 Network Performance Measures

There are various ways to measure the network performance. We will focus on the
two most important measures: the network throughput and the network latency.

3.1.1.1 Network Throughput

The network throughput represents the maximum traffic accepted by the network [31].
It is measured by counting the number of messages, i.e. flits (the smallest message unit),
successfully arrived at their destinations per time unit. Using clock cycles, instead of
seconds, as the time unit makes the network throughput independent on gates and wiring
delays.

The network throughput is normalized to the size of the network by dividing by the
number of nodes. Accordingly, It is measured in flits/cycle/node. A network throughput
of value “one” means that every node is receiving one flit every cycle, i.e. the maximum
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theoretical capacity of the network. Thus, the network throughput is a fraction of the
network capacity [26].

3.1.1.2 Network Latency

The network latency is the time taken by the packet to traverse the network and arrives
at its destination. Hence, it is the time elapsed between the injection of a head flit into the
network and the arrival of the tail flit at the destination [1]. Each packet faces different
latency according to the source/destination pair and other overheads. Thus, this time is
calculated for all the packets and the average network latency is calculated. It is measured
in terms of clock cycles. It also has different values at different traffic. The zero-load-
latency is the network latency at almost zero traffic which ignores the contention of the
packet with other packets at shared resources.

3.1.2 Chip Performance Measures

These measures depends on the hardware realization of the NoC and the targeted plat-
form whether an FPGA or ASIC. They also affect the overall performance of the NoC.

3.1.2.1 Maximum Operating Frequency

It is the maximum frequency at which the NoC can operate. It is an important mea-
sure when selecting design parameters. Some parameters may give a high network perfor-
mance at the cost of design complexity. For example, a NoC may have a low latency in
terms of cycles, but it also has a low maximum operating frequency, i.e. long cycle time,
resulting in a high actual latency measured in seconds.

3.1.2.2 Area

The design area is a very important metric that should be considered when choosing
the design parameters of a NoC. It represents the silicon area occupied by the design after
hardware implementation. The area is consumed by both the router logic and the wiring
layout. There is also a trade-off between network performance and area. For example,
a large number of nodes, buffers or VCs gives high network performance but occupies
larger area.

3.2 Simulation Setup
To study the effects of the various NoC Design parameters on NoC performance, two

popular NoCs are used as case studies. The selection of the used NoCs is based on choos-
ing two completely different NoCs: an ASIC-oriented NoC and an FPGA-oriented NoC.
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This will help us to find the best-fit parameters for our designed FPGA-based hard NoC.
The FPGA-based hard NoC is implemented using ASIC process but within an FPGA en-
vironment. So it is important to study both ASIC-oriented and FPGA-oriented NoCs.

Moreover, The selected NoCs should be highly flexible to enable the variation of the
different NoC design parameters. They should also support different topologies. Thus,
SOTA [27] and CONNECT [8] have been selected for the simulation. SOTA is a highly
parameterized open source RTL implementation of a generic VC router. It is an ASIC-
oriented NoC. The router is pipelined in three stages: VC allocation, switch allocation
and switch traversal, and it is implemented using Verilog hardware description language.
While CONNECT is an FPGA-oriented NoC. It has an online generator tool that produces
synthesizable RTL implementation of the NoC in Verilog hardware description language
[32]. The tool supports various topologies and a variety of network and router design
parameters. Unlike SOTA, CONNECT is a single stage router, i.e. not pipelined.

For results’ homogeneity, the same simulation setup is used for both SOTA NoC and
CONNECT NoC with the same packet source configuration. The network performance
including the network throughput and the network latency is measured by cycle-accurate
RTL simulations using MODELSIM 10.3c for the two NoCs at different NoC parameters.
The two NoCs are implemented on the same platform to obtain the implementation results
such as the maximum operating frequency and the area for both NoCs at different config-
urations. The chosen platform is Xilinx Virtex-6 LX760 FPGA (part xc6vlx760, speed
grade -2). The implementation results are obtained by Xilinix ISE 14.6 tool.

We use the standard setup for evaluating interconnection networks [26] as our simu-
lation setup. A packet source is attached to the input of each local port in the NoC. The
packet source generates and injects packets into the network according to a specific traffic
pattern and a specific packet length. Each generated packet is tagged with its departure
time and the number of injected packets is counted. At the output of each local port, a
measurement process counts the number of arrived packets and records the arrival time
of each packet.

Moreover, a sufficiently large queue is used between the packet source and the network
to isolate the traffic generation process from the network. Without the queue, if the NoC
buffers are full, the packet source will fail in injecting packets into the network as it can not
accept more traffic. In this case, the generated traffic is affected by the network. Hence, it
is not the original specified traffic pattern. Thus, this configuration, which is called open-
loop measurement, enables the controlling of the traffic independently on the network
status. This is crucial in evaluating the performance of the network under a specific traffic
pattern [26].

The traffic pattern is a function of the destination address of the generated packet. In
a NoC, each router is assigned an address depending on its location in the network and
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the used topology. For example, in a mesh or a torus network, the router address is its
Cartesian coordinate, i.e. x-y, considering the origin is at the bottom left router, i.e. x-y
equals 0-0. To test the network performance, synthetic traffic patterns are used. They are
simple test patterns that resemble real applications’ traffic patterns.

Uniform distribution traffic is the most commonly used synthetic traffic pattern, where
each packet source generates packets to every destination except its attached router with
equal probability. There are another types of synthetic traffic patterns such as Neighbor,
Tornado and Bit Complement [26] in which each source sends packets to only one des-
tination. The used packet source in this simulation setup generates packets according to
Uniform distribution traffic pattern. The rate of generation of packets, i.e. offered traffic,
is controlled by a parameter called packet injection rate to test the network under different
loads.

The network performance is usually measured in the steady-state phase of the network
[26]. The transient performance may be of some interest when you are interested in the
transient response of the network to a sudden change in parameters or traffic. However,
as we are interested in measuring the performance of the network with different design
parameters, only steady-state measurements are taken into account.

To consider only steady-state performance, the simulation has to be done in three
stages: warming-up, measuring and cooling-down. First, the simulation should run for
enough number of cycles, i.e. warming-up cycles, for the network to reach equilibrium
before any measurements. After warming-up, the simulation reaches the measuring stage
that lasts for a number of cycles called measuring cycles. Packets generated in measur-
ing stage, i.e. measurement packets, are the only considered packets for measuring the
network performance. The number of measuring cycles should be large for more reliabil-
ity of the results. In cooling-down stage, the simulation continues until the arrival of all
measurement packets at their destination. If the network is suffering from starvation, the
cooling-down stage may never end.

The network throughput is calculated by counting the number of successfully arrived
packets (flits) during the measuring phase, dividing it by the number of measuring cycles,
and then normalizing it over the number of nodes in the NoC. The network latency is
computed by averaging the difference between the arrival time and the departure time
of each measurement packet, i.e. packets generated during the measuring phase. This
network latency includes also the time spent in the queue located after the packet source.

3.3 Results and Design Recommendations
NoC design space is very broad as there are many design parameters that can be varied.

However, we will focus on certain design parameters that have direct effects on the NoC
performance. The NoC performance will be measured, according to both the network and
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chip performance measures mentioned before, at different values of these design parame-
ters using the discussed simulation setup. For each design parameter, we design a figure
of merit to help in selecting the optimum value of this design parameter and show the
simulation results of both SOTA and CONNECT NoCs.

Based on the simulation results, we propose some design recommendations for select-
ing the best-fit NoC design parameters. The simulation results and the design recommen-
dations are shown here as we will base our NoC design in the next chapters on them.

3.3.1 Topology

The first design parameter is the network topology. As we havementioned in chapter 2,
selecting the topology is the first step in designing the NoC. It has a direct effect on almost
all the performance measures. Moreover, the choice of topology is a trade-off between
various performance measures. For example, a complex topology with many links has a
low latency due to the small average routing distance between the nodes. However, it is
hard to layout and it consumes much area due to the wiring complexity.

Only three topologies are selected for the topology comparison: Mesh, Torus and
Flattened Butterfly (FBfly) [33] as they are known for their promising performance. Other
topologies such as Ring and Star don’t form a high performance NoC. Some topologies
provide good network latency but with lowmaximum operating frequency or low network
throughput. For example, A Torus network has a lower latency than a Mesh network
because it has a smaller network diameter, i.e. the maximum distance between any two
nodes, due to the connection between the end nodes in each dimension. However, a Torus
NoC has a higher wiring complexity than a Mesh NoC which may give a lower maximum
operating frequency.

Accordingly, the metric used in selecting the optimum topology should take into ac-
count these different aspects. It should consider the network latency, the network through-
put and also themaximum operating frequency. Therefore, load-latency curves are chosen
as our metric in deciding the best topology. A load-latency curve is a curve that shows
the network latency at different loads. It also shows the network throughput which equals
the load after which the network saturates. The latency is measured in cycles and the load
is measured in flits/cycle/node.

The load-latency curves for both SOTA and CONNECT NoCs are shown in Fig. 3.1
and 3.2. Both NoCs have 16 nodes as it is the optimum number of nodes as we will show
later. From the curves, a FBfly topology has the lowest network latency. This is because
it takes a maximum of three hops to deliver a flit in 16-node network [33], i.e. 2-ary
4-flat network. However, it has lower network throughput than the other two topologies.
As expected, Torus has lower network latency and higher network throughput than Mesh.

27



0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

Injection ratio in flits/cycle/node

L
at

en
cy

 in
 c

yc
le

s

 

 
MESH
TORUS
FBFLY

Figure 3.1: SOTA Load-latency curves at different topologies

However, these curves do not consider the effect of long links of torus on the maximum
operating frequency and hence, on the overall NoC performance.

In order to take into account the effect of maximum operating frequency on the NoC
performance, the load-latency curve is scaled with the maximum operating frequency, i.e.
load is measured in flits/s/node and latency is measured in seconds. To be able to measure
the accurate operating frequency, Xilinx Floor-planning tool is used to distribute the NoC
routers equally within the FPGA in order to get the most accurate maximum operating
frequency. In router distribution, we consider two types of Torus topology: the regular
Torus and the folded Torus. In regular Torus, routers at the edges of the network are
connected together through long end-around links which span the whole x-dimension/y-
dimension of the FPGA. However, in folded Torus, routers are distributed using a folded
layout, in which long end-around links are eliminated at the expense of doubling the length
of all other links.

The load-latency curves, after considering maximum operating frequency, for both
SOTA and CONNECT NoCs are shown in Fig. 3.3 and 3.4. From the shown curves, for
applications that don’t require a high throughput, a FBfly topology may be a good solution
as it has the lowest latency. However, for higher loads, Mesh and Torus topologies give
higher throughput with a lower latency than FBfly. Although a Torus topology provides
better network throughput and network latency than a Mesh topology as shown in Fig.
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Figure 3.2: CONNECT Load-latency curves at different topologies

3.1 and 3.2, the maximum operating frequency of the regular Torus is significantly lower
due to the end-around links. So, the overall NoC performance of a Mesh is better than a
regular Torus.

When using the folded layout, a Mesh is still better than a folded Torus in CONNECT
NoC because CONNECT router is a single stage router so the delay of double-length links
of folded Torus is added to the logic delay of the router reducing the maximum operating
frequency of the NoC. However, in SOTA NoC, the double-length links are no longer the
limiting factor to the operating frequency; SOTA is fully pipelined router which means
that the delay of the links is not added to the router delay, and the logic delay of the
router is greater than the delay of the double-length links. Thus, the maximum operating
frequency of a folded Torus in SOTA NoC is nearly the same as a Mesh resulting in a
better overall NoC performance than a Mesh.

Although the simulation results of SOTA NoC show that a folded Torus has a better
NoC performance than aMesh, aMesh NoC is still way better than a Torus NoC even with
a folded layout for several reasons. First, in hard NoCs, the hard routers, i.e. implemented
on silicon, can operate at frequencies near 1 GHz in 65 nm technology [18], but the long
links of Torus (regular or folded) cannot survive at these frequencies. For example, a hard
link can traverse about one-third of a 65 nm FPGA at frequencies near 1 GHz [18], but
in a 16-node folded Torus NoC, each NoC link needs to traverse half the FPGA. Thus,
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Figure 3.3: SOTA Load-latency curves at different topologies
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Figure 3.4: CONNECT Load-latency curves at different topologies
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folded torus links will limit the maximum operating frequency of the NoC (It is clear
that the situation is worse in a regular torus). Secondly, dimension-order routing in Mesh
networks is deadlock free, however, it is not in Torus networks (It requires at least two
virtual channels to be deadlock free) [26].

As we target a high performance NoC, a Mesh would be the optimum topology among
all the three examined topologies. Thus, all further simulations are based on a Mesh
topology.

3.3.2 Number of nodes

After deciding the network topology, the next step is to decide the network size, in
other words, the number of nodes in the network that are connected by the chosen topology.
In FPGA-based NoC, the extreme case is to consider each basic logic element as a node.
This will obviously lead to a NoC larger than the FPGA itself. The other obvious extreme
case is to consider the whole FPGA as one nodewhichwill not benefit from the advantages
of NoCs within the FPGA.

From the load-latency curves shown in Fig. 3.5 and 3.6, increasing the number of
nodes decreases the network throughput. The results conformwith the theoretical capacity
of a Mesh network which is inversely proportionally with the radix of the network [26].
The network radix can be defined as the square-root of the number of nodes in a squared
Mesh network. However, from the definition of the network throughput mentioned before,
the network throughput is normalized to the number of nodes, in other words, it shows
the maximum traffic that can be generated from each node. A node can be capable of
generating only small traffic but the total traffic from the network may be large due to the
large number of nodes.

Thus, it is not fair to decide the optimum number of nodes according to the network
throughput. The total network throughput should be considered which shows the maxi-
mum traffic that the whole network is capable of carrying. It can be computed by multi-
plying the network throughput, measured in flits/cycle/node, by the number of nodes of
the network. The network latency should also be taken into account. By increasing the
network size, the diameter of the network will increase; more hops are needed to reach
the destination. Thus, the latency noticeably increases when adding more nodes. Conse-
quently, Selecting the optimum number of nodes is a trade-off between the total network
throughput and the network latency. Hence, the figure of merit (FOM) is given by equa-
tion 3.1.

FOM =
Network Throughput×Number o f nodes

Zeroload Network latency
(3.1)

Although the area of the network increases when adding more nodes, it is not taken in
consideration in the FOM. That is because the area of the individual router does not change
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Figure 3.5: SOTA Load-latency curves at different number of nodes
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Figure 3.6: CONNECT Load-latency curves at different number of nodes
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Figure 3.7: SOTA FOM for number of nodes

when adding more nodes. As long as the targeted platform is able to accommodate the
whole network and there is enough area for the other computing cores, one should follow
the optimum number of nodes given by this FOM to get the optimum performance. In
other words, the total area of the network should only be seen as a hardware limit.

The computed FOM for both SOTA and CONNECTNoCs at various number of nodes
is shown in Fig. 3.7 and 3.8. From the curve, a 16-node network gives the highest FOM
in CONNECT NoC. While for SOTA NoC, 16 nodes and 25 nodes give almost the same
performance, but a 25-node NoC has nearly double the total area of 16-node NoC. Hence,
the optimum number of nodes is 16 nodes. All other simulations is based on a 16-node
network.

3.3.3 Virtual channels

The number of virtual channels (VCs) is a crucial design parameter as it has a great
effect on the NoC performance. VCs are used to increase network performance, increase
wire utilization, solve deadlock problems, and reduce the head-of-line blocking. However,
implementing VCs increases the complexity of the router as it requires complex blocks
such as VC allocator. Also, VCs consume more area for buffers and controlling logic.
Consequently, the number of VCs is an obvious trade-off between network performance
and chip performance.
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Figure 3.8: CONNECT FOM for number of nodes

This is asserted by our simulation results of different number of VCs. The load-latency
curves for both usedNoCs, shown in Fig. 3.9 and 3.10, show that the network performance
such as the network throughput increases when adding more VCs. The curves also show
that the network performance of four or more VCs is nearly the same in a 16-node Mesh
NoC. However, increasing the number of VCs adds more complexity to the design that
decreases the maximum operating frequency and increases the consumed area, in other
words, adversely affects the chip performance. This can be proved by scaling the load-
latency curves with the maximum operating frequency of each design. Fig. 3.11 and 3.12
show the load-latency curves after considering the maximum operating frequency.

From the results, in SOTA, a single VC is recommended for an application that re-
quires a low traffic, less than 60 Mflits/s/node, as it has the lowest latency, the highest
maximum operating frequency and also the smallest area. However for applications that
require a high traffic, a 2-VC NoC is the optimum choice in SOTA as it gives the highest
throughput, measured in flits/s/node. This is because that it is a compromise between a
high maximum operating frequency and a high network performance. In CONNECT, 1-
VC and 2-VC NoCs have nearly the same performance. This is because that CONNECT
uses a different router architecture when handling a single VC. However, a 2-VC NoC
still has a slightly higher throughput.
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Figure 3.9: SOTA Load-latency curves at different number of VCs
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Figure 3.10: CONNECT Load-latency curves at different number of VCs
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Figure 3.11: SOTA Load-latency curves at different number of VCs
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Figure 3.12: CONNECT Load-latency curves at different number of VCs
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Consequently, the optimum number of VCs is two that gives the best performance.
Hence, a 2-VC NoC is used in the other simulations. Moreover, it is shown from the
simulation results that using more than two VCs is useless in a 16-node NoC. It can only
be used in NoCs of larger network size.

3.3.4 Buffer depth

Buffers are one of the main components of NoCs. A router in a NoC must assure that
the next router has a space in its buffers before forwarding a flit to it as NoCs are loss-
less networks. The buffer depth and its organization are crucial to achieve high network
performance. However, buffers consume a large fraction of the NoC routers’ area and
power [27]. Hence, the buffer depth is also a trade-off between network performance and
cost.

The depth of a buffer is the number of flits it can hold. Fig. 3.13 and 3.14 show the
load-latency curves at different buffer depth. The curves assert that increasing the buffer
depth improves the network throughput. However, increasing the buffer depth increases
the area of the router. Consequently, to decide the optimum buffer depth, the figure of
merit (FOM) is computed according to equation 3.2.

FOM =
Network Throughput

Router Area
(3.2)

The computed FOM is shown in Fig. 3.15 and 3.16. The curves and the results are
calculated for a packet size of two flits. The optimum buffer depth for SOTA is eight
flits and for CONNECT is four flits. This is slightly greater than twice the packet size.
This buffer depth provides a good network performance without excessive area overheads.
Increasing the buffer depth more than this gives a higher network throughput but at the
cost of the area. However, we will discuss later a way to get more buffer depth at nearly
no cost.

3.4 Summary
In this chapter, NoC design parameters are analyzed using two NoCs, an ASIC-

oriented NoC and an FPGA-oriented NoC. A 16-node Mesh NoC is the optimum configu-
ration in both NoCs. VCs increase the network performance but increases the complexity
of the router. The optimum number of VCs is two in both NoCs. Increasing the buffer
size improves the network performance but consumes more area. A 8-flit and 4-flit buffer
depth is optimum for SOTA and CONNECT respectively at a packet size of two flits. In
general, CONNECT consumes smaller area than SOTA because CONNECT is designed
to target FPGAs. This proves the difference between mapping an ASIC-oriented NoC
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Figure 3.13: SOTA Load-latency curves at different buffer depth
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Figure 3.14: CONNECT Load-latency curves at different buffer depth
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Figure 3.15: SOTA FOM for buffer depth
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Figure 3.16: CONNECT FOM for buffer depth
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onto FPGA and designing an FPGA-oriented NoC. The shown simulation results and rec-
ommendations can be used by NoC designers to select design parameters which give the
optimum NoC performance for the targeted applications.
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Chapter 4

Router Design

Hard NoCs have speed and area advantages over soft NoCs. However, when an im-
plemented design doesn’t require a NoC in its operation, the silicon area consumed for
implementing the hard NoC is considered a wasted area. This is one of the main disad-
vantages of hard NoCs. Our main goal is to reduce this wasted area as much as possible
by using minimum and share-able resources while providing a high performance at the
same time. The router is the main contributor to the NoC area. Moreover, the router
architecture has a great effect on the NoC performance. Thus, selecting the router archi-
tecture is a critical process to achieve a high performance NoC while using the minimum
resources. In this chapter, we will select and implement the best-fit router architecture for
our proposed hard NoC.

4.1 Selecting Router Architecture
In a packet-switched loss-less network, buffers are the most important component in

the router. On the other hand, bufferless networks involve packet dropping and packet re-
transmission which reduce the network performance [34]. It is worth noting that recent
work proposes deflection routing which can eliminate router buffers without packet drop-
ping, however, they are suitable only for low-to-medium network loads [35, 36]. Buffers
can be organized per input or per output. Placing the buffers in the output port is not
practical since it requires the router to operate with the sum of the speeds of all the input
ports or to use buffers that have many write ports equal to the number of input ports [37].
Consequently, NoC routers buffers are mainly organized per input which is the case in
SOTA and CONNECT NoCs discussed before.

Input Buffers hold the packets that can not be forwarded immediately in queues. In
a baseline input-queued router, each input port contains only one queue. This router ar-
chitecture suffers from the head-of-line blocking, i.e. the first packet in the queue blocks
packets behind it, that adversely affects the network performance. While in VC input-
queued routers, each input port contains multiple queues, a queue for each virtual channel.
VCs reduces the effect of head-of-line blocking and increases the network throughput as
shown in the previous chapter.
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Figure 4.1: A VC allocator [27]

A conventional VC router, e.g. SOTA, consists of input buffers, crossbar, routing
computation logic, switch allocator and VC allocator. It has four pipeline stages which
are routing computation, VC allocation, switch allocation and switch traversal. This ar-
chitecture has some drawbacks. It needs at least four cycles to forward a flit, considering
each stage is performed in one cycle. This increases the network latency of the NoC. In
CONNECT, all these stages are performed in one clock, i.e. single stage pipeline, which
decreases the network latency but increases the cycle time, i.e. decreases the maximum
operating frequency.

Moreover, the VC allocator, a crucial component of the VC router, is a very complex
block as shown in Fig. 4.1. It assigns an output VC to each waiting packet in the input
ports as each packet should have an exclusive access to an output VC. Thus, it generates
matches between input VCs (P×V requests) and output VCs (P×V resources), where P is
number of ports and V is number of VCs. This complex process consumes large area of
silicon and adversely affects the maximum operating frequency of the router.

Consequently, both baseline and VC router architectures are not the optimum router
architecture for our proposed hard NoC. This leads us to search for another router architec-
ture that can provide a high network performance similar to that of the VC router architec-
ture but with lower complexity, smaller area and higher maximum operating frequency.
Virtual Output Queuing (VOQ) [37] would be an good alternative. In VOQ input-queued
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Figure 4.2: A VOQ router

routers, each input port contains a separate queue for each output port as shown in Fig.
4.2. This eliminates the head-of-line blocking which consequently improves the network
performance. It also eliminates the need for VC allocation as selecting the output VC de-
pends only on the routing computation. Thus, VOQ is the optimum solution that provides
good network performance while using minimum resources.

Therefore, our proposed router will utilize VOQ scheme. According to the NoC design
parameters given in Chapter 3, the NoC is 16-node Mesh. In a 2-DMesh, a router has five
ports: East, West, North, South and Local (which is connected to the network interface)
as shown in Fig. 4.3. The most famous routing algorithm in 2D-Mesh is XY. In this
algorithm, a packets is routed fully in X-dimension then fully in Y-dimension till it reaches
its destination. This implies that only packets coming fromWest and Local ports can come
out from the East port and only packet coming from East and Local ports can come out
from theWest port. Moreover, packets coming fromNorth can only be forwarded to South
or Local ports and packets coming from South can only be forwarded to North or Local
ports. We will use these routing restrictions to optimize our router and minimize its area.

The packet format is shown in Fig. 4.4. Each packet consists of a head flit, a tail flit,
and several body flits. The twomost significant bits of a flit distinguish whether it is a head
or tail or normal body flit. The following two bits represents the VC of the flit. The VC
here is a function of the output port from which the flit will come out as we will discuss
in detail later. As a flit can be forwarded only to four ports, i.e. all the five ports except
the port it comes from, a 2-bit with four different combinations is enough to represent the
VC. The head flit contains an extra field which is the required destination of the packet. In
a Mesh, each router has an address consisting of two fields the X and the Y coordinates
according to the router position in the Mesh considering the origin is at the bottom right
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router. Thus, in a 16-node Mesh, the X field is two bits and the Y field is two bits, making
a 4-bit router address. Consequently, the destination field in the head flit is also 4-bit.

To achieve a loss-less network, a flit should only be forwarded to the downstream
router if it is known that the next router has available buffer space. One of the ways to
communicate the available buffer space between routers is the credit-based flow control.
In this algorithm, each router keeps a count of the number of free slots of the downstream
router’s VC queue. When it sends a flit to the next router, it decreases this counter. The
downstream router then sends a credit to the upstream router when it succeeds in forward-
ing this flit. This algorithm requires a counter for each VC and involves a high amount
of signaling for each flit. To avoid the complexity of credit-based flow control, a simple
back-pressure (BP) flow control is used. It is an on/off algorithm in which the downstream
router signals the upstream router only when the buffer is full. The round-trip delay be-
tween the routers should be handled.
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4.2 Router Internal Components
The internal block diagram of our five bidirectional ports router is shown in Fig. 4.5.

It consists of five input modules, a switch allocator, a crossbar and five output modules.
The router is connected with the other routers (or with the network interface (NI)) through
the five input/output ports. Each input port has a DATA_IN port for the incoming data
and a VALID_IN signal showing the validity of this data. A BP_OUT signal is generated
from each input port for the BP flow control. The width of this signal depends on the
number of VCs in each input port. On the other side, each output port has a DATA_OUT
port, a VALID_OUT signal and a BP_IN signal connected with the downstream routers
(or the NI). The remainder of this chapter deals with the detailed implementation of each
block.

4.2.1 Input Module

An input module is associated with each input port. It is one of the most important
blocks in the router design. Its main job is to store the incoming flits until they are allowed
to traverse the crossbar switch and leave the router. In the baseline architecture, the incom-
ing flits are stored in a single queue following First-In-First-Out (FIFO) buffering strategy.
However, in the VOQ scheme, the input module should contain multiple queues (a queue
for each possible output port). An incoming flit is stored in one of these different queues
according to from which output port it should come out, following also the FIFO buffer-
ing strategy. All input modules have four queues representing the four potential output
ports, except the input modules associated with the North and South input ports. These
input modules have only two queues due to the restrictions and simplifications of the XY
routing algorithm.

Conventionally, the routing computation should be done, using the destination field,
before storing a flit in order to know the destined output port, hence, knowing in which
queue the flit should be stored. However, to speed up our router, the routing computation
is performed one hop earlier, i.e. look-ahead routing, and the result of this look-ahead
routing is stored in the VC field. Consequently, based on the VC field, a flit is imme-
diately stored in the correct queue without waiting for the routing computation step to
finish. Moreover, the look-ahead routing computation, i.e. the routing computation for
the next router, can be performed in parallel to the buffering process. This decreases the
combinational path delay, hence, increases the maximum operating frequency. Moreover,
the routing computation step no longer needs a cycle to be performed. This reduces the
number of pipeline stages, hence, decreases the network latency.

The internal implementation of the input module is shown in Fig. 4.6. It consists of
the buffer module, look-ahead routing (LAR) logic and the OVC buffering module. The
DATA_IN port is passed to the buffer module to be stored. The VALID_IN signal, which
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shows the availability of a new flit on the DATA_IN port, is demultiplexed to a 4-bit wr_en
signal (a 2-bit in North and South input modules) according to the VC field extracted from
the DATA_IN port. This informs the buffer module in which queue the new flit on the
DATA_IN port should be stored.

4.2.1.1 Buffer Module

The buffer module contains the four (or two) queues that are used to store the incoming
flits. Each queue can be implemented using a separatememory. However, this architecture
has many disadvantages. It requires multiple small memories which is not efficient in
terms of area and involves a large amount of overhead. It also increases the complexity
of the crossbar switch [37]. The alternative is to implement all the queues in a single
memory. This architecture is called statically allocated multi-queue (SAMQ). In SAMQ,
the buffer is divided into equal portions for each queue. This doesn’t affect the rate at
which the queues can receive flits as there is only one input data port, i.e. DATA_IN.
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In another architecture called dynamically allocated multi-queue (DAMQ), the buffer
space is divided dynamically between the VC queues. This allows to dynamically control
the size of each queue according to the weight of the incoming traffic. This enhances the
network performance. However, implementing DAMQ buffer requires complex control
such as linked list which consumes the silicon area. Therefore, an SAMQ buffer is used
in our design.

The SAMQ buffer is implemented using a dual-port RAM. The width of this memory
is the same as the flit width, so that a flit can be written or read in one cycle. A dual-
port RAM has two separate reading and writing ports in which a reading and writing
process can be performed at the same time. The write port has a data port connected to
the DATA_IN signal, a write enable and a write address. The read port has a data port
connected to the crossbar, a read enable signal and a read address. The write enable is
the ORing of the 4-bit wr_en signal, while the read enable is the ORing of the 4-bit rd_en
generated from the switch allocator. The write address and the read address are generated
from the four buffer controllers (two in case of North and South ports).

A buffer controller is associated with each queue. It is responsible of controlling the
operation of the associated queue. It is also responsible of keeping track of the status
of the queue whether it is empty or full. Each queue is treated as a circular buffer. Each
buffer controller generates a write address and a read address. All addresses are initialized
with zeros. The write address is incremented when a write enable signal is high, and the
read address is incremented when a read enable signal is high.

The width of these addresses are log2 queuedepth. Therefore, if the generated address
is pointing to the end of the queue, and it is incremented one more time, it overflows and
automatically points to the start of the queue (i.e. circular buffer) without any need of
special handling. These generated addresses from each buffer controller are then con-
catenated with two bits corresponding to which queue it handles, so that the addresses
from each controller maps to different location in the RAM. All of these concatenated
write/read addresses are then multiplexed to generate the physical write/read address of
the RAM.

The buffer controller contains also a tracker counter that counts the number of flits in
its associated queue. This counter is incremented when a writing process is done in the
queue and no reading process associated. It is decrementedwhen a reading process is done
from the queue and no writing process associated. When a reading and writing process is
done simultaneously, the counter doesn’t change. When the counter is equal zero (or one
and a RD_EN signal is high), this means that the queue is empty. A not_empty signal is
connected with the switch allocator to inform that there is a waiting flit in this VC, so that
it participates in the arbitration process.
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On the other side, when the tracker counter is equal to the depth of the queue, a FULL
signal is asserted. This signal is connected to the BP_OUT to tell the upstream router
that there is no space in this VC in order to stop sending more flits. However, to handle
the round-trip delay of the BP_OUT signal, the FULL signal is asserted early (when the
counter is equal to the depth of the queue minus two). Moreover, each buffer controller
generates also a valid_out signal to inform the crossbar about the validity of the RAM
read data port and from which queue the data comes out to know the destined output port.

4.2.1.2 LAR Logic

The look-ahead routing (LAR) logic performs the routing computation one hop earlier.
The routing computation determines the output port from which the packet should depart
according to its destination. The LAR logic determines the destined output port of the
next router, hence, determining the input VC of the packet at the next router (i.e. the
output VC of the packet at the current router) in VOQ scheme. Thus, look-ahead routing
is not important only for performance enhancement but it is important in deciding the
output VC of the packet.

The LAR logic takes the destination field of the packet as an input and produces two
bits representing the destined output port of the next router or the output VC of the packet.
Conventionally, as the router has five output ports, three bits should be used to represent
the output port. However, because of the simplification of XY routing algorithm such as
that the packet can not depart from the same port it comes from, these three bits can be
reduced to only two.

In XY routing algorithm, each packet is routed fully in X direction then in Y direc-
tion. Thus, to perform routing computation, the destination of the packet, known from
the destination field of the head flit, is compared with the router address. If the X part of
the destination is larger than the X part of the router address, the packet is forwarded to
the EAST output port. If it is smaller, the packet is forwarded to the WEST output port.
Otherwise, the Y part of the destination is compared with the Y part of the router address.
If it is larger, then the destined output port is North. If it is smaller, then the destined
output port is South. If they are equal, then the packet has reached its destination and
should be forwarded to the local port.

However, in look-ahead routing (LAR), as the routing computation is done one hop
earlier, the destination should be compared with the next router address. The next router
address can be known from the output port to which the packet will be forwarded, i.e. the
input VC of the packet. This algorithm is optimized particularly for each input module.
For example, Fig. 4.7 and 4.8 show flowcharts describing the algorithm of the LAR logic
in East and North input modules.
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4.2.1.3 OVC Buffering Module

Each packet is assigned to an output VC (OVC). The OVC of the packets should be
communicated to the switch allocator in order not to include a packet whose OVC is full
in the arbitration process. So, as we have multiple queues, the OVCs of the packets at the
head of each queue should be known to the switch allocator. These OVCs are stored in
separate registers not in a single buffer so that they are available all the time to the switch
allocator. To allow more than one packet to be stored in a queue, a shift register is used
to store the OVCs of all the packets in the queue.

The main function of OVC buffering module is to store the OVCs of all the packets
buffered in all the queues and to provide the switch allocator with the OVCs of the packets
located at the head of each queue. The module contains four shift registers ( a shift register
for each queue). The input of these shift registers is the output of the LAR logic. The
output of the LAR logic is only valid when the incoming flit is a head flit (as it is the only
flit that contain the destination field), so the writing in the shift registers is enabled by the
ANDing of the head signal and the wr_en. The size of these shift registers is a function
of the queue depth and the packet length. For example, if the queue depth is 32 flits and
the packet length is 8 flits, the queue can contain flits from 5 different packets, so the size
of the shift register will be 10 bits (it carries two bits OVC for each packet).

When a tail flit is leaving the input module, the OVC of this packet is removed from
the shift register. The OVC of the next packet will be available next cycle. However,
this leads to a pipeline stall to allow the performing of the switch allocation on the new
OVC. Conventionally, to avoid this pipeline stall, the data buffer that contains the flits is
implemented using a memory that has two read ports to allow the reading of the tail flit
and the next head flit at the same time [6]. Such a memory is more complex, consumes
more area and encounters more delay. In our design, the data buffer has only one read
port, and this pipeline stall is solved in this module. This is done by always reading
two consecutive OVCs from the simple shift register and selecting between them using
a multiplexer. When a tail flit is leaving the input module, this multiplexer passes the
second OVC. By doing this, the switch allocation step of the next head can be done in
parallel with the switch traversal step of the tail flit. This is the main advantage of our
OVC buffering module.

4.2.2 Switch Allocator

The switch allocator is considered as the main controller of the router. It decides when
a flit is transferred from the input port to its destined output port. When a flit reaches the
head of a queue, it sends a request to the switch allocator to be allowed to traverse the
crossbar. As there are many queues and limited crossbar connections between input and
output ports, an allocator is needed for scheduling these crossbar connections. Unlike
routing computation, the switch allocation is performed on each flit not only the head flit.
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In a conventional VC router, the switch allocation step is preceded with VC allocation.
However, in our VOQ router, the output VC of each packet is already determined by the
LAR logic. Thus, no VC allocation is needed, and flits can undergo switch allocation
directly.

The switch allocator performs a matching between requests from input VCs at each
input port (P2requests in a conventional P-port VOQ router) and crossbar connections to
the output ports. The quality and the fairness of this matching has a great effect on the
network throughput and latency. The quality of a matching is measured by the number of
generated grants. An allocator with a high matching quality improves network throughput
and maximizes resource utilization. However, this comes at the expense of more area and
more delay.

There are two main types of allocators: separable allocators and wavefront allocators.
In general, a wavefront allocator has a higher matching quality than a separable allocator
as it achieve a maximal matching [26, 27], i.e. a matching in which no more grants can be
generated without replacing an existing grant. However, the best implementation of wave-
front allocators consumes more area and has a higher delay than any separable allocator
[27]. It also suffers fromweak fairness [26]. Moreover, in aMesh topology, the difference
in matching quality between wavefront allocators and separable allocators is not translated
to a much better network performance. That is mainly because of the routing restrictions
which lead to a biased distribution of the requests resulting in a request matrix with many
zeros. A wavefront allocator can not achieve a maximum matching if the request matrix
is sparsely populated. Thus, in a Mesh, wavefront allocators and separable allocators give
nearly the same network performance [27].

For the aforementioned reasons, the switch allocator of our router is implemented us-
ing an input-first separable allocator. Separable allocators divides the allocation process
into two successive arbitration phases. In an input-first separable allocator, an active in-
put VC (the requester) is selected from each input port in the first arbitration phase, then,
in the second phase, the winning VCs from input ports compete for their destined output
port (the resource). In this way, only one input VC from each input port can be granted.
That is important because there is only one connection from each input port to the cross-
bar. Also, this way ensures that each output port is granted at most once to one of its
requesters (input VCs). The only difference between the input-first and output-first sepa-
rable allocator is that the latter performs the output arbitration phase first, however, it has
a longer combinational path than the input-first allocator [27].

Each arbitration phase is performed using P (the number of router’s ports) arbiters.
The difference between an allocator and an arbiter is that an allocator performs matching
between multiple requesters and multiple resources while an arbiter matches a single re-
source to one of its requesters. The arbiters in each phase work independently from each
others. Thus, they can all work in parallel leading to short delay and fast allocation. The
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only drawback is that the independent arbiters in the first phase can grant multiple VCs
requesting the same output port which leads to a non-maximal matching. The quality
of matching can be increased by carrying out multiple iterations of separable allocation
such as in Parallel Iterative Matching (PIM) method (not practical in NoCs due to delay
constraints) or by managing arbiters priorities using iSLIP scheduling algorithm [27, 38].

In a conventional five-port VOQ router, a ten 5-input arbiters are required to perform
separable switch allocation. However, due to the routing restrictions in our NoC, the
request matrix R, i.e. a matrix in which rows representing input ports (East, West, North,
South and Local) and columns representing output ports, would be as shown in equation
4.1 where “X” means impossible requests.

R =



X 1 1 1 1
1 X 1 1 1
X X X 1 1
X X 1 X 1
1 1 1 1 X


(4.1)

This simplifies the hardware to only six 4-input arbiters and four 2-input arbiters as
shown in Fig. 4.9. The arbiters in the first stage, i.e. input arbiters, receive requests from
all the input VCs. A request is sent only when the queue representing an input VC is
not empty, which means that there is a flit at the head of the queue waiting for switch
allocation. So, the input of input arbiters is the NOT_EMPTY signals generated from
all input modules’ queues. However, as we are using a back-pressure flow control, an
input VC can not be granted access to the crossbar if the destined output VC is full (the
queue corresponding to this output VC in the downstream router has no space). Thus, an
information about the destined output VC of each input VC is needed which is provided
by the OVC buffering module. This information is used to check if the destined output
VC of each input VC is full or not. If the BP_IN of this output VC is asserted, the input
VC request is deleted.

Moreover, it is possible that multiple packets desire to be forwarded to the same output
VC. However, to ensure the correctness of packets delivery, a packet can not be forwarded
to an output VC that is currently in use by another packet. Consequently, it is required to
track the status of each output VC and check whether it is in use or not. In a conventional
VC router, this check is performed in the VC allocator, however, as there is noVC allocator
in our VOQ router, the tracking hardware is implemented in the switch allocator.

The proposed tracking hardware consists of a simple register associated with each
output VC. Each register contains number of bits corresponding to the number of potential
input VCs requesting this output VC. For example, a 2-bit register is attached with East
output VC in the East output port, as only the first input VC in West input port and the
first input VC of the local port could forward a flit to this output VC. All the registers
are initialized with ones. When a grant is generated for a certain input VC, the register
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Figure 4.9: The switch allocator
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attached with the destined output VC is zeroed except the bit corresponding to the granted
input VC. This reflects that this output VC is currently assigned for this certain input VC
so that when an another input VC requests to be forwarded to the same output VC, the
corresponding bit to this input VC will be used to delete the request. When a tail flit from
the granted input VC is forwarded to its output VC, the associated register is initialized
again with ones, permitting any further access to this output VC.

Input arbiters then choose a winning input VC for each input port. The requests from
these winning input VCs are then passed to the arbiters in the second stage, i.e. output
arbiters. Output arbiters then choose a winning input port for each output port. The grants
from this stage determine who win the access to the crossbar. Thus, these grants are used
as the rd_en signals of the buffers in input modules to prepare the flit at the head of the
winning input VC for switch traversal. Moreover, according to these grants, the switch
allocator informs the output modules about the winning input VCs and their destined
output VC.

In separable allocators, it is clear that the most important building block is the arbiter.
It affects the speed and the area of the switch allocator. Thus, the implementation of
the arbiter should be handled carefully. Moreover, the switch allocator fairness, which
affects the network throughput of the router, depends on the used arbiter’s fairness. A
fixed priority arbiter does not guarantee any fairness. A variable priority arbiter changes
the priority of the requesters from cycle to cycle to prevent starvation of any of them.
Round-Robin (RR) arbiters provide strong fairness by assigning the lowest priority to the
last granted request [26]. In our paper [39], a detailed comparative review of different RR
arbiters’ architectures are provided [39]. Parallel Prefix RR arbiter is one of the fastest
RR arbiters. It generates each grant signal using a parallel prefix tree. However, it is not
scalable and consumes large area in large N-input arbiters. As we only need 2-input and
4-input arbiters in our design, a parallel prefix arbiter is an optimum choice as it provides
the highest maximum operating frequency while consuming a small area.

In a conventional RR arbiter, when a request is granted, the arbiter updates the priority
with the new priority vector which is a shifted version of the grant vector. However, to
improve the network performance of the router, the iSLIP scheduling algorithm is used
[38]. In this algorithm, the priority of the internal arbiters, i.e. the arbiters in the first arbi-
tration stage, doesn’t change unless the granted requests of these arbiters are also granted
in the second arbitration stage.

4.2.3 Crossbar Switch

Amultiplexer-based crossbar switch is used to connect the input modules with the out-
put modules. The crossbar allows the traversal of five flits simultaneously from different
input ports to different output ports. A multiplexer-based 5x5 crossbar, that connects five
inputs to five outputs, normally consists of five 5-port multiplexers (the width of each port
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Figure 4.10: A 5-port multiplexer-based crossbar switch

equals the flit width) as shown in Fig. 4.10. However, due to routing restrictions in XY
algorithm, the crossbar needs only three 4-port multiplexers and two 2-port multiplexer
as shown in Fig. 4.11. This is a huge reduction in area and complexity.

4.2.4 Output Module

After the switch traversal, the flits reach the output modules. In the output module, the
original VC field of a flit is replaced with its output VC, i.e. its input VC in the next router.
To enhance the maximum frequency of the router, a pipeline stage can be added here to
cancel the effect of link delay between routers. Thus, the incoming flits from the crossbar
are stored in registers before leaving the router. If the link delay is not large, this pipeline
stage can be removed reducing the pipeline stages of the router to only two stages: switch
allocation and switch traversal.

4.3 Summary
In this chapter, we investigated different router architectures to select the best-fit one

for the hard NoC. AVOQ architecture was found to be a suitable choice as it provides good
network performance while using minimum resources. Then, we designed and optimized
the internal components of the VOQ router according to the selected design parameters
in the previous chapter.
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Chapter 5

Embedding the Hard NoC

In this chapter, we design the network interface that connects the soft modules on the
FPGA fabric to the NoC.We also propose some ideas about embedding the hard NoC into
the FPGA.

5.1 Network Interface
The network interface (NI) is the second main component in a NoC which is used

to interface the IP modules to it. In FPGA-based hard NoCs, the NI’s main purpose is to
provide the FPGA fabric an access to the high communication bandwidth of the hard NoC.
It connects the soft modules implemented on the FPGA fabric, running at any frequency,
to the high speed NoC. Obviously, the NoC, implemented on silicon, is much faster than
the soft modules. Thus, to achieve the highest performance, the hard NoC should runs at
its maximum frequency while the slow soft modules should have a wider datapath than
the hard NoC. This allows the fabric to achieve and utilize the large NoC bandwidth. It
also allows the NoC to have narrow datapath and narrow link width which decrease the
NoC area. The NI should perform clock crossing and width adaptation between the NoC
and the FPGA fabric to match their bandwidth [18].

Our target is to design a simple NI, completely implemented on silicon, that provides
an easy interface to use the NoC without involving the user in the NoC design details, and
doesn’t cause any degradation in the NoC performance or throughput. The NI is divided
into two parts, a part for each direction between the fabric and the NoC.

5.1.1 From FPGA Fabric to NoC

The main functionality of this part of the NI is to take the outgoing data, required to
be sent on the NoC, from the soft modules and inject it, in the form of network flits, to the
local input port of the associated NoC router. The hard NoC approximately runs 4x faster
than the FPGA fabric [16]. Thus, to match their bandwidth, [16] proposes to use a time-
domain multiplexing (TDM) with a TDM factor of 4:1. So, every incoming data from the
soft modules will be packetized into a packet of four flits. Then, the flits are injected one
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Figure 5.1: Network Interface: From FPGA fabric to NoC

by one into the NoC. This configuration allows the FPGA fabric to fully utilize the NoC
bandwidth.

The block diagram of this part of the NI is shown in Fig. 5.1. The first block is the
packetizer. It encodes the data into four flits and adds the control bits to each flit. Each
flit has four control bits (H, T, and 2-bit VC) except the head flit has extra four bits for
the destination. This sums up to 20 control bits. The 2-bit VC is calculated through a
look-ahead routing (LAR) logic, while the H and T is constant depending on the type of
the flit. The destination of the packet, which is needed in the head flit and to calculate
the VC bits, is set by two ways. It can be inputted to the NI every fabric cycle with the
data incoming from the soft modules. This allows the soft module to communicate with
multiple different modules at different destination across the NoC. It is also important
in case of multiple modules are connected to the same NI. The destination can also be
configured during the FPGA configuration time to a certain value. This is used if the
connected module has fixed destination.

For a flit width of 32 bits, the 20 control bits is added to the 108-bit incoming data to
form the four flits. The four flits is then registered, if theVALID signal is asserted, in a 128-
bit register every fabric clock cycle. The output of the register is connected to a 4-input
32-bit TDMmultiplexer. The selection line of the multiplexer is a 2-bit counter with a fre-
quency equals to 4x the fabric frequency. The output of the multiplexer is then connected
to a small dual-port asynchronous FIFO. The asynchronous FIFO is used to perform clock
domain crossing between the fabric frequency and the NoC frequency. This allows the
soft modules to run at any speed instead of being fixed to quarter the speed of NoC (The
optimum performance is at NoC frequency equals four times the fabric frequency due to
4:1 TDM factor). The (full) signal of this FIFO is used to generate the NOT_READY
signal that informs the soft modules that the NoC is not ready for receiving extra data.
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Figure 5.2: Network Interface: From NoC to FPGA fabric

The output of the FIFO is connected to the Local input port of the associated router. As
long as the FIFO is not empty and the BP signal from the router Local port is not asserted,
the FIFO injects a flit into the NoC every NoC clock cycle.

5.1.2 From NoC to FPGA Fabric

This part is the inverse of the previous part. It receives the flits from the NoC, then
decodes it and delivers the raw data to the soft modules at their running speed. The
block diagram is shown in Fig. 5.2. The incoming flits from the local output port of the
associated router is buffered in a small asynchronous FIFO to convert to the fabric clock
domain (4x fabric frequency). A TDM demultiplexer is then used to buffer the four flits
of the same packet into four 32-bit registers. The control bits are then removed from the
output of the four registers, and the 108-bit raw data is delivered to the soft module with
a VALID signal. If the soft module is not ready to receive the incoming data, it asserts
the NOT_READY signals which pauses sending the incoming data to the soft modules.

As illustrated above, this NI eases the interfacing of soft modules with the NoC.When
a soft module needs to send a data to another module connected to the NoC, it only outputs
that data to the DATA_IN port of the NI and asserts the VALID signal. It doesn’t need to
know anything about the internal architecture of the NoC. Then, the destined soft module
will receive that data without any modification through the DATA_OUT port of the NI
with an asserted VALID signal showing its validity. The frequency of the soft module
doesn’t have to be related to the NoC frequency. Moreover, the frequencies of the two
communicating modules don’t have to be the same. Thus, the user of the FPGA no longer
has to deal with the clock domain crossing and metastability issues when connecting two
different frequency modules.
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Multiple soft modules can be connected to the same NI by using small soft logic. If
all these soft modules have the same destination, a soft logic can simply concatenate the
data of all of them. However, if they have different destinations, a soft logic can multiplex
between them using round-robin arbitration and sets the DEST port of the NI to the correct
value.

5.2 Sharing Resources
Until now, we have designed the router (and NI) and minimized the resources it takes

by optimizing it according to the selected NoC parameters. Our aim is to further decrease
the wasted silicon area when the hard NoC is not in use. Thus, we also work on sharing
the NoC resources, or in other words, exploiting it when the NoC is not needed. The
largest contributor to the NoC area, and also the NoC power, is the input buffers of the
routers [27, 40]. In our optimized VOQ router, the buffers account for around 85% of the
overall area of the router. Reducing the buffer depth decreases the area consumed by the
buffers, hence, the overall area of the NoC. However, as illustrated before, it adversely
affects the network performance especially the maximum throughput. Thus, the buffer
depth is not reduced in our design, however, instead of implementing NoC buffers using
dedicated memories that can only be used by the NoC, we propose to implement them
using memories that can be accessed and utilized by the FPGA fabric.

FPGAs have two type of internal memories. The first type is distributed RAM which
is a small size memory implemented using LUTs. The another type is called block RAMs.
Block RAMs, shown in Fig. 5.3, are dedicated hard blocks of several kilo-bits of static
RAM. They have configurable data width and depth. They can also act as single-port
memory, simple dual-port memory (one read port and one write port), or true dual-port
memory (two read/write ports). Block RAMs are very valuable resources that are essential
in every nowadays FPGAs. They are placed in columns distributed among the FPGA as
shown in Fig. 5.4. Compared to distributed RAM, they are more compact and way more
efficient in implementing large memories. For example, in Altera Stratix III FPGA, the bit
density of 9-kbit block RAM is 142 kbit/mm2 while it is only 23 kbit/mm2 for distributed
RAM, which means that a block RAM with a 16% utilization is more area efficient that a
fully utilized distributed RAM [41].

Therefore, we propose to implement the input buffers using FPGA block RAMs. This
can be viewed as either sharing existing FPGA block RAMs with our NoC instead of im-
plementing our own dedicated memories (saving area), or implementing our own memo-
ries that can be shared with FPGA fabric to use them as conventional block RAMs (adding
more valuable resources to FPGA). In order to implement routers’ buffers using FPGA
black RAMs, they must match one of the configurations of block RAMs memories. For
example, SOTA router’s [27] input buffers can not be implemented using block RAMs as
they require a memory that has one write port and two read ports to prevent a pipeline
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Figure 5.3: Xilinx 18 kb Block RAM
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Block RAM Columns

Figure 5.4: Xilinx Virtex 5 Floorplan
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stall in allocation stage, while block RAMs can only support two read/write ports (It can
only be done by using two block RAMs for each memory). In our optimized VOQ router,
a simple dual-port memory is needed to implement the input buffers (the pipeline stall is
solved by the OVC buffering module). Consequently, a conventional FPGA block RAM
can be used.

This architecture dramatically decreases the wasted silicon area; The memory units
that act as the routers’ input buffers can normally be used and accessed by the FPGA
fabric when the NoC is not in use. The detailed connections between the hard router, block
RAMs and FPGA fabric will be discussed at the end of this chapter. This architecture also
provides the ability to increase the buffer depth until the maximum size of the block RAM
which will further improve the network performance at almost no cost. In addition, Block
RAMs have built-in error correction which adds more reliability to our NoC.

5.3 Keeping the Homogeneity
In this section, we discuss the ways of embedding the hard NoC inside the FPGA. This

involves the location of the routers and the connectivity between the FPGA fabric and the
network interface. Embedding NoCs inside FPGAs is a critical process. Our target is to
maintain the structure of tiles and routing resources as much as possible, or in other words,
keeping the homogeneity of the FPGA.

In our proposed hard NoC, routers, network interfaces and links are implemented on
silicon. The hard NoC consists of 16 nodes in a mesh topology in which the 16 routers are
distributed evenly across the FPGA. Routers are connected together using direct hard links
providing a higher communication layer over the existing FPGA routing resources. Each
router local port is connected to a network interface. Network interfaces are connected to
the soft interconnect of the FPGA fabric. The question is how to embed these hard blocks
(routers and network interfaces) inside the FPGA fabric? Also, how to connect network
interfaces to the FPGA soft interconnect?

To address these questions, we look at nowadays FPGAs that contain embedded hard
blocks like block RAMs and DSPs. Hard blocks use the existing routing channels when
interfacing with the FPGA and doesn’t alter the FPGA routing structure. This is in order to
preserve the regularity and the homogeneity of the FPGA. The FPGA regularity is crucial
in manufacturing which is the reason for its high yield and its fast adoption of emerging
technologies [42].

The previous trials to embed the hard NoC in FPGAs, with their contemporary struc-
ture, have followed the same principle of using the existing routing channels when em-
bedding hard blocks. They have suggested that routers replace some logic clusters [6].
Moreover, they have used the routing resources of these clusters to connect the router to
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NoC
Router

Logic Clusters Block RAMs

Figure 5.5: Proposed NoC router placement

the FPGA Fabric. This method preserves the routing resources structure. However, re-
placing some logic will adversely affect the homogeneity of the existing arrangement of
the logic clusters (stacked in full columns). This may complicate and increase the amount
of strain on CAD tools and flow.

Therefore, we avoid in our design to remove any logic cluster in order to keep the
homogeneity of the FPGA.Moreover, as we have proposed to implement the input buffers
of the router using FPGA block RAMs, the router would better be placed near them. For
the aforementioned reasons, we propose to embed the routers in the same column of block
RAMs as illustrated in Fig. 5.5. This configuration does not change the structure of tiles.
It reduces the amount of strain on CAD flow, as the hard router will be treated the same
as the hard block RAMs.

In order to preserve also the homogeneity of routing resources, the connections be-
tween the router and block RAMs, and between the network interface and the FPGA fabric
must be handled carefully. During NoC operation, block RAMs that act as input buffers
are fully controlled by the hard router. This means that the routing resources, i.e. mul-
tiplexers, tri-state buffers and wires, that connect the block RAM to the Fabric routing
channels are not in use during the NoC operation. Consequently, these routing resources
can be utilized to connect the network interface to the fabric. The network interface has
114 input ports and 110 output ports, which is much less than the I/O ports of the five
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used block RAMs. This allows more flexibility in connecting the network interface to the
FPGA fabric.

To connect the router with the block RAMs, a simple 2-port multiplexer is added at
each port of the block RAM to select whether it is connected to the FPGA fabric or to the
hard router. These multiplexers and the wiring should be inserted inside the column con-
taining the block RAMs in order not to alter the regularity of the soft fabric. The selection
lines of these multiplexers are controlled by SRAM bits that are programmed during the
conventional FPGA configuration process in the same as programmable multiplexers of
the routing resources. Fig. 5.6 illustrates the connectivity among the Block RAMs , the
hard router, the network interface and the FPGA fabric.

Consequently, the proposed hard NoC has two modes of operation. First, when the
NoC is needed in a certain design, the added multiplexers are programmed to connect
the adjacent block RAMs to the hard router to act as its input buffers, and to connect the
network interface to the FPGA fabric, allowing the FPGA fabric to use the high commu-
nication bandwidth of the NoC. On the other hand, when an implemented design does not
need the NoC, the block RAMs are disconnected from the hard router and can be used
normally by the FPGA fabric.
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Chapter 6

Results and Discussion

In this chapter, we evaluate the performance of the proposed hard NoC and compare it
with other NoCs presented in literature. In order to evaluate the NoC according to various
performance measures discussed in Chapter 3, a parameterized RTL implementation of
the proposed router is developed using Verilog (the industry-standard hardware descrip-
tion language).

6.1 Network Performance
To measure the network performance of the proposed NoC, the standard setup for

evaluating interconnection networks, which is discussed in Chapter 3, are used. Sixteen
routers are connected together to form a 4 x 4 mesh network. A packet source is connected
to the local input port of each router. Both the packet injection rate and the traffic pattern of
the packet source are configurable to allow evaluating the network performance at different
loads. The packet source performs look-ahead routing to determine the VC field bits of
the generated packets according to their destination. Network throughput and network
latency are measured by RTL simulations using the same way described in Chapter 3.
The “accepted vs. offered traffic” and “load-latency” curves of the implemented NoC,
under different traffic patterns, are shown in Fig. 6.1 and 6.2. The proposed NoC has a
maximum throughput of 0.66 flits/cycle/node and a zero-load latency of 8.6 cycles under
uniform traffic.

6.2 Hard and Soft Implementation
The proposed router is implemented on UMC’s 65 nm ASIC technology (hard imple-

mentation). The area, delay and power estimation of the implemented router are provided
by Synopsys Design Compiler 10.3.

First, the whole router (with internal input buffers) is implemented. This implementa-
tion will not be used in our hard NoC as we have proposed to use the FPGA block RAMs
as our input buffers. It will be used only to compare our proposed router with other routers
presented in literature. The design achieves a maximum operating frequency of 1 GHz. It
has a dynamic power of 39 mW. The reported router area is 67000 µm2.
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Figure 6.1: Accepted traffic vs offered traffic curves under different traffic patterns
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Figure 6.2: Load-Latency curves under different traffic patterns
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Figure 6.3: Doubling the datapath between the router and block RAM

Then, the router with external input buffers is implemented which will be used in the
proposed hard NoC. As FPGA’s block RAMs will be used in this NoC, we must assert
that they will not be the delay bottleneck of the NoC. From the Virtex-5 (a 65 nm FPGA)
data sheet, the block RAM clock to output delay is 0.61 ns only which will not affect the
maximum operating frequency of the router [43].

In case the link between the router and the block RAM limits the maximum operating
frequency of the router, this can be solved by doubling the datapath between the router
and block RAM, as shown in Fig. 6.3. Instead of storing the incoming flit directly in
the memory, the flit is temporally stored in a register until another flit from the same
packet arrives, and then they are stored together in the same memory location. The same
procedure is done when reading from the memory. In this way, the Block RAM can work
at half the speed of the router. This architecture only adds one cycle latency.

To be sure that the hard links between routers will not limit the frequency, a study has
been done in [18] which shows that a hard link can traverse more than one-third of the
largest 65 nm FPGA’s dimension at frequency of about 1 GHz. As we have four routers in
each dimension, our proposed router can work at its maximum frequency which is equal
to 1 GHz. The dynamic power consumed in the router (excluding the Block RAMs) is
only 5.4 mW.

The router hard area (router area without the associated block RAMs) has reduced
dramatically to reach 9513 µm2. As our target is to reduce the cost of embedding hard
NoC in FPGA and to reduce the wasted area when the NoC is not in use, this result is
the most important achievement in our work. To show the significance of this result,
we compare it with the area of the different components of Stratix III, a 65 nm ASIC
technology FPGA, which is reported in [41]. The area of one LAB (FPGA cluster) is
22100 µm2 which is more than double the area of our proposed hard router.
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After synthesizing our design using Design Compiler, Cadence Encounter is used to
complete the ASIC flow until the layout generation. First, the floorplan is specified as a
column so it can be attached to an FPGA fabric layout. The Block RAMs are arranged
in the column, and the router and the NI are placed among them, as shown in Fig. 6.4a.
Moreover, the programmable multiplexers are added which enable the usage of block
RAMs as conventional memory (for the FPGA fabric) or as the router’s input buffers. Af-
ter specifying the floorplan, the power rings and strips are added to connect the VDD and
GND to the standard cells. Then, the standard cell are placed according to the specified
floorplan. After that, timing optimizations and clock tree synthesis are performed. The
final step is routing the design.

The final layout is shown in Fig. 6.4b in which the highlighted area is the layout of
both the router and the NI. This layout acts only as a proof of concept because the layout
of Block RAMs is not accurate. The synthesis process carried by the Design compiler
maps everything into standard cells. Hence, instead of implementing the Block RAMs in
the conventional compact way as array of SRAM cells, Design compiler maps each bit
in the buffer memory into D flip-flop. For correct implementation, a Memory Compiler
software should be used to generate the SRAM memory model and layout for the Block
RAMs.

The proposed router is implemented also on Xilinx Virtex-5 FPGA xc5vlx50t-3ff1136
(Soft implementation) which is also a 65 nm ASIC technology FPGA. Xilinx ISE 14.6
software are used for synthesizing, mapping, placing and routing the design. It is used
also for estimating the design’s area, delay and power after place and route. The proposed
router has a maximum operating frequency of 205 MHz and consumes a dynamic power
of 137 mW. The design utilizes 929 LUTs, 603 registers and 5 Block RAMs.

These results show the significant advantages of using hard NoCs over soft NoCs.
Both hard and soft implementation are done on a 65 nm technology. The hard router is
~5x faster than the soft router. The hard implementation consumes less than third the
power of the soft implementation. There is no direct way to compare the area, however,
some rough estimation can be done. The soft implementation uses 1029 BLEs (LUT-FF
pair). There is no reported information about the area of Virtex-5 BLE, however, the
reported area of Stratix III BLE can be used instead as both of them are implemented
using the same technology. This neglects the difference in architecture between the two
BLEs, however, it is acceptable as a rough estimation. The area of Stratix III BLE is
1100 µm2 [6, 41], leading to a soft router area of ~1 mm2 (excluding the block RAMs).
Consequently, the hard router is ~100x smaller than the soft router.
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Figure 6.5: Load-Latency curves under uniform traffic

6.3 Comparison
In this section, the previous results of the router is compared to other routers presented

in literature. The used routers in the comparison are SOTA and CONNECT, discussed in
Chapter 3, as both of them are configurable parameterized routers. To achieve a fair com-
parison, SOTA and CONNECT are configured using the same parameters of the proposed
router. The flit width is 32-bit, the packet length is 4-flit, the buffer depth is 8-flit/VC, and
the topology is Mesh with 16 nodes.

As most of input buffers of our VOQ router have four VCs, a 4-VC version of SOTA
and CONNECT is used in the comparison. A 2-VC version of SOTA and CONNECT
is also used because it is the optimum number of virtual channels in a 16-node NoC as
shown in chapter 3. The same simulation setup are used for all the participating routers,
and all of them are implemented on UMC’s 65 nm ASIC technology.

To compare the overall NoC performance, a load-latency curve scaled with the max-
imum operating frequency of each router is computed for each NoC. The load-latency
curves are shown in Fig. 6.5 under uniform traffic. The proposed router has the highest
throughput. Although CONNECT is a single stage router which leads to a low network
latency, measured in cycles, the proposed router has the lowest latency, measured in ns,
due to CONNECT’s low operating frequency.
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This work SOTA 4VC SOTA 2VC CONN. 4VC CONN. 2VC
Max. Freq. (MHz) 1000 826 961 543 561

Area (µm2) 67 k 124 k 62 k 96 k 50 k
PDP (pJ) 39 60 31 59 30

Table 6.1: A comparison between this work, SOTA and CONNECT in terms of
maximum frequency, area and power-delay product

Table6.1 compares maximum frequency, area and power-delay product (PDP) of the
routers. The proposed router has the lowest delay and a comparable power. The area of the
proposed router is significantly lower than 2-VC routers despite they have nearly the same
number of buffers. The proposed router has slightly higher area than 2-VC routers which
have nearly half the number of buffers. This shows that the area of the router without
the buffers (which we refer to as the hard area) is significantly lower than other routers.
CONNECT consumes small area but it has a very low operating frequency on silicon (it
is designed for FPGAs not ASIC) which results in a very bad NoC performance as shown
in 6.5.

Then, we compare the proposed embedded hard NoC with the another proposal for
embedding hard NoCs in FPGA presented by researchers in University of Toronto [18].
The used NoC in the Toronto proposal is a Mesh NoC with 64 nodes. It utilizes the 2-
VC SOTA router with the following parameters: a flit width of 32-bit, a packet length
of 4-flit, and a buffer depth of 5-flit/VC. It is implemented also using a 65 nm ASIC
technology. The Toronto work reports only the implementation results and does not show
the network performance of the NoC. Thus, to fully compare our work with Toronto work,
we regenerate the used NoC and measure its network performance.

In Toronto work, they inflated the Design Compiler’s reported area by 66.7% to ac-
count for the area used for wiring, inserted buffers and whitespaces (filled by fillers) in
the placement and routing process. Thus, for a fair area comparison, we did the same to
the reported area of our router. The total area of the NoC consists of hard routers, net-
work interfaces, and hard and soft input/outputs. We also use the same methodology of
Toronto work in computing the area of input/outputs. For hard inputs/outputs connecting
between the routers, they used a CMOS driver of 13 µm2to drive each hard link [18]. For
soft input/outputs connecting between the network interface and FPGA fabric, they used
an interconnect multiplexer of 120 µm2 at each input/output [18].

In this comparison, we will compute two values for the area: a total area and a hard
area. The total area comprises the area of routers including their shareable input buffers,
network interfaces, CMOS drivers and interconnect multiplexers. While the hard area
represents the total silicon area exclusively used by the hard NoC (the added silicon area
to the FPGA to enable NoC). It will be the same as the total area excluding the input buffers
(FPGAblockRAMs) and the interconnectmultiplexers. The interconnectmultiplexers are
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This work [18]
Total Area (mm2) 2.2 11.3
Hard Area (mm2) 0.32 11.3
Max. Freq. (MHz) 1000 943
Total PDP (nJ) 0.6 2.8

Total Throughput (Gflits/s) 10.5 6
Zero-load latency (ns) 8.6 21.8

Table 6.2: A comparison between this work and [18] in terms of area, maximum
frequency, power-delay product, total throughput and zero-load latency.

excluded because, as we discussed in chapter 5, we will utilize the existing interconnect
multiplexers connecting the FPGA fabric to the block RAM, so we will need only a simple
2:1 multiplexer of 3.6 µm2 at each input/output for selecting between the block RAM and
the network interface. Thus, the total area and hard area are given by equation 6.1 and
equation 6.2 respectively.

Total Area = (Router Areawithbu f f ers+NI Area)∗1.667∗16

+(No.o f hard IO∗13µm2+No.o f NI IO∗120µm2)∗16 (6.1)

Hard Area = (Router Areawithout bu f f ers+NI Area)∗1.667∗16

+(No.o f hard IO∗13µm2+No.o f NI IO∗3.6µm2)∗16 (6.2)

Table 6.2 shows a detailed comparison between the two NoCs in terms of total area ,
hard area, maximum frequency, total PDP (including the power of the shareable buffers) ,
total NoC throughput (NoC throughput times the number of nodes) and zero-load latency.
The bad performance of the NoC used by the Toronto proposal is due to its large number
of nodes which is not the optimum number of nodes, as we have proved in our work in
Chapter 3.

In their most recent work, published in 2016, they modified the NoC parameters in
order to be suitable for 65 nm FPGA [19]. The number of nodes was chosen to be 16
only. Moreover, they used a flit width of 128-bit instead of 32-bit, in order to transport
the full bandwidth of DDR3, i.e. an FPGA I/O interface that has the highest bandwidth,
on a single NoC link. The implementation results of this configuration is available on
their FPGA-NoC Designer online tool [44]. To achieve a fair comparison, we modified
the flit width of our proposed NoC to the same value. The detailed comparison is shown
in Table 6.3. (N.B. At a flit width of 128-bit, the conventional FPGA block RAMs should
be modified to support this data width)

These results show that the optimizations done in chapter 4 have significantly mini-
mized the resources needed for implementing the router without affecting the NoC perfor-
mance. Moreover, the proposed idea of sharing the block RAMs has dramatically reduced
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This work (128-bit) [19]
Total Area (mm2) 8.1 8.5
Hard Area (mm2) 0.72 8.5
Max. Freq. (MHz) 990 917
Total PDP (nJ) 2.3 2.5

Total Throughput (Gflits/s) 10.4 8
Zero-load latency (ns) 8.6 15.9

Table 6.3: A comparison between this work and [19] in terms of area, maximum
frequency, power-delay product, total throughput and zero-load latency.

the cost of embedding the hard NoC withing the FPGA. The proposed NoC has a total
throughput of 330 Gbps or 1330 Gbps (at a flit width of 32-bit or 128-bit respectively).
This NoC can be embedded inside the FPGA by adding a small silicon area of 0.32 mm2

or 0.72 mm2 to the conventional FPGA. It is worth noting that the total core area of 65-nm
Stratix III FPGA is 412 mm2 [41].
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Chapter 7

Conclusion and Future Work

7.1 Conclusion
This thesis proposed an efficient FPGA-based hard NoC. First, we investigated various

NoC design parameters using two NoCs, an ASIC-oriented NoC and an FPGA-oriented
NoC. We also provided simulation results and design recommendations that can be used
by NoC designers to select NoC parameters which give the optimumNoC performance for
the targeted applications. The simulation results show that a mesh network with 16 nodes
is the optimum configuration for a NoC especially on an FPGA platform. The optimum
buffer depth is equal to two whole packets.

Secondly, different router architectures were studied to select the best-fit architecture
for the hard NoC. A VOQ architecture was found to be a suitable choice as it provides
good network performance while using minimum resources. A detailed design of each of
the internal components of the router (input module, switch allocator, crossbar and output
module) was performed. Then, each of these components was optimized according to the
selected design parameters.

Moreover, we designed a network interface that connects the soft modules to the pro-
posed NoC. We proposed that the FPGA’s block RAMs should be shared between the
NoC and the FPGA fabric. This sharing dramatically decreases the wasted area when the
NoC is not in use. We also proposed a novel way for placing the hard NoC’s routers inside
the FPGA. Placement of routers in the same column of block RAMs would preserve the
homogeneity of the FPGA and minimize the consumed area.

Finally, the hard NoC was implemented on a 65 nm ASIC technology and was com-
pared to other NoCs presented in literature. The proposed NoC outperforms other previ-
ous hard NoCs in terms of area, maximum frequency, power-delay product, total through-
put and zero-load latency. The proposed hard NoC provides FPGAs with high perfor-
mance communications structure that is capable of transporting a traffic of 10 Gflits/s
which is equivalent to 330 Gbps (at a 32-bit flit width) or 1.3 Tbps (at a 128-bit flit width)
on 65 nm technology at a negligible cost of 0.32/0.72 mm2 which is equivalent to 16/32
logic clusters (A 65nm Stratix III FPGA contains up to 13500 clusters).

79



7.2 Future Work
• Using VTR tool to model the FPGA with the hard NoC and evaluating it against

different applications.

• Completing the whole layout of the FPGA, and replacing the standard-cell imple-
mentation of block RAMs with a full-custom implementation.

• Using the hard NoC also as the FPGA’s configuration network to simplify parallel
compilation and partial dynamic reconfiguration.
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الʙسالة ʝʳمل

Șقائʛال ʦʤʻل مفʹلة مʸʻة للʛʰمʳة القابلة الʺʢʻقʽة الʨʰاǼات مʸفʨفات ʗʴʰأص ʙلق
كʴل الإلʛʱؔونʽة Șقائʛال شȞʰات بʛزت الإلʛʱؔونʽة، Șقائʛال ʦʤن ʦʳح زȄادة مع و الإلʛʱؔونʽة.
الإلʛʱؔونʽة Șقائʛال شȞʰات أهʺʽة ازدادت ،ʥذل على بʻاء و وحʙاتها. ʧʽب الاتʸال لʺʷاكل ʙواع
ʧʽب الاتʸال مʷاكل لʴل Ȍفق ʝʽل للʛʰمʳة، القابلة الʺʢʻقʽة الʨʰاǼات ʸʺǼفʨفات الʵاصة
الʺʢʻقʽة الʨʰاǼات مʸفʨفات ȌǼروا لȌʰء كʴل اǽʹا ʧؔل و الإلʛʱؔونʽة Șقائʛال ʦʤن وحʙات
الإلʛʱؔونʽة Șقائʛال شȞʰات جʜئʽة. ʨʸǼرة الʺʸفʨفة تʽȞʷل اعادة لʶʱهʽل و للʛʰمʳة القابلة
ʡاقة ʥهلʱʶت انها كʺا للʛʰمʳة القابلة الإلʛʱؔونʽة Șقائʛال شȞʰات ʧم أفʹل أداء لʙیها الʲابʱة
الȞʰʷة تʨؔن عʙʻما للʺʶاحة هʙر في ʖʰʶʱت و للʽȞʷʱل قابلة ʛʽغ لʻؔها و أقل، مʶاحة و

صعȃʨة. ʛʲأك تʽʺʸʺها جعل مʺا مʱʶغلة ʛʽغ
أجل ʧم الإلʛʱؔونʽة Șقائʛال لȞʰʷات الʺʱʵلفة ʦʽʺʸʱال عʨامل ʦʽʽتق ʦʱی الʛسالة، هʚه في
ʥلʚك و الʲابʱة. الإلʛʱؔونʽة Șقائʛال شȞʰات في اسʙʵʱامها ʧȞʺǽ الʱي الʺʻاسʰة للعʨامل الʨصʨل
تʽʺʸʺه ʦت ȑʚال الʺʨجه ǽقلل الʺʲالʽة. الʽʻʰة لاخʽʱار الʺʨجهات لʽʻʰة مʱʵلفة ʦʽامʸت ʦʽنق
في نقʛʱح ،ʥذل على علاوة ة. للʺʷارؗ قابلة و قلʽلة مʨارد اسʙʵʱام ȘȄʛʡ ʧع الʺهʙرة الʺʶاحة
مʸفʨفات بʙاخل الʲابʱة الإلʛʱؔونʽة Șقائʛال شȞʰات لإدراج حʙیʲة مʲالʽة Ȅʛʡقة الʛسالة هʚة
بʽʻʰة الʺʢʻقʽة الʨʰاǼات مʸفʨفات الʺقʛʱحة الȞʰʷة ʙʺت للʛʰمʳة. القابلة الʺʢʻقʽة الʨʰاǼات
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