

Accelerating Deep Neural Networks Using FPGA
Esraa Adel1, Rana Magdy1, Sara Mohamed1, Mona Mamdouh1, Eman El Mandouh2, and Hassan Mostafa1, 3

1Electronics and Electrical Communications Engineering Department, Cairo University, Giza, Egypt
 2Mentor Graphics Corporation

3Nanotechnolgy Department at Zewail City of Science and Technology, Giza, Egypt
Emails: esraaa_adel17@yahoo.com, Sara_AbdAlWahab@mentor.com, rana.omran95@eng-st.cu.edu.eg, mona.mamdouh@hotmail.com,

eman_mandouh@mentor.com, hmostafa@uwaterloo.ca

Abstract— Deep Convolutional Neural Networks (CNNs) are
the state-of-the-art systems for image classification and scene
understating. They are widely used for their superior accuracy but
at the cost of high computational complexity. The target in this field
nowadays is its acceleration to be used in real time applications. The
solution is to use Graphics Processing Units (GPU) but many
problems arise due to the GPU high-power consumption which
prevents its utilization in daily-used equipment. The Field
Programmable Gate Array (FPGA) is a new solution for CNN
implementations due to its low power consumption and flexible
architecture. This work discusses this problem and provides a
solution that compromises between the speed of the CNN and the
power consumption of the FPGA. This solution depends on two
main techniques for speeding up: parallelism of layers resources
and pipelining inside some layers

Index Terms—Convolutional Neural Networks (CNNs); Alex-
Net; Accelerating CNNs; FPGA; Virtex7.

I. INTRODUCTION

N recent years, artificial intelligence and deep learning have
shown their utility and effectiveness in solving many real-

world problems. The main motivation is to eliminate the need of
direct programming and create an intelligent system that can
automatically adapt to new situations. Among various deep
learning algorithms, CNNs are the state-of-the-art in computer
vision problems such as face recognition [1], and autonomous
driving [2].

While CNNs have significant higher accuracies than
traditional algorithms, they require huge amounts of
computational resources and memory access due to the
convolution-operation large number of parameters, which
represents a computational challenge for the General-Purpose
Processors (CPUs) and consumes large amount of power.
Recently many applications such as embedded systems in self-
driving cars need high energy efficiency and real-time
performance. As a result, hardware accelerators such as GPU,
FPGA, and Application Specific Integrated Circuits (ASIC),
have been utilized to improve the throughput of the CNN.

As CNNs offer significant potential for massive
parallelization and extensive data reuse, therefore GPUs are the
most widely used platforms to improve both training and
classification processes of CNNs [3], thanks to their high
throughput and memory bandwidth. However, GPUs consume a
considerable amount of power which is another important
performance evaluation metric in the modern digital systems.

ASIC design, on the other hand, has achieved high
throughput with low power consumption [4], [5], but the
development time and cost are significantly high compared to
other solutions. Recently the new generation of FPGA increases
the capacity of hardware resources continuously, which provides
thousands floating-point computing units and low power
consumption. Therefore, FPGA-based accelerators are efficient
alternatives that provide high throughput, low power
consumption, and configurability at a reasonable cost.

Many approaches have been used to implement CNN on
FPGA. The authors of [6] provide a comparison between GPU
and FPGA for DNNs. They propose a detailed case study on
accelerating Ternary Res-Net, the results are very promising;
Stratix 10 performance is 10%, 50% and 5.4x better in
performance (TOP/sec) than Titan X Pascal GPU, results
indicate that FPGAs may become the platform of choice for
accelerating DNNs. The work in [4] propose an energy-efficient
dataflow called row stationary, which aims to maximize the reuse
and accumulation at the local memory level (RF or caches) for
all types of data (weights, pixels and partial sums). The work in
[7] transforms a convolutional layer into a regular matrix-
multiplication (MM) in the Fully Connected (FC) layer, and
implements an MM-like accelerator for both layers. The other
work in [8] takes an opposite approach: it transforms a regular
MM into a convolution, and implements a convolution
accelerator for both convolutional and FC layers.

In this work, an architecture is proposed to accelerate CNN.
This proposed architecture relays on parallelism for all kernels in
the convolutional layer which is flexible for any network size and
uses extensively local memories to store all the data, these
proposed techniques correspondingly reduce the performance
time and the power dissipated in external memory access. Results
are provided for hardware utilization and power consumption,
comparing the results with CPU performance. Reducing the
power consumption by using fixed point operation instead of
floating point. Applying the pipelining techniques to reduce the
hardware resources and performance time.

This paper is organized as follows; Section II provides
background on CNN. Section III discusses the hardware
implementation. Section IV shows the hardware utilization
results after performing the synthesis. Section V discusses the
pipelining optimization technique and shows the reduction in
resources. Section VI makes a comparison between the proposed
hardware architecture and software results. Section VII
concludes the proposed work and presents the future work.

I

Fig. 1 Convolution operation [4].

II. BACKGROUND
CNNs are computational models inspired by the way of the

human brain. CNNs operation has two phases, training phase and
inference phase (feed-forward path). In the training phase, the
CNN is trained on a known data set to learn its weights to
minimize the error. This work focuses on the feed-forward path
of a pre-trained CNN.

 A typical CNN feed-forward path consists of a feature
extractor and a classifier. The feature extractor extracts an input-
image features across the CNN layers which are; Convolutional
(Conv), Rectified Linear Unit (ReLU), Pooling (Pool) and Local
Response Normalization (LRN). Then the feature extractor sends
these extracted image-features to the classifier which is
implemented using FC. In order to understand the proposed
hardware implementation, the CNN detailed layers will be
discussed in this section, also Alex-Net architecture will be
discussed, which is one of the state-of-the-art CNN models will
be presented.

A. Convolutional layer
The Conv layer is the core building block of a CNN that does

most of the computational heavy lifting. It's always the first layer
in a CNN. The convolution operation is done by applying
element-wise multiplication and accumulation between input
feature maps and the weight filters (called also kernels), which
are the Conv operands obtained from the training phase, then
sliding these filters over the input feature maps as shown in .
Each of these weight filters can be thought of as feature
identifiers.

The computation is given in (1), where M is the number of
output feature maps (number of filters) of size E × E, C is the
number of channels in Input feature maps, and R × R is the size
of the Filter. ݐݑ݋ሾ݉ሿሾ݄௢ሿሾݓ௢ሿ ൌ ܾ௜ ൅ ∑ ∑ ∑ ோ௄ೢୀ଴ܰܫ ሾ݅ሿሾ݄௢ ൅ோ௄೓ୀ଴஼௜ୀଵ݇௛ሿሾݓ௢ ൅ ݇௪ሿ ∗ ሾ݉ሿሾ݅ሿሾ݇௛ሿሾ݇௪ሿ (1)݈݁݊ݎ݁ܭ

B. Pooling layer
The Pool layers (also called sub-sampling) reduces the

dimensionality of each feature map of its input feature maps, but
retains the most important information. The number of output
feature maps is identical to that of input feature maps, while the
dimensions of each feature map scale down according to the size
of the sub-sampling window (called also kernel).

C. Rectified Linear Unit (ReLU)
The ReLU layer introduces a non-linear operation. The

ReLU performs after every Conv layer. Its output is given by;
max (0, input). The purpose of ReLU is to introduce non-
linearity in the CNN after linear operation of convolution, since
most of the real-world data the network required to learn is non-
linear to generalize or adapt with variety of data

D. Local Response Normalization (LRN)
The LRN reduces top-1 and top-5 error rates by 1.4% and

1.2%, respectively [9]. This sort of response normalization
implements a form of lateral inhibition inspired by the type found
in real human neurons. The role of the LRN layer is to normalize
around the local neighborhood of the excited neuron and make it
even more sensitive as compared to its neighbors to avoid the
saturation in network. The normalization functionality is given in
௜ݐݑ݋ .(2) ൌ ݅݊ሺ௫,௬ሻ௜ ሺ݇൅∝ ∑ ቀ݅݊ሺ௫,௬ሻ௝ ቁଶሻఉ		୫୧୬	ሺேିଵ,௜ା	೙మሻ௝ୀ୫ୟ୶	ሺ଴,௜ି	೙మሻൗ (2)

E. Alex-Net
Alex-Net is one of the state-of-the-art CNN, it won the 2012

ILSVRC (Image-Net Large-Scale Visual Recognition
Challenge). It is the first model to achieve top-1 and top-5 error
rates of 37.5% and 17.0% respectively on the test data of Image-
Net dataset [10], which is an astounding improvement compared
with the other top models in the context.

III. HARDWARE ARCHITECTURE

 The main purpose is to accelerate the CNN, so the proposed
architecture relays mainly on parallelism. The parallelism role is
to reduce the time needed for image classification in Alex-Net
architecture. In addition, some techniques as pipelining and on
chip (local) memory usage are used for more acceleration which
will be discussed in details showing the effect of the all
techniques on the overall CNN speed.
In this section, each layer hardware-implementation perspective
will be discussed in details.

A. Convolutional layer

Fig. 2. Alex-Net neural network architecture.

 The Conv layer operations mainly depend on MAC
operations (multiplication and accumulation) within each
filter with the input feature maps; these MAC operations
are done using the smallest basic unit which is the Parallel
Engine (PE) composed of multiplier and accumulator.
The parallel execution of the weight filters is done by duplicating
these PEs, for example for executing the Conv1 layer, 96 PEs are
used which is equal to the number of the weight filters of Conv1
layer. The number of parallel PEs can be customized based
on the compromise between the number of available
resources on FPGA and the required CNN speed, taking
into consideration that by increasing the number of PEs the
speed is much faster. Figure 3 shows the parallel
structure of PEs used for Conv1 layer,

The CNN developed by Krizhevsky, Sutskever, and
Hinton in 2012, consists of five Conv layers, some of them are
followed by Pool layers, two LRN layers, and three
fully-connected layers with a final 1000-way soft-max
[11].

Fig. 3. Convolutional layer architecture

each PE is responsible for one weight filter operations as
discussed before. This parallel structure speeds up the Conv1
execution by 96 times (number of filters). This will be further
explained in the results sections showing the time reduction
resulted from this parallelism.

B. Pooling layer
 The Pool layer operations mainly depend on max-pooling
operations as discussed in Section II, these max-pooling
operations are done using the smallest basic unit which is a
parallel engine composed of a comparator and a register.
The Pool layer hardware is similar to the Conv layer hardware
from the parallelism technique perspective; the Pool kernels
across the different input feature maps are executed in parallel.
The parallel structure of the Pool layer is composed of number of
parallel PEs equal to the depth of the input to the Pool layer
where each filter is applied on one depth. The Pool layer
execution time is negligible compared to the Conv layer
execution time, subsequently the optimization techniques is
mainly concerned with reducing the execution time of the Conv
layer which will be discussed in details in the later sections.

C. Local response normalization layer
 As discussed in the Section II, the LRN functionality is
normalizing around the local neighborhood of the excited neuron
and makes it even more sensitive as compared to its neighbors.
This functionality is accomplished by equation (2).
The hardware implementation proposed as follows:

• Multiple input caches are needed for LRN Layer as it
needs to access the whole input feature maps
simultaneously to be able to implement the summation
process. Subsequently the number of input caches in
this design is equal input feature maps of this LRN
layer.

• Getting the denominator result of (2), the summation of
squares is done by a tree of adders that adds the input
squares then multiply it by α and add k to the result.

• Implementing customized combinational fixed-point
division, the proposed idea is to use two combinational
integer divisions; the first one calculates the integer part
and the second calculates the fraction part. In this CNN,
the divider is always larger than one, so the fixed-point
division is customized to work properly only when the
divider is larger than one and any other values won’t act
properly. Sign bit is considered but actually no need for
it because the Pool and ReLU output is always positive.

• Output storing technique: the output elements are stored

in one cache if the following layer is group one Conv
layer or two caches if the following layer is group two
Conv layer.

D. Fully connected layer
 The Alex-Net architecture consists of 2 main parts as
mentioned in the Background section: feature extractor which is
found to be enough for classification but adding a classifier
improves the network accuracy. This classifier consists of a
series of FC layers. The FC layer is mainly based on matrix-
vector multiplication, the matrix consists of weights obtained
from the training phase and the vector is a group of features
resulting from the feature extractor part in the CNN. Each
element in the output vector is a weighted sum of the input vector
that`s why it`s called fully connected. The main idea of the
proposed design to guarantee accelerating this layer more than
the software is based on two main techniques:

• The main idea of parallelism in this layer is using parallel
engines of the building block which consists of a
multiplier and accumulator the same as Conv layer
corresponding to the number of rows of the weights’
matrix but due to the large number of rows only part of
the rows is taken in parallel and after getting the outputs
corresponding to these rows, other rows are taken.

• For more speeding up, pipelining is used. In the layer
design there is a cache for each PE at its weight port and
only one cache for all the PEs at the output. So,
pipelining occurs in the weights cache as a weight of a
certain row is used, it becomes useless so while
computing the next weight, the weight of the next row
corresponding to the previous weight is being stored in
the cache so that the MAC operations of the rows are
done one after the other without any waste of time
between each row and the preceding one.

IV. SYNTHESIS

 After performing the synthesis on the first super layer of the
design; which consists of (Conv, Pool and LRN layers) on
Virtex-7 VC709 FPGA using the Vivado 2015.2 synthesis tool,
Table I shows the utilization of the resources.
 Discussing some of the results shown in table I, for example,
Conv1 Layer consists of 96 DSPs corresponding to the number
of parallel engines which is equal to the depth of this layer as
discussed before and the DSPs in the Pool and LRN layer are for
the addressing equations.

V. PIPELINING
In order to utilize the un-utilized time between layers and

reduce the hardware resources, the pipelining technique is
applied between the Conv and Pool layers. Typically, in Alex-
Net Pool1 parameters are (kernel size=3x3, stride=2). Therefore,
the Pool layer can start its operation after the first three rows in

Layer\ Resources DSPs LUTS BRAMs Registers

Conv1 96 8049 48 5736

Max Pooling 1 2 8022 192 3226

Norm 1 7 16897 48 248

TABLE I
HARDWARE RESOURCES FOR FIRST SUPER LAYER

Fig. 4. Execution of convolution and pooling stages in pipelining.

TABLE II
COMPARISON BETWEEN HARDWARE RESOURCES AFTER

PIPELINING
Point of comparison Original Pipelined design
Utilization: LUTs 11% 13%
Utilization: BRAMs 22% 9%
Power 1.141 W 1.071 W

Conv1 output are completed, that can produce the first row of
Pool1 output. For the second row of the Pool1 can be executed
after the fourth and fifth rows of Conv1 are completed. Fig.4
shows the pipelining flow in time. After Pool1 generates
complete row output, Conv1 can over-write its output that would
reduce the memory storage for the convolution output to store
only four rows.

Table II shows that the utilization resources are reduced
compared to the original design, especially in the BRAMs which
are decreased from 22% to 9% which is considered a significant
reduction that saves the area and power.

VI. RESULTS

The main purpose is to accelerate Alex-Net architecture for
image classification, the functionality is verified on the RTL with
reasonable accuracy and the timing results are obtained and
compared to the MATLAB R2014a execution-time to show how
much the CNN speed is enhanced.

Table III shows the execution time of some layers of the
MATLAB R2014a (CPU) and the one of the accelerated CNN on
FPGA. It's clear that the bottleneck of the CNN is the Conv
layer, therefore it is the first design consideration to be
accelerated as discussed in the previous section.
 Comparative study to the GPU is summarized in table IV.
The mentioned results show that the FPGA is faster than the
CPU but slower than GPU, but it is still preferred over the GPU
due to the FPGA lower power consumption which is proved by
estimating the dynamic power consumption of the first three
layers (Conv-Pool-LRN)using Virtex7 FPGA which is 0.785
watt and that estimation is reasonable compared to the power
consumed in [12] which is 7.2 watt for the first ten layers which
is lower than the power consumed by the GPU as mentioned in
[13] that Titan X GPU throughput of 3.23 TOP/s comes at a
relatively high-power cost which is 250 W.

III. CONCLUSION AND FUTURE WORK
In this paper, the acceleration of the forward path of a pre-

trained Alex-Net on FPGA is demonstrated, introducing the
parallelism and pipeline techniques used to accelerate the CNN.

The proposed architecture is discussed in details illustrating
the achieved high speed and low power performance.

Future work concerns deeper analysis of particular
mechanisms, new proposals to try different methods. The

TABLE III
SIMULATION TIME OF S/W AND RTL

Layer MATLAB
simulation time (in

Secs)

FPGA
virtual simulation time

Conv1 7.8 11 ms
Pool1 0.37 65.6 μs
Norm1 1.83 700 μs
Conv2 7.9 8.7 ms
Pool2 0.3 1690 ns
Norm2 1 432.64 μs

 TABLE IV
SIMULATION TIME OF Alex-Net ON DIFFERENT GPUs

next step is to compromise between the time required for the

image prediction and the number of resources. In addition, some
techniques can be used to reduce the power consumption as
pruning and partial dynamic reconfiguration (PDR).

ACKNOWLEDGMENT

This work was partially funded by Mentor Graphics and ONE
Lab at Zewail City of Science and Technology, Egypt and Cairo
University, Egypt.

REFERENCES
[1] M. Coşkun, A. Uçar, Ö. Yildirim and Y. Demir, “Face recognition based on

convolutional neural network,” in MEES, 2017.

[2] Z. Chen and X. Huang, “End-to-end learning for lane keeping of self-
driving cars,” in IVS, 2017.

[3] V. Sze et al., “Efficient Processing of Deep Neural Networks: A Tutorial
and Survey,” arXiv preprint arXiv:1703.09039, 2017.

[4] Y. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss : An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks,” in
ISSCC, 2016.

[5] A. Elnabawy, H. Abdelmohsen, M. Moustafa, M. Elbediwy, A. Helmy, and
H. Mostafa, “A Low Power CORDIC-Based Hardware Implementation of
Izhikevich Neuron Model,” in IEEE International NEWCAS, 2018.

[6] E. Nurvitadhi et al., “Can FPGAs Beat GPUs in Accelerating Next-
Generation Deep Neural Networks,” in ISFPGA, 2017.

[7] N. Suda et al., “Throughput-optimized opencl-based fpga accelerator for
largescale convolutional neural networks,” in FPGA. ACM, 2016. [Online].
Available: http://www.mit.edu/~wsshin/maxwellfdfd.html. [Accessed Nov.
14, 2017].

[8] K. J. Qiu et al., “Going deeper with embedded fpga platform for convolutional
neural network,” in FPGA. ACM, 2016.

[9] A. Beam, “Deep Learning 101 - Part 1: History and Background, ” Feburary ,
2017. [Online]. Available:
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.
html. [Accessed Sept. 12, 2017].

[10] A. Krizhevsky, “ImageNet Classification with Deep Convolutional Neural
Networks, ” 2015. [Online]. Available:
https://www.coursehero.com/file/24481166/alexnet-tugcekyungheepdf/.
[Accessed Nov. 14, 2017].

[11] A. Krizhevsky, I. Sutskever and G. Hinton, “ImageNet classification with deep
convolutional neural networks,” in NPIS, 2012.

[12] Y. Kang, S. Kim, T. Shin and J. Chung, “Running Convolutional Layers of
AlexNet in Neuromorphic Computing System,” NRF-2014R1A1A2A16055253.

[13] P. Matthias Gysel, “Ristretto: Hardware-Oriented Approximation of
Convolutional Neural Networks,” B.S. thesis, Bern University of Applied
Sciences ,Switzerland, 2012.

Hardware-Accelerator Execution time (ms)(Forward path)

Proposed Architecture 40.94
Pascal Titan X 5.32

GTX 1080 7.00
Maxwell Titan X 7.09

