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Abstract

System-on-Chip (SoC) designs are among the most widely used designs to
implement computationally data-intensive applications, which are consist of several
Processing Elements (PEs) and storage elements (SEs) communicating together through
the aid of a network architecture. However, several Intellectual Properties (IPs) are
implemented on a single chip due to the recent developments in the fabrication process
of CMOS devices.

Meanwhile, Field Programmable Gate Arrays (FPGAS) are attracting more interest
to exploit SoC designs due to the constraints of Application-Specific Integrated Circuits
(ASICs) such as high Non-Recurring Engineering (NRE) cost and time to market.
Recently, the number of PEs is increasing to maximise functionalities and capabilities of
modern SoC designs. Accordingly, communication among those PEs becomes an
essential factor in the design of large-scale systems. Consequently, numerous challenges
of the communication amongst those PEs, while configured on FPGAs, are raised and
thus, innovative solutions are needed. Therefore, Network-on-Chip (NoC) has been
adopted for FPGA to address these communication challenges.

On the other hand, Dynamic Partial Reconfiguration (DPR) of SRAM- based FPGAs
becomes a remarkable feature for many applications, as DPR represents the potential to
add more flexibility during runtime. Moreover, adding the DPR feature to many
applications is easier than before because of the recent developments FPGA’s software
designing tools such as Quartus for Intel (previously Altera) and ISE for Xilinx. On the
contrary, DPR configuration technique such as Internal Configuration Access Port
(ICAP) and Joint Test Action Group (JTAG) port, encounters a performance limitation
because only one reconfiguration is permitted at a time.

In this thesis, a state-of-art NoC-based FPGA simulator is proposed, which supports
DPR simulation. NoC-DPR simulator is used to estimate design limitations and
performance degradations of using DPR for NoC-based FPGA. NoC-DPR simulator
measures the reconfiguration time overhead, which caused by network’s latency, and the
concurrent reconfigurations on FPGA fabric. It is proven that the overhead of
reconfiguration time increases exponentially with increasing the number of concurrent
reconfigurations. However, further investigations show that the network of wormhole
routers with virtual channels optimises the reconfiguration time with a factor up to 4x
compared to the network of wormhole routers without virtual channels. Finally, a case
study is introduced to clarify the DPR performance gap between NoC-based FPGASs and
conventional FPGAs.



Chapter 1 : Introduction

This Chapter presents a short introduction to the importance of studying the impact
of using the NoC approach on the DPR performance of FPGAs. Section 1.1 shows the
motivation behind this research. In Section 1.2, the main thesis contributions are
discussed. Section 1.3 provides the thesis outline and organization.

1.1. Motivation

The recent developments in a wide range of applications such as image and video
signal processing, Software Defined Radio (SDR), and electronic measurement
applications have led to adding more flexibility over runtime using software parameters
or hardware reconfiguration, which increase the lifetime of the application. Therefore,
reconfigurable devices such as FPGA offer a suitable approach over the traditional ASIC
approach for these applications.

In addition to the significant advancements in FPGA’s essential resources, most of
the manufacturers are adding hard and soft blocks to the new FPGA fabric besides the
essential logic elements, such as memories, processors, ALUs and Digital Signal
Processing (DSP) blocks. Hence, FPGA has been commonly used over ASIC due to the
enhancements in the performance of FPGA compare to ASIC, the fast time to market,
the facile upgrading, and the low implementation cost.

Additionally, DPR is increasingly used for a variety of applications mapped on
SRAM-based FPGAs technology to enforce the flexibility over runtime phase [ 1].
Furthermore, Partially Reconfigurable (PR) devices save chip area by programming only
the necessary physical resources (such as LUTSs, IP, and embedded blocks) in each
corresponding execution phase. Accordingly, power is saved by programming just the
needed blocks, which allows for static leakage reduction.

On the other hand, the system complexity increases because of the current
developments in chip scaling process. Additionally, designs’ layouts are developed from
plain circuit layout into complex heterogeneous structures. Accordingly, the number of
processing elements and the processing power have elevated; hence, data-intensive
applications have materialized.

Thus, the challenge of the communication between those cores, when configured on
FPGAs, has been triggered. Accordingly, Network-on-Chip (NoC) is considered as an
effective alternative to traditional bus-based system-on-chip for FPGASs, which
complicates the design process and reduces systems scalability and flexibility, to handle
these communication challenges. FPGAs adopt freely the NoC solution [ 2], where
FPGA'’s Configuration Logic Blocks (CLBs) are considered as computing cores (or PES).
CLBs are the basic logic blocks used to build any logic function. These cores use the
hardwired network of routers (NoC) to communicate with each other. Consequently,
those PEs can be dynamically reconfigured to adopt a new logic at the run-time without
any change neither in network structure nor the other PEs.

Regardless of this increasing interest in both concepts, NoC and DPR, several
researchers have focused on each concept individually rather than merging them.

Therefore, a tool called NoC-DPR, a cycle-accurate simulator for NoCs that supports
DPR, is developed to investigate the impact of different network’s parameters on DPR
performance. The DPR performance is measured by the reconfiguration time. The



principal character of NoC-DPR simulator is foreseeing the dynamic behaviour of the
NoC-based system before synthesis for the target architecture by estimating the suitable
network size, area of each processing element, number of simultaneous reconfiguration
process, and the target reconfiguration time.

1.2. Contribution

This work includes the following contributions:

* A comparative review of DPR techniques for the conventional FPGA such as ICAP
and JTAG of Xilinx FPGA.

» Comparing several open-source NoC simulators to analyze the behaviour of the
NoC by varying network parameters. Choosing the best match with an open-source
library called ReChannel that simulates dynamic reconfiguration.

» Integrating NoCTweak with ReChannel library and evaluating the modification of
network interface on the simulator and network performance.

» Using a state-of-art NoC-based FPGA simulator, which supports DPR simulation
to measure the impact of varying network parameters such as network size, injection rate,
buffer size, and different router types on DPR performance. In addition to that, NoC-
DPR estimates the effect of simultaneous reconfiguration on the network’s performance
and reconfiguration time.

* Introducing two case studies, synthetic and embedded application, to compare
between the conventional SRAM-based FPGA and the next-generation NoC-based
FPGA performance of DPR.

1.3. Organization of the Thesis

To have an overview of the impact of NoC-based FPGAs on DPR performance at
next-generation FPGAs, studying DPR at conventional SRAM-based FPGA plays an
important role to have a clear overview. Hence, an introduction to SRAM-based FPGA
and different configuration techniques, are illustrated in Chapter 2 along with NoC’s
background, structures, and the available NoC simulator. Chapter 3 provides a detailed
survey and comparison between the different techniques of DPR on Xilinx FPGA.
Chapter 4 presents the modifications in the NoCTweak simulator to support NoC-based
FPGA simulation, which supports DPR simulation, along with a comparison of the NoC-
DPR performance to NoCTweak simulator performance.

Since NoC design parameters such as (router type, virtual channel numbers, etc...)
are the prominent factors that have a direct impact on the reconfiguration time, Chapter
5 presents the work done to study the reconfiguration time overhead. That is resulted in
increasing simultaneous configurations on FPGA fabric using synthetic and embedded
applications. The conclusion and the potential future work are discussed in the last
Section.

Finally, Appendix A shows all options of NoC-DPR simulator, while Appendix B
gives a detailed description of some created modules used for integration DPR simulation
library.



Chapter 2 : Background

This chapter is organized as follows: Section 2.1 discusses the architecture of FPGA
regarding logic and routing resources. Section 2.2 discusses the DPR definition, benefits,
and techniques. NoC concepts are outlined in Section 2.3, while the simulation
background is introduced in Section 2.4 and 2.5. Finally, the related work is discussed in
Section 2.6.

2.1. FPGA Technologies

First, the logic block cells and the routing blocks of FPGAs are discussed, then a
detailed architecture of DPR is presented, because DPR should not be addressed without
having a background of the underlying FPGA architecture.

2.1.1. FPGA versus ASIC

FPGA is composed of a set of CLBs linked through a configurable interconnection
network. Starting from the year 2000, FPGA features have scaled down from 130 nm to
20 nm as illustrated in Figure 2-1 for Virtex and Stratix FPGA family of Xilinx and Intel
(Formerly Altera) Companies respectively, the most popular manufactures of FPGAs.
Consequently, the logic density, the Lookup Tables (LUTs) of FPGA chip, has elevated
by approximately 2000% over these years [3]. Moreover, the design of ASIC’s layout
becomes an extra complex challenge, and it takes a longer time to market and high Non-
Recurring Engineering (NRE) cost; thus, the designers are motivated to use FPGAs for
SoC implementations.
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Figure 2-1: Device capacity regarding look-up tables of the Altera Stratix and
Xilinx Virtex series FPGAs over the last decade [3]



2.1.2. FPGA architecture

The CLB is the main basic block of FPGA, which is responsible for implementing
any logic function by using an N-input LUT. When the LUTs are programmed with a
configuration data from the configuration plane as depicted in Figure 2-2, LUTs may
represent any logic function up to N-inputs. This ability plays an essential role in building
any desired logic function. Additionally, the data routing from Input-Output Block (I0B)
to the logic block, through Switch Box, is used to build more complex blocks of the target
function.

In the most recent FPGA architectures [5-15] the routing switches are distributed as
a sea of routing resources, while the islands are the CLBs as illustrated in Figure 2-2(a).
Accordingly, these boxes permit the communication easily along the rows and columns
of CLBs. The CLBs are surrounding by the connection blocks, which attach the input
and output signals to the routing switches. The switch boxes connect between the
horizontal and vertical logic blocks. In this way, any arbitrary interconnections can be
provided between the CLBs.

Note also the ports of configuration are shown in Figure 2-2, such as Joint Test
Action Group (JTAG), SelectMap (SMAP), and Internal Configuration Access Port
(ICAP). They are discussed in details in Chapter 3.
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Figure 2-2: The Internal architecture of FPGA with two planes: (a) Logic plane,
and (b) Test and Configuration plane [3]



2.1.3. Heterogeneous Arrays

As the technology node of Integrated Circuit (IC) layout downscales, more
computing cores are implemented on the same dice area. Hence, the manufactures of
FPGA provide a heterogeneous structure to improve the performance and versatility in
computation. Consequently, the building blocks of FPGAs are not a set of switches boxes
and CLBs anymore. The modern FPGA architectures also conduct hardwired blocks.
Figure 2-3 highlights the evolution for Xilinx FPGA family, Virtex, over the last two
decades.

The hard IP blocks such as RAMs, DSP, Digital Clock Managers (DCMs),
Microprocessors, transceivers, and PCI Interfaces have been added to the Virtex families
[6, 8, and 15]. In the conventional FPGA architectures, application IPs are implemented
using the hardwired IPs or built using LUTSs, are called soft implementation. However,
the inter-IP communication architecture (i.e., NoC), which handle the communication
between modules, is soft IP.

The next generation of FPGAs are discussed in this thesis, which are NoC-based
FPGA platform. The new FPGAs have hardwired intercommunication modules of NoC.
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Figure 2-3: FPGA Virtex Family Architectural Evolution over the Years [5-15].



2.2. Dynamic Partial Reconfiguration.

PR is an act of reconfiguring a section of an FPGA after its preliminary
configuration. Partial reconfiguration is classified into two types: DPR and Static Partial
Reconfiguration. Static partial reconfiguration allows reconfiguration while the device is
non-active. In DPR, the device is partially reconfigured while the rest of FPGA is still
operating.

2.2.1. Reconfigurable Models

The configuration schemes that are used with reconfigurable systems as illustrated
in Figure 2-4, are divided into (a) Single Context, (b) Multi-context and (c) Partially
Reconfigurable [17]. The preliminary FPGA structures was a single context, where only
a full configuration is allowed. However, this style was found limiting the
implementation for run-time reconfiguration. In the recent years, Multi-Context
Reconfiguration and DPR have been introduced to add more flexibility to FPGA designs.

2.2.1.1. Single Context

In the early FPGAs, all CLBs were programmed using a single bitstream of
configuration information each time. That is because only entire FPGA access is allowed.
Therefore, any required change to a certain CLB requires a complete reprogramming of
the whole chip as illustrated in Figure 2-4(a). Moreover, the single context configuration
simplifies the external reconfiguration process; it introduces a high configuration time
overhead. Therefore, this mode is more acceptable for applications that do not require
run-time reconfiguration.

a) Single Context b) Multi - Context c) Partially Reconfigurable
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Reconfiguration Before Reconfiguration
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Figure 2-4: Different reconfiguration models: (a) Single Context, (b) Multi-
Context, and (c) Partially Reconfigurable [17]



2.2.1.2. Multi-Context

A Multi-context FPGA consists of various configuration memory bits per
programming bit place. Those memory bits are considered as Multi-Context of
configuration, as shown in Figure 2-4(b). An example of multi-context FPGA is Tabula
[4], which is a time-multiplexed FPGA. Hence, one plane of configuration is activated at
a time. However, the FPGA switches between several configuration planes or contexts.

In this way, the multi-context FPGA is regarded as a multiplexed planes of a single
device, which needs a full reconfiguration to perform any modification as detailed in
Figure 2-5. Therefore, instead of having a single 16-adder as shown in Figure 2-5(a), it
is divided into four 4-bit adders as shown in Figure 2-5(b) and cycle over the four
configurations using time multiplexed configuration SRAM cell. Furthermore, this
category of FPGAs has generally required a complicated storage technique, a multiplexed
configuration SRAM cell, as shown in Figure 2-5(d). Moreover, time-multiplexed FPGA
is considered non-suitable for many applications due to performance degradation as a
result of reconfiguration time overhead.
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2.2.1.3. Partially Reconfigurable

PR of the FPGA is required if a section of the configuration needs alteration. In the
modern FPGA, the programming plane is similar to the RAM device. The target section
of the configuration data is accessed by addresses, which permits the reconfiguration of
only the required part of the FPGA.

Due to the fact that any part of the FPGA can be reconfigured, the full programming
of FPGA is not necessitated. Moreover, several applications demand to reprogram part
of the configured logic, while the remaining blocks are not changed, as shown in Figure
2-4(c).

Hence, the address information is provided with the bitstream file; the configuration
data might be more significant than the corresponding bitstream file size of the single
context. Consequently, data overhead is examined, and full reconfiguration consumes
significant time compared to the single context. Moreover, a partially reconfigurable
design is optimally used when the reconfiguration data is less significant compared to the
total design.

2.2.2. Benefits of using Dynamic Partial Reconfiguration
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Figure 2-6: DPR saves FPGA’s area [19]

The most beneficial advantage of DPR is that it provides more flexibility to the
hardware designs. DPR allows the implementation of elaborated circuits within an
affordable area and reduces static power consumption. Thus, DPR innovates the concept
of virtual hardware [1], which is similar to virtual memory. Therefore, the contexts are
mapped and reconfigured on the physical FPGA as they are cited.

DPR is used in applications that require a high level of flexibility like SDR and some
embedded FPGA applications; video processing, cryptography, and genomic sequence
alignment. DPR also has an essential role in implementing adaptive hardware algorithms
and improving FPGA fault tolerance [2].

The DPR could be implemented to minimize the size of used resources on the FPGA,
and it's entire power consumption as illustrated in Figure 2-6. DPR enables designers to
achieve capability bigger than the physical capability of the FPGA. Furthermore, DPR
offers other positive aspects [20]:

e Task speed: As the constraints of the component size is solved by using
DPR, any design is accelerated by dividing it into smaller blocks and
mapping them individually on FPGA.



e Power and area reduction: Since the rarely used functions is swapped out
of the FPGA, smaller FPGAs are used. Hence, the power consumption and
the permanently logic which implements the unused functions are extracted.

e Behaviour change: The design is reconfigured for a different function
without stopping its operation, for example SDR applications.

e Hardware virtualization: DPR enables managing a collection of hardware
components as a library by having more hardware available than that
physically existing in the FPGA.
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Figure 2-7: Evolution of DPR support of Xilinx FPGA and software [19]

Despite these advantages, DPR is attracting considerable interest lately due to the
complicated design flow, and the lack of supporting software tools in the early stages.
Consequently, the most known FPGA vendor who supports DPR in their FPGAs and the
associated software is Xilinx. The evolution of their software products from complete
design suite ISE for Virtex 4, 5 and 6 to VIVADO design editor is shown in Figure 2-7.
A separate license is required to support DPR designs for Virtex, Kintex and Zynqg
UltraSCALE and UltraSCALE™ FPGAs, which indicate that the DPR becomes a vital
feature. Nevertheless, DPR adds more complexity to the system design. Consequently,
system designers have to gain more understanding of the target device structure, the
floor-planning, and identifying reconfigurable regions manually.



2.3. Network on Chip

NoC is the communication medium that is responsible for connecting the PEs
through the routers. PEs are composed of logic and memory blocks.

2.3.1. Interconnection challenge

The conventional FPGA is viewed as a network of processors, compared to the
multiprocessor system, where the CLBs are the processing elements. However, the
conventional FPGA differs from the multiprocessor system. The conventional FPGAS
have single bit processing elements and instruction control, as they are configurable with
a single instruction bit per processing element.

Within the conventional FPGA layout, the PEs are disturbed in an array on the
FPGA’s underlying plane. However, the interconnection dominates the FPGA’s area in
conventional devices as shown in Figure 2-8, which represents each size of component
such as interconnect, PE, and configuration memory theoretically. Since full connectivity
would grow in complexity as 0(n?), most FPGA’s manufacturers use some advanced
connection schemes to minimizing the usage of interconnects’ resources [16].

Context
Memory

Configurable
Interconnect

Processing
Element

Figure 2-8: FPGA architectural as multiprocessor Array [16]

Within the last few years, communication among these PEs was destined to become
a vital factor in the design of large-scale systems. Consequently, the challenges of the
communication among these PEs have become significant and require innovative
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solutions. Therefore, NoC has been adapted for FPGAs to handle these PEs
communication challenges

Memory Memory Memory
uP RF HP / RF HE I RF
/ ]
Keypad DSP Keypad DSP Keypad DSP
a) bus b) point-to-point c) network

Figure 2-9: Different Communication Structures: a) bus-based, b) point-to-point,
and c¢) Network-on-Chip [21]

2.3.2. Bus versus Network

Bus communication architecture enables the PEs to share a unique medium of
communication as illustrated in Figure 2-9(a). Every PE sends or receives data, have to
reserve the bus. Data can be transmitted on the bus while asserting the proper address on
the corresponding bus, only when no other PE uses the bus. As listed in Table 2-1 [22],
considerable arguments between the bus and network structure are discussed.

Table 2-1: Bus-versus-Network Arguments [22]

Bus Pros and Cons Network Pros and Cons
Performance degradation -1+ Performance is not degraded
Bus timing -1+ Wires are pipelined
Bus arbitration -1+ Routing decisions are distributed
Bandwidth is limited -1+ Aggregated bandwidth
Bus latency + 1| - Internal network contention
Simple +| - Need re-education

2.3.3.  NoC parameters

Four main metrics are considered to choose the most convenient NoC architecture.
These metrics are the area, power consumption, latency, and throughput. There are other
metrics which are used in evaluation such as packet loss or wire length.

Area and power consumption are related to layout implementation of network
hardware components such as router modules and network interface.

The latency is the time elapsed between the emission of the head packet into the
network and the time of arrival of the tail packet at the end node.

Throughput is the maximum traffic accepted by the network at a particular time, and
it is measured by flits/cycle/node.
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In this study, latency and throughput are used by NoC-DPR simulator to calculate
the time overhead of the dynamic partial reconfiguration.

2.3.4. NoC Architecture

The NoC consists of routers, network interface, PEs, and connection links:

e Router: routes the data from its input ports to output ports according to the
routing strategy.

o Network Adapter (Interface): provides an interface between the router and
the processing element. Its primary task is to handle the communication
between the network and the PEs.

e Process Element (Core): the main application that uses the network.

e Connection Links: the channels of communication of data between the
various components of the network.

2.3.5. Topology

The topology is defined as the structure of connection between the routers and the
PEs. Topologies are classified as regular and irregular, based on the location of the
routers in the network. Figure 2-10 shows the following topologies:

a) Ring

b) Mesh

c) Star

d) Fully-connected

e) Mesh torus

f) Hypercube.
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Figure 2-10: topologies for the different network [21]

2.3.6. Routing

The definition of routing is to transfer data from node to node with a predetermined
algorithm. Routing is classified into the following categories:

e Distributed or centralized: distributed routing is where the flow decision is
calculated locally at each node. However, routing is called centralized when
the routing decisions are computed in one centralized node.

e Deterministic or adaptive: routing is called deterministic when the path is
determined by the location of the source and destination node only.
However, routing is called adaptive when the propagation of data between
two nodes can be determined through multiple paths. The implementation of
adaptive routing algorithms is resulting in complicated nodes, but it provides
adequate performance of the NoC.

e Circuit switching or packet switching: The routing is circuit switching
routing if the route between the start and end nodes is allocated while the
data is transferred. Although, packet switching all nodes share the same path
and the data is split into packets that contain the routing information.

2.3.7.  Switching techniques

The main module of the router is a switch module that identifies which and when the
inputs ports of a router are connected to outputs ports [23]. There are several switching
techniques:

e Store-and-forward: The router splits the incoming stream into packets, at
each node within the route to the destination, the router saves the packet in
the input buffer, and afterwards the routing information is calculated to
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identify the corresponding output port, which results in high per-packet
latency.

e Virtual cut-through: this type is same as the store-and-forward but instead
store all packet, it identifies the output port as soon as the first bytes of the
packet (Header) is received. However, if out port is busy, the router will save
the packet in a buffer [24, 25].

e Wormhole: Here the router divides the packets into flits (Flow Control Unit).
The routing information is stored in the header flit. In this manner, a single
packet is transferred through different nodes. That reduces the latency over
the store and forward method but may cause many bottlenecks in the
network.

2.3.8. Virtual channel Flow Control

Flow control addresses the issue of validating the transmitting and receiving of the
packets in the network. Additionally, it resolves the problems of optimal usage of the
network’s resources and provides a consistent performance to all network resources.

Virtual channels (VCs) are the multiplexing of a physical channel by several
logically separate channels with different buffers as presented in Figure 2-11. VCs per
physical channel are varied between 2 and 16. Their implementation outcomes in an area,
power and latency overhead due to the cost of multiple buffer implementation.
Nevertheless, VC routers are eliminating deadlocks, enhancing wire utilization and
improving network performance [26].
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Incomming data stream B is stalled by stream A Virtual channels allow stream B tc pass stalled stream A

Figure 2-11: Virtual channels mechanism [21]
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2.4. Simulation Abstraction

A simulation is to develop a model of an actual or theoretical physical system, and
investigate the execution output, which is carried out on a computer. By this way, the
researchers test the design space as well as evaluate the performance and efficiency for
all of the new designs.

There are two types of simulation:

e Cycle-accurate simulation: In this type, the simulation is running on a cycle-
by-cycle basis, which is impacting the simulation timing; as the simulator
implement more details. Consequently, cycle-accurate simulation also has a
cost on the development of the simulator. Cycle-accurate simulator is
necessary when the actual router’s RTL description is requested to be
evaluated and verified.

e Event-driven simulation: This type is used when the given systems are
consisting of several modules. In Event-driven simulation, events instead of
accurate cycle sequence drive the flow of control within the system. The
event-driven simulation uses events that occur at a various time and handles
them in order of minimizing the simulation time.

2.5. Programming Abstraction

The following is the programming abstraction levels that should be considered when
building a simulator depending on the requirements of design as shown in Figure 2-12.
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(SystemC, Ptolemy II)

N
\
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languages (C++, Java)
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Figure 2-12: Simulation levels versus speed and productivity [27]
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2.5.1. Low-level programming languages:

At low-level, the designer of the simulator may decide to use a programming
language such as C. In this case; building a system using low-level programing language
IS a time-consuming task, due to the managing and controlling of the accurate time of
concurrent processes. However, it may result in high simulation speed.

2.5.2. Object-oriented languages:

In this approach, the developer is using some high-level programming languages
such as object-oriented C++ or Java. However, the developer has to manage and control
the logic related to time and concurrent processes. Nevertheless, the high-level concepts
of the language such as classes and inheritance facilate the designing stage.

2.5.3.  Simulation frameworks:

In the simulation frameworks such as SystemC, all the administration of timing and
parallel processes is handled by the framework; thus, more models are simulated within
less time.

Similarly, hardware description languages provide high accuracy in addition to the
shown in Figure 2-12. However, they often cause low productivity and low simulation
speed.

2.6.  NoC simulator comparison

Many surveys have been conducted to compare the simulations of NoC. The
attempts of implementing network simulator are varying through different parameters
such as the used programming languages, availability of the source code, the supported
topologies and heterogeneous support of different modules at the processing element of
a NoC. The summary of comparison results is listed in Table 2-2.

Several NoC simulators are developed recently, and a comparison between them is
done at [31]. Some of the simulators are developed in C++ like Booksim by Jiang and
al. [29]. Currently, Booksim 2.0 adds more features to perform modelling of the router
microarchitecture.

Other simulators developed in SystemC like Noxim, which is developed by Palesi
and al. [28], and Nirgam [32]. NoCTweak wrote in SystemC by Anh and Bevan [30]
which supports router type wormhole over both synthetic traffic and embedded
application patterns.

Another attempt to use high-level programming languages and higher framework
such as Java and OMNeT++ which may lack the support of integration with other
system written in systemC such as gpNoCsim and HNOC:s [33, 34].
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Table 2-2: NoC simulator comparison

Simulator | Framework | Paralle | Topologie | Open | Heterog | Synchronous/

lism S Sourc |eneous | Asynchronous
e Support

Noxim[28] | SystemC - Mesh + - Synchronous

BookSim | C++ - Many + - Synchronous

[29]

NoCtweak | SystemC - Mesh + + Synchronous

[30]

Nirgam SystemC - All + - Synchronous

[32]

gpNoCsim | Java - All + - Both

[33]

HNOCS OMNeT++ |+ All + + Both

[34]

Another architecture with similar features is ReNoC which is developed by
Stensgaard and Sparse [36]. The latter architecture allows the configuration of NoC’s
resources. Thus, the mapped application can customize the topology according to its
requirements on SoC platform.

Other solutions endeavour to use NoC as a backbone in FPGAs system to overcome
communication challenges, such as Ehliar and Liu [35] that proposes an open source
FPGA based NoC architecture with low area overhead, high throughput, and low latency
compared to the general NoC performance.
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Chapter 3 : Configuration Techniques for Xilinx FPGAs

3.1. Introduction

In this chapter, the different interfaces to configure Xilinx FPGA with a partial
bitstream are studied. Xilinx offers four methods to send or receive a partial bitstream
from non-volatile memory into the reconfiguration memory. A comparison between
these techniques is provided concerning the area and the reconfiguration time using part
of an SDR system as a benchmark for DPR.

3.2. Methodology

Xilinx FPGAs have four various techniques to carry out DPR. Figure 3-1
demonstrates the different reconfigurations techniques to perform DPR using an encoder
inside the communication chain of an SDR system.

All procedures require a controller of PR. The controller is placed outside the FPGA,
such as external PC connected to JTAG or Serial port as illustrated in Figure 3-1(c).

Nevertheless, the controller is placed inside the FPGA's fabric, such as MicroBlaze
soft microprocessor IP to manage ICAP or selectMap as shown in Figure 3-1(a) and
Figure 3-1(b).

Convolutional Encoder

.. Other
" - D riHOC(;)lﬂ:; D - -

Self
uP
Reconfiguring ICAP FPGA
FPGA Self
Reconfiguring H
RPA FPGA External
RP A Uz
SelectMap (a) JTAG/Serial (c)
ICAP (b)

Figure 3-1: Reconfigurations techniques of convolutional encoder inside the
communication chain [1]

3.21. JTAG

The JTAG is an acronym for standard Group named Joint Test Action Group. JTAG
sends data out through 1/0O ports for testing connections on board level testing. Therefore,
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it is widely used as an essential debugging tool. The JTAG sends signals inside the chip
for testing device behaviour, these patterns of test aim to detect shorts and opens at the
board and device levels.

The JTAG configuration is conducted using the IMPACT tool and Xilinx
programming cable in Figure 3-1(c). The partial configuration is completed by obtaining
the bitstream file located on the computer [37].

3.2.2. Serial Mode

Throughout slave serial configuration mode, the configuration data is loaded one bit
per Configuration Clock (CCLK) cycle. The CCLK in the serial slave mode must be
driven from exterior control logic. The Serial Slave mode generally used in the
configuration of the single device from an external microprocessor as illustrated in Figure
3-1(c) or configuring multiple devices in a daisy chain.

— M[2:0]
DOUT |—

— DIN

— INIT_B

— PUDC_B

— PROGRAM_B

DONE [—
CCLK

Figure 3-2: Virtex-5 FPGA Serial Configuration Interface [38]

Six pins are required to accomplish the reconfiguration procedure using Serial Slave
mode as displayed in Figure 3-2. A single configuration is employed to configure
multiple devices arranged in a daisy chain [39]. Each device receives the configuration
data via its DIN pin and crosses it to the next device through its DOUT pin till the last
device in the chain is configured, and all the devices discharge their DONE pins.

3.2.3. SelectMAP

SelectMAP is a configuration interface that provides an 8-bit, 16-bit, or 32-bit
bidirectional data bus interface to FPGA's fabric, which is often used for both
configuration and readback. It also operates in two modes; a master mode that drives
configuration clock, or slave mode which is driven by an external configuration clock.
Read-back is applicable only to Slave SelectMAP mode.
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Figure 3-3: Virtex-5 FPGA SelectMAP Configuration Interface [38]

There are various setups for SelectMAP like single device slave SelectMAP that
includes a processor providing data and clock. Alternatively, a CPLD is used as a
configuration manager [38]. Another installation is multiple device daisy chains that can
be used to configure various FPGAs in series with different bitstreams from a nonvolatile
memory or processor.

Slave SelectMAP is the only mode that allows performing partial configuration in
all Xilinx FPGA's as master modes are clearing all FPGA's configuration memory Figure
3-1(a).

The reconfiguration process using SelectMAP in slave mode is carried out using 38
pins as shown in Figure 3-3. Multiple FPGASs can be connected on SelectMAP bus which
shares some pins with others FPGAs.

3.24. ICAP

ICAP is Xilinx primitive that offers direct access to the configuration logic at the
FPGA fabric Figure 3-1(b). At runtime, the ICAP interface permits the configuration data
to be loaded into or downloaded from the configuration memory of the FPGA.
Additionally, it enables reading the status registers of the configuration logic.

The ICAP interface is similar to the SelectMAP slave mode interface but with
separate 8-bit, 16-bit, or 32-bit data bus for reading and writing configuration data [39].

Configuration data is written to the FPGA’s memory with a fixed clock. Even though
there are two ICAP primitives available starting from Virtex-5, the two ports cannot be
operated concurrently. Consequently, the design has to start with the top ICAP, and then
alternate between the two ports. ICAP caches the configuration bits into BRAM before
they are loaded to the FPGA configuration memory.

Xilinx provided IP core known as OPBHWICAP, which is connected on the OPB
bus, it enables the processor to access the configuration memory through the ICAP using
the library and software routines that have been implemented by EDK toolkit. In Virtex-
4 and Virtex-5 FPGAs, the XPSHWICAP then AXI_HWICAP has been released which
works similarly with the OPBHWICAP, however the IP is connected to the PLB and
AXI bus respectively [40]; thus, a lower-latency reconfiguration is obtained.
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3.3. Software Defined Radio design

Lately, SDR turned to be a trending application for DPR. As wireless technologies
maintain their growth and developing, more standards will be released. Therefore, the
demand to preserve these entire standards in one device is required. Hardware designs
that are trying to offer compatibility with the current standards, if even possible, will
most likely become outdated after a short while. Nevertheless, the SDR system maintains
the flexibility to control the same hardware resources via software for these multi-
communication devices.

SDR systems make use of the reconfigurability of FPGAs because it provides good
assets to load the desired standard. Practically, the ability to reconfigure a specific block,
while all other blocks are working regularly, provides an opportunity to create a flexible
and compact design.

The benefits of SDR system is noticed undoubtedly by implementing DPR
approaches on Convolutional Encoder block. This encoder is accountable for generating
FEC coding schemes. These coding schemes allow reducing channel noise.
Convolutional encoder outputs are not impacted by the code schemes used in the existing
standard but also several parameters(n,k,l), which are being used for explaining
convolutional codes. Where n represents the input encode elements, k represents the
output encode elements, and [ represents the number of shift registers.

In this experiment, two encoder schemes; 3G and Wifi communication systems, are
used as a benchmark for DPR as revealed in Figure 3-1. This approach is called Single-
Loaded Encoder Module (SLEM) wherever DPR is used to implement one encoder on
the chip at a time.

3.4. Results and Discussions

The experiment is designed to apply DPR to the implemented SDR design using
different configuration approaches and to compare them in terms of area and
reconfiguration time. This design has been implemented using XUPV5-LX110T kit
which includes Virtex-5 xc5vIx110tff1136-1 FPGA, SystemACE Compact Flash
configuration controller to store bitstream files of PR regions, and UART interface to
interact with MicroBlaze by sending reconfiguration commands.

3.4.1. Experiment setup

The DPR time is not associated directly with design resources, but it is related only
to partial reconfiguration region selection which is translated to frame’s number.

The frame is the minimum addressable configurable part of the FPGA, which spans
multiple Programmable Logic Blocks (PLBs) in array usually the entire column of PLBs.

Previously, in Virtex and Virtex Il families, frames consist of the whole column of
FPGA, which are the minimum building blocks for PR region. Starting form Virtex 4,
frames became a complete tile which includes a certain number of CLBs of an entire
column, and this number is increasing in each new Xilinx family.

Therefore, the total design size, static and PR regions, has a significant effect on the
reconfiguration time. Hence, the selected size for the SDR design is varied along the
experiment to check the variation in performance of each configuration technique. The
various selection is chosen to take into consideration a significant change in the partial
bitstream file size that is to reflect in the estimated reconfiguration time.
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Table 3-1: Reconfiguration speed for different reconfiguration techniquess

Config. Mode | Data Width | Max. Clock Rate | Max. Bandwidth
JTAG 1-bit 66 MHz 66 Mbps
Serial Mode 1-bit 100 MHz 100 Mbps

ICAP 8/16/32 bits 100 MHz 0.8/1.6/3.2 Gbps

SelectMAP 8/16/32 bits 100 MHz 0.8/1.6/3.2 Gbps

The figure of merit, which is chosen for the comparison between these different
techniques, is the area multiplied by reconfiguration time. This metric is an excellent
indicator of the performance variation from a particular design size to another. Also, the
number of occupied LUTSs is also considered as a significant indicator of the design area
as shown at the vertical axis and the horizontal axis in Figure 3-4.

The theoretically estimated reconfiguration time is calculated according to (1),
where Bsg;,,, IS the bitstream file size of PR region, Clk,,,, is the maximum clock rate
supported by reconfiguration interface, and Dw is interface data width. These values are
listed in Table 3-1 for each interface.

ReconfigurationTime = BS gi,0/(Clkpax * DW) (D

The reconfiguration region sizes are chosen in a way to occupy a certain number of
frames completely. The selection is made to make use of the whole area without any
change in the partial bitstream size and without affecting the estimated reconfiguration
time.

3.4.2. 8-bits Data Width

Figure 3-4 shows the performance of the JTAG, Slave Serial mode, Slave
SelectMAP 8-bit, and ICAP 8-bit data width using the SDR design with different
selections of PR regions. It is shown that at small designs that need PR regions less than
~400 and ~750 LUTSs for JTAG and Serial mode respectively, JTAG and Serial mode are
better in performance than ICAP and SelectMAP which work with 8-bit width at 50 Mhz.
These values decreases (~150 and ~300 LUTs) when ICAP and SelectMAP work at 100
Mhz taking into consideration that ICAP allows maximum frequency less than JTAG and
Serial mode. This can be avoided when using SelectMAP as it has external CCLK port.
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3.4.3. 16-bit Data Width
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Figure 3-5: 16-bits ICAP and SelectMAP with Serial mode and JTAG
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In Figure 3-5, the experiment is repeated with 16-bits data width for ICAP and
SelectMAP. It is noted that the intersection points decreased more (~150 and 300 LUTSs
for JTAG and Serial mode respectively) compared with ICAP working at 50 MHz. These
values decline because the comparison becomes unfair for serial interfaces like JTAG
and Serial mode compared to 16/32-bits ICAP and SelectMAP as the parallel
configuration always gives more capability to reach high configuration speed.

Designs which are using JTAG and Serial mode can save ~2400 LUTs compared to
ICAP and SelectMap; this overhead is significant with small area designs. However, the
reconfiguration speed of 16-bit ICAP and SelectMap is better with a factor of 24.2 and
16 than JTAG and Serial mode respectively.

3.4.4. 32-bits Data Width
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Figure 3-6: 32-bits ICAP and SelectMAP with Serial mode and JTAG

ICAP and SelectMAP will always be recommended if they operate at the full data
width 32-bits over other reconfiguration techniques as shown in Figure 3-6. However,
the drawback of this scheme is the used 1/O pins. In SelectMAP, those pins have to be
reserved the whole time for reconfiguration purpose only, whereas those pins can be used
as general 1/O after the reconfiguration has been done in ICAP.

Table 3-2 lists all experimental results and indicates where the serial configuration
techniques such as JTAG and Serial Mode are used instead of parallel procedures such
as ICAP and SMAP.
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Table 3-2: Serial reconfiguration techniques recommendation over SMAP and

ICAP
Configuration 8-bit 16-bit
Mode
JTAG <400 LUTs <150 LUTs
Serial Mode <750 LUTs <300 LUTs

3.5. Summary

In this chapter, the four configuration methods, which are used with DPR in Xilinx
FPGAs, are reviewed.

It is evident that JTAG reconfiguration is much slower than the other methods, but
it does not add resources overhead like the other methods. Therefore, the performance
with JTAG is better than the others with small designs where the area overhead is very
noticeable. Despite that, the performance is not good with large designs where the space
cost is not reasonable compared to the design area. On the other side, it allows sending
internal signals through dedicated 10 pins for debugging. Additionally, the methods that
use a parallel port support a high-speed reconfiguration compared to the others,
especially with large designs.
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Chapter 4 : NoC-DPR Simulator Architecture

4.1. Introduction

The contribution of this chapter is proposing a cycle-accurate simulator for NoC,
which is a state-of-art tool called NoC-DPR that is used to simulate DPR on NoC-based
FPGA. Two open source SystemC components are linked; the first is a NoC simulator,
which is known as NoCTweak, and the second is a SystemC Library (ReChannel), which
simulates DPR for general purpose designs. All PEs of the network can be reconfigured
dynamically to adopt a new design at the run-time.

4.2. NoC-DPR Simulator Architecture

NoC-DPR simulator is a command line-based tool that consists of a 2-D mesh
network of routers, simulated by NoCTweak [29]. Each node includes a PE, Network
Interface (NI), and an associated router. Each router connects with four nearest
neighbouring routers forming a 2-D mesh network as illustrated in Figure 4-1. Using
ReChannel [41] library, each PE is dynamically reconfigured by a particular type of data
packet, generated from a specific node (master node 0, 0).

The primary consideration that must be taken, when merging DPR simulation library
with NoC simulator, is all NoC modules should be well-defined through a definite
hierarchy at SystemC.

Consequently, a separate NI is implemented with NoC-DPR simulator as displayed
in Figure 4-2. Accordingly, DPR is performed on the PE, and NI supports the flow control
over receiving and sending data during the DPR operation. However, the network’s
latency and throughput values have changed due to this modification.
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x
o
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¥

Figure 4-1: Network on a chip of NoCtweak simulator [52]
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4.3. NoCTweak simulator

NoCTweak is an open-source 2-D mesh NoC simulator, which is designed for early
exploration of the performance of on-chip networks. The simulator has been developed
using SystemC, which allows accurate and fast modelling of concurrent hardware
modules at the cycle-level accuracy [30].

The NoCTweak simulator is composed of a hierarchy of modules; a processor (core),
a NI as drawn in Figure 4-5, and an associated router that implements different functions
of the network and the simulation environment as portrayed in Figure 4-1.

Each of these modules has a clear interface that facilitates replacement and
customization of module implementations without affecting other parts of the simulated
system.
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Interface <
=
OutBuffer

Router

Figure 4-2: Network on a chip of DRP-NOC simulator [52]

4.3.1. Network Latency

Packet latency includes the travelling and waiting time from the source queue to the
destination, the waiting time is caused by network congestion. In the simulation, when
the PE receives a packet, it calculates the difference between the packet’s creation time
from the received time to get the packet latency. Thus, network latency is the average of
latencies of all the packets transferred by the network.

Let L;; be the packet latency of packet j and N; be the number of packets received
by processor i, then the average network latency is given by [30], where N is the number

of processors in the platform:
1 1
Lavr=ﬁé ﬁlg Lij

i=1.N vj
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4.3.2. Network Throughput

Network throughput is the rate where the network efficiently accepts and delivers
the injected packets. Let Ty;and T, 4-m b€ the simulation and warmup time, then the
average network throughput (in packets per unit time per node) is given by [30]:

Tavr -

)
N:
N(Tsim - Twarm) ST '

The network latency is derived in cycles or seconds and the network throughput in
flits per cycle or flits per second. All these kinds of terms are shown in the output results
of NoC-DPR simulator.

4.4. ReChannel Simulation Library

Initial attempts to design for DPR was considered a slight complex task due to the
lack of supporting tools and the requirement of full understanding of the FPGAs
architecture. Therefore, FPGA designers use DPR simulators at early design stages as a
proof of concept and to reduce the time to market.

Several approaches [42, 43, and 44] have been proposed to model dynamically
reconfigurable systems at system-level using SystemC, which is C++-based description
language used at higher abstraction levels to develop complex systems.

In [45], the OSSS+R framework is presented along with the design methodology for
automatic modelling, synthesis, and simulation of partial run-time reconfiguration
systems. However, these methodologies do not support functional verification of
customized DPR system designs.

The modelling is performed using object-oriented techniques in ReConLib library
[41]; nevertheless, the limitations of SystemC in modelling dynamic reconfiguration are
avoided.

As the main challenge when modelling dynamic designs using SystemC is the
inability of performing changes to the system’s module topology during simulation.
Consequently, this inability leads to difficulties in the modelling of reconfigurable
systems using hardware description language (HDL) without modifications. The
ReChannel library [41] is an extension to SystemC, not an adjustment to the SystemC’s
kernel as conducted in previous projects. Hence, ReChannel overcomes SystemC
modelling limitation without actually changing the underlying simulation kernel.

On the other hand, several simulators simplify the DPR modelling process;
consequently, the reconfigurable modules are switched between two states; activated and
deactivated. That is achieved in ReChannel Library [41] through the concept of switches
(portals) as shown in Figure 4-3. Portals allow the utilization of any SystemC channel in
a reconfigurable context, which results in reconfigurable modelling systems with a highly
flexible methodology. Furthermore, the first modification of the original system occurs
within the interconnection between other modules of the system, i.e., between NI and PE
interconnect signals as illustrated in Figure 4-4. Hence, portals are added to eliminate
any required changes to the existing modules.

That facilitates the interface of reconfiguration parts to static parts. Reconfiguration
properties, such as reconfiguration time, are added to those modules using an argument
parsed by the command line to the NoC-DPR simulator.
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Figure 4-5: Network Interface of DRP-NOC simulator

4.5. Network Interface impact

Inserting an explicit network interface, as shown in Figure 4-2 and Figure 4-5,
between the PE and the router, affects the network performance specifically on the
latency and the throughput. NI is composed of two decoupling buffers that are
responsible for storing and synchronizing flits (a flit stands for FLow control unIT, which
is the minimum unit of the message).

The latency after inserting NI is measured and compared to the latency of
NoCTweak. A network of wormhole routers with buffer size 2-flits per input port running
at 100MHz is considered for this simulation along with different Flit Injection Rates
(FIRs) on different network sizes. The five network sizes: 2x2, 4x4, 8x8, 16x16 and
18x18 are adopted to cover all performance variations. Figure 4-6 shows the
methodology of NoC-DPR simulator. Network parameters are passed to the simulator
through the command line, then the simulation using the parsed parameters is launched.
Finally, all simulation results are collected using automation scripts, which run and
manage the results over the different network sizes and the different injection rates to
draw all following listed figures.

Figure 4-7 and Figure 4-8 show the difference between the latency of NoCTweak
simulator and the proposed NoC-DPR simulator. NoCTeawk's latency reaches above
50,000 cycles while NoC-DPR's latency saturates at 23,000 cycles for the maximum
supported network size 18x18. This enhanced latency value is due to the NI of NoC-DPR
simulator, which is responsible for controlling packet generation from PE according to
NoC state. Therefore, NI sends and receives control signals to PE so that it prevents
network congestion and deadlocks.

31



eNetwork size
eReconfigurati
on time (RT)
*No. of DPRs
e|njection rate

ePackets generated random

eScript to loop over all
combinations

Run

eCalculate effective
RT

COl |eCt oScript to collect all

results
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Figure 4-7: Average latency for 2-flits buffer depth for NoCTweak simulator
without PE

On the contrary, in NoCTweak, the PE has no output buffer; therefore, PE injects
flits directly into router input buffer without any flow control. Consequently, the latency
increases as long as flits are injected as portrayed in Figure 4-7, unlike NoC-DPR which
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saturates at lower latency 5,000, 7,500, and 14,000 cycles for 2-flits buffer size for 2x2,
4x4, and 16x16 NoC size respectively as shown in Figure 4-8.

On the other hand, in the NoCTweak simulator, the throughput is elevated at specific
values as depicted in Figure 4-9, because of the direct injection to NoC; as the network
is loaded with maximum accepted flits at higher FIR (Flits Injection Rate of each PE).
However, In NoC-DPR simulator, the PE stops packet generation when network state is
fully loaded, which causes a slight increase in the peak value of the throughput. The
throughput decreases exponentially because the network is not loaded with maximum
accepted flits as shown in Figure 4-10. The saturated values of the throughput are 0.21,
and 0.14 (flits/cycle/node) in NoCtweak, and become peak values of 0.22, and 0.155
(flits/cycle/node) at 0.22 and 0.18 (flits/cycle/node) FIR in NoC-DPR simulator for 2x2
and 4x4 NoC size respectively.
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Figure 4-8: Average latency for 2-flits buffer depth for NoC-DPR simulator
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4.6. Different buffer depths

The impact of buffer depth on the latency and the throughput is measured using two
buffer depths: 4-flits and 8-flits. The network of wormhole routers with a 3-pipeline stage
running at 100MHz over synthetic traffic is used with injection flits rates on multiple
network sizes, and then the results are compared to 2-flits buffer depth.

The latency is calculated with 4-flits and 8-flits buffer over the random synthetic
traffic pattern as shown in Figure 4-11, and Figure 4-12 respectively. Similarly, the
throughput of the two buffer sizes is demonstrated in Figure 4-13 and Figure 4-14
respectively. The correlation between the buffer depth and the network’s latency and
throughput is revealed, as the wormhole router has three pipeline stages; thus, the routers
with at least 5-flits per buffer have the same zero-load network latency. Consequently,
the router with a buffer depth of 2-flits achieves the worst network performance.

On the other hand, In NoC-DPR simulator, the NI increases the number of buffers
in the network, which results in handling more round-trip flow control signalling.
Consequently, increasing the buffer depth from 2-flits to 4-flits and 8-flits improves the
network latency by a factor of 1.6x and 2.7x as demonstrated in Figure 4-11, and Figure
4-12 respectively. Also, increasing the buffer depth enhances the throughput at higher
FIR by 50.9% and 28.8%, as portrayed in Figure 4-13 and Figure 4-14 respectively. The
summary of the results of latency and throughput for different network sizes using 2, 4
and 8-filt buffer depth is listed in Table 4-1.

Table 4-1: Latency and Throughput for different network sizes using 2 and 8-filt

buffer depth
2-flit buffer size 4-flit buffer size 8-flit buffer size

Throughput Throughput Throughput

sl\:ze; E‘éﬁegfg’s) (flits/cycle/n '(-zéezfé) (flits/cycle/n '(-ééegfg’s) (flits/cycle/n
y ode) Y ode) y ode)

4x4 75 0.13 4 0.25 2 0.45
8x8 14 0.06 79 0.14 4 0.25
16x16 22 0.03 135 0.07 8 0.12
18x18 23 0.02 14.7 0.06 8.7 0.11
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4.7. Different router types

NoC-DPR simulator supports a wormhole router with virtual channels along with
the pipeline wormhole router. The simulation using two networks of wormhole routers
with 4-virtual channels and 8-virtual channels are considered to study the impact of
changing the router type on network’s latency and throughput.

As shown in Figures 4-15, 4-16, 4-17 and 4-18, the saturation values of latency are
improved by factors of 3.6x and 4x for 4-virtual channels routers and 8-virtual channel
routers respectively. Latency saturated at 6,000 cycles and 5,500 cycles as depicted in
Figure 4-15 and Figure 4-16. In contrast, the saturated value “22,000 cycles” of the
network of wormhole routers without virtual channels for the network size of 18x18 as
shown in Figure 4-8.

This improvement is because of the multiplexing of the same physical link across
multiple flits from the different packets; thus routers with VVCs prevent deadlocks.

Interestingly, latency and throughput improve with factors more significant than
buffer depth factors. It is also noticed that the throughput is saturated; which is expected
as long as the network is not congested, and the flow control of NI is disabled.

Therefore, PEs inject more flits, and the network is loaded with maximum accepted
flits at higher FIR as shown in Figure 4-17 and Figure 4-18. Consequently, the increasing
percentage is about 60.1% and 61% for throughput in 4-VCs and 8-V Cs over wormhole
router with no VCs. Shown in Figure 4-10. The summary of results of latency and
throughput for a different network using 4 and 8-VC wormbhole router is listed in Table
4-2.
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Figure 4-15: 2-flits buffer depth average latency for 4-virtual channel

38



Latency (Kcycle)
w &

N

0.4

0.35

0.3

0.25

0.2

0.15

Throughput (flits/cycle/node)
o
-

0.05

——2x2
4x4

——8x8
16x16
18x18

= - T T
0.2 04 0.6 0.8
Flit Injection rate (flits/cycle/node)

Figure 4-16: 2-flits buffer depth average latency for 8-virtual channel

——2x2
4x4

——8x8
16x16
18x18

I I I I
0 0.2 0.4 0.6 0.8
Flit Injection rate (flits/cycle/node)

Figure 4-17: 2-flits buffer depth average throughput for a 4-virtual channel

39



0.4

0.35
m
°
S 03
S~
)
o
S 0.25 ro
I
§ 0.2 4x4
=
3 0.15 / 88
5 16x16
3 0.1 18x18
=
-
0.05
0 I T T I
0 0.2 0.4 0.6 0.8

Flit Injection rate (flits/cycle/node)

Figure 4-18: 2-flits buffer depth average throughput for an 8-virtual channel

Table 4-2: Latency and Throughput for different network sizes using 4 and 8-VC

wormbhole router

2-flit buffer size With 4-VC

2-flit buffer size With 8-VC

Network size Latency '_I'hroughput Latency '_I'hroughput
(Kcycles) (flits/cycle/node) | (Kcycles) | (flits/cycle/node)
4x4 3 0.3 3 0.3
8x8 3.5 0.25 3.5 0.26
16x16 5.5 0.15 5 0.18
18x18 6 0.14 5.2 0.17
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Table 4-3: Latency and Throughput for different network sizes using 2-flits buffer
depth and 8-flits buffer depth with 4-VC wormhole router

2-flit buffer size 8-flit buffer size with 4-VC
Network size (?itfgg:f) (fl-il;glglélger/]r?gée) (Ir_ét;g} Zé (fl-il;glg)/l;?er/lr? géle)
ax4 75 0.13 15 0.58
8x8 14 0.06 27 0.36
16x16 22 0.03 48 0.2
18x18 23 0.02 5.2 0.18

4.8. Summary

The architecture of the proposed NoC-DPR simulator is discussed in this chapter.
Then, the performance of the network regarding throughput and latency is evaluated after
modifying the NoCtweak simulator and merging it with the Rechannel Library. That is
done by inserting an explicit network interface between the PE and the router. It is shown
that the latency is improved due to this change, while the throughput is degraded. This
degradation is because of adding NI of NoC-DPR simulator, which is responsible for
controlling packet generation from PE according to NoC state. Therefore, NI sends and
receives control signals to the PE so that it prevents network congestion and deadlocks.

The variation of buffer depth and router type has an effect also on the network’s
throughput and latency. It is shown that buffer depth of 4-flits and 8-flits enhances the
latency with factor 1.6x and 2.7x respectively. Also, increasing the buffer depth improves
the throughput at higher FIR by 50.9% and 28.8% over a network of 2-flits buffer.

While the latency is improved by factors of 3.6x and 4x using the 4-virtual channels
routers and 8-virtual channel routers respectively, the increasing percentage is about
60.1% and 61% for throughput in 4-VCs and 8-VCs over wormhole router with no VCs.
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Chapter 5 : Simulation Results and Discussion

5.1. Introduction

The test experiment in this chapter aims to simulate the DPR on NoC-based FPGA
using of parallel DPRs on plenty of network sizes. Moreover, a comparison is held
concerning the Reconfiguration Time (RT). Two separate applications are used to
estimate the reconfiguration time: the first one is random (synthetic), and the second is
an embedded application.

5.2.  Dynamic partial reconfiguration simulation setup

Virtex-5 xcbvfx100t FPGA is used as the primary configuration plane. It is divided
into PR regions according to the network size. Consequently, for network size 2x2, as
illustrated in Figure 5-1, all configuration plane of Virtex FPGA is divided into 4
reconfiguration regions. Nevertheless, the bitstream sizes of each configuration region
are calculated using the Xilinx ISE v14.7 tool. Finally, RT is determined by using partial
reconfiguration cost calculator [42].

FPGA Layout

Figure 5-1: Process Elements as reconfiguration region for 2x2 NoC

Each PE of NoC is assumed as PRs, as depicted in Figure 5-1 and Figure 5-2 for
network size of 2x2 and 4x4 respectively. Therefore, the network resources such as the
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router, NI, and wires are considered hardwired IPs on an FPGA chip layout to simplify
the RT estimation. The primary advantage of using NoC-based FPGA instead of the
conventional SRAM-based FPGA is that multiple simultaneous DPRs are achieved.
Accordingly, each PE has a reconfiguration control unit such as ICAP which is assumed
as hardwired IP.

The reconfiguration time is determined by the cost calculator using the partial
bitstream size for PR of each PE in the different network size as listed in Table 5-1.
However, the reconfiguration time of DPR is not related directly to design resources.
Nevertheless, RT is proportional to the PR region selection, which is translated to a
significant number of frames [1].

As given in (1) and (2) [47], RTgpy—ppc i the time from the storage means (i.e.,
compact flash or RAM) to the memory of a local processor, RTppc—_icap 1S the time from
local processor memory to ICAP memory, RT;cap—cum 1S the time from ICAP memory to
the configuration memory, f; is the frame size, and n is the number of frames per
bitstream file.

The full derivation from (1) to (2) is performed by analysis each phase of
reconfiguration and the corresponding throughput and theoretical bandwidth. RT values
are used along with the NoC-DPR simulator for this test experiment.

RT = RTsm-ppc + RTppc—1cap + RTicap—cm (D)

RT = f,(n+1) X 3.66 X 1073 ms (2)

Table 5-1: Reconfiguration time for different NoC sizes

Network size Bit file size Reconfiguration time for each node
(Kbytes) (msec)
1x1 2526 570.34
2x1 1263 285.188
2Xx2 632.5 142.612
3x3 280 63.402
4x4 158 35.68
5x5 101 22.848
6x6 70 15.878
X7 51.5 11.675
8x8 39.4 9.069
9x9 31.2 7.08
10x10 25.25 5.818
11x11 20.3 4.814
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FPGA Layout

Figure 5-2: Process Elements as reconfiguration region for 4x4 NoC

5.3.  Simulation results of the synthetic application

In the following section, the suitable network size and the number of suitable parallel
DPRs are investigated for two types of wormhole router (i.e., the wormhole router with
no VCs and with VCs). Further tests are performed to study the effect of network
performance variations on RT.

Theoretical RT for the 1-DPR process is calculated using (1) and (2) as shown in
Table 5-1. Nevertheless, the theoretical RT for simultaneous 3-DPR is evaluated by
dividing the RT of 1-DPR by 3. The criteria for selecting (RT / No. of DPR) metric to
compare the different number of simultaneous DPRs are adapted to have a fair
comparison between conventional SRAM-based and NoC-based FPGAs.

5.3.1.  Wormhole router without virtual channels
5.3.1.1. Wormbhole router with 2-flits buffer depth

A comparison between the different numbers of simultaneous DPRs on the NoC is
performed. It is held based on the difference between the theoretical and the simulated
RT for each DPR number, as illustrated in Figure 5-4, Figure 5-5, and Figure 5-6 for one,
three, and five simultaneous reconfigurations respectively. This metric is a vital indicator
for the performance variation because each network size has different values of
throughput and latency that affect the RT. However, a wormhole router with buffer size
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2-flits and FIR of 0.1 flits/cycle running at 100MHz over synthetic traffic is used for this
test experiment .

In network sizes less than 10x10 and RT above 1 msec, the difference is unnoticeable
between theoretical and simulated RT. For instance, in Figure 5-4, a slight increase is
noticed in the difference in the network size less than 7x7, the difference does not
increase over 30% as illustrated in Figure 5-3, while for the network size larger than 8x8
it reaches over 70%. Alternatively, the simulated RT for five simultaneous
reconfigurations, as shown in Figure 5-6, the difference is drifted at network sizes less
than 10x10. Then, the gap stroked at larger network sizes that are larger than 10x10,
where the difference percentage is higher than 100% and reaches 400% at network size
18x18 as illustrated in Figure 5-3.

Figure 5-3 shows the percentage difference between the theoretical and the simulated
RT using one, three and five simultaneous DPRs. It is shown that at small network sizes,
from 2x2 to 9x9, the difference is always lower than 40%, 50% and 100% respectively,
because RT is relatively more significant than any network overheads, such as latency
and throughput overheads.

On the other hand, starting from network size of 10x10, the latency is considered
and affects the RT significantly.

Differnce between threotical and simulated reconfiguration time
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Figure 5-3: Difference percentage between the theoretical and the simulated 1, 3
and 5-DPR using wormhole router with 2-flits buffer depth

46



As the number of simultaneous DPRs increases, the difference increases markedly.
The difference percentage does not exceed 70% for all network sizes using 1-DPR as
shown in Figure 5-3. Whereas, in simultaneous 3-DPRs, the difference percentage
reaches up to 75% at large network sizes of 18x18 as shown in Figure 5-5. This is due to
the complexity of controlling parallel DPRs, and the large network's latency due to small
buffer depth 2-filts. Furthermore, other nodes are unable to communicate with the node
that is reconfigured dynamically.

The experiment’s DPR results using a wormhole router with buffer size 2-flits and
FIR of 0.1 flits/cycle running at 100MHz over synthetic traffic are summarized in Table

5-2, where the recommended network size and the number of simultaneously DPRs are
listed according to the reconfiguration time.

Reconfiguration time comparison

theoretical 1-DPR simulated 1-DPR
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Figure 5-4: RT Comparison between the theoretical and the simulated 1-DPR
using wormhole router with 2-flits buffer depth
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Figure 5-5: RT Comparison between the theoretical and the simulated 3-DPR
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Figure 5-6: RT Comparison between the theoretical and the simulated 5-DPR

using wormhole router with 2-flits buffer depth
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Table 5-2: Network size recommendation for selected reconfiguration time for
wormhole router with 2-flits buffer depth

Reconfiguration No of DPRs can be used Network size
Time
~10 msec 3to 5 DPRs 3x3 to 5x5
~5 msec 5 DPRs 5x5 to 6x6
~1 mesc Not recommended Not recommended

5.3.1.2. Wormbhole router with 8-flits buffer depth

Figure 5-7 shows the percentage difference between the theoretical and the simulated
RT using one, three, and five simultaneous DPRs respectively. Using a wormhole router
with buffer size 8-flits and FIR of 0.1 flits/cycle running at 100MHz over synthetic
traffic. It is shown that at network sizes starting from 2x2 to 9x9, the difference is always
lower than 7.5%, 10% and 15% respectively because RT is relatively more significant
than latency and throughput overheads. On the other hand, starting from network size of
10x10, the latency is considered and affects the RT.

The difference is unnoticeable between the theoretical and the simulated RT in
network sizes that are less significant than 10x10. For instance, in 1-reconfiguration
Figure 5-8, a little increase is noticed in the difference in network dimension smaller than
11x11, it does not increase over 10% Figure 5-7, while for network size larger than 12x12
it reaches over 35%. Alternatively, the simulated RT for three simultaneous
reconfigurations, as depicted in Figure 5-9, the difference is drifted at network sizes less
than 10x10. Then, the gap stroked at larger network sizes that are larger than 10x10,
where the difference percentage is higher than 10% and reaches 30% at network size
18x18 as illustrated in Figure 5-7.
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Differnce between threotical and simulated reconfiguration time
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Figure 5-7: Difference percentage between the theoretical and the simulated 1, 3
and 5-DPR using wormhole router with 8-flits buffer depth

The difference percentage between the theoretical and simulated RT increases as the
number of simultaneous DPRs increases. The difference percentage does not exceed 35%
for all network sizes using 1-DPR as shown in Figure 5-7. Whereas, when using
simultaneous 5-DPRs as shown in Figure 5-10, the difference percentage reaches up to
70% at large network sizes of 18x18 as shown in Figure 5-7. That is due to the complexity
of controlling parallel DPRs, and the vast network's latency. Furthermore, all nodes are
not able to communicate with the node that is under dynamic reconfiguration.

Table 5-3 summarizes the experiment’s results of DPR using a wormhole router with
buffer size 8-flits and FIR of 0.1 flits/cycle running at 100MHz over synthetic traffic.
The recommended network size and the number of simultaneously DPRs are calculated
according to the RT. The recommendation is made based on the difference between the
theoretical and the simulated results of RT.
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Figure 5-8: RT Comparison between the theoretical and the simulated 1-DPR
using wormhole router with 8-flits buffer depth
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Figure 5-9: RT Comparison between the theoretical and the simulated 3-DPR
using wormhole router with 8-flits buffer depth
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Figure 5-10: RT Comparison between the theoretical and the simulated 5-DPR
using wormhole router with 8-flits buffer depth

Table 5-3: Network size recommendation for selected reconfiguration time for
wormbhole router with 8-flits buffer depth

Reconfiguration No of DPRs can be used Network size
Time
~10 msec 1to 5 DPRs 3x3 to 8x8
~5 msec 1to 5 DPRs 5x5 to 12x12
~1 mesc 3 DPRs 10x10 to 18x18
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5.3.2.  Wormhole router with virtual channels

The previous experiment is repeated using the network of wormhole router with the
8-virtual channel and buffer size of 8-flits at FIR of 0.1 flits/cycle.

As illustrated in Figure 5-11, at network dimension less than 10x0, which has a
significant RT (more than 5 msec), using a wormhole router with VVC has a minor effect
on RT. Interestingly, for higher network sizes, over 10x10, routers with VVCs improve the
RT and the difference between the theoretical and the simulated result is reduced by
factor 60% than that a wormhole router without VVC is used. These reconfiguration values
correlate favourably with the network performance metrics, which also are enhanced by
using wormhole router with VCs. Figure 5-12 and Figure 5-13 state the result of 1-DPR
and 3-DPR at a time, where a constant difference is noticed as the network size varies
from 2x2 to 18x18. In contrast, the simulated RT for 5-DPR simultaneously increases at
network sizes more than 10x10 as shown in Figure 5-14.
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Figure 5-11: Difference percentage between the theoretical and the simulated 1, 3
and 5-DPR using wormhole router with 8-flits buffer depth and 8-VC

Figure 5-11 shows that at small network sizes (i.e., 2x2 to 9x9), the difference
percentage is lower than 7%. On the other hand, starting from the network dimension of
10x10, the difference reaches up to 12%, as the RT becomes smaller and is affected by
the network’s latency.
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At network sizes 2x2 to 9x9, the difference is lower than 10%. Starting from network
size of 10x10, the difference reaches up to 30%, as the RT becomes smaller and is
affected by the network's latency as shown in Figure 5-11.

In contradiction with the earlier findings using wormhole router without VCs, as the
simultaneous number of DPR increases and the network size increases, the percentage
difference between the theoretical and the simulated RT values does not increase
significantly. The percentage does not exceed 8% all over network sizes using 1-DPR as
denoted in Figure 5-12, and by using 3-DPR simultaneously, the percentage reaches up
to 20% at large network size of 18x18 in Figure 5-13, which substantiates previous
findings in chapter 4.

Table 5-4 summarizes the experiment’s results of DPR according to reconfiguration
time, network size and the number of simultaneous DPRs. The recommendation is made
based on the difference between the theoretical and the simulated result of RT for both
networks of wormhole router without VC and with 8-virtual channels using a synthetic
application.
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Figure 5-12: RT Comparison between the theoretical and the simulated 1-DPR
using wormhole router with 8-flits buffer depth and 8-VC
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Table 5-4: Network size recommendation for selected reconfiguration time for
wormhole router with 8-flits buffer depth and 8-VC

Reconfiguration No of DPRs can be used Network size
Time
~10 msec 1to 5 DPRs 3x3 to 8x8
~5 msec 1to 5 DPRs 5x5 to 12x12
~1 mesc 3to5 DPRs 10x10 to 18x18

5.4. Simulation results of the embedded application

In this experiment, the DPR of NoC-based FPGA is studied and evaluated with an
embedded application. The impact of changing the simultaneous dynamic
reconfiguration, representing the switching between two applications, is assessed and
compared to the theoretical results.
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54.1. Embedded Application

Many embedded applications such as 802.11a WiFi receiver [47], Video Object
Plane Decoder, and multimedia system [48] are examined using NoC-DPR simulator to
have early access to the application performance before the design stage .

Each application is composed of a different number of tasks with different FIR. All
tasks are mapped onto the network using either random mapping or n-map mapping
algorithm [49]. Furthermore, each task communicates with one or multiple destinations.
The specifications of the embedded application are parsed to the NoC-DPR through an
application file that includes the number of tasks, the destination, and the FIR of each
task.
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Figure 5-16: Comparison between the theoretical and the simulated multiple DPR
for Wifi receiver application using 4-filts buffer depth

The multiplexing between many embedded applications using DPR is a prime
benchmark for NoC-DPR simulator, as this experiment emphasizes the advantages of
NoC-based FPGAs over the conventional SRAM-based FPGAs, where the main
advantage is the ability to perform multiple DPRs simultaneously.

The network of wormhole routers with a buffer size of 4, 8, and 16-flits running at
100MHz are considered for this experiment. The study selects 802.11a WiFi receiver and
multimedia system application. The 802.11a WiFi receiver has 24 tasks, and the
multimedia system has 25 tasks as depicted in Figure 5-15a to Figure 5-15c. The
reconfiguration is started by the farthest node from the master node (0, 0), then the next
node as shown in Figure 5-15b, so on till all the 25 tasks are configured as illustrated in
Figure 5-15c.
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Figure 5-17: Comparison between the theoretical and the simulated multiple DPR
for Wifi receiver application using 8-filts buffer depth
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Figure 5-18: Comparison between the theoretical and the simulated multiple DPR
for Wifi receiver application using 16-filts buffer depth
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The impact of changing the number of simultaneous DPRs to switch between
embedded applications is evaluated and compared to the theoretical results as depicted
in Figure 5-16 for a network of wormhole routers with buffer depth 4-flits.

The total time of reconfiguring all tasks from multimedia application to or from WiFi
application is measured by varying the number of DPRs simultaneously from 1-DPR to
24-DPR as illustrated in Figure 5-15 and compared to the conventional FPGA that allows
only 1-DPR, where RT saturates at 245 msec.

Significantly, the difference between the theoretical and the simulated RT is slightly
drifting as portrayed in Figure 5-16 using 4-flits buffer depth, as well as in Figure 5-17
and Figure 5-18 for 8 and 16 buffer depths receptively.

These findings are not in a complete agreement with the previous results using the
wormhole router without VCs. Nevertheless, further tests are performed to resolve this
contradiction; the comparison between the results of using wormhole router with eight
flits buffer depth and wormhole router with 4-VCs is depicted in Figure 5-19. These
results revealed the cause of the latter contradiction, which is the order of sending the
reconfiguration packets; whereas, in this case study, the master node sends the
reconfiguration packets in order, from the farthest to the nearest nodes. Nevertheless, the
RT to switch between the WiFi and multimedia system is reduced by a factor of 12.25x
using the NoC-based FPGA:s.
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Figure 5-19: Comparison between the theoretical and the simulated multiple DPR
for Wifi receiver application using 8-filts buffer depth of both wormhole router
and wormhole router with 4-VCs
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5.5. Design recommendations

Based on the previous experiments; some design insights and recommendations
should be taken into consideration during the design of DPR on NoC-based FPGAs [51]
[52]:

+A convential NoC platform cannot be used to implement DPR application directly.
For instance, when one PE is performing DPR, the network should prevent other PEs
from sending or receiving data to/from this PE until DPR is finished.

«Selecting a master node to control DPR’s process: in the proposed NoC-DPR
simulator, it is assumed that PE (0, 0) is the master of DPR process that is responsible
for sending of reconfiguration packets as depicted in Figure 5-15.

*When the target PE receives the reconfiguration packet, it starts to perform
reconfiguration. After the DPR is finished, the destination sends back to master node
acknowledge packet to broadcast the availability.

*The clear advantage of using NoC-based FPGAs is the ability to perform multiple
DPRs simultaneously. Thus numerous reconfiguration controllers should be distributed
along with each PE.

*The recommended network size and number of simultaneous DPRs are estimated
according to the desired RT. As portrayed in Figure 5-3 to Figure 5-14, the RT is the
primary parameter over the other network parameters (i.e., latency and throughput),
which affects the deviation between the theoretical and the simulated results directly. For
instance, if the RT is 100 msec, up to 5-DPR simultaneously are executed, at any suitable
network of wormhole routers with size from 2x2 to 9x9. In contrast, if the limit of RT is
1 msec, the optimal choice is 5-DPR simultaneously and wormhole network with 8-VC
with a size larger than 10x10.

*Using virtual channel wormhole router enhances network latency and throughput,
and reduces the RT.

5.6. Summary

In this chapter, two experiments are discussed. It is shown that NoC-based FPGA
enhances the reconfiguration performance due to the ability to perform various DPRs at
a time. The first experiment is executed using a synthetic application, where PEs of the
network is theoretically mapped on Virtex-5 FPGAs, then the results of RT difference
are calculated, the time difference between the theoretically and the simulated in both
network of wormhole routers with and without virtual channels are estimated. The
recommended network size and number of simultaneous DPRs are estimated according
to the desired RT. It is found that the difference is always lower than 50% and 30% at
small size networks for a network of wormhole routers with and without virtual channels
respectively.

Finally, the RT is enhanced by a factor of 12.25x when switching between the WiFi
and multimedia system.
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Chapter 6 : Conclusions and Future work

Merging NoC with FPGA becomes an essential step for enhancing data
communication, and adding DPR improves bandwidth utilization and increases designs
efficiency and scalability.

The thesis’s contribution is examined in four phases. In Chapter 2, an overview of
FPGA'’s building blocks, an introduction for networking principles, and a survey of
several NoC simulators are provided.

In Chapter 3, a comprehensive survey on the different techniques of DPR on Xilinx
FPGA is presented. The four configuration methods used with DPR in Xilinx FPGASs are
reviewed, and the results stated that JTAG’s performance is better than the others with
small designs where the area overhead is very noticeable. Despite that, the performance
is not good with large designs where the space cost is not reasonable compared to the
design area.

In Chapter 4, a comparison of the NoC-DPR performance to NoCTweak simulator
performance is discussed, then the latency and throughput are estimated for 2-flits, 4-
flits, and 8-flits buffer sizes and wormhole router and wormhole router with virtual
channels.

Finally, Chapter 5 presents the work done to study the RT overhead, which resulted
in an increasing number of simultaneous configurations on FPGA fabric using a synthetic
and an embedded application. It is evident that NoC-based FPGA enhances
reconfiguration performance because multiple configurations are performed
simultaneously. However, supporting multiple DPRs needs to add more resources such
as controlling unit and decoupling buffers. Accordingly, the reconfiguration time of DPR
with NoC is better than the RT of DPR at conventional FPGA. Despite that, the number
of simultaneous DPRs cannot exceed the signficant limit for specific network sizes, as
no reduction in RT is gained, moreover, more resources are added.

In this work, a state-of-art NoC-DPR simulator is proposed, and some
recommendations are extracted for the implementation of DPR on NoC-based FPGA to
get the optimal size of the network concerning PE’s logic resources.

It is shown that NoC-based FPGA enhances reconfiguration performance, and
performs simultaneous DPRs. The first experiment is executed using a synthetic
application, then the results of reconfiguration time difference are calculated, the time
difference between the theoretically and the simulated in both network of wormhole
routers with and without virtual channels. The recommended network size and number
of simultaneous DPRs are estimated according to the desired reconfiguration time. It is
found that the difference is always lower than 50% and 30% at small size networks for a
network of wormhole routers with and without virtual channels respectively.

The DPR of NoC-based FPGA is studied and evaluated using an embedded

application that switches from the multimedia system to the WiFi receiver. Furthermore,
the reconfiguration time is estimated, which provides further evidence of enhancement
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with factor 12.25x over the conventional SRAM-based FPGAs. Plenty of the
experiments, results, and their conclusions in this thesis are published in [1, 51 and 52].

This research has three limitations: The first is the comparison of NoC-DPR
simulation results with an existing simulators of similar architecture to validate the
modifications on NoCtweak simulator. Second limitations is the overhead area
estimation for the simulated hardwired module. The second is the power estimation.
However, area and power overhead are estimated and added to the proposed simulator
NoC-DPR in the future, as each module and sub-module on FPGA, where area and power
are calculated by NoC-DPR using pre-calculated sub-modules. Finally, asynchronous
support might be added, as the network interface in NoC-DPR simulator isolates PEs and
the network. The future work will try to overcome these limitations, and hopefully, there
will be a second release of the proposed NoC-DPR simulator.
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Appendix A: NoC-DPR simulator Options

------------------- Platform Options ----------------=--=-------—-
-platform [option]:  application traffic simulated on this platform.
option = synthetic: a synthetic traffic pattern (default)
option = embedded: an embedded application trace
option = reconfig:  perform reconfig application
-seed [value]: random seed for the simulation.
(the same random seed will drive the same output results for
the same network configuration. It's used for easier debugging.
Default value = system time.)
-log [filename]: log file for simulation outputs
-vcd [filename]: VCD file for signal waveform traces
-simmode [option]: simulation mode (packet or cycle)
-simtime [value]: simulation running time
value = N. Default = 100,000.
if simmode option = packet: stop simulation after transferring N packets
if simmode option = cycle:  stop simulation after running N clock cycles
-warmtime [value]: warmup time for the network to become stable
value = M (M < N). Default = 10,000.
iIf simmode option = packet: do not consider the first M received packets
if simmode option =cycle:  warmup time is M clock cycles

------------------ Reconfigurable Options -
-reconfig_timel [value]: reconfiguration time for proc 1
-reconfig_time2 [value]: reconfiguration time for proc 2
-fir_rc [value]: flit injection rate of reconfig (number of flits injected by each core
per cycle)
0 <fir <=1. Default =0.1
-length_rc [value]:  the number of flits per rconfig packet.
(only for the fixed packet length option. Default = 5.)
-rc_num [value]: the number of the core to be reconfigured at the time.
(Default = 1.)
------------------ Synthetic Options ---------======mmmmmmemme-
-dimx [value]: X dimension length of the 2-D mesh network. Default value = 8.
-dimy [value]: Y dimension length of the 2-D mesh network. Default value = 8.

-traffic [option]: synthetic traffic patterns used for the simulation.
option = random: uniform random (default)
option = transpose:  transpose
option = bitc: bit-complement
option = bitr: bit-reverse
option = tornado: tornado
option = shuffle: bit-shuffle
option = rotate: bit-rotate

option = neighbor:  nearest neighbor traffic
option =regional: communication distance <=3
option = hotspot: central or corner hot spots
-nhs [value]: the number of hot spots. Default = 4.
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-hstype [option]: hot-spot type
option = central: hot spots  at the central cores
option = corner: hot spots at the corners (default)
-percent [value]: percentage of traffics going to neighboring or regional or
hotspot cores

------------------ Embedded Application Traces -----------=-=--------

-appfile [option]: application task communication graph used in the simulation.
option = vopd.app: video object plan decoder with 16 tasks (default)
option = mms.app: multimedia system with 25 tasks
option = mwd.app: multi-window display with 12 tasks
option = wifirx.app: WiFi baseband receiver with 25 tasks
option = cavlc.app: H.24 CAVLC encoder with 16 tasks
option = mpeg4.app: MPEG4 decoder with 12 tasks
option = vce.app: video conference encoder with 25 tasks

option = autoindust.app: E3S auto-indust benchmark with 24 tasks

option = consumer.app: E3S consumer benchmark with 12 tasks

option = telecom.app: E3S telecom benchmark with 30 tasks
-appfilel [option]:  application task communication graph used in the simulation.
-mapping [option]: mapping algorithm used to map the task graph to the

processor array
option = random: random mapping
option = nmap: near-optimal mapping using the NMAP algorithm

------------------- Traffic Options
-fir [value]:  flit injection rate (number of flits injected by each core per cycle)
0 <fir <=1. Default =0.1
-dist [option]: probability distribution of the period between two injected packets
option = exponential: exponential distribution (default)
option = identical: identical distribution
-plength [option]: packet length is fixed or variable
option = fixed: fixed packet length (default)
option = variable:  variable packet length
-length [value]: the number of flits per packet.
(only for the fixed packet length option. Default = 5.)
-lengthmin [value]:  the minimum number of flits per packet
(only for the variable packet length option. Default = 2.)
-lengthmax [value]: the maximum number of flits per packet
(only for the variable packet length option. Default = 10.)

------------------- Router Settings -----------=-===-===-m=m-mmmmo-
-router [option] the simulated router

option = wh: wormhole router (default)
option = vc: virtual-channel router
option = roshaqg: RoShaQ share-queues router
option = bufferless: bufferless router
option = cs: circuit-switched router
-pptype [value]: pipeline type and the number of pipeline stages. Default = 3
stages
-bsize [value]: buffer depth (2, 4, 8, 16, 32 flits). Default = 4 flits.
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-sbsize [value]: shared-buffer queue depth (2, 4, 8, 16, 32 flits). Default = 4
flits.

-nvc [value]: the number of virtual-channel buffers per input port. Default =
2 queues.
-nsb [value]: the number of shared-buffer queues in RoShaQ routers.
Default = 5 queues.
-routing [option]: routing algorithm
option = xy: XY dimension-ordered routing (default)

option = nfminimal:  Negative-First minimal adaptive routing

option = wfminimal:  West-First minimal adaptive routing

option = nlminimal:  North-Last minimal adaptive routing

option = oeminimal: Odd-Even minimal adaptive routing

option = table: lookup table based routing

-outsel [option]: choose an output port among multiple ones returned by an adaptive

routing

option = xyordered: the X dimension first (default)

option = nearestdim: the dimension nearest to the destination first

option = farthestdim: the dimension farthest to the destination  first

option = roundrobin: round-robin among output ports

option = credit: the output port having the highest credit first
-sa [option]:  switch arbitration policy

option = rr: round-robin (default)

option = oldest:  oldest first

option = takeall: ~ winner takes all (only for virtual-channel routers)

option = islip: ISLIP based algorithm (only for virtual-channel routers)
-vca [option]: virtual-channel allocation policy (only for virtual-channel

routers)
option = rr: round-robin (default)

option = oldest:  oldest first
option = islip: iISLIP based algorithm
-llength [value]: inter-router link length (in um). Default = 1000 um.

--------------- Environment Settings --- oo
-technode [value]: CMOS technology process (90, 65, 45, 32, 22 nm). Default
=65 nm.
-fregmode [option]:  clock frequency setting
option = fixed: fixed clock frequency (in MHz)
option = max: the maximum clock frequency supported by the router
-freq [value]: for fixed clock frequency (in MHz). Default = 1000 MHz.
-volt [value]: supply voltage (in V). Default = 1.0 V.
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Appendix B: Source Code of introduced modules

Header file Network Interface:

#ifndef PROC_NOC_INTER_H_
#define PROC_NOC_INTER_H_

#include <queue>

#include <systemc.h>

#include "../definition.h"

#include "../common_functions.h"
#include "../router/router_parameters.h"

#include "proc_parameters.h”
#include "../global_variables.h"

class proc_noc_interface: public sc_module{
public:
/I clk and reset
sc_in <bool> clk;
sc_in <bool> reset;

/I Signal from the router saying that he received a flit for this interface
sc_in <bool>r_valid_in;

/I Signal from the router with the flit to be received by this interface
sc_in <Flit> r_flit_in;

/I Signal from virtual channels of the router saying that one buffer entry is
available
sc_in <bool>r_out_vc_buffer rd[MAX_ N_VCS];

/I Signal to router saying that this interface want to send a flit
sc_out <bool>r_valid_out;

/I Signal to router with the flit to be sent by this interface
sc_out <Flit>r_flit_out;

/I Signal to router saying saying that this interface has read an input flit on the
given VC (the router can free it)

sc_out <bool>r_in_vc_buffer rd[MAX_N_VCS];

sc_out <bool>r_interface_buffer rd[MAX_N_VCS];

Il Signal from the processor saying that he received a flit for this interface

sc_in <bool> p_valid_in;
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/I Signal from the processor with the flit to be received by this interface
sc_in <Flit> p_flit_in;

/I Signal from virtual channels of the processor saying that one buffer entry is
available
sc_in <bool> p_out_vc_buffer_rd,;

/I Signal to processor saying that this interface want to send a flit
sc_out <bool> p_valid_out;

/I Signal to processor with the flit to be sent by this interface
sc_out <Flit> p_flit_out;

// Signal to processor saying saying that this interface has read an input flit on the
given VC (the router can free it)

sc_out <bool> p_buff _out_full;

// Signal to processor saying saying that this interface has read an input flit on the
given VC (the router can free it)

sc_out <bool> p_vaild_out_buff;

sc_signal <int> out_vc_remain[MAX_N_VCS]; I/l keep trace of
number of idle entries of each output VC
sc_signal <int>out_vc_remain_reg[MAX_N_VCS];

sc_signal <int>in_vc_remain[MAX_N_VCS]; I/l keep trace of
number of idle entries of each output VC
sc_signal <int>in_vc_remain_reg[MAX_N_VCS];

sc_signal <bool> out_buff_empty;
sc_signal <int> in_buff_empty;
sc_signal <int>in_buff_empty_reg;
sc_signal <bool> in_buf_out_buffer_rd,;
sc_signal <bool> out_buf_out_buffer_rd;

sc_signal <bool> out_buffer_full;
sc_signal <bool> in_buffer_full;

int local_x;
int local_y;

queue <Flit> out_buffer;
queue <Flit> in_buffer;

[l initialize all constants inside the processor (X,y)
void initialize(int x, int y);

void out_vc_remain_process();

void count_plus_process(); // pipelined out_vc_remain
void out_vc_remain_reg_process();// pipelined out_vc_remain

74



void in_vc_remain_process();
void in_vc_remain_reg_process(); // pipelined out_vc_remain

void tx_process_out_buff();
void rx_process_in_buff();

void out_buffer_process();
void in_buffer_process();

/I constructor
SC_HAS_PROCESS(proc_noc_interface);
proc noc interface (sc module name name): sc module(name){

string in_buffer_name;
in_buffer_name = "in_buffer_interface";

buffer_size = RouterParameter::buffer_size;

/lin buff full
SC_METHOD (tx_process_out_buff);
sensitive << clk.pos() << reset.pos() ;

SC_METHOD (rx_process_in_buff);
sensitive << clk.pos() << reset.pos();

SC_METHOD (in_buffer_process);
sensitive << clk.pos() << reset.pos();

SC_METHOD (out_buffer_process);
sensitive << clk.pos() << reset.pos();

/[ update out_vc_remain

SC_METHOD (out_vc_remain_process);

for (int vo=0; vo<RouterParameter::n_VCs; vo++){
sensitive << out_vc_remain_reg[vo];
sensitive << count_plus[vo];
sensitive << count_minus[vo];

¥

/Il pipelined out_vc_remain
SC_METHOD (out_vc_remain_reg_process);
sensitive << clk.pos() << reset.pos();

/I count_plus = out_vc_buffer

SC_METHOD (count_plus_process);

for (int vo=0; vo<RouterParameter::n_VCs; vo++){
sensitive << r_out_vc_buffer_rd[vo];

}

SC_METHOD (in_vc_remain_process);
for (int vo=0; vo<RouterParameter::n_VCs; vo++){
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sensitive << in_vc_remain_reg[vo];
sensitive << in_count_plus[vo];
sensitive << in_count_minus[vo];

}

/I pipelined out_vc_remain
SC_METHOD (in_vc_remain_reg_process);
sensitive << clk.pos() << reset.pos();

}

private:
unsigned int buffer_size;  // number of flits

sc_signal <bool> in_count_plusfMAX_N_VCS]; // =out_vc_buffer_rd
sc_signal <bool> in_count_minus[MAX_N_VCS];

sc_signal <bool> count_plusfMAX_N_VCS]; /I = out_vc_buffer_rd
sc_signal <bool> count_minus[MAX_N_VCS];

+
#endif /* PROC_NOC_INTER_H_ */
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Header file of Process Element interface with Rechannel Library:

#ifndef PROC_RC_H_
#define PROC_RC _H_

#include <systemc.h>
#include "ReChannel.h"
#include "../definition.h"
#include "proc_evaluation.h™

#include "synthetic/without ACK/synthetic_proc_rc.h"
#include "embedded/without_ ACK/embedded_proc_rc.h"

#define NUM_RC_PROC 4

class procRCIf: public VirtualProc,
public rc_reconfigurable{
public:
/I clk and reset
rc_in_portal<bool> p_clk;
/Irc_in_portal<bool> p_reset;

/I Input interface

rc_in_portal<bool> p_valid_in;
rc_in_portal<Flit> p_flit_in;
rc_out_portal<bool> p_in_vc_buffer_rd;

Il output interface

rc_out_portal<bool> p_valid_out;

rc_out_portal<Flit> p_flit_out;

rc_in_portal<bool>p_out vc_buffer rd; // "full" signals from virtual
channels of the local router port

rc_in_portal <bool> p_vaild_in;

/lrc_in_portal<bool> p_reconf_done;

- functions
/I initialize all constants inside the processor (X,y)
void initialize(int x, int y, EmbeddedAppHashTable* app_info=NULL);

ProcEvaluationFactors *evaluation();
void change_module();

void reconfig_signal_process();

/Ivoid reconfig_done_signal_process();
EmbeddedProc_rc* procEm;
EmbeddedProc_rc* procEm1;
//SyntheticWithACKProc_rc procSynAck;
SyntheticProc_rc* procSyn;
SyntheticProc_rc* procSynl;
VirtualProc *currentProc;

77



VirtualProc *rcProc[NUM_RC_PROC];

rc_control ctrl;

sc_signal <bool> reset_int;

sc_signal <bool> recof _done_s;

/[ constructor

SC_HAS_PROCESS(procRCIf);

procRCIf (sc_module_name name): VirtualProc(name),

{

ctrl(“control™)

/IprocEm = new EmbeddedProc_rc("EmbeddedProc_rc");
procSyn = new SyntheticProc_rc("SyntheticProc_rc", this);
procSynl = new SyntheticProc_rc("'SyntheticProc_rcl", this);
procEm = new EmbeddedProc_rc("EmbeddedProc_rc", this);
procEm1 = new EmbeddedProc_rc("EmbeddedProc_rcl", this);

rcProc[0] = procSyn;
rcProc[1] = procSyni,;
rcProc[2] = procEm;
rcProc[3] = procEml;

p_clk.static_port(clk);
procSyn->reset(reset);
procSynl->reset(reset);
procEm->reset(reset);
procEm1->reset(reset);

p_valid_in.static_port(valid_in);
p_flit_in.static_port(flit_in);

p_valid_out.static_port(valid_out);

p_flit_out.static_port(flit_out);

p_in_vc_buffer_rd.static_port(in_vc_buffer_rd);

p_out_vc_buffer_rd.static_port(out_vc_buffer_rd);

p_vaild_in.static_port(out_buf vaild_in);

for(int i=0; ikNUM_RC_PROC; i++){
p_clk.dynamic_port(rcProcl[i]->clk);

p_valid_in.dynamic_port(rcProc[i]->valid_in);
p_flit_in.dynamic_port(rcProc[i]->flit_in);

p_valid_out.dynamic_port(rcProc[i]->valid_out);
p_flit_out.dynamic_port(rcProc[i]->flit_out);

p_in_vc_buffer_rd.dynamic_port(rcProc[i]->in_vc_buffer_rd);

p_out_vc_buffer_rd.dynamic_port(rcProc[i]->out_vc_buffer_rd);
p_vaild_in.dynamic_port(rcProc[i]->out_buf_vaild_in);
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procSyn->rc_set_delay(RC_LOAD,
sc_time(ProcessorParameters::proc_reconfig_time_1, SC_NS));
procSynl->rc_set delay(RC_LOAD,
sc_time(ProcessorParameters::proc_reconfig_time_1, SC_NS));
procEm->rc_set_delay(RC_LOAD,
sc_time(ProcessorParameters::proc_reconfig_time_1, SC_NS));
procEm1->rc_set_delay(RC_LOAD,
sc_time(ProcessorParameters::proc_reconfig_time_1, SC_NS));
ctrl.add (*procSyn + *procSynl + *procEm + *procEm1);
if(CommonParameter::platform_type ==
PLATFORM_RECONFIG_EM){
ctrl.activate(*procEm);
currentProc=procEm,;
active_module = EM;
}
else{
ctrl.activate(*procSyn);
currentProc=procSyn;
active_module = SYN;
}
/lactive_module = &procEm;
do_activate_syn = false ;
do_activate_synl = false ;

do_activate_em = false ;
do_activate_em1 = false ;

SC_THREAD(reconfig_signal_process);
sensitive << reset.pos() << clk.pos() << procSyn->do_activate_ em <<
procSynl->do_activate_em
<< procEm->do_activate_em << procEm1->do_activate_em;

}
~procRCIf(){

delete procSyn;
delete procSyn1;
delete procEm;
delete procEm1,

ks

private:

enum modules{SYN,SYN1, EM, EM1} active_module;
sc_signal<bool> do_activate syn1;

sc_signal<bool> do_activate_em1;

}

#endif /* PROC_RC_H_ */
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