SOFTWARE DEFINED RADIO USING DYNAMIC
PARTIAL RECONFIGURATION

By

Ahmed Mohamed Sadek Mabrouk

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Electronics

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

SOFTWARE DEFINED RADIO USING DYNAMIC
PARTIAL RECONFIGURATION

By

Ahmed Mohamed Sadek Mabrouk

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Electronics

Under the Supervision of

Prof. Amin Nassar Dr. Hassan Mostafa
Professor Assistant Professor
Electronics and Communications Electronics and Communications Engineering
Department Department
Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

SOFTWARE DEFINED RADIO USING DYNAMIC
PARTIAL RECONFIGURATION

By

Ahmed Mohamed Sadek Mabrouk

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Electronics

Approved by the Examining Committee:

Prof. Amin Nassar, Thesis Main Advisor

Prof. Third E. Name, Thesis Advisor

Prof. Second S. Name, Internal Examiner

Prof. First S. Name, External Examiner
(Some Faculty, Some University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

Engineer’s Name:

Date of Birth:
Nationality:
E-mail:
Phone:
Address:

Registration Date:

Awarding Date:
Degree:
Department:

Supervisors:

Examiners:

Title of Thesis:

Ahmed Mohamed Sadek Mabrouk
07/06/1983

Egyptian

ahmd.sadk @ gmail.com
+201000765843

Electronics and Communications
Department, Cairo University,
Giza 12613, Egypt

01/10/2010

dd/mm/yyyy

Master of Science

Electronics and Communications

Prof. Amin Nassar
Dr. Hassan Mostafa

Prof. Amin Nassar
Prof. Third E. Name
Prof. Second S. Name
Prof. First S. Name

Insert photo here

(Thesis Main Advisor)
(Thesis Advisor)
(Internal Examiner)
(External Examiner)
(Some Faculty, Some
University)

Software Defined Radio using Dynamic Partial

Key Words:

Reconfiguration

Software Defined Radio; Dynamic Partial Reconfiguration; FPGA; Xilinx-5;
Cognitive Radio; Reconfigurable Computing; 2G; 3G; LTE; WIFI

Summary:

A novel design is proposed for implementing different communication chains
using adaptable single chain and results shows an improvement in area and power

consumption. This proposed work shows the advantages of using FPGA feature,

Dynamic Partial Reconfiguration (DPR), in the implementation of Software Defined
Radio (SDR) System that can switch among different communication standards such
as 2G, 3G, LTE, and WIFIL. The SDR system is being hardware reconfigured real
time to simulate Multi-Standard / Multi-Mode communication systems, where the
reconfiguration is being held on FPGA partially and dynamically while the FPGA is

fully functioning.

Acknowledgments

Alhamdulillah, all praises and gratitude to Allah, the almighty, for all his blessings
and support me with the strength and health to complete this thesis. I would like to thank
my academic advisors Prof. Amin Nassar and Dr. Hassan Mustafa for supervising and
encouraging me during my thesis. Also, I would like to thank Prof. Serag El-Din Habib
for providing me with Xilinx kit for Hardware implementation and testing. I would like
to thank Ahmed Atteya, Sharad Sinha and Hasan Baig for their time and long support in
transferring knowledge to me.

Dedication

To my mother (Wafaa) soul, my father (Mohamed), my wife (Hoda), my son (Abd
ALLAH), family (Nehal, Nisma, Mohamed) and nephews (Logy, Jana, Malek, Maryem)
who supported me to complete this work.

11

Table of Contents

Acknowledgments

Dedication

Table of Contents

List of Tables

List of Figures

List of Nomenclature

Abstract

1 Introduction

1.1
1.2
1.3

1.4
1.5
1.6

Motivation e e e
Communication SYSt€m u e e
Software Defined Radio(SDR)
1.3.1 TermsusedwithSDR
1.3.2 Benefitsandcostsof SDR
1.3.3 SDRplatforms
FPGA Dynamic Partial Reconfiguration (DPR)
Ideaofresearch
Organizationof thethesis

2 Dynamic Partial Reconfiguration

2.1

2.2

2.3

FPGA overview e
2.1.1 Xilinx Virtex-5 e
2.1.2 Configurable Logic Blocks (CLBs)
2.13 DSPand BlockRAM
2.1.4 MicroBlaze softcore processor
FPGA reconfiguration
2.2.1 Advantages and disadvantages of reconfiguration.
2.2.2 Reconfigurable FPGAs
2.2.3 Reconfiguration time overhead
224 DPRtermso
Partial reconfiguration factors oL
2.3.1 Configurationmode
2.3.2 Reconfigurable module stylebased

111

ii
iii
vi

vii

ix

xi

2.3.3 Configuration memory array types v e u
2.3.4 Type of reconfiguration
2.4 Advanced topics on partial reconfiguration
2.4.1 Reconfigurable partitionstyle
2.4.2 Connection constraints
2.4.3 Configuration memory layers (3D-FPGAs)
244 DPRintimedomain(4D)
25 Summary .. o.o. ..l e e

Channel coding DPR implementation using MicroBlaze
3.1 Forward error Correction i i i e
3.1.1 Convolutionalencoders
3.1.2 2Gconvolutionalencoder
3.1.3 3Gconvolutionalencoder
3.1.4 4G convolutional encoder,
3.1.5 WIFIconvolutionalencoder
3.2 Convolutional encoder summary
33 Labsetup
3.4 General Encoder Module (GEM)
3.5 Single-Loaded Encoder Module (SLEM)
3.6 Results forthetwosystems
3.6.1 Areaoccupiedonthe FPGA
3.6.2 Memoryneeded
3.6.3 Powerestimation
3.64 Timeoverhead
3.6.5 PTFtriangle
377 Conclusion

SDR chain implementation
4.1 Communication standards similarities
4.2 Implemented design
4.3 General system e e
4.4 Labsetup o e e e
4.5 Systemresults
4.5.1 Areaoccupiedonthe FPGA
452 Memoryneeded
453 Powerestimation.
454 Timeoverhead
4.6 Conclusion e

Conclusion and Future work
5.1 Future work willinclude

List of Publications

References

v

A Xilinx Design Flow 60

Al DesignFlow 60
A.1.1 FPGA designflow L. 60

A.1.2 ISE Suit for developing Xilinx FPGA 61

A.1.3 Xilinx DPR Design Flow 62
Arabic Abstract ‘

List of Tables

1.1
2.1

3.1
3.2
33
34
3.5

4.1
4.2
4.3
4.4
4.5
4.6

OSImodel 3
FPGA configuration modes[19] 18
Convolutional encoders used in different communications systems 30
Area utilization for SLEMandGEM 35
Memory needed for SLEMand GEM 35
Power consumption Lo 36
Configuration and reconfigurationtime 36
SLMdesignrunslist 46
SLM selected designruns 46
Designareasummaryo e e 51
Number of LUTs used per design run versus general design 52
Memory needed for SLM and GCSM 52
Power consumed in the SDRchain 53

vi

List of Figures

1.1 Simple communication system 3
1.2 Ideal SDRsystem e 4
1.3 Partial reconfiguration L Lo 6
1.4 Value vs volume for ASIC and FPGA 6
2.1 FPGA internal construction. 9
2.2 Softcore and Hardcore processor 11
2.3 CLB routing matrix in Virtex-5 12
2.4 CLB Row and Column relationship in Virtex-5 12
2.5 MicroBlaze block diagram 13
2.6 FPGA configuration types o v v v v it v 16
2.7 FPGA configuration time overhead 17
2.8 FPGA configurationmodes 19
2.9 Reconfigurable module stylebased 20
2.10 Configuration memory array types v v v v v v v 21
2.11 Reconfigurable partition styles 22
2.12 Connection constrains between static and dynamic regions 23
2.13 Configuration memory layers 23
214DPRintime L 24
2.15DPRfactors 25
3.1 Convolutional encoderwindow 27
3.2 Convolutional encoder example 27
3.3 Convolutional encoderusedin3G 28
3.4 Convolutional encoderused in LTE 28
3.5 TurboencoderusedinLTE 29
3.6 Convolutional encoder used in WIFI 802.11a/g 29
3.7 Convolutional encoder labsetup 31
3.8 GEM design, switching is done using multiplexer 32
3.9 SLEM design, encoder loaded during FPGA run-time 33
3.10GEM and SLEM floorplan L. 34
3.01PTF triangle 37
4.1 Different communication chains L. 40
4.2 3G,4G and WIFI communicationchain 41
4.3 Reconfigurable SDRchain 41
4.4 Schematic of the SDRchain 41

Vil

4.5 SDR chain floorplanning using PlanAhead 43

4.6 Full system e 44
477 SDRchainlabsetup 45
411GSCMdesign oo e e 46
4.8 DR_1 for 3G loaded modules in the SDR chain 47
4.9 DR_2 for WIFI loaded modules in the SDRchain 48
4.10 DR_3 for LTE loaded modules in the SDRchain 49
4.12GCSM floorplaning 50
A.1 FPGA designflow 61
A2 Xilinx FPGA designflow oL L. 62
A3 Xilinx DPR Design Flow 64

viil

List of Nomenclature

Abbreviation Description

2G Second Mobile Generation.

3G Third Mobile Generation.

3GPP 3rd Generation Partnership Project.

ADC Analog to Digital Converter.

ASIC Application Specific Integrated Circuit.

CF Compact Flash.

CMOS Complementary Metal Oxide Semiconductor.
CR Cognitive Radio.

DAC Digital to Analog Converter.

DPR Dynamic Partial Reconfiguration.

EDK Embedded Development Kit.

FEC Forward Error Correction.

FPGA Field Programming Gate Array.

GEM General Encoder Module.

GSM Global System for Mobile communications.
ICAP Internal Configuration Access Port.

IEEE Institute of Electrical and Electronic Engineers.
ISE Integrated Synthesis Environment.

JTAG Joint Test Action Group.

LTE Long Term Evolution.

LUT Look Up Table.

OFDM Orthogonal Frequency Division Multiplexing .
PBS Partial Bit Stream.

PLB Programmable Logic Block.

PRM Partially Reconfigurable Modules.

PRR Partial Reconfigurable Region.

X

SDK
SDR
SLEM
SoC
SRAM
UMTS
WCDMA
XPA
XPS

XST

Software Development Kit.

Software Defined Radio.

Single Loaded Encoder Module.

System on Chip.

Static Random Access Memory.

Universal Mobile Telecommunications System.
Wideband Code Division Multiple Access.
Xilinx Power Analyzer.

Xilinx Platform Studio.

Xilinx Synthesis Technology.

Abstract

The Software Defined Radio (SDR) is a communication system designed with its
physical layer that can be implemented as software blocks. Unlike the normal radio
transceivers, where communication blocks are built in a fixed environment and optimized
performance to process certain waveform. The SDR software blocks can be easily
configured and tolerated using software to process many waveforms. As the flexibility
in the digital front-end reconfiguration increases, this allows SDR to be achievable.
Where the same set of hardware can operate Multi-Standard Communication Systems
(MSCS). The benefits of the SDR increase when the hardware reconfiguration is flexible
to perform dynamic and real-time reconfiguration. In other words, the hardware flexibility
allows the SDR dynamic system to implement different waveforms and takes place
real-time without the need to switch off the system. The hardware reconfiguration
concept exists from decades and passes through many phases. Field Programmable Gate
Array (FPGA) is considered one of the best solutions for implementing reconfigurable
hardware. Where in this thesis the FPGA new technique, Dynamic Partial Reconfiguration
(DPR), is used in a novel design to allow a hardware switching among different wireless
communication standards. Using DPR in SDR combines the hardware performance and
software flexibility to perform the SDR.

In this work, SDR using DPR is presented in two parts. The first part serves
as a proof of concept for switching among different convolutional encoders used in
different communication standards and different modes of operation per each standard.
Where embedded systems and System on Chip (SoC) concepts are adopted to perform
the dynamic and real-time switching. In this part the DPR concept is verified, where
convolutional encoders used in different modes of operation of 2G, 3G, LTE and WIFI
are realized and tested in two different ways. The first implementation is realizing the full
encoders on the same chip at the same time, named as General Encoder Module (GEM)
design. In the second implementation, a switching is performed by adopting SoC concepts
and FPGA DPR technique, named as Single Loaded Encoder Module (SLEM) design. In
SLEM design, only one encoder is loaded per time on the demand of being used. A
comparison between the two designs shows improvement in size by 67% and in power
by 64% on using DPR technique in the SLEM implementation compared to the GEM
implementation. On the contrary, a negligible latency and small extra memory size are
required in the SLEM implementation.

In the second part of the thesis, the DPR concept is verified for SDR through
implementing a preliminary chain which is used in the transmitter of the different wireless
communication standards such as 3G, LTE and WIFI. A real-time reconfiguration of the

X1

digital communication blocks for these standards is done using DPR technique on the
FPGA. The reconfiguration is done and tested among different modes of operation for
the 3G, LTE and WIFI, and shows how the hardware blocks can be completely changed
by loading the different modules on the demand of operation for a specific standard.
A comparison is done with static communication system consists of a single mode of
operation per each standard.

As a conclusion, the Single Load Module (SLM) concept by using DPR for the SDR
reconfigurable system allows compact system design for the limited hardware resources
and extend battery life in the continuous upgrading and variety of communication

standards. This also extends the radio network resources optimization using the SDR.
This thesis work is implemented and tested on Xilinx Virtex 5 kit XUPV5-LX110T.

Xii

Chapter 1

Introduction

This Chapter introduces the idea of the Software Defined Radio (SDR) and provides an
overview of the communication system blocks. It also discusses the choice of the FPGA
in the SDR system, and how the FPGA is adopted by using the technique of Dynamic
Partial Reconfiguration (DPR) in the SDR system realization. At the end of this chapter,
the thesis organization is listed.

1.1 Motivation

In the last two decades, there has been tackling efforts from both the technological and
industrial fields on how to increase the connectivity among people. The communication
standards are being developed and upgraded to satisfy the speed and the time to handle
connectivity among the users whose number is increasing with time. Consequently,
this leads to the existence of different communication standards, but as a drawback
the radio frequency spectrum is not utilized in an efficient way [1, 2], where the
communication bands are not used simultaneously at the same time. The research in the
radio spectrum utilization leads to two approaches to solve this problem, the first approach
is the Intelligent Antenna (IA) which is an antenna array technology that uses spatial
beamforming and signal processing algorithms to cancel interference and reuse of the
space resources[3]. IA depends on the Dirty Paper Coding (DPC) technique. The second
approach is the Cognitive Radio (CR) which dynamically configures the user terminals,
to utilize the radio spectrum that is not used, depending on the available wireless channels
detected without interfering with the other users. In other words, CR is considered a way
of managing the radio spectrum in an efficient way and it can be developed using the SDR
techniquel[4, 5].

Generally, In a Multi-Standard Communication System (MSCS) there exist two major
problems, the utilization of the radio spectrum pointed to in the previous paragraph and
utilization of hardware. As each standard has its own transceiver this leads to high
cost, large area, high power consumption and low battery life. In the same time, the
development of the central base stations and the users’ devices changes tremendously to
adapt to the new technologies and support the old ones. Developing hardware, upgrading
and redistributing costs money and effort. These two major problems, unutilized radio
spectrum and waste in hardware, lead to start searching to find a new way of reusing

(reconfiguring) the same set of hardware to operate the old and new technologies. The
utilization of the radio resources and the physical hardware resources can be done by
offloading data transmitted between the different communication systems, and in the same
time reconfiguring the hardware resources or reordering them to switch from a standard
to another.

The SDR is a way of radio system implementation using software, which is used to
form different waveforms. These waveforms allow the system to switch among different
communication standards. The motivation of the SDR came from the existence of some
physical layer blocks has the same functionality in the different communication systems
like (GSM, UMTS, LTE, etc...). Note that, these standards are not used at the same time
which allows their hardware resources and radio spectrum resources to be used in a more
efficient way. Also, the switching among the different waveforms should be dynamic,
more or less in real time. The DPR is a technique used in the Field Programmable Gate
Array (FPGA), which allows hardware real time reconfigurable computing system. The
DPR can be adopted using its capability of dynamically changing and partially configured,
to implement real time SDR system.

1.2 Communication system

Figure 1.1 shows the main blocks in a modern communication system. It is composed
of a Digital Signal Processing (DSP) unit, digital and analog converters (Digital to
Analog Converter (DAC), Analog to Digital Converter (ADC)), RF front end and antenna.
Because of achieving high data rates by processing communication signal digitally using
software, which is more easily to develop, distribute and upgrade, the digital transceivers
penetrates the traditional analog transceivers by pushing the digital and analog converters
towards the antenna and pulling the communication systems more to software design on
a given hardware. However, this work will concentrate on the DSP block whereas a brief
description for each block is presented as follows:

Digital Signal Processing Block: In the transmitter, this block is responsible for
signal adaptation to be sent over a channel. Signal adaptation includes encryption, error
correction coding schemes, modulation and further more. Whereas in the receiver this
block is responsible for extracting the original information sent, by reconstructing the
signal using demodulation, decoding and decryption. This block increases the flexibility
of the radio development.

DAC/ADC Blocks: Analog and digital converters used to transfer the signal between
the analog domain and digital domain. Using ADC, the received signal is being digitized
to be processed digitally using the DSP block. The digital representation depends on the
sampling rate that leads to some information loss. While the DAC is reconstructing the
signal to nearly the original one.

RF Front End Block: It is the classical block that contains the Low Noise Amplifier
(LNA), filters and Power Amplifiers (PA). Where this block is the most challenging block
in the SDR development.

Antenna: generally the antenna is a passive device used to capture the electromagnetic
waves from the surrounding media, and converts it to an electrical signal. The antenna
design complexity varies from a single antenna to multiple antenna arrays. Where the
smart antenna is an antenna array that uses the signal processing algorithms to locate
the direction of signal arrival. And the reconfigurable antenna is capable of changing its
frequency for adaptable systems.

Tx Direction

g V4

Digital Signal DAC
Processing ADC RF Front End Antenna
) Rx Direction

Figure 1.1: Simple communication system

1.3 Software Defined Radio (SDR)

The daily usage of communication standards is increasing. Phone calls, accessing the
internet, sharing data and controlling devices are examples of modern communication
usage. The devices held these standards vary in shape, functionality and the way of
usage like mobile phones, wireless routers, smart chips, smart metering and even more.
Although it is not easy to invent a generic device that can do everything, but it is achievable
to manage the way of communication between them all. Zooming into this big picture
to find adaptable communicating device to communicate the language (communication
standard) of the other device. This adaptation is easier to be done through software defined
modules, where these modules can change functionality by using the software. The SDR
term defined by wireless innovation forum (formerly SDR forum) as “Radio in which
some or all of the physical layer functions are Software Defined”. The physical layer
is the lowest layer in the Open Systems Interconnection (OSI) seven-layer model shown
in Table 1.1. Within this layer, Radio Frequency (RF), Intermediate Frequency (IF) or
baseband signals are being processed in addition to data encoding / decoding, modulation
/ demodulation and signal adaptation techniques.

Table 1.1: OSI model

’ Layer \ Number \ Name \ Functionality Data Type

7 Application | Machine-User interfacing Data
6 Presentation | Encryption and compression Data

Host - — —
5 Session Authentication and permissions Data
4 Transport End-to-end connection and error control | Segment
3 Network Routing and logical addressing Packet

Media | 2 Data Link Error detection and physical addressing | Frame
1 Physical Physical medium and signal processing | Bit stream

1.3.1 Terms used with SDR

Digital transceivers: It is transceivers, where the DAC and ADC are attached to
the antenna, allowing all baseband to be processed digitally. The SDR finds its way
accompanying with the digital transceiver, to easily process the signal through digital
blocks in software modules which are easy to be developed and updated. Figure simplifies
the ideal block diagram of the digital transceivers.

Cognitive Radio: It has been investigated that radio spectrum is not utilized efficiently.
Most of the communication standards exist today are not used at same time, with different
usage distribution over time. The communication systems have to be developed to be more
aware of its surroundings and channel environment. From here the definition of Cognitive
Radio is the Radio that can adapt itself to the surrounding environment and take actions
to operate with the best performance. The SDR is utilized by the CR to manage the radio
spectrum.

Waveform: The information that is sent from a source terminal had to be adopted
to reach its destination with fewer errors, taking into consideration all the noise sources
exist due to medium conditions. The waveform is a set of transformations applied to
the information at the source to be sent and at the destination to be recovered. Figure
1.2 shows ideal SDR transceiver. A controller used to load waveform from n waveforms
saved in memory storage.

Digital Signal Processing

W1 Controller : 7

RF Front End and
WE2 Waveform - rront Bhdan Antenna
Signal Conversion

WE3

WEFEn

<
&
=]
=]
=
-

Figure 1.2: Ideal SDR system

1.3.2 Benefits and costs of SDR

There are many benefits of using SDR that it can be used in different industries and
applications, hereby listing some of this advantages:

Seamless connectivity: Using SDR allows communication systems to communicate
with different standards.

Adaptability: Communication systems can be adapted to the available radio spectrum
and frequency reuse that helps in CR for radio resources optimization.

Updateability: As software defined, the communication modules can be easily updated
and upgraded to allow new technology standards and modes of operation.

Costless: SDR operates different waveforms using the same hardware resources.

Reusability: The software modules implemented for a given standard for a product can
be used with another product. That decreases the time and effort for building the same
modules in other devices.

Remote upgrading: Modules can be loaded and upgraded remotely without returning
back to the lab.

The flexibility of the SDR comes with some disadvantages which are not related to
the idea itself but it is related to the design complexity. It takes too much time and effort
from engineers to develop different waveforms that can be adopted with the same set of
hardware.

1.3.3 SDR platforms

The digital signal processing part shown in Figure 1.2 can be carried on different
hardware platforms such as General Purpose Processor (GPP), Digital Signal Processors
(DSP) and Field Programmable Gate Array (FPGA). GPP is a microprocessor that
is optimized for a powerful computing but consumes more power, it can be used in
laboratories for research purpose. DSP is a microprocessor that is less power consumption
than GPP but its development is more difficult than the GPP, it is used in most of the
cellular terminals and basestations. FPGA is a microchip that can be configured by the
user for a certain purpose, which makes it the best solution for implementing hardware
blocks without unused logic gates, i.e. an 8-bit multiplier can be implemented in FPGA
while in GPP 32-bit multiplier will be used for the same 8-bit data. Modern FPGAs has
lower power consumption and can support up to 28 Gbps transceivers. It is also used in
many SDR products that handle radio signals with bandwidth up to 50 MHz.

1.4 FPGA Dynamic Partial Reconfiguration (DPR)

One of the FPGA capabilities that is developed in the last decade is the DPR. This
technique allows the FPGA to be configured partially and dynamically without switching
off the system. This high flexibility of the FPGA allows it to be used in the hardware
realization for SDR implementation. DPR helps in cost and resources reduction on the
FPGA chip, providing a flexibility where a system can dynamically be configured without
shutting it down. Moreover, this reconfiguration is done to a specific part instead of entire
chip reconfiguration. Figure 1.3 illustrates a simple idea behind the DPR technique used
in the modern FPGAs. Figure 1.3.a shows the full configuration of the FPGA that an
application consumes more area. Figure 1.3.b shows that the size of the application can
be reduced by using DPR technique. i.e, if this application has different blocks not used
at the same time so these modules can be time multiplexed. Each module can be loaded to
function for a certain period of time then another module to be loaded. Figure 1.3.c shows

A2

A2

Al Al
AN AN B3
\/ \/ ‘ B2
. . . Bl
Module Module Dynamic Dynamic Dynamic
Al A2 Module Module Module
A A B
. . . Dynamic
Static Module Static Static Modul <]:>
Module A3 Module Module odule
C c1
‘ C2

a

b

Cc

Figure 1.3: (a) Shows full FPGA configuration; (b) DPR technique to realize same
system; (c) Shows how the FPGA size increased theoretically

that using DPR increases the size of the FPGA theoretically to realize more applications
than regular FPGA configuration, this leads to more utilization of the FPGA resources.
By applying the concept of the Partial Reconfiguration in the Software Defined Radio, It
will result in a full reconfigurable wireless system which will be demonstrated through
the thesis. This concept may also be generalized to other fields of study.

Another benefit of the FPGA run-time reconfiguration, that it extends the FPGA
market compared to the ASIC market share. Figure 1.4 shows that the FPGA units used
in market shifted to higher volumes domain. The reduction in the FPGA values is due to
extending the FPGA functionality through reconfiguration.

Net preset value [US$)

—— Standard cell ASIC
—— FPGA
— = FPGA with 33% saving by
using reconfiguration 33%
saving
—
a—
__—-—-—'—'_"'_—_—._-_ — el
a—
—
‘-_,-'
—
0 il
0 2000 4000 6000 8000 10,000 12,000

Volume [units]

Figure 1.4: Value vs volume for ASIC and FPGA [6]

1.5 Idea of research

2G, 3G, LTE and WIFI are widely used communication standards. Implementing all
of these standards on the same chip consumes area and power for each standard. Using a
dynamic and reconfigurable systems reduces the chip area and power consumption. In
chapter 3, a simple communication channel adaptation that switches among different
channel coding schemes is presented. In chapter 4, applying the same concept to other
blocks result in a completely reconfigurable system. A design of modulation chains using
the DPR technique has been proposed in [8, 7, 9]. In [10], different implementations of
channel coding schemes were compared. The hardware switching will be triggered during
the handover between two different communication systems [11]. However, the handover
takes tens of milliseconds while the hardware reconfiguration takes less time. On the
other hand, many studies have been done on offloading the data traffic between cellular
systems, e.g. 3G, and a fixed wireless systems, e.g. WIFI [12, 13].

1.6 Organization of the thesis

The thesis presents a way of implementing SDR using FPGA DPR technique. The
following chapters are constructed as follows:

Chapter 2 presents the FPGA DPR technique. In this chapter a brief overview about
the FPGA is introduced, the internal construction of the FPGA is presented for the Xilinx
Virtex 5 FPGA and MicroBlaze softcore processor by Xilinx. A detailed description for
the Dynamic and Partial Reconfiguration technique and how this technique is provided
by Xilinx FPGA. The factors affect the DPR technique and an overview of the advanced
factors.

Chapter 3 shows two different designs for convolutional encoders used in different
communication systems 2G, 3G, LTE and WIFIL. The first design is using full
implementation technique where all encoders are implemented and exist on the chip
while in the second design a DPR technique is used. In the DPR technique, the encoders
are loaded on demand and exist on external storage device. DPR technique is done using
internal configuration port to configure the FPGA fabric. A comparison between the two
designs is presented in the chapter sessions. An embedded system is implemented on the
FPGA kit and is utilized to control both designs.

Chapter 4 shows a full communication chain is adopted as SDR system, to perform
the preliminary main communication blocks in different standards 3G, 4G and Wifi. The
Jtag is used as an external port to configure the FPGA fabric. It shows another way of
implementing the DPR using Jtag. A comparison is made between DPR design and a
portion of the normal design where all hardware of the different systems exist at same
time.

Chapter 5 drives the conclusion and future research to be done in the SDR, and the
DPR. And how this new technique opens the door in front of massive research, in the
hardware optimization for SDR.

Chapter 2

Dynamic Partial Reconfiguration

This chapter gives an introduction to the Field Programmable Gate Array (FPGA).
With an overview of the internal construction of Xilinx Virtex-5, which is used in the
thesis, and softcore processor MicroBlaze, which is Xilinx IP, used in the internal FPGA
configuration. Reconfigurable computing terminology is presented and highlighted for
the FPGA. Dynamic Partial Reconfiguration (DPR) technique is detailed explained and
a complete reference to the partial reconfiguration is being illustrated in this chapter to
support those who will use this technique.

2.1 FPGA overview

The FPGA is an Integrated Circuit (IC) that is electrically programmed to execute a
certain application. It initially has no functionality to operate before it is programmed.
FPGA is formed from a combination of transistors that are connected in a specific way.
Applying an external voltage to these transistors it will operate certain functionality. This
combination of transistors called Look Up Tables (LUTs). Each group of LUTs forms
a Programmable Logic Blocks (PLB). These PLB blocks have been developed through
many years. Recent FPGAs has different types of PLB functionality such as memory
blocks that can store data for internal operations, multipliers for complex arithmetic
operations, and general PLBs that is used to implement general functions from simple
2-bit adder to a complete microprocessor unit. The internal heterogeneity of FPGA PLBs
is shown in figure 2.1. The FPGA internal routing consists of wires and programmable
switches that allow the connections among the PLBs, memory blocks, multipliers and I/O
ports. These connections are developed for best data routing and latency, sometimes with
different characteristics varies from the shortest path to the fastest one. Also, there is a
dedicated network of connections that takes care of clock distribution and reset signals
for achieving low skew.

The LUT size, the FPGA core component, is measured by its number of inputs such
as an LUT has 3 inputs will be named as 3-LUT. The number of LUTs in the PLB
may be of equal size or mixture of different sizes. A study is made in [14] shows that
heterogeneous mixture of LUTs (3-LUT, 4-LUT, 5-LUT, 6-LUT) is performed more
efficiently than a homogeneous 3-LUT based FPGA. While the latter acquires less size
than the heterogeneous structure. There are three different major techniques used to

[=

s

(a1 [e] (& [s] [l [l [e] [s] 6] [l (e L] L&l [E

)

[=

Programmable interconnection

TEHEEEEEEE
FLE FLBE
FLB FLE
FLB FLE
FLB PLB FLE
FLB FLB FLE
FLB PLB FLE

Figure 2.1: FPGA internal construction

(=]

HEREROROREONENENERENE

program the FPGA LUTs. Anti-Fuse, Flash and SRAM programming technologies. The
advantages of the Anti-Fuse and Flash over the SRAM, they are non-volatile and occupies
a small area. While the SRAM is easily reprogrammed and use the standard CMOS
process technology. Although SRAM has become the dominant approach to program
the FPGA LUTs because the advantages it provides, but till now there is no technique that
can combine the best of them all.

Current FPGAs has IP blocks, these IPs are standard libraries which are optimized and
developed to facilitate the FPGA development. An engineer can drag and drop certain
functionality instead of building the new block from scratch. IPs like accumulators, bus
interfaces, encoders ... etc. The microprocessors are considered one of the important
IP core. There are two types of microprocessors, softcore and hardcore. The softcore
processor like MicroBlaze by Xilinx is implemented using the FPGA logic gates. The
hardcore processor like PowerPC by IBM is fabricated in the core of the IC of the FPGA
chip and connected to FPGA fabric as shown in Figure 2.2. The main concern of the
softcore processor is its limitation in speed, around 200 MHz, also, it takes many resources
on the FPGA. Where there are some advantages of using softcore processor like modifying
it for specific requirements, customizing instructions and multiple core system. On the
other hand, using hardcore processor can achieve higher processing speeds more than
1GHz. Hence, the hardcore processor has its own fabric in the FPGA chip it doesn’t
occupy resources on the FPGA fabric which allows the full usage for the FPGA. The
disadvantage of the hardcore is its fixed architecture that can’t be modified. Zynq series
by Xilinx is a perfect example of the current SoC chips, it combines ARM dual-core
or quad-core microprocessor in a processing system (PS) with Xilinx FPGA fabric as a
Programmable Logic (PL).

2.1.1 Xilinx Virtex-5

An example to the FPGA that is generally introduced in section 2.1, Xilinx FPGA
Virtex-5-XC5VLX110T that is used in the thesis. It is FPGA chip from Xilinx Virtex-5
series. Xilinx is a major FPGA vendor of market share 50%.

2.1.2 Configurable Logic Blocks (CLBs)

The Configurable Logic Blocks (CLBs) are the main programmable logic resources
in Xilinx FPGAs. The CLBs are general PLBs that is used for implementing sequential
and combinational circuits on Xilinx FPGA. The XC5VLX110T has in total CLB array
of 160 x 54 (Rows x Columns). In Virtex-5 series each CLB contains two slices and
a switching matrix is used to switch between them as shown in figure 2.3. The 54 CLB
columns contain 108 slices, where it is an important note that, on using the DPR technique
a complete CLB is taken in the constraint boundaries. In other words, you cannot split
the CLB while reconfiguring the FPGA. Each slice has four 6-LUTs, four flip-flops,
carry-logic and multiplexers, to provide logic, arithmetic and ROM functions. Slice
heterogeneity exists in Xilinx Virtex-5 that allows more area and time optimization. Some
slices are different in their internal construction providing distributed RAM and 32-bit

10

Memory Multiplier Memory Multiplier

N\

AN
PLB Mm | | PLB Ml PLB | |PLB | | PLB | | PLB PLB Mm || PLB Ml PIB | |PLB | | PLB | | PLB
PLB Mm PLB Ml PLB PLB | | PLB | | PLB PLB Mm PLB Ml PLB || PLB PLB PLB
PLB Mm | | PLB Ml PLB | |PLB | | PLB | | PLB PLB Mm || PLB Ml PLB | |PLB | | PLB | | PLB
PLB % % % % % PLB | | PLB PLB Mm || PLB Ml PIB | |PLB | | PLB | | PLB
PLB % % % % % PLB | | PLB PLB Mm || PLB Ml PLB || PLB | | PLB | | PLB
PLB % % % % % PIB | | PLB PLB Mm | | PLB Ml PIB | |PLB | | PLB | | PLB
PLB Mm | | PLB Ml PLB | |PLB | | PLB | | PLB PLB | |PLB | | PLB | | PLB
Hardcore Processor
PLB Mm | | PLB Ml PLB | |PLB | | PLB | | PLB PIB | |PLB | | PLB | | PLB
a b

Figure 2.2: Softcore and Hardcore processor (a) Shaded part represent the
implementation of softcore processor on the FPGA logic it acquires some of the
available resources like PLBs, memory and multiplier blocks; (b) Hardcore
processor fabricated beside the FPGA fabric

shift registers beside the main slice functions which are called SLICEM, where the normal
slices denoted as SLICEL. The SLICEM is distributed in the FPGA, where some CLBs
contain 2 SLICEL and other CLBs contain 1 SLICEM and 1 SLICEL. On mapping the
design to the FPGA logic the type of slices should be considered, Xilinx tool PlanAhead
gives an estimation for the needed slices in the design.The chip XC5VLX110T has in total
69120 6-LUTs, 69120 flip-flops, 1120 Kb distributed ram and 560 shift registers [27].The
slices are numbered per rows and columns as in figure 2.4. The columns are numbered
from right to left using X symbol while the rows are numbered from bottom to up using Y
symbol. This numbering is important for placing and routing the design while creating the
user constraint file (UCF), either manually or using PlanAhead tool. The cause of using
slice numbering, that the slice numbering is written continuously from SLICE_XO0YO to
SLICE_X107Y159. There are CLBs numbers not exist because they are replaced by DSPs
or Block RAMs or Input / Output (I/O) banks [27].

2.1.3 DSP and Block RAM

DSPs and Block RAM are specific PLBs exist in the architecture of Xilinx families.
They are not like the CLBs that are used for general purpose implementations as described
in the later paragraphs. DSPs blocks are used to implement complex arithmetic operations,
they are optimized architecturally to produce same functionality can be implemented on
huge numbers of CLBs. Virtex-5 include DSP48E slice which is considered DSP IP
provided by Xilinx. The Block RAM is used to offer internal RAM blocks in the FPGA,

11

cout couTt

D> Slice(1)

Switch
Matrix

Q:i:b Slice(0)
|
N —— _

CIN CIN

UG190_5_0n_122808

Figure 2.3: CLB routing matrix in Virtex-5[27]

couT couT couT cout

:}iE _____ 4___1 ﬁii _____ 4___7
| Slice | | Slice | |
| Xiva | X3v1 |
' ! i
' ' Il |
| | Slice I 1| slice |
|| xovi Ly | xert :
| |
! CIN CIN || CIN CN |

___feout__ _jcour_ ___ _|COUT__ _|COUT_
| CLB | IcLB I
! sice | | | sice | |
| X1Yo | | Xavo | |
| I |
| I |
' Slice : | Slice :
| | xovo o || e :
| 5 |

UGT90_5_02_122605

Figure 2.4: CLB Row and Column relationship in Virtex-5[27]

12

they are optimized for memory storage instead of harvesting the distributed CLBs memory.
To clarify this, assume the need for implementing a processing unit using CLBs, this will
consume a huge number of LUTs that will consume many CLBs. On using DSPs blocks,
this will reduce the CLBs usage. For implementing memory, there are 2 ways, the first
using distributed RAM this will consume many CLBs and the second way is using the
optimized Block RAM this will save CLBs that can be used for another function.

2.1.4 MicroBlaze softcore processor

MicroBlaze is an embedded softcore microprocessor. It is a reduced instruction set
computer (RISC) based architecture. MicroBlaze is optimized for implementation in
Xilinx FPGAs families using a portion of the available resources on the FPGA. figure
2.5 shows the internal construction for the MicroBlaze [28].

Instruction-side Data-side
bus interface bus interface
Memory Management Unit (MMU)
M_AXI_IC < FEE UTLB = ? 1 M_AX_DC
M_ACE_IC M_ACE_DC
| S 7[=8
IXCL_M a a DXCL_M
@ Program —§7— ALU]
IXCL_S |:> Counter] - <:| DXCL_s
Special [N\ Shift
— Purpose ; —
i:[Reg%cl’ers N Barrel Shift /@
Branch nd Multiplier
Target i P DRI
Cache Divider
N o DLMB e
IPLB
Bus —] i Bus
IF IF MO_AXIS..
|::> [— Instruction —'\ {} {} =
ILMB _> M15_AXIS
Buffer =
B4 Instruction SO0_AXIS..
Decode 1 S15_AXIS
; : Em
-] Register File MFSL 0..15 or
] 32X 32b DWFSL 0..15
N SFSL 0..15
. . 2 or
Optional MicroBlaze feature nd DRFSL 0..15

Figure 2.5: MicroBlaze block diagram[28]

2.2 FPGA reconfiguration

Reconfigurable Computing (RC) term first appears in 1960’s when G. Estrin proposed
the idea of “fixed plus variable structure” [15, 16]. His idea considers a fixed hardware
processor controls a variable “reconfigurable” hardware arrays. The reconfigurable
hardware is configured to deal with a specific task for a certain time, after this time,
it will be released to be reconfigured again for another task. This resulted in hybrid
Hardware-Software computer structure, which combines the software flexibility and
hardware efficiency. The FPGAs flexibility allows it to be considered the best solution for
the RC. Connecting it to a processing unit will achieve the desired work. Modern FPGAs

13

chip combining FPGAs Programmable Logic (PL) and Processing System (PS) in one
chip for best performance and latency like Altera Stratix 10 and Xilinx Zynq 7000.

2.2.1 Advantages and disadvantages of reconfiguration
The main advantages of the reconfigurable systems are:

Resources utilization: In ordinary design most of the hardware not used till it is
triggered for operation for a certain time, then back to sleep mode waiting for another
trigger. Using reconfigurable hardware will increase the resource utilization by omitting
the unused part till its time of operation releasing resources to be used for other activity.

Scalability (Updatability): Using reconfigurable hardware will allow upgrading
system to accommodate newly defined tasks to handle the growing in technology and
features. It also facilitates the deploying of bug fixing in hardware which will decrease
the cost of redeploying new hardware, and increase the time to market for the products.

Reusability (Customizability): Reusing the resources for different design
implementations, where a system can be customized for adaptability.

Power reduction: is considered the most important item, where power consumed for
the system although most of the parts are not working. In the Integrated Circuits (IC)
design, the static power is consumed by the device although it is not active. FPGA
reconfiguration helps in delaying the implementation of a specific part until its time of
operation, which will decrease the consumed power over time and though the battery
lifetime.

Area: Instead of implementing a full system horizontally which consume area, System
can be optimized by vertical implementation idea which is programming in space and time.
Where a stack of blocks are stored and loaded at the time of operation. This will save the
area used by the same blocks in the horizontal design.

On the contrary there is some disadvantages for the reconfigurable systems and they
are improving by research such as:

Latency: Latency increased by the time needed for the reconfiguration. This item
improved by the new approach of run-time reconfiguration.

Memory: As blocks will be stored, in what is called vertical design approach in this
thesis, more memory is needed for storing the different implementations until the time of
operation. As the storage sizes are increasing this item is improved. For example, 5 files
of few kilobytes contain the new reconfiguration can be stored on gigabytes of attached
storage device. Reconfiguration files can be stored on servers and accessed through the
network as the network accessing are improving by time.

Scheduling complexity: Defining the time of operation for certain configuration then
reconfigure device for another operation is the difficult and the important thing in the

14

reconfiguring devices. Where Engineer has to take care for the scheduling time for loading
the device part in the exact time to have the valid data.

2.2.2 Reconfigurable FPGAs

FPGA-based systems are divided into two categories, parameterized and
reconfigurable. Figure 2.6 summarize the FPGA types.

Parameterization: In this category a full image is loaded to the FPGA to run a certain
application. This image does not change during run-time but new values can be set for
some registers to change the mode of operation of the application, this approach is called
parameterization [17]. This type is not considered a true reconfiguration because no
hardware blocks swapped, but the implemented hardware is optimized and multiplexed
to operate more than one function using select lines. It is more like ASIC where no new
connections are added after the deployment.

FPGA reconfigurability: This category is considered a true reconfiguration, where
the image of the FPGA is newly loaded and swap is occurred between different bitstreams
to execute different applications. This type can be Full Reconfiguration (FR) or Partial
Reconfiguration (PR). In the FR type, the downloaded bitstream will configure the whole
FPGA to perform a new task. There is only one bitstream file that is loaded to the FPGA
that contains all the design and the defined connections. While in the PR type a part of the
FPGA is reconfigured while the other part not changed. The PR type has more than one
bitstream is to be loaded on the FPGA, a static bitstream and many dynamic bitstreams
for one or more dynamic partitions. In the static region, no change in the connections
occurs on the FPGA that is why the static region might include the memory controller, the
softcore processor, or the internal configuration port. In the dynamic part, the bitstream
can be updated with different connections (bitstreams) and loaded in the FPGA.

In the PR, the dynamic part can be changed during off-time or during run-time. The
off-time mode the FPGA stop working during this time till the dynamic part is replaced
with the new bitstream then the system continues to work. The disadvantage of this type
that a latency overhead is added. This disadvantage improved by the second type which is
run-time reconfiguration or dynamic configuration. In the dynamic reconfiguration, the
dynamic part is configured with new bitstream while the FPGA is running. This dynamic
reconfiguration adds no latency for the FPGA operation.

2.2.3 Reconfiguration time overhead

In the parameterized FPGA configuration, the configuration takes place in the power
on time. As shown in figure 2.7.a after the first time configuration the device start its
operation without any other overhead time added. Figure 2.7.b shows the reconfiguration
time of a reconfigurable FPGA. This figure shows the full reconfiguration where there
is an overhead time for the second reconfiguration is added equally to the time of the
first configuration because the full image is loaded. Figure 2.7.c shows that using partial
reconfiguration the overhead time of the FPGA reconfiguration is improved because

15

$ad£) uonean3yuod yo 4. :9°7 dIn3i

“Sutuonaung

AT[ng a1e pamSIUoaT J0U 21k 18T} SYI0[q T
unU SuLmp pamsguodal

2q UBd YOI 21 Jo sued ommeup a1

“pasuerpd 1ed srureuip a1 [[1 SUDIom
do1s vDd 1 2 uonemsguodal a1 Suumg

(aum-unr) srureuiq

(pum-gjo) Jnels

“sured 2531y

JO U0 [2B2 10] I[1T WEaN)S1Iq SUO ULBT]) IO 2q
[T 2131 1Ied JTUTRTAD SO URT]) AIOUI ST 31911 J]
ed orureudp 1)) 107 sIatI0 pue wed

JTJB1S 2T} JOJ QUO ‘SA[I] TEAISIIq Palelauas o
"pasuer)d jou 1ed 12130

21} 2[IYM PAISTIU02T ST VO 213 JO Led

ToTeINSIuodaI

ST1 I0] PRIBISUAS 3[1] UTRANSIq ST

20[q 2o Jo USISap 2y

ur 23ueyd AJUo SI 2191 JT U2A? pawrmelsordar
2q 0] pey 2IMINLS [BUIAUT YOI A [[V

UONBINSIIU0IY [BILE(]

uoneImsuoday [

*AI[euondUN] JUSISIIP Op 03 Pla)

T Satm AUBT AJ[EUINUI p2INSIIUodal ST YOI

“VOJ 2 apisur syled 5urydafas 10J s1ojatwered
dn 3unas £q padueyd AEUOTIOUNT AL e

-2d4) siyy 1oy apdurexa
PO03 B PaIapIsuod SyDHJ aseq asng-IuUy YL e

ISV

1] 21qRINSIFUOI2T U U0 ST YOI L »

J[qeINSIU0IY

paziajaureIed

sadf1 vodd

16

Configuration Device Configuration Reconfiguration
OVEI’hE{Id D”?'CY“E Overhead Overhead
= i § = l—» 4—4 :
= : 1 3= | ;
E E 1m
[|
= =0
L L !
Power) Shut Power Sﬁut
on Time Ciovwm o Time D
a b
. Reconfiguration
Configuration Reconfiguration Configuration Overheagd
Qverhead QOverhea Overhead
c l-. .Z] = 4&-» I-
= E 5 K=
E | E
[[
= =3
L i i L
Powrer Shut Power Shut
On Time Do On Time Down

[d

Figure 2.7: FPGA configuration time overhead [18]

only the dynamic part is reconfigured while the static part is not changed. So the
reconfiguration time overhead is less than the initial configuration of the FPGA. But the
static (off-time) reconfiguration has a problem of suspending the device operation while
the configuration of the dynamic part takes place. In 2.7.d DPR technique is used to
reconfigure the dynamic part while the FPGA is operating. There is no switch off occurs
to the FPGA, so the reconfiguration overhead time is negligible.

2.2.4 DPR terms

Reconfigurable Partition (RP) is the region of the FPGA logic core that will be
reconfigured, each RP can be reconfigured with one or more Reconfigurable Module (RM)

that swapping occurs among them.

Reconfigurable Module (RM) is the module that contains the application to be run. It
is designed using HDL or using netlist.

17

2.3 Partial reconfiguration factors

Partial Reconfiguration depends on many factors, which is affected by the available
tools, FPGA technology, the way of configuration, and the size of configuration changes.

2.3.1 Configuration mode

The first factor is the configuration mode or how the FPGA binary’s, responsible
for the FPGA configuration, is loaded on the FPGA. There are two ways for loading
the configuration RM data to the FPGA RP, which depends on the way of reaching the
configuration plane, i.e. is the FPGA reconfigured by external or internal processing unit.
The internal processing unit that controls the FPGA reconfiguration can be either softcore
processor as shown in figure 2.8.a or hardcore processor as shown in figure 2.8.b. The
FPGA bitstream binaries are stored on an attached memory card to the kit and a memory
controller will be responsible for accessing the memory to get the configuration bitstream.
For the external processing system, the FPGA will be controlled by PC, FPGA, GPP or
another controller. The external controller has its own way to fetch the configuration RM

data from external memory. An example is shown in figure 2.8.c for a PC reconfigure
FPGA RPs through JTAG.

Internal configuration: Using Internal Configuration Access Port (ICAP) where
internal processing system, softcore processor like MicroBlaze or hardcore processor like
PowerPc, is responsible for reconfiguring the FPGA. ICAP is a SelectMap-like protocol
to access the internal configuration memory [19]. The ICAP had to be implemented in the

static region with the memory controller and the softcore processor as shown in figures
2.8.aand 2.8.b.

External configuration: Using external controllers like CPU, DSP or another FPGA as
master. In the external reconfiguration, the reconfigured FPGA is used in slave mode and
the connection between the two devices, the external controller and the FPGA, is carried
out through either the Serial mode, JTAG or SelectMap protocols [19]. Figure 2.8.c shows
an example for external configuration through JTAG.

Table 2.1 shows the different configuration modes and their speeds for Xilinx FPGA
Virtex-5 [19]. The different configuration modes have different bandwidths and clock
speed.

Table 2.1: FPGA configuration modes[19]

’ Configuration Mode | Type \ Max Clock \ Data Width \ Max Bandwidth Bps (bps/8) ‘

ICAP Internal | 100 MHz | 32-bit 400 MBps
SelectMap External | 100 MHz | 32-bit 400 MBps
Serial Mode External | 100 MHz | 1-bit 12.5 MBps
JTAG External | 66 MHz 1-bit 8.25 MBps

18

EP3
a EP1] EP2
oA N A P M gt L i A S o e A | i
i | | | i
i Eita.:in: Softeors [CAR Memory i
i region | processor contrellar | |
P e o]
hlemory
EP3
[EP1] EP2
R BT AT AT R T ST B TR T s B T FRete i
! ; ' [[!
Hardcore | | Static Memory | |
processor | | resion Lo controllar i
1
Syae) s A 1 £ wera s wrr oA w e SO e S i] Tenad sl
hlemory
EP3
EF1 EP2
e _‘
(__ ITAG .
Ztatic ragion
BC

Figure 2.8: FPGA configuration modes; (a) Softcore processor reconfigure RP
through ICAP; (b) Hardcore processor reconfigure RP through ICAP; (¢) PC
reconfigure RP through JTAG the RM stored on the HDD of the PC

19

2.3.2 Reconfigurable module style based

The RM style based factor is depending on the size of the part to be reconfigured in
the FPGA and if the changes among the different RMs is huge or little. Upon which the
needed reconfiguration might be either difference based or module based.

Difference Based: Used for small design changes to edit the connections of few LUTs
[20]. The bitstream file, to be loaded on the FPGA, contains the difference between the
different implementations, as shown in figure 2.9.a. Although this type is used for small
design changes but it is more complex and take more time to develop. The designer should
have a good understanding of the FPGA internal structure because it needs to do some
manual connections for the LUTs.

Module Based: Used for large design changes by replacing a complete block with a
new one[21], as shown in figure 2.9.b. This is easier in implementation than the difference
based. The problem may face this type is the I/O connections that may differ from block
to another.

RMA RMA
LUTI LUT2
LUT3 LUT4 &Df
RMB RMB
LUT1 LUT2 :)i>—
LUT3 LUT4 D—
a b

Figure 2.9: Reconfigurable module style based (a) Difference Based reconfiguration
the connections between LUTs has minor update between different RMs (b) Module
Based reconfiguration each RM has different internal modules and construction

20

2.3.3 Configuration memory array types

The internal FPGA structure and the technology used to build the FPGA blocks affect
the way of the FPGA configuration and partitioning. The FPGA configuration consists
of Configuration Memory (CM) array (configuration layer) that takes care of accessing
the logic gates (CMOS Layer) in other words the way of activating the programmable
logic used in a certain design. The way of partitioning the FPGA depends on how the
configuration layer configures the logic gates. There are different FPGA CM ways to
access the logic layer:

1-D: In this FPGA structure, the configuration layer access a complete FPGA array
column to partition and reconfigure it with the new bitstream. This exists in old FPGAs
like in Virtex-II. Figure 2.10.a shows that a complete D1 column is reconfigured with D2
column. [24, 23, 22]

2-D: In modern FPGA structures the configuration layer access the logic plane like a
memory, where some cells can be accessed by row and column. This type exists in recent
FPGAs families like in Virtex 4, 5, 6 and 7. The partition of the FPGA to be reconfigured
can take square or rectangle shape. Figure 2.10.b shows that D1 block is reconfigured
with D2 block.[25]

Bl [C1 |

Al | DI Cl Bl D.l X1

<)

D2

a b

Figure 2.10: Configuration memory array types; (a) 1-D; (b) 2-D

2.3.4 Type of reconfiguration

The different ways of reconfiguring the FPGA is described in Figure 2.6 whereas
the time overhead shown in Figure 2.7. This section highlights the related partial
reconfiguration techniques which are the Static (off-time) and Dynamic (run-time).

Static (off-time) reconfiguration: In this type, part of the FPGA is reconfigured
while suspending the work of the FPGA. For example, if the chip has a communication
system implemented on it, the communication system will be halted during this type of
reconfiguration.

Dynamic (run-time) reconfiguration: Run-time reconfiguration during the normal
FPGA operation. This benefits communication system in the previously given example
to continue functioning while reloading new image for a specific block.

21

2.4 Advanced topics on partial reconfiguration

2.4.1 Reconfigurable partition style

There are three types of the reconfiguration styles depends on how many RM used
in the same RP. The island-style is the commonly used and exist by the FPGA vendors
for its simplicity and applicability. In this type, the RMs has to be multiplexed in time
in the same place but only one is loaded at a time. If the RM used not fully fill the
RP there will be wasted LUTs that is not used. Internal fragmentation for the RP is
proposed for more resources utilization, this fragmentation is either one-dimensional
(slot-style) or two-dimensional (grid-style). In the slot-style, the multiple RMs can share
the same RP adjacently while in the grid-style the multiple RMs can be fitted more in the
two-dimensional space of the RP. The different RP styles [6] are illustrated in the figure
2.11, where m1, m2, m3 and m4 are different RM modules. Island-style in figure 2.11-a
2 RMs implemented each per RP slot, where there is an unused area. In figure 2.11-b
Slot-style is used showing that area utilized where m1 and m2 fits with fewer widths and
higher than in figure 2.11-a allowing m3 to be implemented. Grid-style in figure 2.11-c
relocation to m3 allows m4 to be implemented and more area is utilized.

a b c
m,
m, A "|11 ";2 £ —m|1——m|2
| |
\ / |]

\ / R

static part of the system unused reconfigurable area different modules

Figure 2.11: Reconfigurable partition styles [6]. (a) Island-style (b) Slot-style (c)
Grid-Style

2.4.2 Connection constraints

The connection between the static part and dynamic part is a sensitive region as
the static region should have all the available connections to communicate with the
dynamic part. i.e. The connections on the dynamic part had to be less than or equal
to that on the static part. The connection between the static and dynamic part has three
types bus macro, proxy logic and blocker macro [6]. The bus macro is the old method
for connecting both parts, in this method extra LUTs are used on both sides for every
connection [29]. The proxy logic method is using extra LUT called proxy logic in the
dynamic part corresponding to every connection with the static part [21]. This type
considered a slice-based bus macro as the number of LUTs nearly halved. In [30] new
type of connection is proposed called blocker macro, where PR link wire is defined for
both sides. A tunnel is formed in the blocker macro from static region to dynamic region

22

and another tunnel is formed from dynamic region to static region, where each interfacing
signal is bounded by PR link wire. Figure 2.12 illustrates the different types of connections
between the RP region and the static region, where the RP has two RM modules (NAND
and OR functions) to replace each other.

partial reconfiguration "slice-based bus macro” partial reconfiguration "proxy logic" partial reconfiguration "PR link"
A~ i —~ —

5 ol ' = A

-

X) LCL_L—-.
> @ =i s

NAND OR NAND OR V| e—— NAND OR =~ —

a) old slice-based bus macro technique b) recent proxy logic technique ¢) new PR link approach

Figure 2.12: Connection constrains between static and dynamic regions[6]. (a) Bus
macro; (b) Proxy logic; (c) Blocker macro

2.4.3 Configuration memory layers (3D-FPGAs)

In the 3D FPGAs, The FPGA consists of more than one configuration plane that
accesses the CMOS layer. These stacked configuration planes have a switch layer between
them to manage the accessing to the CMOS layer. This architecture improves the logic
density, delay, and the dynamic power consumption for the conventional 2D-FPGA.
Figure 2.13.a shows the conventional 2D FPGA while figure 2.13.b shows stacked
configuration plane in 3D FPGA.

Configuration Memory Layer 2
Switch Layer
Configuration Memory Layer Configuration Memory Layer 1
CMOS Layer CMOS Layer
(@) (b)

Figure 2.13: Configuration memory layers. (a) Conventional 2D FPGA; (b)
Stacked 3D FPGA

2.4.4 DPR in time domain (4D)

The RP can be reconfigured with different RMs over time to run a single application.
1.e. an application to be divided into parts, the first part to configure RP then released, then
second part reconfigure the same RP. The data flow between the different blocks handled
through memory. Figure 2.14.a shows an application divided into two blocks, figure
2.14.b shows that RM1 is loaded to RP1 and after certain time RM2 is loaded to continue
the data between the two blocks is stored in memory before the RM1 released then
retrieved after RM2 is loaded. This allows the conventional 2D FPGA to be reconfigured

23

in both space and time. The advanced architecture of FPGAs is proposed by Tabula for
time-multiplexed FPGA architecture named as Spacetime FPGAs [26]. Where the FPGA
has different configuration memory layers denoted as a fold. The fold can be imagined as
a virtual CMOS layer. Using the previous example in the Spacetime shown in 2.14.c, the
RM1 is loaded to RP1 in fold 1 after released RM2 to be loaded and reconfigure PR2 in
fold 2. Note that there is a shared memory between the two layers that the data out from
the first stage can transfer to the next stage.

o _ RM1
Application block diagaram t
A Y A7/ /
4) / = . 7 /
RM1 RM2 =

(a) (b)

/! /! /
Z, t I/ W .;’
A 7 2
Y
Fold 1 £ i// ! / RMI1/RP1 EM2/RP2
X
X

(c)

Figure 2.14: DPR in time

2.5 Summary

Partial Reconfiguration is a powerful hardware configuration technique that opens
the doors in front of real time reconfiguring systems, figure 2.15 summarizing the DPR
factors. Using partial reconfiguration, engineers can create separate configuration files
for different communication systems waveforms and load them when needed. This will
be shown in the next chapters and how this useful technique for being used in software
defined radio.

24

(@-¥) s12AeT JU2I23J1(T

(g-¢) 2AeT aweg
(@-¢) s12feT Kuey
(-7) 12AeT auQ
oIdRJN Ia3d0[g
21507 AX01d
OIDRIA Sng

31AS pLD

141§ 1018

21A1S pue[st
arureuA(q

onely

2
]

i

o

pased 2[npoN
paseqd 22uaIaJI(]
[ewI)xXy

TeuI2)uy

s1030e] Ydd :ST°C 2IN31

UTRTIO(] W]
UT TOTJRINS U0

SI2AR] ATOWAN
UOTRINSIJUO))

SJUTRNSUO))
ToI102Uu0)

2141S wonnIed
2[qeINSu0d2Y]

UOT)RINSIFU0I2Y
JoadAL

ad Xy Aerre Kroway
UOTJRINSIJUO))

3[A1S 3MpoN
UOT)RINSTJU0I2Y

PO UOIRINSUO.)

$10}9€
pasueApY

$10)98] USIS(]

s1012e 1 MdA

25

Chapter 3

Channel coding DPR implementation
using MicroBlaze

This chapter presents two different design techniques for convolutional encoders
modules used in the SDR system. The two designs are General Encoder Module (GEM)
and Single-Loaded Encoder Module (SLEM). The implemented designs are used to
switch among the convolutional encoders used in the different communication standards
2G, 3G, LTE and WIFI with two different concepts. The two designs are implemented
and tested on XUPV5-LX110T evaluation kit.

3.1 Forward error correction

Forward Error Correction (FEC) is a channel coding technique used to improve the
reliability of the data that is sent through communication channels. It is a digital technique
in which a redundancy bits is added to the sent stream of data bits to decrease the effect
of the noisy channel on the sent data. The redundancy bits can be the same as the sent
data bits or a combination of the sent data through a known function.

3.1.1 Convolutional encoders

Convolutional encoders are one of the FEC coding schemes. They are used to add
parity symbols for the data sent over a communication channel. The new frames of data
are formed by a combination of the sent data as shown in figure 3.1.

The combination is done through a polynomial function has three main parameters,
that are used in the convolutional encoders [N, K, L], where N is the number of inputs,
K is the number of outputs and L is the constraint length which indicates the number of
memory elements used. The convolutional encoder rate is N/K. The different polynomial
generator can be done using different memory element connection. The code rate can be
controlled through a puncturing technique to downgrade the rate. The example shown in
figure 3.2 has parameters N = 1, K =2 and L. = 3. The rate in this example is equal to 1/2
and the polynomial generators are Go=1,0, 1 and G;=1, 1, 0.

26

—— Pon]

— Piln]

X[n]=01011/100

X[n]=0101/110[0

X[n]=010111100

Figure 3.1: Convolutional encoder window

@ > Po[n]
X[n] D X[n-1] D _X;\:]
(+—> Piln]

Figure 3.2: Convolutional encoder example

The output of the convolutional encoder corresponding to the values in 3.1 will be:
Po[0]=(1x0r0)=1,P([0] =(1 xor0) =1
Po[l]=(1x0r1)=0,Pi[1] = x0or0) =1

Po[2]=(1x0or1)=0,P([2]=(1x0r1)=0

and so on.

3.1.2 2G convolutional encoder

The 2G is the second generation of the mobile communication. It is based on
the Global System for Mobile Communications (GSM) developed the European
Telecommunications Standards Institute (ETSI). The convolutional encoder used in
different channels of the 2G standard [31].

3.1.3 3G convolutional encoder
The 3G is a short term for the third generation of the mobile wireless that provides

a transfer data rate starting from 200 Kbit/s. The 3G standard is released by the 3rd
Generation Partnership Project (3GPP) community with common names like UMTS and

27

WCDMA. The 3G uses the convolutional encoders in the channel coding in of the different
channels [32]. Figure 3.3 shows the block diagram for the convolutional encoders used
in the 3G mobile system. The 3G standard uses a zero biting, where the initial state of
the shift registers should be zeros and also the final state should return back to zeros. The
proposed DPR design shown in this chapter shows that the switching between different
modes of operation for the 3G can be done using the DPR technique. Which means that
the hardware optimization can be done to the same standard.

"{o}~o}~{D] =@%*@I

. IS (G ¢ S
=D L L7 =) * Gy = 561 (octal)
x X X g ; XY oututd
AL i onLS AL g AL Ll G1 = 753 (Octal}
(a) Rate 1/2 convolutional coder
Input
T ey] =y [- =y
—r{plrDlD}D D™D DD
Y Y Y Y Y Y Output 0
> =D > - >0 >0 ™ G, = 557 (octal)
B % . ¢ X Y| ouutd
LF WLF WLF L L G1 =663 (Octal}
=‘Er) :(!F‘ ‘—‘(") '—‘(") » Output 2

" G, =711 (octal)
(b) Rate 1/3 convolutional coder

Figure 3.3: Convolutional encoder used in 3G [32]

3.1.4 4G convolutional encoder

4G is the latest deployed communication standard, which allows higher data rates up
to 1GBit/sec. The 4G is released by the 3GPP community and widely known as Long
Term Evolution (LTE). Figures 3.4 shows the convolutional encoder used in the LTE [33],
and figure 3.5 shows the turbo encoder that is based on the convolutional encoder [33]. In
the 4G standard, the tail biting is used where the initial and final states of the shift registers
should be the same.

"

y=
o
S
]

d,” G = 133 (octal)

v| dG,=171 (octal)
D >3 >3 >

v d¥Gy=165 (octal)

o—

P
Pl
r
Dhe
s
h 4
et
B

Figure 3.4: Convolutional encoder used in LTE [33]

28

X

1st constituent encoder =
k
F 3
Ck
» D D » D
o /L
|\
CEEY
Output
Input
Turbo code internal 5
interleaver 2nd constituent encoder Z
Output
> rP—
r Y
C;(T
— } » D » D » D
! /L
D
g
»

Figure 3.5: Turbo encoder used in LTE [33]

3.1.5 WIFI convolutional encoder

WIFI is a fixed wireless communication standard defined by Institute of Electrical and
Electronic Engineers (IEEE) and is known as IEEE 802.11 standard suit. IEEE 802.11
standard defines an air interface between a user terminal and a base station or among
many devices. There are several specifications in the 802.11 family each has different
channel characteristics as well as different data rates, modulation techniques and ranges of
operation. The convolutional encoder shown in Figure 3.6 is used in 802.11 a/g standards
[34]. It will be implemented in the thesis demonstration for the SDR system using DPR.

e _’3:_,_1—' Output Data A
" - -\-\-‘-\-—-—-‘__:_____-_H——""—______

a—'—'-''-’
o i
Input Data Ty, Ty, (o Ty |® T, |—= Ty T, [
— e
\-\-"‘—_-_ _\-\-'\-_,_-_ _‘__'_'__;—'—
—— :11.. * —_—

—T= j"_‘ Output Data B

Figure 3.6: Convolutional encoder used in WIFI 802.11 a/g [34]

29

3.2 Convolutional encoder summary

Convolutional encoders are widely used in the wireless communication systems,
such as 2G, 3G, LTE and WIFI. Table 3.1 shows the characteristics of the different
convolutional encoders used in 2G, 3G, LTE and WIFI technologies. Different
convolutional encoders reflect different hardware combinations of the memory elements.
The differences in the hardware mean different realization that consumes area if each
channel is fully implemented alone. From this point of view, the thesis serves in
combining these hardware channels in the best way using DPR technique. Using the
same concept will be applied to all modules may have the same characteristics and serve
in the same position in the communication chain as will be discussed in chapter 4.

Table 3.1: Convolutional encoders used in different communications systems

Convolutional Constraint | Generator polynomials
Encoders System Channel Rate Length (Octal)

G0 =31
Cl 2G TCH/FR Speech 1/2 5 Gl =33
G4 =155
C2 2G TCH/HR Speech 1/3 7 G5=123
G6 =137
G1=33
C3 2G Data 1/3 5 G2=25
G3 =37
BCH, PCH, RACH, GO0 =561
4 3G DCH, FACH 172 ? G1 =753
GO =557
C5 3G DCH, FACH 1/3 9 Gl =663
G2="1711
G0 =133
C6 LTE BCH, DCI, UCI 1/3 7 Gl =171
G2 =165
WIFI G0 =133
Cc7 802.11 a8 OFDM channel 172 7 Gl =171

3.3 Lab setup

The Lab setup is shown in Figure 3.7 consists of:

PC: Is used for communicating with the evaluation kit, where a simple software
interface is implemented to control the FPGA kit functional operation. The software is
used for entering a number to be decoded and chose among different encoders as will be
discussed later. The PC connected to the evaluation kit through a serial cable.

FPGA kit: The XUPV5-LX110T kit has Xilinx Virtex-5-XC5VLX110T FPGA, more
details about this FPGA is discussed in chapter 2. The bitstreams of the different
encoders and different designs are deployed on this FPGA. Softcore processor MicroBlaze

30

is implemented on the FPGA fabric to control the loading of the bitstreams from the
Compact Flash to configure and reconfigure the logic gates.

Compact Flash (CF): Is attached to the kit, which stores the GEM bitstream and the
SLEM partial and static bitstreams.

FPGA has Processing
Serial cable for System for managing
communication the configuration files

\ K FPGA Kit
/ A \I ﬂ" FPGA
X Serial port

PC for software Compact Flash contains
mterfacing with the Kit the bitstream files to be
loaded on the FPGA

Figure 3.7: Convolutional encoder lab setup

3.4 General Encoder Module (GEM)

The General Encoder Module (GEM) shown in figure 3.8, is a design where all
the convolutional encoders are implemented and exist on the FPGA. The GEM design
is formed of one part which is static, i.e. no hardware connection or realization
changes in the FPGA during the run-time. A multiplexer is used to switch among the
different encoders which are preloaded in the GEM.bit module. The VHDL code is
implemented in one file that goes through the normal digital design process described
in 2. This design is formed from two parts the processing system and the convolutional
module. The processing system is softcore processing system implemented on the
FPGA programmable logic. It contains softcore MicroBlaze processor, UART, ICAP
and System ACE. The softcore MicroBlaze processor is used for managing the software
interface with the PC and manages the values sent to the multiplexer for proper switching
among the encoders. The UART IP used to allow the PC communication with the
Kit through the serial port. ICAP is IP module used to configure the internal FPGA
programmable logic from the internal softcore MicroBlaze processor. System ACE
module is used to load the bit files to the FPGA from the Compact Flash.

On turning on the system, the System ACE load the GEM.bit file from the Compact
Flash and the ICAP access the reconfiguration memory to program the logic gates. Then
a serial communication between the PC and the kit is initiated on resting the kit (press
the reset key). A terminal emulator “Tera Term” software on the PC is used, that allows
the user to choose among the different ready implemented convolutional encoders. Then
the user to insert the number to be encoded and the encoded number return back to the
display.

31

X5

Cl||C2||C3||C4| C5] C6| CT

t'1' 1 1 117

GEM Multiplexer

/

/
PLB 32 bit

Processing SysACE ICAP MicroBlaze UART
System

Compact Flash

PC
GEM.bit

Figure 3.8: GEM design, switching is done using multiplexer

3.5 Single-Loaded Encoder Module (SLEM)

The second design using the PDR technique is named as Single-Loaded Encoder
Module (SLEM). Where the switching is done real time among the images stored on the
Compact Flash and loaded to the FPGA programmable logic at run-time. In this design,
the FPGA is partitioned into a static region and Reconfigurable Partition (RP) which is a
dynamic region that can be changed during FPGA run-time. Each encoder is implemented
in a single file and is used as a Reconfigurable Module (RM). Each RM has its own netlist
that is loaded in the RP partition real time.

In the SLEM implementation that is shown in figure 3.9, the static region contains
the processing system which contains softcore MicroBlaze processor, UART, ICAP and
System ACE. And a part of the FPGA is programmed to be dynamically reconfigurable
using the PlanAhead tool. The MicroBlaze in this design is used for software interface
with the PC and is responsible for loading the partial bitstream file to the dynamic
reconfigurable part. The MicroBlaze is to communicate with the Compact Flash through
the System ACE and load the configuration partial bit stream files (C1.bit — C7.bit) to the
RP region through the ICAP. The partial bitstreams files are stored initially on a Compact
Flash and loaded on demand and the only chosen encoder will be loaded to the FPGA.
The PC is connected to the FPGA kit through a serial port.

On turning on the system the System ACE load the SLEM.bit file from the Compact
Flash and the ICAP access the reconfiguration memory to program the logic gates. The
SLEM file contains the static design and an initially loaded encoder for the reconfigurable
region. Then a serial communication between the PC and the kit is initiated on resting
the kit (press the reset key). A terminal emulator “Tera Term” software on the PC is used,
that allows the user to choose among the different implemented convolutional encoders

32

!
\ \
\ \
} Dynamic partial area, mitially loaded |
| with C1 }
\ \
\ \

\

\

PLB 32 bit

Processing SysACE ICAP MicroBlaze UART
System

Compact Flash
SLEM.bit, C1.bit, C2.bat,
C3.bit, C4.bit, C5.bit, C6.bit,
C7.bit

Pe

Figure 3.9: SLEM design, encoder loaded during FPGA run-time

that will be loaded on demand. Then the user to insert the number to be encoded and the
encoded number return back to the display. The user will not feel any difference in the
user interface.

3.6 Results for the two systems

The trade-off between the two designs is shown in the following points, where SLEM
shows a reduction in area and power consumed while GEM has a small benefit in time
and memory. The floorplan of the GEM and the SLEM designs is shown in figure 3.10.

3.6.1 Area occupied on the FPGA

In each design a partition of 800 LUTs is assigned to the implementation of SLEM
encoder and GEM encoders, using Xilinx PlanAhead tool, so it can easily clarify the
utilization percentage of each design in these 800 LUTs. Table 3.2 shows the number
of LUTs used for both designs and their utilization percentage. In SLEM design, the
maximum area consumed per convolutional encoder is 38 LUT. While the consumed
area for the GEM, where all the convolutional encoders exist, is 258 LUTs without any
optimization. After optimization, the GEM size became 113 LUTs which is even more
than the SLEM design. On using DPR in SLEM design the encoders area improved by a
factor of 67% compared to the full implementation of GEM optimized design. Equation
3.1 shows how the improvement factor is calculated.

S LEM number of LUTs
GEM pimizea number of LUTs

Improvement in area = 1— x 100% (3.1

33

Processing System

Partition where GEM and

SLEM design are placed. In

4]
c
=
=
=
=
a
w
=
=]
c
=
[T
]
o
=
[an]
_
2]

=
[=]
=
I
a
&£
8
@
L
=
o
=
=
S
O
@
=
=]
I=1
b
@
w

34

GEM and SLEM floorplan

.
.

Figure 3.10

Table 3.2: Area utilization for SLEM and GEM

Encoders SLEM GEM GEM
Cl1[C2]|C3|C4][C5]C6]CT|NoOptimization | Optimized

No. of LUTs | 36 | 37 | 37 | 37 | 38 | 37 | 36 258 113

Utilization (%) | 4.5 |46 | 46 |46 |48 |46 | 4.5 32.3 14.1

3.6.2 Memory needed

The initial file size of the GEM and SLEM designs are nearly the same size 3.8
MB. The GEM design configuration file contains the Processing System (MicroBlaze,
ICAP, UART, SySACE) and the encoders. The SLEM initial configuration file contains
the Processing System (MicroBlaze, ICAP, UART, SySACE) and one encoder. As the
Processing System acquires larger area than the encoder part the few LUTs difference
between GEM configuration and SLEM initial configuration is ignored. The SLEM
design needs more memory storage than the GEM design because of the partial bitstream
files of the individual convolutional encoders each of size 60 KB. Hence, for the designed
7 convolutional encoders SLEM needs 420 KB more memory, which is considered a slight
increase in memory. Note that the generated file size depends on the number of LUTs,
so the formed 60KB file size depends on the number of LUTs in the dynamic partition,
not the implemented design, i.e. the 60KB file size is equivalent to the 800 LUTs not the
38 LUTs of the maximum encoder size in SLEM. Table 3.3 summarizing the memory
needed for both designs.

Table 3.3: Memory needed for SLEM and GEM

SLEM \ GEM \

Initial configuration bitstream File Size = 3.8 MB
Reconfigurable bitstream file sizes = 7 x 60 KB = 420 KB
Total Size = 4.2 MB Total Size = 3.8 MB

Configuration bitstream File Size = 3.8 MB

3.6.3 Power estimation

Xilinx Power Analyzer tool (XPA) is used to estimate the power consumption in
the convolutional encoder module. The SLEM design shows improvement in the
module logic power consumption over GEM design for different MicroBlaze operating
frequencies, as shown in table 3.4. The power improvement percent is calculated
according to equation 3.2. GEM design occupies more LUTs that consumes more logic
power. While SLEM design, only the needed encoder will be loaded, this consumes less
power and less number of LUTs compared to the full implementation. Whereas increasing
the frequency of the MicroBlaze from 50 MHz to 100 MHz increases the consumed power
in both designs, but the SLEM design shows less power consumption than GEM design for
all applied frequencies. The power improvement percent is between from 56% and 64%
for different MicroBlaze frequencies of operation. On continue increasing the frequency
of operation, it is indicated that the power improvement starts to decrease once again.

35

Which shows that the optimized value for the SoC design using MicroBlaze is around 75

MHz.

Improvement in power = 1—

Power consumed in SLEM

Power consumed in GEM ,primized

Table 3.4: Power consumption

x 100%

Operating frequency | SLEM power consumption ‘ GEM power consumption | Power improvement ‘

50 MHz 0.08 mW 0.18 mW 56 %
75 MHz 0.12 mW 0.33 mW 64 %
100 MHz 0.17 mW 0.44 mW 61 %

3.6.4 Time overhead

The initial configuration time in both designs GEM and SLEM are the same because
the initial bitstream file has the same size 3.8 MB for both, table 3.3. In the GEM,
design there is no time overhead added because all encoders exist while in the SLEM
design partial bitstream files of size 60 KB is generated for each encoder, consequently
a reconfiguration time overhead is added in the SLEM design. Table 3.5 shows the
configuration and reconfiguration time for both designs, and how they are decreased by
increasing the MicroBlaze frequency. Equation 3.3 shows the theoretical configuration
and reconfiguration time used in Table 3.5. The maximum throughput is obtained for
ICAP from table 2.1.

Bitstream file size

Max throughput 3.3)

Theoretical configuration time =

Table 3.5: Configuration and reconfiguration time

| Design | SLEM (C1-C7) | GEM |
Operating frequency 50 MHz
Configuration time (ms) 19 19
Reconfiguration time (ms) 0.30 0
Operating frequency 75 MHz
Configuration time (ms) 12.7 12.7
Reconfiguration time (ms) 0.20 0
Operating frequency 100 MHz
Configuration time (ms) 9.5 9.5
Reconfiguration time (ms) 0.15 0

3.6.5 PTF triangle

Power, Time and Frequency triangle (PTF) is one of the important factors in choosing
compromised designs. Figure 3.11 shows the trade-off between the power consumption
and the reconfiguration time for a partial bit stream of file size 60 KB. It shows that on

36

operating MicroBlaze with a frequency of 100 MHz decreases the reconfiguration time,
and the module logic power consumption increases. While decreasing the MicroBlaze
frequency to 50 MHz increases the reconfiguration time and decreases the power
consumed in the module logic. The optimized value of MicroBlaze frequency of operation
is around 75 MHz, where the power consumed is between 0.1 mw and 0.12 mw. Also,
the reconfiguration time needed for reconfiguring the Partial Blocks is between 0.2 msec
and 0.25 msec.

0.18 0.35
0.16 -
L - 0.3
0.14 _ - =
S, - 0.25
E 0.12 '-.3.'— | =
E o1 - T, 02 g
— - Ceea,, S
- **tena,, @
%0.08 " *v-¢ 0.15 E
& 0.06
0.1
0.04
0.02 6.85
0 0

50 55 60 65 70 75 80 85 90 95 100
Frequency (MHz)

«= == Power eee@ee Time

Figure 3.11: PTF triangle shows the trade-off between the power consumption in
module logic and the reconfiguration time needed to download new module using
DPR in SLEM design for different MicroBlaze operating frequencies.

3.7 Conclusion

This chapter shows the benefits of using the DPR technique in SDR system to
implement a single block. Implementing a library of different encoders and switching
among them reduces the system complexity and makes it handy and real time upgradable.
Using DPR technique saves more power and area on silicon with high percentages with
a slight increase in time overhead and memory storage. The next chapter will include
simplifying the communication system chain and generalizing the concept of DPR for
other blocks.

37

Chapter 4

SDR chain implementation

This chapter proposes an implementation for an SDR chain for a multi-standard
communication system using DPR technique. In this chapter, the different standards
are simplified to operate using the preliminary blocks of each communication standard.
A comparison is done between simple DPR and normal systems. A different way of
DPR using external controller PC is presented in this chapter. The configuration and
the reconfiguration are done through JTAG.

4.1 Communication standards similarities

The simple communication channel is formed of channel coding that is used to
overcome channel circumstances to retrieve the sent data with accepted accuracy.
The second main block is the modulation where a carrier signal adapted in a
special way to carry the data signal over the medium to reach its destination. The
different communication standards use these main blocks with other blocks depend on
specifications of the standard like reaching a high capacity of users with high data rate
transfer overcoming the channel circumstances. A simplified communication standards
are presented in figure 4.1 for the main blocks in the 2G, 3G, 4G and WIFI standards.
Where the presented blocks had different specs according to the mode of operation and
channel used for each standard.

The 2G is the wireless mobile second generation standard, it is originally based on the
Global System for Mobile Communication (GSM). In the 2G, the physical layer mainly
composed of channel coding using convolutional encoder then modulated with Gaussian
minimum-shift keying (GMSK) [35, 36, 31, 37].

The 3G is the wireless mobile third generation standard, it uses Wideband Code
Division Multiple Access (WCDMA) radio access technology to offer greater spectral
efficiency and bandwidth than predecessor 2G. In 3G the data is encoded using FEC
convolutional encoders or Turbo encoders, then it is spread on the channel bandwidth
affording better channel resistance to noise and interference, and then passes through
a different phase and amplitude modulation techniques like Binary Phase Shift Keying
(BPSK) and Quadrature Amplitude Modulation (QAM) [38, 39, 32, 40].

38

WIFI is a fixed wireless communication standard. It allows the electronic devices
to exchange data or connect wirelessly to the internet. The WIFI physical layer uses
Orthogonal Frequency Division Multiplexing (OFDM) as a modulation format. OFDM
is a modulation scheme where orthogonal multi-carriers closely spaced are used to carry
data. Each carrier is modulated using conventional modulation techniques such as BPSK,
QAM, 16-QAM, etc. The Inverse Fast Fourier Transform (IFFT) in the transmitter side
is adopted for the carrier orthogonality purpose. Channel coding in WIFI is done using
convolutional encoders or Low Density Parity Check code (LDPC) [34].

Long Term Evolution (LTE) or 4G is the fourth generation in wireless mobile
standards. In the LTE uplink transmitter, Single Carrier Frequency Division Multiple
Accesses (SC-FDMA) is used for its lower peak-to-average power ratio (PAPR) which in
consequence benefits in mobile terminal transmit power efficiency and the power amplifier
cost reduction. SC-FDMA is like the Orthogonal Frequency Division Multiple Accesses
(OFDMA) with Discrete Fourier Transform (DFT) step is added before layer mapping and
N-IFFT, the M-point DFT is selected such that M to be less than N. LTE supports different
N-point IFFT sizes for different frequencies [41] and different conventional modulation
techniques. LTE uses FEC convolutional encoders and Turbo encoders for channel coding
[41, 42, 43, 33, 44].

In 2G and 3G the main blocks are channel coding and modulation. While in the LTE
uplink transmitter uses the SC-FDMA channel has 2 different main components DFT and
IFFT, and in the WIFI depends on the OFDM channel that has an IFFT block. In Wifi
and LTE, a mapper is used for mapping frequency points onto the data subcarriers for the
OFDM symbol that is assigned to a user. Also, a cyclic prefix (guard insertion) is added
to eliminate the Inter Symbol Interference (ISI) between symbols. The puncturing and
interleaving stage in different communication standards can be considered as a part of the
channel coding.

4.2 Implemented design

The implemented design proposed in the SDR system is switching among 3G, LTE
and WIFI, it is shown in figure 4.2. A selected blocks from 4.1 are the channel coding,
modulation, DFT and IFFT. The chosen channel coding for the different systems is the
convolutional encoder. For the 3G two different implementations selected, the first with
(rate 1/2, constraint length 9) and the second with (rate 1/3, constraint length 9), the
LTE convolutional encoder to be implemented with (rate 1/3, length 7) and the WIFI
convolutional encoder with (rate 1/2, length 7). The different standards support either
BPSK, QPSK or 16-QAM as a conventional digital modulation. In the 3G where it uses
the WCDMA to spread data over the channel there is no need for DFT and IFFT blocks,
so filler is added. The filler is an empty block added to the chain when no specific block
is added. In the LTE User Equipment (UE) transmitter side an M-Point DFT and N-Point
IFFT are used as discussed in the previous session, with selected values for M and N are
64 and 256 respectively. In the WIFI chain, a 64-point IFFT used while DFT block is
replaced with a filler.

39

SUIBYD UOBIUNUIWIO) JURIIYI(:T'p NS

PAH9sT] e 5 E&OE SurABa[IA] ocet]
! , TABI].
IR ALl Swddery Jsdd i ATUOD)
el W yuod-N UOE[UPOI s Supod
OT}IAST] T 8tI=N Tr9=N WVO-9 ([Pjett-2ley] oqmp,
,E:.U LAAT surddery 14a s dd Sunqurens FurABaIII] "AUOD)
wou| P Jurod-N rod-W UOnBIPON Sunmyoung Surpod YH
O . [oIeW-3Je oqm
i EdMOmMW u%ﬂp%m%m %E%EEMI ._ﬁmho%
oL 7 uonenpoN TPERICS sunmoung surpo) YD
ASND i SuraBa[IRU] "ATUOD)
4ol UOIETOPOIN 7 Sunmoung surpo) Y»H

321n0§

[4IM

321n0§

HI'T

321n0§

DE

32.no§

ré

40

3G

Source Conv. Enc. Modulation _ _ o
R=1/2.1=9 BPSK. QPSK Filler Filler
R=1/3,1=9 16 QAM

LTE
Source Conv. Enc. I;g;?;gg;? 64-Point 256-Point | ToRF
R=1/3,1=7 16 QAM DFT IFFT
WIFI

Modulation .
S 7 4- To RF
e C‘imq' Eljc_ BPSK. QPSK Filler 64IF1;ont i
R=1/2,1=7 16 QAM

Figure 4.2: 3G,4G and WIFI communication chain

3G 172 QPSK
3G 173 BPSK

Input from : : : Output to

previous stages . next stages
—> Cha@el —» Modulation ——p>| DFT —> IFFT .
Coding M-Point N-Point

Filler
64-Point

256-Point
64-Point

Figure 4.3: Reconfigurable SDR chain

Encoder Modulator DFT IFFT

2-bits 16-bits 16-bits

D convo_in t mod_in p dft_in re p ifft_in re
I I I 16-bits
convo_out mod_out_re dft_out_re ifft_out_re ¢

16-bits 16-bits
valid_in valid_in p dft_in im pifft in im
I I 16-bits
valid_out mod_out_im dft_out_im ifft out_im {
w clk reset —’— —’—

valid_out valid_out

reset ’(clk ’(clk ’(clk

[cli2

é

valid_in valid_in

1

valid_out

Figure 4.4: Schematic of the SDR chain

The reconfigurable chain implemented on the Xilinx FPGA is shown in figure 4.3. It
is composed of 4 successive blocks corresponding to that shown in figure 4.2. The chain
is composed of channel coding, modulation, DFT and IFFT. The schematic of the design
is shown in figure 4.4 and the floor planned design from PlanAhead tool is shown in figure
4.5.

4.3 General system

The communication system generally introduced in chapter 1. A more detailed system
is presented showing more focus on internal system construction in figure 4.6. The system
consists of different blocks some of them are implemented on hardware layer and other to
be implemented on software layer. These blocks are:

1. Analog domain where the signal is received and converted using ADC / DAC
to/from Digital domain.

2. The Baseband processing held on FPGA where hardware modules to be
reconfigured for a certain channel.

3. Network Layer for packets reception and processing. It is implemented as software
modules.

The processing system takes care of:

1. Software modules data processing.
2. FPGA reconfiguration for hardware modules.

3. Memory management and passing data between different system blocks hardware
and software.

The memory device contains:

1. Firmware for the connected devices.
2. The operating system files which contains related applications.

3. Reconfigurable hardware modules.

The Research focus on the yellow parts that include the transmitter chain, FPGA
reconfiguration and Reconfigurable modules.

42

o
=
=]
=}
&
@
[=
=
©
=
(@]

Modulation

43

SDR chain floorplanning using PlanAhead

Figure 4.5

eauauy

yewg

H7

pud
JuoL]
Bl

WR)SAS [N :9°p 2an31

. |~ T -
) \ SNo0,J SUISS9201J soupolNy |
S N [oIeasay 1ensiq _ 2[qeINSIJU0IY _
QIBMULIT,] 90TAJ(] JuomIasSeURIA] AIOUWISJA]
suorjeoryddy SI[NPOJA 2I1eMIJOS
pue wo)sAg SS[NPOIN 10J 3U1sSa001J
suneredp | o[qemsuosSy UoneINIUOINY VOJ I [eusIg [eysI(]
K10t w2)sAQ SUISS9001]
sav 3 1a 3 paar Ly vonvpopea 3 b d |
OV [P LM A LI 3 WO o oy
3uISS2001]
\ 0 00000000 ~ B8aipo)y | }eyord pue
N\ 7 mnm IKJr IPIM.M IT 7 I [puuey) ! > ToAeT JI0MION

VD] U0 SI[NPOTA] 2IeMPIR[] SUISS200I] pueqaseq

UONOI(] XY

v

<
uonAM(J X,

44

4.4 Lab setup

The Lab setup is shown in Figure 4.7 consists of:

PC: Is the responsible for managing the reconfiguration bitstream files that are stored
on its Hard Disk Drive (HDD). In this connection mode setup, the reconfiguration is done
through the Jtag.

FPGA kit: The kit has the Virtex-5-XC5VLX110T FPGA, more details about this
FPGA is discussed in 2. The VHDL codes for the different communication blocks are
deployed on this FPGA.

JTAG cable for .
P— loading bitstream FPGA contains the
files on the FPGA dynamic modules

\ K FPGA Kit
'\ ITAG L
PC for storing and control /

the loaded bitstream files GPIOs for 1in and out data
to the FPGA

Figure 4.7: SDR chain lab setup

4.5 System results

The current section presents the results of the SDR chain using DPR denoted as
Single-Loaded Module (SLM), in terms of area, memory, estimated power ccnsumption
and time overhead compared to General Communication System Module (GCSM), where
three simple communication standards exist at same time. In SLM design, there are 12
test cases can cover the implemented design shown in figures 4.2 and 4.3 for the different
combinations per communication standard listed in table 4.1. Three design runs are
chosen to cover a mode of operation in the different communication standards. The first
design run is for the 3G communication standard with a convolutional encoder of rate
half, BPSK modulation. The second design run is for the WIFI with a convolutional
encoder of rate half, QPSK modulation and 64-Point IFFT. The third design run is for the
LTE with a convolutional encoder of rate third, 16-QAM modulation, 64-Point DFT and
256-Point IFFT. The design runs are shown in table 4.2. The floorplan of the three design
runs DR_1, DR_2 and DR_3 are shown in figures 4.8, 4.9 and 4.10 respectively. In the
GCSM, the chosen design runs in the SLM table 4.2 are implemented for simplicity while
in the real world each communication standard should be implemented with all its blocks.
The GSCM design and its floorplan are shown in figures 4.11 and 4.12 respectively.

45

Table 4.1: SLM design runs list

Design Run | Standard | Encoder | Modulation | DFT IFFT
DR_1 3G 3G_half BPSK Filler Filler
3G 3G_half QPSK Filler Filler
3G 3G_half 16-QAM Filler Filler
3G 3G_third BPSK Filler Filler
3G 3G_third QPSK Filler Filler
3G 3G_third 16-QAM Filler Filler
WIFI WIFI_half BPSK Filler 64-1FFT
DR_2 WIFI WIFI_half QPSK Filler 64-1FFT
WIFI WIFI_half | 16-QAM Filler 64-1FFT
LTE LTE_third BPSK 64-DFT | 256-IFFT
LTE LTE_third QPSK 64-DFT | 256-IFFT
DR_3 LTE LTE_third | 16-QAM | 64-DFT | 256-IFFT
Table 4.2: SLM selected design runs
Design Run | Standard | Encoder | Modulation | DFT IFFT
DR_1 3G 3G_half BPSK Filler Filler
DR_2 WIFI WIFI_half QPSK Filler 64-1FFT
DR_3 LTE LTE_third | 16-QAM | 64-DFT | 256-IFFT
Input : 3 Conv. Enc. HModulation | }
| ‘ R=1/2.1=9 BPSK I ;
e S \
\
Tnput : HE Conv. Enc. Modulation 64-Point 256-Point | 2) Cutpit
R=1/3,1=7 16 QAM DFT IFFT }_'7 Multiplexet
i i e |
\
Input :WIFI ‘ Conv. Enc. HModulationl 64-Point |
| R=1/2,1=7 QPSK I IFFT ‘
.- - - - - T \

Figure 4.11: GSCM design

46

‘Select

ureyd JY(S Y ul SAMpour papeo] HE 10 I YA 8" N3

m _

I
i
!
L
N

uonenNpon

Buipon |auueyD

LT T ¢ LT,

11 AN e RERER

47

ureyd Y(S AY) ul sAMpow papeo] [AIM 10J T U :6'b 2n31g

k)

uonENpoy

I
Buipon |suueyD

48

=)
=
=]
=]
(4]
@
(=
=
=]
LS
@]

T}

Modulation

49

10 T T T

m

the SDR chai

m

DR_3 for LTE loaded modules

Figure 4.10

LTE

WIFI

i
w
3G

Figure 4.12: GCSM floorplaning

50

4.5.1 Area occupied on the FPGA

Table 4.3 summarizes the SLM system implementation shown in figures 4.2 and 4.3. It
shows the number of LUTs used by each block, the utilization in the floorplanned partition
and the generated bitstream files size. The channel coding module is floorpanned in 64
LUTs on the FPGA where the acquired number of LUTs differs from design to another,
1.e. the 3G convolutional encoder with rate half acquires 3 LUTs out of the 64 LUTs,
with a utilization 5% and the same for the other blocks. The floorplanned LUTs should
be big enough to carry the largest module implementation which is the 3G convolutional
encoder with rate third in the case of convolutional encoders. Note that the PlanAhead
tool has some routing restrictions that needs to enlarge the area of the planned block.The
generated file size 12.3KB for the channel coding block depends on the number of the
floorplanned LUTs not the acquired LUTs. The 64 floorplanned LUTs generate 12.3 KB
file size in channel coding block and modulation block while the 5520 floorplanned LUTSs
of the DFT generates a file size of 350 KB and the 2808 floorplanned LUTs of the IFFT
generates a file size of 210 KB. Although the filler block doesn’t acquire physical LUTs
but the file generated according to the floorplanned LUTs but on the other hand, the filler
block doesn’t consume power as there is no LUTs acquired.

Table 4.3: Design area summary

Block Block Number of | Floorplanned | Utilization | Size
type definition LUTs LUTs (%) (KB)

3G Convo 1/2 3 64 5 12.3

. 3G Convo 1/3 11 64 18 12.3

Channel Coding om0 173 9 64 15 123
WIFI Convo 1/2 2 64 4 12.3

BPSK 3 64 5 12.3

Modulation QPSK 4 64 7 12.3
16-QAM 9 64 15 12.3

DET 64-Point DFT 4674 5520 85 350
Filler 0 5520 0 350

64-Point IFFT 1811 2808 65 210

IFFT 256-Point IFFT 1871 2808 67 210
Filler 0 2808 0 210

Using DPR in the SDR chain decreases the number of physical LUTs used on the
FPGA. Table 4.4 summarizes the area consumed in the three selected design runs using
DPR versus the general SDR chain implementation GCSM. On using DPR, because only
the used blocks are loaded, the maximum number of LUTs in the case of LTE design
run (DR_3) is 6563 LUTSs whereas the minimum in the 3G case (DR_1) is 6 LUTs. In the
GCSM design without using DPR, the number of LUTSs consumed is 6620 LUTs after XST
tool optimization for the selected communication blocks per each standard shown in 4.11,
where all blocks exist on the FPGA at the same time. This value of 6620 LUTs increases
when all the other communication blocks are implemented for the different standards.

51

Table 4.4: Number of LUTSs used per design run versus general design

| Design Run | Standard | No. of LUTS |
DR_1 3G - standard 6
DR 2 WIFI - standard 1817
DR 3 LTE - standard 6563
GCSM Shown in figure 4.11 6620

4.5.2 Memory needed

In the SLM design, the initial configured chain size is 3.8 MB which is corresponding
to the static part of the FPGA and the RP regions, note that there is an initial
communication block loaded on the FPGA corresponding to each RP region. As shown in
table 4.3, the needed memory for the SLM design is 5.2 MB which is equal to the initial
configuration chain size and the size of each image for all the communication blocks.
In the GCSM design, the bitstream file size is equal to 3.8 MB. Table 4.5 shows the
summarized memory needed for both designs.

Memory needed for SLM Design = Initial configured chain size + sum (Number of
communication blocks x Size of RM per block) = 3.8 MB + 1.4 MB =5.2 MB

Table 4.5: Memory needed for SLM and GCSM

SLM | GCSM
Initial configuration bitstream File Size = 3.8 MB

Reconfigurable bitstream file sizes = 1.4 MB
Total Size = 5.2 MB Total Size = 3.8 MB

Configuration bitstream File Size = 3.8 MB

4.5.3 Power estimation

Using DPR in the SDR chain decreases the number of physical LUTs used on the
FPGA when compared to GCSM, consequently, the power consumed decreases. Table
4.6 shows the consumed power in the SLM and GCSM designs. In the SLM design, the
maximum power consumed in the FPGA logic occurs when the LTE design (DR_3) is
loaded while the minimum power consumed in the FPGA logic occurs in the 3G design
(DR_1). Where in the GSCM design, the consumed power of the communication system
shown in 4.11 is 171 mW, where this value increases when the other communication
blocks, for each standard, are implemented. The power consumed in the logic gates is
estimated using Xilinx Power Analyzer (XPA) tool.

4.5.4 Time overhead

In the SLM design, the reconfiguration time is the time needed for reconfiguring a
communication block in the SDR chain. The Maximum Theoretical Reconfiguration

52

Table 4.6: Power consumed in the SDR chain

| Design Run | Standard | Logic power consumed |
DR_1 3G - standard 0.24 mW
DR 2 WIFI - standard 42.49 mW
DR_3 LTE - standard 128.8 mW
GCSM Shown in figure 4.11 171.47 mW

Time (MTRT) is equal to the summation of all reconfiguration time needed if all blocks
are being reconfigured. Where the maximum delay of the data to be processed through
the chain from the entry point till it is valid data at the output is equal to the MTRT in
addition to the processing time per each block. In the GCSM, there is no time overhead
added after the initial configuration because all standards communication blocks exist on
the chip.

MTRT in SLM = Summation of Block sizes / configuration mode throughput using
JTAG = (12.3 + 12.3 + 350 + 210) KB / 66 MHz = 8.65 ms

4.6 Conclusion

Generalizing the DPR concept in the different communication systems blocks leads
to compact design in size and power with small memory and time overhead added.
Where only the needed system will be loaded while others are stored in external memory.
While full system implementation consumes more power and area without any additional
memory and time overhead.

33

Chapter 5

Conclusion and Future work

The objective of this thesis is to design, simulate, and implement DPR system for SDR
on FPGAs. This objective is met by investigating and modeling on two different steps.
The first step by implementing DPR system for convolutional encoders used in different
communication standards 2G, 3G, LTE and WIFI. Where the convolutional encoders
initially not exist on the chip but stored in external memory and loaded on demand. This
DPR design for the convolutional encoder is compared to conventional convolutional
encoder system, where all encoders exist on the same chip. They are compared with
respect to area, power, latency and memory. Softcore MicroBlaze processor is used with
different frequencies to show the different aspects of the work. The results show that
DPR implementation consumes less power and area when compared to the normal design.
Whereas the normal design has less memory and latency. With the continuous upgrading
in memory, it will not be a problem to store files of Kbits in memory of Gbits. The
reconfiguration files can be stored on an external server and loaded through the network
while handover takes place among different communication systems. On the other hand,
the reconfiguration time can be held during the time taken to handover between two
different communication standards.

In the second part of the thesis, ideal communication chains for 3G, LTE and WIFI
are implemented using DPR technique where swapping occurs among different blocks for
implemented encoders, modulation, FFT and DFT used in these standards. This produces
a reconfigurable system that can adapt different communication standards. Using DPR
shows an improvement in area and power consumption with fewer extra memory and
latency when compared to the normal static implementation.

As a conclusion, DPR is a flexible and efficient way of realizing SDR in a Cognitive
Radio system. Implementing a library of different encoding and modulation schemes as
well as DFT and IFFT with different sizes and switching among them reduces the system
complexity and makes it handy and real time upgradable. These designs of both parts are
implemented on Xilinx FPGA kit XUPV5-LX110T.

54

5.1

1.

Future work will include

Simplifying the communication system chain and generalizing the concept of DPR
for other blocks.

Choosing the optimal values for the power, reconfiguration time and frequency in
the DPR design.

How to get more benefits using DPR within broadcasting in different
communication channels.

Generate more libraries of communication blocks to be loaded.

Increase number of standards using the DPR, WIMAX can be added.

. Apply the same concept to the low power energy communication standards like

802.15.4 like ZigBee and Bluetooth.

. This would help in offloading between cellular systems and fixed wireless systems

such as WIFI, not only on the network level but also on the hardware level.

55

List of Publications

Published:

[1] A. Sadek, H. Mostafa, and A. Nassar, “On the Use of Dynamic Partial
Reconfiguration for MultiBand MultiStandard Software Defined Radio,” (Cairo
Egypt), IEEE, In Press.

[2] A. Sadek, H. Mostafa, and A. Nassar, “Dynamic channel coding reconfiguration in
software defined radio,” (Casablanca, Morocco), IEEE, In Press.

56

References

[1] L. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic
spectrum access/cognitive radio wireless networks: a survey,” Computer Networks,
vol. 50, pp. 2127-2159, 2006.

[2] T. Yiicek and H. Arslan, “A survey of spectrum sensing algorithms for
cognitive radio applications,” Communications Surveys & Tutorials, IEEE, vol. 11,
pp- 116-130, 2009.

[3] A. A. Bletsas, Intelligent antenna sharing in cooperative diversity wireless networks.
PhD thesis, Citeseer, 2005.

[4] J. Mitola IIT and G. Q. Maguire Jr, “Cognitive radio: making software radios more
personal,” Personal Communications, IEEE, vol. 6, pp. 13-18, 1999.

[5] J. Mitola, “Cognitive Radio—An Integrated Agent Architecture for Software
Defined Radio,” 2000.

[6] D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools and Applications,
vol. 153. Springer Science & Business Media, 2012.

[7] K. Arun Kumar, “A low power implementation of psk modems in fpga with
reconfigurable filter and digital nco using pr for sdr and cr applications,” in Green
Technologies (ICGT), 2012 International Conference on, pp. 192-197, IEEE, 2012.

[8] K. Arun Kumar, “Fpga implementation of psk modems using partial
re-configuration for sdr and cr applications,” in India Conference (INDICON),
2012 Annual IEEE, pp. 205-209, IEEE, 2012.

[9] K. Arun Kumar, “Fpga implementation of gam modems using pr for reconfigurable
wireless radios,” in Emerging Research Areas and 2013 International Conference
on Microelectronics, Communications and Renewable Energy (AICERA/ICMiCR),
2013 Annual International Conference on, pp. 1-6, IEEE, 2013.

[10] M. Hentati, A. Nafkha, X. Zhang, P. Leray, J. F. Nezan, and M. Abid, “The study
of the impact of architecture design on cognitive radio,” in Proceedings of the Sth
IEEE International Multi-Conference on Systems, Signals & Devices (SSD), p. CD,
2011.

[11] T.Janevski, Traffic analysis and design of wireless IP networks. Artech House, 2003.

57

[12] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting mobile 3g
using wifi,” in Proceedings of the 8th international conference on Mobile systems,
applications, and services, pp. 209-222, ACM, 2010.

[13] K. Lee, J. Lee, Y. Yi, L. Rhee, and S. Chong, “Mobile data offloading: how much
can wifi deliver?,” in Proceedings of the 6th International COnference, p. 26, ACM,
2010.

[14] I. Kuon, R. Tessier, and J. Rose, “Fpga architecture: Survey and challenges,”
Foundations and Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135-253,
2008.

[15] G. Estrin, “Organization of computer systems: the fixed plus variable structure
computer,” in Papers presented at the May 3-5, 1960, western joint IRE-AIEE-ACM
computer conference, pp. 33—40, ACM, 1960.

[16] G. Estrin, “Reconfigurable computer origins: the ucla fixed-plus-variable (f+ v)
structure computer,” IEEE Annals of the History of Computing, no. 4, pp. 3-9, 2002.

[17] H. Harada, Y. KAMIO, and M. FUJISE, “Multimode software radio system by
parameter controlled and telecommunication component block embedded digital

signal processing hardware,” IEICE transactions on communications, vol. 83, no. 6,
pp- 1217-1228, 2000.

[18] X., Inc., “Xilinx partial reconfiguration training,”

[19] X., Inc., “Xilinx ugl91 virtex-5 fpga configuration user guide (v3.11),” October
2012.

[20] E. Eto, “Xilinx xapp290 difference-based partial reconfiguration (v2.0),” vol. 3,
December 2007.

[21] X., Inc., “Xilinx ug702 partial reconfiguration user guide (v14.5),” April 2013.

[22] S. Kelem, “Xilinx xappl51 virtex series configuration architecture user guide
(v1.7),” October 2004.

[23] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, “Modular dynamic
reconfiguration in virtex fpgas,” in Computers and Digital Techniques, IEEE
Proceedings-, vol. 153, pp. 157-164, IET, 2006.

[24] P. Sedcole, B. Blodget, J. Anderson, P. Lysaghi, and T. Becker, “Modular partial
reconfigurable in virtex fpgas,” in Field Programmable Logic and Applications,
2005. International Conference on, pp. 211-216, IEEE, 2005.

[25] D. Dye, “Xilinx wp374 partial reconfiguration of xilinx fpgas using ISE design
suite(v1.2),” May 2012.

[26] S. Teig, “Going beyond the fpga with spacetime,” in FPL2012 Keynote Oslo,
Norway, August 2012.

[27] X., Inc., “Xilinx ug190 virtex-5 fpga user guide (v5.4),” March 2012.

58

[28] X., Inc., “Xilinx ug081 microblaze processor reference guide (v17.7),” 2013.

[29] D. Lim and M. Peattie, “Xilinx xapp290 two flows for partial reconfiguration:
Module based or small bit manipulations (v1.0),” 2002.

[30] D. Koch, C. Beckhoff, and J. Torresen, “Zero logic overhead integration of partially
reconfigurable modules,” in Proceedings of the 23rd symposium on Integrated
circuits and system design, pp. 103—-108, ACM, 2010.

[31] “Digital cellular telecommunications system (Phase 2+); Channel coding,” 3GPP
TS 45.003 version 12.1.0 Release 12.

[32] “Universal Mobile Telecommunications System (UMTS); Multiplexing and channel
coding (FDD),” 3GPP TS 25.212 version 12.0.0 Release 12.

[33] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and
channel coding,” 3GPP TS 36.212 version 12.2.0 Release 12.

[34] “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications,” IEEE Computer Society LAN MAN Standards Committee and others.

[35] “Digital cellular telecommunications system (Phase 2+); Physical layer on the radio
path; General description,” 3GPP TS 45.001 version 12.1.0 Release 12.

[36] “Digital cellular telecommunications system (Phase 2+); Multiplexing and multiple
access on the radio path,” 3GPP TS 45.002 version 12.4.0 Release 12.

[37] “Digital cellular telecommunications system (Phase 2+); Modulation,” 3GPP TS
45.004 version 12.0.0 Release 12.

[38] “Universal Mobile Telecommunications System (UMTS); Physical layer - general
description,” 3GPP TS 25.201 version 12.0.0 Release 12.

[39] “Universal Mobile Telecommunications System (UMTS); Physical channels and
mapping of transport channels onto physical channels (FDD),” 3GPP TS 25.211
version 12.1.0 Release 12.

[40] “Universal Mobile Telecommunications System (UMTS); Spreading and
modulation (FDD),” 3GPP TS 25.213 version 12.0.0 Release 12.

[41] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment
(UE) radio transmission and reception,” 3GPP TS 36.101 version 12.9.0 Release
12.

[42] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical layer;
General description,” 3GPP TS 36.201 version 12.0.0 Release 12.

[43] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels
and modulation,” 3GPP TS 36.211 version 12.5.0 Release 12.

[44] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures,” 3GPP TS 36.213 version 12.5.0 Release 12.

59

Appendix A

Xilinx Design Flow

A.1 Design Flow

FPGAs are Integrated Circuit (IC) chips that are programmed using Hardware
Description Languages (HDL) such as (VHDL, Verilog). These languages are considered
precise description for the logic circuits and its connections. Where the Computer Aided
Design tools (CAD) are the tools that an engineer uses to develop the HDL, translate,
verify, synthesis, simulate and program the FPGA. Recently High Level Synthesis (HLS)
tool is used in the developing of the FPGA. This new tool allows software engineers to
develop FPGA without the need to dig in the FPGA fabrication and clock level timing.
HLS is developed using software languages like C/C++.

A.1.1 FPGA design flow
Figure A.1 describes the basic design flow of the FPGA:

Design entry: describe system requirements in HDL Language such as VHDL and
Verilog. This HDL language represents the Register Transfer Level (RTL) of the circuit,
which is a high level representation of the connections and blocks used in the circuit.

Functional Simulation: execute the written HDL code to ensure the output is same as
required, no timing or delay calculations done at this stage.

Synthesis: convert the designed code (RTL) into logic gates and a netlist that describes
the generated nets connections between the logic gates.

Place and Rout: or in other words where is the generated netlist will be placed and
how routing is done on the FPGA fabric between the different LUTs.

Timing simulation: this stage takes care of the delays due to wires routing, logic gates
and timing constraints.

Bitstream generation: after finishing the design, the generated bitstream file is formed
that will be deployed on the FPGA chip. The format of the bitstream and how it configure
the FPGA is a property of the FPGA vendors.

60

—> Design Entry

v

Functional Simulation

v

Synthesis

v

Place and Route

v

Timing Simulation

v

Bitstream Generation

Figure A.1: FPGA design flow

A.1.2 ISE Suit for developing Xilinx FPGA

CAD tools are used for implementing and simulating electronic design. Integrated
Synthesis Environment (ISE) suit is a CAD tool provided by Xilinx to facilitate the dealing
with Xilinx FPGAs. Figure A.2 provide an overview of the main tools in the ISE suit and
how they are mapped to the general FPGA design flow. Note that ISE latest version is 14.7,
Xilinx discontinued this family of tools and upgraded them to a new set of tools which is
named Vivado. Vivado is PlanAhead based software, takes the interface of PlanAhead, a
powerful new tool but will not be discussed in the thesis context as it supports only the
Xilinx 7 series till the written of this thesis.

Integrated Synthesis Environment (ISE): Is a design suit that controls Xilinx
design flow, it facilitates accessing the design implementation files through the main
project files. It provides the design entry by adding the VHDL / Verilog codes or
schematics, synthesize the design through accessing Xilinx Synthesize Tool (XST),
perform functional simulation and timing analysis using ISim and draw RTL diagrams.

PlanAhead: This tool provides more precise working with the FPGA resources. It
helps in design placing and routing, pin assignment, refine timing constraints, CLBs
selection and more. It also helps in partitioning design, hierarchical design and provides
access to the Partial Reconfiguration (PR) design flow. It almost integrates with all Xilinx
tools that why it became the base interface for the new Vivado tool.

Embedded Development Kit (EDK): EDK helps the engineer to design, debug and
verify an entire embedded design, the two key components in the EDK tools are the Xilinx
Platform Studio (XPS) and the Software Development Kit (SDK).

61

—P Design Entry ISE

v

Functional Simulation | ISim

v

Synthesis XST

v

Timing constraints,

.) PlanAhead
Pin assignment
Partitioning, PlanAhead

Place and Route

v

Timing Simulation ISim

v

Bitstream Generation

Figure A.2: Xilinx FPGA design flow

Xilinx Platform Studio (XPS): is a graphical platform for adding hardcore processors,
softcore processors and different IPs for the design. It is a powerful tool included in the
Embedded Development Kit (EDK) to design embedded systems. It helps engineer to
build, connect and configure embedded processor-based system.

Software Development Kit (SDK): It is an eclipse-based software design environment,
which includes GNU C/C++ compiler and debugger. After developing the software,
Data2MEM utility is used for loading and updating bitstream with the developed software.

A.1.3 Xilinx DPR Design Flow

Figure A.3 simplifies the Xilinx DPR flow in both normal design and embedded
design, where the embedded design is considered a normal design with extended System
on Chip (SoC) functionality that the internal microprocessor controls the reconfiguration
of the reconfigurable modules. In Xilinx DPR system, hardware modules that are partially
reconfigured are called Partially Reconfigurable Modules (PRMs) these modules can be
reconfigured real time during system operation. The region where a PRM module is
configured is called a Partial Reconfigurable Region (PRR), whereas the other region is
called Static Region that will contain the top module and related interfaces with the PRR.
A bit stream file that contains the configuration data of PRM is called a Partial Bit Stream
(PBS). Xilinx ISE Project Navigator manages the different modules in the DPR design,
where the top module and the PRMs are designed in Verilog HDL or VHDL and are
synthesized to a netlist file using Xilinx XST. In the top module, the PRMs are defined

62

as only an external interface and designed as black box modules without internal logic.
Where the internal logic will be defined in the PRMs files as a separate project.

For the DPR in embedded system, the external interface between the PRR with
the embedded system is developed through the Xilinx XPS and SDK. Using XPS an
embedded processor such as MicroBlaze or PowerPC is added and other needed IPs
such as UART. In XPS process, the user IPs and its interface with the reconfigurable
controller (processor like MicroBlaze) are designed. Using SDK, C program running on
the embedded processor is implemented. The program is compiled by dedicated compilers
to an Executable and Linkable Format (ELF) file.

Xilinx PlanAhead tool is a design tool for the entire FPGA design and implementation
cycle. It is integrated with the Xilinx ISE and EDK, which makes it easier to export
designs from these environments to the PlanAhead tool to finish implementation. It is the
main part to apply the DPR concept through its flow, this flow is the same for the normal
DPR design and the embedded DPR design.

In the PlanAhead design flow, the PRR is set using the tool. Then design runs are
planned for the different configuration. These design runs are verified against each other
to make sure of the interfaces are compatible when switching takes place. For each design
run a bit stream file is generated for the full design, which includes the top module and
the static part, as well as the partial bit stream files that contain the PRM.

In the embedded DPR the generated bitstream file of the full design and the generated
ELF file are assembled using Data2MEM tool into a bit stream file for initializing FPGA.

63

Normal DPR | Embedded DPR
A > A
N o ™
PRM Top Module 2 ‘ . 3 7
HDL files HDL files UCF I Static System C/IC+
H H
H H
[h 4 v
. . Microprocessor
ISE (XST) | XPS (XST) SDK (GCC) (d--=-- wages
I H H H
5 ' . .
~ = ,
A\ A\ :
PRM Top Module . Static System Block RAM E
Netlist files Netlist files Netlist files Map file E
l l ! : :
. H H
H H H
H H '
Y i \ 4 \ 4 :
L]
PlanAhead H
i v
Partial Static
Bitstream files Bitstream file |~ E ELF file
I ;
H .
. H
i h 4 v
i Data2MEM
I é
. H
. v
| Initial SySACE file for
. Bitstream file > Genace'tCl > Compact Flash

Figure A.3: Xilinx DPR Design Flow

64

uadlall

ladn Say dall) Aalall &5 of e aaae YLl ot 8 (SDR) Laay cajall sl
JS) e Ly ale) 5 L5 (Say (SDR)J dmad) laagll LAma s saaae Slasy Giyb e
e Slead) Jinsale] & 13) (SDR)JI a8l dafiy . oasall Johall culd YLVl s3ga) (o Calide ae
Olea JiSill sale) dnl i) Jall (FPGA) dhid) cillsdl clistns Jin iing 5 AL (i)
SSaebiall S5l J€iml) sale) o (FPGA)! saas Ay aladinl &1y dag,kY) 24 3 (SDR)JI
3) o5 13 L Adkaal AL VLA ules Gp diadill 2 leadl 3 Siae s i ((DPR)
Xilinx Vertix-5 e o)lidl; cuadl 3as 5 (FPGA)JI e 4wriivd) dalid) Qi 5 4yUadl yee
XUP V5-LX110T Kit
Se all el Sl sale) A Aasiuly Laay Caprall sl 365 2 cJaall 128

eyl jplee 8 aadias A dppadnll Caddll Galide o Jysadl) 385 5y o J) ekl B ol
Jsenall 21 Jyghall odaill olai 5 (3G) Jsenall N Jiall 5 (2G) Jsanall Sl Joall dalisl
e JS Adbad) 3aal) 5 (IEEE 802.11) Jall & (WIFT) SLU JlatV) @l 5 (LTE)
Lot Aayal) o il aiil) 3heal aaen Blias sa Js¥) cdibiaal) ciliulail) e ol A5lhe o5 Cun
(SLEM) (salal il oUai Jueat 5a ¢ 6 dgiill L(GEM) iinll dalal) sasgll ony 5 ccigl) i b
Miny 5 d)ld G0 Basg o agiidd aby (Al 5 (FPGA)J e aaly il ol olia (58 G
Alail) o s sl gl 8 Jueail) (35S) o Galhall G saagll Juesti 4y 5 (DPR)JI 4 e
el Jaal) daaimg e

alail 4091 ALl 35 DA e (DPR)JI asgia 3o (gl aiy cdagylaV1 e S g3l
s 5 (LTE) Jsenall adY) Jyghall shail) aliai 5 (3G) Jsenall Gl Joall dabiaall iYLy
daplally deaaall Lalal 028 po 43ad) Ay (IEEE 802.11) slaall & (WIFI) SLOU Jaiyl
Sl

-

gﬂ}),m Cg.:ha 2ene daal :UAJJ@.A

1983\6\7 Dall gy

Gpan s dadal)

L i) gum gun 2010\ 10\ 1 P l) Gl

o sl gl

A yeSI Y laly calag ySIY) : asdl

il :da,al)

g8 il
Dlad Gl Ll
ihaas s 2

10 siadaad)
(s caiaall) 2
(Al caiadll) 2
(il Cayiall) Sl Gl Lo
() 2

Allayd) lgis
Aaallly Apalipdl) vl Ayl ol aiiudly Ly 23aal) s

400l clalsy
¢ Salually Laalll Ll ¢ Ly saadll bl ¢ e yll AL Llaial) sl Cldsias
o) il

Al (adls

ASaalind Ay Alaial) Cllsall Ol shian Ay o Aas A8 aladi) 5y Cnall e
o34 aladin) A8 Sl 1 adiys B85 (g) (50 WIS Lelae pad () (535 Lee Ol (8 dpdasds
3o liS a5 Laa ASLY) 3Dl sanwiall oLl 3 A galall d5dal) amg b Al
ALl laiy) alail aladl JSGN g PR e blee 130 @adad Sy laay dasa syl
Jsanall 21 Jyshall skl alai 5 (3G) Jsenall Cllill Jall 5 (2G) Jsenall 6 Jal)
(IEEE 802.11) sladll & (WIFl) LS Juaiy) il 5 (LTE)

TSalipal) dnall A5 o105ty Lanays d0aall gyl
Adaallly

I3

Alac)

cﬂj)ga d.JLA RV .JAA‘

) Aasia Al
5 Al Taala — uigl) A
A o Jpaadl ailillic (e ¢3S
il
L;j
Gulal) Sl gyl

:.... - “uw ..“

il Capdiall = lad gl L]

LJJM — J;\ ‘)j_'\SJ

SR el = AT g

@Ju\ M\— ‘);1 J)'JSJ
(oA &S — fuosigl) 1)

A daala — fusigl K

Lpall seme dyysgan — Sl
YT

TSalipal) dnall A5 o105ty Lanays d0aall gyl
Adaallly

I3

Alac)

cﬂj‘)..m d.JLA RV .JAAT

) Aasia Al
5 Al Taala — uigl) A
A o Jpaadl ailillic (e ¢3S
il
L;j
Gulal) Sl gyl

.‘\)ﬁ;‘ - -

oy i PRI
Sl LYy ciliig SNV o A Sl Y LV g ciliig SV ol o
3aall daals — duaigl) 4408 AN dralas — dnigl) 4K

A daala — fusigl K

Lpall seme dpysgan — Sl
Yo

TSalipal) dnal) A5 o035ty Ly d0aall gyl
Adaallly

r3

Alac)

gﬂj),m éahammi

) Aasia Al
5l Taala — uigl) A
A o Jpaadl ailllaic (e ¢3S
Ddaldll
é
Galall Sl sl

$AL daels — Fuigll &S

Al MY%{J;‘&A.A ~ 3yl

	Ahmed_Sadek_Thesis_v3
	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Nomenclature
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Communication system
	1.3 Software Defined Radio (SDR)
	1.3.1 Terms used with SDR
	1.3.2 Benefits and costs of SDR
	1.3.3 SDR platforms

	1.4 FPGA Dynamic Partial Reconfiguration (DPR)
	1.5 Idea of research
	1.6 Organization of the thesis

	2 Dynamic Partial Reconfiguration
	2.1 FPGA overview
	2.1.1 Xilinx Virtex-5
	2.1.2 Configurable Logic Blocks (CLBs)
	2.1.3 DSP and Block RAM
	2.1.4 MicroBlaze softcore processor

	2.2 FPGA reconfiguration
	2.2.1 Advantages and disadvantages of reconfiguration
	2.2.2 Reconfigurable FPGAs
	2.2.3 Reconfiguration time overhead
	2.2.4 DPR terms

	2.3 Partial reconfiguration factors
	2.3.1 Configuration mode
	2.3.2 Reconfigurable module style based
	2.3.3 Configuration memory array types
	2.3.4 Type of reconfiguration

	2.4 Advanced topics on partial reconfiguration
	2.4.1 Reconfigurable partition style
	2.4.2 Connection constraints
	2.4.3 Configuration memory layers (3D-FPGAs)
	2.4.4 DPR in time domain (4D)

	2.5 Summary

	3 Channel coding DPR implementation using MicroBlaze
	3.1 Forward error correction
	3.1.1 Convolutional encoders
	3.1.2 2G convolutional encoder
	3.1.3 3G convolutional encoder
	3.1.4 4G convolutional encoder
	3.1.5 WIFI convolutional encoder

	3.2 Convolutional encoder summary
	3.3 Lab setup
	3.4 General Encoder Module (GEM)
	3.5 Single-Loaded Encoder Module (SLEM)
	3.6 Results for the two systems
	3.6.1 Area occupied on the FPGA
	3.6.2 Memory needed
	3.6.3 Power estimation
	3.6.4 Time overhead
	3.6.5 PTF triangle

	3.7 Conclusion

	4 SDR chain implementation
	4.1 Communication standards similarities
	4.2 Implemented design
	4.3 General system
	4.4 Lab setup
	4.5 System results
	4.5.1 Area occupied on the FPGA
	4.5.2 Memory needed
	4.5.3 Power estimation
	4.5.4 Time overhead

	4.6 Conclusion

	5 Conclusion and Future work
	5.1 Future work will include

	List of Publications
	References
	A Xilinx Design Flow
	A.1 Design Flow
	A.1.1 FPGA design flow
	A.1.2 ISE Suit for developing Xilinx FPGA
	A.1.3 Xilinx DPR Design Flow

