
SUCCESSIVE APPROXIMATION REGISTER

WITH CONTINOUS DIS-ASSEMBLY

ALGORITHM (SAR-CD) AND CIRCUIT

DESIGN FOR TIME-BASED ANALOG TO

DIGITAL CONVERTERS (TADC)

by
Karim Osama Ragab Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

ELECTRONICS AND ELECTRICAL COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2017

SUCCESSIVE APPROXIMATION REGISTER

WITH CONTINOUS DIS-ASSEMBLY

ALGORITHM (SAR-CD) AND CIRCUIT

DESIGN FOR TIME-BASED ANALOG TO

DIGITAL CONVERTERS (TADC)

by
Karim Osama Ragab Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

ELECTRONICS AND ELECTRICAL COMMUNICATIONS ENGINEERING

Under the Supervision of

Associate Prof. Ahmed Emira
Principal Advisor

Assistant Prof. Hassan Mostafa
Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2017

SUCCESSIVE APPROXIMATION REGISTER

WITH CONTINOUS DIS-ASSEMBLY

ALGORITHM (SAR-CD) AND CIRCUIT

DESIGN FOR TIME-BASED ANALOG TO

DIGITAL CONVERTERS (TADC)

by
Karim Osama Ragab Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

ELECTRONICS AND ELECTRICAL COMMUNICATIONS ENGINEERING

Approved by the examining Committee

Associate Prof. Ahmed Emira, Thesis Main Advisor

Prof. Muhammed Riad El Gonamy, Internal Examiner

Associate Prof. Yahia Ghallab, External Examiner
(Zewail City for Science and Technology)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2017

© Karim Osama Ragab Mahmoud 2017

All Rights Reserved

iv

Engineer’s Name: Karim Osama Ragab
Date of Birth: 8/9/1989
Nationality: Egyptian
E-mail: engkarimosama@gmail.com
Phone: 01002393426
Address: Electronics and Communications Engineering

Department, Cairo University,
Giza 12613, Egypt

Registration Date: 01/10/2012
Awarding Date: dd/mm/yyyy
Degree: Master of Science
Department: Electronics and Communications Engineering

Supervisors:

Associate prof. Ahmed Emira
Assistant prof. Hassan Mostafa

Examiners:
 Associate prof. Ahmed Emira (Thesis main advisor)

Prof. Muhammed Riad El Gonamy (Internal examiner)
 Associate prof. Yahia Ghallab (External examiner)

Title of Thesis:
Successive Approximation register with Continuous
Dis-assembly Algorithm (SAR-CD) and circuit design for
Time-based Analog to Digital Converters (TADC)

Key Words:
 Time to Digital Converter (TDC); Voltage to Time Converter (VTC); Analog to

Digital Converter (ADC); Biomedical circuits

Summary:
This work proposes a novel algorithm for analog to digital conversion. The
algorithm is a modified version of the successive approximation algorithm in
which binary sub-weights of the input maximum are used to evaluate the
corresponding digital words in a cyclic manner. The proposed algorithm moves the
conditioning between the evaluated bits from the analog domain to the digital
domain. In folded versions of the successive approximation ADC circuits, in which
bits are evaluated in an iterative fashion, digital to analog converters may not be
needed anymore. This major advantage promises for reduction in fabrication area
and power consumption. A full mathematical proof for the algorithm is also
introduced. A new circuit design is developed to utilize the algorithm benefits.
Results show competent power and reduction with state-of-art designs.

Acknowledgment

In the name of Allah the most merciful the most gracious; all thanks to Allah the
Lord of the Heavens and Earth and peace be upon Mohamed and his companions.
I am also very gratefull to have Associate Prof. Ahmed Emira as my principle
supervisor. I wish to express my gratitude to my adviser, Prof. Hassan Mostafa
who was helpful and offered invaluable assistance, support and guidance. I am also
genuinely blessed to have Associate Prof. ———- as a member of the supervisory
committee, for his great efforts and constant care.

Many thanks to my family and friends for their support and help through the
duration of this work.

My deepest gratitude to my family. Without their encouragement, I would not
have gone this far.

Karim.

vi

Abstract

ANAlog to Digital Converters(ADC) and Digital to Analog Converters(DAC)
define the boundaries between the analog and digital blocks in every ma-

chine. Optimizing powerful data converters means that more analog blocks can
be digitized. Digital blocks are much easier in design and manipulation. Also
they provide robust performance against noise with less power consumption and
fabrication area benefitting every new fabrication technology.

Many ADC architectures have been proposed to serve wide range of applica-
tions. Choosing the right ADC architecture is based on many factors such as sam-
pling rate, power consumption, fabrication area, resolution, robustness towards
Process, Voltage and Temperature (PVT) changes. Sigma-delta, flash, pipelined
and Successive Approximation Register (SAR) present a wide range of architec-
tures each.

Time-based ADC (TADC) is a special category of ADCs in which part of the
data converter is desired to be digital in nature. The conversion between an analog
quantity and the corresponding digital representation is done in two steps. The
first step is to convert the analog quantity from voltage amplitude change into time
change. In the second step, the signal representation in time change is converted
to the corresponding digital binary representation. Most of the conversion effort is
done in the second step. As the job is now simplified by the first step, the second
one is expected to be implemented by digital components.

This work proposes a novel algorithm for analog to digital conversion. The al-
gorithm is a modified version of the successive approximation algorithm in which
binary sub-weights of the input maximum are used to evaluate the corresponding
digital words in a cyclic mannar. The proposed algorithm moves the condition-
ing between the evaluated bits from the analog domain to the digital domain. In
folded versions of the successive approximation ADC circuits, in which bits are
evaluated in an iterative fashion, digital to analog converters may not be needed

vii

anymore. This major advantage promises for reduction in fabrication area and
power consumption. A full mathematical proof for the algorithm is also intro-
duced. A new circuit design is developed to utilize the algorithm benefits. Results
show competent power and reduction with state-of-art designs.

viii

Contents

Acknowledgment vi

Abstract vii

List of Tables xii

List of Figures xv

List of Symbols and Abbreviations xvii

1 Introduction 1

2 Background 3
2.1 ADC functions . 4

2.1.1 Sampling . 4
2.1.2 Quantization . 5

2.2 ADC static characteristics . 6
2.2.1 Offset error . 7
2.2.2 Gain error . 7
2.2.3 Differential Non Linearity 8
2.2.4 Integral Non-Linearity 9
2.2.5 Missing Codes . 10

2.3 ADC Dynamic characteristics 11
2.3.1 Analog Input Bandwidth: 11
2.3.2 Input Impedance . 12
2.3.3 Equivalent input referred noise 12
2.3.4 Maximum sampling frequency and conversion time 12
2.3.5 Signal to Noise Ratio (SNR) 13
2.3.6 Signal to Noise and Distortion Ration (SNDR) 14
2.3.7 Dynamic range . 15

ix

2.3.8 Effective Number Of Bits (ENOB) 16
2.4 Types of Analog to Digital Converters (ADC) 18

2.4.1 Nyquist rate ADCs . 19
2.4.1.1 flash ADC . 19
2.4.1.2 Piplelined ADC 21
2.4.1.3 Successive approximation ADC 22

2.4.2 Oversampling ADCs . 24
2.4.2.1 Sigma Delta ADCs 24

2.5 Time-based ADC (TADC) . 25
2.5.1 TADC based on frequency modulation 25
2.5.2 TADC based on pulse position modulation 26
2.5.3 TADC based on pulse width modulation 26

2.5.3.1 Pulse-width VTC examples 26
2.5.3.2 Pulse-width TDC 28

3 Introducing SAR-CD algorithm 33
3.1 SAR verses SAR-CD algorithm 33
3.2 SAR-CD general algorithm . 36
3.3 SAR-CD algorithm proof . 37
3.4 SAR-CD algorithm examples . 39

3.4.1 Example 1 to convert “10.1” analog input to “1010” . . . 40
3.4.2 Example 2 to convert “20” analog input to “10100” 41
3.4.3 Example 3 to convert “20” analog input to “10100” 42

4 Circuit design 43
4.1 First circuit design . 43

4.1.1 Design components . 45
4.1.2 Simulation results and analysis for the first design 48

4.2 Second circuit design- All Digital TDC 50
4.2.1 Circuit description . 51
4.2.2 Circuit components . 53
4.2.3 Simulation results and analysis for the second design . . . 56

4.3 Digital Calibration for SAR-CD time-based TDC 58
4.4 Calibration results . 62

List of Publications 63

References 65

x

A Appendix 68
A.1 SAR-CD Matlab code . 68

A.1.1 Traditional SAR Algorithm- Matlab function 68
A.1.2 Noval SAR-CD Algorithm - Matlab function 69
A.1.3 Noval SAR-CD Algorithm - Matlab function 70

A.2 Effective Number Of Bits (ENOB) 71
A.3 Differential Non-Linearity (DNL) and Integral Non-Linearity (INL) 77
A.4 Ideal VTC using Verilog-A . 81
A.5 Calibration code Verilog . 83
A.6 Corners Simulation and analysis 89

xi

List of Tables

4.1 Performance comparison . 57

xii

List of Figures

2.1 Example of 3-bits quantization [1] 3
2.2 Nyquist rate sampling [2] . 4
2.3 Quantization of analog sinewave to 3-bit [3] 5
2.4 Quantization Error of +/-(LSB/2) [3] 6
2.5 Ideal ADC input-output transfer function 6
2.6 Offset error for a non-ideal ADC [1] 7
2.7 Gain error for a non-ideal ADC with 1 LSB maximum Error . . . 8
2.8 Differential non-linearity example [4] 9
2.9 Integral non-linearity example [4] 10
2.10 example of a missing code when a sudden DNL greater than 1

LSB occurs [1] . 11
2.11 Estimation of the input referred noise using the histogram method

for dc input (Figure 2.11 [5]) . 13
2.12 Example for hypothetical ADC SNR values for different input sig-

nal levels [5] . 14
2.13 Signal to noise and distortion ratio versus input amplitude and in-

put frequency (fck=50 MHz) [5] 15
2.14 example of SNR for segma-delta converter versus input amplitude,

reference voltage-ratio [5] . 16
2.15 ADC types . 18
2.16 Flash ADC [1] . 20
2.17 Pipline ADC [6] . 21
2.18 Basic circuit diagram of the successive approximation algorithm . 23
2.19 Timing (a) and flow diagram (b) of the successive approximation

technique . 24
2.20 First-order sigma-delta modulator 25
2.21 Dual Slope VTC [7] . 27
2.22 Current Starved VTC . 28

xiii

2.23 Vernier delay line-based TDC [8] [9] 29
2.24 Decision select SA TDC circuit 30
2.25 Decision select SA TDC cell (a) and timing diagram (b) 31
2.26 Compensation delays for decession-selection SA circuit 32

3.1 Evaluation of the binary "b3 b2 b1 b0" for the number ’9’ using
the new algorithm . 34

3.2 Flow chart for the proposed algorithm 35
3.3 Digital output of zero’s run intersecting one’s run using standard

algorithm (a) and using proposed algorithm (b) before bits correc-
tion . 37

3.4 Example 1 to convert analog quantity 10.1 to binary “1010” using
SAR-CD algorithm . 40

3.5 Example 2 to convert analog quantity 20 to binary “10100” using
SAR-CD algorithm . 41

3.6 Example 3 to convert analog quantity 28 to binary “11100” using
SAR-CD algorithm . 42

4.1 Bit unit cell . 44
4.2 The comparator circuit, stage 1 (left) and stage 2 (right) 46
4.3 Pulse generator circuit . 47
4.4 DFF based on SDFF . 47
4.5 FFT output . 48
4.6 Feed back synchronization problem 49
4.7 Successive approximation with continuous disassemble algorithm

system architecture. 51
4.8 System unit bit cell . 52
4.9 Simulation capture for the two MSB stages signals (landscape

view) . 53
4.10 Pulse generator circuit . 54
4.11 SDFF introduced in [10] . 55
4.12 Simulated DNL and INL for the second design 56
4.13 Calibration circuit connection diagram 59
4.14 Calibration algorithm diagram 60
4.15 Calibration for first MSB . 61
4.16 ENOB for the original circuit before calibration (square marker)

and after calibration (dot marker). Simulation is for different tem-
perature degrees (left) and different fabrication corners (right) . . 62

xiv

A.1 . 72
A.2 Exporting the ADC output from the results browser 72
A.3 Data should be sampled with the sampling frequency of operation 73
A.4 The Matab data fomate cell contists of 3 elements “data”, “text-

data” and “colheaders” . 74
A.5 Target Sine signal . 75
A.6 Effective number of bits for a 10-bit quantized sine signal 76
A.7 Effective number of bits for a 10-bit quantized sine signal 77
A.8 example of ADC output with non-linear defect 80
A.9 The DNL (red) and INL(blue) plots for the example signal 81
A.10 Running ADE XL from the target circuit schematic. 90
A.11 Running ADE XL from the target circuit schematic. 91
A.12 Creating a new test for corners simulation 92
A.13 Creating a new test for corners simulation 93
A.14 Model library setup . 94
A.15 Example of model file for TSMC13rf design kit for “tt” corner

cofiguration (nominal) . 95
A.16 Selecting the target temprature and fabrication corners 96
A.17 loading the simulation models from the test setup 97
A.18 Configuring the simulation temprature and fabrication corners . . 98
A.19 Start and monitor the simulation 99
A.20 Plotting the simulation results for all the corners 100
A.21 Plotting the simulation results for all the corners 101
A.22 Exporting signals to Matlab . 102
A.23 Exporting signals to Matlab . 103
A.24 Exported Matlab file view . 104
A.25 Exported Matlab file view . 105

xv

List of Symbols and
Abbreviations

Abbreviations

ADC Analog to digital converter.

DAC Digital to analog converter.

DFF D–flip-flop.

DNL Differential non-linearity.

ENOB Effective number of bits.

FFT Fast fourier transform.

INL Integral non-linearity.

LSB Least significant bit, the index of the bit of smallest weight in binary
word.

MSB Least significant bit, the index of the bit of largest weight in binary word.

MUX Multiplexer.

PVT Process-Voltage-Temperature , relating to their effects to circuit opera-
tion.

S&H Sample and hold.

SAR Successive approximation register algorithm.

SAR-CD Successive approximation register with continuous dis-assembly algo-
rithm.

xvi

SNDR Signal to noise and distortion ratio.

SNR Signal to noise ratio.

SOC System on chip.

SQNR Signal to quantization noise ratio.

TADC Time-based analog to digital converter.

TDC Time to digitial converter.

UWB Ultra wide band.

VFC Voltage to frequency converter.

VTC voltage to time converter.

xvii

This thesis is dedicated to my father (may allah forgive him).

xviii

Chapter 1

Introduction

Due to technology scaling, there is a great demand to replace the analog de-
signs with their digital counterparts. In Time-based Analog to Digital Converters
(TADC), the input voltage is first converted into an intermediate change in fre-
quency, pulse position or pulse width. This is performed by the first block of the
TADC, which is denoted by the Voltage to Time Converter (VTC). This interme-
diate change is digitized by the second block of the TADC which is denoted by
Time to Digital Converter (TDC). Most of the digital processing is conducted by
the TDC block taking all the advantages of the CMOS technology scaling.

Pulse width modulation-based TADC utilizes the difference between the pos-
itive edges of two signals or the width of a given input pulse and compares it
to the full scale. This kind of TDC has several applications such as: collecting
on-chip measurements [11], replacing phase or frequency detector in frequency
synthesis [12] and sensors interfacing [13]. Flash-like TDC promotes the usage
of delay lines [14] which can have resolution as low as unit delay elements [15].
However, increasing the number of bits means exponentially increasing the area
and power [14,15]. Several methods to increase the number of bits or the dynamic
range are investigated. In [16], the Most Significant Bits (MSBs) are calculated by
counting the number of complete reference clock cycles inside the measured in-
terval. Following, The Least Significant Bits (LSBs) are calculated using Vernier
delay lines.

On the other hand, implementations based on binary search algorithms take
place in applications that require low power and area with high resolution. In
[17, 18], the well-known Successive Approximation Register (SAR) is applied in
a cyclic manner. However, the existence of two signal branches imposes a critical
condition to keep the signals synchronized along the conversion, and the error in

1

one branch is accumulated each iteration. This error accumulation becomes worse
due to the conditioning on each path of the two signal paths.

In this work a new algorithm is introduced to move this dependency from
the time domain to the digital domain. In addition, the algorithm needs only one
signal path instead of two which relaxes the strict synchronization requirements.
Two circuit design approaches are presented to demonstrate the advantages of the
new algorithm.

This thesis is arranged as follows: Chapter II presents a brief review to the
main analog to digital conversion approaches and measures. Also, Time-based
analog to digital conversion concepts and circuit architectures are presented in the
same chapter. The proposed SAR-CD algorithm with derived proof is introduced
in Chapter III. Chapter IV proposes two circuit design architectures using the new
algorithm with detailed results and analysis. Chapter V introduces calibration
algorithm for the second circuit architecture to compete for the Process Voltage
Temperature (PVT) changes.

2

Chapter 2

Background

Analog to digital conversion is the process in which the input analog quantity is
approximated to a digital number to be stored in a machine. This analog quantity
can be a voice signal or a signal from a given sensor. The number of digits allo-
cated for each sample in the machine presents the accuracy of the approximation,
or what is called, quantization. Figure 2.1 presents a 3-bits ADC. Which means
that every sample of the input is stored in a bits with possible value of 8 levels.
The Digital to Analog Converter (DAC) performs the opposite function, which is
restoring the analog signal using the saved digital words.

2 BACKGROUND

2.1 Analog to digital converter

An ADC is a device that converts continuous analog input signals to discrete output

digital codes. Each digital code is a quantized version of the sampled analog signal at the

corresponding time instant. Figure ‎2-1 shows an example of the output of a 3-bit ADC.

The reverse operation is performed by a digital to analog converter (DAC) ‎[1].

000

001

010

011

100

101

110

111

D
ig

ita
l O

u
tp

u
t

Sampling instants

The sampled input
Digital output

Figure ‎2-1: Example of 3-bit ADC

2.1.1 Sampling

The ADC samples the input signal, as shown in Figure ‎2-2, with a rate called the sampling

frequency 𝑓𝑠. The sampling frequency must be at least equal to twice the maximum

frequency appearing in the input signal bandwidth (BW) 𝑓𝐵𝑊 ; this condition is referred

to as the Nyquist criterion ‎[2]

𝑓𝑠 ≥ 2 × 𝑓𝐵𝑊

Chapter 2

BACKGROUND

Figure 2.1: Example of 3-bits quantization [1]

3

2.1 ADC functions

2.1.1 Sampling
Sampling is the process of selecting periodic instances from the original signal to
be quantized and saved to the target machine. The sampling frequency should be
high enough to successfully present the original signal when restored using the
digital to analog converter. The sampling frequency should follow:

f s≥ 2∗ fBW (2.1)

Which is known as Nyquist rate. As fs is the sampling rate and fBW is the
input signal bandwidth. 2.2 (a) Presents an example of a continuous signal in the
frequency domain of a given bandwidth (2B). The signal is sampled with sampling
frequency (fs) higher than the Nyquist rate (b) and with a frequency smaller than
the Nyquist rate (c). The signal in (b) can be used to re-constructed the original
signal by applying a low pass filter to extract the signals below B. However, the
signal in (c) cannot be used to re-constructed the original signal again as lower
sampling frequency could not successfully present the signal.

Figure 2.2: Nyquist rate sampling [2]

4

2.1.2 Quantization
Quantization is the process in which the analog sample is approximated to one of
the available values to be stored in the target memory with digital representation.
In figure 2.3, the input analog sinewave (with scaled amplitude and DC offset of 4
for clarity purpose) is quantized into 8 level so that each sample would need 3 bits
to be stored (23 = 8). The quantization error is defined by the maximum difference
between the original sample and the quantized (approximated) one and is found to
be the half of the difference between each two levels; or in other words +/-LSB/2,
as LSB stands for Least Significant Bit, which is the minimum resolution of the
ADC. Figure 2.4 shows the quantization error for the signal in figure 2.3. As the
amplitude is scaled to 8, the LSB equals one amplitude unit. And the maximum
error in this case is (+\-) 1/2 = (+/-) LSB/2. In general:

LSB =
V f s
2n (2.2)

As V f s is the full scale value and n is the number of ADC bits.

2.1.2 Quantization

Quantization happens when a continuous range of inputs is translated to the same
output code as shown in Figure 2.5. The quantization process leads to quantization error
or what is denoted by quantization noise. Thus, the quantization process has an undesired
effect. Quantization noise is the main source of error in the ideal ADCs. The quantization
error can be defined as the difference between the original signal and the quantized version
of it as shown in Figure 2.6 and it ranges from −0.5∗LS B : 0.5∗LS B as shown in Figure
2.7, where LSB is the Least Significant Bit (LSB). However, the quantization error can
be reduced, but not eliminated, by using higher resolution ADC [1].

Figure 2.5: Original and Quantized signal

Figure 2.6: Quantization error

6

Figure 2.3: Quantization of analog sinewave to 3-bit [3]

5

Figure 2.4: Quantization Error of +/-(LSB/2) [3]

Increasing the number of bits for each sample means increasing the available
quantization levels by a power of 2, hence, increasing the accuracy.

Figure 2.5: Ideal ADC input-output transfer function

2.2 ADC static characteristics
A linear ADC is the one in which the change in output digital word depends only
on the amount of change of the input voltage along the designed input range. The
characteristic is found to be as a linear relation between the input and the out-
put. Figure 2.5 presents an ideal input-output transfer function for a 3-bits ADC.

6

Deviations from the ideal transfer function in real circuits are characterized in 4
main static characteristics [5]: 1- Offset error, 2- Gain error, 3-Differential Non-
Linearity and 4-Integral non linearity. The next sub-sections reviews all the four
charaterization measures.

2.2.1 Offset error
The offset error is defined and the deviation of the input-output characteristic line
from the ideal one as shown in figure 2.6. This offset can be positive or negative.
Usually, minor run time calibration can fix error.

number of bits. The input voltage range is divided to equivalent code width. Ideal Code
Width (ICW) is the portion of the continuous input voltage that can be defined as follow

ICW = LS B =
Vre f h−Vre f l

2n (2.2)

Code =
Vin−Vre f l

LS B
(2.3)

where Vin is the input voltage [9].

2.2.1.3 Offset error

The offset error can be defined as the deviation of the actual characteristic line from the
ideal characteristic line as shown in Figure 2.8. The actual characteristic line can be shifted
from the ideal one to the right or to the left [1, 9, 10]. This offset error is introduced by
the offset voltage between the positive and negative terminals of the operational amplifier
due to the mismatch between both terminals [11].

Figure 2.8: ADC offset error [1]

2.2.1.4 Gain error

The gain error is defined as the deviation between the ideal characteristic line slope
and the actual characteristic line slope as shown in Figure 2.9 after removing the offset
error[1, 9, 10].

8

Figure 2.6: Offset error for a non-ideal ADC [1]

2.2.2 Gain error
The Gain error is defined as the deviation of the input output graph slope from the
ideal case. Figure 2.7 shows an example of a gain error which causes a maximum
error of 1 LSB. The error can be positive or negative. This type of error may
require more complicated calibration techniques in comparison to the offset error.

7

Figure 2.7: Gain error for a non-ideal ADC with 1 LSB maximum Error

2.2.3 Differential Non Linearity
It is defined as the deviation of the step size of the data converter from the ideal
width of the bins. Assuming Xkis the transition point between successive codes
k−1and k, then the width of the bin k is :

4r(k) = XK+1−XK

Then the differential non-linearity is:

DNL(k) =
4r(k)−4
4 (2.3)

as4 is the ideal step size.
The maximum differential nonlinearity is the maximum of |DNL(k)| for all k.

Usually, DNL is a measure that can be given the ADC datasheet in which it simply
referred to the maximum differential non linearity.

8

Figure 2.10: Example on differential non-linearity

2.2.1.6 Integral non-linearity

The integral non-linearity (INL) is the deviation of the actual transfer function from
the straight line as shown in Figure 2.11. The INL is given by

INL(k) =
k∑
DNL

i=0

(2.5)

10

Figure 2.8: Differential non-linearity example [4]

2.2.4 Integral Non-Linearity
The integral non-linearity is the deviation of the ADC transfer function from the
ideal transfer function. It also can be expressed as the summation of all the DNL
across all the input output transfer function:

INL(k) =
k

∑
i=0

DNL (2.4)

9

Figure 2.11: Example on integral non-linearity

2.2.1.7 Missing codes

ADC might skip one of its output codes such as in Figure 2.12. Missing some of the
output codes is an undesired phenomenon. This phenomenon affects the overall linearity
of the ADC badly. If the maximum DNL is smaller than 1 LSB or the maximum INL is
smaller than 0.5 LSB, then the ADC is guaranteed not to have a missing codes [1]. So,
the INL and DNL are important measures for any ADC.

11

Figure 2.9: Integral non-linearity example [4]

2.2.5 Missing Codes
The ADC can skip some codes from the designed input-output transfer function.
This can be indicated spotted by a sudden increase in the DNL for more than 1
LSB. A maximum DNL less than 1 DNL and INL value close to this number
guarantees that this error cannot happen.

10

Figure 2.12: Example of Missing Codes [1]

2.2.2 Dynamic specifications

In this section we are going to introduce dynamic, time dependent, specifications for
ADCs.

2.2.2.1 ADC conversion time and maximum sampling rate

ADCs have an important metric called conversion time. Conversion time is the time
required to acquire an analog input and convert it to a corresponding output code. If con-
version time is small, then more samples are converted at the same time interval. The
inverse of the conversion time is the maximum sampling rate that is defined as the maxi-
mum number of samples that can be converted continuously [1].

2.2.2.2 Signal to noise ratio

Signal to Noise Ration (SNR) is the ratio between the input signal power to the noise
power at the output. However, the output noise consists of circuit noise and quantization
error [1].

S NR = 10∗ log(
Full scale input power

Quantization noise power + Circuit noise power
) dB (2.6)

Ignoring the circuit noise power and taking into account the quantization noise power
only the SNR is given by:

S NR = 6.02∗n+1.76 (dB) (2.7)

As shown in (2.7), as the number of bits, n, increases, the SNR increases.

12

Figure 2.10: example of a missing code when a sudden DNL greater than 1 LSB
occurs [1]

2.3 ADC Dynamic characteristics
The dynamic performance determines the frequency response and speed of the
analog components of data converters. The performance is a concern when the
input bandwidth and the conversion rate are high. The quality indicator of good
dynamic feature is its capability to remain unchanged within the entire target range
of operation. In the next subsections, some of the dynamic specifications are pre-
sented; [5] includes many other measure that may be an interest for the designer.

2.3.1 Analog Input Bandwidth:
The analog input bandwidth specifies the frequency at which a full scale ADC
input leads to an output 3db below its low frequency value.

11

2.3.2 Input Impedance
The input impedance specifies the impedance between the input terminals of the
ADC. At low frequency the input impedance is a resistance: ideally, it is infinite
for voltage inputs and zero for current inputs (thus leading to an ideal measure of
voltage or current.) At high frequency the input impedance is dominated by its
capacitive component. Often, a switched capacitance structure performs the input
sampling. In this case the specification provides the equivalent load at the input
pin. At very high frequency the input impedance of the ADC must be the matched
termination of the input connection.

2.3.3 Equivalent input referred noise
It is a measure of the electronic noise produced by the ADC circuit components.
The result is that for a constant dc input the output is not fixed but there is a distri-
bution of codes centered around the output code nominally encoding the input. For
large number of samples, the noise distribution is approximately Gaussian. The
standard deviation of the distribution defines the equivalent input referred noise.
It is normally expressed in terms of LSBs or rms voltage. Figure 2.11 shows the
histogram at the output of a possible data converter [5].

2.3.4 Maximum sampling frequency and conversion

time
The maximum sampling frequency defines the maximum rate the input can be
sampled and converted to the corresponding digital form. The conversion time
is the time required for the ADC to sample and convert one sample. Usually,
the conversion time is the inverse of the sampling rate unless the architecture is
pipelined. Both measures are important and define the application the ADC can
serve.

12

Dynamic Specifications 61

The input is a step signal applied at time t = 0. The final value is defined
to occur a long time after the beginning of the step.

Cross-talk: measures the energy that appears in a signal because of unde-
sired coupling with other signals. In addition to coupling at the IC level a
poor printed circuit board design can cause crosstalk. For instance, traces
carrying critical signals running in parallel on the same layer of a PCB cause
interferences.

Aperture uncertainty (Clock Jitter): is the standard deviation of the sam-
pling time. It is also called aperture jitter or timing phase noise. It is
normally assumed that clock jitter is like a noise with a white spectrum.

Digital to Analog Glitch Impulse: is the amount of signal injected from
the digital inputs to the analog output when the inputs change state. The
maximum normally occurs at half scale when the DAC switches around the
MSB and many switches change state, i.e., from 01 · · · 11 to 10 · · · 00. The
parameter is the integral of the glitch area and is measured in V-sec or A-sec.

Glitch Power: is similar to the previous DAC specification but its cause
is more general. It can be due to a delay between bit controls or to timing
mismatch in the analog sections. Normally its maximum occurs at half
scale. Similarly to the previous specification it is the integral of the glitch
area and is measured in V-sec or A-sec.

Equivalent input referred noise: is a measure of the electronic noise pro-
duced by the circuits of the ADC. The result is that for a constant dc input
the output is not fixed but there is a distribution of codes centered around
the output code nominally encoding the input. With a large number of out-
put samples the code histogram is approximately Gaussian. The standard
deviation of the distribution defines the equivalent input referred noise. It

Vin= ·VFS

x x+1 x+2 x+3x-1x-3 x-2

0.63 LSB

Digital
Code

2N
x

Figure 2.11. Estimation of the input referred noise using the histogram method for a dc input.
Figure 2.11: Estimation of the input referred noise using the histogram method for
dc input (Figure 2.11 [5])

2.3.5 Signal to Noise Ratio (SNR)
is the ratio between the power of the signal (normally a sinewave) and the total
noise produced by quantization and the noise of the circuit. The SNR accounts
for the noise in the entire Nyquist interval. The SNR can depend on the frequency
of the input signal and it decreases proportional to the input amplitude. Figure
2.12shows the SNR of a hypothetical 12-bit data converter with 50 MHz sampling
frequency. The SNR for a −0.5 dB input is 67 dB. The loss in the SNR shows that
the noise caused by the electronics is larger than the quantization noise. When
the input signal is −20 dB then, as expected, the SNR is 48 dBs. Observe that the
SNR performances versus frequency are good: the SNR is almost constant in the
entire Nyquist range. Also, it only drops a few dB for frequencies in the second
Nyquist zone. Therefore, the hypothetical converter of figure 2.12 is suitable for
under-sampling a signal whose spectrum is in the second Nyquist zone.

13

62 Data Converters Specifications

is normally expressed in terms of LSBs or rms voltage. Fig. 2.11 shows the
histogram at the output of a possible data converter affected by a 0.63 LSB
noise.

Signal-to-Noise Ratio (SNR): is the ratio between the power of the signal
(normally a sinewave) and the total noise produced by quantization and the
noise of the circuit. The SNR accounts for the noise in the entire Nyquist
interval. The SNR can depend on the frequency of the input signal and it
decreases proportional to the input amplitude. Fig. 2.12 shows the SNR of
a hypothetical 12-bit data converter with 50 MHz sampling frequency. The
SNR for a −0.5 dB input is 67 dB. The loss in the SNR shows that the noise
caused by the electronics is larger than the quantization noise. When the
input signal is −20 dB then, as expected, the SNR is 48 dB. Observe that the
SNR performances versus frequency are good: the SNR is almost constant
in the entire Nyquist range. Also, it only drops a few dB for frequencies in
the second Nyquist zone. Therefore, the hypothetical converter of Fig. 2.12
is suitable for under-sampling a signal whose spectrum is in the second
Nyquist zone.

Signal-to-Noise-and-Distortion Ratio (SINAD or SNDR): is similar in
definition to the SNR except that non linear distortion terms, generated by
the input sine wave, are also accounted for. The SINAD is the ratio between
the root-mean-square of the signal and the root-sum-square of the harmonic
components plus noise (excluding dc). Since static and dynamic limitations
cause a non-linear response the SINAD is dependent on both the amplitude
and frequency of the input sine wave. Fig. 2.13 shows the SINAD for the

INPUT FREQUENCY – Hz

70

65

30
100K 100M1M 10M

60

55

35

50

45

40

B
d

–
R

N
S

–0.5 AMPLITUDE

–6.0 AMPLITUDE

–20.0 AMPLITUDE

Figure 2.12. Possible SNR versus the input frequency at different input levels.
Figure 2.12: Example for hypothetical ADC SNR values for different input signal
levels [5]

2.3.6 Signal to Noise and Distortion Ration (SNDR)
Is similar in definition to the SNR except that nonlinear distortion terms are
counted for. Usually and input sine wave can easily spot the nonlinear effect. The
SINAD is the ratio between the root mean square of the signal and the root sum
square of the harmonic componentss plus noise (dc component is not considered).
Since static and dynamic limitations cause a nonlinear response, the SINAD is de-
pendent on both the amplitude and frequency of the input sine wave. Figure 2.13
shows the SNDR of a hypothetical 12-bit data converter with 50 MHz sampling
frequency. The SNDR for a -0.5 dB input is 67 dB. The loss in the SNDR shows
that the noise caused by the electronics is larger than the quantization noise. When
the input signal is -20 dB then, as expected, the SNDR is 48 dBs. It is good to note
that the SNDR performances are good (almost constant) for the Nyquist range. It
is also shown that the harmonic terms in the SNDR are negligible if the input is
-20 dBFSor less. Larger input amplitudes bring about distortion especially at high

14

frequencies. Notice that the SNDR significantly degrades in the second Nyquist
zone.Dynamic Specifications 63

INPUT FREQUENCY – Hz

70

65

30
100K 100M1M 10M

60

55

35

50

45

40

B
d

–
S

IN
A

D

–0.5 AMPLITUDE

–6.0 AMPLITUDE

–20.0 AMPLITUDE

Figure 2.13. Signal-to-Noise-and Distortion Ratio versus input amplitude and input frequency
(fck = 50 MHz).

same hypothetical converter of Fig. 2.12. The SINAD shows that harmonic
terms are negligible if the input is −20 dBFS or less. Larger input am-
plitudes bring about distortion especially at high frequencies. Notice that
the SINAD significantly degrades in the second Nyquist zone; thus, the use
of this particular converter could be problematic when used in the second
Nyquist zone and high-linearity is required.

Dynamic Range: is the value of the input signal at which the SNR (or the
SINAD) is 0 dB. The parameter is useful for some types of data converters
that do not obtain their maximum SNR (or SINAD) at 0 dBFS input. This
typically happens in sigma-delta converters. Fig. 2.14 shows a typical plot
of the SNR versus the input amplitude for a sigma-delta ADC. The peak of
the SNR is at 74 dB while the dynamic range is 80 dB. Therefore, the peak
of the SNR occurs approximately at −6 dBFS .

Effective-Number-of-Bits (ENOB): measures the signal-to-noise and dis-
tortion ratio using bits. SINAD in dB and ENOB are linked by

ENOB =
SINADdB − 1.76

6.02
. (2.6)

Harmonic Distortion (HD): is the ratio between the root-mean-square of
the signal and the root-mean-square of harmonic components including
aliased terms. Unless otherwise specified the HD accounts for the sec-
ond through tenth harmonics: it is normally assumed that harmonic terms
higher than the tenth have negligible effects. If fin is the frequency of

Figure 2.13: Signal to noise and distortion ratio versus input amplitude and input
frequency (fck=50 MHz) [5]

2.3.7 Dynamic range
Is the input amplitude at which the SNR (or SNDR) is 0 dB. Usually it is useful
for the types of ADC that does provide information about the SNR (or SNDR) at
0 dBFS(like sigma-delta converters). Figure 2.14 shows a typical plot of the SNR
versus the input amplitude for a sigma-delta ADC. The dynamic range is amost
80db while the peak SNR is at -6 dBFS of the full scale.

15

64 Data Converters Specifications

-10

0

10

20

30

40

50

60

70

80

-90 -80 -70 -60 -50 -40 -30 -20 -10 0
Input Amplitude/VRef [dB]

SN
R

[dB
]

Figure 2.14. Typical SNR versus the input amplitude for sigma-delta converters.

fin – MHz

–60
0 50

c
Bd

100 150 200 250

–65

–70

–75

–80

–85

–90

–95

2-ND HARMONIC

3-RD HARMONIC

WORST OTHER

1-st 2-nd 3-rd 4-th 5-th

Vin= -1 dBFS

Figure 2.15. Harmonic components as a function of the input frequency.

Figure 2.14: example of SNR for segma-delta converter versus input amplitude,
reference voltage-ratio [5]

2.3.8 Effective Number Of Bits (ENOB)
This measure is a mirror to the Signal to Noise Ratio (SNR). It presents how much
the system can deliver information about the input signal. As noise has many
sources and is affected by many measures, we will focus only on the error from
the quantization noise, Signal to Quantization Noise Ratio (SQNR) [5].

As shown in figure 2.4, the quantization noise is in the range of +-LSB, then
the probability distribution function can be expressed as:

P(εq) =
1
4 , f or −4

2
< εq <

4
2

P(εq) = 0 , otherwise (2.5)

As εqpresents the error, and4 presents the maximum error, which equals one
LSB in our case.

16

To calculate quantization noise power, an average integration for εq should be
performed as

PQ =

∞∫

−∞

ε
2
q .P(εq)dεq =

4/2∫

−4/2

ε2
q

4 dεq =
42

12
(2.6)

This relation indicates that the number of bits for the system affects the quan-
tization noise; as the number of bits increases, the quantization noise decreases, as
4 is decreased too.

Assuming an input sinewave signal of maximum amplitude Amx, the signal
power can be expressed as

Psin =
1
T

T∫

0

A2
mx

4
sin2(2.π. f .t)dt =

A2
mx

8
=

(4.2n)2

8
(2.7)

As f is the sinewave operating frequency, n is the number of bits and T is the
signal period.

From eq.2.7 and eq.2.6, the ratio between the signal and quantization noise
power unveils:

SQNRsine,db = (6.02.n + 1.78) (2.8)

eq.2.8 presents a quick and useful relation between the ideal number of bits
for an ideal ADC that can presents the given SQNR (or ideal SNR) of the system.

Estimating the ideal number of bits, or in other words ENOB, indicates how
far the target ADC system is from the ideal one. When the SQNR is replaced by
the general SNR, which counts for the quantization noise and all the noise in the
system, when n presents the ENOB, eq.2.8 can be re-phrased as

ENOBsine =
SNRtot,db−1.78

6.02
(2.9)

This relation is a good and accurate estimate for sinewave ENOB value when
SNR is known as in section A.2.

%

17

2.4 Traditional ADC types
ADCs are divided into twomain categories as shown in Figure 2.14. The first category

is direct conversion ADCs; these ADCs convert the analog input voltage directly to output
codes. The second category is indirect conversion ADCs. Indirect conversion ADCs
convert the analog input voltage to intermediate form like time or frequency. Then, this
intermediate form is converted to digital code by digital circuits.

In consonance with sampling frequency each category can be subcategory into two
subcategories, Nyquist rate ADCs subcategory and Oversample ADCs. Nyquist rate
ADCs sample at rate equal to double the maximum input frequency in order to satisfy
Nyquist criteria [7], to reconstruct the sampled signal correctly. Oversample ADCs sam-
ple at a rate much higher than Nyquist rate. Thus, this kind of ADCs is suitable for small
input frequencies and high resolution[1, 7].

Flash ADC and Successive Approximation register ADC (SAR-ADC) are examples
on Nyquist rate direct conversion ADCs and Sigma-Delta modulator ADC is an example
on oversampling direct conversion ADC. Single and dual slope ADCs are example on
Nyquist rate indirect conversion ADCs. Voltage controlled oscillator ADC is an example
on Oversample indirect conversion ADC. In the following subsections the aforementioned
examples will be illustrated [1, 2].

Analog to
Digital

Converters

Direct
Conversion

ADCs

Indirect
Conversion

ADCs

Nyquist
Rate ADCs

Oversample
ADCs

Nyquist
Rate ADCs

Oversample
ADCs

Figure 2.14: ADC Types

14Figure 2.15: ADC types

2.4 Types of Analog to Digital Converters
(ADC)

Analog to digital converters are divided in to two categories, direct conversion
ADCs and indirect conversion ADCs. A direct conversion ADC converts the in-
put analog voltage to the corresponding digital representation directly in one step.
However, an indirect conversion ADC converts the input analog voltage to an in-
termediate form presented as a change in the frequency or characteristic in a pulse
like the pulse position or width.

Each category can be divided into two sub-categories. A direct conversion or
an indirect conversion ADC can be a Nyquist rate ADC or and oversampling ADC.
In Nyquist rate ADCs, the input analog voltage is sampled at a rate higher, but
close to, than double the input maximum frequency, which is called the Nyquist

18

rate. In contrast, oversampling ADCs samples the input signal at a rate much
higher than the Nyquist rate, 4-10 times.

Oversampling ADCs can reject more noise from the band of operation so it
can deliver more SNR. However, the high sampling requirement, relative to the
input signal rates, makes it best fitted to the applications when high resolution
is required with acceptable low sampling rates. On the other hand, Nyquist rate
ADCs can deliver higher sampling rates in comparison to the oversampling ADCs.

Successive Approximation Register ADC (SAR-ADC) and flash ADC are ex-
amples of the Nyquist rate direct conversion ADC. Sigma-Delta modulator ADC
is an example for oversampling direct conversion ADCs. Dual slope ADC is an
example of Nyquist rate-indirect conversion ADCs. Voltage controlled oscillator
ADC is an example of oversampling-indirect conversion ADCs [1]. Next, some
examples of ADC types are presented.

2.4.1 Nyquist rate ADCs
2.4.1.1 flash ADC

Flash ADC is one of the fastest types of ADC [19]. In this type of ADC, the
analog voltage input sample is compared with 2D − 1 reference values using 2D −
1 comparators, as D is the ADC number of bits. As we can see from figure 2.16,
the reference voltages are generated using a resistive divider with 2D-1 resistors.
Each reference voltage is one LSB greater than the reference voltage immediately
below it. Each reference voltage is connected to one of the two inputs of each
comparator, while the other input is connected to the analog voltage input sample.
Each comparator produces a "1" when the analog input voltage sample is higher
than the reference voltage connected to it. Otherwise, the comparator produces
"0". The comparators produce thermometer code. The thermometer code is then
decoded to the appropriate digital output code.

It can be noticed that this type of ADCs requires big circuit and high power
consumption. For each step, one LSB, there should be a comparator and a resistor.
This drawback makes flash converters typically impractical for resolution greater
than 8 bits (255 comparators). Moreover, the large number of comparators con-
nected to input voltage results in a large parasitic capacitance that load the input
terminal and limit the speed of the converter and requires a power-hungry buffer
at the input terminal

19

CHAPTER 2. BACKGROUND

Reference

voltages

Analog

input

Comparator

Digital

Output

T
h

e
rm

o
m

e
te

r
to

b
in

a
ry

 d
e
c
o

d
e
r

R

R

R

R

R

R

R

R

R

Ref

Thermometer Code

Figure 2.6: Flash ADC

2.5.2 Oversampling direct-conversion ADCs

The oversampling ADC is the ADC type in which the sampling frequency is much
higher than the input signal frequency [6]. The oversampling conversion technique
have become popular as it avoids many of the difficulties encountered with conven-
tional method for analog-to-digital conversion, such as use of anti-aliasing analog

9

Figure 2.16: Flash ADC [1]

20

2.4.1.2 Piplelined ADC

Pipelined ADC divides the conversion job into simple tasks which can be pipelined
in many stages. Usually, each stage resolves for one or few digital bits. Each stage
can be a small ADC of the flash type. The architecture throughput is restricted
by the delay of one stage only (maximum stage delay), hence, the throughput is
comparable to the flash ADC sampling. However, a typical pipelined architecture
consumes less power compared to the corresponding flash ADC.

As shown in figure 2.17, pipelined ADC consists in general of K stages. Each
stage, except the last stage, consists of n bits flash ADC, n bits DAC, S&H, sub-
tractor, and amplifier. The last stage is a flash ADC. In the first stage the S&H
block samples and hold the analog input. Then, this input is fed to the n-bits flash
ADC to convert it to n-bit code. Afterwards, the n-bits are fed to n-bits DAC to get
intermediate analog voltage. Then, the intermediate analog voltage is subtracted
from the original analog input to this stage to produce a residual voltage. This
residual voltage is then amplified to the double and is fed to the next stage to get
the next n-bits resolution and so on. While stage number two is working on the
first sample, stage number one samples new analog input; this pipelining is the
main reason for the high throughput. Finally, all the N-bits have to be aligned
because they were generated at different times [1, 20].

Figure 2.18: Binary Search Algorithm for 4-bit ADC

2.4.1.3 Pipelined ADC

Pipelined ADC is comparable to flash ADC from the throughput perspective and com-
parable to the SAR-ADC from the resolution perspective. However, the pipelined ADC
consume less power and area than the flash ADC.

Figure 2.19: System block diagram for pipelined ADC

18

Figure 2.17: Pipline ADC [6]

21

2.4.1.3 Successive approximation ADC

Successive Approximation Register (SAR-ADC) depends on the successive com-
parison of the input quantity to the binary weights of the digital representation
[20]. Figure 2.18 shows the basic SAR ADC. It consists of a comparator, DAC,
and Successive Approximation Register (SAR) logic block. SAR-ADC takes an
iterative approach to determine the input voltage. One bit is calculated for each
iteration starting from the Most Significant Bit (MSB). First, the Most Significant
Bit (MSB) in SAR starts with one “logic 1”. The DAC converts this value to its
corresponding voltage, which is the mid-scale voltage, then the comparator com-
pares the input voltage with the reference voltage. If the comparator produces
zero, input is smaller than the reference voltage, then the MSB will be erased.
Otherwise, the MSB will remain one. After that, the next bit to the MSB will be
one and the whole process is repeated, until all bits in SAR are known and the End
Of Conversion (EOC) signal becomes one [1].

22

2.4.1.2 Successive Approximation Register ADC

Successive Approximation Register (SAR-ADC) is one of the most successful ADCs
and it represents a considerable portion of the market [12]. As shown in Figure 2.16, the
basic SAR-ADC consists of comparator, DAC, and Successive Approximation Register
(SAR). SAR-ADC takes an iterative approach to determine the input voltage. This iter-
ative approach start from the MSB to the LSB with rate equals to 1 bit/clock. First, the
Most Significant Bit (MSB) in SAR starts with one “logic 1”. The DAC converts this
value to its corresponding voltage, which is the mid-scale voltage, then the comparator
compares the input voltage with the reference voltage. If the comparator output is one,
then the MSB will be erased. Otherwise, the MSB will remain one. After that, the next
bit to the MSB will be one and the whole process is repeated, until all bits in SAR are
known and the End Of Conversion (EOC) signal becomes one [1].

SAR

DAC

D0D1D2DN-2DN-1

Clock EOC

VREF

S/HVin

Comparator

Figure 2.16: Successive Approximation Register ADC

SAR-ADC implements the binary search algorithm as shown in Figure 2.17 and
Figure2.18. SAR-ADC works on two different clocks. The internal clock, which works
on several Megahertz, and slower external clock. The external frequency is slower than
the internal frequency by N, where N is the number of bits. This reduction in external
frequency is the main drawback in this ADC [12].

16

Figure 2.18: Basic circuit diagram of the successive approximation algorithm

For a given dynamic range 0 − VFS the MSB distinguishes between input sig-
nals that are below or above the limit VFS/2. Therefore, comparing the sampled
input with VFS/2 obtains the first MSB bit as illustrated by the timing scheme of
Figure 2.19 (a). The knowledge of the MSB restricts the search for the next bit to
either the upper or lower half of the 0 − VFS interval. Consequently, the threshold
for determining the second bit is either VFS/4 or (as it is for the case of the figure)
3VFS/4. After this, a new threshold is chosen and the next bit can be estimated.
The timing diagram of figure 2.19 describes the operation for three bits but, obvi-
ously, the search can continue for additional clock cycles to determine more bits.
The voltages used for the comparisons are generated by a DAC under the control
of a logic system known as the successive approximation register (SAR) as shown
in figure 2.19 (b). Notice that the input common mode range of the comparator
must equal the dynamic range of the converter [5].

23

The method uses one clock period for the S&H and one clock period for the
determination of every bit thus requiring (n + 1) clock intervals for an n-bit conver-
sion. Sometimes, if the S&H settling period is significantly longer than the time
required for each comparison, then it can be convenient to use two clock periods
for the sampling and one per every bit totaling (n + 2) clock intervals for an n-bit
conversion.

2.4.2 Oversampling ADCs
Oversampling conversion technique have become popular as it avoids many of
the difficulties encountered with conventional method for analog-to-digital con-
version, such as the use of anti-aliasing analog filters [21].

178 Nyquist Rate A/D Converters

that are difficult to obtain especially for the offset and the clock con-
trol. Notice that the number of bits is not used in calculations.
The use of equation (4.32) shows that for having an SFDR 3 dB less
than the SNR it is necessary to have a clock misalignment that verifies
the condition

δ2
misω

2
in · Pin = NPQ

yielding

δmis =

√
4 · 8√

12 · 2π · 120 · 106210
= 2.11ps.

The result is not particularly critical but for higher resolution or
higher input frequencies the issue becomes problematic and would
require a special care in the clock distribution.

4.7 SUCCESSIVE APPROXIMATION CONVERTER
The successive approximation algorithm performs the A/D conversion over

multiple clock periods by exploiting the knowledge of previously determined
bits to determine the next significant bit. The method aims to reduce the circuit
complexity and power consumption using a low conversion rate by allowing
one clock period per bit (plus one for the input sampling).

For a given dynamic range 0 − VFS the MSB distinguishes between input
signals that are below or above the limit VFS/2. Therefore, comparing the
sampled input with VFS/2 obtains the first bit as illustrated by the timing scheme

111

110

101

100

011

010

001

000

100

110

101

VS&H VDAC

tSampling MSB LSBBit #2

0

VFS

VFS/2

Vin

> 0

SVDAC

SAR

YES NO

-
+

New

Guess

conf reset

(a) (b)

Figure 4.28. Timing (a) and flow diagram (b) of the successive approximation technique.

Figure 2.19: Timing (a) and flow diagram (b) of the successive approximation
technique

2.4.2.1 Sigma Delta ADCs

The basic concept of the sigma-delta modulator is the use of high sampling rate
and feedback for improving the effective resolution of the quantizer [21]. Sigma-
delta modulator modulates the analog signal into a digital code, usually single-bit
code, at a frequency much higher than the Nyquist rate. The use of high frequency
modulation and demodulation eliminates the need for sharp cutoffs in the analog
anti-aliasing filter at the input of the ADC. Figure 2.20 shows the simplest sigma-
delta modulator, the first-order sigma-delta modulator. The input to the circuit

24

feeds to the quantizer via an integrator, and the quantized output is fed back to be
subtracted from the input signal [22].

CHAPTER 2. BACKGROUND

filters [9].

The basic concept of the sigma-delta modulator is the use of high sampling rate
and feedback for improving the effective resolution of the quantizer [9]. Sigma-
delta modulator modulates the analog signal into a digital code, usually single-bit
code, at a frequency much higher than the Nyquist rate. The use of high frequency
modulation and demodulation eliminates the need for sharp cutoffs in the analog
anti-aliasing filter at the input of the ADC. One of the most important sigma-delta
modulator characteristics is the oversampling ratio (OSR), which is defined as the
ratio of the sampling frequency fs to the Nyquist frequency. Figure 2.7 shows the
simplest sigma-delta modulator, the first-order sigma-delta modulator. The input
to the circuit feeds to the quantizer via an integrator, and the quantized output is
fed back to be subtracted from the input signal [10].

Integrator++

-

x(t) y[n]
ADC

(quantizer)

DAC

Figure 2.7: First-order sigma-delta modulator

We will analyze the first-order sigma-delta ADC by using the equivalent circuit
shown in Figure 2.8. For simplicity, we replace the nonlinear operation of the
ADC with a linear one through the addition of signal e[n], which represents the
quantization error of the internal quantizer. Moreover, we assume both the ADC
and DAC have a gain of unity. As this is a sampled-data circuit, we represent the
integration by accumulation, also with unity gain.

We can write the output of the accumulator as

w[n] = (x[n]− y[n− 1]) + w[n− 1] (2.3)

10

Figure 2.20: First-order sigma-delta modulator

2.5 Time-based ADC (TADC)
There is a global need to convert the analog designs with the digital counter parts.
One of the many reasons is the noise resistance and the flexibility to move from
one technology to another, easily. Also, it is becoming an important target for
Systems On Chip (SOC) designs to consume less power and chip area for various
applications. This increases the need for Ultra-Wide-Band (UWB) ADCs with
higher sampling rates in which we can push more analog blocks towards the digital
domain. Time Based ADC is a special kind of data converters in which the input
voltage is first transformed into intermediate change in frequency, pulse position
or pulse width using Voltage to Time Converter (VTC) circuit, and then Time to
Digital Converter (TDC) circuits follows by making the rest of the conversion to
the corresponding digital representation.

2.5.1 TADC based on frequency modulation
In this type, the voltage is converted to change in frequency of an oscillator. In
this type the VTC is called VFC converter. The TDC then converts the modulated
frequency to the corresponding digital words by a mean that detects the rate of
frequency change. A simple criterion is to make a counter counts the number of
positive edges of the oscillating signal in the sample period. One major disadvan-
tages of this type is the power consumption.

25

2.5.2 TADC based on pulse position modulation
It is very similar to the TADC based on frequency modulation except that in the
pulse position-based converters use the pulse position inside the sample period as
the time signal. It is rarly used though because it is very similar in design to the
TADCs based on pulse width modulation.

2.5.3 TADC based on pulse width modulation
TADCs based on the pulse width modulation are the most popular type of the time
based ADCs and is the target for this work. In this type a VTC is used to convert
the signal voltage to changes in pulse width of a reference signal. In the second
block, the TDC, the pulse width change is converted to the corresponding digital
words. Many designs for VTC and TDC of this type exists. Examples of each part
follow.

2.5.3.1 Pulse-width VTC examples

Dual slope VTC Figure 2.21 illustrates dual slope TADC. Dual slope ADC con-
sists of an integrator, comparator, counter, and control logic. First, the analog
input,Vin, is integrated to produce the output voltage,Vout, in the first part of the
clock cycle, with T1period2.10. Vout value depends on the analog input voltage as
in equation. After time T1, the switch converts source from −Vin to Vre f and at
this point the discharging starts until the Vout reach zero voltage (detected by the
comparator). The discharging time depends on Vout which depends on Vin. Then,
the discharging time will depend on Vin as in 2.13.

Vout =
∫ T1

0
−−Vin

RC
dt =

Vint
RC
|0→T1 (2.10)

Vout =
VinT1

RC
(2.11)

Vout =−
∫ t

T1

Vre f

RC
dt +

VinT1

RC
(2.12)

Vout =
Vre f (T1−T2)

RC
+

VinT1

RC
(2.13)

The discharging will continue until Vout becomes zero. Substituting Vout by zero
in 2.13 leads to equation 2.14 where T2 = t−T1.

26

T2 =
VinT1

Vre f
(2.14)CHAPTER 2. BACKGROUND

+

-

+

-
Control Logic

Counter

(D bits)

Output Buffer

-Vin

Vref

Clock
CLK

CLR

CLK

Dn D6 D5 D4 D3 D2 D1 D0

R

C

Vout

Figure 2.11: The dual slope ADC

At the end of the first phase the integrator output will be given by

Vout =
VinT1

RC
(2.16)

In the second phase, the input of the integrator is switched to the reference
voltage Vref . This means that the slope is fixed during this phase, unlike the first
phase, which has variable slope. This results in a variable duration T2 for the second
phase. The integrator output starts to go down until it reaches zero. Again we can
write Vout as

Vout = −
∫ t

T1

Vref
RC

dt+
VinT1

RC
=
−Vref
RC

(t− T1) +
VinT1

RC
(2.17)

To calculate the value of T2, we equate Vout to zero, giving:

T2 = T1
Vin
Vref

(2.18)

In the beginning of this phase, the counter is first reset and then start to count
during the time in which the integrator output is greater than zero. The value of
the time constant RC does not affect the digital output, as we can see from equation
(2.18). However, this value should be properly chosen such that it does not cause
clipping of the integrator output in the first phase [6].

15

Figure 2.21: Dual Slope VTC [7]

The generated pulse width depends on the input signal. The counter in the sec-
ond part of the system (counter and the output buffer) is used to converts the output
pulse to the corresponding digital words performing the operation of a TDC. The
designer can add the TDC of his choice instead. Dual slope TB-ADC is used in
high resolution requirements, but in applications with low data rates. It has small
offset and gain errors comparable to other ADC types [7]

Current starved-based VTC In figure 2.22, the input voltage, Vin, controls the
delay of the falling edge of the clock signal, Vclk, through the inverter (Tran-
sistors M1 and M2) by controlling the discharging current of transistor M3 [23].
Increasing Vinincreases the discharging current from CLand reduces the negative
edge transaction delay and vice versa. The main drawback of this scheme is that
it controls only the discharging current and the negative edge delay only. In [24]
a new design to control both the positive and negative edges is introduced. The
design consists of pull up and pull down networks with an XNOR gate are used
for better linearity.

27

A CMOS Integrated Linear
Voltage-to-Pulse-Delay-Time Converter for Time

Based Analog-to-Digital Converters
Holly Pekau, Abdel Yousif, James W. Haslett

Department of Electrical and Computer Engineering, University of Calgary, Calgary, Canada, T2N 1N4
TRLabs, Calgary, Canada, T2L 2K7 (haslett@enel.ucalgary.ca)

Abstract- A novel 0. 13,um CMOS integrated linear voltage
to pulse delay time converter (VTC) is proposed. The VTC ml
architecture uses current starved inverters where the inverter
delay versus input voltage characteristic is linearized by using Vcik Vclk-delayed
several parallel current starving devices with different gate bias
voltages and different amounts of source degeneration. The VTC M2
operates at a clock frequency of up to 500 MHz. Input voltage
signals of up to 2 GHz can be converted to pulse time delays
by using several VTC's in parallel. Since the voltage to time Vin d M3
conversion is essentially done with a single inverter stage no I
sample-and-hold is needed for the input voltage. The VTC can
be used in combination with a time-to-digital converter (TDC) to
build a simple high speed, low power, time based analog-to-digital Fig. 1. Basic current starved inverter schematic
converter (ADC) that consumes very little chip area.

I. INTRODUCTION
PMOS gates resulting in higher current consumption but lower

The need for high-speed low-power ADC's for software switching noise [5]. These previously published VTC's were
radio receivers has led to the development of a new type of designed for various applications but are not suitable for use
time-based ADC's where the input voltage is first converted in a high speed high resolution time based ADC with minimal
to a pulse delay time using a voltage-to-time converter (VTC), digital post processing because they are not sufficiently linear
and then the pulse delay time is converted to the digital domain and the voltage to time conversion is not sufficiently sensitive.
by a time-to-digital converter (TDC) consisting of digital In this work we present a VTC with a novel linearization
logic and counter circuits [1]. This type of time based ADC scheme that results in improved linearity and higher voltage
can operate at very high clock and input frequencies while .. .
consuming less power and die area than other high frequency
ADC architectures. Time based ADC architectures can also be
made reconfigurable for use in multi-standard software radio

receivers. ~~~~~~~~~~~II.CIRCUIT DESIGNreceivers.
Several high speed VTC's for various applications have been

proposed by previous authors. Most of these VTC's are based A simplified schematic of the VTC circuit designed in a
on the simple current starved inverter shown in Fig. 1 where 0. 13,um CMOS process is shown in Fig. 2. Current starving
the input voltage vi, controls the delay of the falling edge of the inverter transistors Ml, M2, M3, and M4 is done using
of the clock signal (V,lk) through the inverter by changing transistors M5, M6, and M9-M14. The gates of Ml l-M14 are
the equivalent resistance between the source of the inverter AC coupled to the input signal (not shown) to allow them to be
NMOS device and ground. In [2] Djemouai et al propose a biased at different voltages than the gates of M5 and M6. M7
basic current starved differential delay cell and add weak cross and M8 are used for source degeneration of current starving
coupled inverters to the cell to shorten the transition times of devices M5 and M6. M9 and M10 are weak devices with small
the inverters in [3]. Dudek et al propose a similar VTC but add aspect ratios and low gm's used to ensure the inverter operates
a weak nfet with its gate tied to the supply to ensure the VTC at very low input voltages. Weak cross coupled inverters with
operates at very low input voltages [4]. Watanabe et al propose small aspect ratios are connected between the output inverters
a delay unit consisting of a series of inverters with the PMOS to allow for faster pulse transition times. Additional inverters
sources tied to the input voltage [1]. Gray et alpropose inverter are used as output buffers to allow the VTC to drive the
delay units where the clock drives the gates of the NMOS capacitive load of the output pads. The layout of the VTC
devices and the delay is controlled via the bias voltages of the in a 0.13,um CMOS process is shown in Fig. 3.

0-7803-9390-2/06/$20.00 ©C2006 IEEE 2373 ISCAS 2006

Figure 2.22: Current Starved VTC

2.5.3.2 Pulse-width TDC

Vernier Delay line-based TDC Delay line based TDC is a widely used ap-
proach for high speed time to digital conversion ([8]). 2.23 presents the main
block diagram. It consists of 2^N stages, as N is the number of target bits. Each
stage consists of a DFF with 2 buffers of td1 and td2 delays. TDC Delay line
based TDC can measure a time interval between two events where the first event
is marked by a Start signal and the second event is marked by a Stop signal (the
target pulse is first converted into two pulses the positive edge of each one presents
an edge transaction; Start and Stop signal positive edges presents the positive and
negative edges of the original signal respectively). The Start signal propagates
through series of buffers (delay line), each buffer delay the start signal by td2
.Similarly, the Stop signal propagates through another delay line, each buffer de-
lay the stop signal by td1. The Stop signal samples the delayed version of the Start
signal after each buffer. D-FF output is a thermometer code where each D-FF out
is logic one as long as the Start signal leads the stop signal at the target DFF or
logic zero otherwise (thermometer code). The signals traveling through each stage
suffers from a phase difference in the direction that promotes the Stop signal to
lead the Start signal. The difference is td1-td2. The output thermometer code is
then converted to binary code through a thermometer to binary encoder ([8]).

28

This type of TDC is a good candidate for high resolution conversion because
the resolution achieved can be smaller than the delay of an inverter. However, this
comes at the cost of the area an power consumption which is not affordable for
low power applications.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q1 Q2 Q3 Q4 Q5 Q6

Stop

Td1

Td2 Td2 Td2 Td2 Td2 Td2 Td2

Start Td1 Td1 Td1 Td1 Td1 Td1

Figure 4.7: Vernier Delay Line

Generally speaking, the high resolution problem has been solved by the VDL tech-
nique. On the other hand, the problem of converting wide range of times still exist. There
are different solutions like two level VDL or cyclic based VDL. In our proposed TDC
we selected the two level VDL technique instead of the VDL as shown in figure 4.6. For
n−bit TDC, VDL needs 2nVernier delay cell which consume large area and power. How-
ever, in two level Vernier Delay Line, 2

n
2 Vernier delay cells, are required for each level.

The dashed part of figure 4.8 illustrates one Vernier delay cell.

In our case we need dynamic time range equal to 1.2ns and our TDC target is 8 bit,
so we need 2

8
2Vernier delay cell in the coarse Vernier delay line and another 2

8
2Vernier

delay cell in the fine Vernier delay line. The resolution of our coarse delay line is 1195 ps
24 =

74.6875 ps and the resolution of the fine Vernier delay line is 74.6875
24 = 4.668 ps.

4.3.1 Operation Theory

The time interval to be measured starts with “Start” signal and end by “Stop” signal.
As shown in figure 4.8 the start and stop signals are feed to the Coarse Vernier Delay Line
(CVDL) to calculate the Coarse Resolution (CR). The binary output vector,C, indicate the
filpflops output, which is thermometer code. After each Vernier delay cell the start signal;
approaches the stop signal until a catch up occurred. The thermometer code indicates
where the catch up occurs.

Once the catch up occurred, the thermometer code , vector C, will control interface
circuit such as in figure 4.15 to fed the residual start and stop to the Fine Vernier Delay
Line (FVDL). The FVDL will decrease the difference between the residual start and the
residual stop signals until a catch up occurs. The output thermometer code will be used
to fine tune the CVDL result through subtracting this part from the previous one.

52

Figure 2.23: Vernier delay line-based TDC [8] [9]

Successive Approximation-based TDC Successive Approximation (SA) is a
favorable alternative for low power applications. The operation is based on com-
paring the input quantity to the reference binary weighted quantities to directly
calculate the digital bit (in each word). A full sample is resolved be iterating all
the bits for each word. Each of a different binary weight.

In [18], a TDC circuit design based on successive approximation is introduced.
The un-folded version of the design is presented in figure 2.24. It consists of a
buffer of T f s/2 (half the full scall time) delay followed by N_bits (number of
bits) stages of the same type except the reference time to compare with (Tf s/2i,as
i := 1 : N). It is required to convert the analog phase difference between the Start
and Stop signal.

29

Figure figure 2.25 presents the basic cell architecture (a) and the timing dia-
gram (b) of the inputs and outputs for a general stage N. The decision works on
the positive edge of the input signal (Start signal) and compares it with the postive
edge of the reference signal (Stop signal). The positive edge of the reference signal
is assumed to be shifted with the T f s/2N.The DFF checks if the input signal still
leads the reference signal. If condition is valid and the input leads the reference
pulse, the input pulse is delayed with an amount equivalent to DnRef as the refer-
ence pulse is always delayed with an amount of Dnin = T f s/2N+1. If the condition
is false, then the input signal is not delayed and the difference between the input
and referrence pulse is shortened by delaying the reference pulse and keeping the
input pulse with the same phase. A multiplexer is used to select between the orig-
inal input signal or the delayed version depending on the comparison result.

The main problem in this architecture is the propagation delays for the differ-
ent components in the cell. The time signal imposes the need to insert delay ele-
ments to compensate for the propagation delay of each component (figure 2.26).
The condition in the circuit path decides which analog positive edge to pass (for
the input signal) making the synchronization difficult as the analog phase differ-
ence between the input and reference pulse depends on the condition result!. It
will be shown in this work how this dependency is moved from the analog domain
to the digital domain and the analog signal path is not affected by the condition
result.

1234 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 5, MAY 2012

Fig. 3. Operation principle of proposed successive approximation TDC.

Fig. 4. Proposed successive approximation TDC architecture.

proposed DSSA-TDC fixes the delay added to the reference
signal and only controls the delay added to the input signal. The
reference signal is always delayed by regardless of
the 1-bit decision, while the input signal is delayed by
or 0 when the 1-bit decision is “0” or “1”, respectively. This
equivalently subtracts a delay of from or adds a
delay of to the relative timing between the input
and reference timings. This simple modification in the TDC
operation reduces complexity of the proposed TDC, as only
one signal (i.e., the input signal) needs to be adjusted based
on the 1-bit decision. More importantly, having only two
possible additional delay settings for the input signal enables
the proposed TDC to adopt a decision-select structure, that
significantly shortens bit conversion times.
Fig. 4 shows the overall architecture of the proposed

DSSA-TDC. As we unroll the iteration loop and remove the
control logic and DTCs, the 10-bit DSSA-TDC consists of
ten 1-bit TDC stages and a delay element. Typically, TDCs
measure timing difference between two input (i.e., start and
stop) signals. Therefore, the start signal can be considered as
a reference signal while the stop signal can be treated as an
input signal; a delay of is added to the start signal to
generate the reference signal. Fig. 5 illustrates the conceptual
block and timing diagrams of the proposed 1-bit TDC cell
assuming no flip-flop and multiplexer latencies. The 1-bit
TDC cell comprises a flip-flop, a 2:1 multiplexer and two
delay elements. The two additional delay settings for the next
input signal, and 0, are prepared in prior to the 1-bit
decision using a fixed delay element (i.e.,) and no delay
element, respectively. The flip-flop, then, captures the reference
signal at the rising edge of the input signal to make the 1-bit
decision (i.e., “0” if the input signal leads the reference signal
and “1” if the input signal lags the reference signal). Once the

Fig. 5. Conceptual block and timing diagrams of a 1-bit TDC cell. (a) Block
diagram. (b) Timing diagram.

decision is made, the 2:1 multiplexer selects one of the two
available delay settings based on the 1-bit decision to generate
the input signal for next bit comparison. For the next reference
signal generation, a fixed delay (i.e.,) is added to
the reference signal, regardless of the 1-bit decision. Notice
that, such a decision-select structure can be employed on the
input signal path as the 1-bit TDC decision (i.e., output of the
flip-flop) is triggered by the input signal, which has a fixed
phase relationship with the two delayed versions of input signal
fed to the 2:1 multiplexer. By pre-calculating the possible delay
settings in advance and quickly selecting one once the 1-bit
decision is made, this decision-select structure bypasses the
time-consuming delay calculation and adjustment processes to
minimize bit conversion times and achieve high sampling rates
up to 80 MS/s.

III. IMPLEMENTATION

A. DSSA-TDC

So far, we have discussed the motivation, operation princi-
ples and basic concepts of the proposed DSSA-TDC. The ac-
tual implementation of the DSSA-TDC is slightly more com-
plex since timing margins and circuit latencies should be con-
sidered in order to avoid an erroneous decision.
To verify the performance of the proposed DSSA-TDC, we

implemented a 10-bit DSSA-TDC with of 10 ns. Fig. 6

Figure 2.24: Decision select SA TDC circuit

30

1234 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 5, MAY 2012

Fig. 3. Operation principle of proposed successive approximation TDC.

Fig. 4. Proposed successive approximation TDC architecture.

proposed DSSA-TDC fixes the delay added to the reference
signal and only controls the delay added to the input signal. The
reference signal is always delayed by regardless of
the 1-bit decision, while the input signal is delayed by
or 0 when the 1-bit decision is “0” or “1”, respectively. This
equivalently subtracts a delay of from or adds a
delay of to the relative timing between the input
and reference timings. This simple modification in the TDC
operation reduces complexity of the proposed TDC, as only
one signal (i.e., the input signal) needs to be adjusted based
on the 1-bit decision. More importantly, having only two
possible additional delay settings for the input signal enables
the proposed TDC to adopt a decision-select structure, that
significantly shortens bit conversion times.
Fig. 4 shows the overall architecture of the proposed

DSSA-TDC. As we unroll the iteration loop and remove the
control logic and DTCs, the 10-bit DSSA-TDC consists of
ten 1-bit TDC stages and a delay element. Typically, TDCs
measure timing difference between two input (i.e., start and
stop) signals. Therefore, the start signal can be considered as
a reference signal while the stop signal can be treated as an
input signal; a delay of is added to the start signal to
generate the reference signal. Fig. 5 illustrates the conceptual
block and timing diagrams of the proposed 1-bit TDC cell
assuming no flip-flop and multiplexer latencies. The 1-bit
TDC cell comprises a flip-flop, a 2:1 multiplexer and two
delay elements. The two additional delay settings for the next
input signal, and 0, are prepared in prior to the 1-bit
decision using a fixed delay element (i.e.,) and no delay
element, respectively. The flip-flop, then, captures the reference
signal at the rising edge of the input signal to make the 1-bit
decision (i.e., “0” if the input signal leads the reference signal
and “1” if the input signal lags the reference signal). Once the

Fig. 5. Conceptual block and timing diagrams of a 1-bit TDC cell. (a) Block
diagram. (b) Timing diagram.

decision is made, the 2:1 multiplexer selects one of the two
available delay settings based on the 1-bit decision to generate
the input signal for next bit comparison. For the next reference
signal generation, a fixed delay (i.e.,) is added to
the reference signal, regardless of the 1-bit decision. Notice
that, such a decision-select structure can be employed on the
input signal path as the 1-bit TDC decision (i.e., output of the
flip-flop) is triggered by the input signal, which has a fixed
phase relationship with the two delayed versions of input signal
fed to the 2:1 multiplexer. By pre-calculating the possible delay
settings in advance and quickly selecting one once the 1-bit
decision is made, this decision-select structure bypasses the
time-consuming delay calculation and adjustment processes to
minimize bit conversion times and achieve high sampling rates
up to 80 MS/s.

III. IMPLEMENTATION

A. DSSA-TDC

So far, we have discussed the motivation, operation princi-
ples and basic concepts of the proposed DSSA-TDC. The ac-
tual implementation of the DSSA-TDC is slightly more com-
plex since timing margins and circuit latencies should be con-
sidered in order to avoid an erroneous decision.
To verify the performance of the proposed DSSA-TDC, we

implemented a 10-bit DSSA-TDC with of 10 ns. Fig. 6

Figure 2.25: Decision select SA TDC cell (a) and timing diagram (b)

31

CHUNG et al.: 10-BIT 80-MS/s DECISION-SELECT SUCCESSIVE APPROXIMATION TDC IN 65-nm CMOS 1235

illustrates the actual 1-bit DSSA-TDC cell implementation. Al-
though we assumed no latency for the flip-flop and 2:1 mul-
tiplexer in Section II, in reality, both blocks have latencies that
should be compensated in order to guarantee a proper operation.
Moreover, since the flip-flop suffers from meta-stability issue
when the rising edges of reference and input signals are close,
sufficient timing margins should be allocated before the multi-
plexer selection to avoid erroneous decision. Therefore, extra
delay elements are added to the basic circuit to provide timing
margins. Three delay elements with delay of are placed
on the reference and input signal paths to cover the flip-flop la-
tency and provide extra timing margins to avoid meta-stability
error. Also, to cancel out the 2:1 multiplexer delay, a delay el-
ement with delay of is assigned on the reference signal
path. Tunable delay elements are employed for , and

delay generation to compensate for delay offsets due to
on-die parameter variation. The details on delay offset calibra-
tion method are described in Section III-B. Fig. 7 shows a tun-
able delay element circuit. The tunable delay element consists of
pseudo differential inverters with weak cross-coupled inverters
and switched capacitor arrays. To achieve fine delay tuning reso-
lution (i.e., 0.5-LSB step), the switched capacitor array employs
small metal capacitors relying on wire parasitics. The 2:1 multi-
plexer connects one end of the capacitor to the ground or to
the signal node when the capacitor is enabled (i.e., “ ”)
or disabled (i.e., “ ”), respectively. By connecting both
ends of the capacitor to the signal node, this switched capacitor
structure hides the presence of the capacitance without creating
a floating node when the capacitor is disabled.
In order to achieve fine timing resolutions, shorter than the

minimum delay of a tunable delay element, fine bit TDC stages
(i.e., stages 6 to 10) adopt Vernier delays [18], [23]. Fig. 8
shows block and timing diagrams of a 1-bit DSSA-TDC cell
with Vernier delays. The Vernier delays further utilize relative
timings between the signals. As it is impossible to generate an
absolute delay of , which is shorter than the minimum delay
of a tunable delay element, a delay of is added to all the
signal paths. Adding the delay enables the TDC cell to em-
ploy a tunable delay element (i.e.,) without dis-
turbing the relative timings between the signals. Therefore, a
short delay of can be added to the relative next input timing
when the 1-bit decision is “0”. Similarly, is added to both
input and reference signal paths to employ a tunable delay ele-
ment (i.e.,) on the reference path, while keeping
the same relative timings. Fig. 8(b) also shows that the extra de-
lays (i.e., and) are added to both signal paths to keep
the same relative timings.
Unlike delay-line-based flash TDCs that require linear time

steps, successive approximation TDCs can utilize exponential
time steps as they rely on a binary search. Employing ex-
ponential delay lines, the proposed DSSA-TDC significantly
reduces the number of delay stages, which leads to good power
and single-shot precision performances. In total, the 10-bit
DSSA-TDC uses only 49 delay stages—most of the 1-bit TDC
cell employs four inverter stages (i.e., two delay stages for each
tunable delay elements and two tunable delay elements per 1-bit
TDC cell for and or delays) while
some of the MSB stages uses more delay cells to accommodate

Fig. 6. Actual block and timing diagrams of a 1-bit TDC cell. (a) Block dia-
gram. (b) Timing diagram.

Fig. 7. Tunable delay element circuit.

long or delays. This is a factor of 20 reduction
compared to a delay-line-based flash TDC that would require
at least 1024 delay stages for the same bit resolution.

B. Offset Calibration

On-die parameter variation adds random delay offsets to the
ideal delay values, leading to erroneous bit conversions. The
proposed DSSA-TDC is especially susceptible to such offsets
as it relies on a binary search; bit errors in the previous stages
propagate along the next fine bit stages, significantly degrading
the TDC performance. Therefore, the DSSA-TDC employs a

Figure 2.26: Compensation delays for decession-selection SA circuit

32

Chapter 3

Introducing SAR-CD
algorithm

Implementations based on binary searching algorithms take place in applications
that require low power and area with high resolution. In [17, 18], the well-known
Successive Approximation Register (SAR) is applied in a cyclic manner. How-
ever, the existence of two signal branches imposes a critical condition to keep the
signals synchronized along the conversion, and error in one branch is accumulated
in each iteration. This error accumulation becomes worse due to the conditioning
on each path of the two signal paths. In this work a new algorithm is introduced
to move this dependency from the time domain to the digital domain. In addition,
the algorithm needs only one signal path instead of two which relaxes the strict
synchronization requirements.

3.1 SAR verses SAR-CD algorithm
In the conventional SAR algorithm, for a given decimal value, starting from the
MSB and for each successive bit, the weight of the next bit is subtracted from the
current input value. If the result is a positive number, then the digital bit is ‘1’,
otherwise it is ‘0’. For example, when converting the decimal number ’9’ to 4
binary weighted digits (i.e., 8, 4, 2, and 1). Starting from the MSB, the weight 8 is
subtracted from the input 9. As the result is positive (i.e., 9-8 = +1), then the MSB
is ‘1’ and the subtraction result (i.e., +1) is the next iteration input. The second
iteration weight 4 is subtracted from +1. As the result is the negative value -3, then
the second bit is ‘0’ and the input 1 is passed to the next iteration. After that, the

33

third iteration weight 2 is subtracted from the input +1, and etc. This process is
valid as long as the passed decimal value is the result of a successful subtraction
(i.e., a positive value).

value = 9

Dfs/2 =8

value = | 9 - 8 | =1

Dfs/4 = 4

value =3

Dfs/8 =2

value =1

Dfs/16 =1

value =0

b1= 1

0

b0 = 0

1

revert

0

9

11

12 16

n = 1

4

11

1111

n = 3

n = 2

9

8

n = 4

b2 = 0

b3 = 1

revert

9

9

Figure 3.1: Evaluation of the binary "b3 b2 b1 b0" for the number ’9’ using the
new algorithm

In this conventional SAR algorithm, the result of the unsuccessful subtraction
(i.e., -3) is neglected, and in particular the modulus of this result (i.e., +3). This
modulus value holds all the information needed to evaluate the next bits. In the
new proposed SAR-CD algorithm, the input to each stage is the absolute difference
between the input and the weight of the previous stage. Also, the value of each bit
is used to correct the value of the next one.

In the previous example, the absolute difference between the second stage
input +1 and the weight 4 (i.e., +3) is the input to the third stage weighted 2. This
modulus value is used to evaluate the third bit. As 3 is greater than the weight
2, then the third bit is initially set to 1. However, this value should be inverted
because the previous bit (second bit) is ’0’. This inverts the third bit value from
’0’ to ’1’. The full example to convert 9 to the binary form “b3 b2 b1 b0” using
the new SAR-CD algorithm is shown in figure 3.1.

34

value = D_IN

i = 4

i = i -1

temp = value - 2 i

b[i] = b[i] XNOR b[i +1]

i = 0

END

no

yes

can be moved

outside the loop
b[i]=b[i] + is(temp == 0)? . b[i+1]

b[i] = is(temp>0)?

b[4] =1

value= |temp|

Figure 3.2: Flow chart for the proposed algorithm

The variable “value” is initially set to 9. As 9 is bigger than 8, then b3=1. For
the next iteration, “value” equals abs(9-8). In general, for each successive stage,
the input equals abs(value - Dfs/(2^n)), where Dfs is the full scale value (i.e., 16
for the 4-bit case) and ’n’ ranges from 1 to 4 iterating all the 4 stages. The stage
output (i.e., b3, b2, b1, and b0) is initiated to ’1’ when the input is greater than
the stage weight or ’0’ otherwise. However, this value is inverted if the previous
bit is ’0’ or kept unchanged otherwise. Bits “b1” and “b0” are inverted after the
subtraction (value - Dfs/(2^n)) because their previous bits (i.e., b2 and b1) equal
’0’ after correction, respectively.

35

3.2 SAR-CD general algorithm
The new proposed SAR-CD algorithm flowchart is depicted in figure 3.2. The
digital output to compute is “b[3] b[2] b[1] b[0]” as ’b[3]’ is the MSB and ’b[0]’
is the LSB. The input number “D_IN” is assigned to the variable “value”. For
each iteration, “value” is updated with the absolute difference between the old
value and the loop reference weight (2^i). The bit value, in each iteration, depends
on the sign of the result and the previous bit. ’b[i]’ is initially ’1’ if the difference
is bigger than ’0’ (’is(temp>0)’ is true) or ’0’ otherwise (’is(temp>0)’ is false).
The equality check depends on the previous bit (“is(temp==0)?.b[i+1]”). As ’+’
is arithmetic OR operation and ’.’ is arithmetic AND operation. The process ends
when “i” equals ’0’. ’b[4]’ is initiated to ’1’ so that bits correction does not change
’b[3]’ value.

It should be noted that in the proposed SAR-CD algorithm, the new value is
passed to the next iteration, denoted by "value", is independent of the current bit
evaluation. Also, the bit correction (i.e., which is implemented by using an XOR
operation) is a simple digital logic operation. Fortunately, this bit correction can
be performed after the pulse dis-assembly (to a separate loop in figure 3.2). The
new proposed SAR-CD algorithm is very useful for Time-Based Analog to Digital
converters because the parameter “value” is an analog quantity. Analog quantities
manipulation is prone to errors and may cost extra circuitry (e.g DAC).

In this work, two case study circuits are proposed to adopt the new SAR-CD
algorithm to digitize the input variable pulse widths. The digital number cor-
responding to the pulse width is computed by comparing the input pulse to the
full scale reference pulses, for example, pulses of width Pfs/2, Pfs/4, Pfs/8...., as
Pfs is the full scale pulse. The equivalence of the abs(value – 2^i) is a simple
XOR operation between the 2 pulses. The output is directly passed to the next
iteration irrespective of the currently evaluated bit. In general, power-sensitive
applications like in [25] exhibit significant reduction in the SAR-CD logic im-
plementation complexity compared to the conventional SAR. This is because in
the SAR-CD algorithm, most of the conditioning needed to produce the reference
voltage is removed. Absolute comparison is simpler in implementation than the
conventional SAR algorithm. For example, designs based on comparing voltage
values held on two capacitors would need no capacitor discharging before each bit
evaluation. This increases the maximum supported frequency and minimize the
error from discharging circuits.

36

Figure 3.3: Digital output of zero’s run intersecting one’s run using standard algo-
rithm (a) and using proposed algorithm (b) before bits correction

3.3 SAR-CD algorithm proof
The new proposed SAR-CD algorithm should satisfy the following two conditions
to ensure that it is working correctly and similar to the conventional algorithm.
These two conditions are: (1) correct solution and (2) same boundary conditions.
For example, figure 3.3(a) presents a general digital output for a given input value.
As the input to bit ’J’ is VJ (which is denoted by “value” in figure 3.2), the weight
of the bit ’J’ is WJ =2J, ’J’ ranges from “Nbits-1” to ’0’, where “Nbits” is the total
number of bits. The input corresponds to an n-bits zero’s run intersecting one’s
run at index ’J’.

From the previous comparison between the conventional SAR and the pro-
posed SAR-CD algorithms, it is found that as long as the input to each bit is
greater than the weight then both algorithms will behave the same. The two al-
gorithms are different only when the input is lower than the weight, which should
give ’0’ for this bit. Figure 3.3(b) presents the desired output from the second al-
gorithm before bits correction. When bits correction is applied (XNOR operation
between each two successive bits as depicted in figure 3.2) the correct output in
figure 3.3(a) is achieved.

It is now desired to prove that the proposed SAR-CD algorithm produces the
group of bits “Diff group” in figure 3.3(b) and using the same input, which is
“VJ−1”, the input to the bit of index “J-n-2”, “VJ−n−2”, is the same as when fol-
lowing the conventional SAR algorithm. At such a point the second algorithm will
behave again like the conventional SAR algorithm. Starting from the condition on
“VJ−1”, implied by the example in (1), we calculate the inputs to the bits indexed

37

from “J-1” to “J-n” . Processing bit “J-1“ by making absolute comparison be-
tween the bit weight “WJ−1” from the input “VJ−1” results in the inequality in (2),
Such that “WJ−1> VJ−1” as implied by the example. The middle term in equ.(2)
presents the input to bit “J-2”.

WJ−n−1 <VJ−1 <Wj−n (3.1)

WJ−1−WJ−n−1 >WJ−1−VJ−1 >WJ−1−WJ−n (3.2)

For each bit, the difference between the bit weight and the summation of all
the LSB bits is W0:

WJ−1 =
0

∑
k=J−2

Wk +W0 (3.3)

And then moving the term W j−n−1to the left hand side results in:

WJ−1−WJ−n−1 =
J−n

∑
k=J−2

Wk +WJ−n−1 =
J−n−1

∑
k=J−2

Wk (3.4)

Substituting from equ.(4) by “WJ−1-WJ−n−1” and similarly by “WJ−1-WJ−n”
to the left and right sides of equ.(2) respectively we find that:

J−n−1

∑
k=J−2

Wk >WJ−1−VJ−1 >
J−n

∑
k=J−2

Wk (3.5)

The middle term implies that the input to bit “J-2” is greater than the summa-
tion of all the weights from “J-2” to “J-n”. This concludes that processing all the
bits from “J-2” to “J-n” will give the uncorrected ones expected in figure 3.3(b)
(ones run from index “J-2” to “J-n”). After the processing, the value entering bit
“J-n-1” is then (middle term):

J−n−1

∑
k=J−2

Wk−
J−n

∑
k=J−2

Wk >WJ−1−VJ−1−
J−n

∑
k=J−2

Wk > 0 (3.6)

Which then becomes:

38

WJ−n−1 >WJ−1−VJ−1−
J−n

∑
k=J−2

Wk > 0 (3.7)

This relation indicates that processing bit “J-n-1” results in ’0’ as expected in
figure 3.3(b). Hence, the input to “J-n-2” bit is in the form (middle term)

0 <WJ−n−1− (WJ−1−VJ−1−
J−n

∑
k=J−2

Wk)<WJ−n−1 (3.8)

From equ.(4), it is found that:

J−n

∑
k=J−2

Wk =WJ−1−2WJ−n−1 (3.9)

Substituting in equ.(8), it is proved that the middle term that represents the
input to bit “J-n-2” equals to “VJ−1−WJ−n”, the same value that would have been
obtained when following the conventional algorithm.

3.4 SAR-CD algorithm examples
In the following examples, the demonstration of the new algorithm is presented.
The variable names follow the algorithm presented in the flow chart 3.2. For each
stage, the absolute difference between the input and the stage reference is calcu-
lated. The result of the operation (“temp” in figure3.2) is presented in the forth
coulomb. The digital bit before correction is located in the fifth coulomb, which is
the result of the condition “is(temp>0)”. The case when “is(temp==0)?” is TRUE
is marked by highlighting the absolute difference result with yellow (in second
and third examples). The case when the result bit is zero, “is(temp>0) is FALSE,
is marked in red to indicate that the next bit will be toggles in the bit correction
operation. The final digital binary output is shown in the last coulomb.

39

3.4.1 Example 1 to convert “10.1” analog input to “1010”
The next table shows how the new algorithm, SAR-CD, can be used to convert the
analog quantity 10.1 to the 4 bits-binary approximation b[3]b[2]b[1]b[0] = “1010”
using SAR-CD algorithm depicted in the flow chart 3.2). The example is shown
in figure 3.4.

Step/
stage

Bit to
calculate

Absolute difference
(input– 2^(N_bits-
stage))

Abs
difference
result |-|

Digital bit
before
correction

Digital bit after
correction
(b[i] XNOR b[i+1])

1 b[4] |20 - 16 | 4 1 1

2 b[3] |4 - 8 | 4 0 0

3 b[2] |4 - 4 | 0 0 1 (toggled)

4 b[1] |0 - 2 | 2 0 0

5 b[0] |2 - 1 | 1 1 0 (toggled)

Step/
stage

Bit to
calculate

Absolute difference
(input– 2^(N_bits-
stage))

Abs
difference
result |-|

Digital bit
before
correction

Digital bit after
correction
(b[i] XNOR b[i+1])

1 b[4] |28 - 16 | 12 1 1
2 b[3] |12 - 8 | 4 1 1

3 b[2] |4 - 4 | 0 0 1 (toggled)

4 b[1] |0 - 2 | 2 0 0
5 b[0] |2 - 1 | 1 1 0 (toggled)

Step/
stage

Bit to
calculate

Absolute difference
(input– 2^(N_bits-
stage))

Abs difference
out
|-|

Digital bit
before
correction

Digital bit after
correction
(b[i] XNOR b[i+1])

1 b[3] |10.1 - 8 | 2.1 1 1

2 b[2] |2.1 - 4| 1.9 0 0

3 b[1] |1.9 - 2| 0.1 0 1 (toggled)

4 b[0] |0.1 - 1| 0.9 0 0

Figure 3.4: Example 1 to convert analog quantity 10.1 to binary “1010” using
SAR-CD algorithm

The first iteration\stage starts with an input 10.1. The input is compared to the
stage weight, ’8’, through the analog absolute difference operation which calcu-
lates the absolute difference between them. The differences |10.1-8| = 2.1 is the
input to the second stage. As 10.1 is bigger than 8, then the first stage ends with
digital b[3] is 1 (no bit correction is needed for the first iteration according to fig-
ure 3.2).. The second stage compares the input 2.1 and the weight 4. As 2.1 is not
bigger than 4 then the digital bit for this stage (b[2]) before bit correction is 0. As
b[3] is 1 then b[2] is kept with 0. The absolute difference (|2.1-4| = 1.9) is the input
to the third stage. In the third stage, b[1] is initially set to 0 as 1.9 is not bigger
than 2. However, bit correction toggles b[1] from 0 to 1 as the previous bit, b[2],
equals to 0. The absolute difference out for the third stage, 0.1, is the input to the
forth and last stage. In the forth stage, b[0] is initially 0 because 0.1 is not bigger
than 1. And it is kept the same because b[1] has a new value of 1. The digital 4 bit
binary representation for 10.1 is correctly presented by 1010 using the SAR-CD
algorithm.

40

3.4.2 Example 2 to convert “20” analog input to “10100”

Step/
stage

Bit to
calculate

Absolute difference
(input– 2^(N_bits-
stage))

Abs
difference
result |-|

Digital bit
before
correction

Digital bit after
correction
(b[i] XNOR b[i+1])

1 b[4] |20 - 16 | 4 1 1

2 b[3] |4 - 8 | 4 0 0

3 b[2] |4 - 4 | 0 0 1 (toggled)

4 b[1] |0 - 2 | 2 0 0

5 b[0] |2 - 1 | 1 1 0 (toggled)

Step/
stage

Bit to
calculate

Absolute difference
(input– 2^(N_bits-
stage))

Abs
difference
result |-|

Digital bit
before
correction

Digital bit after
correction
(b[i] XNOR b[i+1])

1 b[4] |28 - 16 | 12 1 1
2 b[3] |12 - 8 | 4 1 1

3 b[2] |4 - 4 | 0 0 1 (toggled)

4 b[1] |0 - 2 | 2 0 0
5 b[0] |2 - 1 | 1 1 0 (toggled)

Step/
stage

Bit to
calculate

Absolute difference
(input– 2^(N_bits-
stage))

Abs difference
out
|-|

Digital bit
before
correction

Digital bit after
correction
(b[i] XNOR b[i+1])

1 b[3] |10.1 - 8 | 2.1 1 1

2 b[2] |2.1 - 4| 1.9 0 0

3 b[1] |1.9 - 2| 0.1 0 1 (toggled)

4 b[0] |0.1 - 1| 0.9 0 0

Figure 3.5: Example 2 to convert analog quantity 20 to binary “10100” using
SAR-CD algorithm

In this example, it is desired to convert the analog input 20 to the digital 5 bits
binary representation b[4]b[3]b[2]b[1]b[0] = “10100” using SAR-CD algorithm
depicted in the flow chart figure 3.2. The example is presented in figure3.5.

The first iteration\stage starts with an input 20. The input is compared to
the stage weight, ’16’, through the analog absolute difference operation which
calculates the absolute difference between them. The differences |20-16| = 4 is
the input to the second stage. As 20 is bigger than 16, then the first stage ends
with digital b[4] is 1 (no bit correction is needed for the first iteration according to
3.2.The second stage compares the input 4 to the weight 8. As 4 is not bigger than
8 then the digital bit for this stage (b[3]) before bit correction is 0. As b[4] is 1
then b[3] is kept with 0. The absolute differnce (|4-8| = 4) is the input to the third
stage. In the third stage, b[2] is initially set to 0 as 4 is not bigger than 4. Before
we do bit correction (b[2] XNOR b[3]), it is marked that the absolute difference
in this case is 0 (the condition “is(temp==0)?” in figure 3.2 is TRUE). Thus b[2]
should have the value “ is(temp==0)? . b[3]” added. However as b[3] is zero, then
no change happens to b[2] before bit correction. Then, bit correction for b[2] (b[2]
XNOR b[3]) results toggling b[2] from 0 to 1. In the fourth stage, b[1] is initially
0 because the input is zero. Also, b[1] is kept the same because b[2] is resolved to
1 after bit correction. This value toggles b[0] from 1 to 0 in the fifth and last stage.
The final digital output is “10100”.

41

3.4.3 Example 3 to convert “20” analog input to “10100”

Step/
stage

Bit to
calculate

Absolute difference
(input– 2^(N_bits-
stage))

Abs
difference
result |-|

Digital bit
before
correction

Digital bit after
correction
(b[i] XNOR b[i+1])

1 b[4] |20 - 16 | 4 1 1

2 b[3] |4 - 8 | 4 0 0

3 b[2] |4 - 4 | 0 0 1 (toggled)

4 b[1] |0 - 2 | 2 0 0

5 b[0] |2 - 1 | 1 1 0 (toggled)

Step/
stage

Bit to
calculate

Absolute difference
(input– 2^(N_bits-
stage))

Abs
difference
result |-|

Digital bit
before
correction

Digital bit after
correction
(b[i] XNOR b[i+1])

1 b[4] |28 - 16 | 12 1 1
2 b[3] |12 - 8 | 4 1 1

3 b[2] |4 - 4 | 0 0 1 (toggled)

4 b[1] |0 - 2 | 2 0 0
5 b[0] |2 - 1 | 1 1 0 (toggled)

Step/
stage

Bit to
calculate

Absolute difference
(input– 2^(N_bits-
stage))

Abs difference
out
|-|

Digital bit
before
correction

Digital bit after
correction
(b[i] XNOR b[i+1])

1 b[3] |10.1 - 8 | 2.1 1 1

2 b[2] |2.1 - 4| 1.9 0 0

3 b[1] |1.9 - 2| 0.1 0 1 (toggled)

4 b[0] |0.1 - 1| 0.9 0 0

Figure 3.6: Example 3 to convert analog quantity 28 to binary “11100” using
SAR-CD algorithm

In this example, it is desired to convert the analog input 28 to the digital 5 bits
binary representation b[4]b[3]b[2]b[1]b[0] = “11100” using SAR-CD algorithm
depicted in the flow chart 3.2. The example is presented in figure3.6.

This example is very similar to the second example. However, the difference
is spotted in the second and third stages. The result of the third stage now is one
because the input 12 is higher than the reference 8. Thus, when calculating b[2]
in the third stage, and as “is(temp==0)?” is TRUE, b[2] will be effected by the
operation “b[i] = b[i] + is(temp==0)? . b[i+1]” and will not be affected by the bit
correction “b[i] = b[i] XNOR b[i+1]” in figure 3.2.

For more examples, the reader can use the Matlab function sar_cd.m in appan-
dex section A.1.2. This function presents the functionality of the novel Successive
Approximation Algorithm with Continuous dis-assembly.

42

Chapter 4

Circuit design

Two circuit designs are presented in this work to demostrate the proposed algo-
rithm. The first design presents the initial domenstration for the algorithm ([26]).
The second circuit design presents a new architecture with many enhancements
that solve many of the challenges found in the first design at the cost of circuit
complexity([27]). It is recommended for the reader to go through both algorithms
to give more insight to the new developed techniques.

4.1 First circuit design
The proposed circuit is a 4-bit system. It consists of 4 stages and each stage is re-
sponsible for evaluating the current bit value and correcting it by the bit evaluated
from the previous stage; which is an input to this stage. Figure 4.1 shows the unit
cell. In a general n-bit circuit, there should be ‘n’ successive stages of the same
cell type (with different refernce pulse as will be shown).

For a general Kth cell, the cell is triggered once an input pulse from the previ-
ous stage (k-1) is detected. The input pulse “Pin” presets the digital value “b[k]”
to ‘1’ and triggers a pulse generator to generate a pulse of width proportional to
Vfs/2^k; as Vfs is the full scale voltage. The input signal is delayed until the ref-
erence signal is high, and is compared to it by a simple XOR gate. The result of
this comparison is a pulse with the difference-width. This pulse is an output for
this stage and used to trigger the next stage. Also, the output pulse triggers the
comparator by a small pulse to indicate the larger pulse. The inputs to the com-
parator are delayed versions of the input pulse “Pin” and the generated reference
pulse to compensate for the XOR gate delay. The output of the comparator is the

43

Figure 4.1: Bit unit cell

correct value for the bit “b[k]” after it passes through two conditions. The first
condition is the previous bit value (b[k-1]). As stated in the algorithm, if the pre-
vious bit is ’0’, then the value of the current bit should be reverted. This is done
using the 2*1 multiplexer with selection “Sel (b[k-1]))” such that the comparator
output is selected when b[k-1] is ’1’ or the inverse is selected when b[k-1] is ’0’.
The second condition resolve the problem of the XOR gate defined resolution as
explained next.

When the XOR inputs are very close in length, the XOR may not produce an
output sufficient to trigger the next stage because of the limited resolution. In this
case, which are more likely to happen for high sampling rates, there will be an
error comparable to the reference pulse the input is compared to. In an example
of 4-bit system, if this problem is encountered for the MSB, the output will be
‘0000’ instead of ‘0111’, which is a great loss. To solve this problem, we preset
the digital bit of the current cell (“pre-set”). As long as this cell is triggered and
no output from the XOR gate, and of course successive stages won’t be triggered,
then the input pulse is very close to the reference pulse and the current bit should
be forced to ’1’. However, in normal operation, when the XOR output is sufficient
to trigger the next stage, the output of the comparator should be considered the
correct value. This is done by the “eval[k+1]” feedback signal taken from the
reference pulse generated by the next stage. This indicates that the signal survived
to the next stage and the comparator output is selected instead of the preset value

44

’1’. The error in this case is defined by the resolution of the XOR gate. In other
words, the resolution of the XOR gate defines the resolution of the system for this
architecture.

This solution imposes a correlation between the signal path and the compari-
son path, when the 2 signals are compared for each bit. This correlation adds con-
ditions to the design that requires time and power budget to fix. These conditions
can be summarized in 2 points. The first one is fitting the timing requirements for
the comparator of the early stage. When this signal is back from stage k+ 1, the
comparator output should be ready with the correct comparison result. As shown
in figure 4.6, a typical failure case happens when the signal path starting from
the reference pulse output through the XOR gate, the buffer and the pulse genera-
tor of the next stage takes smaller delay than the comparator delay (in figure 4.1,
eval[k+1] samples the output of the comparator before it is ready). One solution,
which is used in this design, is to delay the signal “eval” till the comparator output
is ready. This delay is found to be relatively high reaching more than 120ps (for
the comparator used), which is a loss of area and also a loss of power that can
reach up to 30% of the circuit power for a high speed delay line. The second point
is meeting a condition that states that the delay summation of the XOR, buffer and
the reference pulse generator should be greater than the delay summation of the
DFF access time, DFF setup time and the multiplexer setup time. This exposes
another main function for the buffer; which is to impose some delay to satisfy this
condition. This condition and the problem are addressed in the simulation results
section.

4.1.1 Design components
The comparator used is depicted in figure 4.2. It consists of 2 stages. When the
clock signal is high, the first stage is activated and stores the input values for the
small high period of the triggering clock. At the same time, the PMOS transistors
in the second stage pre-charge the output to VDD preparing the coupled transistors
for the evaluation phase. The evaluation phase starts once the clock goes low
again when the second stage is activated and the first stage is deactivated holding
the captured input values to be the input to the second stage. The evaluation is
completed by this stage and the output remains on-hold till the next clock edge.
Choosing the clock pulse width is critical because it should be long enough for
pre-charging phase through the PMOS transistor, and not very long as the input
of logic 1 (the input or the reference pulse) may go down quickly weakening the

45

.

Figure 4.2: The comparator circuit, stage 1 (left) and stage 2 (right)

differential signal held in the first stage. The comparator is triggered using a pulse
generated from a pulse generator. This pulse generator is triggered by the XOR
output.

The XOR gate used is a simple CMOS circuit. The error in the CMOS circuit
is almost fixed along different input combinations and can be compensated in the
next stage by changing the width of the generated reference pulse. Using XOR
gate designs based on pass transistors add distortion to the output signal so it is
not recommended even if they consume less power.

46

.

Figure 4.3: Pulse generator circuit

.

Figure 4.4: DFF based on SDFF

The pulse generator developed is depicted on figure 4.3. It consists of a DFF
and a delay element. The input to the DFF is the supply and the output is con-
nected to a delay array ending with the DFF asynchronous reset. Once a clock

47

trigger is detected, the output is high until the feedback signal reaches the “Rst”
pin when the output goes low again. The width of the generated pulse is the sum-
mation of the array delay and the DFF loop delay. The delay of the DFF defines
the minimum pulse width that can be generated imposing another resolution limit
beside the XOR gate resolution. The DFF used is depicted in figure 4.4. This
architecture is based on edge-triggered SDFF in [[10]] (Fig.1) for higher speeds
over the transmission gate-based DFF.

4.1.2 Simulation results and analysis for the first design
The simulation is done for input pulses of width range from an offset of 10ps to a
full scale width of 750ps. The input is mapped from a sine wave with a frequency
of 41 MHz with a sampling rate of 666.7 MHz (1.5ns sampling period). The res-
olution is about 46ps ((750-10) / 16) The offset is optional and is compensated in
the first stage by increasing the reference pulse with the same amount. As men-
tioned, this goes for any possible error from the XOR operation as the reference
pulse in the next stage can be modified by design.

.
Figure 4.5: FFT output

The FFT output for the system is depicted in figure 4.5. The SNR corresponds
to 3.67 ENOB. The circuit is running on 1.5 ns sampling period to resolve a pulse
of 750ps maximum width. Ideally, the two numbers should be very close, however
fixed delay in the circuit cause deviation from this value which can be summarized
in four main delay sources. The first delay source is from the XOR gate which

48

consumes 43ps for each bit. The second one is the pulse generator that consumes
a delay of 35ps for each bit. The third one is the feedback delay deployed at the
signal “eval” path early mentioned to compensate for the comparator delay time
(“Dcomp” in figure 4.6). The delay added is the one in the last bit stage only to
take the final digital word; as this delay is consumed parallel to the signal path.
This delay can be totally removed if the digital word is taken after the start of the
new sample, when this stage is not used (caution should be taken when resetting
the digital bits for the new sample). The last delay is a forced 20ps delay presented
by the XOR gate buffer for each bit to satisfy the condition pointed out in section
III and is explained in the next paragraph.

.

Figure 4.6: Feed back synchronization problem

To explain the reason for the condition in section III which states that the
delay summation of the XOR, buffer and the reference pulse generator should
be greater than the delay summation of the DFF access time, DFF setup time
and the multiplexer setup time, consider figure 4.6. It depictss a capture of 3
stages; indexed from “K-1” to “k+1” (stages “k-1” and “k+1” are clipped for fitting
purpose). Starting from stage “K”, consider the signal at the output of the reference
pulse generator output which is ready to enter the XOR gate and also to be fed-
backed to stage “K-1”. This signal takes 2 paths. The first path passes through the
XOR gate and the buffer of stage “k”, then through the reference pulse generator
of stage “k+1”, then through the feedback “Dcomp” (eval[k+1]). The summation
of the path delay is:

49

T1 = TXOR +Tcommon +Tbu f f +TPulseGen +TDcomp (4.1)

As T xor is the delay of the XOR gate and T common is the common part in
the signal pulse and the reference pulse at which both of the two signal is high
(the XOR gate output is zero in this period). The second path is through “Dcomp”
delay element, DFF for stage “k-1”, then through the MUX and the input of the
DFF of stage “k”, the summation of the path delay is:

T2 = TDcomp +TDFFaccess +Tmux +TDFFsetup (4.2)

For proper operation, the input to the MUX of the stage “K” should be ready
before the clock signal “eval[k+1]” comes. This means that T1 > T2 is a condition
that should be satisfied. All of these delays are fixed except the Tcommon which
can take a value from ‘0‘ to Tfs2. As Tfs2 is the width of Pvfs2. Considering
the worst case when Tcommon is equal to ‘0’, the condition for proper operation
becomes:

TXOR +Tbu f f +TPulseGen > TDFFaccess +Tmux +TDFFsetup (4.3)

It is now clear that the buffer used after the XOR gate not only strengthens the
signal but also it synchronize the internal signals for proper operation.

4.2 Second circuit design- All Digital TDC
The second circuit is considered a modified all-digital version of the First design.
Figure 4.7 depicts a general N-bit architecture. The architecture in this work is a
10-bit version introduced as a case study. For each clock cycle, each cell performs
two tasks. The first task is comparing the input pulse to the corresponding refer-
ence pulse to generate uncorrected bit “bu[k]” for the current sample, where ‘k’
ranges from ‘9’ to ‘0’. The second task is to make bit correction (as presented in
the algorithm in figure 3.2) to generate B[k]. Figure 4.8 depicts a general kth unit
cell. The input pulse Pin triggers a pulse generator to generate the reference pulse
which corresponds to the binary weight of the cell bit.

50

(Pin > Vfs/2)?

EnNoCeil

(Pin > Vfs/2
2
)?

B[0]

(Pin > Vfs/2
N

)?

NoCeil En

Pin

bu[N-2] bu[1]

Pout PinPout

B[N-1] B[N-2]

Pin

---input

bu[N-1]

Figure 4.7: Successive approximation with continuous disassemble algorithm sys-
tem architecture.

4.2.1 Circuit description
The triggering input pulse Pin[k] is delayed to compensate for the pulse generator
propagation delay such that the XOR inputs (i.e., Pind[k] and Vr[k]) arrive simul-
taneously. The MSB stage generates a pulse with width Pfs/2, as Pfs is the full
scale pulse. The delayed version of the input, Pind[k], and the reference pulses
Vr[k] are applied to the XOR gate input ports to generate the absolute difference-
pulse, which is then buffered to the next stage. In the mean time, inverted versions
of the input and the reference pulses enter the clock and the input of a DFF re-
spectively. The output of the DFF, X[k], indicates which pulse is longer. The
DFF resolves value ’1’ when the input pulse is longer than the reference pulse
and ’0’ otherwise. The delay unit circuit consists of two cascaded current-starved
inverters. The delay of each unit is adjusted by sizing the current-starved inverter.

Figure 4.9shows the timing diagram for simulating the first 2 stages (k = 9,8)
for 2 complete clock cycles (i.e., three clock edges). The 2 cycles resolve one
input pulse longer (Pin9_1) and one shorter (Pin9_2) than half of the full scale
pulse (Vr9). Pin9, Vr9, X9, bu[9] and B[9] represents the signals for the MSB cell
(Pin9 and Vr9 share the voltage axis). At the first sample, the absolute difference
between the input and reference pulse is the input to next stage (Pin8) which will
be compared to the stage reference pulse (Vr8). The first sample resolves X9 and
X8 to ’1’ and ’0’. For normal operation, when both signals “En” and “NoCeil”
(figure 4.8) are high, the uncorrected bits bu[9] and bu[8] are the output of the
XNOR gate after bits correction. In this sample, bits correction does not change
bu[8] value as bu[9] equals one according to the algorithm in figure 3.2 . This
is shown at the vertical trace “T1” when the initialization value ’1’ for bu[8] is

51

changed to ’0’ in accordance to changing bu[9] from ’0’ to ’1’. However, for the
second sample, when the input pulse is shorter than the Vr9 pulse, bu[9] resolves
to ’0’ which keeps bu[8] to its initial value. This can be shown at vertical trace
“T2” when the initial value for bu[8] does not change. The digital output of the
second sample is ready at the third clock positive edge “T3” as B[9]B[8] are set to
’01’.

Delay

pulse Vfs/(2 (k+2-N))

MUX

D Q

Q’

DFF

Bit Cell

Clk

Pin[k-1]
Pin[k]

NoCeil

B[k]

K
En

En

D Q

Q’

DFF

MUX

1 0

bu[k+1]

bu[k]

Pind[k]

Vr[k]

X[k]

Clk

Rst

Figure 4.8: System unit bit cell

The enable signal “En” indicates the cell is triggered and the output value is
correct. This flag is taken from the reference pulse and is held on a DFF to pass the
result (This DFF is not shown in the diagram for simplicity). Due to the limited
resolution of the XOR gate, the XOR gate might not produce an output sufficient
to trigger the next stage, when the XOR inputs edges are very close. In this case,
which are more likely to occur for high sampling rates, there will be an error. In an
example of 4-bit system, the output will be ‘0000’ instead of ‘0111’ if this occurs
for the first stage, which is a significant error. To solve this problem, a “pre-set”
of the digital bit for the current cell is done. As long as this cell is triggered and
no output from the XOR gate, and the input pulse is very close to the reference
pulse, the current bit in this case is forced to ’1’. This is performed through the
“NoCeill” feedback signal taken from the reference pulse generated in the next
stage (similar to the eval[k+1] signal in figure 4.1). This indicates that the signal
survived to the next stage and the comparison output is considered. The resolution
of the XOR gate defines the resolution of the system. The resolution that can be
resolved by the DFF to generate the ’X[k]’ signal should be designed higher than
the resolution of the XOR gate.

52

T
1

T
2

T
3

P
in

9_
1

>
V

r9
P

in
9_

2
<

V
r9

P
in

8_
1

<
V

r8
P

in
8_

2
<

V
r8

P
in

8
=

|P
in

9
-

V
r9

|

X
9

=
Is

(
P

in
9

>
V

r9
)

?

X
8

=
is

(
P

in
8

>
V

r8
)?

bu
[8

]=
X

8
bu

[9
]

+

Figure 4.9: Simulation capture for the two MSB stages signals (landscape view)

4.2.2 Circuit components
The XOR gate used is implemented using CMOS logic. The error in the CMOS
circuit is almost fixed along different input combinations and can be compensated

53

in the next stage by changing the width of the generated reference pulse. The
pulse generator used is depicted on figure 4.10. It consists of two DFF and a
delay element. The DFF used is based on edge-triggered SDFF introduced in
[10] and is shown in figure 4.11. The generation is done in two steps. The cell
input pulse triggers the first DFF producing an intermediate fixed length-pulse
to trigger the second DFF. The second DFF and the delay element generate the
desired pulse with custom width. For each DFF, the output is connected to the
DFF asynchronous reset. Once a clock trigger is detected, the output is high until
the feedback signal arrives at the “Rst” terminal and the output goes low again.
Adding extra delay element “D1” increases the width of the generated pulse. The
width of the generated pulse is the summation of the delay element and the DFF
loop delay.

D Q

Q’

DFF

D Q

Q’

DFF

Rst

VDD

custom

TD1 + TdffPulse Generator

fixed

.
Rst

Tdff

tigger

trigger

VDD

S
Vc

Cap

Vr[k]

Const load capacitance

L

for all cells cell control

Analog Signal Path

I1 I2

I3 I4

Figure 4.10: Pulse generator circuit

54

Q

D

CK

NAND

S

X

INV4

INV3

CK N4

P2

N5

INV5

INV6

INV1

N3

N2

N1

P1

INV2

QB

Figure 4.11: SDFF introduced in [10]

The pulse generation is done in two steps using two DFFs to eliminate the de-
pendency of the generated pulse width on the input pulse width. The pulse gener-
ation trigger is done by the input signal, which can vary in width, affects the width
of the generated signal. In figure 4.11, it is shown that the clock used for transis-
tor “N4” works against the ’Rst’ operation by discharging the node ’Q’ to ground
level while the reset signal (implemented by a PMOS with source connected to the
VDD and gate connected inverted Rst and drain connected to ’Q’, not shown for
simplecity) charges it to VDD. This introduces pulses with two lengths. One long
pulse produced when the clock pulse is longer than “TD1+ D1”, and smaller pulse
when clock signal is shorter. The difference between the two pulse widths is up
to tens of picoseconds. This introduced the need to generate an intermediate pulse
with short fixed length to trigger the actual pulse generator, the second DFF. The
error after this addition is reduced to less than 1ps. The delay of the DFF defines
the minimum pulse that can be generated.

55

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

D
N

L
[L

S
B

]

0 100 200 300 400 500 600 700 800 900 1000

code

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

IN
L

[L
S

B
]

0 100 200 300 400 500 600 700 800 900 1000

code

DNL_max = 1 LSB

INL_max = -2.38 LSB

Figure 4.12: Simulated DNL and INL for the second design

4.2.3 Simulation results and analysis for the second de-

sign
The simulation is done for input pulses of width range from an offset of 10ps to
a full scale width of 31.5ns. The simulation setup takes an input sine wave of
frequency 1.75MHz and samples it at 29.4 MHz (chosen 34ns sampling period).
The signal is converted using an ideal VTC to a pulse width-modulated signal with
31.5ns full scale time range. The resolution is around 30.7ps (31.5ns /1024) The
output of the VTC is then applied to the target TDC circuit. A 1024-FFT process-
ing is applied and the circuit achieved an Effective Number Of Bits (ENOB) value
of 8.63bits. The circuit consumes 2.8mW from a 1V supply. Linearity test is done
by simulating 10,240 point sweeping the full scale range. The results show maxi-
mum 1 LSB and -2.38 LSB for Differential Non Linearity (DNL) and Integral Non
Linearity INL respectively as shown in figure 4.12. Figure 4.1 draws comparison
to [18] and [28]. The theoretical maximum frequency is governed by the XOR
gate resolution. Simulation results show that CMOS-based XOR gate on 65nm
technology provides around 30ps LSB which supports about 33 Mhz maximum
frequency for a 10-bit version of this architecture.

56

This work [28] [18]
Archeticture SAR-CD SA DSSA

Sampling (Ms/s) 29.4 12.5 80
Number of bits 10 13 10

Power(mw) 2.769 63.3 9.6
Supply(V) 1 3 1.2
Technology 65nm 350nm 65nm

DNL/INL max(LSB) 1/-2.38 -/0.74 1.35/2
Simulated/Measured Simulated Simulated Measured

Table 4.1: Performance comparison

The fact that the proposed algorithm promises for one signal path instead of
two eliminates the synchronization requirements along the conversion stages like
in [17, 18]. This eliminates many delay compensators like the DFF and MUX
delays in Fig. 6(a) in [18]. In addition, there is no conditioning in the signal path
like in [18] as the MUX selects signal to pass depending on the current comparison
result. These superior advantages obtained by the new algorithm make the design
simpler and provide significant reduction in power and area.

The second design also showed enhancements over the first design in many
points:

A- Eleminating the need to the comparator, making the design an all-digital
design and as a result:

B- Simpler design eleminating some issues such as the one spotted in figure
4.6.

C- Higher linearity by more accurate reference pulse generation.
D- More robustness to PVT changes through lower dependency of the opera-

tion to the element delays.
It also should be noted that both circuits needs calibration addition to over-

come the PVT changes. For example, generating accurate reference Plus for each
stage is very critical. The width of the each should present the corresponding refer-
ence pulse width irrespective of the operation temprature or supply voltages. Also
it should compete for the process variation. Another point is the need to make the
inputs for the XOR gate for each stage start simultaneousely. Deviation for this
condition affects the linearity directly and will cause the loss of part of the signal.
This spots the need for digital calibration (similar to many time-based circuits) as
will be shown in the next section.

57

4.3 Digital Calibration for SAR-CD time-
based TDC

The calibration logic should tune the pulse synchronization and the pulse generator
delays in figure4.10 for proper operation. The pulse generation calibration for all
the stages is first introduced. Calibration of the synchronization delay follows the
same manner and is described after.

Figure 4.13 depicts the calibration circuit connection diagram. The whole
connection consists of: 1-The target SAR_TDC circuit, 2-The calibration logic, 3-
The VTC circuit and, 4- A multiplexer (2*1). The multiplexer chooses between
either the circuit external input voltage or the calibration circuit input. The VTC
converters the chosen input voltage input a modulated pulse. The VTC used here
is an ideal component which should be replaced with real one in a complete ADC
circuit. The target SAR-CD TDC circuit converters the selected input pulse to the
corresponding digital of N bit (Out[N-1:0]), as N is the number of the ADC bits.
The calibration logic controls the delay of each stage pulse generator (Vc in figure
4.10) to tune the reference pulses generated. This is presented by VC[N-1:0] in
figure 4.13. The calibration logic also tune the current starved inverter used in
signal synchronization (“Vc_synch”). It will be shown how a single control pin is
used for all the stages without considerable degradation in system linearity.

Calibration delay tuning should be for the control signal Vc for each delay.
Though there is 2 analog controls needed for each stage with total of 2*N bins,
as N is the number of the TDC bits, the structure properties for the delay pulse
generator make it possible for almost constant signal propagation delay across all
the stages. Which make it possible for one control bin for all the synchronization
delays (“Delay” in figure 4.10) (assuming all the remaining circuit components
are identical for all the stages). In figure 4.10, the signal traveling through the
circuit will always see the same path with the same loading. This is achieved
by isolating the main current starved inverter “S” and the loading capacitor from
the signal path through “I1” and “I3” inverters, which have the same size for all
the stages. Different pulse widths are done though control voltage of “S” and the
loading capacitor. This may impose symmetry constraints on the realized layout.
However, it will be shown in the results that such differences are of minor effect.

Figure 4.14 portrays the main algorithm for the pulse generator calibration
using the analog control voltage Vc[N-1:0], as Vc[N-1] is the analog control volt-
age for the first stage pulse generator which should produce a pulse of half of

58

the full scale-width. The control signal ranges from 0.5 to 1.2 (’Vcfs’).’Vsigfs’
is the input signal Vsig full scale range which is from 0.4V to 0.6V in this sim-
ulation environment. The algorithm logic tests the digital output “Out[N-1:0]”
while changing the corresponding Vc[bitAdc], as “bitAdc” is the index of the
stage currently calibrated. Vcfs is quantized into 256 level and is presented in 8
bits. “bitCalib” presents the current calibration bit index inside Vc[bitAdc] word.
The algorithm loops 8*N times before each calibration bit in each control voltage
is evaluated. Calibrating the synchronization delays, through VC_synch, almost
follows the same manner. Loading the maximum input voltage (Vsig is maxi-
mum), Vc_synch is tuned for maximum digital output “Out[N-1:0]”.

VTC SAR-CD TDC

Calibration logic

MUX

Vin

/
/

N

N

Vc[N-1:0]

Out[N-1:0]

Clib_En

. . .

Vc_synch

Vsig (target)

Pin

Figure 4.13: Calibration circuit connection diagram

59

Vcfs =1.2-0.5

bitAdc = N -1

bitCalib = 7

Vsigfs = 0.6 -0.4

Vc[bitAdc] = Vcfs/2 +0.5

Out[bit_adc]
noyes

Vc[bitAdc] =Vc[bitAdc] +Vcfs/ 2
bitCalib

Vc[bitAdc] =Vc[bitAdc] -Vcfs/ 2
bitCalib

bitCalib
yes

bitAdc
no

yes

bitAdc = bitAdc -1

no

END

bitCalib =7

Vsig = Vsig + 2
bitAdc

Vsig = Vsigfs /2 +0.5

Vc[bitAdc] = Vcfs/2 +0.5

bitCalib = bitCalib -1

>0.5 ?

== 0 ?

== 0 ?

Figure 4.14: Calibration algorithm diagram

The algorithm starts with Vc[N-1] and Vsig are in the middle of the control
voltage and the input dynamic range respectively. The main loop of the algorithm
loops over Vc[N-1] by updating its value in a binary fashion. The update direction,
increasing or decreasing, depends on the corresponding monitored Out[N-1] bit.
If Out[N-1] is logic 1 (“Out[bit_adc]>0.5?”), then the generated pulse width of the
first stage is longer than the input corresponding pulse width; which corresponds

60

to half the full scale. Hence, Vc[N-1] should be decreased to make the generated
pulse longer. When the algorithm finishes the calibration of the MSB (“bitCalib
== 0” is true) the algorithm starts the calibration for the next MSB (“Vc[N-2]”),
by decreasing “bitAdc” and re-initializing “bitCalib“ to 7. In this version of the
algorithm, the control voltage is quantized into 2^8 levels by initializing “bitCalib”
to 7. The designer may increase the voltage resolution more by increasing the
initialization value of “bitCalib”. The TDC circuit calibration ends when both
“bitAdc” and “bitCalib” are zero values.

Figure 4.15 shows the simulation graphs for calibration of the first MSB, bit
’7’. For a time full scale of 31.5ns (check the simulation results section), the first
MSB stage reference pulse should be adjusted to a pulse length of 15.75ns (31.5/2
ns). The graph shows the trials of the calibration algorithm to reach the desired
value using the feedback signal “Out[7]”. As long as Out[7] signal is high, the
calibration algorithm controls the reference pulse width through the Vc[7] signal
(not shown for clarity) in the direction which increases Vr[7] as spotted in figure
4.13. Similarly, when Out[7] signal is low, the calibration logic reduces Vr[7]
signal in the same manner.

Vr[7] period

Vr[7] Pin[7],

Out[7]

Figure 4.15: Calibration for first MSB

61

4.4 Calibration results
The calibration enhancement for the circuit operation is showed by Effective Num-
ber Of Bits (ENOB) as a measure for the system SQNR. The target circuit is a 9-bit
version of the one presented in [27]. With the same input setup parameters pre-
sented. The input sine wave is of frequency 1.75MHz and is sampled at 29.4 MHz
(34ns sampling period). The signal is converted using an ideal VTC to a pulse
width-modulated signal with 31.5ns full scale time range. The input signal The
circuit is tested for different operation temperatures and fabrication corners.

The left graph of 4.16 shows ENOB values for 27, 60 and 120 Celsius de-
grees. As the circuit is designed for 27 degree, increasing the temperature changes
the internal propagation delays of the circuit and, hence, degrades the circuit per-
formance. At 60 degree, simulation results showed the calibration enhanced the
ENOB value from 6.7 to 7.3. The right graph of 4.16shows the calibration en-
hancements of the system performance for different fabrication corners; nominal,
Fast Fast (FF) and Slow Slow (SS).

4

5

6

7

8

E
N

O
B

27 60 93 126

4

5

6

7

8

E
N

O
B

nominal FF SS

Figure 4.16: ENOB for the original circuit before calibration (square marker) and
after calibration (dot marker). Simulation is for different temperature degrees (left)
and different fabrication corners (right)

62

List of Publications

1-Ragab, O. K., H. Mostafa, and A. Eladawy, "TDC SAR Algorithm with Contin-
uous Disassembly (SAR-CD) for Time-Based ADCs", IEEE International Confer-
ence on Energy Aware Computing Systems and Applications (ICEAC 2015), Cairo
Egypt, IEEE, pp. 1-4, 2015.

2-K. O. Ragab; H. Mostafa; A. Eladawy, "A Novel 10-bit 2.8mW Time-to-
Digital Converter Design using SAR with Continuous Dis-assembly Algorithm",
IEEE Transactions on Circuits and Systems II: Express Briefs , vol.PP, no.99, pp.1-
1

63

64

References

[1] M. Amin, Design of a Time Based Analog to Digital Converter. PhD thesis,
University of Waterloo, 2012.

[2] R. G. Lyons, Understanding Digital Signal Processing, 3/E. Pearson Educa-
tion India, 2004.

[3] “Matlab data aquazition toolbox analog subsystem.” accessed 18 May 2017.

[4] “Tms570ls3137 ep datasheet section 7.2.4.1.” Accessed 19-5-2017.

[5] F. Maloberti, Data converters. Springer Science & Business Media, 2007.

[6] “Understanding piplelined adcs, tutorial 1023.”
https://www.maximintegrated.com/en/app-notes/index.mvp/id/1023. ac-
cessed 19-5-2017.

[7] Analog Integrated Circuit Design. John Wiley and Sons, 1997.

[8] S. Naraghi, Time-based analog to digital converters. PhD thesis, The Uni-
versity of Michigan, 2009.

[9] M. Wagih, “Design of time-based analog to digital converter (tb-adc) new
design methodology for voltage-to-time (vtc) circuits,” mathesis, Electronics
and Communication department- Cairo University, 2015.

[10] F. Klass, “Semi-dynamic and dynamic flip-flops with embedded logic,” in
VLSI Circuits, 1998 Symposium on, pp. 108–109, June 1998.

[11] T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato, and A. Inoue, “Time-
to-digital converter with vernier delay mismatch compensation for high res-
olution on-die clock jitter measurement,” in VLSI Circuits, IEEE Symposium
on, pp. 166–167, June 2008.

65

[12] M. Zanuso, P. Madoglio, S. Levantino, C. Samori, and A. Lacaita, “Time-to-
digital converter for frequency synthesis based on a digital bang-bang DLL,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 57,
pp. 548–555, March 2010.

[13] T. Watanabe and T. Terasawa, “An all-digital ADC/TDC for sensor interface
with TAD architecture in 0.18-µm digital CMOS,” in Electronics, Circuits,
and Systems, 2009. ICECS 2009. 16th IEEE International Conference on,
pp. 219–222, Dec. 2009.

[14] P. Dudek, S. Szczepanski, and J. Hatfield, “A high-resolution CMOS time-
to-digital converter utilizing a vernier delay line,” Solid-State Circuits, IEEE
Journal of, vol. 35, pp. 240–247, Feb. 2000.

[15] J. Yu, F. F. Dai, and R. Jaeger, “A 12-bit vernier ring time-to-digital converter
in 0.13 CMOS technology,” Solid-State Circuits, IEEE Journal of, vol. 45,
pp. 830–842, April 2010.

[16] J.-P. Jansson, A. Mantyniemi, and J. Kostamovaara, “A CMOS time-to-
digital converter with better than 10 ps single-shot precision,” Solid-State
Circuits, IEEE Journal of, vol. 41, pp. 1286–1296, June 2006.

[17] A. Mantyniemi, T. Rahkonen, and J. Kostamovaara, “A CMOS time-to-
digital converter (TDC) based on a cyclic time domain successive approxi-
mation interpolation method,” Solid-State Circuits, IEEE Journal of, vol. 44,
pp. 3067–3078, Nov. 2009.

[18] H. Chung, H. Ishikuro, and T. Kuroda, “A 10-bit 80-MS/s decision-select
successive approximation TDC in 65-nm CMOS,” Solid-State Circuits, IEEE
Journal of, vol. 47, pp. 1232–1241, May 2012.

[19] P. A. D. Holberg, CMOS Analog Circuit Design. Oxford University press,
1987.

[20] P. R. G. R. G. Meyer, Analysis and design of analog integrated circuits. John
Wiley & Sons, 1990.

[21] S. R. N. G. C. Temes, S. R., Delta-Sigma Data Converters :Theory, design,
and simulation. IEEE press, 1997.

66

[22] B. Leung, DVLSI for wireless communication. Prentice Hall Electronics and
VLSI Series, 2002.

[23] H. Pekau, A. Yousif, and J. W. Haslett, “A cmos integrated linear voltage-to-
pulse-delay-time converter for time based analog-to-digital converters,” in
Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE Interna-
tional Symposium on, pp. 4–pp, IEEE, 2006.

[24] H. Mostafa and Y. I. Ismail, “Highly-linear voltage-to-time converter (vtc)
circuit for time-based analog-to-digital converters (t-adcs),” in Electronics,
Circuits, and Systems (ICECS), 2013 IEEE 20th International Conference
on, pp. 149–152, Dec 2013.

[25] S. Mahmoud, H. Salem, and H. Albalooshi, “An 8-bit, 10 KS/s, 1.87µW
Successive Approximation Analog to Digital Converter in 0.25µm CMOS
Technology for ECG Detection Systems,” Circuits, Systems, and Signal Pro-
cessing, pp. 1–21, January 2015.

[26] K. Ragab, H. Mostafa, and A. Eladawy, “TDC SAR algorithm with contin-
uous disassembly (SAR-CD) for time-based ADCs,” in Energy Aware Com-
puting Systems & Applications (ICEAC), 2015 International Conference on,
pp. 1–4, March 2015.

[27] K. O. Ragab, H. Mostafa, and A. Eladawy, “A novel 10-bit 2.8mw time-to-
digital converter design using sar with continuous dis-assembly algorithm,”
2016. IEEE Transactions on Circuits and Systems II: Express Briefs.

[28] S. Alahdab, A. Mantyniemi, and J. Kostamovaara, “A time-to-digital con-
verter (TDC) with a 13-bit cyclic time domain successive approximation in-
terpolator with sub-ps-level resolution using current DAC and differential
switch,” in Circuits and Systems (MWSCAS), 2013 IEEE 56th International
Midwest Symposium on, pp. 828–831, Aug. 2013.

67

Appendix A

Appendix

A.1 SAR-CD Matlab code
In this section, 3 main functions are discussed:

1- Old SAR algorithm: presenting the old SAR algorithm which use the con-
dition for the analog reference quantity. It is presented so that comparison to
the new SAR-CD (next) is more clear. The functionality is presented in function
“sar_standard(in, N_bits)”.

2- New SAR-CD algorithm: presenting the new SAR-CD algorithm which
moves the conditioning to the digital domain. The functionality is presented in
fuction “sar_proposed(in , N_bits)”.

3- A test bench which uses both the algorithm and compares the result for
equal digital output. The functionality is presented next as Matlab code.

next we present

A.1.1 Traditional SAR Algorithm- Matlab function
%%%%%%%%%%%%%% sar_standard.m %%%%%%%%%%%%%%%

function [binary] = sar_standard(in , N_bits)
%SAR_STANDARD Summary of this function goes here
% This function calculates the binary form for the input using the
% standard algorithm, Successive Approximation Register (SAR).
% inputs:
% in : input real value.
% N_bits : number of binary bit enough to represent the input.
% binary : output binary form. "binary(1:N_bits)"

68

% binary register for the standared algorithm binary = zeros(N_bits,1);
% input value for the standared algorithm value = in;
%% calculation for the binary form using the standared algorithm
for i=N_bits-1 :-1:0
if(value >= power(2,i)) % update the value for the next stage only if the input

is bigger
value = value - power(2,i);
binary(i+1,1) = 1;
else
binary(i+1,1) = 0;
end
end
end

A.1.2 Noval SAR-CD Algorithm - Matlab function
%%%%%%%%%%%%%% sar_cd.m %%%%%%%%%%%%%%%

function [binary] = sar_cd(in , N_bits)
% sar_cd Summary of this function goes here
% This function calculates the binary form for the input using the
% proposed algorithm, Successive Approximation Register with Continuous
% Dis-asssembly (SAR-CD).
% inputs: % in : input real value.
% N_bits : number of binary bit enough to represent the input.
% binary : output binary form. "binary(1:N_bits)"
% binary register for the proposed algorithm binary = zeros(N_bits+1,1);
% initialization value so that the bit correction for the MSB is correct bi-

nary(N_bits+1,1) =1; value = in;
for i=N_bits-1 :-1:0 % difference betweeen the input and the stage reference

value
temp = (value - power(2,i));
% pass the absolute to the next stage irrespectively value = abs(temp)proposed
% performing initial bit evaluation using the input
binary(i+1,1)= (temp > 0);
% equality comparison depends on the previous bit result binary(i+2,1)
% (temp == 0) produce ’1’ if temp equal ’0’or ’0’ otherwise
binary(i+1,1)= binary(i+1,1)+((temp == 0) & binary(i+2,1));

69

% performing bit correction to the calcualted bit
binary(i+1,1) = ~xor(binary(i+1,1), binary(i+2,1));
end
%Setting the bit register most bit to zero again after being used in bit
%correction for the MSB
binary(N_bits+1,1) =0;
end

A.1.3 Noval SAR-CD Algorithm - Matlab function
%%%%%%%%%%%%%% test bench %%%%%%%%%%%%%%%

% This test bench is indended to verify the new algorithm, Successive Ap-
proximation Register with Continuous

% Dis-asssembly (SAR-CD) Vs the standard SAR algorithm. The is used side
% by side with the proof in the thesis to demostrate the
% correctness of the algorithm for all the numbers, real and integers.
% The test sweep the numbers between selected boundries. Then is calculates

the
% binary form of each using the standard and the proposed algortihm. At last

it
% checks the equivelance of both results produced by the proposed and the

standard
% algorithm.
% select the minimum number to check
Min = 10000;
% select the maximum number to check
Max = 50000;
%%sweeping the range and compare both algorithms
for j = Min: Max value = j;
%calculating the minimum number of binary bits to present the input.
N_bits = ceil(log2(value));
% Binary value using the standard algorithm
Binary_standard = sar_standard (value, N_bits);
% Binary value using the proposed algorithm
Binary_proposed = sar_standard (value, N_bits);
%% verifing the result by comparison
TRUE = 1;

70

FALSE =0;
equal = TRUE;
% initialize the comparison to TRUE as long as no bits are different
for i =1:N_bits
if(Binary_standard(i) ~= Binary_proposed(i))
equal = FALSE;
break;
end
end
%% Printing the result
if (equal == FALSE)
disp([’Proposed algorithm Fails in value: ’ num2str(value)]);
else
disp([’Proposed algorithm succeeded: ’ num2str(value)]);
end
end

A.2 Effective Number Of Bits (ENOB)
To calculate the effective number of bits for a given ADC, a sinusoidal signal can
be used as an input. The sinesoidal signal amplitude should cover the dynamic
range. As a sinusoidal signal is simply an impulse in the frequency domain, the
signal can be extracted easily for the spectrum. The output digital stream should
be first saved from Cadence Virtuoso then a Matlab code is used to calculate the
IFFT and estimate the number of bits from the signal power.

To save the output, open the results browser from the ADE as shown:

71

Figure A.1:

Then, right click the ADC output, “Dig_ot” (multiple signals can be selected
by holding the Ctrl key) in our case, and select “Export” as shown:

Figure A.2: Exporting the ADC output from the results browser

As Spactre simulator calculates continuous waveforms, the output should be
sampled with the operation sampling frequency. The “Sampled Data” check box
should be checked and the samping period corresponding to the mentioned sam-
pling frequency should be witten in the “Step Size” box. In the shown figure the
time period is 34ns which corresponds to 29.41Mhz. The “Start” point should be
selected such that the circuit is expected to be in a stable operation (for example all
the internal capacitances are charged). The “End” time is selected to be less than

72

the last simulation time and should be selected such that enough number of sam-
pled are expected (in the shown example a 11us corresponds only to 323 sample).
The selected format is “Matlab” (“.VCSV” format, Excel format, can be selected
instead but different importing function to Matlab should be used then).

Figure A.3: Data should be sampled with the sampling frequency of operation

The following Matlab command can be used to imported the saved data file:
>> data=importdata(’Sampled_Data.matlab’);
Then “data” is a cell with 3 containers, “data” and “textdata” and “colheaders”.

The latter two (“data.textdata” and “data.colheaders”) contains the name of the X
and Y axis entries each variable and “data.data” contains the X and Y axis data for
each variable. The following capture illustrates the contents of “data”, “data.data”
and “data.textdata” respectively.

73

Figure A.4: The Matab data fomate cell contists of 3 elements “data”, “textdata”
and “colheaders”

The desired samples stream are the Y axis of the firt variable, which is stored
in the second row.

>> samples = data.data(:,2);
The time line or the X axis can be selected by:
>> A_axis = data.data(:,1);
The following Matlab Function is used to calculate the ENOB value based on

signal specturm on the frequency domain.
%%%%%%%%%%%%%% enob.m %%%%%%%%%%%%%%
function [ENOB , SQNR , freq_db] = enob(samples ,Nbits)

74

% calculating the FFT
% the mean is subtracted to remove the DC component from the FFT output
% the "fftshift" function centers the FFT around Fs/2 figure;
>>freq = fftshift(abs(fft(samples - mean(samples) ,Nbits)));
>>freq_db = 20*log10(freq); figure; h =stem(freq_db);
% The signal is assumed to be presented in one peak (one peak)
>>Spwr = max(freq)^2;
% Spwr is multipled by 2 because there is 2 peaks centered arount Fs /2
>>Npwr = sum(freq.^2) - Spwr *2;
>>SQNR = 10*log10(Spwr / Npwr);
>>set(get(h,’BaseLine’),’BaseValue’,-100);
% roughly, each 6db increase in the signal power means 1 bit increase in
% the ENOB value
>>ENOB = SQNR /6;
>>title([’ FFT ’,num2str(Nbits) , ’ in db, SQR = ’ ,num2str(SQNR) , ’ENOB

=’,num2str(ENOB)]);
>>xlabel(’Frequency (Hz)’); ylabel(’signal(db) ’);
>>end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
To use the enob funciton it is called simply by:
>>[ENOB , SQNR , freq_db] = enob(samples, N_fft);
Figure A.5 shows the target sine wave and figure A.6 shows the function output

for a sine wave input with 63/N_FFT of the Sampling frequency, as N_FFT is
1024.

Figure A.5: Target Sine signal

75

Figure A.6: Effective number of bits for a 10-bit quantized sine signal

76

A.3 Differential Non-Linearity (DNL) and In-
tegral Non-Linearity (INL)

Calculating the ADC linearity includes examining the ADC output for each possi-
ble input. When examining every possible analog input signal is not possible, the
input sweeping should choose the most reasonable input step that can speculate
the system linearity. Figure A.7 shows a possible input ramp signal (blue) and the
expected ideal ADC output (red) for a 4-bit system. Analog step for input sample
is 0.05 of the full scale 16. Which means that there are 20 points for each digital
step in the output staircase. In this tutorial ideal signals are presents (not from real
ADC), however, the designer should replace the input and the output by real data
from the target circuit simulation (as shown in figures A.1, A.2 and A.3). Matlab
function is then used to calculate the DNL and INL.

Figure A.7: Effective number of bits for a 10-bit quantized sine signal

The criteria (and parts of the Matlab code) is adopted from the EE247 class lab
materials in Berkely university. Calculation of the DNL is based on calculating the
number of samples for each step and making sure that the probability of locating a
sample in a given digital step is equal for all the steps in the output staircase. The
next Matlab function is used to calculate the DNL and INL. The Matlab function
contains Matlab comments that describe the function.

%%%%%%%%%%%%%% incldnl.m %%%%%%%%%%%%%%
function [inl,dnl] = inldnl(x, delta)
% INLDNL compute INL and DNL from converter output x
% x output from ADC % delta spacing between codes. Default: 1
%

77

% Assumptions & limitations:
% - uniform quantizer
% - Input x is linear ramp
% compute histogram for the data, returns vectors n and xout containing
% the frequency counts and the bin locations.
[counts,centers] = hist(x, min(x):delta:max(x));
% eliminate end bins
counts(1) = [];
counts(end) = [];
% The mean presents the expected number of counts for each pin
dnl = counts/mean(counts) - 1;
% the INL is the accumulative sum of the DNL
inl = cumsum(dnl);
% Generate an equal spaced row vector from the start and end values of inl
inl = inl - linspace(inl(1), inl(end), length(inl));

% plot result
N = length(dnl);
if N > 16

fmt = ’r-’;
else

fmt = ’ro:’;
end
subplot(2,1,1);
plot(1:N, dnl, fmt, [1 N], [1 -1; 1 -1], ’b:’);
fixfig;
xlabel(’bin’);
ylabel(’DNL [in LSB]’);
maxdnl = ceil(max(dnl));
axis([1 N floor(min(dnl)) maxdnl+1]);
text(0.1*N+1, maxdnl+0.2, ...
sprintf(’avg=%.2g, std.dev=%.2g, range=%.2g’, ... mean(dnl), std(dnl),

max(dnl)-min(dnl)));
%title(sprintf(’DNL and INL of %.1g Bit converter (from histogram test-

ing)’, ...
title(sprintf(’DNL and INL ’));
subplot(2,1,2);
%hold on;

78

% Removing the offset from the inl value
inl =inl-mean(inl);
plot(1:N, (inl), ’b–’, [1 N], [1 -1; 1 -1], ’b:’);
fixfig; xlabel(’bin’);
ylabel(’INL [in LSB]’);
maxinl = ceil(max(inl));
axis([1 N floor(min(inl)) maxinl+1]);
text(0.1*N+1, maxinl+0.2, ...

sprintf(’avg=%.2g, std.dev=%.2g, range=%.2g’, ...
mean(inl), std(inl), max(inl)-min(inl)));

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
To examine the algorithm, figure A.8 contains an example of and ADC output

that contains nonlinear defects. The Matlab code is used to generate and plot the
signal:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generate a ramp signal from 0 to 16 with step 0.05
% Which means that each step contains 20 samples
samples = 0:.05:16;
% quantize(samples,bits) is a private funtion that quantize the input analog

samples to the given number of bits.
% in this example then number of bits is 4. This function is a simple function

that the designer can implement.
samples_q= quantize(samples’,4);
plot(samples,’b’); hold on; plot(samples_q,’r’);
title([’ test input ramp signal and the expected output ’]);
legend(’analog input’,’digital output’); xlabel(’samples index’);
ylabel(’ADC digital output’);

79

Figure A.8: example of ADC output with non-linear defect

% Introducting non-linear behavior is done by assigning the samples from 300
into 319

%incorrect values copied from samples 350 to 369 respectively
for i = 0: 19,

samples_q(300+i) = samples_q(300+i+50);
end; figure; plot(samples_q);
% plotting the DNL and INL
title([’ DNL and INL test ramp signal’]);
xlabel(’samples index’);
ylabel(’ADC digital output’);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The following plot portrays the generated DNL and INL showing the non-

linear behavior starting from the ruined samples.

80

Figure A.9: The DNL (red) and INL(blue) plots for the example signal

A.4 Ideal VTC using Verilog-A
It is required to design a component to mimic the operation of a VTC to complete
a full TADC system in adjacent with the target TDC. This compoenent should be
used in simulation as cell view in Cadence Virtuoso. The required VTC should
convert the input voltage to a modulated pulse for each sample. The modulation is
done for the pulse width. The modulated pulses is then the input to the next stage,
the target TDC.

The following Verilog-A code is used to convert input signal with range
0.4:0.6V to pulses of width ranges from 0:31.5ns.

/****************************VTC_ideal.va*****************************/
module vtc_ideal(clk,in , out);
// The offset of the pulse width, can be changed to mimic real VTC of arbitrary

minimum pulse width.
parameter real Poffset = 0*1e-12;// 65 LSB for 1024Fule scale
// ratio between the output pulse width in ps and the input value in volts.
parameter real Pslobe = 157.5 *1e-12; // 31500 =ps =31.5n for VFS=200mv
// minimum pulse in ps
parameter real LSB = 30.7e-12;
// used to speed up the simulation be increasing the simulation maximum step

size when applicable

81

parameter real MaxStepOrder = 2000.0 ; // 50 times of the LSB
// The minimum value in mV
parameter integer Voffset = 400;// for VF =200mv
input in;// the component analog input
input clk; // The system clock
output out; // the component digital output
electrical in,clk,out;// the node type of of the pins of analog properties
integer start_time ;// the start time of the current sample pulse
integer out_v;
real end_time; // the start time
real time_t; // used for debugging
real stepSim; // current maximum simulation step
real stepMx; // maximum sinulation step == MaxStepOrder * LSB
analog begin //analog
@(initial_step)
begin //@(initial_step) , initialization assignemnts at the beginning of the sim-

ulation only
out_v =0;
end_time =0;
start_time =0;
stepMx = MaxStepOrder * LSB;
stepSim = stepMx;
end //@(initial_step)
$bound_step(stepSim);
@(cross(V(clk) -0.5,+1)) // at every ve+ edge of the clock do the folowing
begin //@(cross(V(clk) -0.5,+1))
//$display("step time now is :",stepSim);
// lower the maximum simulation time to curfully moitor the termination con-

dition if(end_time <= $abstime) for accurate genration of the pulse width.
stepSim = LSB/2;
out_v=1;
time_t = $abstime; // save the current simulation time starting when the signal

is assigned to 1
// end_time is the next time for the pulse to be low after going high for time

depending on V(in)
end_time = (V(in)*1000 - Voffset) * Pslobe + Poffset;

82

//$display("Vin :%r, delay:%r, time now is:%r",V(in),end_time,time_t); // un-
comment for debug

end_time = $abstime +end_time;
//$display("end_time :%r, Mx step%r",end_time,stepSim);// uncomment for

debug
end //@(cross(V(clk) -0.5,+1))
if(end_time <= $abstime)
begin //if(end_time <= $abstime)
// increase the simulation maximum step to boost the simulation when no pulse

is generated
stepSim=stepMx;
out_v =0;
end //if(end_time <= $abstime)
V(out) <+ transition(out_v ,0,10p,10p);
end //analog
endmodule
/**/masimum
The operation starts when a positive clock edge is detected when the pulse is

assigned a high value. The current simulation time is saved (start_time) and the fu-
ture simulation time when the signal is expected to be low is saved too (end_time).
A forever “if“ condition is executed to monitor the real time simulation time when
it reaches the value of “end_time” when the pulse is assigned low again.

It can be noted from the above code that is it optimized for maximum per-
formance by changing the maximum simulation step when it is possible. This
dramatically boots the simlation. Using an internal timer to calculate the period
when the signal is high is not recommended as this increase the simulation time.

A.5 Calibration code Verilog
/***************************Calibration_SAR_TDC.v***************************/

//Verilog HDL for "dc", "calibration_ADC" "verilog"
module calibration_ADC_verilog_test(
clk,
DigIn,
Vsig,
// Analog control voltage for each stage

83

Vc1,Vc2,Vc3,Vc4,Vc5,Vc6,Vc7,Vc8,Vc9,Vc10,
// digital representation for the control voltage for each stage each of

2^(n_bits_calib-1) Full scale
Vc_bin1,Vc_bin2,Vc_bin3,Vc_bin4,Vc_bin5,Vc_bin6,Vc_bin7,Vc_bin8,Vc_bin9,Vc_bin10
);
// Begin the calibration after waitClocks untill all the internal capacitances are

charged
parameter waitClocks = 5 ;
// The quantization number of bits defining the resolution of the control sig-

nal/voltage.
parameter n_bits_calib = 8 ;
parameter n_bits_ADC = 10 ;// number of bits of the target ADC
parameter pVc_start = 0.5 ; // control voltage offset in Volt
parameter pVc_end = 1.2 ; // Maximum control voltage in Volt
parameter pVsig_start = 0.4 ; // ADC input signal offset in Volt
parameter pVsig_end = 0.6 ;// ADC input signal Maximum in Volt
input clk;// System clock
input [9:0] DigIn; // The monitored ADC output. It is an input for the calibra-

tion component
output Vsig; // The ADC input signal
output Vc1; // control voltage for stage 1
output Vc2; // control voltage for stage 2
output Vc3;// control voltage for stage 3
output Vc4; // control voltage for stage 4
output Vc5;// control voltage for stage 5
output Vc6; // control voltage for stage 6
output Vc7;// control voltage for stage 7
output Vc8; // control voltage for stage 8
output Vc9;// control voltage for stage 9
output Vc10;// control voltage for stage 10
output Vc_bin1;// control voltage digital form for stage 1
output Vc_bin2;// control voltage digital form for stage 2
output Vc_bin3;// control voltage digital form for stage 3
output Vc_bin4;// control voltage digital form for stage 4
output Vc_bin5;// control voltage digital form for stage 5
output Vc_bin6;// control voltage digital form for stage 6
output Vc_bin7;// control voltage digital form for stage 7

84

output Vc_bin8;// control voltage digital form for stage 8
output Vc_bin9;// control voltage digital form for stage 9
output Vc_bin10;// control voltage digital form for stage 10
wire [7:0]Vc1;wire [7:0]Vc2;wire [7:0]Vc3;wire [7:0]Vc4;wire [7:0]Vc5;
wire [7:0]Vc6;wire [7:0]Vc7;wire [7:0]Vc8;wire [7:0]Vc9;wire [7:0]Vc10;
wire [7:0]Vc_bin1;wire [7:0]Vc_bin2;wire [7:0]Vc_bin3;wire [7:0]Vc_bin4;wire

[7:0]Vc_bin5;
wire [7:0]Vc_bin6;wire [7:0]Vc_bin7;wire [7:0]Vc_bin8; wire [7:0]Vc_bin9;wire

[7:0]Vc_bin10;
wire [7:0]Vsig;
integer out_v;
integer tempCeil;// temp ingeter used for ceiling operations
real Vc_fs;// local variable to calculate the full scale of the control voltage
real Vsig_fs;
real temp;
real Vsig_value;
real Vc_num[9:0];
integer Vc_num_intg[9:0];
real DigIn_num[9:0];
real Vc_value[9:0];
integer BitCalib_idx ,BitADC_idx, Vsig_num,clkDiv3,idx;
initial begin clkDiv3 =0 ;
BitCalib_idx = n_bits_calib-1;
BitADC_idx =n_bits_ADC-1;
Vc_fs = pVc_end -pVc_start;
// calculating the input signal full scale
Vsig_fs = pVsig_end -pVsig_start ;
// assigned half the control voltage in the middle of the full scale range
Vc_num[9] = 2**(n_bits_calib-1);Vc_num[8] = 2**(n_bits_calib-1);

Vc_num[7] = 2**(n_bits_calib-1);
Vc_num[6]=2**(n_bits_calib-1);Vc_num[5] = 2**(n_bits_calib-1);Vc_num[4]

= 2**(n_bits_calib-1);
Vc_num[3] = 2**(n_bits_calib-1);Vc_num[2] = 2**(n_bits_calib-1);

Vc_num[1] = 2**(n_bits_calib-1);
Vc_num[0] = 2**(n_bits_calib-1);
Vc_num_intg[9] = Vc_num[9]; Vc_num_intg[8] = Vc_num[8]; Vc_num_intg[7]

= Vc_num[7];

85

Vc_num_intg[6] = Vc_num[6]; Vc_num_intg[5] = Vc_num[5]; Vc_num_intg[4]
= Vc_num[4];

Vc_num_intg[3] = Vc_num[3]; Vc_num_intg[2] = Vc_num[2]; Vc_num_intg[1]
= Vc_num[1];

Vc_num_intg[0] = Vc_num[0];
Vc_value[9] = (Vc_num[9] * Vc_fs) / (2**n_bits_calib) +pVc_start;
Vc_value[8] = (Vc_num[8] * Vc_fs) / (2**n_bits_calib) +pVc_start;
Vc_value[7] = (Vc_num[7] * Vc_fs) / (2**n_bits_calib) +pVc_start;
Vc_value[6] = (Vc_num[6] * Vc_fs) / (2**n_bits_calib) +pVc_start;
Vc_value[5] = (Vc_num[5] * Vc_fs) / (2**n_bits_calib) +pVc_start;
Vc_value[4] = (Vc_num[4] * Vc_fs) / (2**n_bits_calib) +pVc_start;
Vc_value[3] = (Vc_num[3] * Vc_fs) / (2**n_bits_calib) +pVc_start;
Vc_value[2] = (Vc_num[2] * Vc_fs) / (2**n_bits_calib) +pVc_start;
Vc_value[1] = (Vc_num[1] * Vc_fs) / (2**n_bits_calib) +pVc_start;
Vc_value[0] = (Vc_num[0] * Vc_fs) / (2**n_bits_calib) +pVc_start;
$write("Vc_value[%d] init is %e\n",9,Vc_value[9]);
$write("Vc_value[%d] init is %e\n",8,Vc_value[8]);
$write("Vc_value[%d] init is %e\n",7,Vc_value[7]);
$write("Vc_value[%d] init is %e\n",6,Vc_value[6]);
$write("Vc_value[%d] init is %e\n",5,Vc_value[5]);
$write("Vc_value[%d] init is %e\n",4,Vc_value[4]);
$write("Vc_value[%d] init is %e\n",3,Vc_value[3]);
$write("Vc_value[%d] init is %e\n",2,Vc_value[2]);
$write("Vc_value[%d] init is %e\n",1,Vc_value[1]);
$write("Vc_value[%d] init is %e\n",0,Vc_value[0]);
Vsig_num = Vsig_num +(2**BitADC_idx);
Vsig_value = (Vsig_num * Vsig_fs)/(2**n_bits_ADC) + pVsig_start;
$write("Vsig_value is initialized to :%e\n",Vsig_value);
end
always @ (posedge(clk))
begin
clkDiv3 = clkDiv3 +1;
$write("clkDiv3 is :%d",clkDiv3);
DigIn_num[9] = (DigIn[9]);
DigIn_num[8] = (DigIn[8]);
DigIn_num[7] = (DigIn[7]);
DigIn_num[6] = (DigIn[6]);

86

DigIn_num[5] = (DigIn[5]);
DigIn_num[4] = (DigIn[4]);
DigIn_num[3] = (DigIn[3]);
DigIn_num[2] = (DigIn[2]);
DigIn_num[1] = (DigIn[1]);
DigIn_num[0] = (DigIn[0]);
if (clkDiv3 >= waitClocks)
begin
if(DigIn_num[BitADC_idx] > 0.5)
begin
$write("DigIn high detected at :%e \n",$abstime);
tempCeil = Vc_num[BitADC_idx] - (2**(BitCalib_idx-1)) ;
$write("decrease Vc_num to :%d\n",tempCeil);
end
else
begin
tempCeil = Vc_num[BitADC_idx] + (2**(BitCalib_idx-1)) ;
$write("DigIn is low at :%e \n",$abstime);
$write("increase Vc_num to :%d\n",tempCeil);
end
Vc_num[BitADC_idx] =tempCeil;
if (BitCalib_idx == 0)
begin
if (BitADC_idx == 0)
begin // end of calibration at time
$abstime (BitCalib_idx==0) &&(BitADC_idx == 0)
$write("end of calibration at time %e \n",$abstime);
$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",9,Vc_num[9],

Vc_value[9]);
$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",8,Vc_num[8],

Vc_value[8]);
$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",7,Vc_num[7],

Vc_value[7]);
$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",6,Vc_num[6],

Vc_value[6]);
$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",5,Vc_num[5],

Vc_value[5]);

87

$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",4,Vc_num[4],
Vc_value[4]);

$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",3,Vc_num[3],
Vc_value[3]);

$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",2,Vc_num[2],
Vc_value[2]);

$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",1,Vc_num[1],
Vc_value[1]);

$write("output Vc[%d] : %e ,which corresponds to: %e volt\n",0,Vc_num[0],
Vc_value[0]);

end
else
begin //(BitCalib_idx==0) &&(BitADC_idx != 0)
BitADC_idx = BitADC_idx -1;
clkDiv3 = waitClocks-3; // wait 1 clock till the next bit is evaluated
Vsig_num = Vsig_num + (2**BitADC_idx);
Vsig_value = (Vsig_num * Vsig_fs)/(2**n_bits_ADC) + pVsig_start;
end
BitCalib_idx = n_bits_calib-1;
$write("output Vc for bit %d : %e ,which corresponds to: %e

volt\n",BitADC_idx,Vc_num[BitADC_idx], Vc_value[BitADC_idx]);
Vc_num[BitADC_idx] = (2**BitCalib_idx);
end
else
begin //(BitCalib_idx!=0) BitCalib_idx = BitCalib_idx -1;
$write("Calibration for ADC bit %d ,Calibration bit %d \n",BitADC_idx,BitCalib_idx);
end
Vc_value[BitADC_idx] = (Vc_num[BitADC_idx]/(2**n_bits_calib) * Vc_fs)

+pVc_start;
end
else
begin// if (clkDiv3 >= waitClocks)
$write("calibration is starting in %d clocks\n",(waitClocks-clkDiv3)) ;
end // if (clkDiv3 >= waitClocks)
Vc_num_intg[BitADC_idx] = Vc_num[BitADC_idx];
end // end of @(cross(V(clk) -0.5,+1))
assign Vc_bin1 = Vc_num_intg[0];

88

assign Vc_bin2 = Vc_num_intg[1];
assign Vc_bin3 = Vc_num_intg[2];
assign Vc_bin4 = Vc_num_intg[3];
assign Vc_bin5 = Vc_num_intg[4];
assign Vc_bin6 = Vc_num_intg[5];
assign Vc_bin7 = Vc_num_intg[6];
assign Vc_bin8 = Vc_num_intg[7];
assign Vc_bin9 = Vc_num_intg[8];
assign Vc_bin10= Vc_num_intg[9];
assign Vc1 = Vc_num_intg[0];
assign Vc2 = Vc_num_intg[1];
assign Vc3 = Vc_num_intg[2];
assign Vc4 = Vc_num_intg[3];
assign Vc5 = Vc_num_intg[4];
assign Vc6 = Vc_num_intg[5];
assign Vc7 = Vc_num_intg[6];
assign Vc8 = Vc_num_intg[7];
assign Vc9 = Vc_num_intg[8];
assign Vc10= Vc_num_intg[9];
endmodule

A.6 Corners Simulation and analysis
In the following tutorial, the simulation steps for temperature and fabrication cor-
ners are discussed. The simulation can be used to target one or more simulation
fabrication corners. The following targets 3 different tempratures degrees; 27, 60
and 120 celecuis degree. And it targets 4 Fabrication corners; SS (slow-slow), FF
(Fast-Fast) , SF (Slow-Fast), FS (Fast-Slow) and normal. It will be shown how the
simulation setup is performed and how the results are extracted to be analyzed in
Matlab.

1- Launch the ADE XL from Virtuoso schematic Editor for the target circuit.

89

.

Figure A.10: Running ADE XL from the target circuit schematic.

The following window will appear. The “Data View” window shows the cur-
rent test, global variables and parameters and the corners to be simulated. The
“Run Summary” window shows the current running simulation and number of
corners.

90

Figure A.11: Running ADE XL from the target circuit schematic.

2-To create a new test, choose “create->test”, choose the yellow icon or simply
click “click to add test” from “Tests” in the Data View window. Choose the target
circuit to be opened.

91

Figure A.12: Creating a new test for corners simulation

3- The ADE XL window will appear. You may configure a new simulation
of load a saved state from “Session->Load State”. Make sure that the simlation
configurations are correct as used to be in a regular simulation setup except the
global variables which should be configured from “Global variables” in “Data
View” window as changs to Variables in the ADE XL window have no effect.

92

Figure A.13: Creating a new test for corners simulation

Each corner is defined as a set of different configurations for the design kit. To
show how the model library defines them, from Setup tab in the ADE XL window,
choose “Model Library Setup”. One may see a view like the one shown. It can
be noticed that all the models are from the same file, however, specific sections
are only selected for the current simulation setup. Each corner simulation chose
different Section from the model file.

93

Figure A.14: Model library setup

Locating the library model setup from the file system, “section tt” can be found
in the Model file.

94

Figure A.15: Example of model file for TSMC13rf design kit for “tt” corner cofig-
uration (nominal)

4- After the previous step, the common simulation setup configurations are
ready. Now, to chose the corners to be simulated, click “Click to add corner” from
“Corners” in the Data View window. The following window will appear. Name
a new corner in “Corner Name”. The different target temprature can be selected
from “Temprature” in “Varables/Prameters”.

95

Figure A.16: Selecting the target temprature and fabrication corners

5- From “Mode Files” window click “click to add” under “Test/Custom Mod-
els”. The following window will appear. Click “import from Tests” to load all the
models.

96

Figure A.17: loading the simulation models from the test setup

choose only the ones needed in the current simulation.
5- Create one or more corner setup. In this tutorials, 5 fabrication corners are

selected; “tt”, “ff”, “ss”, “sf” and “fs”. Each with 3 different tempratures; 27,
60 and 120 Celecuis degrees. The total number of simulation runs are 5*3= 15
simulation run. When finished press Ok.

97

Figure A.18: Configuring the simulation temprature and fabrication corners

6- After the previous step, the target corners are shown in the Data View win-
dow. We are now ready to run the simulation.

To run the simulation, press the green play button. The simulation progress is
shown under “History Item” window.

98

Figure A.19: Start and monitor the simulation

7- When the simulation is finished, plotting one or more of the output results
signal can be selected from the “Results” tab and right click to the target signal
and choose “Plot All Corners”. Another way is to select results icon and choose
the signal to plot.

99

Figure A.20: Plotting the simulation results for all the corners

The following graph shows the results for the signal “/I21/vr2” for all the target
simulation corners. It is shown how each corner affects the signal rising shape.

100

Figure A.21: Plotting the simulation results for all the corners

5- To export the results for Matlab, open the results from and right click on the
target signal and choose “Export”.

101

Figure A.22: Exporting signals to Matlab

From the Export Waveforms, the target signal can be sampled. Choose the
“start” and “end” for the exported part. Then choose the sampling period “Step
Size”. Name the file with “.matlab” extension.

102

Figure A.23: Exporting signals to Matlab

The following is the exported file view to save 10 samples for all the corners.
The highlighted part presents the ’X’ and ’Y’ for signal “DIG_ot” for corner ”tt”
and temprature 27 degree.

103

Figure A.24: Exported Matlab file view

To import the data to Matlab, use the following command
>> dataAll=importdata(’CornerTest.matlab’);
“dataAll.data(:,1:2)” will contain the time and volt for DIG_ot for “tt” simu-

lation and 27 Celsius degree. The designer can now do the analysis for the target
signal and corner.

104

Figure A.25: Exported Matlab file view

105

الرسالة ملخص
 محولات البیانات بین التمثیل التناظرى و التمثیل الرقمى تعرّف الحدود الفاصلة بین

 المكونات الرقمیة و التناظریة فى اى آلھ. تحسین محولات بیانات قویة یعنى ان مزیدا
 من المكونات التناظریة یمكن ان تتحول لشكل رقمى. المكونات الرقمیة اسھل فى

)التصمیم و التعدیل. و ھى أیضا تقدم قدرة فعالة فى مقاومة الضوضاء (الألكترونیة
.مع استھلاك اقل للطاقة و مساحة التصنیع مستفیدة من اى تكنولوجیا تصنیع جدیدة

عدید من تصمیمات محولات البیانات من التمثیل التناظرى للتمثیل الرقمى قد تم
 إقتراحھا لخدمة العدید من التطبیقات. إختیار التصمیم الأمثل یكون بناء على العدید من

العوامل مثل معدل أخد العینات, مقدار إستھلاك الطاقة الكھربیة و مساحة التصنیع و
 الدقة و القدرة على مقاومة تأثیر تغیرات عملیة التصنیع و الجھد الكھربى المستخدم و

 و درجة الحرارة. , سیجما-دلتا ومحول البیانات اللحظى المحول الأنبوبىو المسجل
.التقاربى المتتالى

 ومحولات البیانات ذات الطابع الزمنى ھى تصنیف خاص من محولات البیانات التى
 القیمة یفضل فیھا ان یتم التحویل بإستخدام مكونات رقمیة. التحویل بین القیمة التناظریة

 یتم التحویل منالقیمة الرقمیة المناظرة یتم على مرحلتین. فى المرحلة الأولى یتم تحویل
 یتم فى المرحلة التناظریة من تغیر فى قیمة الجھد إلى تغیر زمنى. فى المرحلة الثانیة
 المرحلة الأولى فإنالتغیر الزمنى إلى القیمة الرقمیة الثنائیة المناظرة. اغلبیة التحویل
 بإستخدام مكونات رقمیةالثانیة. و حیث أن المطلوب إنجازة قد تم تبسیطة عن طریق

 للتحویل من الإشارات التناظریة الى الإشارات.المرحلة الثانیة من المتوقع أن یتم تمثیلھا
 ھى نسخة معدلة من خوارزمیة التقریب المتتابع و التى فى ھذا العمل نقدم خوارزمیة جدیدة

 ثنائیة فرعیة من القیمة القصوى للمدخلات لایجاد القیمة الرقمیة الرقمیة. ھذه الخوارزمیة
 بشكل متكرر. الخوارزمیة المقترحة تنقل الاشتراطات اللازمة بین القیمیستخدم فیھا نسب

 المحسوبة من التمثیل التناظرى الى التمثیل الرقمى. فى النسخ المطویة منالمناظرة
الدوائر المعتمدة على خوارزمیة التقریب المتتابع (التى یتم إیجاد القیم الثنائیة فیھاالثنائیة

 بشكل تكرارى) قد لا نحتاج إلى التحویل من القیم الرقمیة الى القیم التناظریة بعد الآن
 و ھو ما یحقق تقدم واعد من حیث مساحة التصنیع و الطاقة الكھربیة المستھلكة. مقدم
 فىایضا إثبات ریاضى كامل للخوارزمیة الجدیدة كما تم تطویر تصمیم دائرة كھربیة

 المتواجدة جدیدة للاستفادة من فوائد ھذة الخوارزمیة. طبقاً للنتائج المرفقة فإن التحسین
استھلاك الطاقة و التوفیر فى مساحة التصنیع ینافس أحدث التصمیماتالأن

ا

 كریم اسامة رجبمهندس:
١٩٨٩/٩/٨ المیلاد: تاریخ

مصري الجنسیة:
٢٠١٢/١٠/٠١ التسجیل: تاریخ
yyyy/mm/dd المنح: تاریخ

الماجستیر الدرجة:
الكهربیة والاتصالات الإلكترونیات هندسة القسم:

د.أحمد عمیرة المشرفون:
د. حسن مصطفى

الممتحنون:
الرئیسي) (المشرف د.أحمد عمیرة
الداخلي) (الممتحن الغنیمى ریاض محمد
الخارجي) (الممتحن ------------------

الرسالة: عنوان
 خوارزمیة و تصمیم دائرة بإستخدام تقنیة التقریب المتتابع
بالتقطیع المتواصل لمحولات البیانات ذات الطابع الزمنى

الكلمات الدالة:
محول الوقت إلى رقمى ، محول تناظرى رقمى، نظم ال اردیو المعرفة برمجیا ، محول الوقت

لرمز
ملخص الرسالة:

 فى ھذا العمل نقدم خوارزمیة جدیدة للتحویل من الإشارات التناظریة الى الإشارات
الرقمیة. ھذه الخوارزمیة ھى نسخة معدلة من خوارزمیة التقریب المتتابع و التى یستخدم
فیھا نسب ثنائیة فرعیة من القیمة القصوى للمدخلات لایجاد القیمة الرقمیة المناظرة بشكل

متكرر. الخوارزمیة المقترحة تنقل الاشتراطات اللازمة بین القیم الثنائیة المحسوبة من
التمثیل التناظرى الى التمثیل الرقمى. فى النسخ المطویة من الدوائر المعتمدة على

خوارزمیة التقریب المتتابع (التى یتم إیجاد القیم الثنائیة فیھا بشكل تكرارى) قد لا نحتاج
إلى التحویل من القیم الرقمیة الى القیم التناظریة بعد الآن و ھو ما یحقق تقدم واعد من

حیث مساحة التصنیع و الطاقة الكھربیة المستھلكة. مقدم ایضا إثبات ریاضى كامل
 للخوارزمیة الجدیدة كما تم تطویر تصمیم دائرة كھربیة جدیدة للاستفادة من فوائد ھذة

الخوارزمیة. طبقاً للنتائج المرفقة فإن التحسین فى استھلاك الطاقة و التوفیر فى مساحة
 التصنیع ینافس أحدث التصمیمات المتواجدة الآن.

 خوارزمیة و تصمیم دائرة بإستخدام تقنیة التقریب المتتابع
بالتقطیع المتواصل لمحولات البیانات ذات الطابع الزمنى

إعداد
 كریم أسامة رجب

إلي مقدمة رسالة
القاهرة جامعة - الهندسة كلیة

درجة علي الحصول متطلبات من كجزء
الماجستیر

في
الكهربیة الاتصالات و الإلكترونیات هندسة

یعتمد من لجنة الممتحنین:

د. أحمد عمیرة - المشرف الرئیسي

- الممتحن الداخلي

عین شمس - الممتحن الخارجي
كلیة الهندسة - جامعة

 كلیة الهندسة - جامعة القاهرة
الجیزة - جمهوریة مصر العربیة

٢٠١٧

 خوارزمیة و تصمیم دائرة بإستخدام تقنیة التقریب المتتابع
بالتقطیع المتواصل لمحولات البیانات ذات الطابع الزمنى

إعداد
كریم أسامة رجب

رسالة مقدمة إلي
كلیة الهندسة - جامعة القاهرة

كجزء من متطلبات الحصول علي درجة
الماجستیر

في
هندسة الإلكترونیات و الاتصالات الكهربیة

تحت إش ارف
د. أحمد عمیرة د. حسن مصطفى حسن مصطفى

المدرس المتفرغ الأستاذ
الكهربیة والاتصالات الإلكترونیات هندسة الكهربیةقسم والاتصالات الإلكترونیات هندسة قسم

القاهرة جامعة - الهندسة كلیة القاهرة جامعة - الهندسة كلیة

 كلیة الهندسة - جامعة القاهرة
الجیزة - جمهوریة مصر العربیة

٢٠١٧

خوارزمیة و تصمیم دائرة بإستخدام تقنیة التقریب المتتابع
بالتقطیع المتواصل لمحولات البیانات ذات الطابع الزمنى

إعداد
كریم أسامة رجب

 كلیة الهندسة - جامعة القاهرة
الجیزة - جمهوریة مصر العربیة

٢٠١٧

 رسالة مقدمة إلى
 كلیة الھندسة - جامعة القاھرة

 كجزء من متطلبات الحصول على درجة
 الماجستیر

 فى
الإلكترونات و الإتصالات الكھربیة

	Acknowledgment
	Abstract
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	Introduction
	Background
	ADC functions
	Sampling
	Quantization

	ADC static characteristics
	Offset error
	Gain error
	Differential Non Linearity
	Integral Non-Linearity
	Missing Codes

	ADC Dynamic characteristics
	Analog Input Bandwidth:
	Input Impedance
	Equivalent input referred noise
	Maximum sampling frequency and conversion time
	Signal to Noise Ratio (SNR)
	Signal to Noise and Distortion Ration (SNDR)
	Dynamic range
	Effective Number Of Bits (ENOB)

	Types of Analog to Digital Converters (ADC)
	Nyquist rate ADCs
	flash ADC
	Piplelined ADC
	Successive approximation ADC

	Oversampling ADCs
	Sigma Delta ADCs

	Time-based ADC (TADC)
	TADC based on frequency modulation
	TADC based on pulse position modulation
	TADC based on pulse width modulation
	Pulse-width VTC examples
	Pulse-width TDC

	Introducing SAR-CD algorithm
	SAR verses SAR-CD algorithm
	SAR-CD general algorithm
	SAR-CD algorithm proof
	SAR-CD algorithm examples
	Example 1 to convert ``10.1'' analog input to ``1010''
	Example 2 to convert ``20'' analog input to ``10100''
	Example 3 to convert ``20'' analog input to ``10100''

	Circuit design
	First circuit design
	Design components
	Simulation results and analysis for the first design

	Second circuit design- All Digital TDC
	Circuit description
	Circuit components
	Simulation results and analysis for the second design

	Digital Calibration for SAR-CD time-based TDC
	Calibration results

	List of Publications
	References
	Appendix
	SAR-CD Matlab code
	Traditional SAR Algorithm- Matlab function
	Noval SAR-CD Algorithm - Matlab function
	Noval SAR-CD Algorithm - Matlab function

	Effective Number Of Bits (ENOB)
	Differential Non-Linearity (DNL) and Integral Non-Linearity (INL)
	Ideal VTC using Verilog-A
	Calibration code Verilog
	Corners Simulation and analysis

