
NOC ROUTER AND ARBITER FOR FPGA

By

Khaled Abdullah Helal Kelany

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

NOC ROUTER AND ARBITER FOR FPGA

By

Khaled Abdullah Helal Kelany

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

Under the Supervision of

Prof. Hossam A. H. Fahmy Assist. Prof. Hassan Mostafa
Professor Assistant Professor

Electronics and Communications Engineering Electronics and Communications Engineering
Department Department

Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

NOC ROUTER AND ARBITER FOR FPGA

By

Khaled Abdullah Helal Kelany

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Hossam A. H. Fahmy, Thesis Main Advisor

Prof. Amin M. Nassar, Internal Examiner

Prof. Mohab H. Anis, External Examiner
(Faculty of Engineering, AUC)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

Engineer’s Name: Khaled Abdullah Helal Kelany
Date of Birth: 16/06/1989
Nationality: Egyptian
E-mail: khaled.a.helal@ieee.org
Phone: +201062297707
Address: Electronics and Communications

Engineering Department,
Cairo University,
Giza 12613, Egypt

Registration Date: 01/10/2013
Awarding Date: / /2016
Degree: Master of Science
Department: Electronics and Communications Engineering

Supervisors:
Prof. Hossam A. H. Fahmy
Assist. Prof. Hassan Mostafa

Examiners:
Prof. Hossam A. H. Fahmy (Thesis main advisor)
Prof. Amin M. Nassar (Internal examiner)
Prof. Mohab H. Anis, Faculty of Engineering, AUC

(External examiner)

Title of Thesis:

NOC ROUTER AND ARBITER FOR FPGA

Key Words:
NoC; Router; Arbiter; FPGA; Switch

Summary:
The advancement in semiconductor technology has led to a high density chip which
moves the bottleneck from the on-chip computation systems to the on-chip communi-
cation systems. This advancement gives FPGA a chance to compete with AISC. How-
ever, the conventional communication paradigms failed to fulfill the on-chip system
needs. Networks-on-Chips (NoCs) are considered a promising solution for on-chip
communications challenges. This thesis investigates developing a high performance
NoC that targets FPGA.

Acknowledgments

First, praise be to Allah, Lord of the worlds, who said: ”I am as My servant thinks I
am”.

Second, I would like to express my special thanks of gratitude to my advisors, Dr.
Hossam Fahmy, and Dr. Hassan Mostafa, who helped me gain knowledge in so many
aspects of life and gave me a great opportunity to do this thesis, I am truly appreciative to
them.

Finally, I would also like to thank my parents and my brothers, Hany and Tamer, who
made me who I am today, as well as, my friends who helped me a lot in finalizing this
work.

i

Dedication

I dedicate this work for my family, for their endless support.

I dedicate this work for my supervisors, for their sincere guidance.

iii

Table of Contents

Acknowledgments i

Dedication iii

Table of Contents v

List of Tables ix

List of Figures xi

List of Symbols and Abbreviations xiii

List of Publications xv

Abstract xvii

1 Introduction 1
1.1 Thesis Goals . 2
1.2 Organization of the thesis . 2

2 Background 3
2.1 On-Chip Interconnect Architecture . 3
2.2 NoC . 3

2.2.1 NoCs’ Parameters . 5
2.2.1.1 Topology: . 6
2.2.1.2 Flow Control: . 6
2.2.1.3 Switching Techniques: 8
2.2.1.4 Virtual Channels (VCs) [11, 12] 9
2.2.1.5 Routing Algorithms 9
2.2.1.6 Buffer Size . 11
2.2.1.7 Link Width . 11
2.2.1.8 Arbitration . 11

2.3 FPGA platform . 11
2.4 FPGA NoC . 14

2.4.1 Current FPGA Interconnect Problems 14
2.4.1.1 Interconnect scaling 14
2.4.1.2 Design hurdles . 14
2.4.1.3 Bandwidth demands 14

v

2.4.1.4 Modularity . 15
2.4.2 Embedded Networks-on-Chip Solution 15
2.4.3 Network Architecture . 15

2.4.3.1 Soft NoCs . 15
2.4.3.2 Mixed NoCs . 16
2.4.3.3 Hard NoCs . 16

3 NoCs in the context of ASICs and FPGAs 17
3.1 Introduction . 17
3.2 Background . 18
3.3 Simulation setup . 19
3.4 Simulation Results . 20
3.5 Design Recommendations . 30

4 Proposed Router 33
4.1 Introduction . 33
4.2 Literature Review . 33

4.2.1 SOTA . 33
4.2.2 CONNECT . 34
4.2.3 Split-Merge . 35
4.2.4 Dual-crossbar . 36

4.3 Proposed Architecture . 37
4.4 DSM router with Virtual Channels . 41
4.5 Network Interface . 42

4.5.1 Network to PE part: . 42
4.5.2 PE to Network part: . 43

4.6 Results . 43
4.6.1 Router Results . 43

4.6.1.1 Network Performance Results 44
4.6.1.2 Virtex-6 FPGA Results 44
4.6.1.3 Virtex-5 FPGA and UMC ASIC Results 48

4.6.2 Network Interface Results . 54

5 Priority-Select Arbiter: An Efficient Round-Robin Arbiter 55
5.1 Introduction . 55
5.2 Literature Review . 56

5.2.1 Baseline arbiter . 56
5.2.2 Timing speculative arbiter . 57
5.2.3 Acyclic arbiter . 58
5.2.4 Priority-encoder based arbiter 59

5.2.4.1 Exhaustive PE arbiter 59
5.2.4.2 Dual-path PE arbiter 59

5.2.5 Parallel prefix arbiter . 60

vi

5.3 Proposed Arbiter . 61
5.4 Embed PS Arbiter in DSM Router . 63
5.5 Results . 63

5.5.1 PS Arbiter Results . 63
5.5.2 DSM with PS Arbiter Results 66

6 Dynamic Virtual Channels 71
6.1 Introduction . 71
6.2 Related Work in Buffer Design . 72

6.2.1 DAMQ . 72
6.2.2 SCB . 73
6.2.3 FC-CB . 74
6.2.4 DAMQ-all . 75
6.2.5 ViChaR . 77
6.2.6 DVOQR . 77
6.2.7 EVC . 79

6.3 Embed Dynamic Virtual Channel in DSM Router 79
6.3.0.1 Architecture . 79
6.3.0.2 Dynamic Buffers Area Overhead 80
6.3.0.3 Dynamic Buffers Frequency 81

6.4 Results . 81
6.4.1 DVOQR Implementation Results 81
6.4.2 DSM Router with DVC Results 82

6.4.2.1 32-bit Flit Width Results 82
6.4.2.2 128-bit Flit Width Results 83

6.4.3 DSM Router with DVC and PS-arbiter Results 84

7 Conclusions and Future Work 87
7.1 Conclusions . 87
7.2 Future Work . 88

References 89

Arabic Abstract ا

vii

List of Tables

3.1 Num. of VCs Simulation Results . 25
3.2 Num. of Nodes Simulation Results . 29
3.3 Buffer Depth Simulation Results . 29
3.4 Topology Simulation Results . 29

4.1 A comparison between DSM, SOTA, CONNECT and Split-Merge (based
on Virtex-6 platform) . 50

4.2 A comparison between DSM, SOTA, CONNECT and Split-Merge
(Virtex-5 and ASIC platfoms) . 54

4.3 Network interface implementation results 54

5.1 Area Implementation Results of previous architectures for different no. of
requesters (n) . 64

5.2 Frequency Implementation Results of previous architectures for dierent
no. of requesters (n) . 64

5.3 Implementation Results of the proposed arbiter for different no. of re-
questers (n) and different bits per unit (k) 65

5.4 Frequecy and Area Implementation Results of DSM for different no. of
VCs (n) using conventional arbiter and PS arbiter 69

6.1 The maximum frequency and area of DVOQR at 32-bit flit width 82
6.2 The maximum frequency and area of DVOQR at 128-bit flit width 82
6.3 The maximum throughput, maximum frequency and area of DSM router

with DVC and 32-bit flit width . 83
6.4 The maximum throughput , maximum frequency and area of DSM router

with SVCand 32-bit flit width . 83
6.5 The maximum throughput, maximum frequency and area of DSM router

with DVC and 128-bit flit width . 83
6.6 The maximum throughput , maximum frequency and area of DSM router

with SVC and 128-bit flit width . 84
6.7 The maximum throughput , maximum frequency and area of DSM router

with DVC and PS-arbiter . 85

ix

List of Figures

2.1 Single bus and multi buses . 4
2.2 Point to point . 4
2.3 Sample of NoC. The sample shows 16 IP blocks that communicate

through a network of NI’s (rectangular shapes), routers (circles), and links
(solid lines). 5

2.4 Topologies . 7
2.5 Store-And-Forward (SAF), Wormhole (WH) and Virtual Cut Through

(VCT): The figure shows an example of packets traverse through four
nods using SAF, WH, and VCT switching technique. The example as-
sumes that the third node will have only two flit space in its buffers for
three cycles. 10

2.6 FPGA architecture example . 12

3.1 The load-latency curve when varying VC. 21
3.2 The load-latency curve when varying VC after considering the operating

frequency . 22
3.3 The load-latency curve when varying buffer depth 23
3.4 The FOM for different buffer sizes . 24
3.5 The FOM for different number of nodes 26
3.6 The load-latency curve for different topologies. 27
3.7 An example of 16-node TORUS and FOLDED TORUS networks 28

4.1 SOTA Architecture . 34
4.2 CONNECT Architecture . 35
4.3 Split Merge Architecture . 36
4.4 Dual-crossbar Architecture . 37
4.5 Dual-crossbar internal architecture of one 3× 3 crossbar 38
4.6 DSM router architecture . 39
4.7 Internal router structure . 40
4.8 The internal structure of DSM router ports with virtual channels support . 42
4.9 Network Interface Structure . 43
4.10 DSM network throughput in flits/cycle/node 45
4.11 Load-Latency curves of different configurations of DSM with 2-stage

pipeline . 45
4.12 Load-Latency curves of different configurations of DSM with 4-stage

pipeline . 46
4.13 The operating frequency of DSM in GHz (based on Virtex-6 platform) . . 47

xi

4.14 The area in LUTs of DSM (based on Virtex-6 platform) 47
4.15 Load-Latency curves of different configurations of DSM (based on Virtex-

6 platform) . 48
4.16 The maximum throughput and area of the different routers (based on

Virtex-6 platform) . 49
4.17 Load-Latency curves of DSM and other routers (based on Virtex-6 platform) 49
4.18 The operating frequency of DSM in GHz (Virtex-5 and ASIC platfoms) . 50
4.19 The area of DSM (Virtex-5 and ASIC platfoms) 51
4.20 The maximum throughput of the different routers (Virtex-5 and ASIC

platfoms) . 52
4.21 The area of the different routers (Virtex-5 and ASIC platfoms) 53

5.1 Baseline arbiter . 57
5.2 Baseline arbiter cell . 57
5.3 Acyclic Arbiter . 58
5.4 Exhaustive PE arbiter . 59
5.5 Dual-path PE Arbiter . 60
5.6 Priority-Select Arbiter . 61
5.7 Priority-Select Arbiter Example . 62
5.8 Area of different arbiters . 67
5.9 Frequency of different arbiters . 68

6.1 The architecture of conventional static and dynamic virtual channel
buffers. 72

6.2 An example of DAMQ buffer that support four VCs: The packet that be-
longs to VC i is doneted by Pi. 74

6.3 An example of SCB storage buffer that supports four VCs compared to a
DAMQ buffer. 75

6.4 An example of FC-CB storage buffer that supports four VCs compared to
a DAMQ buffer. 76

6.5 An example of DAMQ-all storage buffer that supports four VCs compared
to a DAMQ buffer. 76

6.6 DVOQR internal structure . 78
6.7 The structure of a single queue of VOAQ 78
6.8 An example of EVC storage buffer that supports four VCs compared to a

DAMQ buffer. 79
6.9 The input port and the output port of DSM router with SVC and with DVC. 80

xii

List of Symbols and Abbreviations

Symbols Description

ASIC Application-Specific Integrated Circuit.
BSV Bluespec System Verilog .
CONNECT CONfigurable NEtwork Creation Tool.
DAMQ Dynamically Allocated Multi-Queue.
DSM Dual-Split-Merge .
DVOQR Dynamic Virtual Output Queues Router.
EVC Efficient Virtual Channel .
FC-CB Fully Connected Circular Buffere.
FIFO First In First Out.
Flit Flow Control Digit.
FOM Figure of Merit.
FPGA Field Programmable Gate Array.
HDL Hardware Description Language.
HOL Head of Line.
IP Intellectual Property.
LUT Look-up Table.
NI Network Interface.
NoC Network on Chip.
PE Processing Element.
PS Priority-Select .
RAM Random Access Memory.
RRA Round-Robin Arbiters.
RTL Register Transfer Level.
SAF Store And Forward.
SCB Self-Compacting Buffer.
SoC System on Chip.
SOTA State-Of-The-Art.

xiii

UDB Unified Dynamic Buffer .
UDBA Unified Dynamic Buffer Allocator.
VC Virtual Channel.
VCT Virtual Cut Through.
ViChaR Virtual Channel Regulator.
VOAQ Virtual Output Address Queues.
VOQ Virtual Output Queueing.
WH Wormhole.

xiv

List of Publications

Published:

[1] K. A. Helal, S. Attia, T. Ismail, and H. Mostafa, “Comparative review of NoCs
in the context of ASICs and FPGAs,” in 2015 IEEE International Symposium on
Circuits and Systems (ISCAS), IEEE, 2015, pp. 1866–1869.

[2] K. A. Helal, S. A. Attia, T. Ismail, and H. Mostafa, “Priority-select arbiter: An
efficient round-robin arbiter,” in New Circuits and Systems Conference (NEWCAS),
2015 IEEE 13th International, IEEE, 2015, pp. 1–4.

Submitted:

[1] K. A. Helal, S. Attia, T. Ismail, and H. Mostafa, “Dual Split-Merge: A High
Throughput Router for FPGAs,” IEEE Transactions on Very Large Scale Integra-
tion Systems, 2016.

xv

Abstract

The advancement in semiconductor technology has led to a high density chip which
moves the bottleneck from the on-chip computation systems to the on-chip communica-
tion systems. This advancement gives FPGA a chance to compete with AISC by increas-
ing the embedded various processing elements with flexible interconnection infrastructure.
However, the conventional communication paradigms failed to fulfill the on-chip system
starvation for high speed, high bandwidth, low overhead, and modular communication
system. Networks-on-Chips (NoCs) is considered a promising solution for on-chip com-
munications challenges correlated with technology scaling. In this thesis, we investigate
developing a high performance NoC that targets FPGA.

This thesis compares and discusses the NoC parameters that give high performance
and efficiency for FPGA-based and ASIC-based NoC. In addition, it introduces a new
FPGA-based NoC router architecture that outperforms the previous router architectures
found in the literature. Moreover, this thesis proposes a new implementation architecture
for Round-Robin arbiter that significantly reduces the area and operating frequency when
compared to the previous implementations found in the literature. This arbiter greatly
enhances the operating frequency when embedded with the proposed NoC router archi-
tecture. Finally, the thesis equips the proposed NoC router architecture with one of the
dynamic memory schemes to further reduce the used area.

xvii

Chapter 1

Introduction

As the integrated circuits technology scales, the number of transistor that can fit in a
single chip increases and the question is no longer how to increase it, but how to efficiently
use it. In current systems-on-chip (SoC), the designers tend to use more logic and intel-
lectual property (IP) cores to implement modern applications that need broad processing.
These complex systems need more intensive interconnections.

On chip interconnections significantly affect the performance of the applications im-
plemented on the chip. Nevertheless, the direct interconnections and classical bus-based
interconnections have major disadvantages such as the synchronization errors correction,
high delay and high power consumption[1]. Here, network-on-chip (NoC) arise as a solu-
tion to interconnection problems [2].

NoC overcomes the limitations of bus-based interconnection by introducing an effi-
cient way to realizing interconnections on SoC [3–5]. NoC has a high performance inter-
connection, with low power and scalability properties [6]. It is also easy to scale as it pro-
vides multiple connections between processing elements (PEs). In addition, it decreases
system complexity by proposing a level of abstraction by separating data communication
from data computation.

In NoC architectures, PEs are connected via a packet-switched network on a single
chip. It also increases bandwidth by pipelining data transmission in single or multiple
channels in parallel.

However, NoCs have various problems such as latency and area increases, higher
power consumption and congestion. On the other hand, the platform implementation
medium has a significant effect on SoC applications. Most NoC researches are directed
to the ASIC platforms because its advantages over the other competitor, FPGA platforms,
in high operating frequency and small area and power consumption. However, FPGAs be-
come more attractive for SoC designers as it provide many preferences as we will discuss
in chapter 2.

1

1.1 Thesis Goals
Some researches now are directed to FPGA-based NoC as the current designs need

many improvements and ASIC-based NoC designs may not be applicable for FPGA-based
ones [7].

There are many parameters that affect NoC performance, these parameters can be
classified into two categories; the parameters related to network structure such as latency,
throughput and bandwidth, and the parameters related to implementation such as operat-
ing frequency, area and power consumption [7].

In this thesis, we are working on:

1. Enhancing those parameters to elevate the overall performance.

2. Exploring the methods that provide a fast and yet small area NoC that is targeting
FPGA platform.

3. Developing FPGA-based NoC system by introducing a new router architecture and
improving bottleneck system components.

4. Improving the critical components to efficiently support NoC without the need of
implementing hard-embedded routers, namely, we are focusing on the arbiter and
buffer units of the NoC routers.

The results included in this thesis are based on simulating parameterized Verilog models
of NoC-Routers on Virtex-6 LX760 FPGA (part xc6vlx760, speed grade -2), close to the
technology used in recent NoC researches. As well as the simulation on Virtex-5 LX330T
FPGA (part xc5vlx330t, speed grade -2) and UMC 65nm Typical as they both represent
similar technology feature length to provide a fair comparison between the implementa-
tion on FPGA and ASIC platforms respectively.

1.2 Organization of the thesis
The thesis is organized as follows: Chapter 2 presents a background on NoC and

FPGA. Chapter 3 compares the NoCs that target the FPGA with the NoCs that target the
ASIC. In chapter 4,we propose a very high throughput router in which both the network
part and the chip part are improved. In chapter 5, we propose a new Round-Robin arbiter
architecture that provides significant performance improvements over previous architec-
tures. Chapter 6 discusses augmenting the proposed router with dynamic buffers. Finally,
Chapter 7 concludes the thesis contributions and possible future work directions.

2

Chapter 2

Background

This chapter provides a quick background of packet-switched NoC design and a dis-
cussion about the characteristics of FPGA platforms and how they differ from ASIC plat-
forms.

2.1 On-Chip Interconnect Architecture
Traditionally, SoC’s cores were communicating through shared buses, point-to-point

connection, or a mixed system of shared buses and point-to-point.

Shared buses are based on a single bus or multi buses as figure 2.1 shows. The advan-
tage of this paradigm is the simplicity, but it has many disadvantages like small bandwidth,
no concurrent communications, and it does not scale well, which make it suitable for small
systems only

Point to point also has the advantage of large bandwidth and low latency, however, it
causes routing problems and the number of connections scales quadratic with the number
of cores. That make it as well suitable for small systems as figure 2.2 shows.

2.2 NoC
NoC consists of network interfaces (NIs) that provide an interface between cores that

need to communicate, network elements (routers) that transmit and receive the messages
from neighboring routers or NI’s, and links connect routers and NIs. The idea of NoC is
based on traditional computer networks, but with many differences. Figure 2.3 shows a
sample of NoC.

NoC provides high bandwidth, low latency, low area-overhead, low power, and simple
scaling paradigm when compared with shared bus or point-to-point connection. Neverthe-
less, it has many issues that need to be considered which make it a good field of research.
In the following section, we introduce some terminology used in NoC design:

3

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

Shared Bus

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block Bus Bridge

Shared Bus 1

Shared Bus 2

IP
Block

IP
Block Bus Bridge

Shared Bus 3

Figure 2.1: Single bus and multi buses

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block IP

Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

Figure 2.2: Point to point

4

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

IP
Block

Core

Network Interface

Routing Node

Link

Figure 2.3: Sample of NoC. The sample shows 16 IP blocks that communicate
through a network of NI’s (rectangular shapes), routers (circles), and links (solid

lines).

Deadlock:

Deadlock happens when two packets are acquiring some resources and each waiting
for the other to release these resources before proceeding. Which causes the two packets
to suspend.

Livelock:

Livelock happens when a packet continuously loops around its destination and fails to
reach it.

Starvation:

In multi priority system starvation happens when low priority packets are suspended
permanently because the higher priority packets are acquiring the network resources con-
tinuously.

2.2.1 NoCs’ Parameters

NoC design is characterized by its parameters; these parameters can be summarized
as follow:

5

2.2.1.1 Topology:

NoC are basically composed of a group of shared nodes (routers) and links between
nodes to connect the processing elements (PE). The topology of the network refers to the
distribution and the arrangement of the routers, links, and processing elements (PE).

The key of a good topology is to achieve the bandwidth and the latency required by
the application at the lowest cost using available, or targeted, technology. Moreover, net-
work topology has an impact on the overall performance as it allows the network to scale
regularly. In order to achieve the maximum bandwidth, the topology should saturate the
bandwidth at the midpoint of the system [8].However, to minimize the latency, the topol-
ogy should compromise between minimizing the average distance between nodes, hop
count, and minimizing the serialization latency. In other words, given a limited capacity
of the wiring, tendency to increase the links will result in narrowing the link width which
will increase the serialization, and hence increase the buffering of the large packets. De-
creasing the hop count, the number of nodes and links the message traverse from source
to destination, will result in increasing the number of links connected to each node which
may complicate the implementation of nodes.

Topology could have high dimension orientation like three-dimension networks or it
could be two-dimension networks or even one-dimension networks. Figure 2.4 shows
examples of one-dimension, two-dimension, and three-dimension topologies. Ring topol-
ogy is an example of the one-dimension topologies, mesh and torus are examples of the
two-dimension topologies, and hypercube topology is an example of the three-dimension
topologies. In the figure, the circles refer to the network nodes and the lines refer to the
bidirectional links. However, in two-dimension platforms, like FPGAs, it is not prefer-
able to use a high dimension network [9] because it uses a long wire connection, which
increases the delay, and power consumption. On the other hand, two-dimension networks
such as mesh, torus and Flattened butterfly are promising topologies for FPGA [7]. More-
over, mesh topology has the advantage over torus and Flattened butterfly because even
though torus and Flattened butterfly have low latency measured in number of cycles, they
are suffering from a low operating frequency that result from the long wires used [7]. In
this thesis, we will use Mesh topology as the default network topology to measure the
performance as we will discuss in the next chapter.

2.2.1.2 Flow Control:

The flow control ensures that the network resources are free from the conflict that may
keep a channel idle. The flow control method determines how packets are assigned to
network resources, including buffers, ports, channels and control logic. In other words, it
determines when to hold the transmission if buffers or any other resources are unavailable
to avoid data loss.

6

a) Ring b) Mesh

c) Torus d) Hypercude

Figure 2.4: Topologies

7

To avoid buffer overflow, NoC uses flow control protocol. The most common two flow
control protocols are credit-based flow control [10] and valid/backpressure flow control
[8]. The credit-based flow control receiver keeps sending information, or credits, for each
portion of packet it receives and sender keep counting the credit to figure out the space
available at receiver buffers, while in backpressure flow control the receiver sends a single
bit to the sender to indicate whether the buffer is full or not. Backpressure flow control is
simpler and provides relatively good performance.

2.2.1.3 Switching Techniques:

Switching Techniques refer to the way packets pass from source to destination. The
effectiveness of a switching strategy is measured by its ability to provide fairness between
network packets and avoid any deadlock. The most known techniques are circuit switching
(CS) and packet switching (PS).

In CS, the network resources are reserved from source to destination, so it needs time
to setup the connection before streaming the message and release the connection after
streaming ended. CS provides guaranteed bandwidth, however, it may make reserved
resources unusable when transmission is idle which decreases resources utilization, also
setup and release times increase the latency.

On the other hand, PS sends packets directly without resource reservation, which in-
creases resource utilization and decreases the average delay. PS can be classified to three
methods:

Store-and-forward (SAF) [10]:

In store-and-forward, the message is decomposed into packets, each packet sent se-
quentially after subdividing it into smaller units called flow control digits (flits) according
to bus width. However, it’s not allowed to the router to forward the packet immediately
until the entire packet received and stored in the buffer. Therefore, it requires large buffers
and has high latency.

Wormhole (WH) [8]:

In wormhole, each packet is decomposed into flits. Unlike Store-and-forward, each
flit can be foreword immediately without the need of storing the whole packet, so it need
smaller buffers and has lower latency. However, it is prone to deadlock.

8

Virtual cut through (VCT) [10]:

In virtual cut through, the flits can be forwarded if the next router has sufficient space
in its buffer to hold the whole packet. Although virtual cut through has low latency, it
requires large buffers.

Compared with virtual cut through and store-and-forward, wormhole routing is suit-
able for NoC because it needs relatively small buffers and has low latency. The problem of
deadlock can be solved using a deadlock free routing algorithm or introducing the concept
of virtual channels.

Figure 2.5 shows the differences between Store-And-Forward (SAF), Wormhole (WH)
and Virtual Cut Through (VCT). In the figure, the space and time are shown on vertical
and horizontal axis respectively. The space represents the channels used by the packet.
The packet is a group of six flits starting with the head flit. The time is measured in
cycles.

2.2.1.4 Virtual Channels (VCs) [11, 12]

Virtual channels are the virtual link that connects two adjacent switches. Each physical
channel, which physically connect two adjacent switches, could have one or more virtual
channels each with a different buffer space. VCs contribute in solving the problem of
deadlock and head-of-line (HoL) blocking, the blocking of data destined for a port of the
router behind data waiting for another port to be available, so it increases the network
performance at the expense of logic that is more complicated and larger buffer space.

2.2.1.5 Routing Algorithms

Routing Algorithms are responsible for determining the path that the packet will take
from the source to the destination. In computer networks, routing algorithms are sophis-
ticated which is not applicable in NoCs due to resource limitation of the SoC.

Routing Algorithms can be classified into Deterministic and Adaptive or into Table-
driven and Source routed. Deterministic routing is fixed regardless network traffic state
while Adaptive routing can change according to the network traffic. In Table-driven, the
route is determined using a table in each router that determines the outgoing port based on
the destination address of the packet. On the other hand, Source routed depends only on
the destination address and the location of current router to determine the path. If there
are multiple paths available from source to destination, an efficient routing algorithm,
regardless the given traffic, balances the network load across the links uniformly.

One of the most commonly used routing algorithm is Deterministic Source routed
algorithm called XY algorithm [13] used with two-dimension networks, in which, the

9

H

B1 B2 B3 T

H

B1 B2 B3 T

H

B1 B2 B3 T

H

B1 B2 B3 T

Node 1

Node 2

Node 3

Node 4

H

B1 B2 B3 T

H

B1 B2 B3 T

H

B1 B2 B3 T

H

B1 B2 B3 T

Node 1

Node 2

Node 3

Node 4

H

B1 B2 B3 T

H

B1 B2 B3 T

H

B1 B2 B3 T

H

B1 B2 B3 T

Node 1

Node 2

Node 3

Node 4

Node

Time

Time

Time

Store-And-Forward (SAF)

Wormhole (WH)

Virtual Cut Through (VCT)

Figure 2.5: Store-And-Forward (SAF), Wormhole (WH) and Virtual Cut Through
(VCT): The figure shows an example of packets traverse through four nods using
SAF, WH, and VCT switching technique. The example assumes that the third node

will have only two flit space in its buffers for three cycles.

10

packet is routed along x-axis first then along y-axis to reach the destination. XY algorithm
provides high throughput with low resource usage and deadlock free network. In this
thesis, we will use XY algorithm as the default algorithm in implementing networks.

2.2.1.6 Buffer Size

Buffers main function is to control the flow of packets by buffering it until other re-
sources are available. It also represents the major area consumer in the network. Buffer
Size is a function of packet size, flit size and switching technique and it has a significant
effect on network latency and throughput.

2.2.1.7 Link Width

It divides the flit into a one or more phits (physical units) and directly affect the network
bandwidth and the buffer size.

2.2.1.8 Arbitration

When the router receives multiple requests on some resource it must grant one of these
requests, so it uses arbiters to do so. The arbiters are either static or dynamic. In static
arbiter, the priority is fixed, while in dynamic arbiter, the priority changes at run time.
Although dynamic arbiters are more complicated and requires more logic circuits, they
are usually used because they adapt to network conditions. Many dynamic arbitration
techniques are available such as First Come First Served and Priority Based arbiter, but
Round Robin arbiter is the most used one because it guarantee the fairness among all
requests. Further details will be presented in the next chapters.

2.3 FPGA platform
FPGAs is fabricated, ready to be electrically programmed silicon devices. It can be

used to implement almost any type of digital system. In contrary with ASICs, which
depends on previously designed and optimized standard cells to implement logic design,
FPGAs map logic design into Look-up tables (LUTs), function generators that can imple-
ment any arbitrarily Boolean function of a certain number of inputs, registers, I/Os and
IPs connected through huge amount of wires and switches. Figure 2.6 shows an example
of simple FPGA architecture.

FPGA is programmed using Hardware Description Language (HDL), such as VHDL
or Verilog, and then compiled into a bit stream that program FPGA configuration SRAM,
finally the compiled code is downloaded to the FPGA. FPGA compilation runs through
many steps; synthesizing, mapping, resolving constraints, placement, routing, and floor
planning.

11

Logic Memory

Logic

Logic

Logic

Logic Multiplier

Memory

Memory

Memory

Logic

Logic

Logic

Multiplier

Multiplier

Multiplier

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O

I/O I/O I/O I/O

Figure 2.6: FPGA architecture example

12

FPGAs have many advantages over ASIC, such as:

• fast prototyping,

• low cost,

• the cost gap decreases with technology scaling ,

• less non-recurring expenses,

• smaller time to market,

• simpler design methodology,

• easy to upgrade,

• less interaction with the manufacturer, and

• dynamically reconfigurable.

Nevertheless, the most attractive feature of FPGAs is the reconfigurability, which make
FPGAs more suitable for modern sophisticated application. Currently FPGAs include
advanced modules such as multipliers, memories, and microprocessors, they also support
partial reconfigurability.

However, FPGAs require a larger area than ASICs as the implementation of logic de-
sign using only LUT consumes area 35 times larger than ASICs and using heterogeneous
FPGA blocks reduces this ratio to 25 [14]. In addition, long interconnections in FPGAs in-
crease critical path delay, so the average ratio of the critical delay in circuits implemented
by only LUTs to same circuit implemented in ASICs is 3.4, and this ratio increases to 3.5
when using heterogeneous FPGA blocks [14]. Moreover, the dynamic and static power
consumption in FPGAs is larger than ASICs; for dynamic power, FPGAs consume 14
times power than ASICs when using only LUTs and from 7.1 to 14 times power when
use heterogeneous blocks, and for static power, FPGAs consumes 87 times power than
ASICs [14]. Finally, the use of heterogeneous blocks, like hard multipliers and memories,
reduces FPGAs area and power, but relatively has a small effect on delay.

FPGAs have different architectures such as symmetrical arrays, row based, sea of gates,
and hierarchical Programmable Logic Device (PLD). However, they basically consist of
a group of heterogeneous programmable logic blocks, including functionally complete
logic block, multiplier and memory. These programmable logic blocks are connected
by a programmable routing interconnection. Moreover, the programmable logic blocks
are surrounded by programmable input/output cells which connect the FPGA with the
external world.

13

To sum up, FPGAs have many advantages, but there are many problems that prevent it
from spread out. In order to overcome those problems specially the speed problem, NoC
is used to replace ordinary interconnect buses.

2.4 FPGA NoC
FPGA implement flexible and reconfigurable interconnections between the relatively

large numbers of its logic elements, hundreds-of-thousands in current FPGAs. In conven-
tional FPGAs, this interconnection consists of wires of different lengths and multiplexers,
these multiplexers can be programmed to combine the wires and create flexible intercon-
nection. The same goes for the interconnection between the logic elements and any other
embedded modules or I/O’s.

2.4.1 Current FPGA Interconnect Problems

Programmable interconnection provide a crucial function to FPGA, however, it faces
many challenges [15]:

2.4.1.1 Interconnect scaling

Beside the metal wiring interconnection, the multiplexers are implemented using pass-
transistors [16] because they are used to enable very small switch. With technology scal-
ing, metal wires and pass transistor’s performance and reliability have been decreased
[17]. Hence, the interconnections delay become more dominant in the critical path delay
of the design to be implemented, which limits the FPGA speed.

2.4.1.2 Design hurdles

The most accurate estimation of the interconnections delay is available at the last com-
pilation stage, the placement and routing stage, which means that if the design did not meet
the minimum timing requirements, the design need to be modified and the whole compila-
tion process need to be repeated which consumes time and effort. In addition, every time
FPGA is programmed, each interconnection multiplexer need to be configured, that slows
the programming process.

2.4.1.3 Bandwidth demands

In order to support the modern complicated designs, FPGA embed different types
of memories, hard computing units, such as multiplier and processor cores, and fast I/O
interfaces. These modules require fast and wide datapath to transfer data to/from the logic

14

elements and off-chip systems as well. However, accomplishing that require the use of
many FPGA logic and interconnections.

2.4.1.4 Modularity

Conventional FPGA interconnections have a two level abstraction which makes it dif-
ficult to treat the required design as a group of modules that can be optimized indepen-
dently. However, modularity can facilitate parallel compilation, partial reconfiguration,
and optimization.

2.4.2 Embedded Networks-on-Chip Solution

Implementing NoC on FPGA is a promising solution for interconnection challenges.
This can be achieved by dedicating NoC for the system-level interconnections which re-
quire a high bandwidth transfer, while the conventional interconnections will be used for
the low bandwidth transfer. For more understanding, we may use the analogy with a big
city transport network; the small roads are suitable for low traffic and relatively short
distances, while the highway is more efficient for higher traffic and long distance require-
ments.

2.4.3 Network Architecture

In contrary to ASIC-based NoC, where the application is specified and the traffic den-
sity and pattern are predictable, FPGA applications are not known during the manufactur-
ing. Therefore, we have to design the FPGA-based NoC so it can serve any application
that can be configured on the FPGA.

There are three types of FPGA embedded NoC; hard, soft, and mixed NoC. Hard NoCs
consist of pre-fabricated hard routers using ASIC-flow and hard links. Soft NoCs consist
of soft routers, which use the programmable FPGA resources, and soft programmable
links. Mixed NoCs, on the other hand, consist of hard routers and soft links.

2.4.3.1 Soft NoCs

In this architecture, we implement the NoC design, usually written in HDL, using the
FPGA fabric resources, such as logic blocks and interconnections, without making any
changes to the FPGA. Soft NoCs have both advantages and disadvantages, the advantages
can be summarized in their re-configurability and the avoidance of FPGA architecture
modification. The disadvantages are the relatively large area and power and low speed,
the fundamental disadvantages of the FPGA. In soft NoC, the buffers consume the largest
fraction of the area. Typically, there are three FPGA resources that can be used as a buffer:

15

1. Registers:
Although there is an abundance of registers in the FPGA, the registers are separately
distributed and use them as a buffer consumes a large area.

2. LUTRAM:
LUTRAM is responsible for configuring the LUT, however, it can be used as a RAM
memory.

3. BRAM:
The embedded block RAM is dense enough to be suitable to the router buffers.

2.4.3.2 Mixed NoCs

In mixed architecture, the router is embedded as a hard module at fabrication while
the FPGA interconnections are used as links, soft links. Hard router requires an interface
with the interconnections, similar to the programmable multiplexer used to connect the
logic elements with the interconnections. The motivation is to decrease the area occupied
by the router and yet keep the flexibility of the links. The simplest way to embed the hard
router is to replace the equivalent number of logic elements from the FPGA fabric with
the hard router and maintain the remaining of the FPGA structure and interconnections.
The hard router provides a higher speed by operating at higher frequency, however, the
speed is limited by soft links. Soft links can support almost any NoC topology, while the
routing algorithm can be reprogrammable to support different topologies, by using repro-
grammable table driven routing algorithm. The limitation to use any arbitrary topology
is the number of ports in the hard router.

2.4.3.3 Hard NoCs

Hard NoC are implemented using both hard routers and hard links. The links are
dedicated wires to connect router according to predetermined topology, separated from
the FPGA interconnections, therefore it save the area and work at higher speeds. Nev-
ertheless, the routers need to interface the FPGA in the same way the interconnections
connect FPGA components, through programmable multiplexers. Now that we removed
the speed limitation imposed by the soft links, we can dedicate a clock network with higher
frequency for the NoC. Moreover, we may disjoin the router power supply using separate
power grid with a lower voltage.

In the thesis, we are targeting Soft NoCs to impose minimum changes in the current
FPGA architecture, however, the ASIC implementation results are included for the pur-
pose of comparing.

16

Chapter 3

NoCs in the context of ASICs and
FPGAs

3.1 Introduction
NoC is a wide research area, in this chapter; we will focus on comparing the NoCs

that target the FPGA (FPGA-based NoC) with the NoCs that target the ASIC (ASIC-based
NoC) and investigating the NoC optimum design parameters. In addition, we propose an
evaluation methodology for NoC performance considering different design parameters.
Finally, we conclude with design recommendations and trade-offs for various NoC design
parameters for FPGA-based and ASIC-based NoC.

A lot of research has been done on NoC. However, most of the researches are directed
to ASIC-based NoC rather than FPGA-based NoC. On the other hand, since the purpose
of the research that is directed to FPGA-based was prototyping, simulation, and emula-
tion, it focused on mapping the ASIC-based NoC design to the FPGA. Which make the
performance and efficiency of the mapped NoC not the first priority. However, few papers
provided a study for FPGA-based NoC in which the unique hardware characteristics and
generic applications of FPGAs are taken into consideration.

Designing a NoC process passes through selecting from a wide range of parameters
(the topology, number of nodes, the size of queuing buffer, switching technique, etc.). Se-
lecting the optimal parameters for ASIC-based NoC strongly influenced by the application
that needs to be implemented. However, if the parameters did not achieve the minimum
required performance, repeating the whole design flow is a very costly process especially
after fabrication. In contrary, it is a more challenging process for FPGA-based NoC as
the application is not known prior. Which forces the NoC design to be more generic and
suitable for a broad space of applications. With the highest performance in mind, the
selection of optimal parameters is an exhausting work.

17

3.2 Background
The designer can vary many parameters in NoC design. These parameters vary in

their effect on overall performance. Since studying all these parameters is exhausting and
inefficient, we selected four parameters that have a significant effect on NoC performance:

1. Topology: The topology represents a trade off between the average latency and the
total area occupied by the NoC. A topology can provide relatively low average la-
tency by decreasing the number of hops between nodes, at the expense of increasing
the number of links between nodes. This will increase the wiring and complicate
the layout, besides consuming a large portion of the area. Most NoCs designers
avoid the wiring and layout problems by selecting a topology with few links such
as mesh, tree, and toris.

2. Number of nodes: Increasing the number of nodes connected by the NoC increases
the total throughput, but on the other hand, it consumes large area. In contrast with
the ASIC-based NoCs, where the number of nodes is not difficult to deduce, the
number of nodes in the FPGA-based NoCs can vary significantly. The extreme
case is to associate each logic element of the FPGA with a node in the NoC, which
consumes an area larger than the FPGA itself.

3. Virtual channels: Increasing the virtual channels enhances the performance, im-
proves the wire utilization, decreases the impacts of the head-of-line blocking, and
helps in solving the deadlock problems. The virtual channels are implemented by
dedicating flit buffers for each virtual channel. Therefore, the number of virtual
channels directly affects the buffers size and the required area.

4. Queuing buffers: Although NoC buffers organization and sizing are critical to re-
alizing the optimal network performance, they consume the largest percentage of
area and power of NoC [18]. The efficient buffer organization has a good cost-
performance trade-offs. This is fulfilled by highly utilizing the buffer resources.

NoC performance evaluation involves measuring of many parameters, some of these pa-
rameters are related to the network architecture and others are related to the implementa-
tion of the network. The following section classifies the performance measures to network
performance measures and implementation measures. First, network measures which in-
clude:

1. Latency: The packet latency is the difference between the injection time of the head
flit into the network and the arrival time of the tail flit at the destination node [19].
The latency is measured in clock cycles in order to separate the implementation,
which will reflect on the frequency of operation, from network performance. The
network packets experience different latency based on the number of hops between

18

the source destination and the network traffic, which affect the queuing delay. Since
we are concerned with the average latency, we average all the packet latencies.

2. Throughput: Throughput is the maximum traffic the network can transport [20].
The number of data units (messages, packets, or flits) per time unit (clock cycle)
measures the throughput. Increasing the number of nodes will give a false indi-
cation that the network throughput is increasing; consequently, the throughput is
normalized to the number of nodes. Therefore, it is measured in the number of data
units per time unit per node.

3. Load-latency curves: A good network has high throughput with low latency. There-
fore, in order to show both the throughput and the latency, the load-latency curve,
that shows the throughput versus the latency, is used. Therefore, the maximum
throughput with the lowest latency can be extracted.

Second, implementation measures which include:

1. Maximum operating frequency: It is the maximum frequency the NoC can operate
with, usually imposed by the network routers. Increasing the network complex-
ity may enhance the latency and the throughput; however, it will negatively affect
the operating frequency, which degrades the overall performance. For example,
a modification on the network may decrease the latency, measured in cycles, by
increasing the complexity, and hence decreasing the operating frequency. After
de-normalizing the latency to be measured in seconds instead of cycles (by substi-
tuting the cycle with the real time in seconds at the maximum operating frequency)
we may find that the latency actually has increased and the modification was not
necessary.

2. Area: It is the equivalent silicon area of the NoC. The area is strongly proportional to
the power and the cost. The attempts to enhance the NoC performance by increasing
the buffer size, the number of nodes, or the number of VCs will directly reflect on
the area consumption.

3.3 Simulation setup
To explore the difference between the FPGA-based NoC and ASIC-based NoC, we

use two NoC implementations, one designed to target the ASIC platforms and the other
designed for the FPGA platforms, SOTA [18] and CONNECT [21] routers. The two se-
lected NoCs are highly flexible and written in a fully synthesizable RTL. Which facilitates
simulating various network configurations by simply varying the NoC design parameters.
The two network architectures will be explained in more details in the next chapter.

19

In order to achieve homogeneous results, a generic network packet generator is used
for SOTA and CONNECT simulation. The generator generates a uniform distribution traf-
fic. The network performance and the synthesis results on FPGA are measured for both
SOTA NoC and CONNECT NoC. Network performance includes the throughput (maxi-
mum flit injection rate) and the average latency besides the load-latency curves. Network
performance results are obtained using MODELSIM 10.3c cycle-accurate RTL simulator.
FPGA implementation results include FPGA resource usage percentage, the number of
LUTs, and the maximum clock frequency when implemented on Xilinx Virtex-6 LX760
FPGA (part xc6vlx760, speed grade -2). The implementation results are given by Xilinx
ISE 14.6 tool.

3.4 Simulation Results
This section shows and discusses the simulation results after varying SOTA and CON-

NECT NoCs design parameters mentioned in the last section; virtual channels, buffers
depth, the number of nodes, and NoC topology.

1. Varying virtual channels: Figure 3.1 shows the load-latency curves when the num-
ber of virtual channels is varied. The topology selected for simulation is MESH as
it gives the best performance for the given uniform traffic pattern, will be discussed
later. In addition, the selected number of nodes is 16 for the same reason. Accord-
ing to curves, increasing the number of VCs improves the performance, which is
expected because of the benefits mentioned earlier about the increasing of VC num-
ber and its effect on throughput, head of line blocking, etc. However, increasing
the number of VCs more than four VCs gives nearly the same performance besides
increasing the complexity of the design. Which in turn decreases the operating
frequency and increases the area. The load-latency curves after the operating fre-
quency consideration are shown in Figure 3.2.

2. Varying buffer depth: Figure 3.3 shows the load-latency curves when the buffer
depth, measured in the number of flits the buffer can hold, are varied. The curves
show that increasing the buffer size improves the throughput. However, the through-
put saturates at higher buffer sizes and the performance is no more improves. While
the performance remains the same, increasing the buffer depth more results in un-
necessary area increment. Therefore, the optimum buffer depth is measured using
the following figure of merit (FOM):

FOM =
Throughput per node

Area per node
.

The FOM for different buffer sizes is shown in Figure 3.4.

3. Varying the number of nodes: Increasing the number of nodes increases the to-
tal network throughput, the throughput of each node times the number of nodes.
However, the maximum throughput of each node decreases with the number of

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

Injection ratio flits/cycle/node

La
te

nc
y

in
 c

yc
le

s

VC1
VC2
VC4
VC6
VC8

(a) SOTA MESH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Injection ratio flits/cycle/node

La
te

nc
y

in
 c

yc
le

s

VC1
VC2
VC4
VC6
VC8

(b) CONNECT MESH

Figure 3.1: The load-latency curve when varying VC.

21

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Injection ratio Mflits/sec

La
te

nc
y

in
 u

se
c

VC1
VC2
VC4
VC6
VC8

(a) SOTA MESH

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Injection ratio Mflits/sec

La
te

nc
y

in
 u

se
c

VC1
VC2
VC4
VC6
VC8

(b) CONNECT MESH

Figure 3.2: The load-latency curve when varying VC after considering the
operating frequency

22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

45

50

Injection ratio flits/cycle/node

La
te

nc
y

in
 c

yc
le

s

BUF4
BUF8
BUF16
BUF32

(a) SOTA MESH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100

Injection ratio flits/cycle/node

La
te

nc
y

in
 c

yc
le

s

BUF4
BUF8
BUF16
BUF32

(b) CONNECT MESH

Figure 3.3: The load-latency curve when varying buffer depth

23

4 flits 8 flits 16 flits 32 flits

2.6

2.7

2.8

2.9

3

3.1
x 10

−4

Buffer size flits

F
O

M
 fl

its
/c

yc
le

/n
od

e/
LU

T

(a) SOTA MESH

4 flits 8 flits 16 flits 32 flits
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6
x 10

−4

Buffer size flits

F
O

M
 fl

its
/c

yc
le

/n
od

e/
LU

T

(b) CONNECT MESH

Figure 3.4: The FOM for different buffer sizes

24

CONNECT SOTA
Num. of VCs 1 2 4 6 8 1 2 4 6 8

Throughput (Flit-
s/Cycle/node) 0.57 0.61 0.63 0.63 0.66 0.32 0.60 0.70 0.71 0.69

Operating
Frequency

(MHz)
152 143 125 119 113 215 163 130 109 101

Table 3.1: Num. of VCs Simulation Results

node increment. Furthermore, the latency increases because the average number of
nodes the packet has to go through increases. Therefore, the optimum number of
nodes is a compromise between the latency and the total network throughput. Thus,
the suitable Figure of merit used to determine the number of nodes is as follows:

FOM =
Throughput per node∗number o f nodes

Average latency
.

Figure 3.5 shows the FOM for different number of nodes.

4. Varying NoC topology: Some topologies are focused on enhancing the implemen-
tation properties, frequency and area, while others provide better network perfor-
mance. Three promising topologies found in the literature that give the best perfor-
mance are selected for comparison; MESH, TORUS, and Flattened butterfly. Flat-
tened butterfly (FBFLY) takes three hops at maximum to deliver a flit in a 2-ary
4-flat network [22] that connects 16 nodes. Therefore, FBFLY provides the mini-
mum latency and targets better network performance regardless the implementation.
TORUS has a lower latency when compared with MESH because its diameter is
smaller, the diameter is the maximum number of hops between any two nodes. The
smaller diameter is achieved by connecting the end nodes, which causes the max-
imum wiring distance to increase to span the network dimension. Consequently,
TORUS encounters a wiring problem that negatively affects the implementation
and decreases the operating frequency. In order to limit the wiring problem of
TORUS topology, a modified version of TORUS exists called FOLDED TORUS
that limits the maximum wiring to twice the distance between two nodes. Figure
3.7 shows an example of 16-node TORUS and FOLDED TORUS networks. Al-
though MESH faces the largest latency, it usually provides the highest operating
frequency of the three topologies. To take into count the critical path induced by
the wiring, the most accurate frequency of operation is measured after using Xilinx
Floor-planning tool to distribute the network routers uniformly across the FPGA.
Figure 3.6 shows the load-latency curves of different topologies with the operating
frequency in consideration.

Tables 3.1, 3.2, 3.3 and 3.4 summarize the simulation results for SOTA and CONNECT
when varying the four parameters.

25

9 Nodes 16 Nodes 25 Nodes 36 Nodes 49 Nodes 64 Nodes
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of nodes

F
O

M
 fl

its
/c

yc
le

/c
yc

le

(a) SOTA MESH

9 Nodes 16 Nodes 25 Nodes 36 Nodes 49 Nodes 64 Nodes
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Number of nodes

F
O

M
 fl

its
/c

yc
le

/c
yc

le

(b) CONNECT MESH

Figure 3.5: The FOM for different number of nodes

26

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

Injection ratio Mflits/sec

La
te

nc
y

in
 m

se
c

MESH
TORUS
FOLDED−TORUS
FBFLY

(a) SOTA MESH

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

Injection ratio Mflits/sec

La
te

nc
y

in
 m

se
c

MESH
TORUS
FOLDED−TORUS
FBFLY

(b) CONNECT MESH

Figure 3.6: The load-latency curve for different topologies.

27

02

03

00

01

12

13

10

11

22

23

20

21

32

33

30

31

02

03

00

01

12

13

10

11

22

23

20

21

32

33

30

31

a) TORUS

b) FOLDED TORUS

Figure 3.7: An example of 16-node TORUS and FOLDED TORUS networks

28

CONNECT
Num. of Nodes 9 16 25 36 49 64

Throughput (Flits/Cycle/node) 0.71 0.60 0.50 0.43 0.38 0.33
Avg. Latency (Cycles) 3.63 4.36 5.87 7.38 9.23 12.56

SOTA
Num. of Nodes 9 16 25 36 49 64

Throughput (Flits/Cycle/node) 0.71 0.62 0.52 0.21 0.15 0.10
Avg. Latency (Cycles) 11.50 13.78 18.04 19.14 45.14 52.08

Table 3.2: Num. of Nodes Simulation Results

CONNECT SOTA
Buffer Depth

(Flits) 4 8 16 32 4 8 16 32
Throughput

(Flits/Cycle/node) 0.61 0.66 0.69 0.70 0.62 0.69 0.72 0.73
Num. of LUTs 1107 1230 1346 1760 2112 2275 2498 2905

Table 3.3: Buffer Depth Simulation Results

CONNECT SOTA
Topology FBfly Mesh Torus Folded FBfly Mesh Torus Folded

Throughput
(Flits/Cycle/node) 0.37 0.61 0.73 0.73 0.56 0.62 0.78 0.78

Operating Freq.
(MHz) 63 89 62 68 157 160 125 160

Table 3.4: Topology Simulation Results

29

3.5 Design Recommendations
After exploring the results of the preceding section, we propose design recommenda-

tions concerning the selection of ASIC-based and FPGA-based NoC parameters.

1. Virtual channels: Based on SOTA architecture results, a single VC is an optimal
choice for applications that require low throughput, injection rate less than 60 Mflit-
s/sec, as it provides the lowest delay, the smallest area, and the highest operating
frequency because its low complexity. A 2-VC NoC gives the maximum throughput
when measured in Mflits/sec for applications that require a high injection rate be-
cause it compromises between a high operating frequency and high network perfor-
mance.For CONNECT, 1-VC NoC are treated differently from multiple VC NoCs.
It’s implemented using separate router, called IQ router, to avoid any overheads
due to VC usage. Therefore, the performance of 1-VC and 2-VC NoC is almost the
same. However, the 2-VC NoC saturates at higher throughput. Thus, a 2-VC NoC
is suitable for both SOTA and CONNECT and will be used in all subsequent simula-
tions. It is worth to note that, for larger network sizes, larger that 16-node network,
it might be beneficial to use a greater number of VCs; however, it is completely
useless in our case, 16-node network.

2. Buffer depth: The simulation results show that the effective buffer should be at least
greater than one packet size. Thus, for CONNECT the optimum buffer size is 4 flits,
can hold two packets, and for SOTA, the optimum buffer size is 8 flits, can hold
four packets. The switching technique used is Wormhole, in which, if the head flit
is temporally blocked, the remaining packet flit will follow it and accumulate in the
blocking router buffer, therefore, the buffer should be able to hold more new coming
flit and its depth should be greater than one packet. Using the recommended buffer
sizes gives the best network performance without exaggerated area overheads.

3. Number of nodes: For the FPGA-based NoC CONNECT, a NoC of size 16 nodes
gives the optimum performance. While for the ASIC-based NoC SOTA, both 16
node network and 25-node network gives the same performance, but with nearly the
doubled area for 25 node network. Therefore, a 16 node network is suitable for both
SOTA and CONNECT. Increasing the number of nodes more than 16 nodes will
cause a congestion for each node traffic besides using an excessive area overhead.

4. Topology: FBFLY provides the lowest latency among the three topologies, FBFLY,
MESH, and TORUS. However, it saturates at the lowest injection rate, 87.92 Mflit-
s/sec for SOTA and 45.88 Mflits/sec for CONNECT, which make it more suitable
for the applications that require low throughput. TORUS provides better network
performance measured in clock cycles when compared with MESH; however, it
operates at less frequency. FOLDED TORUS gives a similar frequency to MESH
for SOTA router while it gives a lower frequency for CONNECT router, and lower

30

throughput measured in flits/sec. The reason behind this is CONNECT router is
not pipelined, CONNECT recommended avoiding pipelining for FPGA-based NoC,
that make the wire delay be added the router delay. That is not the case for SOTA
as the router is pipelined and the dominant delay in MESH and FOLDED TORUS
is the router itself, not the wire. Since we are targeting FPGA-based NoC, we will
use MESH as the network topology for all the following simulations.

31

Chapter 4

Proposed Router

4.1 Introduction
NoCs that are designed and optimized to target ASIC do not give the optimum perfor-

mance when mapped onto FPGAs. This is because of the differences in FPGA structure,
such as the high register-to-logic ratio and the large delays of the configurable interconnect.
A few research provides FPGA-oriented NoC design study, that take into consideration
the FPGAs hardware characteristics [7]. Examples of the FPGA-oriented NoC designs
that do not map ASIC-oriented NoC are CONNECT [21], Dual-crossbar router [23] and
Split-Merge-based PS NoC [24].

In this chapter, a high-performance NoC router is proposed. The router is designed
to target FPGAs. Furthermore, we provide a comparison between our proposed router
performance and other high-performance routers presented in the literature.

4.2 Literature Review
In this section, different NoC routers present in the literature are reviewed. Starting

with a generic router that targets ASIC, then three FPGA-oriented NoC routers are re-
viewed.

4.2.1 SOTA

SOTA (the State-Of-The-Art) is ASIC-oriented parameterized RTL router that is im-
plemented in Verilog hardware description language based on a modular design that is
easily extensible [SOTAthesis, 18]. SOTA designed to be a flexible and generic virtual
channel (VC) router with the support of a wide range of configurations. The architecture
is pipelined into three stages: VC allocation stage, switch allocation stage, and switch
traversal stage. The internal structure of SOTA is shown in Figure 4.1.

SOTA buffer organization is input-queued router that holds that packets that cannot
be forwarded immediately in a FIFO buffers at the input port. These FIFO buffers are
divided logically into multiple FIFO, each for a VC, to avoid deadlock and Head-of-Line

33

LAR

IVC state

IVC state

IVC state

FIFO

LAR

IVC state

IVC state

IVC state

FIFO

VC
allocator

Switch
allocator

OVC state

OVC state

OVC state

OVC state

OVC state

OVC state

Data In 1

Data In N

In Flow
Control 1

In Flow
Control N

Out Flow
Control 1

Out Flow
Control N

Data Out 1

Data Out N

Figure 4.1: SOTA Architecture

(HoL) blocking. Since there are flits in different input VC need to be forwarded to the
appropriate output VC, the router starts with route computation for the head flit using
look-ahead routing (in order to minimize the pipeline delay). Thereafter, the router allo-
cates the output VC and finally allocate the switch for flit to traverse through. In order
to avoid the combinational loop the router uses wave-front allocators in VC and switch
allocation. Also to improve the utilization of buffers, the router uses flexible buffer man-
agement schemes. Furthermore, it implements speculative switch allocation to parallelize
VC allocation and switch allocation.

4.2.2 CONNECT

CONfigurable NEtwork Creation Tool (CONNECT) is an FPGA-based NoC genera-
tor [21]. It is implemented using Bluespec System Verilog (BSV) and generates a syn-
thesizable RTL design. It supports various network topologies, various router parameters,
and optional pipelining while minimizing the use of FPGA resources. The parameters
that can vary are the number of input and output ports, the number of virtual channels
(VCs), the flit width, the buffer depth, the flow control mechanisms, and the routing al-
gorithm. The Flow Control supported is traditional credit-based flow control, and “peek”
flow control. CONNECT routing algorithm is look-up tables based in which the look-up
tables hold a record for each possible destination and its associated output port. Although
Look-up based routing provides flexibility, look-up tables can grow for large networks.
Therefore, CONNECT exploits the abundance of distributed RAMs to implement look-
up tables. CONNECT implements flit buffers using distributed RAM, each VC FIFO is
implemented as a circular buffer. Like SOTA, CONNECT organizes flit buffers as input-
queued per virtual channel.

The internal structure of CONNECT is shown in Figure 4.2.

34

A
llo

ca
tio

n

VC 0

VC 1

...

VC 0

VC 1

...

VC 0

VC 1

...

...

R
ou

tin
g

Allocation and Flow Control State

Flit Buffers Switch

Data In 1

In Flow
Control 1

Data In 2

In Flow
Control 2

Data In N

In Flow
Control N

Out Flow
Control 1

Data Out 1

Out Flow
Control 2

Data Out 2

Out Flow
Control N

Data Out N

Figure 4.2: CONNECT Architecture

CONNECT considers the following in targeting FPGA:

1. Decrease the pipeline stages to a single stage to lower latency and hardware cost.

2. Using wider interfaces to tightly couple the routers, thus we can maximize wire
utilization.

3. Exploit the abundance of distributed RAMs in building look-up tables and flit
buffers.

4.2.3 Split-Merge

Huan proposes an FPGA optimized router in [24], which we will refer to as Split-
Merge. It is based on the split and merge primitives [25]. It differs from CONNECT in
two main aspects:

1. Split-Merge is pipelined which makes use of FPGA abundant flip-flops.

2. Split-Merge doesn’t support virtual channels to decrease the hardware complexity.

Figure 4.3 shows the architecture of Split-Merge router. Bluespec language is used in the
router implementation. The router uses backpressure flow control because of its simplicity
that makes it suitable for non-virtual channel router. The buffers organization is input-
queued and output-queued. Each input port has a single buffer to store flits that cannot be
forwarded immediately. On the other hand, each output port has multiple buffers; a buffer
corresponding to each other port’s input.

35

S

S

M.
..

M.
.
.

.

.

.

.

.

.

In
p

u
t

P
o

rt
s

O
u

tp
u

t
P

o
rt

s

Figure 4.3: Split Merge Architecture

Basically, the router consists of two modules, split and merge. The split module reads
the destination of incoming flits and splits them among the proper output buffers. There-
after, the merge module uses an arbiter to select a flit, from the multiple buffers connected
to the merge, to depart form the output port. The most advantageous feature of this orga-
nization is the elimination of the need for a crossbar.

4.2.4 Dual-crossbar

[23] proposes a configurable router that supports five network topologies and utilizes
packet switching which will be refered as Dual-crossbar router for the rest of this thesis.
The supported topologies are uni- and bi-directional ring, uni- and bi-directional octagon,
and mesh.

Figure 4.4 shows Dual-crossbar router architecture which is based on a dual-crossbar
arrangement. Dual-crossbar router consists of 5 bidirectional ports: Local, West, East,
North and South and controlled by a control logic. The local port is responsible for estab-
lishing connections between the associated PE and the other four ports and providing a sup-
port for the different network topologies. Instead of using a full 5 × 5 crossbar to perform
the switching, Dual-crossbar router uses two 3 × 3 crossbars to reduce power consumption
and area [26]. The buffer organization used is output-queued router in which each port
holds a buffered output channel with handshaking flow control. In output-queued router,
the switching is performed prior to the buffering. Therefore, the inputs are isolated from
the congestion at the output until the point that the output buffer is full. Dual-crossbar
router uses a deterministic routing algorithm with all supported topologies. Figure 4.5

36

Left

Right

Local

Left Right

Local

PE

North

South

West East

Figure 4.4: Dual-crossbar Architecture

shows the internal architecture of one 3× 3 crossbar. XY routing is suitable to the dual-
crossbar arrangement; the horizontal routing is handled by the first crossbar while the
vertical routing is handled by the second crossbar.

4.3 Proposed Architecture
One of the most important NoC performance measuring metrics is the maximum

throughput. The throughput is usually measured in flits/s/node. In order to realize a high
throughput NoC, two parts should be considered, the network part (i.e., the router network
throughput measured in flits/cycle/node) and the chip part (i.e., the maximum operating
frequency that will reflect on the cycle time). In this chapter, we propose a very high
throughput router in which both the network part and the chip part are improved.

To achieve a high throughput NoC, first, we attempt to avoid the modules that
negatively affect the router operating frequency, in other words, the significant time-
consuming modules. One of these time-consuming modules is the crossbar [23]. The
conventional implementation of the crossbar is using a set of multiplexers that grant con-
nections between all possible input-output channels. One of the remarkable works to

37

Left Port Right Port

Local Port

Input

3 x 3
Switch

Routing Unit

Output
Arbiter Buffer

Input
Routing Unit

Output
Arbiter Buffer

In
p

u
t

R
ou

ti
ng

 U
n

it

O
u

tp
u

t
A

rb
it

er
B

uf
fe

r

Figure 4.5: Dual-crossbar internal architecture of one 3× 3 crossbar

enhance the crossbars efficiency is the dual-crossbar router introduced in [23]. The dual-
crossbar router has 5 ports in which, two 3 × 3 crossbars are used instead of using one 5
× 5 crossbar to perform the switching to decrease the area and power consumption. Al-
though the dual-crossbar router successfully managed to reduce the average area by 22%,
the operating frequency achieved is reduced to 123 MHz compared to 152 MHz of the
conventional 5 × 5 crossbar router for the same platform.

However, the crossbar is completely removed in the Split-Merge router and is replaced
with buffers, which enhances the operating frequency. Subsequently, Split-Merge router
eliminates the need for the switch allocator. Besides being one of the frequency-limiting
modules, the switch allocator also has a bad impact on the network throughput. The switch
allocator poor matching quality in the separable allocator implementation causes that neg-
ative effect on the throughput [18]. Based on two previous architectures, we propose
Dual-Split-Merge router (DSM) , a new router architecture that combines the advantages
of both Split-Merge router and dual-crossbar router to realize a high throughput router.

The proposed router (DSM) is a 5-port router. One port is dedicated for the packets
delivery from/to the processing element (PE) associated with the router (local port). The
remaining four ports are used to deliver the packets to adjacent routers (East, West, North
and South port). The router is designed mainly to support 2D-mesh topology and X-Y
routing algorithm. It consists of two internal routers (each is a 3-port router) instead of

38

 0 0

 1 1

 2 2

 0 0

 1 1

 2 2

EASTWEST

NORTH

SOUTHPE

W

E

PE

N

S

W

E

PE

N

S

Figure 4.6: DSM router architecture

using a single 5-port router as shown in Figure 4.6. Each internal router is dedicated to
handle the routing in one of the two directions, X and Y dimensions. This implies that
the router handles each direction independently, which subsequently increase the network
throughput. The same 5-port router functionality is done by the two internal routers, but
with a higher operating frequency with only one added clock cycle at maximum for the
whole routing path latency. As long as the packet travels along one direction, it uses only
one of the two internal routers to path through unless a change in the direction is required,
which occur one time at maximum in the pass from source to destination. Which means
that the packet endures nearly half the complex logic, half the arbitration logic, and half
the capacitance load when compared with the Split-Merge router.

Each internal router has three bidirectional ports; local, left, and right. The internal
router function is to route the packets in only one dimension in either two ways. The local
port input of the first internal router is connected to the PE output port. Moreover, in order
to pass the packets from one dimension to another, the local port output of the first internal
router is connected to the local port input of the second router. Furthermore, the local port
output of the second internal router is connected to the PE input. The left and right ports
of the first internal router are connected to West and East ports respectively. Therefore,
the first internal router is responsible for routing along X direction. On the other hand,
the left and right ports of the second internal router are connected to North and South
ports respectively. Therefore, the second internal router is responsible for routing along Y
direction. The packets to be sent from PE pass first through the local port input of the first
internal router. Then the packet is routed to East/West ports until it switched eventually
to the second internal router to be routed to North/South ports or to be transferred to
destination PE that is associated with the second internal router.

Although the proposed router targets mainly Mesh topology, the most widely used
topology, it also supports many other two-dimension topologies such as Torus, Bidir-
ring, Uni-ring, Bidir-octagon and Uni-octagon. In order to manage input buffers and do
handshaking with other routers, DSM router uses backpressure flow control.

39

S

M

M

M

S

S

Figure 4.7: Internal router structure

Figure 4.7 shows the internal structure of the internal router which consists of two
groups of modules, split modules and merge modules. The split/merge module of DSM
has only two ports instead of four ports in the split/merge module of Split-Merge router.
Subsequently, the performance is nearly doubled. However, there is one 3-port split/merge
that can be pipelined to achieve the 2-port split/merge performance, but this would not be
necessary as it is not in the critical path anymore. The internal router is pipelined into two
stages; split stage and merge stage. However, the DSM router can be deeply pipelined
for more increase in the maximum operating frequency by splitting each stage into two
stages; a stage for the logic of split/merge and a stage for their associated buffers.

Besides increasing the network throughput and operating frequency, this architecture
also uses fewer buffers (i.e., less area than the Split-Merge architecture). The conventional
5-port Split-Merge router has 5 input buffers, each for one input port, and 20 output buffers,
4 buffers for each output port, that is a total of 25 buffers. On the other hand, each internal
router in the DSM has 3 ports with 3 input buffers and 7 output buffers, that is a total of
20 buffers for the DSM router. That means a 20 % reduction in the area when compared
with the conventional Split-Merge.

For further increasing in the operating frequency, DSM router uses a look-ahead rout-
ing algorithm. In conventional routing, the split logic gets the required destination from
the received header flit, then carries outs routing computation to determine which output
port the packet should be forwarded to, thereafter the split logic splits the packet flits to the
right output port. To decrease the critical path, a look-ahead routing logic in the previous
router performs the routing computation for its next router so that split logic and routing
computation can be performed in parallel. In DSM, the look-ahead routing is carried out

40

per internal router to decide for a packet what the output port in the next internal router is
and either the next in internal router belongs to the same router or to the following router.

4.4 DSM router with Virtual Channels
Using virtual channels is one of the ways to boost network throughput. The idea of

virtual channels is to create multiple virtual paths on the same physical channel, which
requires including a buffer for each path. A closer look at the architecture of Split-Merge
shows that it demonstrations the virtual output queuing architecture (VOQ) which is an
implementation way of virtual channels [27]. In VOQ, each input port contains a ded-
icated virtual channel (i.e. a buffer) for each output port. In contrary, in Split-Merge,
each output port accommodates a buffer for each input port. Which increases the network
throughput; however, it does not remove the head-of-line (HOL) effect, as there is only
one buffer in each input port. This single buffer implies that there are no multiple paths
for the different packets, which prevents the proper implementation of virtual channels.
For instance, if the head of the input buffer is occupied by a flit that is routed to a full
output buffer, this filt will block all the subsequent flits in the same input buffer even if
they are going to different output buffers.

In order to remove the HOL effect, we propose to support the input buffer with virtual
channels (i.e., use multiple buffers per input port). Furthermore, we propose augmenting
output port with more buffers for more increase in the throughput; use multiple dedicated
buffers in the output port for each input port instead of using a single buffer. The number
of these multiple buffers equals to the multiple buffers in the input port to implement
dedicated multiple paths.

Figure 4.8 shows the internal structure of DSM router ports when the virtual channel
mechanism is added. Each input port consists of multiple buffers (each for a virtual chan-
nel), a demultiplexer to direct the incoming flits to the appropriate buffer, and a modified
split unit that supports virtual channels (SplitVC). SplitVC unit consists of an arbiter to
select between the different VCs followed by a split unit to do the splitting function. In
order to avoid any blocking, SplitVC can switch from any blocked packet to another while
sending a label (one hot key) to indicate the VC of outgoing flits. The output port consists
of a number of queuing buffers equal to the number of ports (three in this case) times the
number of VCs, followed by a modified merge unit (MergeVC) that supports virtual chan-
nels. MergeVC consists of an arbiter (relatively large arbiter) followed by a merge unit.
In order to eliminate the long delay induced by the required large arbitration process, the
arbitration is done in two stages, first arbitration between the VCs followed by arbitration
between the ports.

41

..
.

Split

VC 0

VC n-1

...

Merg

VC 0

VC n-1

..
.

VC 0

VC n-1

...

VC 0

VC n-1

Input Unit

Output Unit

Input flits Output flits

VC arbiter

To
 o

th
er

 o
u

tp
u

t
u

n
it

s

Fr
o

m
 o

th
er

 in
p

u
t

u
n

it
s

VC arbiter

SplitVC

MergeVC

Figure 4.8: The internal structure of DSM router ports with virtual channels
support

Implementing VCs in DSM router enhanced the throughput of the network signifi-
cantly, as we will see in the simulation results, however, the straightforward implementa-
tion of VCs has two main drawbacks. First, the buffer area is almost double while doubling
the number of VCs, i.e. the area is linearly increasing with the increment in VC number.
Second, the operating frequency decreases with the increment in VC number because of
the arbiter unit used by the VC control logic. These drawbacks are handled and discussed
in subsequent chapters.

4.5 Network Interface
One of the most critical modules that directly impact the NoC performance is the

network interface (NI) [28]. It is important to design generic, ready to run and yet highly
efficient NI to transfer the data between the routers and different PEs.

We propose a simple NI architecture, that provides high throughput, simple design,
and flexible interface. The proposed NI consists of two parts: Network to PE part and PE
to network part as Figure 4.9 shows.

4.5.1 Network to PE part:

This part is responsible for delivering the data carried by network flits to the PE. This
part consists of a buffer to hold the data received from the network until PE is ready to
absorb the data, and a controller to handle received flit and manage PE requests. When a
head flit arrives, the controller first checks the header information to make sure the flit is
routed to the correct destination. Second, a counter is instantiated with the packet length,

42

Figure 4.9: Network Interface Structure

then the data is directed immediately to PE if it is ready to receive or to the buffer. Here,
the controller forward any received flit immediately without waiting for the whole packet
to be received.

4.5.2 PE to Network part:

This part is responsible for encapsulating the data received from PE into packets and
deliver it to the Network. This part also consists of a buffer and a controller. Whenever
there is data available in the buffer or at the PE input port, the controller encapsulates the
data into a group of flits that belong to a packet, taking into consideration the maximum
number of flit per packets that NoC configured to work on. This does not mean that the
controller has to wait until the maximum number of flit per packets are received, instead,
the controller will try to send the maximum number of flit, to decrease the overhead, or
it will send the available flits if PE temporarily stops sending, to increase the throughput.
The proposed NI is fully parameterized and can handle any arbitrary data width on both
sides; the network side and PE side.

4.6 Results
This section shows the DSM router simulation and implementation results.

4.6.1 Router Results

The results are compared with the other routers presented in literature; SOTA, CON-
NECT, and Split-Merge. Network performance results are obtained using MODELSIM

43

10.3c cycle-accurate RTL simulator. FPGA implementation results include FPGA re-
source usage percentage, the number of LUTs, and the maximum clock frequency. How-
ever, the implementation is performed over two FPGA platforms. First, Xilinx Virtex-6
LX760 FPGA (part xc6vlx75, speed grade -3) because it is close to the technology used
in recent NoC researches, both CONNECT and Split-Merge used Xilinx Virtex-6 in their
publication implementation results. Second, Virtex-5 LX330T FPGA (part xc5vlx330t,
speed grade -2) which is used to compare FPGA results with ASIC results as it is close
to the technology used in ASIC (65nm technology). ASIC results are based on synthesiz-
ing over a UMC 65nm Typical standard-cell fabrication technology. The implementation
results are given by Xilinx ISE 14.6 tool and Synopsys Design Compiler for FPGA and
ASIC results respectively. Our proposed router DSM and SOTA router are written in
Verilog, however, CONNECT and Split-Merge are available in Bluespec language.

To ensure the fairness of comparison, the NoC parameters are unified for all the routers.
The unified parameters are selected based on the design recommendations presented in
[7]. These parameters are a 2D-Mesh network topology, 16 node network size, 32-bit flit
width, and 32-flit buffer depth with 8-flit packet length. In addition, the packet generator
for all routers is the same.

Two versions of the DSM router are implemented, 2-stage pipeline and 4-stage
pipeline, with various numbers of virtual channels.

4.6.1.1 Network Performance Results

Figure 4.10 shows DSM network throughput in flits/cycle/node. It shows that with the
increase of the number of pipeline stages the throughput almost does not change. However,
with the increase in the number of VCs, the throughput increases until it saturates at a
number of VCs larger than 8-VC.

Figure 4.11 and Figure 4.12 show the load-latency curves of DSM, with 2-stage
pipeline and 4-stage pipeline respectively, for different configurations in which the sim-
ulation results of the average network latency (in cycles) at different injection loads are
shown beside the maximum router throughput (in flits/cycle/node). The figure shows that
DSM with 1-VC gives the lowest latency, however , it saturates at low throughput.

4.6.1.2 Virtex-6 FPGA Results

Figure 4.13 shows DSM operating frequency in GHz, while Figure 4.14 shows the
router area in LUTs for different network configurations.

Figure 4.13 shows that with the increase of the number of pipeline stages the operating
frequency increases and with the increase of the number of VCs it decreases. Figure 4.14
shows that with each increment in the number of VCs the area is almost double, however,

44

0.85 0.85

0.89 0.89

0.91 0.91

0.92 0.92

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

1-VC 2-stage 1-VC 4-stage 2-VC 2-stage 2-VC 4-stage 4-VC 2-stage 4-VC 4-stage 8-VC 2-stage 8-VC 4-stage

N
et

w
o

rk
 t

h
ro

u
gh

p
u

t
(f

lit
s/

cy
cl

e/
n

o
d

e)

DSM router VC number and Pipeline stages number

Figure 4.10: DSM network throughput in flits/cycle/node

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

Injection ratio in flits/cycle/node

La
te

nc
y

in
 c

yc
le

s

DSM−1VC−2stage
DSM−2VC−2stage
DSM−4VC−2stage
DSM−8VC−2stage

Figure 4.11: Load-Latency curves of different configurations of DSM with 2-stage
pipeline

45

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

Injection ratio in flits/cycle/node

La
te

nc
y

in
 c

yc
le

s

DSM−1VC−4stage
DSM−2VC−4stage
DSM−4VC−4stage
DSM−8VC−4stage

Figure 4.12: Load-Latency curves of different configurations of DSM with 4-stage
pipeline

with the increase of pipeline stages it slightly increases. From the figures 4.10, 4.13 and
4.14 , we can conclude that increasing the number of VCs from 1-VC to 2-VC results in
a high increase in the network throughput and small decrease in the operating frequency
while for the other number of VCs there is an insignificant increase in the network through-
put.

Figure 4.15 shows the load-latency curves of DSM in which the average network la-
tency at different injection loads are shown beside the maximum router throughput after
taking the operating frequency into consideration. DSM maximum throughput is 389
Mflits/s/node for 2-VC 4-stage pipeline configuration, that is corresponding to 12.4 Gbit-
s/s/node for a flit width of 32-bit, which can be boosted to 50 Gbits/s/node by increasing
the flit width to 128-bit flit which will not affect the maximum operating frequency. Also,
the curves show that the number of virtual channels of one or two is optimal as discussed
in [7].

The comparison between DSM router and the other routers presented in the litera-
ture is made with a number of VCs of 2-VC for all routers other than Split-Merge as the
virtual channels is not supported in it. We also have selected the 4-stage pipeline 1-VC
and 2-VC configurations of DSM for the comparison that is because although the 2-VC
DSM gives the highest throughput, 1-VC DSM gives almost the same performance with
a much smaller area. The maximum throughput, measured in Mflits/s/node, and the area,

46

0.39

0.44

0.38

0.44

0.33 0.34

0.25
0.28

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1-VC 2-stage 1-VC 4-stage 2-VC 2-stage 2-VC 4-stage 4-VC 2-stage 4-VC 4-stage 8-VC 2-stage 8-VC 4-stage

M
ax

im
u

m
 o

p
er

at
in

g
fr

eq
u

en
cy

 (
G

H
z)

DSM router VC number and Pipeline stages number

Figure 4.13: The operating frequency of DSM in GHz (based on Virtex-6 platform)

2360 2576

4653 5250

10285 10002

19243

22833

0

5000

10000

15000

20000

25000

1-VC 2-stage 1-VC 4-stage 2-VC 2-stage 2-VC 4-stage 4-VC 2-stage 4-VC 4-stage 8-VC 2-stage 8-VC 4-stage

A
re

a
(L

U
Ts

)

DSM router VC number and Pipeline stages numberTitle

Figure 4.14: The area in LUTs of DSM (based on Virtex-6 platform)

47

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

Injection ratio Mflits/sec/node

La
te

nc
y

in
 n

se
c

DSM−1VC−2stage
DSM−1VC−4stage
DSM−2VC−2stage
DSM−2VC−4stage
DSM−4VC−2stage
DSM−4VC−4stage
DSM−8VC−2stage
DSM−8VC−4stage

Figure 4.15: Load-Latency curves of different configurations of DSM (based on
Virtex-6 platform)

measured in LUTs, for different routers are shown in Figure 4.16. Table 4.1 shows a
comparison between DSM and the other routers in terms of network throughput, router
maximum operating frequency, router throughput, and router area.

Fig.4.17 shows the different router load-latency curves. In order to take into con-
sideration the operating frequency effect on the overall NoC performance, the latency
is measured in nsec and the injection ratio is measured in MFlits/s/node. The compari-
son emphasizes the significant improvements of DSM router in term of throughput and
latency. The DSM 1-VC throughput is 349%, 177%, and 67% higher than CONNECT,
SOTA, and Split-Merge routers respectively while occupying almost the same area. The
significant improvements of the throughput are due to the high maximum operating fre-
quency achieved, 440 MHz, which is way beyond the other routers operating frequency.
The network throughput enhanced, 0.85 flits/cycle/node, by handling each dimension sep-
arately and eliminating the switch allocation. The DSM 2-VC throughput is quite higher
but needs more area because of the additional buffers.

4.6.1.3 Virtex-5 FPGA and UMC ASIC Results

Figure 4.18 shows DSM operating frequency in GHz for Virtex-5 FPGA and UMC
ASIC platforms, while Figure 4.19 shows the router area (in LUTs for Vertix-5 and in
µm2) for different network configurations.

48

371.7 388.7
134.3 82.7 222.7

2576

5250

3448

2111 2258

0

1000

2000

3000

4000

5000

6000

DSM 1-VC 4-stage DSM 2-VC 4-stage SOTA 2-VC CONNECT 2-VC Split-Merge

Throughput in Mflits/s/node Area in LUTs

Figure 4.16: The maximum throughput and area of the different routers (based on
Virtex-6 platform)

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

Injection ratio Mflits/sec/node

La
te

nc
y

in
 n

se
c

DSM−1VC
DSM−2VC
SOTA−2VC
CONNECT−2VC
SPLIT−MERGE

Figure 4.17: Load-Latency curves of DSM and other routers (based on Virtex-6
platform)

49

Table 4.1: A comparison between DSM, SOTA, CONNECT and Split-Merge
(based on Virtex-6 platform)

Net. Throughput Max. Freq. Throughput Area
(flits/cycle/node) (MHz) (Mflits/s/node) (LUT)

DSM 1VC 0.85 440 371.7 2576
DSM 2VC 0.89 436 388.7 5250
SOTA 2VC 0.69 195 134.3 3448

CONNECT 2VC 0.62 133 82.7 2111
Split-Merge 0.83 268 222.7 2258

0.2

0.34

0.2

0.33

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1-VC 2-stage 1-VC 4-stage 2-VC 2-stage 2-VC 4-stage

M
ax

im
u

m
 o

p
er

at
in

g
fr

eq
u

en
cy

 (
G

H
z)

DSM router VC number and Pipeline stages number

(a) Vertix-5 FPGA

1.96

2.27

1.79

2.27

0

0.5

1

1.5

2

2.5

1-VC 2-stage 1-VC 4-stage 2-VC 2-stage 2-VC 4-stage

M
ax

im
u

m
 o

p
er

at
in

g
fr

eq
u

en
cy

 (
G

H
z)

DSM router VC number and Pipeline stages number

(b) UMC ASIC

Figure 4.18: The operating frequency of DSM in GHz (Virtex-5 and ASIC
platfoms)

50

5107 5281

10344
10660

0

2000

4000

6000

8000

10000

12000

1-VC 2-stage 1-VC 4-stage 2-VC 2-stage 2-VC 4-stage

Th
e

ar
ea

 (
LU

Ts
)

DSM router VC number and Pipeline stages number

(a) Vertix-5 FPGA

77103 79080

154169
160123

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1-VC 2-stage 1-VC 4-stage 2-VC 2-stage 2-VC 4-stage

A
re

a
(μ

m
^2

)

DSM router VC number and Pipeline stages number

(b) UMC ASIC

Figure 4.19: The area of DSM (Virtex-5 and ASIC platfoms)

51

286.2
297.1

89.7
70.7

166

0

50

100

150

200

250

300

350

DSM 1-VC 4-stage DSM 2-VC 4-stage SOTA 2-VC CONNECT 2-VC Split-Merge

M
ax

im
u

m
 T

h
ro

u
gh

p
u

t
(M

fl
it

s/
s/

n
o

d
e)

Router Type

(a) Vertix-5 FPGA

1931.8
2022.7

663.5

331.6

1383.3

0

500

1000

1500

2000

2500

DSM 1-VC 4-stage DSM 2-VC 4-stage SOTA 2-VC CONNECT 2-VC Split-Merge

M
ax

im
u

m
 T

h
ro

u
gh

p
u

t
(M

fl
it

s/
s/

n
o

d
e)

Router Type

(b) UMC ASIC

Figure 4.20: The maximum throughput of the different routers (Virtex-5 and ASIC
platfoms)

The maximum throughput, measured in Mflits/s/node, and the area, measured in LUTs
for Virtex-5 platform and in µm2 for UMC ASIC pltfirm, for different routers are shown
in Figure 4.20 and 4.21 respectively. Table 4.2 shows a comparison between DSM and
the other routers in terms of network throughput, router maximum operating frequency,
router throughput, and router area.

DSM is designed basically to target FPGAs with soft NoC to support high throughput
communications without making any changes in the current FPGAs structure, which may
be difficult to be done especially for the commercially available FPGAs. However, DSM
shows great characteristics when implemented using ASIC which make it the appropri-
ate router design for hard NoC, in case the change over the FPGA structure is targeted
or applicable. The comparison shows the significant improvements of DSM router in
term of throughput and latency for both soft NoC (Virtex-5 results) and hard NoC (UMC
ASIC results). For soft NoC, DSM 1-VC throughput is 305%, 219%, and 73% higher

52

5281

10660

2644

1848

9366

0

2000

4000

6000

8000

10000

12000

DSM 1-VC 4-stage DSM 2-VC 4-stage SOTA 2-VC CONNECT 2-VC Split-Merge

A
re

a
(L

U
Ts

)

Router Type

(a) Vertix-5 FPGA

79080.48156

160123.3234

98182.08201
108324.3619

90651.96197

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

DSM 1-VC 4-stage DSM 2-VC 4-stage SOTA 2-VC CONNECT 2-VC Split-Merge

A
re

a
(μ

m
^2

)

Router Type

(b) UMC ASIC

Figure 4.21: The area of the different routers (Virtex-5 and ASIC platfoms)

53

Table 4.2: A comparison between DSM, SOTA, CONNECT and Split-Merge
(Virtex-5 and ASIC platfoms)

Net. Throughput Max. Freq. Throughput Area
(flits/cycle/node) (MHz) (Mflits/s/node) (LUT)

DSM 1VC 0.85 336.7 286.45 5281
DSM 2VC 0.89 333.8 297.26 10660
SOTA 2VC 0.69 130 89.7 2644

CONNECT 2VC 0.62 114 70.68 1848
Split-Merge 0.83 200 166 9366

a) Vertix-5 FPGA.
Net. Throughput Max. Freq. Throughput Area

(flits/cycle/node) (MHz) (Mflits/s/node) (µm2)

DSM 1VC 0.85 2273 1932.05 79081
DSM 2VC 0.89 2273 2022.97 160123
SOTA 2VC 0.69 962 663.78 98182

CONNECT 2VC 0.62 535 331.7 108324
Split-Merge 0.83 1667 1383.61 90652

b) UMC ASIC.

Table 4.3: Network interface implementation results

Number of Slice Registers 22
Number of Slice LUTs 141
Maximum Frequency 600.166 MHz

than CONNECT, SOTA, and Split-Merge routers respectively while occupying almost
the double area. For hard NoC, DSM 1-VC throughput is 482%, 191%, and 40% higher
than CONNECT, SOTA, and Split-Merge routers respectively while occupying less area.
The improvement DSM made for hard NoC is higher, in term of throughput and area,
than the improvement it made for soft NoC. It gives a better throughput with less area
even when compared with SOTA, the router that targets ASIC NoC.

4.6.2 Network Interface Results

In this section, we show the results of the proposed network interface when imple-
mented over Virtex-6 FPGA. The implementation results of the network interface are
summarized in Table 4.3.

The whole design parameters are chosen based on the design recommendations given
in [7]. 2D-Mesh is chosen as our topology with 16 nodes. The buffer depth is 32-flit with
an 8-flit packet length and a flit width of 32 bits.

54

Chapter 5

Priority-Select Arbiter: An Efficient
Round-Robin Arbiter

5.1 Introduction
The arbiter is one of the widely used, yet critical, modules in various SoC applica-

tions. When multiple agents, such as processing elements, share one resource, such as a
communication channel, a switch port, or a buffer, an arbiter is used to allocate the shared
resource to one agent at a time. Fairness is one of the substantial features in an arbiter,
which represent the equality of the resource assignment to the different requests. Thus,
the fairness can be classified into three categories:

• Strong fairness: Each requester will have an equal average number of grants when
calculated over an adequate number of arbitrations.

• Weak fairness: In which eventually each request will end up with a grant regardless
when.

• FIFO fairness: The grants will be given to the requesters in the order they request
it.

There are many types of arbiters that differ in their fairness. The first arbiter type is the
fixed priority arbiter in which the priority given to each requester does not change over
time; instead, the priority is linearly assigned to the requester. Fixed priority arbiter does
not grantee any fairness; the low priority requester could starve while blocked by the
higher priority requester. The second type is the variable priority arbiter. In the vari-
able priority arbiter, the priority is continuously changing from cycle to cycle in order
to provide fairness. Variable priority arbiters are categorized into oblivious arbiters and
round-robin arbiters. Oblivious arbiters generate priority that is independent of the last
grant; instead, the priority is based on the last cycle priority. Therefore, the next priority
is generated using simple circuits, such as shift registers, however, it gives a weak fairness.
Round-Robin Arbiters (RRAs) assign the lowest priority to the last granted requester to
provide strong fairness. Hence, the priority vector generated is a shifted version of the
grant vector [8].

55

RRAs are widely used in the routers of the networks. Routers basic function is to redi-
rect packets from the source node to the destination node. They consist of buffers, virtual
channels, and crossbar switches. The crossbar switch function is to connect the input ports
to the output ports. Since many input ports may request sending packets simultaneously
to the same output port, an arbiter is required by the scheduler of the crossbar switch to
determine which input port will be connected to the output port at this cycle. Round-robin
arbiter usually used to implement the crossbar scheduler to avoid input ports starvation
[29]. In DSM, the arbiter is used in merge unit in order to determine which input port
buffer will be connected to the output port.

In this chapter, we study different RRAs architectures and their performance in term of
speed and area over FPGA and ASIC, thereafter, we propose a new RRA architecture that
provides significant performance improvements over previous architectures. The chapter
is organized as follows. A literature review of various RRAs found in the literature is
presented in section 5.2. Section 5.3 introduces the proposed arbiter whereas the results
are presented in section 5.4. Finally, the conclusion is in Section 5.5.

5.2 Literature Review
In this section, we will present different architectures found in the literature for im-

plementing the round-robin arbiter (RRA). The RRA generally consists of an arbitration
logic and priority update circuit. The arbitration logic is responsible for generating the
grant signals while the priority update circuit is responsible for promoting the next input
in line to the highest priority after the grant of the last input.

5.2.1 Baseline arbiter

Baseline arbiter uses a group of cells, one for each request-grant pair, to implement
RRA as shown in Figure 5.1 [8]. Each cell contains a priority flag that indicates the cell
has the highest priority. Therefore, the arbiter should initialize only one cell with an active
priority flag. If the request signal corresponding to the highest priority cell is active, the
cell generates a grant signal. However, if there is no request at the highest priority cell,
the priority transfers to the next cell using Carry-out signal (Cout). In a similar way the
adder works, each cell’s Carry-out signal is connected to the next cell’s Carry-in (Cin)
signal, in addition, the last cell’s Cout is connected to the first cell’s Cin, therefore, the
priority can propagate from a cell to another. If there are no requests, the priority will
start to propagate from the highest priority cell through all cells until it returns back again
to the old highest priority cell and the priority will remain the same. Figure 5.2 shows the
implementation of a cell.

56

Figure 5.1: Baseline arbiter

ri

pi
anyg

gi-1

gi

ci+1

ci

Figure 5.2: Baseline arbiter cell

The wrap-around of carry signal results in a combinational loop, that prevent most
static timing analyzers from properly analyze the design. Therefore, synthesis tools cannot
optimize these designs.

5.2.2 Timing speculative arbiter

In order to avoid the long propagation delay of the baseline arbiter, timing speculative
arbiter limits the propagation of priority to a fixed number of cells (s) [30]. The arbitration
is pipelined if the priority needs to propagate over a number of cell’s larger than the (s)
cells. The propagation limitation is implemented by connecting each cell to the next (s)
cell, i.e. connecting the cell i with the cell i+s. If there is no request in the highest priority
cell i or in the cells from i to i+s, the priority will be transferred to cell i+s in this cycle
so the priority starts to propagate from it in the next cycle. If there are no requests for
all cell’s, the priority should remain at the cell i. To differentiate between the idle case
(where no requests) and the pipeline case (the requests are beyond i+s), the arbiter adds

57

Figure 5.3: Acyclic Arbiter

an extra signal (I). (I) indicates an idle arbitration case by NOR all input requests. Even
though this architecture still has a combinational loop, it is faster than the baseline RRA.

5.2.3 Acyclic arbiter

To overcome the cyclic implementation, [18] proposed an acyclic RRA. In this RRA,
a fixed priority cells chain replaces the connection between the last and the first cell as
shown in Figure 5.3. The priority propagates through the carry signals to the next cells if
the higher priority cells receive no requests. In case, the last cell has the priority while no
request has received, it propagates the carry to the fixed priority cells instead of directly
connect it to the first cell. Because of the carry propagation through fixed and variable
priority cells, this implementation has a long critical path. However, it avoids the combi-
national loop.

58

Rotate to
right 1 bit

Simple PE
Rotate to
left 1 bit

Rotate to
right 2 bit

Simple PE
Rotate to
left 2 bit

Rotate to
right n-1 bit

Simple PE
Rotate to
left n-1 bit

.

.

.

.

.

.

.

.

.

0

1

2

n-1

Req Gnt

Priority_encoder

Figure 5.4: Exhaustive PE arbiter

5.2.4 Priority-encoder based arbiter

This arbiter type consists of a group of priority encoders (PEs) [31]. A priority encoder
is an arbiter with fixed priority in which the highest priority belongs to the first input.

5.2.4.1 Exhaustive PE arbiter

Exhaustive PE arbiter uses N PEs to make an N-bit RRA. In order to input different re-
quest line on each PE highest priority position, first input, the circuit rotates and inputs the
request vector to each PE. The rotation is implemented by wiring connections. Therefore,
according to the priority vector, a multiplexer selects one of the PEs. For large values of
N, this RRA requires a large area. Figure 5.4 shows the internal architecture of Exhaustive
PE arbiter.

5.2.4.2 Dual-path PE arbiter

Dual-path PE arbiter is introduced in [31]. It uses two parallel PEs to implement
round-robin algorithm. The first PE starts searching for an active request from the highest
priority bit to the lowest priority bit, last bit, without cycling back to the first bit. Since
PE has a fixed priority, the requesters to PE that lead the highest priority request has to be
disabled. This is achieved by using a thermometer code to encode the priority vector and
then use the request vector to mask it. For the second PE, the request vector is entered
directly without masking. While both PEs work in parallel, a multiplexer is used to select
between the two outputs. If the request exists only before the highest priority bit, there

59

Figure 5.5: Dual-path PE Arbiter

will be no active requests after the request vector being masking, therefore, the multiplexer
will select the second PE. Consequently, the multiplexer can be reduced as in Figure 5.5
shows. The priority is thermometer coded and the grant vector is one-hot coded that make
the priority update circuit more complex, thus, before updating the priority the grant vector
needs to be a thermometer encoded.

5.2.5 Parallel prefix arbiter

This architecture is introduced in [32]. It generates each grant signal as a combina-
tional function of the priority vectors bits and the request bits instead of using multiple
units of fixed priority arbiter. Despite the high speed of this architecture, it does not scal-
able well for a higher number of requests.

60

Figure 5.6: Priority-Select Arbiter

5.3 Proposed Arbiter
Selecting the arbiter type is a compromise between fairness and implementation char-

acteristics such as area and operating frequency. Fixed priority arbiter does not guarantee
fairness between requests, but has the highest frequency and the smallest area among other
arbiters. On the contrary, round-robin arbiters grantee fairness between requests, but they
consume more area and operate at low frequency because the priority changes over the
time and has to propagate from location to another.

We are proposing a new round-robin arbiter (Priority-Select arbiter) with advanta-
geous implementation characteristics [33]. In our arbiter, to boost the operating frequency
we subdivide the n-bit arbiter to n/k units, each of which consists of a k-bit round-robin ar-
biter, implemented using either of the literature architectures, a k-bit fixed priority arbiter,
and a multiplexer to select between the round-robin and fixed arbiters as Figure 5.6 shows.
Let us assume that the priority propagates from the least bit to the most bit (from right to
left) and wrap-around to the least bit again. When n-bit requests divided into n/k groups,
only the group that contains the priority bit needs to have a programmable priority, which
we will refer to as the priority group. The other groups need to have a fixed priority with
the highest priority located at the least bit. Thus, only one multiplexer selects the prior-
ity group round-robin arbiter while the remaining multiplexers select the fixed priority
arbiters. Finally, to prevent multiple grants from different groups, each group will block
the following group’s grants, starting from the priority group, if it has at least one grant
or one request.

For the k-bit round-robin arbiter of the priority group, if the priority was at bit m, where
0≤m≤k-1, any bit preceding m, located at i where 0≤i≤m-1, should have a priority lower

61

Figure 5.7: Priority-Select Arbiter Example

than all remaining group’s bits. Therefore, the priority of round-robin arbiter should be
prevented from propagation from the most bit to the least bit that also help in enhancing the
frequency. Subsequently, the Round-Robin arbiter will respond only to requests starting
from the priority bit to the most bit. If there are any requests in the bits preceding the
priority bit, and no requests in all the group’s bits, including priority group round-robin
arbiter, in that particular case, the output of the priority group fixed arbiter will be selected.

For example, suppose we have 24 bits arbiter (from bit 0 to 23) subdivided into three
groups (from group 0 to 2), each group of 8 bits as shown in Figure 5.7. In addition,
assume that the priority was at bit 12, and requests 9, 10, and 11 were active. The priority
group will be Group 1 and the multiplexer of this group will select round-robin arbiter
while the other remaining groups multiplexer will select fixed arbiter. At this point, the
round-robin arbiter of priority group will grant no request because the priority cannot
propagate from bit 15 to bit 8. In addition, the other groups also will generate no grants
because they have no requests. However, the multiplexer of the priority group will change
the selection to the fixed arbiter which will grant bit 9.

The k-bit round-robin arbiter group can be implemented using any RRA architecture
after being simplified to remove the cyclic search, as we have mentioned earlier that is
not allowed for the carry to propagate from the most bit to the least bit. We selected the
exhaustive PE architecture as the k-bit RRA. The k-bit exhaustive PE RRA has a high
operating frequency but occupies a large area because it consists of k k-bit PEs. However,
after the cyclic search being removed, the k-bit PEs are simplified to [k, k-1, k-2... 2, 1]-bit
PEs, which result in significant reduction in the area used.

62

5.4 Embed PS Arbiter in DSM Router
DSM with VCs was introduced in the last chapter. It provided advantageous network

performance by enhancing the network throughput and decreasing the HoL effect. How-
ever, adding VCs to DSM has a negative impact on the implementation characteristics,
specifically, the frequency and the area. In this section, we will focus on elevating the
frequency problem.

The limitation on the maximum operating frequency is imposed by the usage of the
arbiters in implementing VCs for DSM. Both the split and merge units use an arbiter to
support VCs. The results showed in the last chapter were based on implementing VCs
using the conventional arbiters. Therefore, we replaced these conventional arbiters with
PS arbiter to move the critical path from the arbiter module to another module. The size
of the arbiter is based on the number of VCs used in DSM. However, PS arbiter is charac-
terized by two parameters; the arbiter size, which is the number of requests the arbiter can
support, and the group size. While the arbiter size is selected based on the number of VCs,
the group size is selected based on the results of implementing the arbiter standalone. The
implementation results of PS arbiter, stand alone, and DSM, when implemented using PS
arbiter, are showed in the next section.

5.5 Results
In this section, our proposed architecture (Priority-Select arbiter) and the previous

RRA architectures implementation results are discussed. All the different architectures
reviewed in Section II, except that contain a combinational loop, besides the proposed
arbiter, are implemented using Verilog HDL. PS arbiter basically targets ASIC, however,
it used in FPGA-based router implementation, DSM router. Therefore, both ASIC and
FPGA implementation results will be shown for the standalone arbiter, while only FPGA
results will be introduced for DSM router. Virtex-5 FPGA (part xc5vlx50t-3ff665, speed
grade -3) is used as the implementation FPGA target platform. Xilinx ISE 14.6 tool is used
to obtain the FPGA implementation results. ASIC results are based on synthesizing over
a UMC 65nm Typical standard-cell fabrication technology. The ASIC implementation
results are given by Synopsys Design Compiler.

5.5.1 PS Arbiter Results

Table 5.1, 5.2 and 5.3 present a summary of all implementation results. The area,
in LUTs, and the maximum operating frequency, in MHz, of the previous architectures
implementation for different number of requesters are shown in Table 5.1 and 5.2. The
results emphasize that the exhaustive PE arbiter and the parallel prefix arbiter have the
highest operating frequency between all the others, however, are not scalable because
their areas grow exponentially.

63

Area in LUTs
n=4 n=8 n=16 n=32 n=64

Parallel Prefix 20 63 163 406 1031
Exhaustive PE 20 63 171 1453 3767

Acyclic 21 45 104 242 506
Dual-Path 7 49 115 262 500

a) FPGA platform results
Area in µm2

n=4 n=8 n=16 n=32 n=64
Parallel Prefix 106 389 1575 7573 26673
Exhaustive PE 156 724 2554 9294 35657

Acyclic 194 399 798 1806 3529
Dual-Path 101 279 633 1256 3397

b) ASIC platform results

Table 5.1: Area Implementation Results of previous architectures for different no.
of requesters (n)

Frequency in MHz
n=4 n=8 n=16 n=32 n=64

Parallel Prefix 505.8 449.8 316.1 292.1 242.8
Exhaustive PE 505.8 449.8 334.3 256.2 221.4

Acyclic 500.4 403.2 236.9 180.3 166.2
Dual-Path 740.1 256.9 184.3 143.0 137.3

a) FPGA platform results
Frequency in MHz

n=4 n=8 n=16 n=32 n=64
Parallel Prefix 3225.8 2777.7 2272.7 1960.8 1612.9
Exhaustive PE 3225.8 2631.6 2173.9 1818.1 1612.9

Acyclic 2381 1470.6 793.7 426.7 218.3
Dual-Path 2500 1960.7 1515.1 1190.4 990.1

b) ASIC platform results

Table 5.2: Frequency Implementation Results of previous architectures for dierent
no. of requesters (n)

64

n=4 n=8 n=16
k=2 k=2 k=4 k=2 k=4 k=8

Area
(LUTs)

19 48 47 123 102 147

Frequency
(MHz)

493.4 378.0 329.9 268.1 244.3 286.2

n=32
k=2 k=4 k=8 k=16

Area (LUTs) 280 305 228 257
Frequency (MHz) 209.8 223.9 284.8 248.7

n=64
k=2 k=4 k=8 k=16 k=32

Area (LUTs) 515 548 419 471 398
Frequency (MHz) 193.5 200.0 251.4 215.1 216.6

a) FPGA platform results
n=4 n=8 n=16
k=2 k=2 k=4 k=2 k=4 k=8

Area
(LUTs)

152 568 386 1084 984 910

Frequency
(MHz)

3030.3 2272.7 2381 2000 2040.8 1923.1

n=32
k=2 k=4 k=8 k=16

Area (LUTs) 3387 2466 1818.2 1138
Frequency (MHz) 1754.4 1754.4 2010 1694.9

n=64
k=2 k=4 k=8 k=16 k=32

Area (LUTs) 9896 10208 4148 1945 1380
Frequency (MHz) 1639.3 1724.1 1587.3 1818.1 1923.1

b) ASIC platform results

Table 5.3: Implementation Results of the proposed arbiter for different no. of
requesters (n) and different bits per unit (k)

65

Table 5.3 shows the results of the implementation of the proposed arbiter for different
values of the number of requesters and different numbers of group bits. The table asserts
that the area gradually increases with the number of requesters increase, and provides the
smallest area compared with the other architectures. Furthermore, the arbiter operates
at a high frequency that exceeds all arbiters found in the literature for a large number of
requesters. The critical path delay in the proposed arbiter is the unit group delay; however,
increasing the number of group unit’s decreases the number of requesters in each group
which intern decreases its delay and move the critical delay to the controller that controls
the unit group multiplexer selection. This leads to an optimization problem that introduces
a degree of freedom to choose, for a given number of requesters, the proper group unit
size.

Figure 5.8 and Figure 5.9 show a comparison between the priority-select arbiter, the
proposed arbiter, and the other presented arbiters. Figure 5.8 shows, for a different number
of requesters, the area of the implemented arbiters. For a large number of requesters, the
priority-select arbiter provides the lowest area among all other arbiters. The configuration
of the proposed arbiter shown in the figure is k=2 for [4, 8]-bit arbiter and k=8 for [16,
32, 64]-bit arbiter (where k is the group unit size).

Figure 5.9 shows the implemented arbiters maximum operating frequencies. The
priority-select arbiter provides the highest maximum frequency. Both parallel prefix and
exhaustive PE give almost the same operating frequency, but at the expense of area as
Figure 5.8 shows. The configuration of the priority-select arbiter is as follows: k=2 for
[4, 8]-bit arbiter and k=8 for [16, 32, 64]-bit arbiter.

5.5.2 DSM with PS Arbiter Results

Table 5.4 shows the implementation results, maximum operating frequency and area,
of DSM router VCs with and without PS arbiter over the FPGA platform. The results
show a great enhancement in the operating frequency starting from 27.8% to increasing
107.5% increasing in the frequency for DSM router with 4-VC and 32-VC respectively.
Moreover, the results show area saving but with less percentage.

66

4 8 16 32 64
0

500

1000

1500

2000

2500

3000

3500

4000

No. of requesters

A
re

a:
 N

o.
 o

f L
U

T
s

Priority Select
Parallel Prefix
Exhaustive PE
Acyclic
Dual−Path PE

(a) FPGA platform results

4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

No. of requesters

A
re

a:
 In

 m
ic

ro
 m

2

Priority Select
Parallel Prefix
Exhaustive PE
Acyclic
Dual−Path PE

(b) ASIC platform results

Figure 5.8: Area of different arbiters

67

4 8 16 32 64
100

200

300

400

500

600

700

800

No. of requesters

F
re

qu
en

cy
 in

 M
H

z

Priority Select
Parallel Prefix
Exhaustive PE
Acyclic
Dual−Path PE

(a) FPGA platform results

4 8 16 32 64
0

500

1000

1500

2000

2500

3000

3500

No. of requesters

F
re

qu
en

cy
 in

 M
H

z

Priority Select
Parallel Prefix
Exhaustive PE
Acyclic
Dual−Path PE

(b) ASIC platform results

Figure 5.9: Frequency of different arbiters

68

n=4 n=8 n=16 n=32
Frequency in MHz 195.427 150.060 96.441 62.477

Area in LUTs 18414 36750 74063 145929
a) The frequency and area of DSM with VCs using conventional arbiter

n=4 n=8 n=16 n=32
Frequency in MHz 249.688 235.460 156.299 129.634

Area in LUTs 17892 35961 72844 144996
b) The frequency and area of DSM with VCs using PS arbiter

Table 5.4: Frequecy and Area Implementation Results of DSM for different no. of
VCs (n) using conventional arbiter and PS arbiter

69

Chapter 6

Dynamic Virtual Channels

6.1 Introduction
Router buffers have an effective role in the overall operation of NoC. However, among

the various components comprising the SoC interconnection, buffers are the components
that consume the largest area and power, about 64% of the total static power are consumed
by buffers [34]. Also, the dynamic power consumed by the buffer significantly increase
with the packet throughput increment [35]. Similarly, the chip area occupied by buffers is
the biggest compared to other on-chip router components [36–38].

Furthermore, virtual channels have a critical role in NoC performance. However, in
its implementation, it depends fundamentally on buffers. Studies show that for low traf-
fic, a low number of VCs can enhance the network throughput with low latency, while
for high traffic intensity, increasing the number of VCs is more effective in boosting the
performance than increasing the buffer depth [39].

VCs are implemented using separate buffer slots per VC, each slot holds a flit, when
a header flit enters a VC, the VC allocator reserve this VC to the incoming packet until
the tail flit comes. Therefore the VC allocator can assign the same VC to the new coming
packet. This means that two or more packets can exist in the same VC which may lead
to HOL blocking if the first packet blocked, however, VCs can reduce the effect of HOL
blocking by assigning different packets to different VCs as possible. Static Virtual Chan-
nel (SVC) mechanism is the convention, and the most commonly used, in implementing
VCs. In SVC, the buffer slots are allocated statically to different VCs. The implementation
is simple and characterizes by high operating frequency, however, the buffers size almost
double with the VCs number increment. On the other hand, Dynamic Virtual Channel
(DVC) mechanism allocates the buffer slots dynamically to different VCs, upon VC re-
quest, on a buffer slot basis. DVC buffers are characterized as their VCs are adapted with
the variations in the traffic condition. In other words, the depth of each VC queue varies,
in the extreme case, from zero to the whole buffer size, according to the traffic condition.
As a result, the size of buffers greatly decreased for the same network performance at cer-
tain SVC number. This enhancement in the area is at the expense of operating frequency
as the DVS has a lower operating frequency, when compared to SVC, due to the relative
complexity of the implementation.

71

P0 P0 P0

P1 P1

P2 P2 P2 P2

P3

Write pointer VC0 Read pointer VC0

Write pointer VC1

Write pointer VC2

Write pointer VC3

Read pointer VC1

Read pointer VC2

Read pointer VC3

Physical
Channel

P0P0

a) Static Queues

P1 P1 P0 P0 P2 P2 P2 P2P3 P0

Physical
Channel

Write pointer Read pointer Free
List

Pointer

VC0
Pointer

VC3
Pointer

 .

a) Dynamic Queues

Figure 6.1: The architecture of conventional static and dynamic virtual channel
buffers.

Figure 6.1 shows the architecture of conventional static and dynamic virtual channel
buffers.

6.2 Related Work in Buffer Design
In this section, different dynamic virtual channel that presented in the literature are

reviewed.

6.2.1 DAMQ

Dynamically Allocated Multi-Queue (DAMQ) is a linked list based dynamic buffer
presented in [40]. In DAMQ, an output port multi-queue is used to store the packets into
queues.

In order to dynamically hold multiple queues of packets in a DAMQ buffer, linked list
is used in the implementation. DAMQ preserve (k+1) linked lists per buffer, where k is
the number of ports; one list for each output port, including the local port, and one list

72

for empty slots in the buffer. For each linked list there are head and tail registers. The
head register points to the first slot in the linked list, which also the first flit to leave the
linked list. Similarly, the tail register point to the last slot in the linked list, which hold the
recent entered flit. Besides the head and the tail registers, each DAMQ buffer contains a
pointer register that holds the address of the next slot to maintain the order of the FIFO.
The logic that controls the DAMQ buffer is quite complex. The process of receiving or
transmitting a flit involves moving a slot from a linked list to another with its all associated
registers manipulation. In receiving, a slot from the empty slots linked list is moved to
the appropriate output port linked list, while in transmitting process, a slot from one of
the lists is moved to the empty slots linked list.

Moving a slot from a linked list to another logically requires three cycles:

• Cycle 1: Starting with the linked list that contains the slot that needs to be moved,
the slot to be moved is pointed by the head register. The value of the head register
is copied into a temporary storage, while the pointer register is used to locate the
next slot to the head register; therefore, we copy the next slot address to the head
register.

• Cycle 2: The temporary register content, the old source head register, is then used to
update the pointer register by adding it to the destination tail next slot. In addition,
the temporary register is copied to the destination linked list tail pointer.

• Cycle 3: Again the pointer register is updated by adding the NULL value to the next
slot of the new tail address of the destination linked list.

Figure 6.2 shows an example of DAMQ buffer that supports four VCs.

There are three main drawbacks in DAMQ. First, the high latency where reading or
writing takes at least three cycles. Moreover, the implementation is complex and that
can significantly decrease the operating frequency. Finally, as the depth of each queue
can vary according to the traffic situation, if one of the VCs is blocked it will continue
to reserve slots from the DAMQ buffer for its incoming flit till it consumes the most of
the buffer and causes the other VCs to block. The detailed implementation of DAMQ is
explained in a few researches, we will present them in the next sections.

6.2.2 SCB

In Self-Compacting Buffers (SCB) scheme [41], the buffer is dynamically divided into
regions, each region corresponds to a linked list or output channel in DAMQ. However,
the slots of each list are kept contiguous and the order of the lists is preserved, i.e. the
starting location of VC n is always less than VC n+1. As a result of making the lists
contiguous, there will be no need for a next slot pointer, because all list slots are stored

73

P2 P1 P0 P3 P1 P0 P2 P2 P2P1 P0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pointer register

0

1

2

3

4

14

15

13

4

7

NULL

8

15

NULL

5 NULL

VC0

Head

Tail

0

9

VC1

1

8

VC2

0

15

VC3

3

3

Linked lists buffer

Head and Tail pointersNext slot pointers

Figure 6.2: An example of DAMQ buffer that support four VCs: The packet that
belongs to VC i is doneted by Pi.

adjacently in order. In addition, an empty slot list will not be needed. In order to keep
the slots of a list contiguous, the buffer supports slots push in two directions. When a flit
required to be inserted in the middle of the buffer, all subsequent slots will move down
to create a space for the incoming flit. Similarly, when a flit required to be removed from
the buffer, all the subsequent slots mush move up to keep the buffer compact.

Figure 6.3 shows an example of SCB storage buffer that supports four VCs compared
to a DAMQ buffer when storing the same packets.

6.2.3 FC-CB

The Fully Connected Circular Buffered (FC-CB) is based on the circular buffer
scheme. The buffer has a free space counter that counts the number of available slots
in all VCs, while for each VC there is a head register, a tail register, a residing counter, a
passing counter, a state register and linkage registers. The head register and the tail reg-
ister point to the first and the last slot in the VC queue respectively. The residing counter
tracks the number of flits that reside in the VC. The passing counter specifies the number
of flits to be transmitted for the currently transmitting packet. The state register shows the
availability of the VC. The linkage register stores information about the output port and
the virtual channel number corresponding to the VC. However, the state register and the
linkage register are more related to the routing mechanism. Similar to self-compacting
DAMQ [41], each VC queue slots is kept adjacent while allowing for bubbles of empty
slots to exist between the VCs, besides that, the relative order of VC does not change
through the operation. A head register and a tail register are kept for each VC to keep
tracking the queue position. However, unlike the self-compacting DAMQ, the VC queues
move in one direction as the circular buffer allows for the slots to wrap around. To avoid

74

P2 P1 P0 P3 P1 P0 P2 P2 P2P1 P0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 P0 P0 P1 P2 P2 P3P1 P1 P2 P2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VC0 VC1 VC2 VC3

DAMQ

SCB

Figure 6.3: An example of SCB storage buffer that supports four VCs compared to
a DAMQ buffer.

the case where the blocked VC consume all the slots and block the other VCs, a flit is kept
reserved for each channel to ensure that there is a flow path for each VC.

Figure 6.4 shows an example of FC-CB storage buffer that supports four VCs com-
pared to a DAMQ buffer when storing the same packets.

6.2.4 DAMQ-all

This scheme is based on self-compacting DAMQ [41] with modifications that allow
the lists to be separated by a bubble of slots [42]. When a flit required to be inserted in the
middle of the buffer, all slots that contain a valid data will be moved down until an empty
slot is encountered to make a space for the incoming flit. However, when a flit required to
be removed from the buffer, there will be no need for moving any slots allowing for empty
slots to exist between lists. Similar to FC-CB, the buffer is implemented with a reserved
space for the VCs. However, the reserved space could be shared between all VCs or it
could be reserved per VC. The number of reserved slots per VC can be adjusted; however,
the number of two flits is selected as it gives a satisfactory performance, based on their
simulations, with more available free space to be shared. The drawback here, which does
not exist in FC-CB, is that the buffer should support the shift in two directions, up and
down, as there no wrap around here, which may complicate the implementation.

Figure 6.5 shows an example of FC-CB storage buffer that supports four VCs com-
pared to a DAMQ buffer when storing the same packets.

75

P2 P1 P0 P3 P1 P0 P2 P2 P2P1 P0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DAMQ

FC-CB

Figure 6.4: An example of FC-CB storage buffer that supports four VCs compared
to a DAMQ buffer.

P2 P1 P0 P3 P1 P0 P2 P2 P2P1 P0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 P0 P0 P2 P2 P2 P2 P3P1 P1 P1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VC0 VC1 VC2 VC3

DAMQ

DAMQ all

Free
space

Free
space

Reserved
for VC3

Figure 6.5: An example of DAMQ-all storage buffer that supports four VCs
compared to a DAMQ buffer.

76

6.2.5 ViChaR

Nicopoulos et al [43] introduced a shared dynamic buffer with a variable VC number
called Virtual Channel Regulator (ViChaR). Vicar supports a variable number of VC from
one to the number of slots in the buffer. The arbiters of ViChaR are implemented to sup-
port the extreme case of the number of VCs, that would represent a long critical path that
reduces the maximum operating frequency. ViChaR consists of two main components;
a storage unit called Unified Buffer Structure (UBS), and a control unit called Unified
Control Logic (UCL). UCL module is further subdivided into five sub-modules:

• The Arriving/Departing Flit Pointers Logic: that point to the available slot for the
incoming flit and the leaving flit respectively.

• The Slot Availability Tracker: that indicates the available slots.

• The VC Availability Tracker: that indicates the available VCs.

• The VC Control Table: that represent the ViChaR central hub that store information
about all in-use VCs and UBS status.

• The Token (VC) Dispenser: that grants the available VCs to the new packets.

ViChaR architecture allows to the number of VCs to vary based on network conditions.
This variable number of VCs allows ViChaR to assign a new VC for each incoming packet.
Therefore, no multiple packets can share the same VC, which eliminates the case where
the blocked packet can block the progress of another packet, HoL blocking.

6.2.6 DVOQR

Dynamic Virtual Output Queues Router (DVOQR) buffer represents the simplest im-
plementation of DAMQ [44]. It consists of three main components; a single Unified Dy-
namic Buffer (UDB), a Unified Dynamic Buffer Allocator (UDBA), and multiple Virtual
Output Address Queues (VOAQ) each for a single VC as shown if figure 6.6. UDB has
one write port and n read ports for n VCs. It is implemented using Registers to avoid the
delay introduced by SRAM address decoding while the size of buffers needed is relatively
small. UDBA consists of a state vector and a fixed priority arbiter. The state vector is used
to trace the availability of the slots in UDB. The fixed priority arbiter is used in alloca-
tion logic. The fixed priority will simplify the allocation by giving the highest priority
to the lowest available slot. VOAQ is a FIFO buffer that holds the addresses of the used
slot in UDB. It is used to allocate or deallocate a slot from the UDB. On allocation, the
state vector is fed into the fixed priority arbiter to select one of the available slots in UDB.
On deallocation, the corresponding bit of the removed slot address, stored in VOAQ, is
simply cleared. Figure show the structure of a single queue of VOAQ.

77

d-1 . 2 1 0

VOAQ 0

d-1 . 2 1 0

VOAQ 1

.

d-1 . 2 1 0

VOAQ n

VOAQ Unit

Slot 0

Slot 1

Slot 2

.

Slot d-1

UDB Unit

0/1

0/1

0/1

.

0/1

State
vector

UDBA Unit

Fixed

Priority

Arbiter

Figure 6.6: DVOQR internal structure

M
U

X

E
lem

en
t 1

E
lem

en
t 0

M
U

X

E
lem

en
t d

-1

M
U

X

Shift Controller

Data in

Data out .

0 . 0 0 1

Tail Vector

D 2 1 0

VOAQ Unit

Figure 6.7: The structure of a single queue of VOAQ

When a new flit is required to be added to the buffer, first, the flit is stored in the
first available slot in UDB determined by UDBA. Therefore, the address of the new flit is
pushed to its corresponding VOAQ. When a new flit is required to be read out of the buffer,
its address should be first popped from VOAQ. To reduce the latency of the sequential
events, VOAQ is implemented as a shift FIFO where the to be read address is on the top.
VOAQ uses a one-hot tail vector to determine the state of the FIFO. The tail vector width
is D+1, where D is the depth of VOAQ FIFO which also the number of the slots in DBU.
When FIFO is empty only the first bit of the tail vector will be 1. Upon insertion of the
new address to the FIFO, the tail vector will be shifted toward the last bit and vice versa.

78

P0 P0 P0 P1 P2 P2 P3 P3 P4 P4 P4 P4P1 P1 P2 P2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VC0 VC1 VC2 VC3

DAMQ

P0 P0 P0 P1 P2 P2 P3 P3P1 P1 P2 P2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VC0 VC1 VC2 VC3

VC0

Free

EVC

Can t store P4 until one

of VCs is available

Figure 6.8: An example of EVC storage buffer that supports four VCs compared to
a DAMQ buffer.

6.2.7 EVC

The Efficient Virtual Channel organization (EVC) uses the same concept of DAMQ
of sharing the buffer, but it eliminates the HOL effect by not allowing for multiple packets
to share the same VC [45]. Instead, the first packet will enter the VC queue will prevent
the subsequent packets from using the same VC queue. This means that at a certain point,
the buffer may have available slots but not used because all VCs are busy serving a single
packet. Therefore, the buffer utilization of EVC is lower than the conventional DAMQ.

Figure 6.8 shows an example of EVC storage buffer that supports four VCs compared
to a DAMQ buffer when storing the same packets.

6.3 Embed Dynamic Virtual Channel in DSM Router
We discussed earlier that adding VCs to DSM has a negative impact on the imple-

mentation characteristics, the frequency and the area. In addition, we discussed how to
enhance the operating frequency by using PS arbiter instead of the conventional arbiter.
In this section, we will focus on elevating the area problem by replacing the static virtual
channel buffers with dynamic virtual channel buffers.

6.3.0.1 Architecture

There are several DVC discussed in last section that differ in its performance and ease
of implementation. The one we select for implementing DSM buffer is DVOQR. DVOQR
is based in primitive linked list scheme in which we should keep track of each slot in the
buffer beside the long sequential process of insertion and removal of a buffer slot. DVOQR

79

..
.

Split

VC 0

VC n-1

...

Merg

VC 0

VC n-1

..
.

VC 0

VC n-1

...

VC 0

VC n-1

Input Unit

Output Unit

Input flits Output flits

VC arbiter

To
 o

th
er

 o
u

tp
u

t
u

n
it

s

Fr
o

m
 o

th
er

 in
p

u
t

u
n

it
s

VC arbiter

SplitVC

MergeVC

VC select VC select

SVC buffer

SVC buffers

VC arbiter

VC arbiter

a) DSM router with SVC buffers

DVOQR Buffer Split Merg

Input Unit

Output Unit

Input flits Output flits

VC arbiter

To
 o

th
er

 o
u

tp
u

t
u

n
it

s

Fr
o

m
 o

th
er

 in
p

u
t

u
n

it
s

VC arbiter

SplitVC

MergeVC

VC select

VC select

DVC buffer

DVC buffers

DVOQR Buffer

VC select

VC arbiter

DVOQR Buffer

VC select

DVOQR Buffer
VC arbiter

VC select

b) DSM router with DVC buffers

Figure 6.9: The input port and the output port of DSM router with SVC and with
DVC.

is expected to has the lowest operating frequency and the largest area, because the memory
needed to trace each slot for each VC, among the other DVC found in literature. The only
justification of using DVOQR is the ease of the implementation. The implementation of
other DVC schemes are future work.

The implementation of DVOQR is discussed in the last section. Figure 6.9 shows the
input port and the output port of DSM router with SVC and with DVC.

6.3.0.2 Dynamic Buffers Area Overhead

Beside the control logic of the buffer, the storage memory required for the buffer rep-
resent the largest portion of its area. For a static buffer the storage required in bits is given
using the following equation:

the storage capacity= v∗d ∗w bits,

80

where v is the number of virtual channels, d is the depth of the individual VC queue,
and w is the flit width.

While for DVOQR the required storage memory in bits is:

the storage capacity = UDB size + the overhead memory size

the storage capacity = UDB size + state vector size + VOAQ size

the storage capacity = D∗w + (D+1) + v∗ (D∗ log2(D))

where D is the total dynamic buffer depth.

For the static buffer, the required memory size scales linearly with the flit width. There-
fore, the selected flit width doesn’t affect much on the comparison with others buffers
types. However, for the dynamic memory, increasing the flit width decreases the percent-
age of the memory overhead. Therefore, selecting a small flit width (8, 16, or 32 bits) the
static buffers will be more suitable and for larger flit width the dynamic buffers will give
a lower area.

6.3.0.3 Dynamic Buffers Frequency

The dynamic buffer suffers from the long critical path due to the more complicated
control logic, compared to static buffer, and the sequential of the events. For example, in
DVOQR buffer, the read operation run through fetching the head pointer from VOAQ then
reading it out from UDB. This sequential occur of events causes the dynamic buffers to
operate at lower frequency relative to static buffers. Therefore, selecting between dynamic
and static buffer is a compromise between the frequency and the area.

6.4 Results
This section shows the DVOQR and DSM router with DVC simulation and implemen-

tation results.

The implementation is performed over Virtex-5 LX330T FPGA (part xc5vlx330t,
speed grade -2) . The implementation results are given by Xilinx ISE 14.6 tool .

6.4.1 DVOQR Implementation Results

Tables 6.1 and 6.2 show the implementation results, the maximum operating frequency
and the area, of DVOQR buffer for different depth and number of VCs at 32-bit and 128-bit
flit width respectively.

81

VC 2-VC
Buffer Depth 8 16 32 64

Frequency (MHz) 334.8 253.8 200.3 204.8
Area (LUTs) 438 1121 2052 4030
VC 4-VC 8-VC

Buffer Depth 16 32 64 32 64
Frequency (MHz) 232 195.9 196.3 142.6 138.2

Area (LUTs) 1507 2948 11695 5637 11934

Table 6.1: The maximum frequency and area of DVOQR at 32-bit flit width

VC 2-VC
Buffer Depth 8 16 32 64

Frequency (MHz) 327.9 277.3 225.4 266.1
Area (LUTs) 1K 3K 6K 11K
VC 4-VC 8-VC

Buffer Depth 16 32 64 32 64
Frequency (MHz) 231.9 195.9 195.4 146.4 137.9

Area (LUTs) 3K 7K 22K 15K 28K

Table 6.2: The maximum frequency and area of DVOQR at 128-bit flit width

6.4.2 DSM Router with DVC Results

In this section, the DSM 2-stage router with 32-bit and 128-bit flit width is used. Al-
though the 16-bit width is used as the default filt width through this thesis, we decided to
change it in this section because increasing filt width reduces the percentage of the area
overhead of DVC buffer. It is expected that the router with 32-bit flit width and static
buffers will give a lower area than the router with dynamic buffers for the same network
performance. Similarly, for the router with 128-bit flit width and dynamic buffers will
give a lower area than the router with static buffers for the same network performance.

6.4.2.1 32-bit Flit Width Results

This part shows the implementation results for the 32-bit flit width. Table 6.3 shows
the implementation results, the maximum operating frequency and the area, of DSM
router with DVC over the FPGA platform. Table 6.4 shows the maximum throughput
and the ports buffer depth of DSM router when using SVC. The SVC results are based on
a constant buffer depth of 16 flits per VC queue.

The results show that the SVC gives a lower area when compared with DVC. Therefore,
the recommended buffer scheme for a low flit width (32-bit or less) is the static buffer to
avoid the excess area overhead that results from using the dynamic buffer scheme.

82

VC 2-VC 4-VC 8-VC
Buffer Depth 16 32 64 16 32 64 32 64
Throughput

(flits/cycle/node) 0.67 0.85 0.89 0.72 0.83 0.9 0.84 0.89
Frequency

(MHz) 188.4 154.4 155.7 121.6 124.1 84.7 86.5 77.9
Area (LUTs) 12K 29K 44K 22K 44K 83K 86K 170K

Table 6.3: The maximum throughput, maximum frequency and area of DSM
router with DVC and 32-bit flit width

VC 2-VC 4-VC 8-VC
Buffer Depth 32 64 128

Throughput (flits/cycle/node) 0.89 0.91 0.92
Frequency (MHz) 170.6 148.8 102.554

Area (LUTs) 19K 38K 78K

Table 6.4: The maximum throughput , maximum frequency and area of DSM
router with SVCand 32-bit flit width

6.4.2.2 128-bit Flit Width Results

This part shows the implementation results for the 128-bit flit width. Table 6.5 shows
the implementation results, the maximum operating frequency and the area, of DSM
router with DVC over the FPGA platforms. Table 6.6 shows the maximum throughput
and the ports buffer depth of DSM router when using SVC. The SVC results are based on
a constant buffer depth of 16 flits per VC queue. Because of the limited resources we have,
limited time and processing power, the FPGA results included in this part, specifically,
the operating frequency is taken from the synthesize stage, not after place and route stage,
which gives a good approximation of the timing delay but not the best estimation.

The results show that the performance of an SVC based network can be achieved using
a DVC based network with significantly less buffer depth and without much degrade in
the throughput. For example; the typical port buffer depth for 8-VC static buffers router

VC 2-VC 4-VC 8-VC
Buffer Depth 16 32 64 16 32 64 32 64
Throughput

(flits/cycle/node) 0.67 0.85 0.89 0.72 0.83 0.9 0.84 0.89
Frequency

(MHz) 229 187.7 205.8 158.8 150.9 141 102.8 98.9
Area (LUTs) 26K 64K 95K 51K 98K 183K 195K 373K

Table 6.5: The maximum throughput, maximum frequency and area of DSM
router with DVC and 128-bit flit width

83

VC 2-VC 4-VC 8-VC
Buffer Depth 32 64 128

Throughput (flits/cycle/node) 0.89 0.91 0.92
Frequency (MHz) 222.9 202.2 160.2

Area (LUTs) 70K 139K 279K

Table 6.6: The maximum throughput , maximum frequency and area of DSM
router with SVC and 128-bit flit width

is 128 flits (16x8) with a throughput equal to 0.92 with area equal to 279K LUTs, while 8-
VC dynamic buffers router can give a throughput of 0.84 with a buffer depth of 32 flits and
area equals to 195K LUTs which reduces the area used by 30%. Another example is using
4-VC dynamic buffer that gives a throughput of 0.84 with a buffer depth of 32 flits and
area equals to 98K LUTs which reduces the area used by 30% when compared to the static
buffer which has area equals to 139K, or using a buffer depth of 16 flits when the targeted
application has a relatively lower traffic as it gives a throughput of 0.72 flits/cycle/node
but yet reduces the are by 63%, however, its is not recommended as we might get the same
performance using a static buffer with lower depth per VC.

6.4.3 DSM Router with DVC and PS-arbiter Results

The results of adding PS-arbiter to DSM router to enhance the operating frequency is
showed in Priority-Select Arbiter chapter. The enhancement is achieved by replacing the
conventional arbiters with PS-arbiters.

We also showed the results of adding dynamic buffers to DSM router in order to re-
duce the occupied area. However, the reduction of the area was associated with a slight
reduction in the operating frequency introduced by the dynamic buffers control logic. This
reduction in the operating frequency is unremovable by adding PS-arbiter as it targets only
the critical path added by the conventional arbiter. Therefore, the enhancement of the op-
erating frequency of DSM router when equipped by both dynamic buffers and PS-arbiter
is limited by the operating frequency of the dynamic buffers. In this part, we show the
results of adding both the dynamic buffers and PS-arbiter to DSM router to try to provide
some alternative and increasing the operating frequency as much as possible.

Table 6.7 show the implementation results, the maximum operating frequency and the
area, of DSM router for different buffer depth and number of VCs at 128-bit flit width.

To avoid confusion, let us call the DSM router with static buffers DSM_SVC, the
DSM router with dynamic buffers DSM_DVC, and the DSM router with dynamic buffers
and PS-arbiter DSM_DVC_PS.

84

VC 2-VC 4-VC 8-VC
Buffer Depth 16 32 64 16 32 64 32 64
Throughput

(flits/cycle/node) 0.67 0.85 0.89 0.72 0.83 0.9 0.84 0.89
Frequency

(MHz) 248.4 200 211.7 224.4 194.6 199.2 137.5 130.8
Area (LUTs) 38K 64K 95K 53K 105K 183K 196K 372K

Table 6.7: The maximum throughput , maximum frequency and area of DSM
router with DVC and PS-arbiter

The results show an improvement in the operating frequency of DSM_DVC_PS while
keeping the area reduction we achieved from adding dynamic buffers. For example,
DSM_SVC_PS with 8-VC and 32 flits buffer depth keeps the area reduction of 30% when
compared with DSM_SVC while showing a frequency increasing by 33.8% when com-
pared with DSM_DVC to achieve a frequency closer to DSM_SVC. The same goes for
4-VC with 32 flits buffer depth were DSM_DVC_PS has area 24.4% less than DSM_SVC
and operating frequency 39% more than DSM_DVC to achieve an operating frequency
almost equal to DSM_SVC operating frequency.

Moreover, in a lower buffer depth, DSM_DVC_PS shows an improvement in both fre-
quency and area over DSM_DVC and DSM_SVC. For 4-VC with 16 flits buffer depth,
DSM_DVC_PS has 61.9% less area than DSM_SVC, and 41.3% and 11% higher fre-
quency than DSM_DVC and DSM_SVC respectively. Similarly, for 2-VC with 16 flits
buffer depth, DSM_DVC_PS has 45.7% less area than DSM_SVC, and 8.5% and 11.4%
higher frequency than DSM_DVC and DSM_SVC respectively.

85

Chapter 7

Conclusions and Future Work

7.1 Conclusions
In this research, we analyzed the NoC parameters and used two NoC implementation

for comparisons; ASIC-based NoC called SOTA and FPGA-oriented NoC called CON-
NECT. For CONNECT, the preferred parameters are two virtual channels, four flits buffer
depth for a packet of 2 flits length, 16 node network size, and MESH network topology.
For SOTA, the preferred parameters are two virtual channels; eight flits buffer depth for
a packet of 2 flits length, 16-node network size, and FOLDED TORUS network topology.
CONNECT provides lower latency when compared to SOTA because of the three pipelin-
ing stages used in SOTA. In addition, CONNECT gives higher throughput, maximum
injection rate, with lower latency in the most cases. That is all beside the area occupied
by CONNECT is lower than that occupied by SOTA. All that because CONNECT is de-
signed to target and exploit the FPGA platforms, while SOTA is designed to target ASIC.
Which demonstration that there is a big difference between design an FPGA-oriented NoC
and just mapping an ASIC-oriented NoC to the FPGA.

Next, we propose a new router architecture, called Dual Spit-Merge, that provides a
high performance. DSM basically targets FPGAs and represent the highest throughput
among all the existing routers presented in literature without area increment. This all
besides its small network latency. The implementation on Virtex-6 FPGA achieves a
throughput of 389 MFlits/s/node, that is nearly three to four times the throughput of SOTA
router and the FPGA-oriented CONNECT router. DSM also showed a great performance
when hard NoC is targeted.

In addition, a comparative review between various round-robin arbiter architectures
found in the literature is delivered. A novel efficient RRA is proposed that provides sig-
nificant improvements over existing RRA architectures. The proposed arbiter provides
the highest maximum frequency while occupying nearly half the area of existing arbiter
with similar performance for a large number of requesters, e.g. 64. In addition, the re-
sults of implementing DSM router VCs using PS arbiter show a boosting in the operating
frequency, nearly doubled, with less area.

87

Moreover, we have augmented DSM router with dynamic virtual channel buffer to
reduce the area occupied by the router when implementing virtual channels using static
buffers. Although the selected dynamic virtual channel buffer scheme gives the lowest
frequency and highest area among the other schemes when implemented stand alone, it
showed a significant saving in the area while keeping the same throughput when embedded
in DSM router. However, this solution is effective with wide flit width router deside
showing a decrease in the operating frequency due to the more complex buffer control.

Finally, we achived a decrease in the area and increase in the operating frequency
when using both the proposed RRA and the dynamic buffer at the time.

7.2 Future Work
As an extension to this work, we recommend the following points for the future work:

• Studying other network parameters that effectively contribute to the NoC perfor-
mance.

• As DSM showed a great performance when implemented in ASIC, we can inves-
tigate its performance over a higher dimensions network. This can be achieved by
dedicating an internal router for each dimension.

• Supporting adaptive routing algorithms in DSM to make it more suitable for a wide
verity of applications that target the FPGA.

• Studying the impact of using the different RRA architectures as the internal RRA of
PS arbiter. Furthermore, formulating the relation between the size of internal RRA
and the optimum frequency and area.

• Implementing more efficient dynamic virtual channels buffer, other than DVOQR,
and studying its impact on DSM performance.

88

References

[1] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proceedings of the
IEEE, vol. 89, no. 4, pp. 490–504, 2001.

[2] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote, “Outstanding
research problems in NoC design: system, microarchitecture, and circuit perspec-
tives,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 1, pp. 3–21, 2009.

[3] B. A. Abderazek and M. Sowa, “Basic network-on-chip interconnection for future
gigascale MCSoCs applications: communication and computation orthogonaliza-
tion,” TJASSST2006, Dec, pp. 4–9, 2006.

[4] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “HERMES: an infrastruc-
ture for low area overhead packet-switching networks on chip,” INTEGRATION,
the VLSI journal, vol. 38, no. 1, pp. 69–93, 2004.

[5] F. A. Samman, T. Hollstein, and M. Glesner, “Multicast parallel pipeline router
architecture for network-on-chip,” in PROCEEDINGS OF THE CONFERENCE
ON DESIGN, AUTOMATION AND TEST IN EUROPE, ACM, 2008, pp. 1396–
1401.

[6] A. Janarthanan, V. Swaminathan, and K. A. Tomko, “MoCReS: an area-efficient
multi-clock on-chip network for reconfigurable systems,” in IEEE COMPUTER
SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI’07), IEEE, 2007, pp. 455–
456.

[7] K. A. Helal, S. Attia, T. Ismail, and H. Mostafa, “Comparative review of NoCs in
the context of ASICs and FPGAs,” in 2015 IEEE INTERNATIONAL SYMPOSIUM
ON CIRCUITS AND SYSTEMS (ISCAS), IEEE, 2015, pp. 1866–1869.

[8] W. J. Dally and B. P. Towles, Principles and practices of interconnection networks.
Elsevier, 2004.

[9] D. Jayasimha, B. Zafar, and Y. Hoskote, “On-chip interconnection networks: Why
they are different and how to compare them,” Platform Architecture Research, Intel
Corporation, 2006.

[10] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection networks: an engineering
approach. Morgan Kaufmann, 2003.

[11] W. J. Dally, “Virtual-channel flow control,” IEEE Transactions on Parallel and
Distributed systems, vol. 3, no. 2, pp. 194–205, 1992.

89

[12] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel routers for on-
chip networks,” in ACM SIGARCH COMPUTER ARCHITECTURE NEWS, IEEE
Computer Society, vol. 32, 2004, p. 188.

[13] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” ACM SIGARCH
Computer Architecture News, vol. 20, no. 2, pp. 278–287, 1992.

[14] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Trans-
actions on computer-aided design of integrated circuits and systems, vol. 26, no. 2,
pp. 203–215, 2007.

[15] M. S. Abdelfattah and V. Betz, Augmenting FPGAs with Embedded Networks-on-
chip - Semantic Scholar. [Online]. Available: https://www.semanticscholar.org/
paper / Augmenting - Fpgas - with - Embedded - Networks - on - chip - Abdelfattah -
Betz/b36a637d456656777655eb85b1f45464078529d3.

[16] D. Lewis and J. Chromczak, “Process technology implications for FPGAs,” in 2012
INTERNATIONAL ELECTRON DEVICES MEETING, 2012.

[17] C. Chiasson and V. Betz, “Should FPGAs abandon the pass-gate?” In 2013 23RD
INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND
APPLICATIONS, IEEE, 2013, pp. 1–8.

[18] D. U. Becker, “Efficient microarchitecture for network-on-chip routers,” PhD thesis,
Stanford University, 2012.

[19] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance Eval-
uation and Design Trade-Offs for Network-on-Chip Interconnect Architectures,”
IEEE Transactions on Computers, vol. 54, no. 8, pp. 1025–1040, 2005.

[20] É. Cota, A. de Morais Amory, and M. Soares Lubaszewski, Reliability, Availability
and Serviceability of Networks-on-Chip. Boston, MA: Springer US, 2012, pp. 11–
25.

[21] M. K. Papamichael and J. C. Hoe, “CONNECT: re-examining conventional wis-
dom for designing NoCs in the context of FPGAs,” in PROCEEDINGS OF THE
ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD PROGRAMMABLE
GATE ARRAYS, ACM, 2012, pp. 37–46.

[22] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-chip net-
works,” pp. 172–182, 2007.

[23] R. Pau and N. Manjikian, “Implementation of a configurable router for embed-
ded network-on-chip support in FPGAs,” in CIRCUITS AND SYSTEMS AND
TAISA CONFERENCE, 2008. NEWCAS-TAISA 2008. 2008 JOINT 6TH INTER-
NATIONAL IEEE NORTHEAST WORKSHOP ON, IEEE, 2008, pp. 25–28.

[24] Y. Huan and A. DeHon, “FPGA optimized packet-switched NoC using split and
merge primitives,” in FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2012 IN-
TERNATIONAL CONFERENCE ON, IEEE, 2012, pp. 47–52.

90

https://www.semanticscholar.org/paper/Augmenting-Fpgas-with-Embedded-Networks-on-chip-Abdelfattah-Betz/b36a637d456656777655eb85b1f45464078529d3
https://www.semanticscholar.org/paper/Augmenting-Fpgas-with-Embedded-Networks-on-chip-Abdelfattah-Betz/b36a637d456656777655eb85b1f45464078529d3
https://www.semanticscholar.org/paper/Augmenting-Fpgas-with-Embedded-Networks-on-chip-Abdelfattah-Betz/b36a637d456656777655eb85b1f45464078529d3

[25] N. Kapre, N. Mehta, R. Rubin, H. Barnor, M. J. Wilson, M. Wrighton, A. De-
Hon, et al., “Packet switched vs. time multiplexed FPGA overlay networks,” in
2006 14TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUS-
TOM COMPUTING MACHINES, IEEE, 2006, pp. 205–216.

[26] J. Kim, C. Nicopoulos, D. Park, V. Narayanan, M. S. Yousif, and C. R. Das, “A
gracefully degrading and energy-efficient modular router architecture for on-chip
networks,” ACM SIGARCH Computer Architecture News, vol. 34, no. 2, pp. 4–15,
2006.

[27] S. T. Nguyen and S. Oyanagi, “A low cost single-cycle router based on virtual out-
put queuing for on-chip networks,” in DIGITAL SYSTEM DESIGN: ARCHITEC-
TURES, METHODS AND TOOLS (DSD), 2010 13TH EUROMICRO CONFER-
ENCE ON, IEEE, 2010, pp. 60–67.

[28] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, and A. A. Jerraya, “A generic
wrapper architecture for multi-processor SoC cosimulation and design,” in PRO-
CEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON HARDWARE/-
SOFTWARE CODESIGN, ACM, 2001, pp. 195–200.

[29] M. Abdelrasoul, M. Ragab, and V. Goulart, “Impact of Round Robin Arbiters on
router’s performance for NoCs on FPGAs,” in CIRCUITS AND SYSTEMS (ICCAS),
2013 IEEE INTERNATIONAL CONFERENCE ON, IEEE, 2013, pp. 59–64.

[30] B. Zhao, Y. Zhang, and J. Yang, “A speculative arbiter design to enable high-
frequency many-VC router in NoCs,” in NETWORKS ON CHIP (NOCS), 2013
SEVENTH IEEE/ACM INTERNATIONAL SYMPOSIUM ON, Apr. 2013, pp. 1–8.

[31] P. Gupta and N. McKeown, “Designing and Implementing a Fast Crossbar Sched-
uler,” IEEE Micro, vol. 19, no. 1, pp. 20–28, Jan. 1999.

[32] G. Dimitrakopoulos, N. Chrysos, and K. Galanopoulos, “Fast arbiters for on-chip
network switches,” in COMPUTER DESIGN, 2008. ICCD 2008. IEEE INTERNA-
TIONAL CONFERENCE ON, Oct. 2008, pp. 664–670.

[33] K. A. Helal, S. Attia, T. Ismail, and H. Mostafa, “Priority-select arbiter: An ef-
ficient round-robin arbiter,” in NEW CIRCUITS AND SYSTEMS CONFERENCE
(NEWCAS), 2015 IEEE 13TH INTERNATIONAL, IEEE, 2015, pp. 1–4.

[34] X. Chen and L.-S. Peh, “Leakage power modeling and optimization in intercon-
nection networks,” in PROCEEDINGS OF THE 2003 INTERNATIONAL SYMPO-
SIUM ON LOW POWER ELECTRONICS AND DESIGN, ACM, 2003, pp. 90–95.

[35] T. T. Ye, G. D. Micheli, and L. Benini, “Analysis of power consumption on switch
fabrics in network routers,” in PROCEEDINGS OF THE 39TH ANNUAL DESIGN
AUTOMATION CONFERENCE, ACM, 2002, pp. 524–529.

[36] W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection
networks,” in DESIGN AUTOMATION CONFERENCE, 2001. PROCEEDINGS,
IEEE, 2001, pp. 684–689.

91

[37] G. Varatkar and R. Marculescu, “Traffic analysis for on-chip networks design
of multimedia applications,” in DESIGN AUTOMATION CONFERENCE, 2002.
PROCEEDINGS. 39TH, IEEE, 2002, pp. 795–800.

[38] J. Hu and R. Marculescu, “Application-specific buffer space allocation for
networks-on-chip router design,” in PROCEEDINGS OF THE 2004 IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, IEEE
Computer Society, 2004, pp. 354–361.

[39] M. Rezazad and H. Sarbazi-Azad, “The effect of virtual channel organization on
the performance of interconnection networks,” in 19TH IEEE INTERNATIONAL
PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IEEE, 2005, 8–
pp.

[40] G. L. Frazier and Y. Tamir, “The design and implementation of a multiqueue buffer
for VLSI communication switches,” in COMPUTER DESIGN: VLSI IN COMPUT-
ERS AND PROCESSORS, 1989. ICCD’89. PROCEEDINGS., 1989 IEEE INTER-
NATIONAL CONFERENCE ON, IEEE, 1989, pp. 466–471.

[41] J. Park, B. W. O’Krafka, S. Vassiliadis, and J. Delgado-Frias, “Design and evalu-
ation of a DAMQ multiprocessor network with self-compacting buffers,” in Pro-
ceedings of the 1994 ACM/IEEE conference on Supercomputing, IEEE Computer
Society Press, 1994, pp. 713–722.

[42] J. Liu and J. G. Delgado-Frias, “DAMQ Self-Compacting Buffer Schemes for Sys-
tems with Network-On-Chip.,” in CDES, 2005, pp. 97–103.

[43] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and C. R.
Das, “ViChaR: A dynamic virtual channel regulator for network-on-chip routers,”
in 2006 39TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MI-
CROARCHITECTURE (MICRO’06), IEEE, 2006, pp. 333–346.

[44] S. Qi, M. Zhang, J. Li, T. Zhao, C. Zhang, and S. Li, “A high performance router
with dynamic buffer allocation for on-chip interconnect networks,” in COMPUTER
DESIGN (ICCD), 2010 IEEE INTERNATIONAL CONFERENCE ON, IEEE, 2010,
pp. 462–467.

[45] M. O. Gharan and G. N. Khan, “Dynamic Virtual Channel Configuration for Ef-
ficient Multicore Systems,” in COMPLEX, INTELLIGENT AND SOFTWARE IN-
TENSIVE SYSTEMS (CISIS), 2014 EIGHTH INTERNATIONAL CONFERENCE
ON, IEEE, 2014, pp. 445–450.

92

الرسالة ملخص

ǽحرك بدروه ȑوالذ عالǽة Ȟثافة ذات رقاقة إلى الموصلات أشǼاه تكنولوجǽا في التقدم Ȑأد
Șالرقائ على الاتصالات أنظمة الى الإلكترونǽة Șالرقائ على الحساب أنظمة من الزجاجة Șعن
مع للتنافس فرصة للبرمجة القابلة المنطقǽة البواǼات مصفوفات ǽعطي التقدم هذا الإلكترونǽة.
المختلفة المدمجة المعالجة عناصر زȄادة خلال من وذلك ،Șالتطبی محددة المتكاملة الدوائر
احتاج تلبǽة في التقلیدǽة الاتصال نماذج فشلت ذلك، ومع مرنة. Ȍȃر بنǽة الى Ǽالإضافة
ومعǽارȄة منخفضة، مهدرة وموارد عالي، اتصال ونطاق عالǽة، لسرعة الإلكترونǽة Șالرقائ نظم
على الاتصالات تحدǽات لمواجهة واعداً حلاً الإلكترونǽة Șالرقائ شȞǼات تعتبر التصمǽم. في
تطوȄر ندرس سوف الرسالة هذه في التكنولوجي. التقدم مع المرتǼطة الإلكترونǽة Șالرقائ

للبرمجة. القابلة المنطقǽة البواǼات تستهدف التي الأداء عالǽة الإلكترونǽة Șالرقائ شȞǼات
العالي الأداء تعطي التي للبرمجة القابلة المنطقǽة البواǼات عوامل وتناقش تقارن الرسالة هذه
Șالرقائ ولشȞǼات للبرمجة القابلة المنطقǽة ǼالبواǼات الخاصة الإلكترونǽة Șالرقائ لشȞǼات والكفاءة
تقدم الرسالة فإن ذلك، إلى وǼالإضافة .Șالتطبی محددة المتكاملة Ǽالدوائر الخاصة الإلكترونǽة
للبرمجة القابلة المنطقǽة ǼالبواǼات الخاصة الإلكترونǽة Șالرقائ شȞǼات توجǽه لجهاز جدیدة بینǽة
لمحȞم جدیدة تنفیذǽة بنǽة الرسالة هذه تقترح ذلك، على وعلاوة الساǼقة. البنǽات على تتفوق والتي
هذا ساǼقاتها. مع Ǽالمقارنة التشغیل تردد من وتزȄد المساحة Ȟبیر ǼشȞل تقلل والتي راوند-روȃن
Șالرقائ شȞǼات توجǽه جهاز بنǽة مع ادماجه عند التشغیل تردد Ȟبیر حد إلى ǽعزز المحȞم
المقترح الإلكترونǽة Șالرقائ شȞǼات توجǽه جهاز تجهز الرسالة فإن وأخیراً، المقترح. الإلكترونǽة

المستخدمة. المساحة في الزȄادة من للحد الدینامǽȞǽة الذاكرة أنظمة من بواحدة

ا

هلال عبدالله خالد مهندس:
١٩٨٩/٠٦/١٦ المǻلاد: تارȂخ

ȑمصر الجنسǻة:
٢٠١٣/١٠/٠١ التسجیل: تارȂخ
٢٠١٦/.../.... المنح: تارȂخ
العلوم ماجستیر الدرجة:

الكهرǽȃة والاتصالات الإلكترونǽات هندسة القسم:
المشرفون:

فهمي حسن علي حسام أ.د.
مصطفى حسن د.

الممتحنون:
الرئǽسي) (المشرف فهمي حسن علي حسام أ.د.
الداخلي) (الممتحن نصار محمد أمین أ.د.

Ǽالقاهرة الأمرǽȞȄة الجامعة - الهندسة Ȟلǽة أنǽس، حسین مهاب أ.د.
الخارجي) (الممتحن

الرسالة: عنوان
الخاصة الالكترونǽة Șالرقائ لشȞǼات ومحȞم توجǽه جهاز

للبرمجة القابلة المنطقǽة البواǼات Ǽمصفوفة
الدالة: الكلمات

القابلة المنطقǽة البواǼات مصفوفة الالكترونǽة، Șالرقائ شȞǼات محȞم، توجǽه، جهاز
للبرمجة

الرسالة: ملخص
ȑوالذ عالǽة Ȟثافة ذات رقاقة إلى الموصلات أشǼاه تكنولوجǽا في التقدم Ȑأد
أنظمة الى الإلكترونǽة Șالرقائ على الحساب أنظمة من الزجاجة Șعن ǽحرك بدروه
للبرمجة القابلة المنطقǽة البواǼات مصفوفات ǽعطي التقدم هذا علیها. الاتصالات
الاتصال نماذج فشلت ذلك، ومع .Șالتطبی محددة المتكاملة الدوائر مع للتنافس فرصة
Șالرقائ شȞǼات تعتبر والتى الإلكترونǽة Șالرقائ نظم احتǽاجات تلبǽة في التقلیدǽة
الإلكترونǽة Șالرقائ شȞǼات تطوȄر تدرس الرسالة هذه في لها. واعداً حلاً الإلكترونǽة

للبرمجة. القابلة المنطقǽة البواǼات تستهدف التي الأداء عالǽة

الخاصة الالكترونǻة Ȗالرقائ لشȜǺات ومحȜم توجǻه جهاز
للبرمجة القابلة المنطقǻة البواǺات Ǻمصفوفة

اعداد

هلال عبدالله خالد

الي مقدمة رسالة
القاهرة جامعة - الهندسة Ȟلǽة

درجة علي الحصول متطلǼات من Ȟجزء
العلوم ماجستیر

في
الكهرǽȃة والاتصالات الإلكترونǽات هندسة

الممتحنین: لجنة من ǽعتمد

الرئǽسي المشرف - فهمي حسن علي حسام أ.د.

الداخلي الممتحن - نصار محمد أمین أ.د.

الخارجي الممتحن - أنǽس حسین مهاب أ.د.
Ǽالقاهرة الأمرǽȞȄة الجامعة - الهندسة Ȟلǽة

القاهرة جامعة - الهندسة Ȟلǽة
العرǽȃة مصر جمهورȄة - الجیزة

٢٠١٦

الخاصة الالكترونǻة Ȗالرقائ لشȜǺات ومحȜم توجǻه جهاز
للبرمجة القابلة المنطقǻة البواǺات Ǻمصفوفة

اعداد

هلال عبدالله خالد

الي مقدمة رسالة
القاهرة جامعة - الهندسة Ȟلǽة

درجة علي الحصول متطلǼات من Ȟجزء
العلوم ماجستیر

في
الكهرǽȃة والاتصالات الإلكترونǽات هندسة

إشراف تحت
مصطفى حسن د. فهمي حسن علي حسام أ.د.

مدرس أستاذ
الكهرǽȃة والاتصالات الإلكترونǽات هندسة قسم الكهرǽȃة والاتصالات الإلكترونǽات هندسة قسم

القاهرة جامعة - الهندسة Ȟلǽة القاهرة جامعة - الهندسة Ȟلǽة

القاهرة جامعة - الهندسة Ȟلǽة
العرǽȃة مصر جمهورȄة - الجیزة

٢٠١٦

الخاصة الالكترونǻة Ȗالرقائ لشȜǺات ومحȜم توجǻه جهاز
للبرمجة القابلة المنطقǻة البواǺات Ǻمصفوفة

اعداد

هلال عبدالله خالد

الي مقدمة رسالة
القاهرة جامعة - الهندسة Ȟلǽة

درجة علي الحصول متطلǼات من Ȟجزء
العلوم ماجستیر

في
الكهرǽȃة والاتصالات الإلكترونǽات هندسة

القاهرة جامعة - الهندسة Ȟلǽة
العرǽȃة مصر جمهورȄة - الجیزة

٢٠١٦

	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	List of Publications
	Abstract
	1 Introduction
	1.1 Thesis Goals
	1.2 Organization of the thesis

	2 Background
	2.1 On-Chip Interconnect Architecture
	2.2 NoC
	2.2.1 NoCs’ Parameters
	2.2.1.1 Topology:
	2.2.1.2 Flow Control:
	2.2.1.3 Switching Techniques:
	2.2.1.4 Virtual Channels (VCs) Dally92,mullins2004low
	2.2.1.5 Routing Algorithms
	2.2.1.6 Buffer Size
	2.2.1.7 Link Width
	2.2.1.8 Arbitration

	2.3 FPGA platform
	2.4 FPGA NoC
	2.4.1 Current FPGA Interconnect Problems
	2.4.1.1 Interconnect scaling
	2.4.1.2 Design hurdles
	2.4.1.3 Bandwidth demands
	2.4.1.4 Modularity

	2.4.2 Embedded Networks-on-Chip Solution
	2.4.3 Network Architecture
	2.4.3.1 Soft NoCs
	2.4.3.2 Mixed NoCs
	2.4.3.3 Hard NoCs

	3 NoCs in the context of ASICs and FPGAs
	3.1 Introduction
	3.2 Background
	3.3 Simulation setup
	3.4 Simulation Results
	3.5 Design Recommendations

	4 Proposed Router
	4.1 Introduction
	4.2 Literature Review
	4.2.1 SOTA
	4.2.2 CONNECT
	4.2.3 Split-Merge
	4.2.4 Dual-crossbar

	4.3 Proposed Architecture
	4.4 DSM router with Virtual Channels
	4.5 Network Interface
	4.5.1 Network to PE part:
	4.5.2 PE to Network part:

	4.6 Results
	4.6.1 Router Results
	4.6.1.1 Network Performance Results
	4.6.1.2 Virtex-6 FPGA Results
	4.6.1.3 Virtex-5 FPGA and UMC ASIC Results

	4.6.2 Network Interface Results

	5 Priority-Select Arbiter: An Efficient Round-Robin Arbiter
	5.1 Introduction
	5.2 Literature Review
	5.2.1 Baseline arbiter
	5.2.2 Timing speculative arbiter
	5.2.3 Acyclic arbiter
	5.2.4 Priority-encoder based arbiter
	5.2.4.1 Exhaustive PE arbiter
	5.2.4.2 Dual-path PE arbiter

	5.2.5 Parallel prefix arbiter

	5.3 Proposed Arbiter
	5.4 Embed PS Arbiter in DSM Router
	5.5 Results
	5.5.1 PS Arbiter Results
	5.5.2 DSM with PS Arbiter Results

	6 Dynamic Virtual Channels
	6.1 Introduction
	6.2 Related Work in Buffer Design
	6.2.1 DAMQ
	6.2.2 SCB
	6.2.3 FC-CB
	6.2.4 DAMQ-all
	6.2.5 ViChaR
	6.2.6 DVOQR
	6.2.7 EVC

	6.3 Embed Dynamic Virtual Channel in DSM Router
	6.3.0.1 Architecture
	6.3.0.2 Dynamic Buffers Area Overhead
	6.3.0.3 Dynamic Buffers Frequency

	6.4 Results
	6.4.1 DVOQR Implementation Results
	6.4.2 DSM Router with DVC Results
	6.4.2.1 32-bit Flit Width Results
	6.4.2.2 128-bit Flit Width Results

	6.4.3 DSM Router with DVC and PS-arbiter Results

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References
	Arabic Abstract

