

EXPLORING THE SIMULATION OF DYNAMIC

PARTIAL RECONFIGURATION FOR NETWORK ON

CHIP (NOC)-BASED FPGA

By

Amr Hassan Ali Baddar

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2019

EXPLORING THE SIMULATION OF DYNAMIC

PARTIAL RECONFIGURATION FOR NETWORK ON

CHIP (NOC)-BASED FPGA

By

Amr Hassan Ali Baddar

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electronics and Communications Engineering

Under the Supervision of

Prof. Hossam A. H. Fahmy

 Dr. Hassan Mostafa

Professor

Electronics and Communications

Engineering Department.

Faculty of Engineering, Cairo University

 Assistant Professor

Electronics and Communications

Engineering Department.

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2019

EXPLORING THE SIMULATION OF DYNAMIC

PARTIAL RECONFIGURATION FOR NETWORK ON

CHIP (NOC)-BASED FPGA

By

Amr Hassan Ali Baddar

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electronics and Communications Engineering

Approved by the Examining Committee

Prof. Hossam A. H. Fahmy (Thesis Main Advisor)

Computer Professor, Faculty of Engineering, Cairo University

Prof. Ahmed Hussein Mohamed (Internal Examiner)

Electronics Professor, Faculty of Engineering, Cairo University

Prof. Mohamed Abdelghany Salem (External Examiner)

Electronics Professor, Faculty of Engineering, German University Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2019

Engineer’s Name: Amr Hassan Ali Baddar

Date of Birth: 24/11/1989

Nationality: Egyptian

E-mail: amr_hassan@ymail.com

Phone: +201061488997

Address: 10b St., El-Maadi, Cairo, Egypt

Registration Date: 01/10/2012

Awarding Date: / /2019

Degree: Master of Science

Department: Electronics and Communication Engineering

Supervisors:

 Prof. Hossam A. H. Fahmy

Dr. Hassan Mostafa Hassan

Examiners:

 Prof. Hossam A. H. Fahmy

 (Thesis main advisor)

Computer Professor, Faculty of Engineering, Cairo

University

 Prof. Ahmed Hussein Mohamed

 (Internal Examiner)

Electronics Professor, Faculty of Engineering, Cairo

University

 Prof. Mohamed Abdelghany Salem

 (External Examiner)

Electronics Professor, Faculty of Engineering, German

University Cairo

Title of Thesis:

Exploring The Simulation of Dynamic Partial Reconfiguration for Network on Chip-

Based FPGA

Key Words:

Dynamic Partial Reconfiguration, Network-on-Chip, Fields Programmable Gate

Array

Summary:

In this thesis, a literature survey of exiting Dynamic Partial Reconfiguration (DPR)

techniques for conventional FPGAs is presented. Then, a comparative review of these

techniques is provided with respect to reconfiguration time and area. Following that,

different network parameters at the NoC-based FPGAs have been analyzed to estimate

the impact on DPR performance using a state-of-art simulator “NoC-DPR”, Finally, a

case study is introduced to clarify the DPR performance gap between NoC-based

FPGAs and conventional FPGAs.

mailto:amr_hassan@ymail.com

i

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has

been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have

cited them in the references section.

Name: Amr Hassan Ali Date:

Signature:

ii

Acknowledgements

I would like to express my utmost gratitude to Allah for giving me the strength to

complete the work.

I would also like to sincerely thank my supervisors, Prof. Hossam Fahmy and Dr

Hassan Mostafa, for their continuous support and guidance throughout my work.

iii

Table of Contents

DISCLAIMER .. I

ACKNOWLEDGEMENTS .. II

TABLE OF CONTENTS .. III

LIST OF TABLES ... VI

LIST OF FIGURES .. VII

NOMENCLATURE .. IX

ABSTRACT ... X

 : INTRODUCTION .. 1

 MOTIVATION .. 1

 CONTRIBUTION ... 2

 ORGANIZATION OF THE THESIS ... 2

 : BACKGROUND ... 3

 FPGA TECHNOLOGIES .. 3

2.1.1. FPGA versus ASIC ... 3

2.1.2. FPGA architecture .. 4

2.1.3. Heterogeneous Arrays ... 5

 DYNAMIC PARTIAL RECONFIGURATION.. 6

2.2.1. Reconfigurable Models ... 6
2.2.1.1. Single Context 6
2.2.1.2. Multi-Context 7
2.2.1.3. Partially Reconfigurable ... 8

2.2.2. Benefits of using Dynamic Partial Reconfiguration 8

 NETWORK ON CHIP ... 10

2.3.1. Interconnection challenge.. 10

2.3.2. Bus versus Network .. 11

2.3.3. NoC parameters .. 11

2.3.4. NoC Architecture ... 12

2.3.5. Topology ... 12

2.3.6. Routing .. 13

2.3.7. Switching techniques .. 13

2.3.8. Virtual channel Flow Control .. 14

 SIMULATION ABSTRACTION .. 15

 PROGRAMMING ABSTRACTION ... 15

2.5.1. Low-level programming languages: 16

2.5.2. Object-oriented languages: .. 16

2.5.3. Simulation frameworks: .. 16

 NOC SIMULATOR COMPARISON ... 16

 : CONFIGURATION TECHNIQUES FOR XILINX FPGAS 19

iv

 INTRODUCTION ... 19

 METHODOLOGY .. 19

3.2.1. JTAG... 19

3.2.2. Serial Mode ... 20

3.2.3. SelectMAP ... 20

3.2.4. ICAP ... 21

 SOFTWARE DEFINED RADIO DESIGN ... 22

 RESULTS AND DISCUSSIONS .. 22

3.4.1. Experiment setup .. 22

3.4.2. 8-bits Data Width ... 23

3.4.3. 16-bit Data Width ... 24

3.4.4. 32-bits Data Width ... 25

 SUMMARY .. 26

 : NOC-DPR SIMULATOR ARCHITECTURE 27

 INTRODUCTION ... 27

 NOC-DPR SIMULATOR ARCHITECTURE ... 27

 NOCTWEAK SIMULATOR .. 28

4.3.1. Network Latency .. 28

4.3.2. Network Throughput .. 29

 RECHANNEL SIMULATION LIBRARY ... 29

 NETWORK INTERFACE IMPACT .. 31

 DIFFERENT BUFFER DEPTHS .. 35

 DIFFERENT ROUTER TYPES .. 38

 SUMMARY .. 41

 : SIMULATION RESULTS AND DISCUSSION 43

 INTRODUCTION ... 43

 DYNAMIC PARTIAL RECONFIGURATION SIMULATION SETUP 43

 SIMULATION RESULTS OF THE SYNTHETIC APPLICATION 45

5.3.1. Wormhole router without virtual channels 45
5.3.1.1. Wormhole router with 2-flits buffer depth ... 45
5.3.1.2. Wormhole router with 8-flits buffer depth ... 49

5.3.2. Wormhole router with virtual channels 53

 SIMULATION RESULTS OF THE EMBEDDED APPLICATION 56

5.4.1. Embedded Application .. 58

 DESIGN RECOMMENDATIONS .. 61

 SUMMARY .. 61

 : CONCLUSIONS AND FUTURE WORK .. 63

REFERENCES ... 65

APPENDIX A: NOC-DPR SIMULATOR OPTIONS .. 69

APPENDIX B: SOURCE CODE OF INTRODUCED MODULES 73

v

vi

List of Tables

Table 2-1: Bus-versus-Network Arguments [22] ... 11

Table 2-2: NoC simulator comparison ... 17

Table 3-1: Reconfiguration speed for different reconfiguration techniquess 23

Table 3-2: Serial reconfiguration techniques recommendation over SMAP and ICAP . 26

Table 4-1: Latency and Throughput for different network sizes using 2 and 8-filt buffer

depth ... 35

Table 4-2: Latency and Throughput for different network sizes using 4 and 8-VC

wormhole router ... 40

Table 4-3: Latency and Throughput for different network sizes using 2-flits buffer

depth and 8-flits buffer depth with 4-VC wormhole router ... 41

Table 5-1: Reconfiguration time for different NoC sizes ... 44

Table 5-2: Network size recommendation for selected reconfiguration time for

wormhole router with 2-flits buffer depth .. 49

Table 5-3: Network size recommendation for selected reconfiguration time for

wormhole router with 8-flits buffer depth .. 52

Table 5-4: Network size recommendation for selected reconfiguration time for

wormhole router with 8-flits buffer depth and 8-VC ... 56

vii

List of Figures

Figure 2-1: Device capacity regarding look-up tables of the Altera Stratix and Xilinx

Virtex series FPGAs over the last decade [3] ... 3

Figure 2-3: FPGA Virtex Family Architectural Evolution over the Years [5-15]. 5

Figure 2-4: Different reconfiguration models: (a) Single Context, (b) Multi-Context,

and (c) Partially Reconfigurable [17] ... 6

Figure 2-5: Time multiplexed FPGA; (a) 16-bit adder on a conventional FPGA; (b)

time multiplexed implementation using four micro-reconfigurations (mc1,..,mc4); (c)

timing; (d) configuration storage [18] .. 7

Figure 2-6: DPR saves FPGA’s area [19] .. 8

Figure 2-7: Evolution of DPR support of Xilinx FPGA and software [19] 9

Figure 2-8: FPGA architectural as multiprocessor Array [16] 10

Figure 2-9: Different Communication Structures: a) bus-based, b) point-to-point, and c)

Network-on-Chip [21] .. 11

Figure 2-10: topologies for the different network [21] .. 13

Figure 2-11: Virtual channels mechanism [21] .. 14

Figure 2-12: Simulation levels versus speed and productivity [27] 15

Figure 3-1: Reconfigurations techniques of convolutional encoder inside the

communication chain [1] .. 19

Figure 3-2: Virtex-5 FPGA Serial Configuration Interface [38] 20

Figure 3-3: Virtex-5 FPGA SelectMAP Configuration Interface [38] 21

Figure 3-4: 8-bits ICAP and SelectMAP with Serial mode and JTAG 24

Figure 3-5: 16-bits ICAP and SelectMAP with Serial mode and JTAG 24

Figure 3-6: 32-bits ICAP and SelectMAP with Serial mode and JTAG 25

Figure 4-1: Network on a chip of NoCtweak simulator [52] ... 27

Figure 4-2: Network on a chip of DRP-NOC simulator [52] .. 28

Figure 4-3: A portal connecting two reconfigurable modules to a standard channel

SystemC .. 30

Figure 4-4: DPR simulation flow at systemC... 30

Figure 4-5: Network Interface of DRP-NOC simulator ... 31

Figure 4-6: Methodology to setup, run and collect simulation results from NoC-DPR

simulator ... 32

Figure 4-7: Average latency for 2-flits buffer depth for NoCTweak simulator without

PE ... 32

Figure 4-8: Average latency for 2-flits buffer depth for NoC-DPR simulator 33

Figure 4-9: Average throughput for 2-flits buffer depth for NoCTweak simulator

without PE buffer ... 34

Figure 4-10: Average throughput for 2-flits buffer depth for NoC-DPR simulator 34

Figure 4-11: Average latency for 4-flits buffer depth .. 36

Figure 4-12: Average latency for 8-flits buffer depth .. 36

Figure 4-13: Average throughput for 4-flits buffer depth .. 37

Figure 4-14: Average throughput for 8-flits buffer depth .. 37

Figure 4-15: 2-flits buffer depth average latency for 4-virtual channel 38

Figure 4-16: 2-flits buffer depth average latency for 8-virtual channel 39

viii

Figure 4-17: 2-flits buffer depth average throughput for a 4-virtual channel 39

Figure 4-18: 2-flits buffer depth average throughput for an 8-virtual channel 40

Figure 5-1: Process Elements as reconfiguration region for 2x2 NoC 43

Figure 5-2: Process Elements as reconfiguration region for 4x4 NoC 45

Figure 5-3: Difference percentage between the theoretical and the simulated 1, 3 and 5-

DPR using wormhole router with 2-flits buffer depth.. 46

Figure 5-4: RT Comparison between the theoretical and the simulated 1-DPR using

wormhole router with 2-flits buffer depth .. 47

Figure 5-5: RT Comparison between the theoretical and the simulated 3-DPR using

wormhole router with 2-flits buffer depth .. 48

Figure 5-6: RT Comparison between the theoretical and the simulated 5-DPR using

wormhole router with 2-flits buffer depth .. 48

Figure 5-7: Difference percentage between the theoretical and the simulated 1, 3 and 5-

DPR using wormhole router with 8-flits buffer depth.. 50

Figure 5-8: RT Comparison between the theoretical and the simulated 1-DPR using

wormhole router with 8-flits buffer depth .. 51

Figure 5-9: RT Comparison between the theoretical and the simulated 3-DPR using

wormhole router with 8-flits buffer depth .. 51

Figure 5-10: RT Comparison between the theoretical and the simulated 5-DPR using

wormhole router with 8-flits buffer depth .. 52

Figure 5-11: Difference percentage between the theoretical and the simulated 1, 3 and

5-DPR using wormhole router with 8-flits buffer depth and 8-VC 53

Figure 5-12: RT Comparison between the theoretical and the simulated 1-DPR using

wormhole router with 8-flits buffer depth and 8-VC ... 54

Figure 5-13: RT Comparison between the theoretical and the simulated 3-DPR using

wormhole router with 8-flits buffer depth and 8-VC ... 55

Figure 5-14: RT Comparison between the theoretical and the simulated 5-DPR using

wormhole router with 8-flits buffer depth and 8-VC ... 55

Figure 5-15: Network 5x6 for Wifi receiver application switching to Multi-Media

application .. 57

Figure 5-16: Comparison between the theoretical and the simulated multiple DPR for

Wifi receiver application using 4-filts buffer depth ... 58

Figure 5-17: Comparison between the theoretical and the simulated multiple DPR for

Wifi receiver application using 8-filts buffer depth ... 59

Figure 5-18: Comparison between the theoretical and the simulated multiple DPR for

Wifi receiver application using 16-filts buffer depth ... 59

Figure 5-19: Comparison between the theoretical and the simulated multiple DPR for

Wifi receiver application using 8-filts buffer depth of both wormhole router and

wormhole router with 4-VCs .. 60

Figure A-1:NoC-DPR tool ... 72

ix

Nomenclature

ASIC Application-Specific Integrated Circuits

BIST Built-In Self-Test

CAD Computer-Aided Design

CLB Configuration Logic Block

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DPR Dynamic Partial Reconfiguration

FPGA Field-Programmable Gate Array

ICAP Internal Configuration Access Port

IP Intellectual Property

ISE Integrated Software Environment

JTAG Joint Test Action Group

LUT Look-Up Table

NI Network Interface

NoC Network on Chip

NRE Non Recurring Engineering

P2P Point to Point

PAR Place and Route

PCIe Peripheral Component Interconnect Express

PE Process Element

RTL Register Transfer Level

RU Resource Usage

SDR Software Define Radio

SEU Single Event Upset

SoC System on Chip

SRAM Static Random Access Memory

TDM Time Division Multiplexing

VC Virtual Channel

WSF West Side First

x

Abstract

System-on-Chip (SoC) designs are among the most widely used designs to

implement computationally data-intensive applications, which are consist of several

Processing Elements (PEs) and storage elements (SEs) communicating together through

the aid of a network architecture. However, several Intellectual Properties (IPs) are

implemented on a single chip due to the recent developments in the fabrication process

of CMOS devices.

Meanwhile, Field Programmable Gate Arrays (FPGAs) are attracting more interest

to exploit SoC designs due to the constraints of Application-Specific Integrated Circuits

(ASICs) such as high Non-Recurring Engineering (NRE) cost and time to market.

Recently, the number of PEs is increasing to maximise functionalities and capabilities of

modern SoC designs. Accordingly, communication among those PEs becomes an

essential factor in the design of large-scale systems. Consequently, numerous challenges

of the communication amongst those PEs, while configured on FPGAs, are raised and

thus, innovative solutions are needed. Therefore, Network-on-Chip (NoC) has been

adopted for FPGA to address these communication challenges.

On the other hand, Dynamic Partial Reconfiguration (DPR) of SRAM- based FPGAs

becomes a remarkable feature for many applications, as DPR represents the potential to

add more flexibility during runtime. Moreover, adding the DPR feature to many

applications is easier than before because of the recent developments FPGA’s software

designing tools such as Quartus for Intel (previously Altera) and ISE for Xilinx. On the

contrary, DPR configuration technique such as Internal Configuration Access Port

(ICAP) and Joint Test Action Group (JTAG) port, encounters a performance limitation

because only one reconfiguration is permitted at a time.

In this thesis, a state-of-art NoC-based FPGA simulator is proposed, which supports

DPR simulation. NoC-DPR simulator is used to estimate design limitations and

performance degradations of using DPR for NoC-based FPGA. NoC-DPR simulator

measures the reconfiguration time overhead, which caused by network’s latency, and the

concurrent reconfigurations on FPGA fabric. It is proven that the overhead of

reconfiguration time increases exponentially with increasing the number of concurrent

reconfigurations. However, further investigations show that the network of wormhole

routers with virtual channels optimises the reconfiguration time with a factor up to 4x

compared to the network of wormhole routers without virtual channels. Finally, a case

study is introduced to clarify the DPR performance gap between NoC-based FPGAs and

conventional FPGAs.

1

 : Introduction

This Chapter presents a short introduction to the importance of studying the impact

of using the NoC approach on the DPR performance of FPGAs. Section 1.1 shows the

motivation behind this research. In Section 1.2, the main thesis contributions are

discussed. Section 1.3 provides the thesis outline and organization.

 Motivation

The recent developments in a wide range of applications such as image and video

signal processing, Software Defined Radio (SDR), and electronic measurement

applications have led to adding more flexibility over runtime using software parameters

or hardware reconfiguration, which increase the lifetime of the application. Therefore,

reconfigurable devices such as FPGA offer a suitable approach over the traditional ASIC

approach for these applications.

In addition to the significant advancements in FPGA’s essential resources, most of

the manufacturers are adding hard and soft blocks to the new FPGA fabric besides the

essential logic elements, such as memories, processors, ALUs and Digital Signal

Processing (DSP) blocks. Hence, FPGA has been commonly used over ASIC due to the

enhancements in the performance of FPGA compare to ASIC, the fast time to market,

the facile upgrading, and the low implementation cost.

Additionally, DPR is increasingly used for a variety of applications mapped on

SRAM-based FPGAs technology to enforce the flexibility over runtime phase [1].

Furthermore, Partially Reconfigurable (PR) devices save chip area by programming only

the necessary physical resources (such as LUTs, IP, and embedded blocks) in each

corresponding execution phase. Accordingly, power is saved by programming just the

needed blocks, which allows for static leakage reduction.

On the other hand, the system complexity increases because of the current

developments in chip scaling process. Additionally, designs’ layouts are developed from

plain circuit layout into complex heterogeneous structures. Accordingly, the number of

processing elements and the processing power have elevated; hence, data-intensive

applications have materialized.

Thus, the challenge of the communication between those cores, when configured on

FPGAs, has been triggered. Accordingly, Network-on-Chip (NoC) is considered as an

effective alternative to traditional bus-based system-on-chip for FPGAs, which

complicates the design process and reduces systems scalability and flexibility, to handle

these communication challenges. FPGAs adopt freely the NoC solution [2], where

FPGA’s Configuration Logic Blocks (CLBs) are considered as computing cores (or PEs).

CLBs are the basic logic blocks used to build any logic function. These cores use the

hardwired network of routers (NoC) to communicate with each other. Consequently,

those PEs can be dynamically reconfigured to adopt a new logic at the run-time without

any change neither in network structure nor the other PEs.

Regardless of this increasing interest in both concepts, NoC and DPR, several

researchers have focused on each concept individually rather than merging them.

Therefore, a tool called NoC-DPR, a cycle-accurate simulator for NoCs that supports

DPR, is developed to investigate the impact of different network’s parameters on DPR

performance. The DPR performance is measured by the reconfiguration time. The

2

principal character of NoC-DPR simulator is foreseeing the dynamic behaviour of the

NoC-based system before synthesis for the target architecture by estimating the suitable

network size, area of each processing element, number of simultaneous reconfiguration

process, and the target reconfiguration time.

 Contribution

This work includes the following contributions:

• A comparative review of DPR techniques for the conventional FPGA such as ICAP

and JTAG of Xilinx FPGA.

• Comparing several open-source NoC simulators to analyze the behaviour of the

NoC by varying network parameters. Choosing the best match with an open-source

library called ReChannel that simulates dynamic reconfiguration.

• Integrating NoCTweak with ReChannel library and evaluating the modification of

network interface on the simulator and network performance.

• Using a state-of-art NoC-based FPGA simulator, which supports DPR simulation

to measure the impact of varying network parameters such as network size, injection rate,

buffer size, and different router types on DPR performance. In addition to that, NoC-

DPR estimates the effect of simultaneous reconfiguration on the network’s performance

and reconfiguration time.

• Introducing two case studies, synthetic and embedded application, to compare

between the conventional SRAM-based FPGA and the next-generation NoC-based

FPGA performance of DPR.

 Organization of the Thesis

To have an overview of the impact of NoC-based FPGAs on DPR performance at

next-generation FPGAs, studying DPR at conventional SRAM-based FPGA plays an

important role to have a clear overview. Hence, an introduction to SRAM-based FPGA

and different configuration techniques, are illustrated in Chapter 2 along with NoC’s

background, structures, and the available NoC simulator. Chapter 3 provides a detailed

survey and comparison between the different techniques of DPR on Xilinx FPGA.

Chapter 4 presents the modifications in the NoCTweak simulator to support NoC-based

FPGA simulation, which supports DPR simulation, along with a comparison of the NoC-

DPR performance to NoCTweak simulator performance.

Since NoC design parameters such as (router type, virtual channel numbers, etc…)

are the prominent factors that have a direct impact on the reconfiguration time, Chapter

5 presents the work done to study the reconfiguration time overhead. That is resulted in

increasing simultaneous configurations on FPGA fabric using synthetic and embedded

applications. The conclusion and the potential future work are discussed in the last

Section.

Finally, Appendix A shows all options of NoC-DPR simulator, while Appendix B

gives a detailed description of some created modules used for integration DPR simulation

library.

3

 : Background

This chapter is organized as follows: Section 2.1 discusses the architecture of FPGA

regarding logic and routing resources. Section 2.2 discusses the DPR definition, benefits,

and techniques. NoC concepts are outlined in Section 2.3, while the simulation

background is introduced in Section 2.4 and 2.5. Finally, the related work is discussed in

Section 2.6.

 FPGA Technologies

First, the logic block cells and the routing blocks of FPGAs are discussed, then a

detailed architecture of DPR is presented, because DPR should not be addressed without

having a background of the underlying FPGA architecture.

2.1.1. FPGA versus ASIC

FPGA is composed of a set of CLBs linked through a configurable interconnection

network. Starting from the year 2000, FPGA features have scaled down from 130 nm to

20 nm as illustrated in Figure 2-1 for Virtex and Stratix FPGA family of Xilinx and Intel

(Formerly Altera) Companies respectively, the most popular manufactures of FPGAs.

Consequently, the logic density, the Lookup Tables (LUTs) of FPGA chip, has elevated

by approximately 2000% over these years [3]. Moreover, the design of ASIC’s layout

becomes an extra complex challenge, and it takes a longer time to market and high Non-

Recurring Engineering (NRE) cost; thus, the designers are motivated to use FPGAs for

SoC implementations.

Figure 2-1: Device capacity regarding look-up tables of the Altera Stratix and

Xilinx Virtex series FPGAs over the last decade [3]

4

2.1.2. FPGA architecture

The CLB is the main basic block of FPGA, which is responsible for implementing

any logic function by using an N-input LUT. When the LUTs are programmed with a

configuration data from the configuration plane as depicted in Figure 2-2, LUTs may

represent any logic function up to N-inputs. This ability plays an essential role in building

any desired logic function. Additionally, the data routing from Input-Output Block (IOB)

to the logic block, through Switch Box, is used to build more complex blocks of the target

function.

In the most recent FPGA architectures [5-15] the routing switches are distributed as

a sea of routing resources, while the islands are the CLBs as illustrated in Figure 2-2(a).

Accordingly, these boxes permit the communication easily along the rows and columns

of CLBs. The CLBs are surrounding by the connection blocks, which attach the input

and output signals to the routing switches. The switch boxes connect between the

horizontal and vertical logic blocks. In this way, any arbitrary interconnections can be

provided between the CLBs.

Note also the ports of configuration are shown in Figure 2-2, such as Joint Test

Action Group (JTAG), SelectMap (SMAP), and Internal Configuration Access Port

(ICAP). They are discussed in details in Chapter 3.

Figure 2-2: The Internal architecture of FPGA with two planes: (a) Logic plane,

and (b) Test and Configuration plane [3]

5

2.1.3. Heterogeneous Arrays

As the technology node of Integrated Circuit (IC) layout downscales, more

computing cores are implemented on the same dice area. Hence, the manufactures of

FPGA provide a heterogeneous structure to improve the performance and versatility in

computation. Consequently, the building blocks of FPGAs are not a set of switches boxes

and CLBs anymore. The modern FPGA architectures also conduct hardwired blocks.

Figure 2-3 highlights the evolution for Xilinx FPGA family, Virtex, over the last two

decades.

The hard IP blocks such as RAMs, DSP, Digital Clock Managers (DCMs),

Microprocessors, transceivers, and PCI Interfaces have been added to the Virtex families

[6, 8, and 15]. In the conventional FPGA architectures, application IPs are implemented

using the hardwired IPs or built using LUTs, are called soft implementation. However,

the inter-IP communication architecture (i.e., NoC), which handle the communication

between modules, is soft IP.

The next generation of FPGAs are discussed in this thesis, which are NoC-based

FPGA platform. The new FPGAs have hardwired intercommunication modules of NoC.

Figure 2-3: FPGA Virtex Family Architectural Evolution over the Years [5-15].

6

 Dynamic Partial Reconfiguration.

PR is an act of reconfiguring a section of an FPGA after its preliminary

configuration. Partial reconfiguration is classified into two types: DPR and Static Partial

Reconfiguration. Static partial reconfiguration allows reconfiguration while the device is

non-active. In DPR, the device is partially reconfigured while the rest of FPGA is still

operating.

2.2.1. Reconfigurable Models

The configuration schemes that are used with reconfigurable systems as illustrated

in Figure 2-4, are divided into (a) Single Context, (b) Multi-context and (c) Partially

Reconfigurable [17]. The preliminary FPGA structures was a single context, where only

a full configuration is allowed. However, this style was found limiting the

implementation for run-time reconfiguration. In the recent years, Multi-Context

Reconfiguration and DPR have been introduced to add more flexibility to FPGA designs.

2.2.1.1. Single Context

In the early FPGAs, all CLBs were programmed using a single bitstream of

configuration information each time. That is because only entire FPGA access is allowed.

Therefore, any required change to a certain CLB requires a complete reprogramming of

the whole chip as illustrated in Figure 2-4(a). Moreover, the single context configuration

simplifies the external reconfiguration process; it introduces a high configuration time

overhead. Therefore, this mode is more acceptable for applications that do not require

run-time reconfiguration.

Figure 2-4: Different reconfiguration models: (a) Single Context, (b) Multi-

Context, and (c) Partially Reconfigurable [17]

7

2.2.1.2. Multi-Context

A Multi-context FPGA consists of various configuration memory bits per

programming bit place. Those memory bits are considered as Multi-Context of

configuration, as shown in Figure 2-4(b). An example of multi-context FPGA is Tabula

[4], which is a time-multiplexed FPGA. Hence, one plane of configuration is activated at

a time. However, the FPGA switches between several configuration planes or contexts.

In this way, the multi-context FPGA is regarded as a multiplexed planes of a single

device, which needs a full reconfiguration to perform any modification as detailed in

Figure 2-5. Therefore, instead of having a single 16-adder as shown in Figure 2-5(a), it

is divided into four 4-bit adders as shown in Figure 2-5(b) and cycle over the four

configurations using time multiplexed configuration SRAM cell. Furthermore, this

category of FPGAs has generally required a complicated storage technique, a multiplexed

configuration SRAM cell, as shown in Figure 2-5(d). Moreover, time-multiplexed FPGA

is considered non-suitable for many applications due to performance degradation as a

result of reconfiguration time overhead.

Figure 2-5: Time multiplexed FPGA; (a) 16-bit adder on a conventional FPGA;

(b) time multiplexed implementation using four micro-reconfigurations

(mc1,..,mc4); (c) timing; (d) configuration storage [18]

8

2.2.1.3. Partially Reconfigurable

PR of the FPGA is required if a section of the configuration needs alteration. In the

modern FPGA, the programming plane is similar to the RAM device. The target section

of the configuration data is accessed by addresses, which permits the reconfiguration of

only the required part of the FPGA.

Due to the fact that any part of the FPGA can be reconfigured, the full programming

of FPGA is not necessitated. Moreover, several applications demand to reprogram part

of the configured logic, while the remaining blocks are not changed, as shown in Figure

2-4(c).

Hence, the address information is provided with the bitstream file; the configuration

data might be more significant than the corresponding bitstream file size of the single

context. Consequently, data overhead is examined, and full reconfiguration consumes

significant time compared to the single context. Moreover, a partially reconfigurable

design is optimally used when the reconfiguration data is less significant compared to the

total design.

2.2.2. Benefits of using Dynamic Partial Reconfiguration

Figure 2-6: DPR saves FPGA’s area [19]

The most beneficial advantage of DPR is that it provides more flexibility to the

hardware designs. DPR allows the implementation of elaborated circuits within an

affordable area and reduces static power consumption. Thus, DPR innovates the concept

of virtual hardware [1], which is similar to virtual memory. Therefore, the contexts are

mapped and reconfigured on the physical FPGA as they are cited.

DPR is used in applications that require a high level of flexibility like SDR and some

embedded FPGA applications; video processing, cryptography, and genomic sequence

alignment. DPR also has an essential role in implementing adaptive hardware algorithms

and improving FPGA fault tolerance [2].

The DPR could be implemented to minimize the size of used resources on the FPGA,

and it's entire power consumption as illustrated in Figure 2-6. DPR enables designers to

achieve capability bigger than the physical capability of the FPGA. Furthermore, DPR

offers other positive aspects [20]:

 Task speed: As the constraints of the component size is solved by using

DPR, any design is accelerated by dividing it into smaller blocks and

mapping them individually on FPGA.

9

 Power and area reduction: Since the rarely used functions is swapped out

of the FPGA, smaller FPGAs are used. Hence, the power consumption and

the permanently logic which implements the unused functions are extracted.

 Behaviour change: The design is reconfigured for a different function

without stopping its operation, for example SDR applications.

 Hardware virtualization: DPR enables managing a collection of hardware

components as a library by having more hardware available than that

physically existing in the FPGA.

Figure 2-7: Evolution of DPR support of Xilinx FPGA and software [19]

Despite these advantages, DPR is attracting considerable interest lately due to the

complicated design flow, and the lack of supporting software tools in the early stages.

Consequently, the most known FPGA vendor who supports DPR in their FPGAs and the

associated software is Xilinx. The evolution of their software products from complete

design suite ISE for Virtex 4, 5 and 6 to VIVADO design editor is shown in Figure 2-7.

A separate license is required to support DPR designs for Virtex, Kintex and Zynq

UltraSCALE and UltraSCALE+ FPGAs, which indicate that the DPR becomes a vital

feature. Nevertheless, DPR adds more complexity to the system design. Consequently,

system designers have to gain more understanding of the target device structure, the

floor-planning, and identifying reconfigurable regions manually.

10

 Network on Chip

NoC is the communication medium that is responsible for connecting the PEs

through the routers. PEs are composed of logic and memory blocks.

2.3.1. Interconnection challenge

The conventional FPGA is viewed as a network of processors, compared to the

multiprocessor system, where the CLBs are the processing elements. However, the

conventional FPGA differs from the multiprocessor system. The conventional FPGAs

have single bit processing elements and instruction control, as they are configurable with

a single instruction bit per processing element.

Within the conventional FPGA layout, the PEs are disturbed in an array on the

FPGA’s underlying plane. However, the interconnection dominates the FPGA’s area in

conventional devices as shown in Figure 2-8, which represents each size of component

such as interconnect, PE, and configuration memory theoretically. Since full connectivity

would grow in complexity as 𝑂(𝑛2), most FPGA’s manufacturers use some advanced

connection schemes to minimizing the usage of interconnects’ resources [16].

Figure 2-8: FPGA architectural as multiprocessor Array [16]

Within the last few years, communication among these PEs was destined to become

a vital factor in the design of large-scale systems. Consequently, the challenges of the

communication among these PEs have become significant and require innovative

11

solutions. Therefore, NoC has been adapted for FPGAs to handle these PEs

communication challenges

Figure 2-9: Different Communication Structures: a) bus-based, b) point-to-point,

and c) Network-on-Chip [21]

2.3.2. Bus versus Network

Bus communication architecture enables the PEs to share a unique medium of

communication as illustrated in Figure 2-9(a). Every PE sends or receives data, have to

reserve the bus. Data can be transmitted on the bus while asserting the proper address on

the corresponding bus, only when no other PE uses the bus. As listed in Table 2-1 [22],

considerable arguments between the bus and network structure are discussed.

Table 2-1: Bus-versus-Network Arguments [22]

Bus Pros and Cons Network Pros and Cons

Performance degradation - + Performance is not degraded

Bus timing - + Wires are pipelined

Bus arbitration - + Routing decisions are distributed

Bandwidth is limited - + Aggregated bandwidth

Bus latency + - Internal network contention

Simple + - Need re-education

2.3.3. NoC parameters

Four main metrics are considered to choose the most convenient NoC architecture.

These metrics are the area, power consumption, latency, and throughput. There are other

metrics which are used in evaluation such as packet loss or wire length.

Area and power consumption are related to layout implementation of network

hardware components such as router modules and network interface.

The latency is the time elapsed between the emission of the head packet into the

network and the time of arrival of the tail packet at the end node.

Throughput is the maximum traffic accepted by the network at a particular time, and

it is measured by flits/cycle/node.

12

In this study, latency and throughput are used by NoC-DPR simulator to calculate

the time overhead of the dynamic partial reconfiguration.

2.3.4. NoC Architecture

The NoC consists of routers, network interface, PEs, and connection links:

 Router: routes the data from its input ports to output ports according to the

routing strategy.

 Network Adapter (Interface): provides an interface between the router and

the processing element. Its primary task is to handle the communication

between the network and the PEs.

 Process Element (Core): the main application that uses the network.

 Connection Links: the channels of communication of data between the

various components of the network.

2.3.5. Topology

The topology is defined as the structure of connection between the routers and the

PEs. Topologies are classified as regular and irregular, based on the location of the

routers in the network. Figure 2-10 shows the following topologies:

a) Ring

b) Mesh

c) Star

d) Fully-connected

e) Mesh torus

f) Hypercube.

13

Figure 2-10: topologies for the different network [21]

2.3.6. Routing

The definition of routing is to transfer data from node to node with a predetermined

algorithm. Routing is classified into the following categories:

 Distributed or centralized: distributed routing is where the flow decision is

calculated locally at each node. However, routing is called centralized when

the routing decisions are computed in one centralized node.

 Deterministic or adaptive: routing is called deterministic when the path is

determined by the location of the source and destination node only.

However, routing is called adaptive when the propagation of data between

two nodes can be determined through multiple paths. The implementation of

adaptive routing algorithms is resulting in complicated nodes, but it provides

adequate performance of the NoC.

 Circuit switching or packet switching: The routing is circuit switching

routing if the route between the start and end nodes is allocated while the

data is transferred. Although, packet switching all nodes share the same path

and the data is split into packets that contain the routing information.

2.3.7. Switching techniques

The main module of the router is a switch module that identifies which and when the

inputs ports of a router are connected to outputs ports [23]. There are several switching

techniques:

 Store-and-forward: The router splits the incoming stream into packets, at

each node within the route to the destination, the router saves the packet in

the input buffer, and afterwards the routing information is calculated to

14

identify the corresponding output port, which results in high per-packet

latency.

 Virtual cut-through: this type is same as the store-and-forward but instead

store all packet, it identifies the output port as soon as the first bytes of the

packet (Header) is received. However, if out port is busy, the router will save

the packet in a buffer [24, 25].

 Wormhole: Here the router divides the packets into flits (Flow Control Unit).

The routing information is stored in the header flit. In this manner, a single

packet is transferred through different nodes. That reduces the latency over

the store and forward method but may cause many bottlenecks in the

network.

2.3.8. Virtual channel Flow Control

Flow control addresses the issue of validating the transmitting and receiving of the

packets in the network. Additionally, it resolves the problems of optimal usage of the

network’s resources and provides a consistent performance to all network resources.

Virtual channels (VCs) are the multiplexing of a physical channel by several

logically separate channels with different buffers as presented in Figure 2-11. VCs per

physical channel are varied between 2 and 16. Their implementation outcomes in an area,

power and latency overhead due to the cost of multiple buffer implementation.

Nevertheless, VC routers are eliminating deadlocks, enhancing wire utilization and

improving network performance [26].

Figure 2-11: Virtual channels mechanism [21]

15

 Simulation Abstraction

A simulation is to develop a model of an actual or theoretical physical system, and

investigate the execution output, which is carried out on a computer. By this way, the

researchers test the design space as well as evaluate the performance and efficiency for

all of the new designs.

There are two types of simulation:

 Cycle-accurate simulation: In this type, the simulation is running on a cycle-

by-cycle basis, which is impacting the simulation timing; as the simulator

implement more details. Consequently, cycle-accurate simulation also has a

cost on the development of the simulator. Cycle-accurate simulator is

necessary when the actual router’s RTL description is requested to be

evaluated and verified.

 Event-driven simulation: This type is used when the given systems are

consisting of several modules. In Event-driven simulation, events instead of

accurate cycle sequence drive the flow of control within the system. The

event-driven simulation uses events that occur at a various time and handles

them in order of minimizing the simulation time.

 Programming Abstraction

The following is the programming abstraction levels that should be considered when

building a simulator depending on the requirements of design as shown in Figure 2-12.

Figure 2-12: Simulation levels versus speed and productivity [27]

16

2.5.1. Low-level programming languages:

At low-level, the designer of the simulator may decide to use a programming

language such as C. In this case; building a system using low-level programing language

is a time-consuming task, due to the managing and controlling of the accurate time of

concurrent processes. However, it may result in high simulation speed.

2.5.2. Object-oriented languages:

In this approach, the developer is using some high-level programming languages

such as object-oriented C++ or Java. However, the developer has to manage and control

the logic related to time and concurrent processes. Nevertheless, the high-level concepts

of the language such as classes and inheritance facilate the designing stage.

2.5.3. Simulation frameworks:

In the simulation frameworks such as SystemC, all the administration of timing and

parallel processes is handled by the framework; thus, more models are simulated within

less time.

Similarly, hardware description languages provide high accuracy in addition to the

shown in Figure 2-12. However, they often cause low productivity and low simulation

speed.

 NoC simulator comparison

Many surveys have been conducted to compare the simulations of NoC. The

attempts of implementing network simulator are varying through different parameters

such as the used programming languages, availability of the source code, the supported

topologies and heterogeneous support of different modules at the processing element of

a NoC. The summary of comparison results is listed in Table 2-2.

Several NoC simulators are developed recently, and a comparison between them is

done at [31]. Some of the simulators are developed in C++ like Booksim by Jiang and

al. [29]. Currently, Booksim 2.0 adds more features to perform modelling of the router

microarchitecture.

Other simulators developed in SystemC like Noxim, which is developed by Palesi

and al. [28], and Nirgam [32]. NoCTweak wrote in SystemC by Anh and Bevan [30]

which supports router type wormhole over both synthetic traffic and embedded

application patterns.

Another attempt to use high-level programming languages and higher framework

such as Java and OMNeT++ which may lack the support of integration with other

system written in systemC such as gpNoCsim and HNOCs [33, 34].

17

Table 2-2: NoC simulator comparison

Simulator Framework Paralle

lism

Topologie

s

Open

Sourc

e

Heterog

eneous

Support

Synchronous/

Asynchronous

Noxim[28] SystemC - Mesh + - Synchronous

BookSim

[29]

C++ - Many + - Synchronous

NoCtweak

[30]

SystemC - Mesh + + Synchronous

Nirgam

[32]

SystemC - All + - Synchronous

gpNoCsim

[33]

Java - All + - Both

HNOCS

[34]

OMNeT++ + All + + Both

Another architecture with similar features is ReNoC which is developed by

Stensgaard and Sparse [36]. The latter architecture allows the configuration of NoC’s

resources. Thus, the mapped application can customize the topology according to its

requirements on SoC platform.

Other solutions endeavour to use NoC as a backbone in FPGAs system to overcome

communication challenges, such as Ehliar and Liu [35] that proposes an open source

FPGA based NoC architecture with low area overhead, high throughput, and low latency

compared to the general NoC performance.

18

19

 : Configuration Techniques for Xilinx FPGAs

 Introduction

In this chapter, the different interfaces to configure Xilinx FPGA with a partial

bitstream are studied. Xilinx offers four methods to send or receive a partial bitstream

from non-volatile memory into the reconfiguration memory. A comparison between

these techniques is provided concerning the area and the reconfiguration time using part

of an SDR system as a benchmark for DPR.

 Methodology

Xilinx FPGAs have four various techniques to carry out DPR. Figure 3-1

demonstrates the different reconfigurations techniques to perform DPR using an encoder

inside the communication chain of an SDR system.

All procedures require a controller of PR. The controller is placed outside the FPGA,

such as external PC connected to JTAG or Serial port as illustrated in Figure 3-1(c).

Nevertheless, the controller is placed inside the FPGA's fabric, such as MicroBlaze

soft microprocessor IP to manage ICAP or selectMap as shown in Figure 3-1(a) and

Figure 3-1(b).

Figure 3-1: Reconfigurations techniques of convolutional encoder inside the

communication chain [1]

3.2.1. JTAG

The JTAG is an acronym for standard Group named Joint Test Action Group. JTAG

sends data out through I/O ports for testing connections on board level testing. Therefore,

20

it is widely used as an essential debugging tool. The JTAG sends signals inside the chip

for testing device behaviour, these patterns of test aim to detect shorts and opens at the

board and device levels.

The JTAG configuration is conducted using the iMPACT tool and Xilinx

programming cable in Figure 3-1(c). The partial configuration is completed by obtaining

the bitstream file located on the computer [37].

3.2.2. Serial Mode

Throughout slave serial configuration mode, the configuration data is loaded one bit

per Configuration Clock (CCLK) cycle. The CCLK in the serial slave mode must be

driven from exterior control logic. The Serial Slave mode generally used in the

configuration of the single device from an external microprocessor as illustrated in Figure

3-1(c) or configuring multiple devices in a daisy chain.

Figure 3-2: Virtex-5 FPGA Serial Configuration Interface [38]

Six pins are required to accomplish the reconfiguration procedure using Serial Slave

mode as displayed in Figure 3-2. A single configuration is employed to configure

multiple devices arranged in a daisy chain [39]. Each device receives the configuration

data via its DIN pin and crosses it to the next device through its DOUT pin till the last

device in the chain is configured, and all the devices discharge their DONE pins.

3.2.3. SelectMAP

SelectMAP is a configuration interface that provides an 8-bit, 16-bit, or 32-bit

bidirectional data bus interface to FPGA's fabric, which is often used for both

configuration and readback. It also operates in two modes; a master mode that drives

configuration clock, or slave mode which is driven by an external configuration clock.

Read-back is applicable only to Slave SelectMAP mode.

21

Figure 3-3: Virtex-5 FPGA SelectMAP Configuration Interface [38]

There are various setups for SelectMAP like single device slave SelectMAP that

includes a processor providing data and clock. Alternatively, a CPLD is used as a

configuration manager [38]. Another installation is multiple device daisy chains that can

be used to configure various FPGAs in series with different bitstreams from a nonvolatile

memory or processor.

Slave SelectMAP is the only mode that allows performing partial configuration in

all Xilinx FPGA's as master modes are clearing all FPGA's configuration memory Figure

3-1(a).

The reconfiguration process using SelectMAP in slave mode is carried out using 38

pins as shown in Figure 3-3. Multiple FPGAs can be connected on SelectMAP bus which

shares some pins with others FPGAs.

3.2.4. ICAP

ICAP is Xilinx primitive that offers direct access to the configuration logic at the

FPGA fabric Figure 3-1(b). At runtime, the ICAP interface permits the configuration data

to be loaded into or downloaded from the configuration memory of the FPGA.

Additionally, it enables reading the status registers of the configuration logic.

The ICAP interface is similar to the SelectMAP slave mode interface but with

separate 8-bit, 16-bit, or 32-bit data bus for reading and writing configuration data [39].

Configuration data is written to the FPGA’s memory with a fixed clock. Even though

there are two ICAP primitives available starting from Virtex-5, the two ports cannot be

operated concurrently. Consequently, the design has to start with the top ICAP, and then

alternate between the two ports. ICAP caches the configuration bits into BRAM before

they are loaded to the FPGA configuration memory.

 Xilinx provided IP core known as OPBHWICAP, which is connected on the OPB

bus, it enables the processor to access the configuration memory through the ICAP using

the library and software routines that have been implemented by EDK toolkit. In Virtex-

4 and Virtex-5 FPGAs, the XPSHWICAP then AXI_HWICAP has been released which

works similarly with the OPBHWICAP, however the IP is connected to the PLB and

AXI bus respectively [40]; thus, a lower-latency reconfiguration is obtained.

22

 Software Defined Radio design

Lately, SDR turned to be a trending application for DPR. As wireless technologies

maintain their growth and developing, more standards will be released. Therefore, the

demand to preserve these entire standards in one device is required. Hardware designs

that are trying to offer compatibility with the current standards, if even possible, will

most likely become outdated after a short while. Nevertheless, the SDR system maintains

the flexibility to control the same hardware resources via software for these multi-

communication devices.

SDR systems make use of the reconfigurability of FPGAs because it provides good

assets to load the desired standard. Practically, the ability to reconfigure a specific block,

while all other blocks are working regularly, provides an opportunity to create a flexible

and compact design.

The benefits of SDR system is noticed undoubtedly by implementing DPR

approaches on Convolutional Encoder block. This encoder is accountable for generating

FEC coding schemes. These coding schemes allow reducing channel noise.

Convolutional encoder outputs are not impacted by the code schemes used in the existing

standard but also several parameters(𝑛, 𝑘, 𝑙) , which are being used for explaining

convolutional codes. Where 𝑛 represents the input encode elements, 𝑘 represents the

output encode elements, and 𝑙 represents the number of shift registers.

In this experiment, two encoder schemes; 3G and Wifi communication systems, are

used as a benchmark for DPR as revealed in Figure 3-1. This approach is called Single-

Loaded Encoder Module (SLEM) wherever DPR is used to implement one encoder on

the chip at a time.

 Results and Discussions

The experiment is designed to apply DPR to the implemented SDR design using

different configuration approaches and to compare them in terms of area and

reconfiguration time. This design has been implemented using XUPV5-LX110T kit

which includes Virtex-5 xc5vlx110tff1136-1 FPGA, SystemACE Compact Flash

configuration controller to store bitstream files of PR regions, and UART interface to

interact with MicroBlaze by sending reconfiguration commands.

3.4.1. Experiment setup

The DPR time is not associated directly with design resources, but it is related only

to partial reconfiguration region selection which is translated to frame’s number.

The frame is the minimum addressable configurable part of the FPGA, which spans

multiple Programmable Logic Blocks (PLBs) in array usually the entire column of PLBs.

Previously, in Virtex and Virtex II families, frames consist of the whole column of

FPGA, which are the minimum building blocks for PR region. Starting form Virtex 4,

frames became a complete tile which includes a certain number of CLBs of an entire

column, and this number is increasing in each new Xilinx family.

Therefore, the total design size, static and PR regions, has a significant effect on the

reconfiguration time. Hence, the selected size for the SDR design is varied along the

experiment to check the variation in performance of each configuration technique. The

various selection is chosen to take into consideration a significant change in the partial

bitstream file size that is to reflect in the estimated reconfiguration time.

23

Table 3-1: Reconfiguration speed for different reconfiguration techniquess

The figure of merit, which is chosen for the comparison between these different

techniques, is the area multiplied by reconfiguration time. This metric is an excellent

indicator of the performance variation from a particular design size to another. Also, the

number of occupied LUTs is also considered as a significant indicator of the design area

as shown at the vertical axis and the horizontal axis in Figure 3-4.

The theoretically estimated reconfiguration time is calculated according to (1),

where 𝐵𝑠𝑠𝑖𝑧𝑒, is the bitstream file size of PR region, 𝐶𝑙𝑘𝑚𝑎𝑥 is the maximum clock rate

supported by reconfiguration interface, and 𝐷𝑤 is interface data width. These values are

listed in Table 3-1 for each interface.

𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝐵𝑠 𝑠𝑖𝑧𝑒/(𝐶𝑙𝑘𝑚𝑎𝑥 ∗ 𝐷𝑤) (1)

The reconfiguration region sizes are chosen in a way to occupy a certain number of

frames completely. The selection is made to make use of the whole area without any

change in the partial bitstream size and without affecting the estimated reconfiguration

time.

3.4.2. 8-bits Data Width

Figure 3-4 shows the performance of the JTAG, Slave Serial mode, Slave

SelectMAP 8-bit, and ICAP 8-bit data width using the SDR design with different

selections of PR regions. It is shown that at small designs that need PR regions less than

~400 and ~750 LUTs for JTAG and Serial mode respectively, JTAG and Serial mode are

better in performance than ICAP and SelectMAP which work with 8-bit width at 50 Mhz.

These values decreases (~150 and ~300 LUTs) when ICAP and SelectMAP work at 100

Mhz taking into consideration that ICAP allows maximum frequency less than JTAG and

Serial mode. This can be avoided when using SelectMAP as it has external CCLK port.

Config. Mode Data Width Max. Clock Rate Max. Bandwidth

JTAG 1-bit 66 MHz 66 Mbps

Serial Mode 1-bit 100 MHz 100 Mbps

ICAP 8/16/32 bits 100 MHz 0.8/1.6/3.2 Gbps

SelectMAP 8/16/32 bits 100 MHz 0.8/1.6/3.2 Gbps

24

Figure 3-4: 8-bits ICAP and SelectMAP with Serial mode and JTAG

3.4.3. 16-bit Data Width

Figure 3-5: 16-bits ICAP and SelectMAP with Serial mode and JTAG

25

In Figure 3-5, the experiment is repeated with 16-bits data width for ICAP and

SelectMAP. It is noted that the intersection points decreased more (~150 and 300 LUTs

for JTAG and Serial mode respectively) compared with ICAP working at 50 MHz. These

values decline because the comparison becomes unfair for serial interfaces like JTAG

and Serial mode compared to 16/32-bits ICAP and SelectMAP as the parallel

configuration always gives more capability to reach high configuration speed.

Designs which are using JTAG and Serial mode can save ~2400 LUTs compared to

ICAP and SelectMap; this overhead is significant with small area designs. However, the

reconfiguration speed of 16-bit ICAP and SelectMap is better with a factor of 24.2 and

16 than JTAG and Serial mode respectively.

3.4.4. 32-bits Data Width

Figure 3-6: 32-bits ICAP and SelectMAP with Serial mode and JTAG

ICAP and SelectMAP will always be recommended if they operate at the full data

width 32-bits over other reconfiguration techniques as shown in Figure 3-6. However,

the drawback of this scheme is the used I/O pins. In SelectMAP, those pins have to be

reserved the whole time for reconfiguration purpose only, whereas those pins can be used

as general I/O after the reconfiguration has been done in ICAP.

Table 3-2 lists all experimental results and indicates where the serial configuration

techniques such as JTAG and Serial Mode are used instead of parallel procedures such

as ICAP and SMAP.

26

 Table 3-2: Serial reconfiguration techniques recommendation over SMAP and

ICAP

 Summary

In this chapter, the four configuration methods, which are used with DPR in Xilinx

FPGAs, are reviewed.

It is evident that JTAG reconfiguration is much slower than the other methods, but

it does not add resources overhead like the other methods. Therefore, the performance

with JTAG is better than the others with small designs where the area overhead is very

noticeable. Despite that, the performance is not good with large designs where the space

cost is not reasonable compared to the design area. On the other side, it allows sending

internal signals through dedicated IO pins for debugging. Additionally, the methods that

use a parallel port support a high-speed reconfiguration compared to the others,

especially with large designs.

Configuration

Mode

8-bit 16-bit

JTAG <400 LUTs <150 LUTs

Serial Mode <750 LUTs <300 LUTs

27

 : NoC-DPR Simulator Architecture

 Introduction

The contribution of this chapter is proposing a cycle-accurate simulator for NoC,

which is a state-of-art tool called NoC-DPR that is used to simulate DPR on NoC-based

FPGA. Two open source SystemC components are linked; the first is a NoC simulator,

which is known as NoCTweak, and the second is a SystemC Library (ReChannel), which

simulates DPR for general purpose designs. All PEs of the network can be reconfigured

dynamically to adopt a new design at the run-time.

 NoC-DPR Simulator Architecture

NoC-DPR simulator is a command line-based tool that consists of a 2-D mesh

network of routers, simulated by NoCTweak [29]. Each node includes a PE, Network

Interface (NI), and an associated router. Each router connects with four nearest

neighbouring routers forming a 2-D mesh network as illustrated in Figure 4-1. Using

ReChannel [41] library, each PE is dynamically reconfigured by a particular type of data

packet, generated from a specific node (master node 0, 0).

The primary consideration that must be taken, when merging DPR simulation library

with NoC simulator, is all NoC modules should be well-defined through a definite

hierarchy at SystemC.

Consequently, a separate NI is implemented with NoC-DPR simulator as displayed

in Figure 4-2. Accordingly, DPR is performed on the PE, and NI supports the flow control

over receiving and sending data during the DPR operation. However, the network’s

latency and throughput values have changed due to this modification.

Figure 4-1: Network on a chip of NoCtweak simulator [52]

28

 NoCTweak simulator

NoCTweak is an open-source 2-D mesh NoC simulator, which is designed for early

exploration of the performance of on-chip networks. The simulator has been developed

using SystemC, which allows accurate and fast modelling of concurrent hardware

modules at the cycle-level accuracy [30].

The NoCTweak simulator is composed of a hierarchy of modules; a processor (core),

a NI as drawn in Figure 4-5, and an associated router that implements different functions

of the network and the simulation environment as portrayed in Figure 4-1.

Each of these modules has a clear interface that facilitates replacement and

customization of module implementations without affecting other parts of the simulated

system.

Figure 4-2: Network on a chip of DRP-NOC simulator [52]

4.3.1. Network Latency

Packet latency includes the travelling and waiting time from the source queue to the

destination, the waiting time is caused by network congestion. In the simulation, when

the PE receives a packet, it calculates the difference between the packet’s creation time

from the received time to get the packet latency. Thus, network latency is the average of

latencies of all the packets transferred by the network.

Let 𝐿𝑖𝑗 be the packet latency of packet j and 𝑁𝑖 be the number of packets received

by processor i, then the average network latency is given by [30], where N is the number

of processors in the platform:

𝐿𝑎𝑣𝑟 =
1

𝑁
∑ (

1

𝑁𝑖
∑ 𝐿𝑖𝑗

∀𝑗

)

𝑖=1..𝑁

29

4.3.2. Network Throughput

Network throughput is the rate where the network efficiently accepts and delivers

the injected packets. Let 𝑇𝑠𝑖𝑚and 𝑇𝑤𝑎𝑟𝑚be the simulation and warmup time, then the

average network throughput (in packets per unit time per node) is given by [30]:

𝑇𝑎𝑣𝑟 =
1

𝑁(𝑇𝑠𝑖𝑚 − 𝑇𝑤𝑎𝑟𝑚)
∑ 𝑁𝑖

𝑖=1..𝑁

The network latency is derived in cycles or seconds and the network throughput in

flits per cycle or flits per second. All these kinds of terms are shown in the output results

of NoC-DPR simulator.

 ReChannel Simulation Library

Initial attempts to design for DPR was considered a slight complex task due to the

lack of supporting tools and the requirement of full understanding of the FPGAs

architecture. Therefore, FPGA designers use DPR simulators at early design stages as a

proof of concept and to reduce the time to market.

Several approaches [42, 43, and 44] have been proposed to model dynamically

reconfigurable systems at system-level using SystemC, which is C++-based description

language used at higher abstraction levels to develop complex systems.

In [45], the OSSS+R framework is presented along with the design methodology for

automatic modelling, synthesis, and simulation of partial run-time reconfiguration

systems. However, these methodologies do not support functional verification of

customized DPR system designs.

The modelling is performed using object-oriented techniques in ReConLib library

[41]; nevertheless, the limitations of SystemC in modelling dynamic reconfiguration are

avoided.

 As the main challenge when modelling dynamic designs using SystemC is the

inability of performing changes to the system’s module topology during simulation.

Consequently, this inability leads to difficulties in the modelling of reconfigurable

systems using hardware description language (HDL) without modifications. The

ReChannel library [41] is an extension to SystemC, not an adjustment to the SystemC’s

kernel as conducted in previous projects. Hence, ReChannel overcomes SystemC

modelling limitation without actually changing the underlying simulation kernel.

On the other hand, several simulators simplify the DPR modelling process;

consequently, the reconfigurable modules are switched between two states; activated and

deactivated. That is achieved in ReChannel Library [41] through the concept of switches

(portals) as shown in Figure 4-3. Portals allow the utilization of any SystemC channel in

a reconfigurable context, which results in reconfigurable modelling systems with a highly

flexible methodology. Furthermore, the first modification of the original system occurs

within the interconnection between other modules of the system, i.e., between NI and PE

interconnect signals as illustrated in Figure 4-4. Hence, portals are added to eliminate

any required changes to the existing modules.

That facilitates the interface of reconfiguration parts to static parts. Reconfiguration

properties, such as reconfiguration time, are added to those modules using an argument

parsed by the command line to the NoC-DPR simulator.

30

Figure 4-3: A portal connecting two reconfigurable modules to a standard channel

SystemC

Figure 4-4: DPR simulation flow at systemC

31

Figure 4-5: Network Interface of DRP-NOC simulator

 Network Interface impact

Inserting an explicit network interface, as shown in Figure 4-2 and Figure 4-5,

between the PE and the router, affects the network performance specifically on the

latency and the throughput. NI is composed of two decoupling buffers that are

responsible for storing and synchronizing flits (a flit stands for FLow control unIT, which

is the minimum unit of the message).

The latency after inserting NI is measured and compared to the latency of

NoCTweak. A network of wormhole routers with buffer size 2-flits per input port running

at 100MHz is considered for this simulation along with different Flit Injection Rates

(FIRs) on different network sizes. The five network sizes: 2x2, 4x4, 8x8, 16x16 and

18x18 are adopted to cover all performance variations. Figure 4-6 shows the

methodology of NoC-DPR simulator. Network parameters are passed to the simulator

through the command line, then the simulation using the parsed parameters is launched.

Finally, all simulation results are collected using automation scripts, which run and

manage the results over the different network sizes and the different injection rates to

draw all following listed figures.

Figure 4-7 and Figure 4-8 show the difference between the latency of NoCTweak

simulator and the proposed NoC-DPR simulator. NoCTeawk's latency reaches above

50,000 cycles while NoC-DPR's latency saturates at 23,000 cycles for the maximum

supported network size 18x18. This enhanced latency value is due to the NI of NoC-DPR

simulator, which is responsible for controlling packet generation from PE according to

NoC state. Therefore, NI sends and receives control signals to PE so that it prevents

network congestion and deadlocks.

32

Figure 4-6: Methodology to setup, run and collect simulation results from NoC-

DPR simulator

Figure 4-7: Average latency for 2-flits buffer depth for NoCTweak simulator

without PE

On the contrary, in NoCTweak, the PE has no output buffer; therefore, PE injects

flits directly into router input buffer without any flow control. Consequently, the latency

increases as long as flits are injected as portrayed in Figure 4-7, unlike NoC-DPR which

Setup
•Network size

•Reconfigurati
on time (RT)

•No. of DPRs

•Injection rate

Run
•Packets generated random

•Script to loop over all
combinations

Collect
•Calculate effective
RT

•Script to collect all
results

33

saturates at lower latency 5,000, 7,500, and 14,000 cycles for 2-flits buffer size for 2x2,

4x4, and 16x16 NoC size respectively as shown in Figure 4-8.

On the other hand, in the NoCTweak simulator, the throughput is elevated at specific

values as depicted in Figure 4-9, because of the direct injection to NoC; as the network

is loaded with maximum accepted flits at higher FIR (Flits Injection Rate of each PE).

However, In NoC-DPR simulator, the PE stops packet generation when network state is

fully loaded, which causes a slight increase in the peak value of the throughput. The

throughput decreases exponentially because the network is not loaded with maximum

accepted flits as shown in Figure 4-10. The saturated values of the throughput are 0.21,

and 0.14 (flits/cycle/node) in NoCtweak, and become peak values of 0.22, and 0.155

(flits/cycle/node) at 0.22 and 0.18 (flits/cycle/node) FIR in NoC-DPR simulator for 2x2

and 4x4 NoC size respectively.

Figure 4-8: Average latency for 2-flits buffer depth for NoC-DPR simulator

34

Figure 4-9: Average throughput for 2-flits buffer depth for NoCTweak simulator

without PE buffer

Figure 4-10: Average throughput for 2-flits buffer depth for NoC-DPR simulator

35

 Different buffer depths

The impact of buffer depth on the latency and the throughput is measured using two

buffer depths: 4-flits and 8-flits. The network of wormhole routers with a 3-pipeline stage

running at 100MHz over synthetic traffic is used with injection flits rates on multiple

network sizes, and then the results are compared to 2-flits buffer depth.

The latency is calculated with 4-flits and 8-flits buffer over the random synthetic

traffic pattern as shown in Figure 4-11, and Figure 4-12 respectively. Similarly, the

throughput of the two buffer sizes is demonstrated in Figure 4-13 and Figure 4-14

respectively. The correlation between the buffer depth and the network's latency and

throughput is revealed, as the wormhole router has three pipeline stages; thus, the routers

with at least 5-flits per buffer have the same zero-load network latency. Consequently,

the router with a buffer depth of 2-flits achieves the worst network performance.

On the other hand, In NoC-DPR simulator, the NI increases the number of buffers

in the network, which results in handling more round-trip flow control signalling.

Consequently, increasing the buffer depth from 2-flits to 4-flits and 8-flits improves the

network latency by a factor of 1.6x and 2.7x as demonstrated in Figure 4-11, and Figure

4-12 respectively. Also, increasing the buffer depth enhances the throughput at higher

FIR by 50.9% and 28.8%, as portrayed in Figure 4-13 and Figure 4-14 respectively. The

summary of the results of latency and throughput for different network sizes using 2, 4

and 8-filt buffer depth is listed in Table 4-1.

Table 4-1: Latency and Throughput for different network sizes using 2 and 8-filt

buffer depth

 2-flit buffer size 4-flit buffer size 8-flit buffer size

Net

size
Latency

(Kcycles)

Throughput

(flits/cycle/n

ode)

Latency

(Kcycles)

Throughput

(flits/cycle/n

ode)

Latency

(Kcycles)

Throughput

(flits/cycle/n

ode)

4x4 7.5 0.13 4 0.25 2 0.45

8x8 14 0.06 7.9 0.14 4 0.25

16x16 22 0.03 13.5 0.07 8 0.12

18x18 23 0.02 14.7 0.06 8.7 0.11

36

Figure 4-11: Average latency for 4-flits buffer depth

 Figure 4-12: Average latency for 8-flits buffer depth

37

Figure 4-13: Average throughput for 4-flits buffer depth

Figure 4-14: Average throughput for 8-flits buffer depth

38

 Different router types

NoC-DPR simulator supports a wormhole router with virtual channels along with

the pipeline wormhole router. The simulation using two networks of wormhole routers

with 4-virtual channels and 8-virtual channels are considered to study the impact of

changing the router type on network’s latency and throughput.

As shown in Figures 4-15, 4-16, 4-17 and 4-18, the saturation values of latency are

improved by factors of 3.6x and 4x for 4-virtual channels routers and 8-virtual channel

routers respectively. Latency saturated at 6,000 cycles and 5,500 cycles as depicted in

Figure 4-15 and Figure 4-16. In contrast, the saturated value “22,000 cycles” of the

network of wormhole routers without virtual channels for the network size of 18x18 as

shown in Figure 4-8.

This improvement is because of the multiplexing of the same physical link across

multiple flits from the different packets; thus routers with VCs prevent deadlocks.

Interestingly, latency and throughput improve with factors more significant than

buffer depth factors. It is also noticed that the throughput is saturated; which is expected

as long as the network is not congested, and the flow control of NI is disabled.

Therefore, PEs inject more flits, and the network is loaded with maximum accepted

flits at higher FIR as shown in Figure 4-17 and Figure 4-18. Consequently, the increasing

percentage is about 60.1% and 61% for throughput in 4-VCs and 8-VCs over wormhole

router with no VCs. Shown in Figure 4-10. The summary of results of latency and

throughput for a different network using 4 and 8-VC wormhole router is listed in Table

4-2.

Figure 4-15: 2-flits buffer depth average latency for 4-virtual channel

39

 Figure 4-16: 2-flits buffer depth average latency for 8-virtual channel

Figure 4-17: 2-flits buffer depth average throughput for a 4-virtual channel

40

Figure 4-18: 2-flits buffer depth average throughput for an 8-virtual channel

Table 4-2: Latency and Throughput for different network sizes using 4 and 8-VC

wormhole router

 2-flit buffer size With 4-VC 2-flit buffer size With 8-VC

Network size
Latency

(Kcycles)

Throughput

(flits/cycle/node)

Latency

(Kcycles)

Throughput

(flits/cycle/node)

4x4 3 0.3 3 0.3

8x8 3.5 0.25 3.5 0.26

16x16 5.5 0.15 5 0.18

18x18 6 0.14 5.2 0.17

41

Table 4-3: Latency and Throughput for different network sizes using 2-flits buffer

depth and 8-flits buffer depth with 4-VC wormhole router

 Summary

The architecture of the proposed NoC-DPR simulator is discussed in this chapter.

Then, the performance of the network regarding throughput and latency is evaluated after

modifying the NoCtweak simulator and merging it with the Rechannel Library. That is

done by inserting an explicit network interface between the PE and the router. It is shown

that the latency is improved due to this change, while the throughput is degraded. This

degradation is because of adding NI of NoC-DPR simulator, which is responsible for

controlling packet generation from PE according to NoC state. Therefore, NI sends and

receives control signals to the PE so that it prevents network congestion and deadlocks.

The variation of buffer depth and router type has an effect also on the network’s

throughput and latency. It is shown that buffer depth of 4-flits and 8-flits enhances the

latency with factor 1.6x and 2.7x respectively. Also, increasing the buffer depth improves

the throughput at higher FIR by 50.9% and 28.8% over a network of 2-flits buffer.

While the latency is improved by factors of 3.6x and 4x using the 4-virtual channels

routers and 8-virtual channel routers respectively, the increasing percentage is about

60.1% and 61% for throughput in 4-VCs and 8-VCs over wormhole router with no VCs.

 2-flit buffer size 8-flit buffer size with 4-VC

Network size
Latency

(Kcycles)

Throughput

(flits/cycle/node)

Latency

(Kcycles)

Throughput

(flits/cycle/node)

4x4 7.5 0.13 1.5 0.58

8x8 14 0.06 2.7 0.36

16x16 22 0.03 4.8 0.2

18x18 23 0.02 5.2 0.18

42

43

 : Simulation Results and Discussion

 Introduction

The test experiment in this chapter aims to simulate the DPR on NoC-based FPGA

using of parallel DPRs on plenty of network sizes. Moreover, a comparison is held

concerning the Reconfiguration Time (RT). Two separate applications are used to

estimate the reconfiguration time: the first one is random (synthetic), and the second is

an embedded application.

 Dynamic partial reconfiguration simulation setup

Virtex-5 xc5vfx100t FPGA is used as the primary configuration plane. It is divided

into PR regions according to the network size. Consequently, for network size 2x2, as

illustrated in Figure 5-1, all configuration plane of Virtex FPGA is divided into 4

reconfiguration regions. Nevertheless, the bitstream sizes of each configuration region

are calculated using the Xilinx ISE v14.7 tool. Finally, RT is determined by using partial

reconfiguration cost calculator [42].

Figure 5-1: Process Elements as reconfiguration region for 2x2 NoC

Each PE of NoC is assumed as PRs, as depicted in Figure 5-1 and Figure 5-2 for

network size of 2x2 and 4x4 respectively. Therefore, the network resources such as the

44

router, NI, and wires are considered hardwired IPs on an FPGA chip layout to simplify

the RT estimation. The primary advantage of using NoC-based FPGA instead of the

conventional SRAM-based FPGA is that multiple simultaneous DPRs are achieved.

Accordingly, each PE has a reconfiguration control unit such as ICAP which is assumed

as hardwired IP.

The reconfiguration time is determined by the cost calculator using the partial

bitstream size for PR of each PE in the different network size as listed in Table 5-1.

However, the reconfiguration time of DPR is not related directly to design resources.

Nevertheless, RT is proportional to the PR region selection, which is translated to a

significant number of frames [1].

As given in (1) and (2) [47], 𝑅𝑇𝑆𝑀−𝑃𝑃𝐶 is the time from the storage means (i.e.,

compact flash or RAM) to the memory of a local processor, 𝑅𝑇𝑃𝑃𝐶−𝐼𝐶𝐴𝑃 is the time from

local processor memory to ICAP memory, 𝑅𝑇𝐼𝐶𝐴𝑃−𝐶𝑀 is the time from ICAP memory to

the configuration memory, 𝑓𝑠 is the frame size, and 𝑛 is the number of frames per

bitstream file.

The full derivation from (1) to (2) is performed by analysis each phase of

reconfiguration and the corresponding throughput and theoretical bandwidth. RT values

are used along with the NoC-DPR simulator for this test experiment.

 𝑅𝑇 = 𝑅𝑇𝑆𝑀−𝑃𝑃𝐶 + 𝑅𝑇𝑃𝑃𝐶−𝐼𝐶𝐴𝑃 + 𝑅𝑇𝐼𝐶𝐴𝑃−𝐶𝑀 (1)

 𝑅𝑇 = 𝑓𝑠(𝑛 + 1) × 3.66 × 10−3 𝑚𝑠 (2)

 Table 5-1: Reconfiguration time for different NoC sizes

Network size Bit file size

(Kbytes)

Reconfiguration time for each node

(msec)

1x1 2526 570.34

2x1 1263 285.188

2x2 632.5 142.612

3x3 280 63.402

4x4 158 35.68

5x5 101 22.848

6x6 70 15.878

7x7 51.5 11.675

8x8 39.4 9.069

9x9 31.2 7.08

10x10 25.25 5.818

11x11 20.3 4.814

45

Figure 5-2: Process Elements as reconfiguration region for 4x4 NoC

 Simulation results of the synthetic application

In the following section, the suitable network size and the number of suitable parallel

DPRs are investigated for two types of wormhole router (i.e., the wormhole router with

no VCs and with VCs). Further tests are performed to study the effect of network

performance variations on RT.

Theoretical RT for the 1-DPR process is calculated using (1) and (2) as shown in

Table 5-1. Nevertheless, the theoretical RT for simultaneous 3-DPR is evaluated by

dividing the RT of 1-DPR by 3. The criteria for selecting (RT / No. of DPR) metric to

compare the different number of simultaneous DPRs are adapted to have a fair

comparison between conventional SRAM-based and NoC-based FPGAs.

5.3.1. Wormhole router without virtual channels

5.3.1.1. Wormhole router with 2-flits buffer depth

A comparison between the different numbers of simultaneous DPRs on the NoC is

performed. It is held based on the difference between the theoretical and the simulated

RT for each DPR number, as illustrated in Figure 5-4, Figure 5-5, and Figure 5-6 for one,

three, and five simultaneous reconfigurations respectively. This metric is a vital indicator

for the performance variation because each network size has different values of

throughput and latency that affect the RT. However, a wormhole router with buffer size

46

2-flits and FIR of 0.1 flits/cycle running at 100MHz over synthetic traffic is used for this

test experiment .

In network sizes less than 10x10 and RT above 1 msec, the difference is unnoticeable

between theoretical and simulated RT. For instance, in Figure 5-4, a slight increase is

noticed in the difference in the network size less than 7x7, the difference does not

increase over 30% as illustrated in Figure 5-3, while for the network size larger than 8x8

it reaches over 70%. Alternatively, the simulated RT for five simultaneous

reconfigurations, as shown in Figure 5-6, the difference is drifted at network sizes less

than 10x10. Then, the gap stroked at larger network sizes that are larger than 10x10,

where the difference percentage is higher than 100% and reaches 400% at network size

18x18 as illustrated in Figure 5-3.

Figure 5-3 shows the percentage difference between the theoretical and the simulated

RT using one, three and five simultaneous DPRs. It is shown that at small network sizes,

from 2x2 to 9x9, the difference is always lower than 40%, 50% and 100% respectively,

because RT is relatively more significant than any network overheads, such as latency

and throughput overheads.

On the other hand, starting from network size of 10x10, the latency is considered

and affects the RT significantly.

Figure 5-3: Difference percentage between the theoretical and the simulated 1, 3

and 5-DPR using wormhole router with 2-flits buffer depth

47

As the number of simultaneous DPRs increases, the difference increases markedly.

The difference percentage does not exceed 70% for all network sizes using 1-DPR as

shown in Figure 5-3. Whereas, in simultaneous 3-DPRs, the difference percentage

reaches up to 75% at large network sizes of 18x18 as shown in Figure 5-5. This is due to

the complexity of controlling parallel DPRs, and the large network's latency due to small

buffer depth 2-filts. Furthermore, other nodes are unable to communicate with the node

that is reconfigured dynamically.

The experiment’s DPR results using a wormhole router with buffer size 2-flits and

FIR of 0.1 flits/cycle running at 100MHz over synthetic traffic are summarized in Table

5-2, where the recommended network size and the number of simultaneously DPRs are

listed according to the reconfiguration time.

Figure 5-4: RT Comparison between the theoretical and the simulated 1-DPR

using wormhole router with 2-flits buffer depth

48

Figure 5-5: RT Comparison between the theoretical and the simulated 3-DPR

using wormhole router with 2-flits buffer depth

Figure 5-6: RT Comparison between the theoretical and the simulated 5-DPR

using wormhole router with 2-flits buffer depth

49

Table 5-2: Network size recommendation for selected reconfiguration time for

wormhole router with 2-flits buffer depth

Reconfiguration

Time

No of DPRs can be used Network size

~10 msec 3 to 5 DPRs 3x3 to 5x5

~5 msec 5 DPRs 5x5 to 6x6

~1 mesc Not recommended Not recommended

5.3.1.2. Wormhole router with 8-flits buffer depth

Figure 5-7 shows the percentage difference between the theoretical and the simulated

RT using one, three, and five simultaneous DPRs respectively. Using a wormhole router

with buffer size 8-flits and FIR of 0.1 flits/cycle running at 100MHz over synthetic

traffic. It is shown that at network sizes starting from 2x2 to 9x9, the difference is always

lower than 7.5%, 10% and 15% respectively because RT is relatively more significant

than latency and throughput overheads. On the other hand, starting from network size of

10x10, the latency is considered and affects the RT.

The difference is unnoticeable between the theoretical and the simulated RT in

network sizes that are less significant than 10x10. For instance, in 1-reconfiguration

Figure 5-8, a little increase is noticed in the difference in network dimension smaller than

11x11, it does not increase over 10% Figure 5-7, while for network size larger than 12x12

it reaches over 35%. Alternatively, the simulated RT for three simultaneous

reconfigurations, as depicted in Figure 5-9, the difference is drifted at network sizes less

than 10x10. Then, the gap stroked at larger network sizes that are larger than 10x10,

where the difference percentage is higher than 10% and reaches 30% at network size

18x18 as illustrated in Figure 5-7.

50

Figure 5-7: Difference percentage between the theoretical and the simulated 1, 3

and 5-DPR using wormhole router with 8-flits buffer depth

The difference percentage between the theoretical and simulated RT increases as the

number of simultaneous DPRs increases. The difference percentage does not exceed 35%

for all network sizes using 1-DPR as shown in Figure 5-7. Whereas, when using

simultaneous 5-DPRs as shown in Figure 5-10, the difference percentage reaches up to

70% at large network sizes of 18x18 as shown in Figure 5-7. That is due to the complexity

of controlling parallel DPRs, and the vast network's latency. Furthermore, all nodes are

not able to communicate with the node that is under dynamic reconfiguration.

Table 5-3 summarizes the experiment’s results of DPR using a wormhole router with

buffer size 8-flits and FIR of 0.1 flits/cycle running at 100MHz over synthetic traffic.

The recommended network size and the number of simultaneously DPRs are calculated

according to the RT. The recommendation is made based on the difference between the

theoretical and the simulated results of RT.

51

Figure 5-8: RT Comparison between the theoretical and the simulated 1-DPR

using wormhole router with 8-flits buffer depth

Figure 5-9: RT Comparison between the theoretical and the simulated 3-DPR

using wormhole router with 8-flits buffer depth

52

Figure 5-10: RT Comparison between the theoretical and the simulated 5-DPR

using wormhole router with 8-flits buffer depth

Table 5-3: Network size recommendation for selected reconfiguration time for

wormhole router with 8-flits buffer depth

Reconfiguration

Time

No of DPRs can be used Network size

~10 msec 1 to 5 DPRs 3x3 to 8x8

~5 msec 1 to 5 DPRs 5x5 to 12x12

~1 mesc 3 DPRs 10x10 to 18x18

53

5.3.2. Wormhole router with virtual channels

The previous experiment is repeated using the network of wormhole router with the

8-virtual channel and buffer size of 8-flits at FIR of 0.1 flits/cycle.

As illustrated in Figure 5-11, at network dimension less than 10x0, which has a

significant RT (more than 5 msec), using a wormhole router with VC has a minor effect

on RT. Interestingly, for higher network sizes, over 10x10, routers with VCs improve the

RT and the difference between the theoretical and the simulated result is reduced by

factor 60% than that a wormhole router without VC is used. These reconfiguration values

correlate favourably with the network performance metrics, which also are enhanced by

using wormhole router with VCs. Figure 5-12 and Figure 5-13 state the result of 1-DPR

and 3-DPR at a time, where a constant difference is noticed as the network size varies

from 2x2 to 18x18. In contrast, the simulated RT for 5-DPR simultaneously increases at

network sizes more than 10x10 as shown in Figure 5-14.

Figure 5-11: Difference percentage between the theoretical and the simulated 1, 3

and 5-DPR using wormhole router with 8-flits buffer depth and 8-VC

Figure 5-11 shows that at small network sizes (i.e., 2x2 to 9x9), the difference

percentage is lower than 7%. On the other hand, starting from the network dimension of

10x10, the difference reaches up to 12%, as the RT becomes smaller and is affected by

the network's latency.

54

At network sizes 2x2 to 9x9, the difference is lower than 10%. Starting from network

size of 10x10, the difference reaches up to 30%, as the RT becomes smaller and is

affected by the network's latency as shown in Figure 5-11.

In contradiction with the earlier findings using wormhole router without VCs, as the

simultaneous number of DPR increases and the network size increases, the percentage

difference between the theoretical and the simulated RT values does not increase

significantly. The percentage does not exceed 8% all over network sizes using 1-DPR as

denoted in Figure 5-12, and by using 3-DPR simultaneously, the percentage reaches up

to 20% at large network size of 18x18 in Figure 5-13, which substantiates previous

findings in chapter 4.

Table 5-4 summarizes the experiment’s results of DPR according to reconfiguration

time, network size and the number of simultaneous DPRs. The recommendation is made

based on the difference between the theoretical and the simulated result of RT for both

networks of wormhole router without VC and with 8-virtual channels using a synthetic

application.

Figure 5-12: RT Comparison between the theoretical and the simulated 1-DPR

using wormhole router with 8-flits buffer depth and 8-VC

55

Figure 5-13: RT Comparison between the theoretical and the simulated 3-DPR

using wormhole router with 8-flits buffer depth and 8-VC

Figure 5-14: RT Comparison between the theoretical and the simulated 5-DPR

using wormhole router with 8-flits buffer depth and 8-VC

56

Table 5-4: Network size recommendation for selected reconfiguration time for

wormhole router with 8-flits buffer depth and 8-VC

Reconfiguration

Time

No of DPRs can be used Network size

~10 msec 1 to 5 DPRs 3x3 to 8x8

~5 msec 1 to 5 DPRs 5x5 to 12x12

~1 mesc 3 to 5 DPRs 10x10 to 18x18

 Simulation results of the embedded application

In this experiment, the DPR of NoC-based FPGA is studied and evaluated with an

embedded application. The impact of changing the simultaneous dynamic

reconfiguration, representing the switching between two applications, is assessed and

compared to the theoretical results.

(a)

57

(b)

(c)

Figure 5-15: Network 5x6 for Wifi receiver application switching to Multi-Media

application

58

5.4.1. Embedded Application

Many embedded applications such as 802.11a WiFi receiver [47], Video Object

Plane Decoder, and multimedia system [48] are examined using NoC-DPR simulator to

have early access to the application performance before the design stage .

Each application is composed of a different number of tasks with different FIR. All

tasks are mapped onto the network using either random mapping or n-map mapping

algorithm [49]. Furthermore, each task communicates with one or multiple destinations.

The specifications of the embedded application are parsed to the NoC-DPR through an

application file that includes the number of tasks, the destination, and the FIR of each

task.

Figure 5-16: Comparison between the theoretical and the simulated multiple DPR

for Wifi receiver application using 4-filts buffer depth

The multiplexing between many embedded applications using DPR is a prime

benchmark for NoC-DPR simulator, as this experiment emphasizes the advantages of

NoC-based FPGAs over the conventional SRAM-based FPGAs, where the main

advantage is the ability to perform multiple DPRs simultaneously.

The network of wormhole routers with a buffer size of 4, 8, and 16-flits running at

100MHz are considered for this experiment. The study selects 802.11a WiFi receiver and

multimedia system application. The 802.11a WiFi receiver has 24 tasks, and the

multimedia system has 25 tasks as depicted in Figure 5-15a to Figure 5-15c. The

reconfiguration is started by the farthest node from the master node (0, 0), then the next

node as shown in Figure 5-15b, so on till all the 25 tasks are configured as illustrated in

Figure 5-15c.

59

Figure 5-17: Comparison between the theoretical and the simulated multiple DPR

for Wifi receiver application using 8-filts buffer depth

Figure 5-18: Comparison between the theoretical and the simulated multiple DPR

for Wifi receiver application using 16-filts buffer depth

60

The impact of changing the number of simultaneous DPRs to switch between

embedded applications is evaluated and compared to the theoretical results as depicted

in Figure 5-16 for a network of wormhole routers with buffer depth 4-flits.

The total time of reconfiguring all tasks from multimedia application to or from WiFi

application is measured by varying the number of DPRs simultaneously from 1-DPR to

24-DPR as illustrated in Figure 5-15 and compared to the conventional FPGA that allows

only 1-DPR, where RT saturates at 245 msec.

Significantly, the difference between the theoretical and the simulated RT is slightly

drifting as portrayed in Figure 5-16 using 4-flits buffer depth, as well as in Figure 5-17

and Figure 5-18 for 8 and 16 buffer depths receptively.

These findings are not in a complete agreement with the previous results using the

wormhole router without VCs. Nevertheless, further tests are performed to resolve this

contradiction; the comparison between the results of using wormhole router with eight

flits buffer depth and wormhole router with 4-VCs is depicted in Figure 5-19. These

results revealed the cause of the latter contradiction, which is the order of sending the

reconfiguration packets; whereas, in this case study, the master node sends the

reconfiguration packets in order, from the farthest to the nearest nodes. Nevertheless, the

RT to switch between the WiFi and multimedia system is reduced by a factor of 12.25x

using the NoC-based FPGAs.

Figure 5-19: Comparison between the theoretical and the simulated multiple DPR

for Wifi receiver application using 8-filts buffer depth of both wormhole router

and wormhole router with 4-VCs

61

 Design recommendations

Based on the previous experiments; some design insights and recommendations

should be taken into consideration during the design of DPR on NoC-based FPGAs [51]

[52]:

•A convential NoC platform cannot be used to implement DPR application directly.

For instance, when one PE is performing DPR, the network should prevent other PEs

from sending or receiving data to/from this PE until DPR is finished.

•Selecting a master node to control DPR’s process: in the proposed NoC-DPR

simulator, it is assumed that PE (0, 0) is the master of DPR process that is responsible

for sending of reconfiguration packets as depicted in Figure 5-15.

•When the target PE receives the reconfiguration packet, it starts to perform

reconfiguration. After the DPR is finished, the destination sends back to master node

acknowledge packet to broadcast the availability.

•The clear advantage of using NoC-based FPGAs is the ability to perform multiple

DPRs simultaneously. Thus numerous reconfiguration controllers should be distributed

along with each PE.

•The recommended network size and number of simultaneous DPRs are estimated

according to the desired RT. As portrayed in Figure 5-3 to Figure 5-14, the RT is the

primary parameter over the other network parameters (i.e., latency and throughput),

which affects the deviation between the theoretical and the simulated results directly. For

instance, if the RT is 100 msec, up to 5-DPR simultaneously are executed, at any suitable

network of wormhole routers with size from 2x2 to 9x9. In contrast, if the limit of RT is

1 msec, the optimal choice is 5-DPR simultaneously and wormhole network with 8-VC

with a size larger than 10x10.

•Using virtual channel wormhole router enhances network latency and throughput,

and reduces the RT.

 Summary

In this chapter, two experiments are discussed. It is shown that NoC-based FPGA

enhances the reconfiguration performance due to the ability to perform various DPRs at

a time. The first experiment is executed using a synthetic application, where PEs of the

network is theoretically mapped on Virtex-5 FPGAs, then the results of RT difference

are calculated, the time difference between the theoretically and the simulated in both

network of wormhole routers with and without virtual channels are estimated. The

recommended network size and number of simultaneous DPRs are estimated according

to the desired RT. It is found that the difference is always lower than 50% and 30% at

small size networks for a network of wormhole routers with and without virtual channels

respectively.

Finally, the RT is enhanced by a factor of 12.25x when switching between the WiFi

and multimedia system.

62

63

 : Conclusions and Future work

Merging NoC with FPGA becomes an essential step for enhancing data

communication, and adding DPR improves bandwidth utilization and increases designs

efficiency and scalability.

The thesis’s contribution is examined in four phases. In Chapter 2, an overview of

FPGA’s building blocks, an introduction for networking principles, and a survey of

several NoC simulators are provided.

In Chapter 3, a comprehensive survey on the different techniques of DPR on Xilinx

FPGA is presented. The four configuration methods used with DPR in Xilinx FPGAs are

reviewed, and the results stated that JTAG’s performance is better than the others with

small designs where the area overhead is very noticeable. Despite that, the performance

is not good with large designs where the space cost is not reasonable compared to the

design area.

In Chapter 4, a comparison of the NoC-DPR performance to NoCTweak simulator

performance is discussed, then the latency and throughput are estimated for 2-flits, 4-

flits, and 8-flits buffer sizes and wormhole router and wormhole router with virtual

channels.

Finally, Chapter 5 presents the work done to study the RT overhead, which resulted

in an increasing number of simultaneous configurations on FPGA fabric using a synthetic

and an embedded application. It is evident that NoC-based FPGA enhances

reconfiguration performance because multiple configurations are performed

simultaneously. However, supporting multiple DPRs needs to add more resources such

as controlling unit and decoupling buffers. Accordingly, the reconfiguration time of DPR

with NoC is better than the RT of DPR at conventional FPGA. Despite that, the number

of simultaneous DPRs cannot exceed the signficant limit for specific network sizes, as

no reduction in RT is gained, moreover, more resources are added.

In this work, a state-of-art NoC-DPR simulator is proposed, and some

recommendations are extracted for the implementation of DPR on NoC-based FPGA to

get the optimal size of the network concerning PE’s logic resources.

It is shown that NoC-based FPGA enhances reconfiguration performance, and

performs simultaneous DPRs. The first experiment is executed using a synthetic

application, then the results of reconfiguration time difference are calculated, the time

difference between the theoretically and the simulated in both network of wormhole

routers with and without virtual channels. The recommended network size and number

of simultaneous DPRs are estimated according to the desired reconfiguration time. It is

found that the difference is always lower than 50% and 30% at small size networks for a

network of wormhole routers with and without virtual channels respectively.

The DPR of NoC-based FPGA is studied and evaluated using an embedded

application that switches from the multimedia system to the WiFi receiver. Furthermore,

the reconfiguration time is estimated, which provides further evidence of enhancement

64

with factor 12.25x over the conventional SRAM-based FPGAs. Plenty of the

experiments, results, and their conclusions in this thesis are published in [1, 51 and 52].

This research has three limitations: The first is the comparison of NoC-DPR

simulation results with an existing simulators of similar architecture to validate the

modifications on NoCtweak simulator. Second limitations is the overhead area

estimation for the simulated hardwired module. The second is the power estimation.

However, area and power overhead are estimated and added to the proposed simulator

NoC-DPR in the future, as each module and sub-module on FPGA, where area and power

are calculated by NoC-DPR using pre-calculated sub-modules. Finally, asynchronous

support might be added, as the network interface in NoC-DPR simulator isolates PEs and

the network. The future work will try to overcome these limitations, and hopefully, there

will be a second release of the proposed NoC-DPR simulator.

65

References

1. A. Hassan, R. Ahmed, H. Mostafa, H. A. H. Fahmy and A. Hussien, "Performance

evaluation of dynamic partial reconfiguration techniques for software defined radio

implementation on FPGA," IEEE International Conference on Electronics, Circuits,

and Systems (ICECS), Cairo, pp. 183-186, 2015.

2. C. Hilton and B. Nelson. “PNoC: A Flexible Circuit-Switched NoC for FPGA-based

Systems,” IEE Proceedings Computers and Digital Techniques, Vol. 153, pp. 181-

188, 2006.

3. D. Koch and al., “Partial reconfiguration on FPGAs in practice — Tools and

applications,” ARCS 2012, Munich, pp. 1-12, 2012.

4. D. P. Schultz, S. P. Young, and L. C. Hung, “Method and structure for reading,

modifying and writing selected configuration memory cells of an FPGA,” Xilinx Inc.,

Patent US 6255848, 1999.

5. Xilinx Inc. Development System Reference Guide.

6. Xilinx Inc. Virtex-4 Configuration Guide.

7. Xilinx Inc. Virtex and Virtex-E FPGA Data Sheets, 2000.

8. Xilinx Inc. Virtex-2 and Virtex-2 Pro FPGA Data Sheets, 2002.

9. Xilinx Inc. Processor Local Bus (PLB) v3.4, 2003.

10. Xilinx Inc. Virtex-4 Data Sheets, 2005.

11. Xilinx Inc. Virtex-4 User Guide, 2005.

12. Xilinx Inc. Virtex-5 User Guide, 2007.

13. Xilinx Inc. Virtex-5 Data Sheets, 2008.

14. Xilinx Inc. Virtex-6 Data Sheets, 2009.

15. Xilinx Inc. Virtex-7 Data Sheets, 2012.

16. W. S. Carter, K. Duong, R. H. Freeman, H.-C. Hsieh, J. Y. Ja, J. E. Mahoney, L. T.

Ngo and S. L. Sze, “A User Programmable Reconfigurable Logic Array,” IEEE 1986

Custom Integrated Circuits Conference, pp. 233–235, 1986.

17. K. Compton and S. Hauck, “Reconfigurable computing: A survey of systems and

software,” ACM Computing Surveys, pp. 171–210, 2002.

18. A. Rohe and S. Teig, “Method and apparatus for identifying connections between

configurable nodes in a configurable integrated circuit,” Tabula Inc., Patent US

7284222, 2007.

19. Xilinx Inc. Partial Reconfiguration User Guide (UG702).

20. P. Manet, “An evaluation of dynamic partial reconfiguration for signal and image

processing in professional electronics applications,” EURASIP Journal on Embedded

Systems, 2008.

66

21. P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched

interconnections,” Proceedings Design, Automation and Test in Europe Conference

and Exhibition 2000 (Cat. No. PR00537), Paris, pp. 250-256, 2000.

22. T. Bjerregaard and S. Mahadevan, “A survey of research and practices of Network-

on-chip,” ACM Computer, New York, 2006.

23. M. Moadeli, “Quarc: An Architecture for Efficient On-Chip Communication,” PhD

Thesis, University of Glasgow, 2010.

24. E. Salminen and al., “On network-on-chip comparison,” 10th Euromicro

Conference on Digital System Design Architectures, Methods and Tools, pp. 503-

510, 2007.

25. G. D. Micheli and al., “Networks on Chips: from Research to Products,” in Design

Automation Conference, pp. 300-305, 2010.

26. A. Mello, L. Tedesco, N. Calazans and F. Moraes, “Virtual Channels in Networks on

Chip: Implementation and Evaluation on Hermes NoC,” 18th Symposium on

Integrated Circuits and Systems Design, Florianopolis, pp. 178-183, 2005.

27. M. Selva, A. Gamatié, D. Novo and G. Sassatelli, “Speed and accuracy dilemma in

NoC simulation: What about memory impact?” 11th International Symposium on

Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Tallinn, pp.

1-7, 2016.

28. V. Catania, A. Mineo, S. Monteleone, M. Palesi and D. Patti, “Noxim: An open,

extensible and cycle-accurate network on chip simulator,” IEEE 26th International

Conference on Application-specific Systems, Architectures and Processors (ASAP),

Toronto, pp. 162-163, 2015.

29. N. Jiang, G. Michelogiannakis, D. Becker and B. Towles, W. J. Dally, “Booksim 2.0

User's Guide,” Stanford University, 2010.

30. A. T. Tran and B. M. Baas. “NoCTweak: a Highly Parameterizable Simulator for

Early Exploration of Performance and Energy of Networks On-Chip,” Dept. Electr.

Comput. Eng., Univ. California, 2012.

31. S. Khan, S. Anjum, U. A. Gulzari and F. S. Torres, “Comparative analysis of

network-on-chip simulation tools,” IET Computers & Digital Techniques, pp. 30-38,

2018.

32. L. Jain, B. Al-Hashimi and M. Gaur, “NIRGAM: a simulator for NoC interconnect

routing and application modeling,” Workshop on Diagnostic Services in Network-

on-Chips, DATE, pp. 16–20, 2007.

33. H. Hossain, M. Ahmed, A. Al-Nayeem, T. Z. Islam and M. M. Akbar, “Gpnocsim -

A General Purpose Simulator for Network-On-Chip,” International Conference on

Information and Communication Technology, Dhaka, pp. 254-257, 2007.

34. Y. Ben-Itzhak, E. Zahavi, I. Cidon and A. Kolodny, “HNOCS: Modular open-source

simulator for Heterogeneous NoCs,” International Conference on Embedded

Computer Systems (SAMOS), Samos, pp. 51-57, 2012.

35. A. Ehliar and D. Liu, “An FPGA based open source network-on-chip architecture,”

17th International Conference on Field Programmable Logic and Applications, FPL,

IEEE Amsterdam, Holland, pp. 800-803, 2007.

67

36. M. Stensgaard and J. Spars, “ReNoC: A network-on-chip architecture with

reconfigurable topology,” Proc. Int. Symp. Networks-on-Chip (NoCS), pp. 55-64,

2008.

37. Xilinx Inc. Virtex-7 FPGAs Configuration User Guide (UG470). 2016.

38. Xilinx Inc. Virtex-5 FPGAs Configuration User Guide (UG191). 2012.

39. M. Liu, W. Kuehn, Z. Lu and A. Jantsch, “Run-time Partial Reconfiguration Speed

Investigation and Architectural Design Space Exploration,” Proceedings of FPL,

Prague, 2009.

40. H. Tan, R. F. DeMara, A. J. Thakkar, A. Ejnioui and J. Sattler, “Complexity and

Performance Evaluation of Two Partial Reconfiguration Interfaces on FPGAs: A

Case Study,” in Proceedings of ERSA’06, Las Vegas, pp. 253-256, 2006.

41. A. Raabe, S. Hochgurtel, G. Zachmann and J. K. Anlauf, “ReChannel: Describing

and Simulating Reconfigurable Hardware in SystemC,” ACM Transactions on

Design Automation of Electronic Systems (TODAES), p.1-18, 2008.

42. Adriatic Consortium., “Advanced methodology for designing reconfigurable SoC

and application-targeted IP-entities in wireless communications,” 2002.

43. I. Benkhermi, A. Benkhelifa, D. Chillet, S. Pillement, J.-C. Prévotet and F. Verdier,

“System-Level modelling for reconfigurable SoCs,” the 20th Conference on Design

of Circuits and Integrated Systems (DCIS), Lisbon, 2005.

44. A. V. De Briton, E. U. K. Melcher and W. Rosas, “An open-source tool for simulation

of partially reconfigurable systems using SystemC,” Proceedings of the IEEE

Computer Society Annual Symposium on Emerging VLSI Technologies and

Architectures, p. 434, 2006.

45. A. Schallenberg, F. Oppenheimer and W. Nebel, “Designing for dynamic partially

reconfigurable FPGAs with SystemC and OSSS,” the Forum on Specification and

Design Languages, Lille, 2004.

46. K. Papadimitriou, A. Anyfantis and A. Dollas, “Methodology and Experimental

Setup for the Determination of System-Level Dynamic Reconfiguration Overhead,”

Proc of Field-Programmable Custom Computing Machines, pp. 335-336, 2007.

47. K. Papadimitriou, A. Dollas and S. Hauck, “Performance of partial reconfiguration

in FPGA systems: A survey and a cost model,” ACM Transactions on Reconfigurable

Technology and Systems (TRETS), p.1-24, 2011.

48. C. R. Berger, V. Arbatov, Y. Voronenko, F. Franchetti and M. Püschel, “Real-time

software implementation of an IEEE 802.11a baseband receiver on Intel multicore,”

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Prague, pp. 1693-1696, 2011.

49. A. Kostrzewa, R. Ernst and S. Saidi, “Multi-path scheduling for multimedia traffic in

safety critical on-chip network,” 14th ACM/IEEE Symposium on Embedded

Systems for Real-time Multimedia (ESTIMedia), Pittsburgh, pp. 1-10, 2016.

50. E. Carvalho, N. Calazans and F. Moraes, “Investigating runtime task mapping for

NoC-based multiprocessor SoCs,” 17th IFIP International Conference on Very Large

Scale Integration (VLSI-SoC), Florianopolis, pp. 71-76, 2009.

68

51. A. Hassan, H. Mostafa, H. A. H. Fahmy and Y. Ismail, “Exploiting the Dynamic

Partial Reconfiguration on NoC-Based FPGA,” New Generation of CAS (NGCAS),

Genova, pp. 277-280, 2017.

52. A. Hassan, H. Mostafa and H. A. H. Fahmy, “NoC-DPR: A new simulation tool

exploiting the Dynamic Partial Reconfiguration (DPR) on Network-on-Chip (NoC)

based FPGA,” VLSI Integration, 2018.

69

Appendix A: NoC-DPR simulator Options

 ------------------- Platform Options -----------------------------

 -platform [option]: application traffic simulated on this platform.

 option = synthetic: a synthetic traffic pattern (default)

 option = embedded: an embedded application trace

 option = reconfig: perform reconfig application

 -seed [value]: random seed for the simulation.

 (the same random seed will drive the same output results for

 the same network configuration. It's used for easier debugging.

 Default value = system time.)

 -log [filename]: log file for simulation outputs

 -vcd [filename]: VCD file for signal waveform traces

 -simmode [option]: simulation mode (packet or cycle)

 -simtime [value]: simulation running time

 value = N. Default = 100,000.

 if simmode option = packet: stop simulation after transferring N packets

 if simmode option = cycle: stop simulation after running N clock cycles

 -warmtime [value]: warmup time for the network to become stable

 value = M (M < N). Default = 10,000.

 if simmode option = packet: do not consider the first M received packets

 if simmode option = cycle: warmup time is M clock cycles

 ------------------ Reconfigurable Options -----------------------------

 -reconfig_time1 [value]: reconfiguration time for proc 1

 -reconfig_time2 [value]: reconfiguration time for proc 2

 -fir_rc [value]: flit injection rate of reconfig (number of flits injected by each core

per cycle)

 0 < fir <= 1. Default = 0.1

 -length_rc [value]: the number of flits per rconfig packet.

 (only for the fixed packet length option. Default = 5.)

 -rc_num [value]: the number of the core to be reconfigured at the time.

 (Default = 1.)

 ------------------ Synthetic Options -----------------------------

 -dimx [value]: X dimension length of the 2-D mesh network. Default value = 8.

 -dimy [value]: Y dimension length of the 2-D mesh network. Default value = 8.

 -traffic [option]: synthetic traffic patterns used for the simulation.

 option = random: uniform random (default)

 option = transpose: transpose

 option = bitc: bit-complement

 option = bitr: bit-reverse

 option = tornado: tornado

 option = shuffle: bit-shuffle

 option = rotate: bit-rotate

 option = neighbor: nearest neighbor traffic

 option = regional: communication distance <= 3

 option = hotspot: central or corner hot spots

 -nhs [value]: the number of hot spots. Default = 4.

70

 -hstype [option]: hot-spot type

 option = central: hot spots at the central cores

 option = corner: hot spots at the corners (default)

 -percent [value]: percentage of traffics going to neighboring or regional or

hotspot cores

 ------------------ Embedded Application Traces ----------------------

 -appfile [option]: application task communication graph used in the simulation.

 option = vopd.app: video object plan decoder with 16 tasks (default)

 option = mms.app: multimedia system with 25 tasks

 option = mwd.app: multi-window display with 12 tasks

 option = wifirx.app: WiFi baseband receiver with 25 tasks

 option = cavlc.app: H.24 CAVLC encoder with 16 tasks

 option = mpeg4.app: MPEG4 decoder with 12 tasks

 option = vce.app: video conference encoder with 25 tasks

 option = autoindust.app: E3S auto-indust benchmark with 24 tasks

 option = consumer.app: E3S consumer benchmark with 12 tasks

 option = telecom.app: E3S telecom benchmark with 30 tasks

 -appfile1 [option]: application task communication graph used in the simulation.

 -mapping [option]: mapping algorithm used to map the task graph to the

processor array

 option = random: random mapping

 option = nmap: near-optimal mapping using the NMAP algorithm

 ------------------- Traffic Options --------------------------------

 -fir [value]: flit injection rate (number of flits injected by each core per cycle)

 0 < fir <= 1. Default = 0.1

 -dist [option]: probability distribution of the period between two injected packets

 option = exponential: exponential distribution (default)

 option = identical: identical distribution

 -plength [option]: packet length is fixed or variable

 option = fixed: fixed packet length (default)

 option = variable: variable packet length

 -length [value]: the number of flits per packet.

 (only for the fixed packet length option. Default = 5.)

 -lengthmin [value]: the minimum number of flits per packet

 (only for the variable packet length option. Default = 2.)

 -lengthmax [value]: the maximum number of flits per packet

 (only for the variable packet length option. Default = 10.)

 ------------------- Router Settings --------------------------------

 -router [option] the simulated router

 option = wh: wormhole router (default)

 option = vc: virtual-channel router

 option = roshaq: RoShaQ share-queues router

 option = bufferless: bufferless router

 option = cs: circuit-switched router

 -pptype [value]: pipeline type and the number of pipeline stages. Default = 3

stages

 -bsize [value]: buffer depth (2, 4, 8, 16, 32 flits). Default = 4 flits.

71

 -sbsize [value]: shared-buffer queue depth (2, 4, 8, 16, 32 flits). Default = 4

flits.

 -nvc [value]: the number of virtual-channel buffers per input port. Default =

2 queues.

 -nsb [value]: the number of shared-buffer queues in RoShaQ routers.

Default = 5 queues.

 -routing [option]: routing algorithm

 option = xy: XY dimension-ordered routing (default)

 option = nfminimal: Negative-First minimal adaptive routing

 option = wfminimal: West-First minimal adaptive routing

 option = nlminimal: North-Last minimal adaptive routing

 option = oeminimal: Odd-Even minimal adaptive routing

 option = table: lookup table based routing

 -outsel [option]: choose an output port among multiple ones returned by an adaptive

routing

 option = xyordered: the X dimension first (default)

 option = nearestdim: the dimension nearest to the destination first

 option = farthestdim: the dimension farthest to the destination first

 option = roundrobin: round-robin among output ports

 option = credit: the output port having the highest credit first

 -sa [option]: switch arbitration policy

 option = rr: round-robin (default)

 option = oldest: oldest first

 option = takeall: winner takes all (only for virtual-channel routers)

 option = islip: iSLIP based algorithm (only for virtual-channel routers)

 -vca [option]: virtual-channel allocation policy (only for virtual-channel

routers)

 option = rr: round-robin (default)

 option = oldest: oldest first

 option = islip: iSLIP based algorithm

 -llength [value]: inter-router link length (in um). Default = 1000 um.

 --------------- Environment Settings ------------------------

 -technode [value]: CMOS technology process (90, 65, 45, 32, 22 nm). Default

= 65 nm.

 -freqmode [option]: clock frequency setting

 option = fixed: fixed clock frequency (in MHz)

 option = max: the maximum clock frequency supported by the router

 -freq [value]: for fixed clock frequency (in MHz). Default = 1000 MHz.

 -volt [value]: supply voltage (in V). Default = 1.0 V.

72

Figure A-1:NoC-DPR tool

73

Appendix B: Source Code of introduced modules

Header file Network Interface:

#ifndef PROC_NOC_INTER_H_

#define PROC_NOC_INTER_H_

#include <queue>

#include <systemc.h>

#include "../definition.h"

#include "../common_functions.h"

#include "../router/router_parameters.h"

#include "proc_parameters.h"

#include "../global_variables.h"

class proc_noc_interface: public sc_module{

 public:

 // clk and reset

 sc_in <bool> clk;

 sc_in <bool> reset;

 // Signal from the router saying that he received a flit for this interface

 sc_in <bool> r_valid_in;

 // Signal from the router with the flit to be received by this interface

 sc_in <Flit> r_flit_in;

 // Signal from virtual channels of the router saying that one buffer entry is

available

 sc_in <bool> r_out_vc_buffer_rd[MAX_N_VCS];

 // Signal to router saying that this interface want to send a flit

 sc_out <bool> r_valid_out;

 // Signal to router with the flit to be sent by this interface

 sc_out <Flit> r_flit_out;

 // Signal to router saying saying that this interface has read an input flit on the

given VC (the router can free it)

 sc_out <bool> r_in_vc_buffer_rd[MAX_N_VCS];

 sc_out <bool> r_interface_buffer_rd[MAX_N_VCS];

 // Signal from the processor saying that he received a flit for this interface

 sc_in <bool> p_valid_in;

74

 // Signal from the processor with the flit to be received by this interface

 sc_in <Flit> p_flit_in;

 // Signal from virtual channels of the processor saying that one buffer entry is

available

 sc_in <bool> p_out_vc_buffer_rd;

 // Signal to processor saying that this interface want to send a flit

 sc_out <bool> p_valid_out;

 // Signal to processor with the flit to be sent by this interface

 sc_out <Flit> p_flit_out;

 // Signal to processor saying saying that this interface has read an input flit on the

given VC (the router can free it)

 sc_out <bool> p_buff_out_full;

 // Signal to processor saying saying that this interface has read an input flit on the

given VC (the router can free it)

 sc_out <bool> p_vaild_out_buff;

 sc_signal <int> out_vc_remain[MAX_N_VCS]; // keep trace of

number of idle entries of each output VC

 sc_signal <int> out_vc_remain_reg[MAX_N_VCS];

 sc_signal <int> in_vc_remain[MAX_N_VCS]; // keep trace of

number of idle entries of each output VC

 sc_signal <int> in_vc_remain_reg[MAX_N_VCS];

 sc_signal <bool> out_buff_empty;

 sc_signal <int> in_buff_empty;

 sc_signal <int> in_buff_empty_reg;

 sc_signal <bool> in_buf_out_buffer_rd;

 sc_signal <bool> out_buf_out_buffer_rd;

 sc_signal <bool> out_buffer_full;

 sc_signal <bool> in_buffer_full;

 int local_x;

 int local_y;

 queue <Flit> out_buffer;

 queue <Flit> in_buffer;

 // initialize all constants inside the processor (x,y)

 void initialize(int x, int y);

 void out_vc_remain_process();

 void count_plus_process(); // pipelined out_vc_remain

 void out_vc_remain_reg_process(); // pipelined out_vc_remain

75

 void in_vc_remain_process();

 void in_vc_remain_reg_process(); // pipelined out_vc_remain

 void tx_process_out_buff();

 void rx_process_in_buff();

 void out_buffer_process();

 void in_buffer_process();

 // constructor

 SC_HAS_PROCESS(proc_noc_interface);

 proc_noc_interface (sc_module_name name): sc_module(name){

 string in_buffer_name;

 in_buffer_name = "in_buffer_interface";

 buffer_size = RouterParameter::buffer_size;

 //in buff full

 SC_METHOD (tx_process_out_buff);

 sensitive << clk.pos() << reset.pos() ;

 SC_METHOD (rx_process_in_buff);

 sensitive << clk.pos() << reset.pos();

 SC_METHOD (in_buffer_process);

 sensitive << clk.pos() << reset.pos();

 SC_METHOD (out_buffer_process);

 sensitive << clk.pos() << reset.pos();

 // update out_vc_remain

 SC_METHOD (out_vc_remain_process);

 for (int vo=0; vo<RouterParameter::n_VCs; vo++){

 sensitive << out_vc_remain_reg[vo];

 sensitive << count_plus[vo];

 sensitive << count_minus[vo];

 }

 // pipelined out_vc_remain

 SC_METHOD (out_vc_remain_reg_process);

 sensitive << clk.pos() << reset.pos();

 // count_plus = out_vc_buffer

 SC_METHOD (count_plus_process);

 for (int vo=0; vo<RouterParameter::n_VCs; vo++){

 sensitive << r_out_vc_buffer_rd[vo];

 }

 SC_METHOD (in_vc_remain_process);

 for (int vo=0; vo<RouterParameter::n_VCs; vo++){

76

 sensitive << in_vc_remain_reg[vo];

 sensitive << in_count_plus[vo];

 sensitive << in_count_minus[vo];

 }

 // pipelined out_vc_remain

 SC_METHOD (in_vc_remain_reg_process);

 sensitive << clk.pos() << reset.pos();

 }

private:

 unsigned int buffer_size; // number of flits

 sc_signal <bool> in_count_plus[MAX_N_VCS]; // = out_vc_buffer_rd

 sc_signal <bool> in_count_minus[MAX_N_VCS];

 sc_signal <bool> count_plus[MAX_N_VCS]; // = out_vc_buffer_rd

 sc_signal <bool> count_minus[MAX_N_VCS];

};

#endif /* PROC_NOC_INTER_H_ */

77

Header file of Process Element interface with Rechannel Library:

#ifndef PROC_RC_H_

#define PROC_RC_H_

#include <systemc.h>

#include "ReChannel.h"

#include "../definition.h"

#include "proc_evaluation.h"

#include "synthetic/without_ACK/synthetic_proc_rc.h"

#include "embedded/without_ACK/embedded_proc_rc.h"

#define NUM_RC_PROC 4

class procRCIf: public VirtualProc,

public rc_reconfigurable{

 public:

 // clk and reset

 rc_in_portal<bool> p_clk;

 //rc_in_portal<bool> p_reset;

 // Input interface

 rc_in_portal<bool> p_valid_in;

 rc_in_portal<Flit> p_flit_in;

 rc_out_portal<bool> p_in_vc_buffer_rd;

 // output interface

 rc_out_portal<bool> p_valid_out;

 rc_out_portal<Flit> p_flit_out;

 rc_in_portal<bool> p_out_vc_buffer_rd; // "full" signals from virtual

channels of the local router port

 rc_in_portal <bool> p_vaild_in;

 //rc_in_portal<bool> p_reconf_done;

 //----------- functions

 // initialize all constants inside the processor (x,y)

 void initialize(int x, int y, EmbeddedAppHashTable* app_info=NULL);

 ProcEvaluationFactors *evaluation();

 void change_module();

 void reconfig_signal_process();

 //void reconfig_done_signal_process();

 EmbeddedProc_rc* procEm;

 EmbeddedProc_rc* procEm1;

 //SyntheticWithACKProc_rc procSynAck;

 SyntheticProc_rc* procSyn;

 SyntheticProc_rc* procSyn1;

 VirtualProc *currentProc;

78

 VirtualProc *rcProc[NUM_RC_PROC];

 rc_control ctrl;

 sc_signal <bool> reset_int;

 sc_signal <bool> recof_done_s;

 // constructor

 SC_HAS_PROCESS(procRCIf);

 procRCIf (sc_module_name name): VirtualProc(name),

 ctrl("control")

 {

 //procEm = new EmbeddedProc_rc("EmbeddedProc_rc");

 procSyn = new SyntheticProc_rc("SyntheticProc_rc", this);

 procSyn1 = new SyntheticProc_rc("SyntheticProc_rc1", this);

 procEm = new EmbeddedProc_rc("EmbeddedProc_rc", this);

 procEm1 = new EmbeddedProc_rc("EmbeddedProc_rc1", this);

 rcProc[0] = procSyn;

 rcProc[1] = procSyn1;

 rcProc[2] = procEm;

 rcProc[3] = procEm1;

 p_clk.static_port(clk);

 procSyn->reset(reset);

 procSyn1->reset(reset);

 procEm->reset(reset);

 procEm1->reset(reset);

 p_valid_in.static_port(valid_in);

 p_flit_in.static_port(flit_in);

 p_valid_out.static_port(valid_out);

 p_flit_out.static_port(flit_out);

 p_in_vc_buffer_rd.static_port(in_vc_buffer_rd);

 p_out_vc_buffer_rd.static_port(out_vc_buffer_rd);

 p_vaild_in.static_port(out_buf_vaild_in);

 for(int i=0; i<NUM_RC_PROC; i++){

 p_clk.dynamic_port(rcProc[i]->clk);

 p_valid_in.dynamic_port(rcProc[i]->valid_in);

 p_flit_in.dynamic_port(rcProc[i]->flit_in);

 p_valid_out.dynamic_port(rcProc[i]->valid_out);

 p_flit_out.dynamic_port(rcProc[i]->flit_out);

 p_in_vc_buffer_rd.dynamic_port(rcProc[i]->in_vc_buffer_rd);

 p_out_vc_buffer_rd.dynamic_port(rcProc[i]->out_vc_buffer_rd);

 p_vaild_in.dynamic_port(rcProc[i]->out_buf_vaild_in);

 }

79

 procSyn->rc_set_delay(RC_LOAD,

sc_time(ProcessorParameters::proc_reconfig_time_1, SC_NS));

 procSyn1->rc_set_delay(RC_LOAD,

sc_time(ProcessorParameters::proc_reconfig_time_1, SC_NS));

 procEm->rc_set_delay(RC_LOAD,

sc_time(ProcessorParameters::proc_reconfig_time_1, SC_NS));

 procEm1->rc_set_delay(RC_LOAD,

sc_time(ProcessorParameters::proc_reconfig_time_1, SC_NS));

 ctrl.add (*procSyn + *procSyn1 + *procEm + *procEm1);

 if(CommonParameter::platform_type ==

PLATFORM_RECONFIG_EM){

 ctrl.activate(*procEm);

 currentProc=procEm;

 active_module = EM;

 }

 else{

 ctrl.activate(*procSyn);

 currentProc=procSyn;

 active_module = SYN;

 }

 //active_module = &procEm;

 do_activate_syn = false ;

 do_activate_syn1 = false ;

 do_activate_em = false ;

 do_activate_em1 = false ;

 SC_THREAD(reconfig_signal_process);

 sensitive << reset.pos() << clk.pos() << procSyn->do_activate_em <<

procSyn1->do_activate_em

 << procEm->do_activate_em << procEm1->do_activate_em;

 }

 ~procRCIf(){

 delete procSyn;

 delete procSyn1;

 delete procEm;

 delete procEm1;

 }

 private:

 enum modules{SYN,SYN1, EM, EM1} active_module;

 sc_signal<bool> do_activate_syn1;

 sc_signal<bool> do_activate_em1;

};

#endif /* PROC_RC_H_ */

80

 أ

 الرسالة ملخص

على زياده عدد التطهيفا للمصتتيني اتاح الموصتت أشتتهاه اجهزه تصتتري في المستتتم ة الزيادة نتيجه

هو نظا حيث ضتت ه, إلكت هنية قائقال بداخل نظم كاهله هجودصتتهم هفهو نفس الدائ ه المصتتينه. هله ا ا

فى خ ل الستتتيي الماضتتتيه هتصتتتله بوا تتتطه نظا اتصتتتا هن د. حدا تخزيييه هيتكون ه هحدا هنالجه ه

ما بيي. نظمة ها تتنة اليطا الأعاه حيويا في تصتتميم هنالجه ه الوحدا تخزيييه اصتتهما تصتتال بي الوحدا

 الحديثة، زاد ا التوازي ه أجل تنظيم ال د,ة على التصتتتتتاهيم علي لجهالوحدا هنازيادة عدد علىالت كيز

 كثيفة ظه .الالهيانا ذا المستهلكة هالتطهي ا الطاقة

 دهائ لا، عيد تكوييها على منالجه الالوحدا هنتيجة ل لك، فإن النديد ه التحديا في التواصتتتتتتل بي ه ه

هتتطلب حلول ههتك ة. هل لك تم تكييف هفهو با,ز ل تصال المن هفة ، أصهحت كهي ة لله هج ال ابلة المصفوفا

لله هجة للتناهل هع ه ه ال ابلة المصتتتتفوفا دهائ ل ،على ال قائق ا كت هنيه المنلوها لتوصتتتتيل شتتتتهكة با تتتتم

 التحديا .

تي تنتمد ة اللمصتتتفوفا ال ابلة لله هجادهائ لإعادة التشتتتكيل الجزئي الديياهيكي اصتتتهمهه ناحية أخ ،

ه قهل النديد ه التطهي ا لإهكانية إضتتتتتافة المزيد ه لوبهذاك ة الوصتتتتتول النشتتتتتوائي الثابتة تتتتتمة هطعلى

 الم هنة على ه حلة التشريل.

 تتهل ه ذي أاصتتهم إعادة التشتتكيل الجزئي الديياهيكيالتطيهفا التى تستتتخد في الآهنة الأخي ة، تصتتاهيم

ي إعادة التشتتتتتتكيل الجزئلأداء لمصتتتتتتفوفا ال ابلة لله هجةادهائ ها الالتي تستتتتتتتخده قهل. ههع ذلك، هالت ييا

 نهءالأدا هشتتكله فى (تواجههيف الوصتتول التكوي الداخلي ههجموعة عمل ا ختها, المشتتت)هثل الديياهيكي

 .قتالو هاحد فىإعادة التشكيل الجزئي الديياهيكي لنمليسمم

 لتوصتتتتيل شتتتتهكة هجودال ائمه على لله هجة ال ابلة المصتتتتفوفا لدهائ ى هحاكن ت ح ال تتتتالة تلك في

 ابي تحدهد التصميم ه تم احتساب. هايضا الجزئي ديياهيكي تشكيلالدعم هحاكاة إعادة ي هال هابداخل المنلوها

شكيلالا تنمال إعادة عيد الأداء شهكة هجودائمه على ال لله هجة ال ابلة المصفوفا الجزئي ديياهيكي لدهائ ت

 .الم ت ح محاكيالبا تخدا لتوصيل المنلوها

إعادة تشتتتتتتكيل هال ي ييتج ع زه فى الوقت الزائد ل ياس الم ت حتج التجا,ب با تتتتتتتخدا هحاكي

 الجزئي ديياهيكي في هقت هاحد على نسيج المصفوفا تشكيلالإعادة هعددالمنلوها توصيل ا تجابة الشهكة

 إعادةإعادة التشتتتتتكيل يزيد أضتتتتتنافا هضتتتتتاعفة هع زيادة عدد الوقت الزائدأن تضتتتتتم. هيال ائمه لله هجة ال ابلة

ه نكوه المنلوها توصيل في هقت هاحد. ههع ذلك، تظه هزيد ه التح ي ا أن شهكة الجزئي ديياهيكي تشكيلال

 ه عاهل قد يصل ا,بنه اضنافالى يل يوا افت اضية يحس هقت إعادة تشكال الدهديه ذا أجهزة التوجيه ه

ا تتتتتة دهن قيوا افت اضتتتتتية. هأخي ا يتم ت ديم د,الدهديه أجهزة التوجيه ه ه نكوالمنلوها ه توصتتتتتيلشتتتتتهكة

ال ائمه على لله هجة ال ابلة المصتتتتتفوفا دهائ بي الجزئي ديياهيكي تشتتتتتكيلاللتوضتتتتتيم الفجوة بي أداء إعادة

 الت ليدية. لله هجة ال ابلة المصفوفا دهائ ه المنلوها لتوصيل شهكة هجود

 عمرو حسن على بدار :دسـمهن

 ١٩٨٩\١١\٢٤ تاريخ الميلاد:

 هص الجنسية:

 ٢٠١٢\١٠\١ تاريخ التسجيل:

 ٢٠١٨\١٢\٢٥ تاريخ المنح:

 الإلكترونيات و الإتصالات الكهربيةهندسة القسم:

 العلوم ماجستير الدرجة:

 المشرفون:

 حسام على حسن فهمىد. أ.

 حسنحسن مصطفى د.

 الممتحنون:

)الرئيسي المشرف(حسام على حسن فهمى د.أ

 ال اه ة جاهنة – الهيد ة بكلية الإلكت هنيا أ تاذ

)الداخلى الممتحن(محمدحسين أحمد د.أ

 ال اه ة جاهنة – الهيد ة بكلية الإلكت هنيا أ تاذ

)الخارجى الممتحن(سالم محمد عبد الغنى .د.أ

 لمانيه بال اه ها جاهنة – الهيد ة بكلية الإلكت هنيا أ تاذ

 عنوان الرسالة:

تطهيق شهكا توصيل المنلوها على نظم ا تكشاف هحاكاة إعادة التشكيل الجزئي الديياهيكي ل

 المصفوفا ال ابله لله هجه

 الكلمات الدالة:

 ها شهكا توصيل المنلو إعادة التشكيل الجزئي الديياهيكيدهائ هصفوفا الهوابا الميط يه

 كت هنيهعلى ال قائق ا

 :رسالةملخـص ال

ي إعادة التشكيل الجزئي الديياهيكي ف المستخدهه لنمل يا ت يال نه ه ع ، يتم ع ض ال الهفي ه ه

نلق الت ليدية، ثم يتم ت ديم ا تن اض ه ا,ن بي ه ه الت ييا فيما يت دهائ هصفوفا الهوابا الميط يه

 هائ د شهكه المتاحه فىلل ها هختلفةو. هقد تم تحليل هنلهالمساحه المستخدهههقت إعادة تشكيل

ي على أداء إعادة تأثاللت دي المنلوها لتوصيل شهكة هجودال ائمه على لله هجة ةال ابل المصفوفا

صممي توصيا للمه تصاهيم تم اقت احه ى الم ت ح محاكالالتشكيل الجزئي الديياهيكي با تخدا

إعادة زه با تخدا على ال قائق ا كت هنيه المنلوها لتوصيل شهكةهيا ب لحجم ه الق تح لل

 .كيلتش

ل ات توصيشبكتطبيق استكشاف محاكاة إعادة التشكيل الجزئي الديناميكي ل

 نظم المصفوفات القابله للبرمجه على المعلومات

 اعداد

 عمرو حسن على بدار

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 درجة على الحصول متطلبات من كجزء

 العلوم ماجستير

 في

 لإلكترونيات و الإتصالات الكهربيةاهندسة

 :يعتمد من لجنة الممتحنين

 الرئيسى المشرف حسام على حسن فهمى الاستاذ الدكتور:
 القاهرة جامعة – الهندسة بكلية الإلكترونيات أستاذ

 الداخلى حنممتال محمدحسين حمدا :الاستاذ الدكتور

 القاهرة جامعة – الهندسة بكلية الإلكترونيات أستاذ

 الخارجى الممتحن سالم محمد عبد الغنىالدكتور: الاستاذ
 لالمانيه بالقاهرها امعةالج – الهندسة بكلية الإلكترونيات أستاذ

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر هوريـةجم - الجيـزة

٢٠١٩

ل ات توصيشبكتطبيق استكشاف محاكاة إعادة التشكيل الجزئي الديناميكي ل

 نظم المصفوفات القابله للبرمجه على المعلومات

 اعداد

 عمرو حسن على بدار

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 درجة على الحصول متطلبات من كجزء

 العلوم ماجستير

 في

 الإلكترونيات و الإتصالات الكهربيةهندسة

 تحت اشراف

 أ.د. حسام على حسن فهمى حسن مصطفى د. حسن مصطفى

 مدرس

الإلكترونيات و هندسة قسم

 الإتصالات الكهربية

 جامعة القاهرة -ة الهندسة كلي

 أستاذ

الإلكترونيات و هندسة قسم

 الإتصالات الكهربية

 جامعة القاهرة - كلية الهندسة

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

٢٠١٩

ل ات توصيشبكتطبيق استكشاف محاكاة إعادة التشكيل الجزئي الديناميكي ل

 نظم المصفوفات القابله للبرمجه على المعلومات

 اعداد

 عمرو حسن على بدار

 القاهرة جامعة - الهندسة كلية إلى دمةمق رسالة

 درجة على الحصول متطلبات من كجزء

 العلوم ماجستير

 في

 الإلكترونيات و الإتصالات الكهربيةهندسة

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

٢٠١٩

