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Abstract— Deep Convolutional Neural Networks (CNNs) are 
the state-of-the-art systems for image classification and scene 
understating. They are widely used for their superior accuracy but 
at the cost of high computational complexity. The target in this field 
nowadays is its acceleration to be used in real time applications. The 
solution is to use Graphics Processing Units (GPU) but many 
problems arise due to the GPU high-power consumption which 
prevents its utilization in daily-used equipment. The Field 
Programmable Gate Array (FPGA) is a new solution for CNN 
implementations due to its low power consumption and flexible 
architecture. This work discusses this problem and provides a 
solution that compromises between the speed of the CNN and the 
power consumption of the FPGA. This solution depends on two 
main techniques for speeding up: parallelism of layers resources 
and pipelining inside some layers 
 

Index Terms—Convolutional Neural Networks (CNNs); Alex-
Net; Accelerating CNNs; FPGA; Virtex7. 

I. INTRODUCTION 

N recent years, artificial intelligence and deep learning have 
shown their utility and effectiveness in solving many real-

world problems. The main motivation is to eliminate the need of 
direct programming and create an intelligent system that can 
automatically adapt to new situations. Among various deep 
learning algorithms, CNNs are the state-of-the-art in computer 
vision problems such as face recognition [1], and autonomous 
driving [2]. 

While CNNs have significant higher accuracies than 
traditional algorithms, they require huge amounts of 
computational resources and memory access due to the 
convolution-operation large number of parameters, which 
represents a computational challenge for the General-Purpose 
Processors (CPUs) and consumes large amount of power. 
Recently many applications such as embedded systems in self-
driving cars need high energy efficiency and real-time 
performance. As a result, hardware accelerators such as GPU, 
FPGA, and Application Specific Integrated Circuits (ASIC), 
have been utilized to improve the throughput of the CNN. 

As CNNs offer significant potential for massive 
parallelization and extensive data reuse, therefore GPUs are the 
most widely used platforms to improve both training and 
classification processes of CNNs [3], thanks to their high 
throughput and memory bandwidth. However, GPUs consume a 
considerable amount of power which is another important 
performance evaluation metric in the modern digital systems. 

ASIC design, on the other hand, has achieved high 
throughput with low power consumption [4], [5], but the 
development time and cost are significantly high compared to 
other solutions.  Recently the new generation of FPGA increases 
the capacity of hardware resources continuously, which provides 
thousands floating-point computing units and low power 
consumption. Therefore, FPGA-based accelerators are efficient 
alternatives that provide high throughput, low power 
consumption, and configurability at a reasonable cost. 

Many approaches have been used to implement CNN on 
FPGA. The authors of [6] provide a comparison between GPU 
and FPGA for DNNs. They propose a detailed case study on 
accelerating Ternary Res-Net, the results are very promising; 
Stratix 10 performance is 10%, 50% and 5.4x better in 
performance (TOP/sec) than Titan X Pascal GPU, results 
indicate that FPGAs may become the platform of choice for 
accelerating DNNs. The work in [4] propose an energy-efficient 
dataflow called row stationary, which aims to maximize the reuse 
and accumulation at the local memory level (RF or caches) for 
all types of data (weights, pixels and partial sums). The work in 
[7] transforms a convolutional layer into a regular matrix-
multiplication (MM) in the Fully Connected (FC) layer, and 
implements an MM-like accelerator for both layers. The other 
work in [8] takes an opposite approach: it transforms a regular 
MM into a convolution, and implements a convolution 
accelerator for both convolutional and FC layers. 

In this work, an architecture is proposed to accelerate CNN.  
This proposed architecture relays on parallelism for all kernels in 
the convolutional layer which is flexible for any network size and 
uses extensively local memories to store all the data, these 
proposed techniques correspondingly reduce the performance 
time and the power dissipated in external memory access. Results 
are provided for hardware utilization and power consumption, 
comparing the results with CPU performance. Reducing the 
power consumption by using fixed point operation instead of 
floating point. Applying the pipelining techniques to reduce the 
hardware resources and performance time. 

This paper is organized as follows; Section II provides 
background on CNN. Section III discusses the hardware 
implementation. Section IV shows the hardware utilization 
results after performing the synthesis. Section V discusses the 
pipelining optimization technique and shows the reduction in 
resources. Section VI makes a comparison between the proposed 
hardware architecture and software results. Section VII 
concludes the proposed work and presents the future work. 
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Fig. 1 Convolution operation [4].  

II. BACKGROUND 
CNNs are computational models inspired by the way of the 

human brain. CNNs operation has two phases, training phase and 
inference phase (feed-forward path). In the training phase, the 
CNN is trained on a known data set to learn its weights to 
minimize the error. This work focuses on the feed-forward path 
of a pre-trained CNN. 

 A typical CNN feed-forward path consists of a feature 
extractor and a classifier. The feature extractor extracts an input-
image features across the CNN layers which are; Convolutional 
(Conv), Rectified Linear Unit (ReLU), Pooling (Pool) and Local 
Response Normalization (LRN). Then the feature extractor sends 
these extracted image-features to the classifier which is 
implemented using FC. In order to understand the proposed 
hardware implementation, the CNN detailed layers will be 
discussed in this section, also Alex-Net architecture will be 
discussed, which is one of the state-of-the-art CNN models will 
be presented. 

A. Convolutional layer 
The Conv layer is the core building block of a CNN that does 

most of the computational heavy lifting. It's always the first layer 
in a CNN. The convolution operation is done by applying 
element-wise multiplication and accumulation between input 
feature maps and the weight filters (called also kernels), which 
are the Conv operands obtained from the training phase, then 
sliding these filters over the input feature maps as shown in  . 
Each of these weight filters can be thought of as feature 
identifiers. 

The computation is given in (1), where M is the number of 
output feature maps (number of filters) of size E × E, C is the 
number of channels in Input feature maps, and R × R is the size 
of the Filter. ݐݑ݋ሾ݉ሿሾ݄௢ሿሾݓ௢ሿ ൌ ܾ௜ ൅ ∑ ∑ ∑ ோ௄ೢୀ଴ܰܫ ሾ݅ሿሾ݄௢ ൅ோ௄೓ୀ଴஼௜ୀଵ݇௛ሿሾݓ௢ ൅ ݇௪ሿ ∗   ሾ݉ሿሾ݅ሿሾ݇௛ሿሾ݇௪ሿ                 (1)݈݁݊ݎ݁ܭ

B. Pooling layer 
The Pool layers (also called sub-sampling) reduces the 

dimensionality of each feature map of its input feature maps, but 
retains the most important information. The number of output 
feature maps is identical to that of input feature maps, while the 
dimensions of each feature map scale down according to the size 
of the sub-sampling window (called also kernel). 

C.  Rectified Linear Unit (ReLU) 
The ReLU layer introduces a non-linear operation. The 

ReLU performs after every Conv layer. Its output is given by; 
max (0, input). The purpose of ReLU is to introduce non-
linearity in the CNN after linear operation of convolution, since 
most of the real-world data the network required to learn is non-
linear to generalize or adapt with variety of data 

D. Local Response Normalization (LRN) 
The LRN reduces top-1 and top-5 error rates by 1.4% and 

1.2%, respectively [9]. This sort of response normalization 
implements a form of lateral inhibition inspired by the type found 
in real human neurons. The role of the LRN layer is to normalize 
around the local neighborhood of the excited neuron and make it 
even more sensitive as compared to its neighbors to avoid the 
saturation in network. The normalization functionality is given in 
௜ݐݑ݋ .(2) ൌ ݅݊ሺ௫,௬ሻ௜ ሺ݇൅∝ ∑ ቀ݅݊ሺ௫,௬ሻ௝ ቁଶሻఉ		୫୧୬	ሺேିଵ,௜ା	೙మሻ௝ୀ୫ୟ୶	ሺ଴,௜ି	೙మሻൗ               (2) 

E. Alex-Net 
Alex-Net is one of the state-of-the-art CNN, it won the 2012 

ILSVRC (Image-Net Large-Scale Visual Recognition 
Challenge). It is the first model to achieve top-1 and top-5 error 
rates of 37.5% and 17.0% respectively on the test data of Image-
Net dataset [10], which is an astounding improvement compared 
with the other top models in the context. 

 
III. HARDWARE ARCHITECTURE  

 
      The main purpose is to accelerate the CNN, so the proposed 
architecture relays mainly on parallelism. The parallelism role is 
to reduce the time needed for image classification in Alex-Net 
architecture. In addition, some techniques as pipelining and on 
chip (local) memory usage are used for more acceleration which 
will be discussed in details showing the effect of the all 
techniques on the overall CNN speed.  
In this section, each layer hardware-implementation perspective 
will be discussed in details. 

A. Convolutional layer 

Fig. 2. Alex-Net neural network architecture.

      The Conv layer operations mainly depend on MAC 
operations (multiplication and accumulation) within each 
filter with the input feature maps; these MAC operations 
are done using the smallest basic unit which is the Parallel 
Engine (PE) composed of multiplier and accumulator. 
The parallel execution of the weight filters is done by duplicating 
these PEs, for example for executing the Conv1 layer, 96 PEs are 
used which is equal to the number of the weight filters of Conv1 
layer. The number of parallel PEs can be customized based 
on the compromise between the number of available 
resources on FPGA and the required CNN speed, taking 
into consideration that by increasing the number of PEs the 
speed is much faster. Figure 3 shows the parallel 
structure of PEs used for Conv1 layer,  
 

The  CNN  developed  by  Krizhevsky,  Sutskever,  and 
Hinton in 2012, consists of five Conv layers, some of them are 
followed  by  Pool  layers,  two  LRN  layers,  and  three 
fully-connected layers with a final 1000-way soft-max 
[11].



 

 

 
Fig. 3. Convolutional layer architecture 

each PE is responsible for one weight filter operations as 
discussed before. This parallel structure speeds up the Conv1 
execution by 96 times (number of filters). This will be further 
explained in the results sections showing the time reduction 
resulted from this parallelism. 

B. Pooling layer 
       The Pool layer operations mainly depend on max-pooling 
operations as discussed in Section II, these max-pooling 
operations are done using the smallest basic unit which is a 
parallel engine composed of a comparator and a register. 
The Pool layer hardware is similar to the Conv layer hardware 
from the parallelism technique perspective; the Pool kernels 
across the different input feature maps are executed in parallel. 
The parallel structure of the Pool layer is composed of number of 
parallel PEs equal to the depth of the input to the Pool layer 
where each filter is applied on one depth. The Pool layer 
execution time is negligible compared to the Conv layer 
execution time, subsequently the optimization techniques is 
mainly concerned with reducing the execution time of the Conv 
layer which will be discussed in details in the later sections. 

C. Local response normalization layer 
       As discussed in the Section II, the LRN functionality is 
normalizing around the local neighborhood of the excited neuron 
and makes it even more sensitive as compared to its neighbors. 
This functionality is accomplished by equation (2). 
The hardware implementation proposed as follows:  

• Multiple input caches are needed for LRN Layer as it 
needs to access the whole input feature maps 
simultaneously to be able to implement the summation 
process.  Subsequently the number of input caches in 
this design is equal input feature maps of this LRN 
layer.  

• Getting the denominator result of (2), the summation of 
squares is done by a tree of adders that adds the input 
squares then multiply it by α and add k to the result.  

• Implementing customized combinational fixed-point 
division, the proposed idea is to use two combinational 
integer divisions; the first one calculates the integer part  
and the second calculates the fraction part. In this CNN, 
the divider is always larger than one, so the fixed-point 
division is customized to work properly only when the 
divider is larger than one and any other values won’t act 
properly. Sign bit is considered but actually no need for 
it because the Pool and ReLU output is always positive.  

 
• Output storing technique: the output elements are stored 

in one cache if the following layer is group one Conv 
layer or two caches if the following layer is group two 
Conv layer. 
 

D. Fully connected layer 
       The Alex-Net architecture consists of 2 main parts as 
mentioned in the Background section:  feature extractor which is 
found to be enough for classification but adding a classifier 
improves the network accuracy. This classifier consists of a 
series of FC layers. The FC layer is mainly based on matrix-
vector multiplication, the matrix consists of weights obtained 
from the training phase and the vector is a group of features 
resulting from the feature extractor part in the CNN. Each 
element in the output vector is a weighted sum of the input vector 
that`s why it`s called fully connected. The main idea of the 
proposed design to guarantee accelerating this layer more than 
the software is based on two main techniques: 

• The main idea of parallelism in this layer is using parallel 
engines of the building block which consists of a 
multiplier and accumulator the same as Conv layer 
corresponding to the number of rows of the weights’ 
matrix but due to the large number of rows only part of 
the rows is taken in parallel and after getting the outputs 
corresponding to these rows, other rows are taken. 

• For more speeding up, pipelining is used. In the layer 
design there is a cache for each PE at its weight port and 
only one cache for all the PEs at the output. So, 
pipelining occurs in the weights cache as a weight of a 
certain row is used, it becomes useless so while 
computing the next weight, the weight of the next row 
corresponding to the previous weight is being stored in 
the cache so that the MAC operations of the rows are 
done one after the other without any waste of time 
between each row and the preceding one. 

 
IV. SYNTHESIS 

     After performing the synthesis on the first super layer of the 
design; which consists of (Conv, Pool and LRN layers) on 
Virtex-7 VC709 FPGA using the Vivado 2015.2 synthesis tool, 
Table I shows the utilization of the resources. 
     Discussing some of the results shown in table I, for example, 
Conv1 Layer consists of 96 DSPs corresponding to the number 
of parallel engines which is equal to the depth of this layer as 
discussed before and the DSPs in the Pool and LRN layer are for 
the addressing equations. 

V. PIPELINING 
In order to utilize the un-utilized time between layers and 

reduce the hardware resources, the pipelining technique is 
applied between the Conv and Pool layers. Typically, in Alex-
Net Pool1 parameters are (kernel size=3x3, stride=2). Therefore, 
the Pool layer can start its operation after the first three rows in  

Layer\ Resources DSPs LUTS BRAMs Registers 

Conv1 96 8049 48 5736 

Max Pooling 1 2 8022 192 3226 

Norm 1 7 16897 48 248 

TABLE I 
HARDWARE RESOURCES FOR FIRST SUPER LAYER 



 

 

 

Fig. 4. Execution of convolution and pooling stages in pipelining. 

TABLE II 
COMPARISON BETWEEN HARDWARE RESOURCES AFTER 

PIPELINING 
Point of comparison Original Pipelined design 
Utilization: LUTs 11% 13% 
Utilization: BRAMs 22% 9% 
Power  1.141 W 1.071 W 

 
Conv1 output are completed, that can produce the first row of 
Pool1 output. For the second row of the Pool1 can be executed 
after the fourth and fifth rows of Conv1 are completed.  Fig.4 
shows the pipelining flow in time. After Pool1 generates 
complete row output, Conv1 can over-write its output that would 
reduce the memory storage for the convolution output to store 
only four rows. 

Table II shows that the utilization resources are reduced 
compared to the original design, especially in the BRAMs which 
are decreased from 22% to 9% which is considered a significant 
reduction that saves the area and power. 

 
VI. RESULTS 

The main purpose is to accelerate Alex-Net architecture for 
image classification, the functionality is verified on the RTL with 
reasonable accuracy and the timing results are obtained and 
compared to the MATLAB R2014a execution-time to show how 
much the CNN speed is enhanced. 

Table III shows the execution time of some layers of the 
MATLAB R2014a (CPU) and the one of the accelerated CNN on 
FPGA. It's clear that the bottleneck of the CNN is the Conv 
layer, therefore it is the first design consideration to be 
accelerated as discussed in the previous section.  
      Comparative study to the GPU is summarized in table IV. 
The mentioned results show that the FPGA is faster than the 
CPU but slower than GPU, but it is still preferred over the GPU 
due to the FPGA lower power consumption which is proved by 
estimating the dynamic power consumption of the first three 
layers (Conv-Pool-LRN)using Virtex7 FPGA which is 0.785 
watt and that estimation is reasonable compared to the power 
consumed in [12] which is 7.2 watt for the first ten layers which 
is lower than the power consumed by the GPU as mentioned in 
[13] that Titan X GPU throughput of 3.23 TOP/s comes at a 
relatively high-power cost which is 250 W. 
 

III. CONCLUSION AND FUTURE WORK 
In this paper, the acceleration of the forward path of a pre-

trained Alex-Net on FPGA is demonstrated, introducing the 
parallelism and pipeline techniques used to accelerate the CNN.  

The proposed architecture is discussed in details illustrating 
the achieved high speed and low power performance.  

Future work concerns deeper analysis of particular 
mechanisms, new proposals to try different methods. The 

TABLE III 
SIMULATION TIME OF S/W AND RTL 

Layer MATLAB 
simulation time (in 

Secs) 

FPGA 
virtual simulation time 

Conv1 7.8 11 ms 
Pool1 0.37 65.6 μs 
Norm1 1.83 700 μs 
Conv2 7.9 8.7 ms 
Pool2 0.3 1690 ns 
Norm2 1 432.64 μs 

 TABLE IV  
SIMULATION TIME OF Alex-Net ON DIFFERENT GPUs 

  
next step is to compromise between the time required for the 

image prediction and the number of resources. In addition, some 
techniques can be used to reduce the power consumption as 
pruning and partial dynamic reconfiguration (PDR). 
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Hardware-Accelerator Execution time (ms)(Forward path) 

Proposed Architecture 40.94 
Pascal Titan X 5.32 

GTX 1080 7.00 
Maxwell Titan X 7.09 


