SUCCESSIVE APPROXIMATION REGISTER
WITH CONTINOUS DIS-ASSEMBLY
ALGORITHM (SAR-CD) AND CIRCUIT
DESIGN FOR TIME-BASED ANALOG TO
DIGITAL CONVERTERS (TADC)

by
Karim Osama Ragab Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
ELECTRONICS AND ELECTRICAL COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

SUCCESSIVE APPROXIMATION REGISTER
WITH CONTINOUS DIS-ASSEMBLY
ALGORITHM (SAR-CD) AND CIRCUIT
DESIGN FOR TIME-BASED ANALOG TO
DIGITAL CONVERTERS (TADC)

by
Karim Osama Ragab Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
ELECTRONICS AND ELECTRICAL COMMUNICATIONS ENGINEERING

Under the Supervision of

Associate Prof. Ahmed Emira
Principal Advisor

Assistant Prof. Hassan Mostafa

Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

SUCCESSIVE APPROXIMATION REGISTER
WITH CONTINOUS DIS-ASSEMBLY
ALGORITHM (SAR-CD) AND CIRCUIT
DESIGN FOR TIME-BASED ANALOG TO
DIGITAL CONVERTERS (TADC)

by
Karim Osama Ragab Mahmoud
A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
ELECTRONICS AND ELECTRICAL COMMUNICATIONS ENGINEERING

Approved by the examining Committee

Associate Prof. Ahmed Emira, Thesis Main Advisor

Prof. Muhammed Riad El Gonamy, Internal Examiner

Associate Prof. Yahia Ghallab, External Examiner

(Zewalil City for Science and Technology)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

© Karim Osama Ragab Mahmoud 2017
All Rights Reserved

v

Engineer’s Name: Karim Osama Ragab

Date of Birth: 8/9/1989

Nationality: Egyptian

E-mail: engkarimosama @ gmail.com

Phone: 01002393426

Address: Electronics and Communications Engineering

Department, Cairo University,
Giza 12613, Egypt
Registration Date: 01/10/2012
Awarding Date: dd/mm/yyyy

Degree: Master of Science
Department: Electronics and Communications Engineering
Supervisors: Associate prof. Ahmed Emira

Assistant prof. Hassan Mostafa

Examiners:
Associate prof. Ahmed Emira (Thesis main advisor)
Prof. Muhammed Riad El Gonamy (Internal examiner)
Associate prof. Yahia Ghallab (External examiner)
Title of Thesis: . o , . :
e eSS Successive Approximation register with Continuous
Dis-assembly Algorithm (SAR-CD) and circuit design for
Time-based Analog to Digital Converters (TADC)
Key Words:

Time to Digital Converter (TDC); Voltage to Time Converter (VTC); Analog to
Digital Converter (ADC); Biomedical circuits

Summary:
This work proposes a novel algorithm for analog to digital conversion. The

algorithm is a modified version of the successive approximation algorithm in
which binary sub-weights of the input maximum are used to evaluate the
corresponding digital words in a cyclic manner. The proposed algorithm moves the
conditioning between the evaluated bits from the analog domain to the digital
domain. In folded versions of the successive approximation ADC circuits, in which
bits are evaluated in an iterative fashion, digital to analog converters may not be
needed anymore. This major advantage promises for reduction in fabrication area
and power consumption. A full mathematical proof for the algorithm is also
introduced. A new circuit design is developed to utilize the algorithm benefits.

Results show competent power and reduction with state-of-art designs.

Acknowledgment

In the name of Allah the most merciful the most gracious; all thanks to Allah the
Lord of the Heavens and Earth and peace be upon Mohamed and his companions.
I am also very gratefull to have Associate Prof. Ahmed Emira as my principle
supervisor. I wish to express my gratitude to my adviser, Prof. Hassan Mostafa
who was helpful and offered invaluable assistance, support and guidance. I am also

genuinely blessed to have Associate Prof.

- as a member of the supervisory
committee, for his great efforts and constant care.

Many thanks to my family and friends for their support and help through the
duration of this work.

My deepest gratitude to my family. Without their encouragement, I would not
have gone this far.

Karim.

vi

Abstract

A NAlog to Digital Converters(ADC) and Digital to Analog Converters(DAC)

define the boundaries between the analog and digital blocks in every ma-
chine. Optimizing powerful data converters means that more analog blocks can
be digitized. Digital blocks are much easier in design and manipulation. Also
they provide robust performance against noise with less power consumption and
fabrication area benefitting every new fabrication technology.

Many ADC architectures have been proposed to serve wide range of applica-
tions. Choosing the right ADC architecture is based on many factors such as sam-
pling rate, power consumption, fabrication area, resolution, robustness towards
Process, Voltage and Temperature (PVT) changes. Sigma-delta, flash, pipelined
and Successive Approximation Register (SAR) present a wide range of architec-
tures each.

Time-based ADC (TADC) is a special category of ADCs in which part of the
data converter is desired to be digital in nature. The conversion between an analog
quantity and the corresponding digital representation is done in two steps. The
first step is to convert the analog quantity from voltage amplitude change into time
change. In the second step, the signal representation in time change is converted
to the corresponding digital binary representation. Most of the conversion effort is
done in the second step. As the job is now simplified by the first step, the second
one is expected to be implemented by digital components.

This work proposes a novel algorithm for analog to digital conversion. The al-
gorithm is a modified version of the successive approximation algorithm in which
binary sub-weights of the input maximum are used to evaluate the corresponding
digital words in a cyclic mannar. The proposed algorithm moves the condition-
ing between the evaluated bits from the analog domain to the digital domain. In
folded versions of the successive approximation ADC circuits, in which bits are

evaluated in an iterative fashion, digital to analog converters may not be needed

Vil

anymore. This major advantage promises for reduction in fabrication area and
power consumption. A full mathematical proof for the algorithm is also intro-
duced. A new circuit design is developed to utilize the algorithm benefits. Results

show competent power and reduction with state-of-art designs.

viii

Contents

Acknowledgment

Abstract

List of Tables

List of Figures

List of Symbols and Abbreviations
1 Introduction

2 Background
2.1 ADCfunctions
2.1.1 Sampling
2.1.2 Quantization
2.2 ADC static characteristicso
22.1 Offseterror
222 GaINEIror v v i e e e
2.2.3 Differential Non Linearity
2.2.4 Integral Non-Linearity
225 MissingCodes
2.3 ADC Dynamic characteristics
2.3.1 Analog Input Bandwidth:
2.3.2 Inputlmpedance
2.3.3 Equivalent input referrednoise
2.3.4 Maximum sampling frequency and conversion time
2.3.5 Signal to Noise Ratio(SNR)
2.3.6 Signal to Noise and Distortion Ration (SNDR)
2377 Dynamicrange

vi

vii

xii

XV

xvii

O 00 N9 9 N Ui A B W

2.3.8 Effective Number Of Bits (ENOB)

2.4 Types of Analog to Digital Converters (ADC)
24.1 Nyquistrate ADCs
24.1.1 flashADC

24.12 Piplelined ADC

2.4.1.3 Successive approximation ADC

242 Oversampling ADCs
2421 SigmaDelta ADCs

2.5 Time-based ADC (TADC)
2.5.1 TADC based on frequency modulation.

2.5.2 TADC based on pulse position modulation

2.5.3 TADC based on pulse width modulation
2.5.3.1 Pulse-width VTC examples

2532 Pulse-width TDC

Introducing SAR-CD algorithm
3.1 SAR verses SAR-CD algorithm
3.2 SAR-CD general algorithm
3.3 SAR-CD algorithmproof
3.4 SAR-CD algorithmexamples
3.4.1 Example 1 to convert “10.1” analog input to “1010”
3.4.2 Example 2 to convert “20” analog input to “10100”
3.4.3 Example 3 to convert “20” analog input to “10100”

Circuit design

4.1 Firstcircuitdesigno
4.1.1 Designcomponents
4.1.2 Simulation results and analysis for the first design.

4.2 Second circuit design- All Digital TDC
4.2.1 Circuitdescription
422 Circuitcomponents oo
4.2.3 Simulation results and analysis for the second design . . .

4.3 Digital Calibration for SAR-CD time-based TDC

4.4 Calibrationresults

List of Publications

References

33
33
36
37
39
40
41
42

43
43
45
48
50
51
53
56
58
62

63

65

A Appendix 68

A.l

A2
A3
A4
A5
A.6

SAR-CD Matlabcode 68
A.1.1 Traditional SAR Algorithm- Matlab function 68
A.1.2 Noval SAR-CD Algorithm - Matlab function 69
A.1.3 Noval SAR-CD Algorithm - Matlab function 70
Effective Number Of Bits (ENOB) 71
Differential Non-Linearity (DNL) and Integral Non-Linearity (INL) 77
Ideal VTC using Verilog-A 81
Calibration code Verilog 83
Corners Simulation and analysis 89

xi

List of Tables

4.1 Performance comparison

xii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21
2.22

Example of 3-bits quantization [1]
Nyquist rate sampling [2],
Quantization of analog sinewave to 3-bit [3]
Quantization Error of +/-(LSB/2) [3]
Ideal ADC input-output transfer function
Offset error for a non-ideal ADC[1]
Gain error for a non-ideal ADC with 1 LSB maximum Error . . .
Differential non-linearity example [4]
Integral non-linearity example [4]
example of a missing code when a sudden DNL greater than 1

LSBoccurs [1]
Estimation of the input referred noise using the histogram method

fordc input (Figure 2.111[5])
Example for hypothetical ADC SNR values for different input sig-

nallevels [S5]
Signal to noise and distortion ratio versus input amplitude and in-

put frequency (f4=50 MHz) [5]
example of SNR for segma-delta converter versus input amplitude,

reference voltage-ratio [S],
ADCtypes o o e e e e
Flash ADC [1]. e e e e e
Pipline ADC[6]
Basic circuit diagram of the successive approximation algorithm .
Timing (a) and flow diagram (b) of the successive approximation

technique
First-order sigma-delta modulator
Dual Slope VTC [7] o o oo oo oo
Current Starved VTC oo

Xiii

O 0 9 N &N Lt & W

—
e}

[S—
[S—

13

14

15

16
18
20
21
23

2.23
2.24
2.25
2.26

3.1

32
33

34

3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

Vernier delay line-based TDC [8][9]
Decision select SA TDC circuit
Decision select SA TDC cell (a) and timing diagram (b)

Compensation delays for decession-selection SA circuit

Evaluation of the binary "b3 b2 bl b0" for the number ’9’ using
the new algorithm oL
Flow chart for the proposed algorithm
Digital output of zero’s run intersecting one’s run using standard
algorithm (a) and using proposed algorithm (b) before bits correc-
HON o e e e e e
Example 1 to convert analog quantity 10.1 to binary “1010” using
SAR-CD algorithm
Example 2 to convert analog quantity 20 to binary “10100” using
SAR-CD algorithm
Example 3 to convert analog quantity 28 to binary “11100” using
SAR-CD algorithm

Bitunitcello
The comparator circuit, stage 1 (left) and stage 2 (right)
Pulse generator circuit
DFFbasedon SDFF
FFT output
Feed back synchronization problem
Successive approximation with continuous disassemble algorithm

system architecture.
System unitbitcell
Simulation capture for the two MSB stages signals (landscape

272 15072
Pulse generator circuit
SDFF introduced in [10]
Simulated DNL and INL for the second design
Calibration circuit connection diagram
Calibration algorithm diagram
Calibration for first MSBo oL
ENOB for the original circuit before calibration (square marker)

and after calibration (dot marker). Simulation is for different tem-

perature degrees (left) and different fabrication corners (right)

Xiv

62

A.2 Exporting the ADC output from the results browser
A.3 Data should be sampled with the sampling frequency of operation
A.4 The Matab data fomate cell contists of 3 elements “data”, “text-
data” and “colheaders”
A5 TargetSinesignal,
A.6 Effective number of bits for a 10-bit quantized sine signal
A.7 Effective number of bits for a 10-bit quantized sine signal
A.8 example of ADC output with non-linear defect
A.9 The DNL (red) and INL(blue) plots for the example signal
A.10 Running ADE XL from the target circuit schematic.
A.11 Running ADE XL from the target circuit schematic.
A.12 Creating a new test for corners simulation
A.13 Creating a new test for corners simulation
A.14 Model library setup
A.15 Example of model file for TSMC13rf design kit for “tt” corner
cofiguration (nominal)
A.16 Selecting the target temprature and fabrication corners
A.17 loading the simulation models from the testsetup
A.18 Configuring the simulation temprature and fabrication corners
A.19 Start and monitor the simulation
A.20 Plotting the simulation results for all the corners
A.21 Plotting the simulation results for all the corners
A.22 Exporting signals to Matlab 0L,
A.23 Exporting signalstoMatlabo
A.24 Exported Matlab file view
A.25 Exported Matlab fileview

XV

List of Symbols and
Abbreviations

Abbreviations

ADC Analog to digital converter.
DAC Digital to analog converter.
DFF D-flip-flop.

DNL Differential non-linearity.
ENOB Effective number of bits.
FFT Fast fourier transform.
INL Integral non-linearity.

LSB Least significant bit, the index of the bit of smallest weight in binary

word.
MSB Least significant bit, the index of the bit of largest weight in binary word.
MUX Multiplexer.

PVT Process-Voltage-Temperature , relating to their effects to circuit opera-

tion.
S&H Sample and hold.
SAR Successive approximation register algorithm.

SAR-CD Successive approximation register with continuous dis-assembly algo-

rithm.

XVvi

SNDR
SNR
SOC
SQNR
TADC
TDC
UWB
VFC

VTC

Signal to noise and distortion ratio.
Signal to noise ratio.

System on chip.

Signal to quantization noise ratio.
Time-based analog to digital converter.
Time to digitial converter.

Ultra wide band.

Voltage to frequency converter.

voltage to time converter.

Xvil

This thesis 1s dedicated to my father (may allah forgive him).

Xviii

Chapter 1

Introduction

Due to technology scaling, there is a great demand to replace the analog de-
signs with their digital counterparts. In Time-based Analog to Digital Converters
(TADC), the input voltage is first converted into an intermediate change in fre-
quency, pulse position or pulse width. This is performed by the first block of the
TADC, which is denoted by the Voltage to Time Converter (VTC). This interme-
diate change is digitized by the second block of the TADC which is denoted by
Time to Digital Converter (TDC). Most of the digital processing is conducted by
the TDC block taking all the advantages of the CMOS technology scaling.

Pulse width modulation-based TADC utilizes the difference between the pos-
itive edges of two signals or the width of a given input pulse and compares it
to the full scale. This kind of TDC has several applications such as: collecting
on-chip measurements [11], replacing phase or frequency detector in frequency
synthesis [12] and sensors interfacing [13]. Flash-like TDC promotes the usage
of delay lines [14] which can have resolution as low as unit delay elements [15].
However, increasing the number of bits means exponentially increasing the area
and power [14,15]. Several methods to increase the number of bits or the dynamic
range are investigated. In [16], the Most Significant Bits (MSBs) are calculated by
counting the number of complete reference clock cycles inside the measured in-
terval. Following, The Least Significant Bits (LSBs) are calculated using Vernier
delay lines.

On the other hand, implementations based on binary search algorithms take
place in applications that require low power and area with high resolution. In
[17,18], the well-known Successive Approximation Register (SAR) is applied in
a cyclic manner. However, the existence of two signal branches imposes a critical

condition to keep the signals synchronized along the conversion, and the error in

one branch is accumulated each iteration. This error accumulation becomes worse
due to the conditioning on each path of the two signal paths.

In this work a new algorithm is introduced to move this dependency from
the time domain to the digital domain. In addition, the algorithm needs only one
signal path instead of two which relaxes the strict synchronization requirements.
Two circuit design approaches are presented to demonstrate the advantages of the
new algorithm.

This thesis is arranged as follows: Chapter II presents a brief review to the
main analog to digital conversion approaches and measures. Also, Time-based
analog to digital conversion concepts and circuit architectures are presented in the
same chapter. The proposed SAR-CD algorithm with derived proof is introduced
in Chapter III. Chapter IV proposes two circuit design architectures using the new
algorithm with detailed results and analysis. Chapter V introduces calibration
algorithm for the second circuit architecture to compete for the Process Voltage

Temperature (PVT) changes.

Chapter 2

Background

Analog to digital conversion is the process in which the input analog quantity is
approximated to a digital number to be stored in a machine. This analog quantity
can be a voice signal or a signal from a given sensor. The number of digits allo-
cated for each sample in the machine presents the accuracy of the approximation,
or what is called, quantization. Figure 2.1 presents a 3-bits ADC. Which means
that every sample of the input is stored in a bits with possible value of 8 levels.
The Digital to Analog Converter (DAC) performs the opposite function, which is

restoring the analog signal using the saved digital words.

The sampled input

Digital output

111

110

101

100

011

Digital Output

010

001

000

Sampling instants

Figure 2.1: Example of 3-bits quantization [1]

2.1 ADC functions

2.1.1 Sampling

Sampling is the process of selecting periodic instances from the original signal to
be quantized and saved to the target machine. The sampling frequency should be
high enough to successfully present the original signal when restored using the
digital to analog converter. The sampling frequency should follow:

fs>2x fpw (2.1)

Which is known as Nyquist rate. As fs is the sampling rate and fpy is the
input signal bandwidth. 2.2 (a) Presents an example of a continuous signal in the
frequency domain of a given bandwidth (2B). The signal is sampled with sampling
frequency (f) higher than the Nyquist rate (b) and with a frequency smaller than
the Nyquist rate (c). The signal in (b) can be used to re-constructed the original
signal by applying a low pass filter to extract the signals below B. However, the
signal in (c) cannot be used to re-constructed the original signal again as lower

sampling frequency could not successfully present the signal.

A Continuous spactrum

(a)

f——
Freg

-8 0 =3

Discrete spactrum

\/\/\/\/";

—f 2 Freq
\ /\ HIIng \Nu::u /\ /
(c)
a4 L i 'l a4 P
- F s b O 4 e W | 2f
—2fs =/ af2 \ / 572 N\ fo=158 s Freq
-8 —E2 a2 B

Figure 2.2: Nyquist rate sampling [2]

4

2.1.2 Quantization

Quantization is the process in which the analog sample is approximated to one of
the available values to be stored in the target memory with digital representation.
In figure 2.3, the input analog sinewave (with scaled amplitude and DC offset of 4
for clarity purpose) is quantized into 8 level so that each sample would need 3 bits
to be stored (2° = 8). The quantization error is defined by the maximum difference
between the original sample and the quantized (approximated) one and is found to
be the half of the difference between each two levels; or in other words +/-LSB/2,
as LSB stands for Least Significant Bit, which is the minimum resolution of the
ADC. Figure 2.4 shows the quantization error for the signal in figure 2.3. As the
amplitude is scaled to 8, the LSB equals one amplitude unit. And the maximum
error in this case is (+\-) 1/2 = (+/-) LSB/2. In general:

LSB = V2_];s (2.2)

As V fs is the full scale value and n is the number of ADC bits.

I F

Amplitude

1 1 1 L 1 L h f L
a 0.1 0.2 0.3 a4 0.5 06 a7 0.8 09 1
Time (=sec.)

Figure 2.3: Quantization of analog sinewave to 3-bit [3]

05 -1

Quantization Error
.
o
T
1

|]]]] |]] |
0 100 200 300 400 500 600 700 800 900 1000
Time (sec)

Figure 2.4: Quantization Error of +/-(LSB/2) [3]

Increasing the number of bits for each sample means increasing the available

quantization levels by a power of 2, hence, increasing the accuracy.

11 + 74

110 + //

101 +
/
100 /

o

—

—

[

||
N

Digital Output Codes

/
/

o
-
o
1
I

/
/

;
0 1

o
o
—_—
1
1

1
2 3 4 5 6 7
Analog Input Voltage

000

Figure 2.5: Ideal ADC input-output transfer function

2.2 ADC static characteristics

A linear ADC is the one in which the change in output digital word depends only
on the amount of change of the input voltage along the designed input range. The
characteristic is found to be as a linear relation between the input and the out-

put. Figure 2.5 presents an ideal input-output transfer function for a 3-bits ADC.

6

Deviations from the ideal transfer function in real circuits are characterized in 4
main static characteristics [5]: 1- Offset error, 2- Gain error, 3-Differential Non-
Linearity and 4-Integral non linearity. The next sub-sections reviews all the four

charaterization measures.

2.2.1 Offset error

The offset error is defined and the deviation of the input-output characteristic line
from the ideal one as shown in figure 2.6. This offset can be positive or negative.

Usually, minor run time calibration can fix error.

-

Digital Output

Ideal ADC

ADC with an

T/ offset error

' characteristic
line

-
Analog Input

Figure 2.6: Offset error for a non-ideal ADC [1]

2.2.2 Gain error

The Gain error is defined as the deviation of the input output graph slope from the
ideal case. Figure 2.7 shows an example of a gain error which causes a maximum
error of 1 LSB. The error can be positive or negative. This type of error may

require more complicated calibration techniques in comparison to the offset error.

FS /
mr ,/ HLss
/
. /

110~ ideal slope —

101~
o 3
3 100r &
3 100 :
E o
E %
E g

/
010~ -
/
001~ :
[
000 = 0 !
0 T Fs 000 001 010 011 100 101 110 111
% LSB N

A analog input B digital code

Figure 2.7: Gain error for a non-ideal ADC with 1 LSB maximum Error

2.2.3 Differential Non Linearity

It is defined as the deviation of the step size of the data converter from the ideal
width of the bins. Assuming X;is the transition point between successive codes
k — land k, then the width of the bin & is :

Ap(k) = Xg1 — Xk
Then the differential non-linearity is:

An(k) — A

DNL(k) = ="

(2.3)

as A is the ideal step size.
The maximum differential nonlinearity is the maximum of |DNL(k)| for all k.
Usually, DNL is a measure that can be given the ADC datasheet in which it simply

referred to the maximum differential non linearity.

0..110——
0..101—— .
1
!
0..100—— !
@ |
© 1
o i
et i
3 :
]
£ 0..011——
2 ! Differential Linearit
— ! nmrerentia mnearity
= ! 1LSB !
) . “ > " Error (=% LSB)
o010 P >
| }‘7
i —_
| ~ Differential Linearity
0..001—— el Error (-2 LSB)
‘ 1LSB
0 ... 000 - | | |
| | | | >
0 1 2 3 4 5

Analog Input Value (LSB)

Figure 2.8: Differential non-linearity example [4]

2.2.4 Integral Non-Linearity

The integral non-linearity is the deviation of the ADC transfer function from the
ideal transfer function. It also can be expressed as the summation of all the DNL

across all the input output transfer function:

k
INL(k) =) DNL (2.4)
=0

l

L b —9 .
A
0..110—— —_—
G |
deal ¥ !
0.101—— Transition s - i
| P I
0y Actual \J i
E 0..100 Transition . : 4'__: i
5 B a
g » 'E At Transition i
= 0..011—— e - 011/100 !
8 v / (-%: LSB) !
9 :,’ 1
o ,": > i
0..010—— —_— i
L End-Point Lin. Error |
/ |
A i
0..001—— ———- |
1, At Transition !
i _—001/010 (-1/4 LSB) !

0..000 @—- I I I I I I
0 1 2 3 4 5 6 7

Analog Input Value (LSB)

Figure 2.9: Integral non-linearity example [4]

2.2.5 Missing Codes

The ADC can skip some codes from the designed input-output transfer function.
This can be indicated spotted by a sudden increase in the DNL for more than 1
LSB. A maximum DNL less than 1 DNL and INL value close to this number
guarantees that this error cannot happen.

10

Digital Output

Ideal ADC

Missing code

-
Analog Input

Figure 2.10: example of a missing code when a sudden DNL greater than 1 LSB
occurs [1]

2.3 ADC Dynamic characteristics

The dynamic performance determines the frequency response and speed of the
analog components of data converters. The performance is a concern when the
input bandwidth and the conversion rate are high. The quality indicator of good
dynamic feature is its capability to remain unchanged within the entire target range
of operation. In the next subsections, some of the dynamic specifications are pre-
sented; [5] includes many other measure that may be an interest for the designer.

2.3.1 Analog Input Bandwidth:

The analog input bandwidth specifies the frequency at which a full scale ADC

input leads to an output 3db below its low frequency value.

11

2.3.2 Input Impedance

The input impedance specifies the impedance between the input terminals of the
ADC. At low frequency the input impedance is a resistance: ideally, it is infinite
for voltage inputs and zero for current inputs (thus leading to an ideal measure of
voltage or current.) At high frequency the input impedance is dominated by its
capacitive component. Often, a switched capacitance structure performs the input
sampling. In this case the specification provides the equivalent load at the input
pin. At very high frequency the input impedance of the ADC must be the matched

termination of the input connection.

2.3.3 [Equivalent input referred noise

It is a measure of the electronic noise produced by the ADC circuit components.
The result is that for a constant dc input the output is not fixed but there is a distri-
bution of codes centered around the output code nominally encoding the input. For
large number of samples, the noise distribution is approximately Gaussian. The
standard deviation of the distribution defines the equivalent input referred noise.
It is normally expressed in terms of LSBs or rms voltage. Figure 2.11 shows the
histogram at the output of a possible data converter [5].

2.3.4 Maximum sampling frequency and conversion
time

The maximum sampling frequency defines the maximum rate the input can be
sampled and converted to the corresponding digital form. The conversion time
is the time required for the ADC to sample and convert one sample. Usually,
the conversion time is the inverse of the sampling rate unless the architecture is
pipelined. Both measures are important and define the application the ADC can

SErve.

12

!"\
X
V. =—— .V
in 2N FS
0.63 LSB

Digital

Code
= T |/ T \I ,ﬁ >
X-3 X-2 X- X X+1 x+2 x+3

Figure 2.11: Estimation of the input referred noise using the histogram method for
dc input (Figure 2.11 [5])

2.3.5 Signal to Noise Ratio (SNR)

is the ratio between the power of the signal (normally a sinewave) and the total
noise produced by quantization and the noise of the circuit. The SNR accounts
for the noise in the entire Nyquist interval. The SNR can depend on the frequency
of the input signal and it decreases proportional to the input amplitude. Figure
2.12shows the SNR of a hypothetical 12-bit data converter with 50 MHz sampling
frequency. The SNR for a —0.5 dB input is 67 dB. The loss in the SNR shows that
the noise caused by the electronics is larger than the quantization noise. When
the input signal is =20 dB then, as expected, the SNR is 48 dBs. Observe that the
SNR performances versus frequency are good: the SNR is almost constant in the
entire Nyquist range. Also, it only drops a few dB for frequencies in the second
Nyquist zone. Therefore, the hypothetical converter of figure 2.12 is suitable for

under-sampling a signal whose spectrum is in the second Nyquist zone.

13

-0.5 AMPLITUDE
T —
65 ‘
-6.0 AMPLITUDE
60— Ny
55
11]
o
|
4 50 ~20.0 AMPLITUDE |||
pd —rt ~1 \\.
()]
45
40
35
30
100K M 10M 100M

INPUT FREQUENCY - Hz

Figure 2.12: Example for hypothetical ADC SNR values for different input signal
levels [5]

2.3.6 Signal to Noise and Distortion Ration (SNDR)

Is similar in definition to the SNR except that nonlinear distortion terms are
counted for. Usually and input sine wave can easily spot the nonlinear effect. The
SINAD is the ratio between the root mean square of the signal and the root sum
square of the harmonic componentss plus noise (dc component is not considered).
Since static and dynamic limitations cause a nonlinear response, the SINAD is de-
pendent on both the amplitude and frequency of the input sine wave. Figure 2.13
shows the SNDR of a hypothetical 12-bit data converter with 50 MHz sampling
frequency. The SNDR for a -0.5 dB input is 67 dB. The loss in the SNDR shows
that the noise caused by the electronics is larger than the quantization noise. When
the input signal is -20 dB then, as expected, the SNDR is 48 dBs. It is good to note
that the SNDR performances are good (almost constant) for the Nyquist range. It
is also shown that the harmonic terms in the SNDR are negligible if the input is
-20 dBpgor less. Larger input amplitudes bring about distortion especially at high

14

frequencies. Notice that the SNDR significantly degrades in the second Nyquist

zone.
" L]
-0.5 AMPLITUDE
65 | e
< —\
AN
55 \
e \
A 50 —20.0 AMPLITUDE
< — TN
= ™
? 45
40
35
30
100K 1M 10M 100M

INPUT FREQUENCY - Hz

Figure 2.13: Signal to noise and distortion ratio versus input amplitude and input
frequency (f.x=50 MHz) [5]

2.3.7 Dynamic range

Is the input amplitude at which the SNR (or SNDR) is 0 dB. Usually it is useful
for the types of ADC that does provide information about the SNR (or SNDR) at
0 dBps(like sigma-delta converters). Figure 2.14 shows a typical plot of the SNR
versus the input amplitude for a sigma-delta ADC. The dynamic range is amost
80db while the peak SNR is at -6 dBgg of the full scale.

15

Ve
Ve

-10
-90 -80 -70 -60 -50 -40 -30 -20 -10 O
Input Amplitude/V g ¢ [dB]

Figure 2.14: example of SNR for segma-delta converter versus input amplitude,
reference voltage-ratio [5]

2.3.8 Effective Number Of Bits (ENOB)

This measure is a mirror to the Signal to Noise Ratio (SNR). It presents how much
the system can deliver information about the input signal. As noise has many
sources and is affected by many measures, we will focus only on the error from
the quantization noise, Signal to Quantization Noise Ratio (SQNR) [5].

As shown in figure 2.4, the quantization noise is in the range of +-LSB, then

the probability distribution function can be expressed as:

1 A A
P(Sq) = Z,for —E<8q<7
P(e;) =0 , otherwise (2.5)

As g presents the error, and A presents the maximum error, which equals one

LSB in our case.

16

To calculate quantization noise power, an average integration for g, should be
performed as

w B2 A2
Py= /85 P(g,)de, = / deq (2.6)
Joo _AJ2

This relation indicates that the number of bits for the system affects the quan-
tization noise; as the number of bits increases, the quantization noise decreases, as
A is decreased too.

Assuming an input sinewave signal of maximum amplitude A,,,, the signal

power can be expressed as

A A2 (A.2M)?
70 1)dt = = g (2.7)

As f is the sinewave operating frequency, n is the number of bits and 7 is the
signal period.

From eq.2.7 and eq.2.6, the ratio between the signal and quantization noise
power unveils:

SQNRsine7db = (6.02.1’1 + 1.78) (2.8)

eq.2.8 presents a quick and useful relation between the ideal number of bits

for an ideal ADC that can presents the given SQNR (or ideal SNR) of the system.

Estimating the ideal number of bits, or in other words ENOB, indicates how

far the target ADC system is from the ideal one. When the SQNR is replaced by

the general SNR, which counts for the quantization noise and all the noise in the
system, when n presents the ENOB, eq.2.8 can be re-phrased as

SNR: o1 ap — 1.78
ENOBgine = 6.2 (2.9)
This relation is a good and accurate estimate for sinewave ENOB value when

SNR is known as in section A.2.
%

17

Analog to

Digital
Converters
]
A\ 4 A\ 4
Direct Indirect
Conversion Conversion
ADCs ADCs
- N S—
A\ 4 \ 4 \ 4 \ 4
Nyquist Oversample Nyquist Oversample
Rate ADCs ADCs Rate ADCs ADCs

Figure 2.15: ADC types

2.4 Types of Analog to Digital Converters
(ADC)

Analog to digital converters are divided in to two categories, direct conversion
ADCs and indirect conversion ADCs. A direct conversion ADC converts the in-
put analog voltage to the corresponding digital representation directly in one step.
However, an indirect conversion ADC converts the input analog voltage to an in-
termediate form presented as a change in the frequency or characteristic in a pulse
like the pulse position or width.

Each category can be divided into two sub-categories. A direct conversion or
an indirect conversion ADC can be a Nyquist rate ADC or and oversampling ADC.
In Nyquist rate ADCs, the input analog voltage is sampled at a rate higher, but
close to, than double the input maximum frequency, which is called the Nyquist

18

rate. In contrast, oversampling ADCs samples the input signal at a rate much
higher than the Nyquist rate, 4-10 times.

Oversampling ADCs can reject more noise from the band of operation so it
can deliver more SNR. However, the high sampling requirement, relative to the
input signal rates, makes it best fitted to the applications when high resolution
1s required with acceptable low sampling rates. On the other hand, Nyquist rate
ADC:s can deliver higher sampling rates in comparison to the oversampling ADCs.

Successive Approximation Register ADC (SAR-ADC) and flash ADC are ex-
amples of the Nyquist rate direct conversion ADC. Sigma-Delta modulator ADC
is an example for oversampling direct conversion ADCs. Dual slope ADC is an
example of Nyquist rate-indirect conversion ADCs. Voltage controlled oscillator
ADC is an example of oversampling-indirect conversion ADCs [1]. Next, some

examples of ADC types are presented.

2.4.1 Nyquist rate ADCs
2.4.1.1 flash ADC

Flash ADC is one of the fastest types of ADC [19]. In this type of ADC, the
analog voltage input sample is compared with 2 — 1 reference values using 2P —
1 comparators, as D is the ADC number of bits. As we can see from figure 2.16,
the reference voltages are generated using a resistive divider with 2P-1 resistors.
Each reference voltage is one LSB greater than the reference voltage immediately
below it. Each reference voltage is connected to one of the two inputs of each
comparator, while the other input is connected to the analog voltage input sample.
Each comparator produces a "1" when the analog input voltage sample is higher
than the reference voltage connected to it. Otherwise, the comparator produces
"0". The comparators produce thermometer code. The thermometer code is then
decoded to the appropriate digital output code.

It can be noticed that this type of ADCs requires big circuit and high power
consumption. For each step, one LSB, there should be a comparator and a resistor.
This drawback makes flash converters typically impractical for resolution greater
than 8 bits (255 comparators). Moreover, the large number of comparators con-
nected to input voltage results in a large parasitic capacitance that load the input
terminal and limit the speed of the converter and requires a power-hungry buffer
at the input terminal

19

Ref

R —

Reference
voltages

L

Figure 2.16

X(20-1)

@)

i
i

+
%R — ¥,
%R —t ¥,

Comparator

R ‘/\/

Thermometer Code

- Flash ADC [1]

20

Thermometer to

binary decoder

Digital
Output

2.4.1.2 Piplelined ADC

Pipelined ADC divides the conversion job into simple tasks which can be pipelined
in many stages. Usually, each stage resolves for one or few digital bits. Each stage
can be a small ADC of the flash type. The architecture throughput is restricted
by the delay of one stage only (maximum stage delay), hence, the throughput is
comparable to the flash ADC sampling. However, a typical pipelined architecture
consumes less power compared to the corresponding flash ADC.

As shown in figure 2.17, pipelined ADC consists in general of K stages. Each
stage, except the last stage, consists of n bits flash ADC, n bits DAC, S&H, sub-
tractor, and amplifier. The last stage is a flash ADC. In the first stage the S&H
block samples and hold the analog input. Then, this input is fed to the n-bits flash
ADC to convert it to n-bit code. Afterwards, the n-bits are fed to n-bits DAC to get
intermediate analog voltage. Then, the intermediate analog voltage is subtracted
from the original analog input to this stage to produce a residual voltage. This
residual voltage is then amplified to the double and is fed to the next stage to get
the next n-bits resolution and so on. While stage number two is working on the
first sample, stage number one samples new analog input; this pipelining is the
main reason for the high throughput. Finally, all the N-bits have to be aligned
because they were generated at different times [1,20].

|
|
|
|
2-Bit |

e 3

-
— -
- -
. —
- . =

Stage1—hmaga2-hs:agaa-hs;age4-><'mﬂ*

ADC
L _’-l'
'E ‘fa 'l’a ¥3 ‘1’4

| Tima Alignment & Digital Error Corraction

T

Figure 2.17: Pipline ADC [6]

21

2.4.1.3 Successive approximation ADC

Successive Approximation Register (SAR-ADC) depends on the successive com-
parison of the input quantity to the binary weights of the digital representation
[20]. Figure 2.18 shows the basic SAR ADC. It consists of a comparator, DAC,
and Successive Approximation Register (SAR) logic block. SAR-ADC takes an
iterative approach to determine the input voltage. One bit is calculated for each
iteration starting from the Most Significant Bit (MSB). First, the Most Significant
Bit (MSB) in SAR starts with one “logic 1”°. The DAC converts this value to its
corresponding voltage, which is the mid-scale voltage, then the comparator com-
pares the input voltage with the reference voltage. If the comparator produces
zero, input is smaller than the reference voltage, then the MSB will be erased.
Otherwise, the MSB will remain one. After that, the next bit to the MSB will be
one and the whole process is repeated, until all bits in SAR are known and the End

Of Conversion (EOC) signal becomes one [1].

22

—Clock—> SAR —EOC>

Dn-1] Dn-2 D2| D1| Do
—\V/rer—P> DAC <
Comparator
—Vin—»| S/H +

Figure 2.18: Basic circuit diagram of the successive approximation algorithm

For a given dynamic range 0 — VFS the MSB distinguishes between input sig-
nals that are below or above the limit VFS/2. Therefore, comparing the sampled
input with VFS/2 obtains the first MSB bit as illustrated by the timing scheme of
Figure 2.19 (a). The knowledge of the MSB restricts the search for the next bit to
either the upper or lower half of the 0 — VFS interval. Consequently, the threshold
for determining the second bit is either VFS/4 or (as it is for the case of the figure)
3VFES/4. After this, a new threshold is chosen and the next bit can be estimated.
The timing diagram of figure 2.19 describes the operation for three bits but, obvi-
ously, the search can continue for additional clock cycles to determine more bits.
The voltages used for the comparisons are generated by a DAC under the control
of a logic system known as the successive approximation register (SAR) as shown
in figure 2.19 (b). Notice that the input common mode range of the comparator

must equal the dynamic range of the converter [5].

23

The method uses one clock period for the S&H and one clock period for the
determination of every bit thus requiring (n + 1) clock intervals for an n-bit conver-
sion. Sometimes, if the S&H settling period is significantly longer than the time
required for each comparison, then it can be convenient to use two clock periods
for the sampling and one per every bit totaling (n + 2) clock intervals for an n-bit

conversion.

2.4.2 Oversampling ADCs

Oversampling conversion technique have become popular as it avoids many of
the difficulties encountered with conventional method for analog-to-digital con-

version, such as the use of anti-aliasing analog filters [21].

A
Ves T | ‘ 111
\Y, —V
S&H DAC 10 110 VDAC
/\ N 5 101 ——
Vegl2 / 100 ;?‘1)
/ 010
— 001
o_L 000
| | | | | o conf SAR reset
[\ \ \ =
Sampling MSB Bit #2 LSB t New
Guess
(a) (b)

Figure 2.19: Timing (a) and flow diagram (b) of the successive approximation
technique

2.4.2.1 Sigma Delta ADCs

The basic concept of the sigma-delta modulator is the use of high sampling rate
and feedback for improving the effective resolution of the quantizer [21]. Sigma-
delta modulator modulates the analog signal into a digital code, usually single-bit
code, at a frequency much higher than the Nyquist rate. The use of high frequency
modulation and demodulation eliminates the need for sharp cutoffs in the analog
anti-aliasing filter at the input of the ADC. Figure 2.20 shows the simplest sigma-

delta modulator, the first-order sigma-delta modulator. The input to the circuit

24

feeds to the quantizer via an integrator, and the quantized output is fed back to be
subtracted from the input signal [22].

X(t) —5 Integrator —» ADC > yin]

(quantizer)

DAC |

Figure 2.20: First-order sigma-delta modulator

2.5 Time-based ADC (TADC)

There is a global need to convert the analog designs with the digital counter parts.
One of the many reasons is the noise resistance and the flexibility to move from
one technology to another, easily. Also, it is becoming an important target for
Systems On Chip (SOC) designs to consume less power and chip area for various
applications. This increases the need for Ultra-Wide-Band (UWB) ADCs with
higher sampling rates in which we can push more analog blocks towards the digital
domain. Time Based ADC is a special kind of data converters in which the input
voltage is first transformed into intermediate change in frequency, pulse position
or pulse width using Voltage to Time Converter (VTC) circuit, and then Time to
Digital Converter (TDC) circuits follows by making the rest of the conversion to

the corresponding digital representation.

2.5.1 TADC based on frequency modulation

In this type, the voltage is converted to change in frequency of an oscillator. In
this type the VTC is called VFC converter. The TDC then converts the modulated
frequency to the corresponding digital words by a mean that detects the rate of
frequency change. A simple criterion is to make a counter counts the number of
positive edges of the oscillating signal in the sample period. One major disadvan-
tages of this type is the power consumption.

25

2.5.2 TADC based on pulse position modulation

It is very similar to the TADC based on frequency modulation except that in the
pulse position-based converters use the pulse position inside the sample period as
the time signal. It is rarly used though because it is very similar in design to the
TADC:s based on pulse width modulation.

2.5.3 TADC based on pulse width modulation

TADC:s based on the pulse width modulation are the most popular type of the time
based ADCs and is the target for this work. In this type a VTC is used to convert
the signal voltage to changes in pulse width of a reference signal. In the second
block, the TDC, the pulse width change is converted to the corresponding digital
words. Many designs for VTC and TDC of this type exists. Examples of each part
follow.

2.5.3.1 Pulse-width VTC examples

Dual slope VITC Figure 2.21 illustrates dual slope TADC. Dual slope ADC con-
sists of an integrator, comparator, counter, and control logic. First, the analog
input,V;,, is integrated to produce the output voltage,Vout, in the first part of the
clock cycle, with Tperiod2.10. V,,; value depends on the analog input voltage as
in equation. After time Ty, the switch converts source from —V;, to V. and at
this point the discharging starts until the Vout reach zero voltage (detected by the
comparator). The discharging time depends on Vout which depends on V;;,. Then,

the discharging time will depend on Vin as in 2.13.

n _Vin Vint
Y _ Vil 2.1
Vous /0 =y, (2.10)
Vo T
Vou = —l’gcl @2.11)
! Vref VinTh

— ! ar 2.12
Vour " RC + RC (2.12)

Vier(Th — T2) n VinTy

RC RC
The discharging will continue until V,,, becomes zero. Substituting Vout by zero
in 2.13 leads to equation 2.14 where T2 = t-T1.

Vour = (2.13)

26

~Viuh
Vref

(2.14)

Clock

Vin > | Counter
M_ ™ (©biy)
':l VOUI

Y Control Logic

cx Qutput Buffer

Dh Dg Ds Dy D3 D, Dy Do

Figure 2.21: Dual Slope VTC [7]

The generated pulse width depends on the input signal. The counter in the sec-
ond part of the system (counter and the output buffer) is used to converts the output
pulse to the corresponding digital words performing the operation of a TDC. The
designer can add the TDC of his choice instead. Dual slope TB-ADC is used in
high resolution requirements, but in applications with low data rates. It has small
offset and gain errors comparable to other ADC types [7]

Current starved-based VIC In figure 2.22, the input voltage, Vin, controls the
delay of the falling edge of the clock signal, Vclk, through the inverter (Tran-
sistors M1 and M2) by controlling the discharging current of transistor M3 [23].
Increasing V,increases the discharging current from Cyand reduces the negative
edge transaction delay and vice versa. The main drawback of this scheme is that
it controls only the discharging current and the negative edge delay only. In [24]
a new design to control both the positive and negative edges is introduced. The
design consists of pull up and pull down networks with an XNOR gate are used

for better linearity.

27

o

‘]clk *— o ‘fclk—delayed

—_m2
Vin o[M3

Figure 2.22: Current Starved VTC

2.5.3.2 Pulse-width TDC

Vernier Delay line-based TDC Delay line based TDC is a widely used ap-
proach for high speed time to digital conversion ([8]). 2.23 presents the main
block diagram. It consists of 2N stages, as N is the number of target bits. Each
stage consists of a DFF with 2 buffers of td1 and td2 delays. TDC Delay line
based TDC can measure a time interval between two events where the first event
is marked by a Start signal and the second event is marked by a Stop signal (the
target pulse is first converted into two pulses the positive edge of each one presents
an edge transaction; Start and Stop signal positive edges presents the positive and
negative edges of the original signal respectively). The Start signal propagates
through series of buffers (delay line), each buffer delay the start signal by td2
Similarly, the Stop signal propagates through another delay line, each buffer de-
lay the stop signal by td1. The Stop signal samples the delayed version of the Start
signal after each buffer. D-FF output is a thermometer code where each D-FF out
is logic one as long as the Start signal leads the stop signal at the target DFF or
logic zero otherwise (thermometer code). The signals traveling through each stage
suffers from a phase difference in the direction that promotes the Stop signal to
lead the Start signal. The difference is td;-td>. The output thermometer code is

then converted to binary code through a thermometer to binary encoder ([8]).

28

This type of TDC is a good candidate for high resolution conversion because
the resolution achieved can be smaller than the delay of an inverter. However, this
comes at the cost of the area an power consumption which is not affordable for

low power applications.

PO TP

SET

SET SET SET SET SET

D= QpR™D Ap™D Qp™D Q\™D QR™D
) D D D))
W 5 R a i 5 i 5 it 5 it 5

Q_

AN AN AR AN AN A4

Q1 Q Q@ i 1} 6

Figure 2.23: Vernier delay line-based TDC [8] [9]

Successive Approximation-based TDC Successive Approximation (SA) is a
favorable alternative for low power applications. The operation is based on com-
paring the input quantity to the reference binary weighted quantities to directly
calculate the digital bit (in each word). A full sample is resolved be iterating all
the bits for each word. Each of a different binary weight.

In [18], a TDC circuit design based on successive approximation is introduced.
The un-folded version of the design is presented in figure 2.24. It consists of a
buffer of Tf,/2 (half the full scall time) delay followed by N_bits (number of
bits) stages of the same type except the reference time to compare with (Ty,/ 2! as
i:=1:N). Itis required to convert the analog phase difference between the Start

and Stop signal.

29

Figure figure 2.25 presents the basic cell architecture (a) and the timing dia-
gram (b) of the inputs and outputs for a general stage N. The decision works on
the positive edge of the input signal (Start signal) and compares it with the postive
edge of the reference signal (Stop signal). The positive edge of the reference signal
is assumed to be shifted with the T fs/2" . The DFF checks if the input signal still
leads the reference signal. If condition is valid and the input leads the reference
pulse, the input pulse is delayed with an amount equivalent to DnRef as the refer-
ence pulse is always delayed with an amount of D,,;, = T fs/2V+1. If the condition
is false, then the input signal is not delayed and the difference between the input
and referrence pulse is shortened by delaying the reference pulse and keeping the
input pulse with the same phase. A multiplexer is used to select between the orig-
inal input signal or the delayed version depending on the comparison result.

The main problem in this architecture is the propagation delays for the differ-
ent components in the cell. The time signal imposes the need to insert delay ele-
ments to compensate for the propagation delay of each component (figure 2.26).
The condition in the circuit path decides which analog positive edge to pass (for
the input signal) making the synchronization difficult as the analog phase differ-
ence between the input and reference pulse depends on the condition result!. It
will be shown in this work how this dependency is moved from the analog domain

to the digital domain and the analog signal path is not affected by the condition

result.
Start aD—p ref nRef |—p| ref nRef [— «oo —p| ref nRef
|(—>| 1-bit TDC 1-bit TDC 1-bit TDC
Trs 12 (Tin > Tesl/2 ?) (Tin > Tesl22 ?) (Tin > Tes/210 2)
Stop —p| in nin [—» in nin [— s++ —p| in nin
outTDC outTDC outTDC
outTDC (MSB) (LSB)

Figure 2.24: Decision select SA TDC circuit

30

Toin = Tes/2N

< >i
]
1
1 : 1
ref —» NRef
- 1
1 1 H
1
» D Q > outTDC
H i H i
in > » nin
1 : H H
19 I:’nln H »1 0 ! i
i 2:1
1 1 1
[»i 1 1 1
i i i i
]]] 1
(a)
in
i ¥
ref i | E
: 1 1 =
E
outTDC !
1
1 } 1
i i !
1
E TFSIZN . E
-+ +1
nRef TFS"ZN>1 ! Teg/2N Ny
Teg/2N*1
Case I: outTDC = “0” Case Il: outTDC = “1”
(b)

Figure 2.25: Decision select SA TDC cell (a) and timing diagram (b)

31

nRef

outTDC

~
>

in

in

ref

outTDC

nin

nRef

Case Il: outTDC = “1”

Case I: outTDC = “0”

(b)

Figure 2.26: Compensation delays for decession-selection SA circuit

32

Chapter 3

Introducing SAR-CD
algorithm

Implementations based on binary searching algorithms take place in applications
that require low power and area with high resolution. In [17, 18], the well-known
Successive Approximation Register (SAR) is applied in a cyclic manner. How-
ever, the existence of two signal branches imposes a critical condition to keep the
signals synchronized along the conversion, and error in one branch is accumulated
in each iteration. This error accumulation becomes worse due to the conditioning
on each path of the two signal paths. In this work a new algorithm is introduced
to move this dependency from the time domain to the digital domain. In addition,
the algorithm needs only one signal path instead of two which relaxes the strict

synchronization requirements.

3.1 SAR verses SAR-CD algorithm

In the conventional SAR algorithm, for a given decimal value, starting from the
MSB and for each successive bit, the weight of the next bit is subtracted from the
current input value. If the result is a positive number, then the digital bit is ‘1°,
otherwise it is ‘0’. For example, when converting the decimal number ’9’ to 4
binary weighted digits (i.e., 8, 4, 2, and 1). Starting from the MSB, the weight 8 is
subtracted from the input 9. As the result is positive (i.e., 9-8 = +1), then the MSB
is ‘1’ and the subtraction result (i.e., +1) is the next iteration input. The second
iteration weight 4 is subtracted from +1. As the result is the negative value -3, then

the second bit is ‘0’ and the input 1 is passed to the next iteration. After that, the

33

third iteration weight 2 is subtracted from the input +1, and etc. This process is
valid as long as the passed decimal value is the result of a successful subtraction

(i.e., a positive value).

n=1
L. value=9 |
0 4

Dfs/2 =8 l

O [—

oo —

>N

8]
Il

—_

n=2
L-value=19-81=1

Dfs/4 =4 | | I I | b2 =|E|

> revert
[0]

B

value =3

b

) Dfs/8 =2 | . I !_1I1 ! L b= J
n= e | | | lll_l I 1 > revert
Dfs/16 =1 | 1 | b0=¢
value =0 ’ |

Figure 3.1: Evaluation of the binary "b3 b2 bl b0" for the number ’9’ using the
new algorithm

In this conventional SAR algorithm, the result of the unsuccessful subtraction
(i.e., -3) is neglected, and in particular the modulus of this result (i.e., +3). This
modulus value holds all the information needed to evaluate the next bits. In the
new proposed SAR-CD algorithm, the input to each stage is the absolute difference
between the input and the weight of the previous stage. Also, the value of each bit
is used to correct the value of the next one.

In the previous example, the absolute difference between the second stage
input +1 and the weight 4 (i.e., +3) is the input to the third stage weighted 2. This
modulus value is used to evaluate the third bit. As 3 is greater than the weight
2, then the third bit is initially set to 1. However, this value should be inverted
because the previous bit (second bit) is ’0’. This inverts the third bit value from
0’ to ’1’. The full example to convert 9 to the binary form “b3 b2 bl b0 using
the new SAR-CD algorithm is shown in figure 3.1.

34

value=D IN
b[4] =1

/ i=i-1 [/
Y
temp = value - 27i
value= [templ

Y
b[i] = is(temp>0)?

Y

bli]=bl[i] + is(temp == 0)? . b[i+1]

Y
b[i] = b{i] XNOR bli +1]

@ no -
yes

END

can be moved
outside the loop

Figure 3.2: Flow chart for the proposed algorithm

The variable “value” is initially set to 9. As 9 is bigger than 8, then b3=1. For
the next iteration, “value” equals abs(9-8). In general, for each successive stage,
the input equals abs(value - Dfs/(2”n)), where Dfs is the full scale value (i.e., 16
for the 4-bit case) and 'n’ ranges from 1 to 4 iterating all the 4 stages. The stage
output (i.e., b3, b2, bl, and b0) is initiated to ’1’ when the input is greater than
the stage weight or 0’ otherwise. However, this value is inverted if the previous
bit is ’0’ or kept unchanged otherwise. Bits “b1” and “b0” are inverted after the
subtraction (value - Dfs/(2”*n)) because their previous bits (i.e., b2 and b1) equal

"0’ after correction, respectively.

35

3.2 SAR-CD general algorithm

The new proposed SAR-CD algorithm flowchart is depicted in figure 3.2. The
digital output to compute is “b[3] b[2] b[1] b[0]” as ’b[3]’ is the MSB and ’b[0]’
is the LSB. The input number “D_IN" is assigned to the variable “value”. For
each iteration, “value” is updated with the absolute difference between the old
value and the loop reference weight (2*1). The bit value, in each iteration, depends
on the sign of the result and the previous bit. ’b[i]’ is initially *1’ if the difference
is bigger than ’0’ (’is(temp>0)’ is true) or 0’ otherwise (’is(temp>0)’ is false).
The equality check depends on the previous bit (“is(temp==0)?.b[i+1]”). As '+’

2

1s arithmetic OR operation and ’.” is arithmetic AND operation. The process ends

when “i” equals ’0’. "b[4] is initiated to 1’ so that bits correction does not change
’b[3] value.

It should be noted that in the proposed SAR-CD algorithm, the new value is
passed to the next iteration, denoted by "value", is independent of the current bit
evaluation. Also, the bit correction (i.e., which is implemented by using an XOR
operation) is a simple digital logic operation. Fortunately, this bit correction can
be performed after the pulse dis-assembly (to a separate loop in figure 3.2). The
new proposed SAR-CD algorithm is very useful for Time-Based Analog to Digital
converters because the parameter “value” is an analog quantity. Analog quantities
manipulation is prone to errors and may cost extra circuitry (e.g DAC).

In this work, two case study circuits are proposed to adopt the new SAR-CD
algorithm to digitize the input variable pulse widths. The digital number cor-
responding to the pulse width is computed by comparing the input pulse to the
full scale reference pulses, for example, pulses of width Pfs/2, Pfs/4, Pfs/8...., as
Pfs is the full scale pulse. The equivalence of the abs(value — 2”1) is a simple
XOR operation between the 2 pulses. The output is directly passed to the next
iteration irrespective of the currently evaluated bit. In general, power-sensitive
applications like in [25] exhibit significant reduction in the SAR-CD logic im-
plementation complexity compared to the conventional SAR. This is because in
the SAR-CD algorithm, most of the conditioning needed to produce the reference
voltage is removed. Absolute comparison is simpler in implementation than the
conventional SAR algorithm. For example, designs based on comparing voltage
values held on two capacitors would need no capacitor discharging before each bit
evaluation. This increases the maximum supported frequency and minimize the

error from discharging circuits.

36

Diff group

- - I
ﬂl-t. Vy i/“ o |VJanJn2_VJl'WJn1
111100.. 0001111
111101 1110111

—

Figure 3.3: Digital output of zero’s run intersecting one’s run using standard algo-
rithm (a) and using proposed algorithm (b) before bits correction

3.3 SAR-CD algorithm proof

The new proposed SAR-CD algorithm should satisfy the following two conditions
to ensure that it is working correctly and similar to the conventional algorithm.
These two conditions are: (1) correct solution and (2) same boundary conditions.
For example, figure 3.3(a) presents a general digital output for a given input value.
As the input to bit ’J’ is V; (which is denoted by “value” in figure 3.2), the weight
of the bit *J” is W; =27, °J’ ranges from “Nbits-1" to ’0’, where “Nbits” is the total
number of bits. The input corresponds to an n-bits zero’s run intersecting one’s
run at index ’J’.

From the previous comparison between the conventional SAR and the pro-
posed SAR-CD algorithms, it is found that as long as the input to each bit is
greater than the weight then both algorithms will behave the same. The two al-
gorithms are different only when the input is lower than the weight, which should
give ’0’ for this bit. Figure 3.3(b) presents the desired output from the second al-
gorithm before bits correction. When bits correction is applied (XNOR operation
between each two successive bits as depicted in figure 3.2) the correct output in
figure 3.3(a) is achieved.

It is now desired to prove that the proposed SAR-CD algorithm produces the
group of bits “Diff group” in figure 3.3(b) and using the same input, which is
“Vj_17, the input to the bit of index “J-n-2”, “V;_,_»”, is the same as when fol-
lowing the conventional SAR algorithm. At such a point the second algorithm will
behave again like the conventional SAR algorithm. Starting from the condition on
“V;_1”, implied by the example in (1), we calculate the inputs to the bits indexed

37

from “J-1” to “J-n” . Processing bit “J-1* by making absolute comparison be-
tween the bit weight “W;_;” from the input “V;_;” results in the inequality in (2),
Such that “W;_;> V;_;” as implied by the example. The middle term in equ.(2)
presents the input to bit “J-2”.

Wy <V <Wjy, 3.1

Wia—-Wiwa>Wa=Via>W W, (3.2)

For each bit, the difference between the bit weight and the summation of all
the LSB bits is Wy:

0
W=), Wi+Wo (3.3)
k=J-2

And then moving the term W;_,_to the left hand side results in:

J—n J 1

.
Wii=Wipo1= Y, Wit Wimw = Y, Wi (3.4)
k=T 2 k=] 2

Substituting from equ.(4) by “W;_1-W;_,_1” and similarly by “W,_-W;_,”
to the left and right sides of equ.(2) respectively we find that:

J 1 J—n

Z We>W; 1=V > Z Wi 3.5)
Sy

k 2 k=J-2

The middle term implies that the input to bit “J-2” is greater than the summa-
tion of all the weights from “J-2” to “J-n”. This concludes that processing all the
bits from “J-2” to “J-n” will give the uncorrected ones expected in figure 3.3(b)
(ones run from index “J-2” to “J-n”). After the processing, the value entering bit

“J-n-1"" 1s then (middle term):

J—n—1 J—n J—n
Y, Wi— Wi>Woi=Visi—), We>0 (3.6)
k=J—2 k=J—2 k=J—2
Which then becomes:

38

J—n
Wipa>W1 =V — Z Wi >0 (3.7)
k=72

This relation indicates that processing bit “J-n-1" results in ’0” as expected in
figure 3.3(b). Hence, the input to “J-n-2” bit is in the form (middle term)

J—n
0<Wi—p1—Wy—1 —=Vy_1 — Z Wi) <Wi—n—1 (3.8)
k=J—2
From equ.(4), it is found that:
J—n
Y Wi=Wi_ 1 —2W_ (3.9

k=J—-2

Substituting in equ.(8), it is proved that the middle term that represents the
input to bit “J-n-2” equals to “V;_; — Wj_,,”, the same value that would have been
obtained when following the conventional algorithm.

3.4 SAR-CD algorithm examples

In the following examples, the demonstration of the new algorithm is presented.
The variable names follow the algorithm presented in the flow chart 3.2. For each
stage, the absolute difference between the input and the stage reference is calcu-
lated. The result of the operation (“temp” in figure3.2) is presented in the forth
coulomb. The digital bit before correction is located in the fifth coulomb, which is
the result of the condition “is(temp>0)". The case when “is(temp==0)?" is TRUE
is marked by highlighting the absolute difference result with yellow (in second
and third examples). The case when the result bit is zero, “is(temp>0) is FALSE,
is marked in red to indicate that the next bit will be toggles in the bit correction

operation. The final digital binary output is shown in the last coulomb.

39

3.4.1 Example 1 to convert “10.1” analog input to *“1010”

The next table shows how the new algorithm, SAR-CD, can be used to convert the
analog quantity 10.1 to the 4 bits-binary approximation b[3]b[2]b[1]b[0] = “1010”
using SAR-CD algorithm depicted in the flow chart 3.2). The example is shown

in figure 3.4.
Step/ | Bit to Absolute difference | Abs difference | Digital bit Digital bit after
stage | calculate | (input— 2~(N_bits- out before correction
stage)) -1 correction | (b[i] XNOR b[i+1])

1 b[3] |]10.1 - 8| 2.1 1 1

2 b[2] 12.1 - 4] 1.9 0 0

3 b[1] 119 - 2] 0.1 0 1 (toggled)

4 b[0] lo.1 - 1] 0.9 0 0

Figure 3.4: Example 1 to convert analog quantity 10.1 to binary “1010” using
SAR-CD algorithm

The first iteration\stage starts with an input 10.1. The input is compared to the
stage weight, ’8’, through the analog absolute difference operation which calcu-
lates the absolute difference between them. The differences [10.1-81 = 2.1 is the
input to the second stage. As 10.1 is bigger than 8, then the first stage ends with
digital b[3] is 1 (no bit correction is needed for the first iteration according to fig-
ure 3.2).. The second stage compares the input 2.1 and the weight 4. As 2.1 is not
bigger than 4 then the digital bit for this stage (b[2]) before bit correction is 0. As
b[3] is 1 then b[2] is kept with 0. The absolute difference (12.1-41 =1.9) is the input
to the third stage. In the third stage, b[1] is initially set to O as 1.9 is not bigger
than 2. However, bit correction toggles b[1] from O to 1 as the previous bit, b[2],
equals to 0. The absolute difference out for the third stage, 0.1, is the input to the
forth and last stage. In the forth stage, b[0] is initially 0 because 0.1 is not bigger
than 1. And it is kept the same because b[1] has a new value of 1. The digital 4 bit
binary representation for 10.1 is correctly presented by 1010 using the SAR-CD

algorithm.

40

3.4.2 Example 2 to convert ‘20 analog input to *“10100”

Step/ | Bitto Absolute difference | Abs Digital bit | Digital bit after
stage | calculate | (input—2/~(N_bits- | difference before correction
stage)) result |-| correction | (b[i] XNOR b[i+1])

1 b[4] |20 - 16| 4 1 1

2 b[3] |4 - 8] 4 0 0

3 b[2] |4 - 4 0 0 1 (toggled)

4 b[1] [0 - 2] 2 0 0

5 b[0] |12 - 1] 1 1 0 (toggled)

Figure 3.5: Example 2 to convert analog quantity 20 to binary “10100” using
SAR-CD algorithm

In this example, it is desired to convert the analog input 20 to the digital 5 bits
binary representation b[4]b[3]b[2]b[1]b[0] = “10100” using SAR-CD algorithm
depicted in the flow chart figure 3.2. The example is presented in figure3.5.

The first iteration\stage starts with an input 20. The input is compared to
the stage weight, *16’, through the analog absolute difference operation which
calculates the absolute difference between them. The differences 120-16l = 4 is
the input to the second stage. As 20 is bigger than 16, then the first stage ends
with digital b[4] is 1 (no bit correction is needed for the first iteration according to
3.2.The second stage compares the input 4 to the weight 8. As 4 is not bigger than
8 then the digital bit for this stage (b[3]) before bit correction is 0. As b[4] is 1
then b[3] is kept with 0. The absolute differnce (14-8| = 4) is the input to the third
stage. In the third stage, b[2] is initially set to O as 4 is not bigger than 4. Before
we do bit correction (b[2] XNOR b[3]), it is marked that the absolute difference
in this case is O (the condition “is(temp==0)?" in figure 3.2 is TRUE). Thus b[2]
should have the value ““ is(temp==0)? . b[3]” added. However as b[3] is zero, then
no change happens to b[2] before bit correction. Then, bit correction for b[2] (b[2]
XNOR b[3]) results toggling b[2] from O to 1. In the fourth stage, b[1] is initially
0 because the input is zero. Also, b[1] is kept the same because b[2] is resolved to
1 after bit correction. This value toggles b[0] from 1 to O in the fifth and last stage.
The final digital output is “10100™.

41

3.4.3 Example 3 to convert ‘20 analog input to 10100

Step/ | Bitto Absolute difference | Abs Digital bit Digital bit after
stage | calculate | (input— 2~(N_bits- | difference | before correction
stage)) result |-| correction (b[i] XNOR b[i+1])

1 b[4] [28 - 16| 12 1 1

2 b[3] (12 - 8] 4 1 1

3 b[2] |4 - 4] 0 0 1 (toggled)

4 b[1] [0 - 2] 2 0 0

5 b[0] |12 - 1] 1 1 0 (toggled)

Figure 3.6: Example 3 to convert analog quantity 28 to binary “11100” using
SAR-CD algorithm

In this example, it is desired to convert the analog input 28 to the digital 5 bits
binary representation b[4]b[3]b[2]b[1]b[0] = “11100” using SAR-CD algorithm
depicted in the flow chart 3.2. The example is presented in figure3.6.

This example is very similar to the second example. However, the difference
is spotted in the second and third stages. The result of the third stage now is one
because the input 12 is higher than the reference 8. Thus, when calculating b[2]
in the third stage, and as “is(temp==0)?" is TRUE, b[2] will be effected by the
operation “b[i] = b[i] + is(temp==0)? . b[i+1]” and will not be affected by the bit
correction “b[i] = b[i] XNOR b[i+1]” in figure 3.2.

For more examples, the reader can use the Matlab function sar_cd.m in appan-
dex section A.1.2. This function presents the functionality of the novel Successive

Approximation Algorithm with Continuous dis-assembly.

42

Chapter 4

Circuit design

Two circuit designs are presented in this work to demostrate the proposed algo-
rithm. The first design presents the initial domenstration for the algorithm ([26]).
The second circuit design presents a new architecture with many enhancements
that solve many of the challenges found in the first design at the cost of circuit
complexity([27]). It is recommended for the reader to go through both algorithms
to give more insight to the new developed techniques.

4.1 First circuit design

The proposed circuit is a 4-bit system. It consists of 4 stages and each stage is re-
sponsible for evaluating the current bit value and correcting it by the bit evaluated
from the previous stage; which is an input to this stage. Figure 4.1 shows the unit
cell. In a general n-bit circuit, there should be ‘n’ successive stages of the same
cell type (with different refernce pulse as will be shown).

For a general K" cell, the cell is triggered once an input pulse from the previ-
ous stage (k-1) is detected. The input pulse “Pin” presets the digital value “b[k]”
to ‘1’ and triggers a pulse generator to generate a pulse of width proportional to
Vis/27k; as Vfs is the full scale voltage. The input signal is delayed until the ref-
erence signal is high, and is compared to it by a simple XOR gate. The result of
this comparison is a pulse with the difference-width. This pulse is an output for
this stage and used to trigger the next stage. Also, the output pulse triggers the
comparator by a small pulse to indicate the larger pulse. The inputs to the com-
parator are delayed versions of the input pulse “Pin” and the generated reference
pulse to compensate for the XOR gate delay. The output of the comparator is the

43

CEey N Tb
L P

Next|Cell

P_gen VEs/2°k) |

'/

Pi

n
j Pre-set b[k]

D Q

|

Delay_Pin

Delay_Pref DFF

N Q-
4

Bit Cell
b[k]

veval[k] Sel (b[k-l]; eval[k+1]

Figure 4.1: Bit unit cell

correct value for the bit “b[k]” after it passes through two conditions. The first
condition is the previous bit value (b[k-1]). As stated in the algorithm, if the pre-
vious bit is ’0’, then the value of the current bit should be reverted. This is done
using the 2*1 multiplexer with selection “Sel (b[k-1]))” such that the comparator
output is selected when b[k-1] is "1’ or the inverse is selected when b[k-1] is *0’.
The second condition resolve the problem of the XOR gate defined resolution as
explained next.

When the XOR inputs are very close in length, the XOR may not produce an
output sufficient to trigger the next stage because of the limited resolution. In this
case, which are more likely to happen for high sampling rates, there will be an
error comparable to the reference pulse the input is compared to. In an example
of 4-bit system, if this problem is encountered for the MSB, the output will be
‘0000’ instead of ‘0O111°, which is a great loss. To solve this problem, we preset
the digital bit of the current cell (“pre-set”). As long as this cell is triggered and
no output from the XOR gate, and of course successive stages won’t be triggered,
then the input pulse is very close to the reference pulse and the current bit should
be forced to ’1°. However, in normal operation, when the XOR output is sufficient
to trigger the next stage, the output of the comparator should be considered the
correct value. This is done by the “eval[k+1]” feedback signal taken from the
reference pulse generated by the next stage. This indicates that the signal survived

to the next stage and the comparator output is selected instead of the preset value

44

’1’. The error in this case is defined by the resolution of the XOR gate. In other
words, the resolution of the XOR gate defines the resolution of the system for this

architecture.

This solution imposes a correlation between the signal path and the compari-
son path, when the 2 signals are compared for each bit. This correlation adds con-
ditions to the design that requires time and power budget to fix. These conditions
can be summarized in 2 points. The first one is fitting the timing requirements for
the comparator of the early stage. When this signal is back from stage k + 1, the
comparator output should be ready with the correct comparison result. As shown
in figure 4.6, a typical failure case happens when the signal path starting from
the reference pulse output through the XOR gate, the buffer and the pulse genera-
tor of the next stage takes smaller delay than the comparator delay (in figure 4.1,
eval[k+1] samples the output of the comparator before it is ready). One solution,
which is used in this design, is to delay the signal “eval” till the comparator output
is ready. This delay is found to be relatively high reaching more than 120ps (for
the comparator used), which is a loss of area and also a loss of power that can
reach up to 30% of the circuit power for a high speed delay line. The second point
1s meeting a condition that states that the delay summation of the XOR, buffer and
the reference pulse generator should be greater than the delay summation of the
DFF access time, DFF setup time and the multiplexer setup time. This exposes
another main function for the buffer; which is to impose some delay to satisfy this
condition. This condition and the problem are addressed in the simulation results

section.

4.1.1 Design components

The comparator used is depicted in figure 4.2. It consists of 2 stages. When the
clock signal is high, the first stage is activated and stores the input values for the
small high period of the triggering clock. At the same time, the PMOS transistors
in the second stage pre-charge the output to VDD preparing the coupled transistors
for the evaluation phase. The evaluation phase starts once the clock goes low
again when the second stage is activated and the first stage is deactivated holding
the captured input values to be the input to the second stage. The evaluation is
completed by this stage and the output remains on-hold till the next clock edge.
Choosing the clock pulse width is critical because it should be long enough for
pre-charging phase through the PMOS transistor, and not very long as the input

of logic 1 (the input or the reference pulse) may go down quickly weakening the

45

: -
Vin+ -
|_1

L E—
[
E -

VDD

-
clk’—||<-
—

VDD

o

Vo+

3 |

Vol +

u}_Vin-

=1

Figure 4.2: The comparator circuit, stage 1 (left) and stage 2 (right)

differential signal held in the first stage. The comparator is triggered using a pulse

generated from a pulse generator. This pulse generator is triggered by the XOR

output.

The XOR gate used is a simple CMOS circuit. The error in the CMOS circuit
is almost fixed along different input combinations and can be compensated in the
next stage by changing the width of the generated reference pulse. Using XOR
gate designs based on pass transistors add distortion to the output signal so it is

Vol+ _||_

Vo-

=

|—clk’

>
—

—

clk’—lﬁ_

not recommended even if they consume less power.

46

|_V01-
-

—
|— clk’

I L
VDD g |
DFF |
L o
trigger |
> Rst

L Pulse Generator
D1 [—

Figure 4.3: Pulse generator circuit

Rst’

5,1 T4

T

Rst VDD Rst
VDD

|_T ck’ _J

D a a
: H K

~>=TH >

clk > Qv

— H

1 A

clk —

[

D-flip flop 1

Figure 4.4: DFF based on SDFF

The pulse generator developed is depicted on figure 4.3. It consists of a DFF
and a delay element. The input to the DFF is the supply and the output is con-

nected to a delay array ending with the DFF asynchronous reset. Once a clock

47

trigger is detected, the output is high until the feedback signal reaches the “Rst”
pin when the output goes low again. The width of the generated pulse is the sum-
mation of the array delay and the DFF loop delay. The delay of the DFF defines
the minimum pulse width that can be generated imposing another resolution limit
beside the XOR gate resolution. The DFF used is depicted in figure 4.4. This
architecture is based on edge-triggered SDFF in [[10]] (Fig.1) for higher speeds

over the transmission gate-based DFF.

4.1.2 Simulation results and analysis for the first design

The simulation is done for input pulses of width range from an offset of 10ps to a
full scale width of 750ps. The input is mapped from a sine wave with a frequency
of 41 MHz with a sampling rate of 666.7 MHz (1.5ns sampling period). The res-
olution is about 46ps ((750-10) / 16) The offset is optional and is compensated in
the first stage by increasing the reference pulse with the same amount. As men-
tioned, this goes for any possible error from the XOR operation as the reference

pulse in the next stage can be modified by design.

1024-point FFT output

9 11.7248db

20 F

FFT(db)

70 : : 2 N 1 L 1 1 1 1
64.453 129.56 194.66 259.77 324.87 389.98 455.08 520.18 58529 650.39

Frequency(Mhz)

Figure 4.5: FFT output
The FFT output for the system is depicted in figure 4.5. The SNR corresponds

to 3.67 ENOB. The circuit is running on 1.5 ns sampling period to resolve a pulse
of 750ps maximum width. Ideally, the two numbers should be very close, however
fixed delay in the circuit cause deviation from this value which can be summarized

in four main delay sources. The first delay source is from the XOR gate which

48

consumes 43ps for each bit. The second one is the pulse generator that consumes
a delay of 35ps for each bit. The third one is the feedback delay deployed at the
signal “eval” path early mentioned to compensate for the comparator delay time
(“Dcomp” in figure 4.6). The delay added is the one in the last bit stage only to
take the final digital word; as this delay is consumed parallel to the signal path.
This delay can be totally removed if the digital word is taken after the start of the
new sample, when this stage is not used (caution should be taken when resetting
the digital bits for the new sample). The last delay is a forced 20ps delay presented
by the XOR gate buffer for each bit to satisfy the condition pointed out in section
III and 1s explained in the next paragraph.

Signal path delay = Txor + Tbuff + Tpulse

=) > |
pulse_gen Vis/(2°k) |

pulse_gen VIs/(2°k)

bik-1]

Bit Cell |—— I Bit Cell

| L_l Sel(b[k-1]) eval[k+1]
Dcomp

> Dcomp

Figure 4.6: Feed back synchronization problem

To explain the reason for the condition in section III which states that the
delay summation of the XOR, buffer and the reference pulse generator should
be greater than the delay summation of the DFF access time, DFF setup time
and the multiplexer setup time, consider figure 4.6. It depictss a capture of 3
stages; indexed from “K-1"" to “k+1" (stages “k-1" and “k+1" are clipped for fitting
purpose). Starting from stage “K”, consider the signal at the output of the reference
pulse generator output which is ready to enter the XOR gate and also to be fed-
backed to stage “K-1". This signal takes 2 paths. The first path passes through the
XOR gate and the buffer of stage “k”, then through the reference pulse generator
of stage “k+1”, then through the feedback “Dcomp” (eval[k+1]). The summation
of the path delay is:

49

I = TXOR + Tcommon + Tbuff + TPulseGen + TDcomp (4 1)

As Txor is the delay of the XOR gate and T common is the common part in
the signal pulse and the reference pulse at which both of the two signal is high
(the XOR gate output is zero in this period). The second path is through “Dcomp”
delay element, DFF for stage “k-1", then through the MUX and the input of the
DFF of stage “k”, the summation of the path delay is:

T2 = TDcomp + TDF Faccess T+ Tmux + TDF Fsetup (42)

For proper operation, the input to the MUX of the stage “K” should be ready
before the clock signal “eval[k+1]” comes. This means that T1 > T2 is a condition
that should be satisfied. All of these delays are fixed except the Tcommon which
can take a value from ‘O to Tfs2. As Tfs2 is the width of Pvfs2. Considering
the worst case when Tcommon is equal to ‘0’, the condition for proper operation

becomes:

Txor + Tbuff + TpuiseGen > TDFFaccess + Trux + TDFFsetup 4.3)

It is now clear that the buffer used after the XOR gate not only strengthens the
signal but also it synchronize the internal signals for proper operation.

4.2 Second circuit design- All Digital TDC

The second circuit is considered a modified all-digital version of the First design.
Figure 4.7 depicts a general N-bit architecture. The architecture in this work is a
10-bit version introduced as a case study. For each clock cycle, each cell performs
two tasks. The first task is comparing the input pulse to the corresponding refer-
ence pulse to generate uncorrected bit “bu[k]” for the current sample, where ‘k’
ranges from ‘9’ to ‘0’. The second task is to make bit correction (as presented in
the algorithm in figure 3.2) to generate B[k]. Figure 4.8 depicts a general k' unit
cell. The input pulse Pin triggers a pulse generator to generate the reference pulse
which corresponds to the binary weight of the cell bit.

50

input —|Pin Pout Pin Pout |— == - —»] Pin
(Pin > Vfs/2)? Pin > Vis/23)? (Pin > Vfs/2")?
bu[N-1] () bu[N-2] bu[l
NoCeil En NoCeil En

B[N-1] B[N-2] B[0]

Figure 4.7: Successive approximation with continuous disassemble algorithm sys-
tem architecture.

4.2.1 Circuit description

The triggering input pulse Pin[k] is delayed to compensate for the pulse generator
propagation delay such that the XOR inputs (i.e., Pind[k] and Vr[k]) arrive simul-
taneously. The MSB stage generates a pulse with width Pfs/2, as Pfs is the full
scale pulse. The delayed version of the input, Pind[k], and the reference pulses
Vr[k] are applied to the XOR gate input ports to generate the absolute difference-
pulse, which is then buffered to the next stage. In the mean time, inverted versions
of the input and the reference pulses enter the clock and the input of a DFF re-
spectively. The output of the DFF, X[k], indicates which pulse is longer. The
DFF resolves value *1° when the input pulse is longer than the reference pulse
and ’0’ otherwise. The delay unit circuit consists of two cascaded current-starved
inverters. The delay of each unit is adjusted by sizing the current-starved inverter.

Figure 4.9shows the timing diagram for simulating the first 2 stages (k = 9,8)
for 2 complete clock cycles (i.e., three clock edges). The 2 cycles resolve one
input pulse longer (Pin9_1) and one shorter (Pin9_2) than half of the full scale
pulse (V19). Pin9, V19, X9, bu[9] and B[9] represents the signals for the MSB cell
(Pin9 and V19 share the voltage axis). At the first sample, the absolute difference
between the input and reference pulse is the input to next stage (Pin8) which will
be compared to the stage reference pulse (Vr8). The first sample resolves X9 and
X8 to ’1” and ’0’. For normal operation, when both signals “En” and “NoCeil”
(figure 4.8) are high, the uncorrected bits bu[9] and bu[8] are the output of the
XNOR gate after bits correction. In this sample, bits correction does not change
bu[8] value as bu[9] equals one according to the algorithm in figure 3.2 . This

1s shown at the vertical trace “T1” when the initialization value ’1’ for bu[8] is

51

changed to 0’ in accordance to changing bu[9] from ’0’ to ’1°. However, for the
second sample, when the input pulse is shorter than the Vr9 pulse, bu[9] resolves
to ’0” which keeps bu[8] to its initial value. This can be shown at vertical trace
“T2” when the initial value for bu[8] does not change. The digital output of the
second sample is ready at the third clock positive edge “T3” as B[9]B[8] are set to
01°.

_I_I_ Pind[k]
| — Delay l\ 1L Pin[k-1]
Pin[k] Vr[k]
pulse Vs/(2” (k+2-N l/
/
X[k]
" bulk]
—Pp @
B 1 t C e l l Rst D Q
DFF
K ! =«
En bu[k+1 NoCeil
Clk Clk
B[K]

Figure 4.8: System unit bit cell

The enable signal “En” indicates the cell is triggered and the output value is
correct. This flag is taken from the reference pulse and is held on a DFF to pass the
result (This DFF is not shown in the diagram for simplicity). Due to the limited
resolution of the XOR gate, the XOR gate might not produce an output sufficient
to trigger the next stage, when the XOR inputs edges are very close. In this case,
which are more likely to occur for high sampling rates, there will be an error. In an
example of 4-bit system, the output will be ‘0000’ instead of ‘0111’ if this occurs
for the first stage, which is a significant error. To solve this problem, a “pre-set”
of the digital bit for the current cell is done. As long as this cell is triggered and
no output from the XOR gate, and the input pulse is very close to the reference
pulse, the current bit in this case is forced to *1’. This is performed through the
“NoCeill” feedback signal taken from the reference pulse generated in the next
stage (similar to the eval[k+1] signal in figure 4.1). This indicates that the signal
survived to the next stage and the comparison output is considered. The resolution
of the XOR gate defines the resolution of the system. The resolution that can be
resolved by the DFF to generate the *X[k]’ signal should be designed higher than
the resolution of the XOR gate.

52

(5u) 2w
o_.._UN o__wﬁ om.ﬁ oﬁ om.ﬁ o_mﬁ o__l
i
[6]nq ® 8X =[8]nq
{(8IA< guId)st = 8X
| 69A - 6u1d | = 8uid BA> T3 | | 30> 175ud
¢ (61A< 61d) ST = 6X
6'A > T 6Uld) 6'A < 176Ul
mrﬁ N,H safiels omg Joy uenedadn INAID ﬁﬁ

[8]d

[8]nq

8xX

(-)8n
guld

[6]d

[6]nq

6X

() 6

uld

A19

Figure 4.9: Simulation capture for the two MSB stages signals (landscape view)

t components

ircui

L3

422 C

The XOR gate used is implemented using CMOS logic. The error in the CMOS
circuit is almost fixed along different input combinations and can be compensated

53

in the next stage by changing the width of the generated reference pulse. The
pulse generator used is depicted on figure 4.10. It consists of two DFF and a
delay element. The DFF used is based on edge-triggered SDFF introduced in
[10] and is shown in figure 4.11. The generation is done in two steps. The cell
input pulse triggers the first DFF producing an intermediate fixed length-pulse
to trigger the second DFF. The second DFF and the delay element generate the
desired pulse with custom width. For each DFF, the output is connected to the
DFF asynchronous reset. Once a clock trigger is detected, the output is high until
the feedback signal arrives at the “Rst” terminal and the output goes low again.
Adding extra delay element “D1” increases the width of the generated pulse. The
width of the generated pulse is the summation of the delay element and the DFF
loop delay.

Pulse Generator Tp1 + Tag
‘4— - ‘
fied ~ Latt
trigger = Analog Signgl Path
Vi[k]
VDD _|p! @ _"VL N
DFF |
VPP Ih g QL
L | o T
Q=
Rst I'>
custom Const load capacitance
tigger for all cells

cell control

Figure 4.10: Pulse generator circuit

54

TTT_|

| INV4

1 CK
I NAND
INV3

_L INV1 INV2

C
._| H] P1 X
INVé6 QB

INVsS

[STIETI

Figure 4.11: SDFF introduced in [10]

The pulse generation is done in two steps using two DFFs to eliminate the de-
pendency of the generated pulse width on the input pulse width. The pulse gener-
ation trigger is done by the input signal, which can vary in width, affects the width
of the generated signal. In figure 4.11, it is shown that the clock used for transis-
tor “N4” works against the ’Rst’ operation by discharging the node *Q’ to ground
level while the reset signal (implemented by a PMOS with source connected to the
VDD and gate connected inverted Rst and drain connected to *Q’, not shown for
simplecity) charges it to VDD. This introduces pulses with two lengths. One long
pulse produced when the clock pulse is longer than “TD1+ D1”, and smaller pulse
when clock signal is shorter. The difference between the two pulse widths is up
to tens of picoseconds. This introduced the need to generate an intermediate pulse
with short fixed length to trigger the actual pulse generator, the second DFF. The
error after this addition is reduced to less than 1ps. The delay of the DFF defines
the minimum pulse that can be generated.

55

2.0 T T T T
1.5 INL_max = -2.38 LSB
1.0 E
o “mm “] I Hn
% ‘ A x | A
: 0.0 | ’ T ' ' ”
Z -0.5
P
-1.0 |
-1.5 |
_2'0 """"" i ittt e [-oomqm=-- A mmem | ettt A T e Ay =T "
0 100 200 300 400 500 600 700 800 9200 1000
code
1-5 T T T
DNL_max =1LSB
B T T -
m 05
72
d 0.0 (Il ‘ ‘ ’r ‘ i "J “ X f-‘ “i — v | ‘I‘U“L ‘lli‘i U"”“I'l‘\“ |" | ‘ "I || ' ‘ \‘ I
= Tt I il ™ i O A
a -05 E
-1.0 i
_1.5 1 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 9200 1000
code

Figure 4.12: Simulated DNL and INL for the second design

4.2.3 Simulation results and analysis for the second de-
sign

The simulation is done for input pulses of width range from an offset of 10ps to
a full scale width of 31.5ns. The simulation setup takes an input sine wave of
frequency 1.75MHz and samples it at 29.4 MHz (chosen 34ns sampling period).
The signal is converted using an ideal VTC to a pulse width-modulated signal with
31.5ns full scale time range. The resolution is around 30.7ps (31.5ns /1024) The
output of the VTC is then applied to the target TDC circuit. A 1024-FFT process-
ing is applied and the circuit achieved an Effective Number Of Bits (ENOB) value
of 8.63bits. The circuit consumes 2.8mW from a 1V supply. Linearity test is done
by simulating 10,240 point sweeping the full scale range. The results show maxi-
mum 1 LSB and -2.38 LSB for Differential Non Linearity (DNL) and Integral Non
Linearity INL respectively as shown in figure 4.12. Figure 4.1 draws comparison
to [18] and [28]. The theoretical maximum frequency is governed by the XOR
gate resolution. Simulation results show that CMOS-based XOR gate on 65nm
technology provides around 30ps LSB which supports about 33 Mhz maximum

frequency for a 10-bit version of this architecture.

56

| | Thiswork | [28] | [18] |

Archeticture SAR-CD SA DSSA
Sampling (Ms/s) 29.4 12.5 80
Number of bits 10 13 10
Power(mw) 2.769 63.3 9.6
Supply(V) 1 3 1.2

Technology 65nm 350nm 65nm

DNL/INL max(LSB) | 1/-2.38 -/0.74 1.35/2

Simulated/Measured | Simulated | Simulated | Measured

Table 4.1: Performance comparison

The fact that the proposed algorithm promises for one signal path instead of
two eliminates the synchronization requirements along the conversion stages like
in [17,18]. This eliminates many delay compensators like the DFF and MUX
delays in Fig. 6(a) in [18]. In addition, there is no conditioning in the signal path
like in [18] as the MUX selects signal to pass depending on the current comparison
result. These superior advantages obtained by the new algorithm make the design
simpler and provide significant reduction in power and area.

The second design also showed enhancements over the first design in many
points:

A- Eleminating the need to the comparator, making the design an all-digital
design and as a result:

B- Simpler design eleminating some issues such as the one spotted in figure
4.6.

C- Higher linearity by more accurate reference pulse generation.

D- More robustness to PVT changes through lower dependency of the opera-
tion to the element delays.

It also should be noted that both circuits needs calibration addition to over-
come the PVT changes. For example, generating accurate reference Plus for each
stage is very critical. The width of the each should present the corresponding refer-
ence pulse width irrespective of the operation temprature or supply voltages. Also
it should compete for the process variation. Another point is the need to make the
inputs for the XOR gate for each stage start simultaneousely. Deviation for this
condition affects the linearity directly and will cause the loss of part of the signal.
This spots the need for digital calibration (similar to many time-based circuits) as

will be shown in the next section.

57

4.3 Digital Calibration for SAR-CD time-
based TDC

The calibration logic should tune the pulse synchronization and the pulse generator
delays in figure4.10 for proper operation. The pulse generation calibration for all
the stages is first introduced. Calibration of the synchronization delay follows the
same manner and is described after.

Figure 4.13 depicts the calibration circuit connection diagram. The whole
connection consists of: 1-The target SAR_TDC circuit, 2-The calibration logic, 3-
The VTC circuit and, 4- A multiplexer (2*1). The multiplexer chooses between
either the circuit external input voltage or the calibration circuit input. The VTC
converters the chosen input voltage input a modulated pulse. The VTC used here
1s an ideal component which should be replaced with real one in a complete ADC
circuit. The target SAR-CD TDC circuit converters the selected input pulse to the
corresponding digital of N bit (Out[N-1:0]), as N is the number of the ADC bits.
The calibration logic controls the delay of each stage pulse generator (V¢ in figure
4.10) to tune the reference pulses generated. This is presented by VC[N-1:0] in
figure 4.13. The calibration logic also tune the current starved inverter used in
signal synchronization (“Vc_synch”). It will be shown how a single control pin is
used for all the stages without considerable degradation in system linearity.

Calibration delay tuning should be for the control signal Vc for each delay.
Though there is 2 analog controls needed for each stage with total of 2*N bins,
as N is the number of the TDC bits, the structure properties for the delay pulse
generator make it possible for almost constant signal propagation delay across all
the stages. Which make it possible for one control bin for all the synchronization
delays (“Delay” in figure 4.10) (assuming all the remaining circuit components
are identical for all the stages). In figure 4.10, the signal traveling through the
circuit will always see the same path with the same loading. This is achieved
by isolating the main current starved inverter “S” and the loading capacitor from
the signal path through “I1” and “I3” inverters, which have the same size for all
the stages. Different pulse widths are done though control voltage of “S” and the
loading capacitor. This may impose symmetry constraints on the realized layout.
However, it will be shown in the results that such differences are of minor effect.

Figure 4.14 portrays the main algorithm for the pulse generator calibration
using the analog control voltage Vc[N-1:0], as Vc[N-1] is the analog control volt-
age for the first stage pulse generator which should produce a pulse of half of

58

the full scale-width. The control signal ranges from 0.5 to 1.2 ("Vcfs’).’Vsigfs’

is the input signal Vsig full scale range which is from 0.4V to 0.6V in this sim-

ulation environment. The algorithm logic tests the digital output “Out[N-1:0]"

while changing the corresponding Vc[bitAdc], as “bitAdc” is the index of the

stage currently calibrated. Vcfs is quantized into 256 level and is presented in 8

bits. “bitCalib” presents the current calibration bit index inside Vc[bitAdc] word.

The algorithm loops 8*N times before each calibration bit in each control voltage

is evaluated. Calibrating the synchronization delays, through VC_synch, almost

follows the same manner. Loading the maximum input voltage (Vsig is maxi-

mum), Vc_synch is tuned for maximum digital output “Out[N-1:0]".

Vin

Vsig

Clib_En

VTC

Calibration logic

Pin Out[N-1:0]
SAR-CD TDC =
(target)
1 '
V¢[N-1:0]
Vec_synch

N L

= N I’ |

Figure 4.13: Calibration circuit connection diagram

59

Vsigfs = 0.6 -0.4
Vg =1.2-0.5
bitAdc =N -1
bitCalib = 7
V. [bitAdc] = V /2 +0.5

Vsig = Vsigfs /12 +0.5

A o
Y Outpbit_ade) 10
>0.5?
y Y
V. [bitAdc] =V [bitAdc] -V / 2" | |V [bitAdc] =V [bitAde] +V g/ 2™
! Y
yes
bitCalib = bitCalib -1 bitCalib .-
=02
bitAdc = bitAdc -1 bitAde
. Y bitCalib =7 =07
VelbitAde] = Vr/2 0.5 yes
Vig=Vag+2

Figure 4.14: Calibration algorithm diagram

The algorithm starts with Vc[N-1] and Vsig are in the middle of the control

voltage and the input dynamic range respectively. The main loop of the algorithm

loops over Vc[N-1] by updating its value in a binary fashion. The update direction,

increasing or decreasing, depends on the corresponding monitored Out[N-1] bit.
If Out[N-1] is logic 1 (““Out[bit_adc]>0.57"), then the generated pulse width of the

first stage is longer than the input corresponding pulse width; which corresponds

60

to half the full scale. Hence, Vc[N-1] should be decreased to make the generated
pulse longer. When the algorithm finishes the calibration of the MSB (“bitCalib
== 0" is true) the algorithm starts the calibration for the next MSB (“Vc[N-2]”),
by decreasing “bitAdc” and re-initializing “bitCalib*“ to 7. In this version of the
algorithm, the control voltage is quantized into 2”8 levels by initializing “bitCalib”
to 7. The designer may increase the voltage resolution more by increasing the
initialization value of “bitCalib”. The TDC circuit calibration ends when both
“bitAdc” and “bitCalib” are zero values.

Figure 4.15 shows the simulation graphs for calibration of the first MSB, bit
7’. For a time full scale of 31.5ns (check the simulation results section), the first
MSB stage reference pulse should be adjusted to a pulse length of 15.75ns (31.5/2
ns). The graph shows the trials of the calibration algorithm to reach the desired
value using the feedback signal “Out[7]”. As long as Out[7] signal is high, the
calibration algorithm controls the reference pulse width through the Vc[7] signal
(not shown for clarity) in the direction which increases Vr[7] as spotted in figure
4.13. Similarly, when Out[7] signal is low, the calibration logic reduces Vr[7]

signal in the same manner.

?—/ / Fira Valueis 15757
R B RT SRR e R Ee e EeR R e s
B SRaR R SsHRaa N snuRn A

T
300 400 500 600
time (ns)

00

Figure 4.15: Calibration for first MSB

61

4.4 Calibration results

The calibration enhancement for the circuit operation is showed by Effective Num-
ber Of Bits (ENOB) as a measure for the system SQNR. The target circuit is a 9-bit
version of the one presented in [27]. With the same input setup parameters pre-
sented. The input sine wave is of frequency 1.75MHz and is sampled at 29.4 MHz
(34ns sampling period). The signal is converted using an ideal VTC to a pulse
width-modulated signal with 31.5ns full scale time range. The input signal The
circuit is tested for different operation temperatures and fabrication corners.

The left graph of 4.16 shows ENOB values for 27, 60 and 120 Celsius de-
grees. As the circuit is designed for 27 degree, increasing the temperature changes
the internal propagation delays of the circuit and, hence, degrades the circuit per-
formance. At 60 degree, simulation results showed the calibration enhanced the
ENOB value from 6.7 to 7.3. The right graph of 4.16shows the calibration en-
hancements of the system performance for different fabrication corners; nominal,
Fast Fast (FF) and Slow Slow (SS).

8 T T T T 8 T
7 . 70 e
g S
z 6r 1 z 6 1
& = I
st . 5 .
4 1 1 1 L 4 1
27 60 93 126 nominal FF SS

Figure 4.16: ENOB for the original circuit before calibration (square marker) and
after calibration (dot marker). Simulation is for different temperature degrees (left)
and different fabrication corners (right)

62

List of Publications

1-Ragab, O. K., H. Mostafa, and A. Eladawy, "TDC SAR Algorithm with Contin-
uous Disassembly (SAR-CD) for Time-Based ADCs", IEEE International Confer-
ence on Energy Aware Computing Systems and Applications (ICEAC 2015), Cairo
Egypt, IEEE, pp. 1-4, 2015.

2-K. O. Ragab; H. Mostafa; A. Eladawy, "A Novel 10-bit 2.8mW Time-to-
Digital Converter Design using SAR with Continuous Dis-assembly Algorithm",
IEEE Transactions on Circuits and Systems I1: Express Briefs , vol.PP,n0.99, pp.1-
1

63

64

References

[1]

[3]
[4]
[5]
[6]

M. Amin, Design of a Time Based Analog to Digital Converter. PhD thesis,
University of Waterloo, 2012.

R. G. Lyons, Understanding Digital Signal Processing, 3/E. Pearson Educa-
tion India, 2004.

“Matlab data aquazition toolbox analog subsystem.” accessed 18 May 2017.
“TmsS5701s3137 ep datasheet section 7.2.4.1.” Accessed 19-5-2017.
F. Maloberti, Data converters. Springer Science & Business Media, 2007.

“Understanding piplelined adcs, tutorial 1023.”
https://www.maximintegrated.com/en/app-notes/index.mvp/id/1023. ac-
cessed 19-5-2017.

Analog Integrated Circuit Design. John Wiley and Sons, 1997.

S. Naraghi, Time-based analog to digital converters. PhD thesis, The Uni-
versity of Michigan, 2009.

M. Wagih, “Design of time-based analog to digital converter (tb-adc) new
design methodology for voltage-to-time (vtc) circuits,” mathesis, Electronics

and Communication department- Cairo University, 2015.

F. Klass, “Semi-dynamic and dynamic flip-flops with embedded logic,” in
VLSI Circuits, 1998 Symposium on, pp. 108—109, June 1998.

T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato, and A. Inoue, “Time-
to-digital converter with vernier delay mismatch compensation for high res-
olution on-die clock jitter measurement,” in VLSI Circuits, IEEE Symposium
on, pp. 166—-167, June 2008.

65

[13]

[14]

[15]

[16]

[17]

M. Zanuso, P. Madoglio, S. Levantino, C. Samori, and A. Lacaita, “Time-to-
digital converter for frequency synthesis based on a digital bang-bang DLL,”
Circuits and Systems 1: Regular Papers, IEEE Transactions on, vol. 57,
pp- 548-555, March 2010.

T. Watanabe and T. Terasawa, “An all-digital ADC/TDC for sensor interface
with TAD architecture in 0.18-yum digital CMOS,” in Electronics, Circuits,
and Systems, 2009. ICECS 2009. 16th IEEE International Conference on,
pp- 219-222, Dec. 2009.

P. Dudek, S. Szczepanski, and J. Hatfield, “A high-resolution CMOS time-
to-digital converter utilizing a vernier delay line,” Solid-State Circuits, IEEE
Journal of, vol. 35, pp. 240-247, Feb. 2000.

J. Yu, E F. Dai, and R. Jaeger, “A 12-bit vernier ring time-to-digital converter
in 0.13 CMOS technology,” Solid-State Circuits, IEEE Journal of, vol. 45,
pp. 830-842, April 2010.

J.-P. Jansson, A. Mantyniemi, and J. Kostamovaara, “A CMOS time-to-
digital converter with better than 10 ps single-shot precision,” Solid-State
Circuits, IEEE Journal of, vol. 41, pp. 12861296, June 2006.

A. Mantyniemi, T. Rahkonen, and J. Kostamovaara, “A CMOS time-to-
digital converter (TDC) based on a cyclic time domain successive approxi-
mation interpolation method,” Solid-State Circuits, IEEE Journal of, vol. 44,
pp- 3067-3078, Nov. 2009.

H. Chung, H. Ishikuro, and T. Kuroda, “A 10-bit 80-MS/s decision-select
successive approximation TDC in 65-nm CMOS,” Solid-State Circuits, IEEE
Journal of, vol. 47, pp. 1232—-1241, May 2012.

P. A. D. Holberg, CMOS Analog Circuit Design. Oxford University press,
1987.

P.R. G. R. G. Meyer, Analysis and design of analog integrated circuits. John
Wiley & Sons, 1990.

S. R. N. G. C. Temes, S. R., Delta-Sigma Data Converters :Theory, design,
and simulation. 1IEEE press, 1997.

66

[26]

[27]

B. Leung, DVLSI for wireless communication. Prentice Hall Electronics and
VLSI Series, 2002.

H. Pekau, A. Yousif, and J. W. Haslett, “A cmos integrated linear voltage-to-
pulse-delay-time converter for time based analog-to-digital converters,” in
Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE Interna-
tional Symposium on, pp. 4—pp, IEEE, 2006.

H. Mostafa and Y. L. Ismail, “Highly-linear voltage-to-time converter (vtc)
circuit for time-based analog-to-digital converters (t-adcs),” in Electronics,
Circuits, and Systems (ICECS), 2013 IEEE 20th International Conference
on, pp. 149-152, Dec 2013.

S. Mahmoud, H. Salem, and H. Albalooshi, “An 8-bit, 10 KS/s, 1.87uW
Successive Approximation Analog to Digital Converter in 0.25um CMOS
Technology for ECG Detection Systems,” Circuits, Systems, and Signal Pro-
cessing, pp. 1-21, January 2015.

K. Ragab, H. Mostafa, and A. Eladawy, “TDC SAR algorithm with contin-
uous disassembly (SAR-CD) for time-based ADCs,” in Energy Aware Com-

puting Systems & Applications (ICEAC), 2015 International Conference on,
pp. 1-4, March 2015.

K. O. Ragab, H. Mostafa, and A. Eladawy, “A novel 10-bit 2.8mw time-to-
digital converter design using sar with continuous dis-assembly algorithm,”

2016. IEEE Transactions on Circuits and Systems II: Express Briefs.

S. Alahdab, A. Mantyniemi, and J. Kostamovaara, “A time-to-digital con-
verter (TDC) with a 13-bit cyclic time domain successive approximation in-
terpolator with sub-ps-level resolution using current DAC and differential
switch,” in Circuits and Systems (MWSCAS), 2013 IEEE 56th International
Midwest Symposium on, pp. 828-831, Aug. 2013.

67

Appendix A
Appendix

A.1 SAR-CD Matlab code

In this section, 3 main functions are discussed:

1- Old SAR algorithm: presenting the old SAR algorithm which use the con-
dition for the analog reference quantity. It is presented so that comparison to
the new SAR-CD (next) is more clear. The functionality is presented in function
“sar_standard(in, N_bits)”.

2- New SAR-CD algorithm: presenting the new SAR-CD algorithm which
moves the conditioning to the digital domain. The functionality is presented in
fuction “sar_proposed(in , N_bits)”.

3- A test bench which uses both the algorithm and compares the result for
equal digital output. The functionality is presented next as Matlab code.

next we present

A.1.1 Traditional SAR Algorithm- Matlab function

Go %0 %0 To To %0 Vo To %o Yo To %o % %o sar_standard.m % %o Jo %o To Fo %o To To Yo Yo Fo Fo Yo Yo
function [binary] = sar_standard(in , N_bits)
%SAR_STANDARD Summary of this function goes here
% This function calculates the binary form for the input using the
% standard algorithm, Successive Approximation Register (SAR).
% inputs:
% 1n : input real value.
9 N_bits : number of binary bit enough to represent the input.

% binary : output binary form. "binary(1:N_bits)"

68

% binary register for the standared algorithm binary = zeros(N_bits,1);

% input value for the standared algorithm value = in;

9 % calculation for the binary form using the standared algorithm

for i=N_bits-1 :-1:0

if(value >= power(2,1)) % update the value for the next stage only if the input
1s bigger

value = value - power(2,1);

binary(i+1,1) = 1;

else

binary(i+1,1) = 0;

end

end

end

A.1.2 Noval SAR-CD Algorithm - Matlab function

Go %0 Yo To To %0 To Fo %o Yo To To %o %o sar_cd.m Yo% To %o %o T Fo %o Fo Fo %o Yo Fo Jo Yo

function [binary] = sar_cd(in , N_bits)

% sar_cd Summary of this function goes here

% This function calculates the binary form for the input using the

% proposed algorithm, Successive Approximation Register with Continuous

% Dis-asssembly (SAR-CD).

% inputs: % in : input real value.

% N_bits : number of binary bit enough to represent the input.

% binary : output binary form. "binary(1:N_bits)"

% binary register for the proposed algorithm binary = zeros(N_bits+1,1);

% 1nitialization value so that the bit correction for the MSB is correct bi-
nary(N_bits+1,1) =1; value = in;

for 1i=N_bits-1 :-1:0 % difference betweeen the input and the stage reference
value

temp = (value - power(2,1));

% pass the absolute to the next stage irrespectively value = abs(temp)proposed

% performing initial bit evaluation using the input

binary(i+1,1)= (temp > 0);

% equality comparison depends on the previous bit result binary(i+2,1)

% (temp == 0) produce ’1’ if temp equal 0’or ’0’ otherwise

binary(i+1,1)= binary(i+1,1)+((temp == 0) & binary(i+2,1));

69

% performing bit correction to the calcualted bit

binary(i+1,1) = ~xor(binary(i+1,1), binary(i+2,1));

end

%Setting the bit register most bit to zero again after being used in bit
%correction for the MSB

binary(N_bits+1,1) =0;

end

A.1.3 Noval SAR-CD Algorithm - Matlab function

Go %0 %0 ToTo %o Vo To %o Yo To To % % test bench %o %o %o %o ToTo %o T Fo %o Yo Fo To Yo Yo

% This test bench is indended to verify the new algorithm, Successive Ap-
proximation Register with Continuous

% Dis-asssembly (SAR-CD) Vs the standard SAR algorithm. The is used side

% by side with the proof in the thesis to demostrate the

% correctness of the algorithm for all the numbers, real and integers.

% The test sweep the numbers between selected boundries. Then is calculates
the

% binary form of each using the standard and the proposed algortihm. At last
it

% checks the equivelance of both results produced by the proposed and the
standard

% algorithm.

% select the minimum number to check

Min = 10000;
% select the maximum number to check
Max = 50000;

% %sweeping the range and compare both algorithms

for j = Min: Max value = j;

Yocalculating the minimum number of binary bits to present the input.
N_bits = ceil(log2(value));

% Binary value using the standard algorithm

Binary_standard = sar_standard (value, N_bits);

9% Binary value using the proposed algorithm

Binary_proposed = sar_standard (value, N_bits);

%% verifing the result by comparison

TRUE = 1;

70

FALSE =0;

equal = TRUE;

% 1nitialize the comparison to TRUE as long as no bits are different
fori1=1:N_bits

if(Binary_standard(i) ~= Binary_proposed(i))

equal = FALSE;

break;

end

end

% % Printing the result

if (equal == FALSE)

disp(["Proposed algorithm Fails in value: > num2str(value)]);
else

disp(["Proposed algorithm succeeded: * num2str(value)]);
end

end

A.2 Effective Number Of Bits (ENOB)

To calculate the effective number of bits for a given ADC, a sinusoidal signal can
be used as an input. The sinesoidal signal amplitude should cover the dynamic
range. As a sinusoidal signal is simply an impulse in the frequency domain, the
signal can be extracted easily for the spectrum. The output digital stream should

be first saved from Cadence Virtuoso then a Matlab code is used to calculate the

IFFT and estimate the number of bits from the signal power.

To save the output, open the results browser from the ADE as shown:

71

Manager cadence
Design Variables "Hipe | Enabla)
- Name | Yalue Ly]_Iran v 0 380
1 [ved_synch_t... |GE0m Al
2 wsweep_vin 4 |37 1
3 synchacap 4om ™
 Fo e Results Display
5 DFF_Compes... 20 «Job Monitor
6 L &0n
7 L_del 130
B Linv_ei &0 Qs 28] e
inv_selar n
i L nv_relay NamerSignal/Expr | Value| Plot| Save| Save Cptions O
5 Linv_sor 80N 0> P 2|
10 Ln_snor G0n - EE =g Talv = L
i r_nor 500 3 52> ERERC
12 Loweep_vin_.. 1 B3 ® [0 &
| L eep_vin_ |1 5 52> o (@ |
14 Loweep_vin_. 1 o B g o Jaw
15 Laweep_vin_2 |1 e — == |
e I
18 Lsweep_vin_.. |1 = - st
G 000 | Plot after simulation: |Aulo n Plotting mode: Replace n
i mouse L: M R: |
14(50) | Results Browser .| Status: Ready | T=120 € | Simulstor. spectre_turbo moderate | State wzuuegca\mratau|

Figure A.1:

Then, right click the ADC output, “Dig_ot” (multiple signals can be selected

by holding the Ctrl key) in our case, and select “Export” as shown:

i Virtuoso (R) Visualization & Analysis XL browser - 0 x [
File Tools Options Help cadence
Replace BL £ 5,000
N K|{E
Jrootsimulation/dc/TDC_SAR_TB_10bit_pp_calib_verilog/adex_2/results/data/interactive 4/1/dc TDC_SAR_TB_10bit_pp_calib_verilog:1/psf
G-l Arootsimulation/dcTOC_SAR_TE_10Bit_pp_calib_t _: A7

Sigrels. | MGEAE

inalTime OP-info i

1m0 WE_bin_w 2= W veliebe O Vel 0 veaele

modelParametet-info
eletment-info
outputParameter-info
designParamVals-info
primitives-info.primitives
subcKs-info.subckts
variables

Wo_bin_=3> 8 veliche M voSwle 0 voiielie
We_bin_wdie 8 ve2iOie W) oSl W vodiadis

We_bin =S 8 ve2ielis I veSwe2is B vediedis
Ve_bin B> 0 veaie2\> [veSde M veilhs
We_bin <7 8 velieTie [veSiede W vofieSs
Wo_bin_v 8 ve2iehe M) voSweSe 0 voiisBie
We_bin S [ve2i<Bis I veSwebie B vedieTis
clky wedi<Bls [veS=Th weGielis
e ve2ieTi> W) Vel) vedielt>
[IAS vedieDe M voBvelie [voRiaZis
e ve3iclie W) voBw2ie W vofiadie vinSin Append

B @
B
B
=g]
B @
=g]
[5]

PEEPEEECEERE

Bedis vehedis vedeZis W voftedle I vediedis Replace
Ve_analogeDt= [voledis vedied> §) vebredis M veoiesi> o S binaih o
Ve_analogh=Ti> [oS vediedi> W) vobrest>) veSieBi>

Ve_analoghe2ie 8 voleBie vediaSe W voBaiie 8 voReTie Mesw Window
Ve_analogiedis B voiTis ve3icBls W veBeTie W vel Ol

Ve_analogiedi= B vei<Bis wedTis [veTw=0h wel Dl

Ve_analogi=5= [voied vidieli= W veT=Ti Vel Dve2h

Vo_analogifie 0 volvelis vodisThe M ol 8 vol Ovedie

Ve_analoghaThe 0 volvelis vodie2ie M) voTwede W vol Oiedie

Ve_analogiegie B velie?is vedicdis W veTwedis B vel DSt

Ve_analogi<t> [velied> veded> W) veTSe W vel Dibie

Ye_hin_<Di= vETvedi vedieTie 1 ve Tl Ve D ?h

Ve_hin_vele volheHie vodisBe W voTwle M CalibVsig

Figure A.2: Exporting the ADC output from the results browser

As Spactre simulator calculates continuous waveforms, the output should be
sampled with the operation sampling frequency. The “Sampled Data” check box
should be checked and the samping period corresponding to the mentioned sam-
pling frequency should be witten in the “Step Size” box. In the shown figure the
time period is 34ns which corresponds to 29.41Mhz. The “Start” point should be
selected such that the circuit is expected to be in a stable operation (for example all

the internal capacitances are charged). The “End” time is selected to be less than

72

the last simulation time and should be selected such that enough number of sam-
pled are expected (in the shown example a 11us corresponds only to 323 sample).
The selected format is “Matlab” (“.VCSV” format, Excel format, can be selected
instead but different importing function to Matlab should be used then).

Virtuoso (R) Visualization & Analysis XL browser

Export Waveforms

TOC_SAR_TE_10hit_pp_calib_verilog, B

: Save in Directory:
o B
- fraot/Deskt
t-info rootfLeskiop n C 1 e T
-info | C 2l
t-in —— 2kt
als-info & ¥ Sample Data NN
b
Start 90e-9 5 n B
C =D
End T11e-06 5 n (] P
C & T
Interpolate - T
step Sizffl 34e-09 EA Y Log (0Tl
= C 3 2
03 fhe-
) C Jhd s
Filename: Sampled_Datamatiab e
Farmat Matlah n | 3B
— C 3 T
[ok] Refresh ’ Cancel a0
Al
M Ve_analog=7= 0 wClw=]i= B vedehe
vi_analogiede [vl L% s 1
Wo_analogieSie M voliedie wodhed i
I l_.] Ty

FUI-
<]

Weo_bin_ el W T had = W D=

FUI-
FUI-
<]

Figure A.3: Data should be sampled with the sampling frequency of operation

The following Matlab command can be used to imported the saved data file:

>> data=importdata(’ Sampled_Data.matlab’);

Then “data” is a cell with 3 containers, “data” and “textdata” and “colheaders”.
The latter two (“data.textdata” and ‘““data.colheaders”) contains the name of the X
and Y axis entries each variable and “data.data” contains the X and Y axis data for
each variable. The following capture illustrates the contents of “data”, “data.data”

and “data.textdata” respectively.

73

3
9.0000e-08
1.2400e-07
1.5800e-07 ite
1.9200e-07
2.2600e-07
2.6000e-07
2.9400e-07

Value
<1115% double>
textdata <1ub cell»
colheaders <16 cell>

I

ERNE

=

data.textdata <1x6 cell> -

1 2 :
1 [PIG ot (interpolated wih step=34e 08) X DIG _ot (interpolated wth step=3.4¢-08)_Y |Ref_sar »
=
2|
e | k%

4 LIS 3

=y v |

W

il

Figure A.4: The Matab data fomate cell contists of 3 elements “data”, “textdata”
and “colheaders”

The desired samples stream are the Y axis of the firt variable, which is stored
in the second row.

>> samples = data.data(:,2);

The time line or the X axis can be selected by:

>> A_axis = data.data(:,1);

The following Matlab Function is used to calculate the ENOB value based on
signal specturm on the frequency domain.

Go T %o Fo Yo To To Yo To Io Yo Fo %o %o enob.m %o %o Jo Yo T Fo Yo To Yo Yo Jo Yo Yo Jo

function [ENOB , SQNR , freq_db] = enob(samples ,Nbits)

74

% calculating the FFT

% the mean is subtracted to remove the DC component from the FFT output

% the "fftshift" function centers the FFT around Fs/2 figure;

>>freq = fftshift(abs(fft(samples - mean(samples) ,Nbits)));

>>freq_db = 20*log10(freq); figure; h =stem(freq_db);

% The signal is assumed to be presented in one peak (one peak)

>>Spwr = max(freq)”"2;

% Spwr 1s multipled by 2 because there is 2 peaks centered arount Fs /2

>>Npwr = sum(freq.”2) - Spwr *2;

>>SQNR = 10*1og10(Spwr / Npwr);

>>set(get(h,’BaseLine’),’ BaseValue’,-100);

% roughly, each 6db increase in the signal power means 1 bit increase in

% the ENOB value

>>ENOB = SQNR /6;

>>title([” FFT °,num2str(Nbits) , > in db, SQR =" ,num2str(SQNR) , ’ENOB
=", num2str(ENOB)]);

>>xlabel("Frequency (Hz)’); ylabel(’signal(db));

>>end

Yo %0 Yo To Fo %o To To Yo Vo Fo To Yo To Fo Yo Fo Fo Yo Vo Fo Yo Yo Fo Fo Yo Fo Fo Yo Yo Jo Yo

To use the enob funciton it is called simply by:

>>[ENOB , SQNR , freq_db] = enob(samples, N_fft);

Figure A.5 shows the target sine wave and figure A.6 shows the function output
for a sine wave input with 63/N_FFT of the Sampling frequency, as N_FFT is
1024.

TR,

|
20

Figure A.5: Target Sine signal

75

signalidh)

FFT 1024 in db, SQR = 58.6788ENOE =9.7795

g0 T T T T T
i i

ant -

-100
0 200 400 B00 800 1000 1200

Fregquency (Hz)

Figure A.6: Effective number of bits for a 10-bit quantized sine signal

76

A.3 Differential Non-Linearity (DNL) and In-
tegral Non-Linearity (INL)

Calculating the ADC linearity includes examining the ADC output for each possi-
ble input. When examining every possible analog input signal is not possible, the
input sweeping should choose the most reasonable input step that can speculate
the system linearity. Figure A.7 shows a possible input ramp signal (blue) and the
expected ideal ADC output (red) for a 4-bit system. Analog step for input sample
1s 0.05 of the full scale 16. Which means that there are 20 points for each digital
step in the output staircase. In this tutorial ideal signals are presents (not from real
ADC), however, the designer should replace the input and the output by real data
from the target circuit simulation (as shown in figures A.1, A.2 and A.3). Matlab
function is then used to calculate the DNL and INL.

Figure A.7: Effective number of bits for a 10-bit quantized sine signal

The criteria (and parts of the Matlab code) is adopted from the EE247 class lab
materials in Berkely university. Calculation of the DNL is based on calculating the
number of samples for each step and making sure that the probability of locating a
sample in a given digital step is equal for all the steps in the output staircase. The
next Matlab function is used to calculate the DNL and INL. The Matlab function
contains Matlab comments that describe the function.

Go %0 %0 ToTo %0 To To %o Yo Fo Fo %o %o incldnl.m Jo %o To Fo %o To To %o Yo Fo To %o Fo Yo

function [inl,dnl] = inldnl(x, delta)

90 INLDNL compute INL and DNL from converter output x

% x output from ADC % delta spacing between codes. Default: 1

%

77

% Assumptions & limitations:
% - uniform quantizer
% - Input x 1s linear ramp
% compute histogram for the data, returns vectors n and xout containing
% the frequency counts and the bin locations.
[counts,centers] = hist(x, min(x):delta:max(x));
% eliminate end bins
counts(1) =[];
counts(end) = [];
% The mean presents the expected number of counts for each pin
dnl = counts/mean(counts) - 1;
% the INL is the accumulative sum of the DNL
inl = cumsum(dnl);
% Generate an equal spaced row vector from the start and end values of inl
inl = inl - linspace(inl(1), inl(end), length(inl));
% plot result
N = length(dnl);

if N> 16

fmt = 'r-’;
else

fmt = ’ro:’;
end

subplot(2,1,1);

plot(1:N, dnl, fmt, [1 NJ, [1 -1; 1 -1], ’b:’);

fixfig;

xlabel(’bin’);

ylabelCDNL [in LSBY]’);

maxdnl = ceil(max(dnl));

axis([1 N floor(min(dnl)) maxdnl+1]);

text(0.1*N+1, maxdnl+0.2, ...

sprintf(Cavg=%.2g, std.dev=%.2g, range=%.2g’, ... mean(dnl), std(dnl),
max(dnl)-min(dnl)));

%title(sprintfCDNL and INL of %.1g Bit converter (from histogram test-
ing)’, ...

title(sprintfC DNL and INL ’));

subplot(2,1,2);

90hold on;

78

% Removing the offset from the inl value
inl =inl-mean(inl);
plot(1:N, (inl), ’b—", [1 N], [1 -1; 1 -1], ’b2’);
fixfig; xlabel("bin’);
ylabelCINL [in LSB]’);
maxinl = ceil(max(inl));
axis([1 N floor(min(inl)) maxinl+1]);
text(0.1*N+1, maxinl+0.2, ...
sprintf(Cavg=%.2g, std.dev=%.2g, range=%.2g’, ...
mean(inl), std(inl), max(inl)-min(inl)));
end
Go %0 %0 ToTo %o Vo To Yo Yo Fo To Yo To Fo Yo To Fo Yo To Fo To Yo Fo To Yo To Fo Yo To Fo Yo Yo Fo Fo
To examine the algorithm, figure A.8 contains an example of and ADC output
that contains nonlinear defects. The Matlab code is used to generate and plot the
signal:
Go %0 %0 ToTo %o Vo To %o Yo Fo To Yo To To Yo To Fo Yo To Fo To Yo Fo To Yo To Fo Yo To Fo Yo Vo Fo Fo Yo
% Generate a ramp signal from 0 to 16 with step 0.05
% Which means that each step contains 20 samples
samples = 0:.05:16;
% quantize(samples,bits) 1s a private funtion that quantize the input analog
samples to the given number of bits.
% in this example then number of bits is 4. This function is a simple function
that the designer can implement.
samples_qg= quantize(samples’,4);
plot(samples,’b’); hold on; plot(samples_q,r’);
title([” test input ramp signal and the expected output ’]);
legend(’analog input’,’digital output’); xlabel(’samples index’);
ylabel(’ ADC digital output’);

79

Figure A.8: example of ADC output with non-linear defect

% Introducting non-linear behavior is done by assigning the samples from 300
into 319

Yoincorrect values copied from samples 350 to 369 respectively

fori=0: 19,

samples_q(300+1) = samples_q(300+i+50);

end; figure; plot(samples_q);

% plotting the DNL and INL

title([” DNL and INL test ramp signal’]);

xlabel(’samples index’);

ylabel(ADC digital output’);

Go %0 %0 ToFo %o To To Yo Yo Fo To Yo To Fo Yo To Fo Yo Fo Fo To Yo Fo Fo Yo Fo Fo Yo Fo Fo Yo Yo Fo Jo Yo

The following plot portrays the generated DNL and INL showing the non-
linear behavior starting from the ruined samples.

80

DNL and INL
2 T T T T T T

a0, std.de=022, range=2

DAL [in LSB]
T —T
L L

Figure A.9: The DNL (red) and INL(blue) plots for the example signal

A.4 Ideal VTC using Verilog-A

It is required to design a component to mimic the operation of a VTC to complete
a full TADC system in adjacent with the target TDC. This compoenent should be
used in simulation as cell view in Cadence Virtuoso. The required VTC should
convert the input voltage to a modulated pulse for each sample. The modulation is
done for the pulse width. The modulated pulses is then the input to the next stage,
the target TDC.

The following Verilog-A code is used to convert input signal with range
0.4:0.6V to pulses of width ranges from 0:31.5ns.

/****************************VTC_ideal.va*****************************/

module vtc_ideal(clk,in , out);

// 'The offset of the pulse width, can be changed to mimic real VTC of arbitrary
minimum pulse width.

parameter real Poffset = 0*1e-12;// 65 LSB for 1024Fule scale

/[ratio between the output pulse width in ps and the input value in volts.

parameter real Pslobe = 157.5 *1e-12; // 31500 =ps =31.5n for VFS=200mv

// minimum pulse in ps

parameter real LSB = 30.7e-12;

// used to speed up the simulation be increasing the simulation maximum step

size when applicable

81

parameter real MaxStepOrder = 2000.0 ; // 50 times of the LSB

// The minimum value in mV

parameter integer Voffset = 400;// for VF =200mv

input in;// the component analog input

input clk; // The system clock

output out; // the component digital output

electrical in,clk,out;// the node type of of the pins of analog properties

integer start_time ;// the start time of the current sample pulse

integer out_v;

real end_time; // the start time

real time_t; // used for debugging

real stepSim; // current maximum simulation step

real stepMXx; // maximum sinulation step == MaxStepOrder * LSB

analog begin //analog

@ (initial_step)

begin //@ (initial_step) , initialization assignemnts at the beginning of the sim-
ulation only

out_v =0;

end_time =0;

start_time =0;

stepMx = MaxStepOrder * LSB;

stepSim = stepMx;

end /@ (initial_step)

$bound_step(stepSim);

@(cross(V(clk) -0.5,+1)) // at every ve+ edge of the clock do the folowing

begin //@(cross(V(clk) -0.5,+1))

//$display("step time now is :",stepSim);

// lower the maximum simulation time to curfully moitor the termination con-
dition if(end_time <= $abstime) for accurate genration of the pulse width.

stepSim = LSB/2;

out_v=1;

time_t = $abstime; // save the current simulation time starting when the signal
is assigned to 1

/I end_time is the next time for the pulse to be low after going high for time
depending on V(in)

end_time = (V(in)*1000 - Voffset) * Pslobe + Poffset;

82

//$display("Vin :%r, delay:%r, time now is:%r",V(in),end_time,time_t); // un-
comment for debug

end_time = $abstime +end_time;

//$display("end_time :%r, Mx step%r",end_time,stepSim);// uncomment for
debug

end //@(cross(V(clk) -0.5,+1))

if(end_time <= $abstime)

begin //if(end_time <= $abstime)

// increase the simulation maximum step to boost the simulation when no pulse
1s generated

stepSim=stepMXx;

out_v =0;

end //if(end_time <= $abstime)

V(out) <+ transition(out_v ,0,10p,10p);

end //analog

endmodule

/**>l<>l<>l<>l<>l<>l<>l<>l<>l<>l<>l<>l<>l<>l<>l<>l<**/

The operation starts when a positive clock edge is detected when the pulse is
assigned a high value. The current simulation time is saved (start_time) and the fu-
ture simulation time when the signal is expected to be low is saved too (end_time).
A forever “if* condition is executed to monitor the real time simulation time when
it reaches the value of “end_time” when the pulse is assigned low again.

It can be noted from the above code that is it optimized for maximum per-
formance by changing the maximum simulation step when it is possible. This
dramatically boots the simlation. Using an internal timer to calculate the period

when the signal is high is not recommended as this increase the simulation time.

A.5 Calibration code Verilog

/>X<>l<>l<*>k>k>k>k>l<>l<>l<>1<>1<>l<>l<************Cahbratlon SAR TDQC, v¥tskstestesk s sk sfe ek sk sfe seskeske st e sfeskeske sk e sfeskeok /

//Verilog HDL for "dc", "calibration_ ADC" "verilog"
module calibration_ ADC_verilog_test(

clk,

Digln,

Vsig,

/I Analog control voltage for each stage

83

Vcl,Ve2,Ve3,Ved,Ve5,Ve6,Ve7,Ve8,Ve9,Velo,

/I digital representation for the control voltage for each stage each of
27 (n_bits_calib-1) Full scale

Vc_binl,Vc_bin2,Vc_bin3,Vc_bind,Vc_bin5,Vc_bin6,Vc_bin7,Vc_bin8,Vc_bin9,Vc_binl0

);

/I Begin the calibration after waitClocks untill all the internal capacitances are
charged

parameter waitClocks =5 ;

/I The quantization number of bits defining the resolution of the control sig-
nal/voltage.

parameter n_bits_calib=8 ;

parameter n_bits_ ADC = 10 ;// number of bits of the target ADC

parameter pVc_start = 0.5 ; // control voltage offset in Volt

parameter pVc_end = 1.2 ; // Maximum control voltage in Volt

parameter pVsig_start = 0.4 ; // ADC input signal offset in Volt

parameter pVsig_end = 0.6 ;// ADC input signal Maximum in Volt

input clk;// System clock

input [9:0] Digln; // The monitored ADC output. It is an input for the calibra-
tion component

output Vsig; // The ADC input signal

output Vcl; // control voltage for stage 1

output Vc2; // control voltage for stage 2

output Vc3;// control voltage for stage 3

output Vc4; // control voltage for stage 4

output Vc5;// control voltage for stage 5

output Vc6; // control voltage for stage 6

output Vc7;// control voltage for stage 7

output Vc8; // control voltage for stage 8

output Vc9;// control voltage for stage 9

output Vc10;// control voltage for stage 10

output Vc_binl;// control voltage digital form for stage 1

output Vc_bin2;// control voltage digital form for stage 2

output Vc_bin3;// control voltage digital form for stage 3

output Vc_bin4;// control voltage digital form for stage 4

output Vc_bin5;// control voltage digital form for stage 5

output Vc_bin6;// control voltage digital form for stage 6

output Vc_bin7;// control voltage digital form for stage 7

84

output Vc_bin8;// control voltage digital form for stage 8

output Vc_bin9;// control voltage digital form for stage 9

output Vc_bin10;// control voltage digital form for stage 10

wire [7:0]Vcl;wire [7:0]Vc2;wire [7:0]Vc3;wire [7:0]Vcd;wire [7:0]VcS5;

wire [7:0]Vc6;wire [7:0]Vc7;wire [7:0]Ve8;wire [7:0]Vc9;wire [7:0]Vc10;

wire [7:0]Vc_binl;wire [7:0]Vc_bin2;wire [7:0]Vc_bin3;wire [7:0]Vc_bin4;wire
[7:0]Vc_bin5;

wire [7:0]Vc_bin6;wire [7:0]Vc_bin7;wire [7:0]Vc_bin8; wire [7:0]Vc_bin9;wire
[7:0]Vc_binl0;

wire [7:0]Vsig;

integer out_v;

integer tempCeil;// temp ingeter used for ceiling operations

real Vc_fs;// local variable to calculate the full scale of the control voltage

real Vsig_fs;

real temp;

real Vsig_value;

real Vc_num|[9:0];

integer Vc_num_intg[9:0];

real Digln_num[9:0];

real Vc_value[9:0];

integer BitCalib_idx ,BitADC_idx, Vsig_num,clkDiv3,idx;

initial begin clkDiv3 =0 ;

BitCalib_idx = n_bits_calib-1;

BitADC_idx =n_bits_ ADC-1;

Vc_fs =pVce_end -pVc_start;

// calculating the input signal full scale

Vsig_fs = pVsig_end -pVsig_start ;

/I assigned half the control voltage in the middle of the full scale range

Vc_num([9] = 2**(n_bits_calib-1);Vc_num[8] = 2**(n_bits_calib-1);
Vc_num(7] = 2**(n_bits_calib-1);

Vc_num[6]=2**(n_bits_calib-1);Vc_num[5] = 2**(n_bits_calib-1);Vc_num[4]
= 2**(n_bits_calib-1);

Vc_num([3] = 2**(n_bits_calib-1);Vc_num[2] = 2**(n_bits_calib-1);
Vc_num[1] = 2**(n_bits_calib-1);

Vc_num([0] = 2**(n_bits_calib-1);

Ve_num_intg[9] = Vc_num([9]; Vc_num_intg[8] = Vc_num[8]; Vc_num_intg[7]
= Vc_num|[7];

85

Ve_num_intg[6] = Vc_num([6]; Vc_num_intg[5] = Vc_num[5]; Vc_num_intg[4]
= Vc_num[4];

Ve_num_intg[3] = Ve_num[3]; Vc_num_intg[2] = Vc_num[2]; Vc_num_intg[1]
=Vc_num[1];

Ve_num_intg[0] = Vc_num[0];

Ve_value[9] = (Ve_num([9] * Vc_fs) / (2**n_bits_calib) +pVc_start;

Vc_value[8] = (Ve_num([8] * Vc_fs) / (2**n_bits_calib) +pVc_start;

Ve_value[7] = (Ve_num([7] * Vc_fs) / (2**n_bits_calib) +pVc_start;

Vc_value[6] = (Vc_num[6] * Vc_fs) / (2**n_bits_calib) +pVc_start;

Ve_value[5] = (Vc_num[5] * Vc_fs) / (2**n_bits_calib) +pVc_start;

Vc_value[4] = (Vc_num([4] * Vc_{s) / (2**n_bits_calib) +pVc_start;

Vc_value[3] = (Ve_num[3] * Vc_fs) / (2**n_bits_calib) +pVc_start;

Vc_value[2] = (Ve_num([2] * Vc_fs) / (2**n_bits_calib) +pVc_start;

Ve_value[1] = (Vc_num[1] * Vc_fs) / (2**n_bits_calib) +pVc_start;

Vc_value[0] = (Ve_num([0] * Vc_fs) / (2**n_bits_calib) +pVc_start;

$write("Vc_value[%d] init is %e\n",9,Vc_value[9]);

$write("Vc_value[%d] init is %e\n",8,Vc_value[8]);

$write("Vc_value[%d] init is %e\n",7,Vc_value[7]);

$write("Vc_value[%d] init is %e\n",6,Vc_value[6]);

$write("Vc_value[%d] init is %e\n",5,Vc_value[5]);

$write("Vc_value[%d] init is %e\n",4,Vc_value[4]);

$write("Vc_value[%d] init is %e\n",3,Vc_value[3]);

$write("Vc_value[%d] init is %e\n",2,Vc_value[2]);

$write("Vc_value[%d] init is %e\n",1,Vc_value[1]);

$write("Vc_value[%d] init is %e\n",0,Vc_value[0]);

Vsig_num = Vsig_num +(2**BitADC_idx);

Vsig_value = (Vsig_num * Vsig_{s)/(2**n_bits_ADC) + pVsig_start;

$write("Vsig_value is initialized to :%e\n",Vsig_value);

end

always @ (posedge(clk))

begin

clkDiv3 = clkDiv3 +1;

$write("clkDiv3 is :%d",clkDiv3);

Digln_num[9] = (DigIn[9]);

Digln_num(8] = (DigIn[8]);

Digln_num([7] = (Digln[7]);

Digln_num[6] = (Digln[6]);

86

Digln_num[5] = (Digln[5]);
Digln_num([4] = (DigIn[4]);
Digln_num[3] = (DigIn[3]);
Digln_num[2] = (Digln[2]);
Digln_num[1] = (Digln[1]);
Digln_num[0] = (DigIn[0]);
if (clkDiv3 >= waitClocks)

begin

if(Digln_num[BitADC_idx] > 0.5)

begin

$write("Digln high detected at :%e \n",$abstime);
tempCeil = Vc_num[BitADC_idx] - (2**(BitCalib_idx-1)) ;
$write("decrease Vc_num to :%d\n" tempCeil);

end
else

begin

tempCeil = Vc_num[BitADC_idx] + (2**(BitCalib_idx-1)) ;
$write("Digln is low at :%e \n",$abstime);

$write("increase Vc_num to :%d\n" ,tempCeil);

end

Ve_num[BitADC_idx] =tempCeil;

if (BitCalib_idx ==0)
begin
if (BitADC_idx == 0)

begin // end of calibration at time
$abstime (BitCalib_idx==0) &&(BitADC_idx == 0)

$write("end of calibration at time %e \n",$abstime);

$write("output Vc[%d] :

Vc_value[9)]);

$write("output Vc[%d] :

Vc_value[8]);
$write("output Vc[%d]
Vc_value[7]);

$write("output Vc[%d] :

Vc_value[6]);

$write("output Vc[%d] :

Vc_value[5]);

90e ,which corresponds to: %e volt\n",9,Vc_num[9],

%e ,which corresponds to: %e volt\n",8,Vc_num[8],

: %oe ,which corresponds to: %e volt\n",7,Vc_num[7],

%e ,which corresponds to: %e volt\n",6,Vc_num([6],

90e ,which corresponds to: %e volt\n",5,Vc_num([5],

87

$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",4,Vc_num[4],
Vc_value[4]);

$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",3,Vc_num([3],
Vc_value[3]);

$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",2,Vc_num|[2],
Vc_value[2]);

$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",1,Vc_num([1],
Vc_value[1]);

$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",0,Vc_num([0],
Vc_value[0]);

end

else

begin //(BitCalib_idx==0) &&(BitADC_idx !=0)

BitADC_idx = BitADC_idx -1;

clkDiv3 = waitClocks-3; // wait 1 clock till the next bit is evaluated

Vsig_num = Vsig_num + (2**BitADC_idx);

Vsig_value = (Vsig_num * Vsig_fs)/(2**n_bits_ADC) + pVsig_start;

end
BitCalib_idx = n_bits_calib-1;
$write("output Vc for bit %d : %e ,which corresponds to: %e

volt\n",BitADC_idx,Vc_num|[BitADC_idx], Vc_value[BitADC_idx]);
Vc_num|[BitADC_idx] = (2**BitCalib_idx);
end
else
begin //(BitCalib_idx!=0) BitCalib_idx = BitCalib_idx -1;
$write("Calibration for ADC bit %d ,Calibration bit %d \n",BitADC_idx,BitCalib_idx);
end
Vc_value[BitADC_idx] = (Vc_num|[BitADC_idx]/(2**n_bits_calib) * Vc_fs)
+pVc_start;
end
else
begin// if (clkDiv3 >= waitClocks)
$write("calibration is starting in %d clocks\n",(waitClocks-clkDiv3)) ;
end // if (clkDiv3 >= waitClocks)
Ve_num_intg[BitADC_idx] = Vc_num[BitADC_idx];
end // end of @(cross(V(clk) -0.5,+1))
assign Vc_binl = Vc_num_intg[0];

88

assign Vc_bin2 = Vc_num_intg[1];
assign Vc_bin3 = Vc_num_intg[2];
assign Vc_bin4 = Vc_num_intg[3];
assign Vc_bin5 = Vc_num_intg[4];
assign Vc_bin6 = Vc_num_intg[5];
assign Vc_bin7 = Vc_num_intg[6];
assign Vc_bin8 = Vc_num_intg[7];
assign Vc_bin9 = Vc_num_intg[8];
assign Vc_bin10= Vc_num_intg[9];
assign Vcl = Vc_num_intg[0];
assign Vc2 = Vc_num_intg[1];
assign Vc3 = Ve_num_intg[2];
assign Vc4 = Ve_num_intg[3];
assign V¢S5 = Ve_num_intg[4];
assign Vcb6 = Vc_num_intg[5];
assign Vc7 = Ve_num_intg[6];
assign Vc8 = Ve_num_intg[7];
assign Vc9 = Ve_num_intg([8];
assign Vc10= Vc_num_intg[9];
endmodule

A.6 Corners Simulation and analysis

In the following tutorial, the simulation steps for temperature and fabrication cor-
ners are discussed. The simulation can be used to target one or more simulation
fabrication corners. The following targets 3 different tempratures degrees; 27, 60
and 120 celecuis degree. And it targets 4 Fabrication corners; SS (slow-slow), FF
(Fast-Fast) , SF (Slow-Fast), FS (Fast-Slow) and normal. It will be shown how the
simulation setup is performed and how the results are extracted to be analyzed in
Matlab.

1- Launch the ADE XL from Virtuoso schematic Editor for the target circuit.

&9

2w Dasign Manager Help

wories _ Show Files u_ m X Q 1:/ ‘-- ¢ W Q p‘ :]'6 L » [Workspace:|Basic B”

itor

gnal Options »

Property Editor 78 x| .

mouse L: schSingleSelectrt) M: schHiChjectProperty() R: schHiMousePopUp)
| o set o]

6(8) | Schematics L

root@localhost:~/Des... [5] virtuoso % Cadence Library Mana.. E comerT8

Figure A.10: Running ADE XL from the target circuit schematic.

The following window will appear. The “Data View” window shows the cur-
rent test, global variables and parameters and the corners to be simulated. The

“Run Summary” window shows the current running simulation and number of

corners.

90

| FiiAug19, 8S7TAM 5- root

4% Applcations Places System @) () [7 [|]

i Virtuoso® Analog Design Environment XL Editing: dc cornerTB adex!_corner o ol
= Desig) Launch File Creale Tnols Options Run Pasasiiics Window Help cadence cadence
1ories » | @

Data View

Run and Stop buttons

B T Test selula

3 v & Global Variables
- ¢ & Paramelers

Run Summary 78

Tests

Corners

i 0 Test
lv 1 FPaint Sweep
lv 0 Comer

ioDeskiopfe Nortinal Cormer

1ple copy i
estobec

History tem | Status

Welcome to ADE XL

ADE KL is the new design environment in IC 8.1 for mixed-signal design. This environment provides comer and st
th design documentation and post-pracessing capabilities. To get an overview of

analysis capabilities actoss multple tests

ADE XL, wha it does and how to use it, click here

To open the Data assistant, click here

ADE KL provides support o run multpl fests in parallel and storing all results in cenlrel location. Tests can be added /
ecited / deleted from the Data Assistant To cefine Tests, click here

e capability to ade multiple comers across temperature

ADE XL enhances comers funcionality from 51.41 and provides the ca
design varighles and mode! files. Comers can oe added / edited / deleted from the Data Assistant. To define Comers, click

hete

Global Variables

ADE KL provides global variables that ara shared across multiple tests. Scalar values or sweep values can he speciied fo
ed / edited / celeted from the Data Assistant. To define Yariables, click here

each variaole. Global Variahles can be

Dutputs

ADE XL provides the capability o define oufputs across multiple tests and define specifications for expressions. Qutputs can
be added / edited / deleted from the Outouts Assistant. To define Outputs, click hete

S| nimouse L
8(9) \ >

4

OEE S

| @ root@localhost~/Des... | [¢] virtuoso

8 Cadence Library Mana... | [¢] comerTB

Figure A.11: Running ADE XL from the target circuit schematic.

2-To create a new test, choose “create->test”, choose the yellow icon or simply
click “click to add test” from “Tests” in the Data View window. Choose the target

circuit to be opened.

91

o Applications Places System 0}) @ 4]) B FiAug19, 857AM g+ root
m Virtuoso® Analog Design Environment XL Editing: dc cornerTB adex|_corner BEX

adence cadence

T e I O e e L e @ Choosing Design -- Virtuoso® Analog Design Environ x

Library Nemz e n

we 0D % (O@y Cell Nane

tds_globals
No Parasilics A canp_65_sanpler L
— o ' s, — conparator? e
‘ Data View ?EXI & f camparatord
- camparatord_th
) % Tests comparator 65
Click fo add test :
3 v b Global Varizhles —
i = delav 1500 vironment providss comer and statistical
ADE XL Test Editor TS = cessing capabiliies. To get an overview of
1 Session Setup Analyses Variables OQuiputs Simulation ViewName Schematic '
Analyses Open Mode o edit o read
Design Variables o8 - Enatle]
Name —| Valuz, | N
m Cancel) Hep. a centrel locafion Tests can he added /
a:‘
" and provides fhe capability o add mutiplz comers across temperature
% ved / edited / deleted from the Data Assistant. To define Comers, click
Outputs 28 "]
Name/SignalExpr | Value Plot| Save| Save Options |
> cross multiple tests. Scalar valuss o sweep values can be specified for
20 / deleted from the Data Assistant To define Variahles, click here
|
i
|
035 multiple tests and define specificatons for expressions. Qutputs can
nt. To define Outputs, click here
I mouse L. M: R A
T(10) ‘ \ Status: Uninitizlized ‘ y
root@localhost:~/De... | [¢] virtuoso | & Cadence Library Ma... | [¢] comerTB Virtuoso® Analog D... | = Choosing Design - V.. 5 LB E] i)

Figure A.12: Creating a new test for corners simulation

3- The ADE XL window will appear. You may configure a new simulation
of load a saved state from “Session->Load State”. Make sure that the simlation
configurations are correct as used to be in a regular simulation setup except the
global variables which should be configured from “Global variables” in “Data

View” window as changs to Variables in the ADE XL window have no effect.

92

b Applications Places System e} @E &)@ Fiagls BTAM F root

[Virtuoso® Analog Design Environment XL Editing: dc cornerTB adexI_corner -0x -ox
v Desigl Launch File Create Tools] ADE XL Test Editor - dc:cornerTB:1 -ox cadence cadence
. wsm Analyses Yariables Outouts Simulafion cadence
wories || & ' E % m@i
._N b 7 Save State . Analyses 7|8 X‘ =
0 Parasitcs o
I 29| Loa et Type — Evatle AIgUEnts [) I —
Data View Restore Defaul View palle e —
7| <o
0 v B Tests Quit - "
"~ decomerTe:] [T T = @
. 3 vid_synen 2 73m bration_
v & Global Variables 4 Vi3 577 8m K:
v [/ @ Parameters dd_synch 1 e pr———
—;& . viegyne % Inits | Digits| Notation | Su
" 2 v] comers 6 v ? 800m
Documents o iz)
- setup Stes B e T Outputs 28
— - Name/SignalExpr = | Value | Plat| Save| Save Options |
9 Lsweep_vin_.. 1
10 Lsweep_vin_t6 1
1 Lsweep_vin_. 1
12 Lsweep_vin_3? 1
1 Loweep_vin 4 |1
14 Lsweep_vin_.. 1
Data. Histary . P11
- 16 Loweep_vin 641
Run Summary 16 Loweep_vin 8 1 Y
L 7]
3 1 Test N L ! =
¥ 1 Point Sweep I ouse L M i3
¥ 0 Comer 7(WD)| | status:Reay | T=27 C | Simulator spectre
ofDeskiop| ¥ Mominal Cormer
iple capy t
estohe cu
History lem | Stalus
L i
imouse L M
59| > ‘ A
'@ root@localhost:~Des... | [¢] virtuoso | B cadence Library Mana... | [¢] comerTB | Virtuoso® Analog Desi...| ELIETE @ @

Figure A.13: Creating a new test for corners simulation

Each corner is defined as a set of different configurations for the design kit. To
show how the model library defines them, from Setup tab in the ADE XL window,
choose “Model Library Setup”. One may see a view like the one shown. It can
be noticed that all the models are from the same file, however, specific sections
are only selected for the current simulation setup. Each corner simulation chose

different Section from the model file.

93

% Applications Places ~System 0 o) ;‘/ u [(ﬂ@ Fri Aug 19, 8:59 AM ﬁ root
E] Virtuoso® Analog Design Environment XL Editing: dc cornerTB adex|_corner =aEx -0Xx

aw Design Launch File Create Tools ADE XL Test Editor - dc:cornerTB:1

qoies (JU0 B & % \@
[No Parasiics n N

Data View

-0x cadence cadence

Selup Angl

yses \Variables Outputs Simulafion
spectrel: Model Library Setup

Diagram Ca
er.latRg

g‘ Mts/‘SMCﬁEnm*sm[NBS/ Jmodelsfspectie/cmBSoplus_2d5_lk_v1d0.s

| F{TSk T e elenhonnls 2d D scs) @
T . KIE/TSMIC_B5nnismcNES/ models/specterembSaplus 205 h_vidl.s
| L — . Kie/TSMC_BSnntsmeNGS/ modelsfspectaiemBSgpius_25_k_vid0.sch dio_
g % docomarTB K e - 1
i ¥ . Kits/TSMC_BSnmAsmcNGS/ /modelsfspect-e/cmBSgplus_2a5_Ik_vid0.scy |_tio_25ud16
¥ KitS/TSMC_B5nmfsmeNBS/ /modelsfspect-e/cmBgplus_2d5_lk_vid0 scy [t 25
(] g& Global Variakles ¥ kitsTSMC_BSnmAsmeNGS/ Amodelsfspectre/cmBSaplus_265_lk_v1d0.scf [it_rinos
- W& Paranclers ¥ . Kits/TSMC_BSnm/ismcNGS/ /modelsfspect-e/cmBSgplus_2d5_lk_v1d0.scy [25ud1B —_—
E:Jﬂ ciiéi ¥ Kis/TSMC_BSnm/smeNGS/ moctels/spectiz/cmBSaplus_265_k_v1d0.scf |_cin_na2Sod3 its | Digits | Notafion |
ib fio o .. KiteTSMC_BSnmrismeNBS/ /models/spect-e/cmBs 205 _Ik_v1d0 s |
I3 Docurents o KETSMC_BSnmAtsmeNGS/ /mocels/spectre/cmbs 205_Ik_v1d0.5
A Setup States ¥ . Kils/TSMC_BSnmismcNGS/ modelsfspect-e/cmBSgplus_2d5_Ik_y1d0.s
. Kie/TSMC_BSnntsmeNGS/ modelsfspecta/emBsgpius_25_k_vid0.s
. Kits/TSMC_BSnmAsmcGS/ /modelsfspect-e/cmBSgplus_2a5_lk_vid0.s
& e oy e
J_U=.’> Wy Jav
4 B<3 o ally
I Bed> U g |dv
| Data J|_ sty S ¥ aly
| — 7 B<6> "] ally
i SRy, [l Lvesp v d (faags 7|
; - . i §——
¥ 1 Poin Sweep umouse L: M: R -
L 7(10) | Model Lbrares Stalts Ready | T=07 C | Sinusor specte o noderale | St aDEXL 7| CAdence -
otDeskioy] ¥ Nariral Comer
ple copy g 2] VARNING (ADE-7002) . The Spectre run mode needs to be 'hatch' vhen Spectre Turbo mode is ensbled. Aut 2
es 1o be co|' = setting the run node to 'hatch'
Loading adpServer. cxt o
s z
{ Il i
History iem | Stafus.
| U
1imouse L: M: LI
S mouse L ! ‘ > \
69) | > ‘ A
(@ root@localhost:~e...] virtuoso | ®l Cadence Library Ma... | [¢] comerrB vinuosos Analog D... | 7 spectrel: Model ibr.. | (B J=IETE] @ ™

Figure A.14: Model library setup

Locating the library model setup from the file system, ““section tt”” can be found
in the Model file.

94

4% Applcations Places System @) (3 (7 =] B @) & FiAgly s07AM E root
2 crn65gplus_2d5 Ik v1do.scs (~/kits/TSMC_65nm/models/spectre) - gedit . x|

File Edit Vview Search Tools Documents Help
| Bopen v Esave =) # i‘ﬂ

cm65gplus_2d5 [k v1doscs ¥

|| 16383 paraneters azmn nas3=y o

10385 paraneters c¢1fn na33=2e+41

10386 parameters c2fn na33=7.5e+24

10387 paraneters ¢3fn na33=3e+8

10388 paraneters noian na33=alfn na33 * (abs(noiseflagn na33) + noiseflagn na33) + blfn na33
10389 + * (abs(noiseflagn na33) - noiseflagn na33) + c1fn na33

10390 paraneters noibn na33=a2fn na33 * (abs(noiseflagn na33) + noiseflagn na33) + b2fn na33
10391 + * (abs(noiseflagn na33) - noiseflagn na33) + c2fn nas3

10392 parameters noicn na33=a3fn na33 * (abs(noiseflagn na33) + noiseflagn na3j
10393 + * (abs(noiseflagn na33) - noiseflagn na33) + c3fn na33
10394 include "crn6Sgplus 25 Lk v1dd.scs" section=nos_na33 searchfor. [sectiontt ‘V‘

10395 endsection me_na33

TS

103%

10397 /] *eresstatrerererereceers LIBRARY OF TYPICAL CASE sevvereren [Match case

1039 "tt" model sections

10399 [1] Match entire word only

1040 i @lus 205 Lk vide.scs" section=noiseflag

10401 mamnboonlue Tl = nu [Search backwards

10404 paraneters parnl=0

1040] paraneters parn2=0 ¥ Wrap around

10404 paraneters parpl=0

10464 paraneters parp2=0 lose Find
10404 paraneters toxp=2.2e-09 e LH:]
1040 paraneters dxp=0 t" model parameters

10404 paraneters dxlp=0

10404 paraneters dvthp=0

10414 paraneters dlvthp=o

1041 paraneters dwvthp=0

10414 paraneters dpvthp=0

10414 paraneters ¢jp=1.0600e-03
10414 paraneters cjswp=6.4000e-11
10419 paraneters cjswgp=2.55002-10

104 i —————— U]
Cv TabWidth: 8v Ln10399, Col 11 INS
' specte- il Browser | cndsgpius 205 1k v | FLIOEIR™

Figure A.15: Example of model file for TSMC13rf design kit for “tt” corner cofig-
uration (nominal)

4- After the previous step, the common simulation setup configurations are
ready. Now, to chose the corners to be simulated, click “Click to add corner” from
“Corners” in the Data View window. The following window will appear. Name
a new corner in “Corner Name”. The different target temprature can be selected

from “Temprature” in “Varables/Prameters”.

95

4 Appicatons Plces System (@) () 17 -]] G)® riag o g oroot

E] Virtuoso® Analog Design Environment XL Editing: dc cornerTB adex|_corner =aEx -0X
w Design Launch File Create Tools Opions Run Paesiics [l Corners Setup bl ence
gies | B % g I 0 ComerNamCh’-’ose thflfame \Hmmm;‘

% : e Variables ! Parameters
o Parssics— Rtosveep || ; i
_Data View 78X @ o lTem eraire 2760120 ‘I DeSfyu Varichles
vECL 30 esign vanables
ieters
v caben 0 o4 feomer — choose temprature corngFé™"
w [B vid_synch_120 660m J Model iles
W[Wouezpin s 7 (0 Parameters
¥[8 Synchacap 004 i }m 5> Motel Group(s)
o o [E comar f e Tests
<<
ded Model Files ¢ dccomerTel v
- Paaneters el - Number of Comers
B ¥ 9] Comers dedl Model, |, Sectinis). |
e click to pdd Fabrication corner model
e
7 . . et |..del Group(s) Click to add
‘@ sep sweadd corner sim e ‘
- e
= .) | de]
Do) Eii [L) Save, | npor POFADCF
. Run Summary T
i ceg (@ Cancel
& 1 Test e r oo ————— .y
= = v =
¥ 1 Point Swegp decom signal | A21/8_<0» FEF]
¥ (0 Corner cecom. signal A21/8_<1> Ule
wobDeskiop) ¥ Noinal Comer gecom, signal | A21/8_<2> "l
iple capy 1 decom signal A21/8_<3» U v
e 1o be cg Gecom sipnal | A21/B_<4> "R
ce.com signal 2118 _<5> U e
ge.com.. signal - A21/8_<B "Rl
History fem | Stalus decom signal A21/8_<7> Ul v
i Mouse L. M
6(3) >
| B root@localhost:~/De... | [€] virtuoso | B Cadence Library Ma... | [€] comerTB Virtuoso® Anglog D... | [Comers Setup

Figure A.16: Selecting the target temprature and fabrication corners

5- From “Mode Files” window click “click to add” under “Test/Custom Mod-
els”. The following window will appear. Click “import from Tests” to load all the
models.

96

45 Applications Places System e) o @ 4])& risg1s sAM GE root
[Virtuoso® Analog Design Environment XL Editing: dc cornerTB adex|_corner -0Xx -ox

aw Desigt Launch File Create Tooks Options Run Parastics [Corners Setup X dence

gres 0B H %\@ I D EJ

Diagram_Cali
erlotpoel.png

Add/Edit Model Files

MoParasics [\o Sweeps - |
Dala View 78X & o Model Files
\ | selects the models {) —
5 - —
!E ¢ Jf out Maodel || Section |
[Calben 0 o [roob/kits/TSMC_BSnm/smcNES/. /models/spectrefcmes... | tt bip T
o [vod_synch_120 60m { [toobKits/TSMC_BSnmsmeNESY. /madels/spectiefernéS... . tt dio
W Woweep_vin g 37 Lo Irootits/TSMC_BSnmitsmeNES/. /models/spectrefcms... | t_dio_33 .
o [synchaCap 004 = o Irootkits/TSMC_BSnm/smcNES/. /models/spectre/crnBS... |t mim T
ib o [B comer t e ¥ frootkits/TSMC_BSnmitsmeNES/. /models/spectre/cmbs t_dio_drw
e o rootkits/TIMC_BSnmtsmeNGSY. /models/spectre/cmds... | tt dio_18 Edit
b !& Parameters e o frootkits/TSMC_B5nmtsmeNES/. /models/spectrefcrnBS... | H_bip_npn e
[v <} Comers doe o Irootkits/TSMC_BSnm/tsmcNES/. /models/spectre/crn6s tt_33 . Delete &
v | Noninal e frootkits/TSMC_BSnmtsmeNESY. /models/spectre/cm8s... | tt rirmom
Click 12 add corner doe o rootkits/TSMC_B5nmitsmeNES/, /models/spectie/cmBs... | H_mos_ca, .
4 Documents 3 ded o Al TSMI SnmitemeNAS/ fmadale/enarhalcrmRs # 1R "TlPD" ,DdEIS from test setup
] Setup States LJ dee
£ ¥ e mport from Tests (SSMNETEET
= :) § dce
Dok) GOl [L) S pRAPCOCE,
Run Summary 78| d?c
f = dee [I§) Cancel gy
3 el - A,s i L
e i ey ey
¥ 1 Foint Svieep de:com.. signal /121/B_<0» W |
¥ 0 Carner de:com, signal /12178 _<1> Ul
iotDeskiop| ¥ Nominal Corner dccom signal - /121/B_<2> "lIF
ple copy tg de:com. signal /21/B_<3> W |
&s to be cof de.com, signal /21/B_<d> vBIF,
dc:com signal A21/B_<5> U v
decom., signal /121/B_<6> "Rl
Hislory e | Stalus ‘ de.com. signal /121/B_<7> wWRI 7
[) B
" limouse L: M R
HIE
| @ roct@localhost:~/De... | [¢] virtuoso | B Cadence Library Ma... comerTB Virtuoso® Analog D... | [~ Comers Setup

Figure A.17: loading the simulation models from the test setup

choose only the ones needed in the current simulation.

5- Create one or more corner setup. In this tutorials, 5 fabrication corners are
selected; “tt”, “ff”, “ss”, “sf” and “fs”. Each with 3 different tempratures; 27,
60 and 120 Celecuis degrees. The total number of simulation runs are 5*3= 15
simulation run. When finished press Ok.

97

4% Applications Places System @) () [=]] §) @ FiAglo1011AM G roct

¢ s N

r

Launch Elle g ; (e adence
:] | e —
TR=r= Corner Name : Comers __ Nomina) f|g 5 | 8 &
a - Variables { Parameters —J e
|| o Parasiics VaiR — ‘DE"!P":W:m A0 2nEnl 27g02 i1 | create cornerjfor each |
] — - esign Variables L
| Data View e 2r.80120 e Fab. corner T
- esign Van i
Choose Temp. comgFers -
‘ Paanelers __for each el Fles
28 Feene cBSgplus_205_k_v1dd scs g tg tg ¢ [—
8 ;u‘ e crmBSgplus_2d5_tk_v1d0scs:1 fil W fly g ff -
e x Noi :‘ crmB5gplus_2d5_lk_v1d0.scs:2 LR 1 8| £
[O cmeSgplus_285_K_v1d0 scs:d W Sy S o
B - crmSgplus_2d5_lk_v1d0scs:4 5| 5| i i ¥ fs
| F[E temperat —=
|8 s O o
L e Tosts
! Lt cmesgy Model | Seclon(s) | v de:comerTB:1 | v v v v
[cmesgp ; Number of Comers 1 3 3 3 3
[cmésgp
vl .. V1dlscs [t choose [Model for each corner
—jala Hisf : v1d0scs:2 88
= _.v1d0ses3 | sf
| Run Summary | - JREIRE]
1 Test o ad

¥ 1Point Swee| | -uel Group(s) Click to acd

¥ 15 Comers
Nariinal Corm

Load , | Save | Impart PCF/DCF
—— N

OK | Cancel ,, Apply ; Help

ce:comerTBT | VieflZ diszbled evalerr evalerr evalen evaler evaler e!
Hisf
finished with 2rars E

O Interactive1 || () Interactive2 | (J Interactive 3

i ouse L: . M, R
5| > |

@ root@local... [[c] [virtuoso] | - [CadenceLL...| [§] comerTB IVirtuoso®... | [¢] [rootisimu.. || 1 [Active :d... | W Virtuoso (R... |) comersSe...| (R]__| b

Figure A.18: Configuring the simulation temprature and fabrication corners

6- After the previous step, the target corners are shown in the Data View win-
dow. We are now ready to run the simulation.
To run the simulation, press the green play button. The simulation progress is

shown under “History Item” window.

98

4% Applcations Places System (@) (1) (7 =] B @) & FiAwgly 946AM E root

Virtuoso® Analog Design Environment XL Editing: dc cornerTB adex|_corner

Launch File Create Tools Options Run Parasiics Window Help cadence

P, " = s . - W o
B d %*;‘@ | ﬁ i) |j »A“ U‘MU B @Jm‘o\umspace.&asw - |5 L. _<.,’1‘
|| Na Parasics 'Hn Sweeps |- l”swg\e Run, Swesps and Comers n @ m@ n i

Dl View DEX ® cores | 2 atedcomer — Press run to start simulation
[T B Syccap 004 i
i : ::mev r . Outauts Selup Diagnastics
e Detl o N AT - 7 BOY S i

Chosen comers I&—r — l W Q4 %— — L

¥ % Comers

4 Nominal 'ﬂﬂ' 11 2 | s50 -
nom 27
= | B
Information about the running simulations ‘ '
- orenr
B Odpd | Nonna g B0 | 0 | 02 | 00 | 0| A2 | e0 e i ol || (e
7| JB<3> disablec pending pending | pending k2 running oencing pencing pending | pending pending |2
Data Histoy 1DIG_ot disablec pending | pending | pending L2 rurning pencing pending pending | pending pending
- = ... DecEmor disable pending | pending | pending | L2 running pencing pending pending | pending pending 1
Run Summary 7151X] /0IG_ot | disablec pending | pending | pending L rurning pencing pending pending | pending pending
1 Test 12178 _<0> disahlec pending | pending | pending L rurning - pencing pending pending | pending pending .
¥ 1Pori Svep L I1/B <1 disableg pending | pending | pending | L2 running pencing pencing pending | pending pending
i 15 Comers N8 <> disablec pending | pending | pending L2 running pencing pencing pending | pending pending
Non;ina\ C;rner N21/B_<3» disablec pending | pending | pending k2 rurning pencing pending pending | pending - pending
= LB _<d> | disablec pending | pending | pending | L running pencing pencing pending | pending pending
mj . 1B <> disablec pending | pending ' pending |k rurning pencing pending pending | pending - pending
N21/8_<6> disabled pending | pending ' pending L rurning pencing pending pending | pending pending
Simulation nrooress L 2B _<T> disablec pending | pending | pending L running pencing pencing pending | pending pending =
History lm Slals e - -
[z) 2 Interacfive.d) L
active ' unning - 115 conplele u (O Intersctive (L) Interactive | rteractive. Is.
Il mouse L: M: R
EIE ‘
root@localhost:~/De... | [¢] [virtuoso] || & [Cadence Library Ma... | [¢] comerTB | [virtuoso® Analog D... | [¢] [ootsimulation/de/... | (] [)]

Figure A.19: Start and monitor the simulation

7- When the simulation is finished, plotting one or more of the output results
signal can be selected from the “Results” tab and right click to the target signal
and choose “Plot All Corners”. Another way is to select results icon and choose

the signal to plot.

99

45 Applcations Places System () (5 [7 =] 4] §) @ Friawgly s4AM E root

(] Virtuoso® Analog Design Environment XL Editing: dc cornerTB adex|_corner

Launch File Create Tools Options Run Parastics Window Help cadence

B EGIE | (@E »16E B B o -

Manage '}
|| No Parasitcs 'Mu Sweeps |- .‘M Single Aun, Sweeps and Comers ' @ Q0 n z
Data View 28X ® comele | £ ated_comer i
- e
T SycndCap 004
I comer f Outputs Setup | Results | Diagnostics Results hrowser 3

‘1& Parameters Deal BJ %' Dv G v | Repiace '['Q __" W [@ & \ | @ MRl
(5 ¥ 9 Comers - -
4 Nominal

omBSgplus_2.. nom
femperatute non un 60

ﬁ st | [Tt Outpul_| Neminal | Spec | Weight| FassFall Min | Max | 80 | 81 | f2 [10 | 1 | |

- de:comerTB:d A21/B<T> | disadled k L k& |k k
Y of &
Selup States ol [decomeret A28 oupu g Lok kB kb k
Dats || ity decomerB 2B o atist k k k kL |
- - de:comerT:1 AZ1/DIG ; R = [T [T - 1
Run Summary 28] dccomens1 2w ”’”“"""‘f’ <l E &tk & E
T dccomerTBt Aztfcl | Onen Teminal E &k kB & [E g ik
¢ 1 Point Swesp dc.comerTB:1 I\ZLWZ Violations Display ~ » L k L L 5
@ 15 Comen de:comerTB:! 21/l Plot k k | k Kk
_J NoninalCor pocomefIbi elive ’Iotforall corners (15 borners) &k E
de.comerTB: /121 /inpud 2 k k | k
7] dccomere:1 /OuRead Plot Qulputs » k kL kL k k
Simulation is finished decomerTt /ReLsam pirectplot) E kb k Lk L
de:comerTB:1 Vrel2 Print N evalen evaler evalem eval em evalem £=
- ; Annotate)
T () Interactivet | O) Vegtor »
Circuit Conditions
1mouse L: Save i
9(9)‘ > Add ta Spec Summary
" = 1 Ivi il I r i 9 = &)
root@localhost:~/De... | [¢] [virtuoso] || & [Cadence Library Ma... | [¢] comerTB | [virtuoso® Analog D... | [¢] [/root/simulation/dc... ["l

Figure A.20: Plotting the simulation results for all the corners

The following graph shows the results for the signal “/I121/vr2” for all the target

simulation corners. It is shown how each corner affects the signal rising shape.

100

Transient Response

= 121 jwr2; (Corner=Fff_0; temperature=27) /121)wr2; (Corngr=Ff_1; temperature=60) — /I21vr2; (Corner=fF 2; temperature=120)
= 121 jwr2; (Corngr=Fs_0: temperature=27) - /121 ur2; (Corner=fs_1; temperature=60) - /121 /wr2; (Corner=fs_2; temperature=120)
21 jvr2; (Corner=sf_0; temperature=27) /121 /ur2; (Corner=sf_1; temperature=60) - /I21wr2; (Corner=sf 2; temperature=120)

125

L0

7

| 1
/
),

WOOw)

580 590 800 810 620 830 840
time (ps)

Figure A.21: Plotting the simulation results for all the corners

5- To export the results for Matlab, open the results from and right click on the

target signal and choose “Export”.

101

o Applications Places System e) @ _/
'E] Virtuoso (R) Visualization & Analysis XL browser

) 2 FiAglo,1000aM 55 root

U Eile Tools Opfions Help cadence

ﬂ [Reglace nl_ & B Q (%)

% AL
-- de/comeTBradex_c Its/clataInteractive. /psfrdc: comerTE:1 st ' B
B & ion/dc/comerTE/adex)_o five drpsfidc:comerTE:1/pst —_—
Signals Search
B fn”;m:g;'e‘g?_m &0 VoDl B et W vedre B vo)
El B clrentnio 1 Ve_tin <3 0 vetiePs 1 veSies B vedlets) Out © Up One Level
: [13 ve_tin_ede 0 ezt [veSete @ veiiezt 0 R | pigt signal
[outputParameter-info =1 =] =] =1 =1 4
= [designParanyals-info 3 157 Ye_bin_ e I ve2ielts I veBie2e [veBled Sin'
B "mgwes_mm s o 13 Vo_bin e 0 402zt B vosiedte B vcdletto 07 calb| e EXPO0
B it o s LS Ve_bin T W vezied B veieds B velleSs 0 ch_| 3 Calculator
0 variles [14 Ve bin_ete 0 veziedte 8 veSeSie 0 vl 0 rett] g oo
[134 Ve_bin_veShe [veZieRle [veSieble [veBlelts [netl
[vo oy o2 W voSdv B veietie W netnq A DT
Qv vehellhe vedheTle O voblelie 0 veBicts [vid | Y vesy
Eva Vet vedelle) veblele [vedieze 0 vin
: [w47 Vot vedelle) voblegie 0 veBiede [vinsl Append
= Bedhe il ichele [veblede [vedidte Replace
. Ve_analogheDte) vohedts vedhedte [vobledie [voBiee A
E Ve_analoghete § veheSte vedvede W vebheSte [vedleBie '
Ve_analogheZis) voheBie vedheSte [vobl<Bie [vehiere New Window
Ve_analoghedte { vt yeaeBl W vebte?' [vellkdis
v Ve_analoghetts J voheBte el @ Tl [veiletis
v Ve_analogheSe W vehedte vedveli W veTells [velldis
Vi_analoghefiv: § voThedls vothelle @ wiTie?ie [vellicis
— Ve_analogheTte [velielts yedede O vePede 0 volliedis
Ve_analoghefiie) voTheZls vodhede [weTiete [voiDiis
Ve_analogheBe [veliedls vedveds I verheSte [velDiehie
Ve_bin el 8 voThedts vodheSe [weTieie [voilems
Ve_bin_tetle 8 votheBls vodheBle I veTiePie I Calibvsig
Inf
Qv B B
i
B2 |
|@ roct@localho... | [c] [vituoso] | - [Cadence Libr... | [€] comerTB | [virtuoso® A... | [¢] [root/simulat... | [Active : dc

Figure A.22: Exporting signals to Matlab
From the Export Waveforms, the target signal can be sampled. Choose the

“start” and “end” for the exported part. Then choose the sampling period “Step
Size”. Name the file with “.matlab” extension.

102

" Applications Places System 0 Eo) Z 8 L)

FiiAug 19,1001 AM 3 root

F
Access documents, folders and network places Virtuoso (R) Visualization & Analysis XL browser -0x -
L Elle Tooks Opions Help cadence
J_ Replace ' |~ #1210 o
f -
LA

rootisimulation/tic/comerTB/adex]_comerfresults/data/interactive. 3psfic:corner TB:1/pst

=]

[I Jrootsimulation/ce/comerTBradex]_comen/results/daanteracti Export Waveforms

M fran-tran
! - [finalTimeOP-Info
g (& mode Parametar-info :rocL’DesHo n
(& element-info ——

@@ outputParareter-info |

[designFaramvals-info e/ o Sanple Data

(& primitives-infoprimtives
- subckts-infa subcks
(5 variables Start 0 B

wo e §

Save in Directory

Vel
vedietv M Outfeady
>) vedietv- [vedie2> I Ral_samples
>) vesie2 [vediede) SinWave

> > 0 veded [calibrate
W vedes> [ol

W veowiv I newas

> 0 vedere 1 nei07z

W vt [nettod

W vt [v

o Interpolate o vins [un
\ : : ! W vedede [vinsin
A Sampling perod (TSt T -] |

ﬂ vedied
W vedes
W v

luf Filename: ComerTestmatiaty m Voo

Formal: Matiah W o100
¥ W vttty
v Refzsh Cancal [wines

W velovd
W vl
M ve1ness

W Ve_anangwere W velwle W VoA

W Ve_analogheB | <2
W Ve_analogiedhs > >) velOiti
¥ Ve_bin > et e, W v
M Vebin el [velieS ol [venens I Calibvsic

Qv B B

56120

| @ root@local... | [c] [virtuoso] | [[CadenceL.. |[¢] comerT8 [virtuoso®... | [€] [irootjsimu... | i [Active :d... | M Virtuoso (R... | /] ExportWa... |

COETE & T

Figure A.23: Exporting signals to Matlab

The following is the exported file view to save 10 samples for all the corners.
The highlighted part presents the X’ and "Y’ for signal “DIG_ot” for corner tt”
and temprature 27 degree.

103

" Applications Places System @ @ @ = rﬂw Fri Aug 19, 10:03 AM j% root

'3 CornerTest.matlab (~/Desktop) - gedit -0 X
File Ecit View Search Tools Documents Help

U Bopen v v 2]]

"] ComerTest.matlab 3¢

1 DIG ot

(Corner=ss 0, temperature=27) (interpolated wth step=le-69) X,DIG ot (Corner=ss 0,temperature=27) (interpolated wth step=le-09) Y,0IG ot (Corner=sf 9, temperature=27)

(interpolated wth step=1e-89) X,DIG ot (Corner=sf 0, temperature=27) (interpolated wth step=le-69) Y,DIG ot (Corner=fs 0,temperature=27) (interpolated wth step=le-09)

X,DIG ot (Corner=fs@ temperature 27) (1mterpotated wth step=1e-09) Y,DIG ot (Corner=ff o temperature 27) (Interpolated wth step=1e-89) X,DIG ot

(Curnerff 0, temperature=27) (interpolated wth step=le-89) Y,DIG ot (Curmer—tt 1,temperature=66) (interpolated wth step=le-69) X,DIG ot (Curnertt 1, temperature=60)

(interpolated wth step=1e-09) _Y,DIG ot (Corner=ss 1, tenperature=60) (interpolated wth step=le- 09) X,0I6 ot (Corner=ss_1, tenperature=68) (interpolated wth step=le-09)

Y016 ot (Corner=sf 1 temperature =66) (1mterpotated wth step=1e-69) X,DIG ot (Corner=sf 1 temperature =60) (mterpolated wth step=le-89) Y,0IG ot

(Curnerfs 1, temperature=60) (interpolated wth step=le-09) X,0IG ot (Cermer—fs 1,temperature=68) (interpolated wth step=1e-09) Y,0IG ot (Cnrnerff 1, temperature=60)

(interpolated wth step=le-09) _X,DIG ot (Corner=ff 1, temperature=60) (interpolated wth step=le- 09) ¥,0I6 ot (Corner=tt 2, tenperature=120) (interpolated wth step=1e-09)

X,016 ot (Corner=tt 2 temperature 126) (tnterpolated wth step=1e-69) Y,DIG ot (Corner=ss 2 temperature =120) (1nterpotated wth step=le-09) X,DIG ot

(Cnrnerss 2, tenperature=126) (interpolated wth step=le-09) Y, D16 ot (Cprnersf 2, tenperature=128) (interpolated wth step=1e-09) X,DIG ot

(Corner—st_z temperature=120) (interpolated wth step=le- @9)_Y DIG_ot (Cprner—ts_z temperature=120) (interpolated wth step=le- 99)_)(DIG_ot

(Corner=fs 2, temperature=126) (interpolated wth step=le-89) Y,DIG ot (Corner=ff 2, tenperature=128) (interpolated wth step=le-89) X,DIG ot

(Corner=Ff_2, temperature=120) (interpolated wth step=le-69) Y
20,0
3 1e-69,1.023,1e-09,1.023, 1e-09,1.0623, 1e-09,1.023, 1e-09,1.023, 1e-09,1.023, 1e-09,1.022, 1e-09,1.023, 1e-09,1.023, 1e-09,1.023,1e-09,1.023, 1e-09,1.023, 1e-69,1.023, 1e-69,1.023
42e-09,1.023,2e-09,1.023,2e-09,1.023,2e-09,1.623,2¢-09,1.023,2¢-09,1.023, 2e-09,1.022, 2e-09,1.023, 2¢-09,1.023, 2e-09,1.023, 2e-09, 1,023, 2e-09, 1.023, 2e-09, 1,023, 2¢-09, 1.02:
53e-09,1.023,3e-09,1.023,3e-09,1,023,3e-09,1.023,3¢-09,1.023, 3e-09,1.023, 3e-09,1,022, 3e-09,1.023,3e-09,1.023, 3e-09,1,023,3e-09,1,023,3e-09,1.023,3e-09,1,023,3e-09,1.023
64e-09,1.023,4e-09,1.023,4e-09,1.023,4e-09,1.6023,4e-09,1.023,4¢-09,1.023,4e-09,1.022,4e-09,1.023,4¢-09,1.023,4e-09,1.023,4e-09, 1,023, 4e-09,1.023,4e-09, 1,023, 4e-09, 1.02:
75e-09,1.023,5e-09,1.023,5e-09,1.023,5e-09,1.623,5¢-09,1.023,5¢-09,1.023, 5e-09,1.022, 5e-09, 1,023, 5e-09,1.023, 5e-09, 1.023, 5e-09, 1,023, 5¢-09, 1.023,5e-09, 1,023, 5e-09, 1.02:
8 6e-09,1.023,6e-09,1.023,6e-09,1.023,6e-09,1.023,6e-09,1.023,6e-09,1.023,6e-09,1.022,6e-09,1.023,6e-09,1.023,6e-09,1.023,6e-09,1.023,6e-09,1.023,6e-09,1.023,6e-09,1.023
97e-09,1.023,7e-09,1.023,7e-09,1.023,7e-09,1.623,7e-09,1.023,7¢-09,1.023, 7e-09,1.022, 7e-09,1.023,7e-09,1.023, 7e-09,1.023, 7e-09, 1,023, 7e-09,1.023, 7e-09, 1,023, 7e-09, 1.02:
10 8e-09,1.023,8e-09,1,023,8e-09,1.023,8e-09,1.023,8e-09,1,023,8e-09,1.023,8e-09,1,022,8e-09,1,023,8e-09,1.023,8e-09,1.023,8e-09,1,023,8e-09, 1,023, 8¢-09,1.023, 8e-09,1.02:
11 9.000000000000001e-09,1.023,9.6600000000000001e-09,1.623,9.000000000060001e-09,1.623,9.000000000000001e-09,1.623,9.000000060000001e-09,1.623,9.0000000000000016-09,1.023

(<] n E‘

PlainText v Tab Width: 8 Ln1, Col 137 INS

A*TET? & ™

Desktop - File Browser | (5 ComerTest matlab (~[.. |

Figure A.24: Exported Matlab file view

To import the data to Matlab, use the following command

>> dataAll=importdata(’ CornerTest.matlab’);

“dataAll.data(:,1:2)” will contain the time and volt for DIG_ot for “tt” simu-
lation and 27 Celsius degree. The designer can now do the analysis for the target

signal and corner.

104

ALOTS VARILBLE ﬂ: B

el gl et x\dmmumdata t dealttd] 1 x\
datadll data

F- ekl cita <10 coubles

11
T T T e e

2-- 0009 1030 10000e09 1020 10000edd 1030 LOODeR LOBD 100008 1080 10000 102N 10000eQd 10D0 100
3-- 000e09 100 A0000e9 L0B0 20000e0d L0230 20000e0d LOBD 200008 10B0 20000 10N 20000eQd L0B0 2000
4-- 00e09 L0 30000e9 L0P0 300Wedd L0230 30000e0d LOBD 300009 1080 0000e 10N 30000eQd 100 3000
5-- G000e03 LOP0 AD000e09 100 ADO0Dedd L0230 A000ed LOBD 400009 10B0 AD000eD9 102N 4000eQd 10D0 400
6-- SO0 0B SO00ed L0 SO0ed 100 SO000ed 10 Soed 1023 SO000ed 100 S000e 1020 S0000e
7-- 000009 0P 6O0MDe9 1020 60Wedd 1030 GOO0ed LOBD 6008 10B) 600Me 102N 600eDd 100 GO0
E-- 00009 1030 TO00e9 100 TOOWOedd L0230 T0000e0d LOBD 70008 1080 700009 102N T0000eQd 100 700N
9-- B000e0 L0730 ROOODe9 100 BNOMDedd L0230 BOODed LOBD BO00eS 1030 0009 102N BOO0eQd L0B0 BOONe
| | — " |

datadll eridatall 1)

detel et 1) <L0M9 ch

!

1 ;ﬂﬁ_m (Comer=ss 0 tempereture=17) (interpolated wth step=1e09) K 16 ot (Cor‘

Figure A.25: Exported Matlab file view

105

Al Ladls

O ALalal) 3 sasll o jas o) Jiadll g o Bl Jiiadll o bl &Y ga

I e o) (S A 8 by Y gaa cpent all (o) (8 4 Hlalill 5 A I il Sl

s Dl A 1) U Sl | (a8) JSAY Jsa o) (S 4 plalitl) U sSall (g

A 5 iSIVN) olia guiall Aa slia 8 Allad 508 206 Ll a5 Jpandll 5 aranaaill(

B aaiial Lia ol 635 (g) (e Bdliie pobaill Aalie 5 A8 (J8) @B aa,

a3 a8l Jaall g pdalul) JEG e Gl QY sae Glasaal (0 23e

Ge waall e sl ()5 JieY) mpenail) Jlia) cliplaill (e dpaal) deadd Leal)

5 qinadll Aalia 5 4 oS AUl Dlginl ot cilial) adl Jare Jic Jal sall

5 axdiuall Sl dgall 5 ariaill dlae @l s 3l A glae o 50l g 48

) g1 ¥ Jsaal) Jaalll il Jsaa s Wla-banan | 350 sl da 2
Siall),

S bl Y e (e Gl Caial e alall iy Ul Y e
Al dasl) G Jasail) Apad) Dl S pladinly Jy gl o) Ll JuadAledl
Jaond oy (A oY) Als el (3 Gils je o o 3 plalall dpad) Aaill e Jysal) oy
U A el (B G il () el Aad (B s e Ay bLAALS Al (B Ay
Josaill dgle) 5 Hlaliall 40U Al)l Aall () a3 padlipld (oY) Al jall
Gaob Ge a5 383 lad) lhaall G s 5 Al) i e alasinly
L iy of @ giall (e AU Al pall el LYY A Ll ol LY (e Jysaill
B da) 55 35 Jeal) 138 (A 5 aliall G 31 A) o3 (e A 43S (2
Al sall o3 Al Il) dagll alayY C3AAl (5 sl Al (e Ao 8 400
s L addiiaadll (s A) Cildal 1A Ja5 da iall e) &) Sia JS5
3 kliallge 4 shaall ol (8 N Jiadll () (s Bl Jiaill (e 4 el
Al Al il Al oy A1) acliial)) Ay) A e saadaall i))
OV 2my & lall) il I A N sl (e Jygail))zl Y 08 () SS Sy
e ASIgtuall Gy jeSl Adal) 5 ariatll Asbise Cus (e 2o)5 2285 iy Lo 58 g
40 6S 30 aranal sl o3 LeS Banaad) A)l a1 JalS iy)) Liayl

Gl (18 488) AU Gda Age)) sAd) 338 20 68 (e 3L Baaadaal gial)

OYIlagaaill Euaal Guily ariaill dalie 8 sl o 28Ul @il

G Al oy S Foudiga

Y4AS/4/A N CTI

(S e 32\1‘*“:‘93‘

YOOV 0 [0)))

yyyy/mm/dd rpelal) gl

A S YL il g STy dsain :)

[P Aaal.

Shias s L

(L'_;Js\al\ L’);:MS\) il (alyy daaa
(el caiadl)

Al olgis

@M\@)&J\@sﬁe\m@' }_3’5)3\:‘;44&.\4.1.. 3o)yl A
PR @LH\ G Gl Y gaad Jhal giall @Lﬁﬂb

AR EANY
sl Jonn ¢ iy Adprall gl ol ¢ oy ()lali Jgmn ¢ (e () 25l d;}j
B

LY) Ay bl el HLaY) e Jpsnill Baaa A)) A adii Jaall 138 8
oy (Al g aliiall G Sl e)l A e Uare A (o8 Aaa)l sad) 028 4l)l
S 3 ylLall 48l Al AV AL (5 gacaill Al (e dpe AN i Lgd
e A gronall AU Al (o e 3O il jaaY) Jan ds el due) &)) Sia
Glo sadinall il sall che Ay shaall el 3 a8l Jiiail)) o lalil Jiial)
U ¥ A (o)) USS JS Lo Al sl e oy A) aoliial) sl 4)54
Ge ey ol Siny e g 5 OY) aay By palill aadl)) Aed 1) ol e Jy el)
JalS sy i) Loyl adie ASIgtanal) Ay 5g S 48Ul 5 il daliss Eupa

334 21 ¢ he 3L Basaa A 5eS B0 areal yshalt &8 LS Bl daa)) Al
dalie (4 b gill g A8l eDDlginl (8 Guuaadll (8 488 jal) il Bl e) 53l
OV 3] siall Claganaill Caaal (il gyl

eoEiall oy) A8 alodiuls B 30 apenal §43e)l 55
a3l adall <l bl Y saal Jual glall anladilly

Aac)

G dalad o S

) Aadie Allu,
5oa il Racla — Aigll AS
A e Jpanll Glllic (e e 3as
“ BUNENN]
‘éi
A S VL) g il g STV dlaia

sOmiadaall Adal e Ading

) Capliall = 3 jee aaal L2

SRl i) -

Jaals — Fadigl) LK

3l aala — Lunigl) 4K

Kpall e Ayyspen — Bl
Yo\Y

aeliial) R AT aladiiily 3 08 arenal g da)l sd
) aolal) cld L) c saal Jual gial) acdaiilly

Alac)

G Al S

) iesie AL,
$ Al el — digll A
Aan o Jpaadl alllic (e ¢3S
" il
Sl L) 5 Sl g ySTY) A

@MW@MW}J B):\AQJAAT.J

ol £l 3y
LSl eV La)y iy SSY) Adia aud AU LAy il g SSIY) Aia aud
3a Al daals — duigl) 448 3l drala — Al 448

3l Aaala — Lunigl) 4

$pall e Ayypen — Bl
Yo\Y

gobiial) o R AES a)aREuly B 00 asanal g da)l 5A
il aqlall ld bl e gaal Jual gial) agkaitly
Alac |

G Aalad o S

i Al
5 alall il - digll IS
i o e Jgeaall Cillliia e 6 58S
BUNENRN|
o
F Sl L) 5 il g YN

3l daala — Ligl) 4

Al JAAAY%{{/&A; ~ 3yl

	Acknowledgment
	Abstract
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	Introduction
	Background
	ADC functions
	Sampling
	Quantization

	ADC static characteristics
	Offset error
	Gain error
	Differential Non Linearity
	Integral Non-Linearity
	Missing Codes

	ADC Dynamic characteristics
	Analog Input Bandwidth:
	Input Impedance
	Equivalent input referred noise
	Maximum sampling frequency and conversion time
	Signal to Noise Ratio (SNR)
	Signal to Noise and Distortion Ration (SNDR)
	Dynamic range
	Effective Number Of Bits (ENOB)

	Types of Analog to Digital Converters (ADC)
	Nyquist rate ADCs
	flash ADC
	Piplelined ADC
	Successive approximation ADC

	Oversampling ADCs
	Sigma Delta ADCs

	Time-based ADC (TADC)
	TADC based on frequency modulation
	TADC based on pulse position modulation
	TADC based on pulse width modulation
	Pulse-width VTC examples
	Pulse-width TDC

	Introducing SAR-CD algorithm
	SAR verses SAR-CD algorithm
	SAR-CD general algorithm
	SAR-CD algorithm proof
	SAR-CD algorithm examples
	Example 1 to convert ``10.1'' analog input to ``1010''
	Example 2 to convert ``20'' analog input to ``10100''
	Example 3 to convert ``20'' analog input to ``10100''

	Circuit design
	First circuit design
	Design components
	Simulation results and analysis for the first design

	Second circuit design- All Digital TDC
	Circuit description
	Circuit components
	Simulation results and analysis for the second design

	Digital Calibration for SAR-CD time-based TDC
	Calibration results

	List of Publications
	References
	Appendix
	SAR-CD Matlab code
	Traditional SAR Algorithm- Matlab function
	Noval SAR-CD Algorithm - Matlab function
	Noval SAR-CD Algorithm - Matlab function

	Effective Number Of Bits (ENOB)
	Differential Non-Linearity (DNL) and Integral Non-Linearity (INL)
	Ideal VTC using Verilog-A
	Calibration code Verilog
	Corners Simulation and analysis

