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Abstract—Epilepsy is one of the most common neurological
disorders affecting millions of people and causing serious injuries
such as fractures and vehicle accidents. The ability to detect and
prevent the occurrence of epileptic seizures is very important to
prevent such injuries. In this paper, a low complexity implanat-
able hardware is proposed to detect patient specific seizure onsets
based on support vector machine (SVM) classification. The SVM
training algorithm used is the sequential minimal optimization
(SMO). A number of time domain, hardware-inexpensive and
discriminant features are extracted namely; Hjorth mobility,
Hjorth complexity, energy, variance and coastline. These features
are used to train the SVM SMO algorithm. The proposed method
managed to detect 100% of the selected patients’ seizures with
smaller latency compared to previous work [1] while using
simpler time domain features. The implantable part of the system
consumes 90 W and occupies layout area of 0.2 mm?.
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Acceleration, Implantable chip.

I. INTRODUCTION

Epilepsy is a neurological disorder characterized by an
abnormality in the brain activity which leads to recurrent
seizures or periods of instability in the brain behavior. It
affects more than 50 million people worldwide making it
one of the most common neurological disorders. There are
different symptoms that characterize an epileptic seizure such
as blank stares, uncontrollable movements, sudden jerks in
the whole body, body stiffness and loss of consciousness.
These symptoms appear as sudden rapid changes in the EEG
signals. Long term drug treatments are usually employed with
patients however more than 30% of these patients are drug
resistant. When these medications fail, the alternative is to
remove the area of the brain causing the seizure. However, as
shown in previous work [2], epilepsy is not confined to a single
area of the brain but rather it is an epileptic network where
different areas of the brain interact synchronously causing
these seizures. Also, the probability of becoming seizure free
depends on the type of the seizure and these probabilities are
between 35% and 75% which is very low.

Owing to the unpredictable nature of an epileptic seizure,
it represents a major worry and a handicap to the patients.
Hence, researchers and practitioners are paying great attention
to developing algorithms that can detect and anticipate the
occurrence of a seizure. Afterwards, a stimulus is applied to
suppress the seizure using closed loop or open loop strategies.
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There are already commercialized devices that are implanted
in the brain to treat these seizures [3]. However, these devices
lack accuracy, are very expensive to afford, hard to implement
and they are power hungry, which means that a patient having
one of these devices in his brain must undergo a complex and
expensive surgery every two years to only change its battery.

Seizure detection can be done through the analysis of EEG
signals of a patient, however, these signals vary from one
patient to the other. Hence, it is difficult to formulate a generic
and a robust detector that can detect the onset of the seizure
for all the patients. However, training a machine learning
algorithm to detect the the seizure on each patient is feasible.
Usually, on the onset of a seizure, the EEG signal starts to
fluctuate and deviate from the behavior of the rest of the signal
making this abnormal change a bio-marker characterizing the
seizure. unfortunately, there are several movements that pro-
duce a similar signal, like a sudden jerk or eye blinking, thus,
the machine learning algorithm should be able to differentiate
between these changes and the seizure itself.

By combining different extracted features of the brain EEG
signals, a system that can analyze those features can also detect
seizures in real time basis. This system is divided into two
main modules: a training module and a classification module.
The training module receives the raw EEG signal from the
brain and trains the SVM algorithm to differentiate between
the normal and pathological signals. The classification module
which is an implantable chip classifies any new EEG sig-
nal into seizure(ictal) and non-seizure(non-ictal) signals. The
training module is separated from the classification module
because implantable devices require very low power consump-
tion and the SVM training is very power hungry and requires a
large memory to accommodate the large training matrix. Also,
the training is performed on a dedicated chip not on a computer
because running an SVM algorithm on a general purpose
processor is inefficient, takes a lot of time, a lot of power
and a large RAM given the amount of data being generated
-which are used in training- from the EEG signal are large,
thus, the developed ASIC chip for the training algorithm offers
the advantage of hardware acceleration, instead of executing
the training on a CPU or optimizing the code to work on a
GPU. A hardware module is specifically designed to train the
data, thus, decreasing the computational complexity, providing
less latency and better throughput, increasing the processing
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Fig. 1: Block diagram for the overall seizure detection system.

speed and accelerating the training. This paper is part of a
project to develop a complete system for seizure detection
using implantable components, starting from acquiring EEG
signals from inter-cranial micro electrodes and analog/digital
interfaces required to process neurological signals ending by
brain stimulation signals that can suppress an incoming or
ongoing seizure. Figure 1 shows a block diagram for the whole
system and this paper is concerned with the middle block
called prediction/detection algorithm.

The paper is structured in six sections. Section II describes
the machine learning algorithm used in seizure detection and
the features used in training the algorithm. The metrics used to
assess the performance of the model are presented in Section
I, the results are presented in Section IV, and the hardware
description is shown in section V, Section VI concludes the

paper.
II. BACKGROUND

A. Support Vector Machine

Support vector machine is a supervised machine learning
technique that is based on statistical learning theory (SLT).
It was first introduced by Vladimir Vapnik in 1979 [22] and
usually used in binary classification problems. Given a set of
training data belonging to one of two categories marked either
-1 or 1, the SVM technique builds a model that can assign
categories to novel data from the constructed model based on
the learning algorithm. In the linear case, the margin between
the two classes is defined by the distance of the hyper-plane
to the nearest of the positive and negative samples. Maximiz-
ing margin can be expressed via the following optimization
problem(1):

(1a)

min(0.5/|@||?)
w,b

)

subject to

yi(Wid; —b) > 1 (1b)

where z; is the i-th training vector (sample), and y; is the
class of training sample. The value y; is +1 for one class
(ictal or non-ictal) and —1 for the other. This optimization
problem is converted to the Lagrangian dual form which is a
Quadratic Programming problem, where the objective function
1) depends on a set of Lagrange multipliers c;.

In our case, data sets are not linearly separable. There is
no hyperplane that directly splits the two classes. Fortunately,
Vapnik suggested a modification which allows, but penalizes,

the failure to reach the correct margin. That modification is
shown in (2):

N N N
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Where C is the new penalty factor and K(x;,z;) is a
kernel function that replaced the previous dot product between
w and z. Kernel functions represent dot products in higher
dimensional spaces. In our work, the radial basis function
(RBF) kernel is used, as it is widely used through literature
for complex data like EEG signal when a better and adequate
classification is needed.

B. SMO Algorithm

There are several algorithms designed to compute the La-
grange multipliers and find the maximum margin by following
the optimization problem. However. Sequential Minimal Op-
timization(SMO) was chosen due to its simplicity and speed.
SMO is an algorithm that can find the Lagrange multipliers
needed to solve (2). It chooses two Lagrange multipliers and
optimizes them together at a time. In order to solve for the
two Lagrange multipliers, SMO first computes the constraints
on these multipliers where these constraints resulted from(2).

The algorithm takes one Lagrange multiplier in each itera-
tion then searches heuristically for the other to be optimized
with. Then it computes upper and lower limits on the second
Lagrange multiplier until it arrives at the optimal values.

C. Feature Extraction

To be able to differentiate between the different categories
of the input signal and allow the SVM algorithm to differ-
entiate between the ictal and non-ictal states, the raw data
are converted into a set of distinctive features via feature

TABLE I: List of features extracted from the Raw data

Feature Equation
22
Average Energy Eavg = Sumﬁ’:lﬁ
i 2 Xz —p)?
Variance o =
N
var( 22t
Hjorth Mobility HM — dt
var(z(t))
dxz(t)
Hjorth Complexity HC = M
HM(x(t))
Coastline z(i+1)—x(i)
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Fig. 2: Effect of selection of training data and number of EEG channels

extraction block. Through these features, the model will detect
the occurrence of a seizure if the features extracted are similar
or comparable to the features of the ictal period in the training
data set.

Table I shows the main features extracted from the raw EEG
data and used to build the model where p and o are mean and
standard deviation of x respectively, E(t) represents expected
value of t, Hjorth mobility parameter represents the mean
frequency of the power spectrum, Hjorth complexity represents
the change in frequency, Energy is a measure of the power of
the input raw EEG signal and Coastline is a measure of the
variation of each data point from the previous point. These
features were chosen due to their simplicity when building
an RTL model with minimal power. As the feature extraction
module will be a common module between the training and
classification modules, and because the classification module
will be implanted in the brain, this module is designed to
consume the least amount of power to minimize the energy
consumption.

III. PERFORMANCE METRICS

Since there is no standard or unified performance assess-
ment metrics, different studies are hard to be compared with
each other due to the different assessment schemes they
followed. A survey [4] was conducted on some well-known
studies shows how they assessed their performance. Epoch-
based metrics are viewed as application irrelevant metrics
because every epoch is considered as a separate testing ex-
ample regardless of the importance that its correct/incorrect
classification has for a particular task. In a binary decision
problem such as the seizure detection, the decision made by
the classifier is represented in a structure known as a confusion
matrix or contingency table. The confusion matrix has four
categories: true positives (TP) are epochs correctly labelled
as seizures; false positives (FP) refer to epochs incorrectly
labelled as seizure; true negatives (TN) correspond to correctly
labelled non-seizure epochs and finally, false negatives (FN)
refer to epochs incorrectly labelled as non-seizure. On the
other hand, the event-based metrics are thought to reflect the
performance of a system for a specific application. Unlike the
epoch-based metrics, the subsequent decisions of the same
class are joined to create an event. Two scores are defined;

good detection rate (GDR) or known as sensitivity in [1] is
the percentage of seizure events correctly identified by the
system as labelled by an expert in neonatal EEG. If a seizure
was detected any time between the start and end of a labelled
seizure this was considered a good detection. The other score
is the number of false detections per hour (FD/h) calculated
as the number of predicted seizure events in 1 h that have no
overlap with actual reference seizures. To cope with the spiky
nature of false detections, the metric FD/h is at times reported
by joining subsequent false detections.

IV. RESULTS

We employed the method of [1] in obtaining the perfor-
mance of the system to be compared with his work. Evaluation
method is based on event based metrics which are sensitivity
(GDR) , latency, false detection rate. Performance can be
affected with various parameters, such as the ratio between
number of seizure records used in training to that of non-
seizure records as shown in figure 2.The results of the training
algorithm were compared to [1], as shown in table II, for the
same selected patients and yielded an average of sensitivity
(GDR) of 100%, a latency of 3.31 seconds and an FDR of
1.4 per day in the event-based metrics using a kernel RBF
and [1] achieved an average of sensitivity (GDR) of 100%, a
latency of 4.35 seconds and an FDR of 1 per day in the event-
based metrics, while in the epoch-based metrics a sensitivity
of 62.14%, a specificity of 99.93% and an accuracy of 99.5%
were achieved in this work.

V. HARDWARE DESCRIPTION
A. Feature Extraction Hardware

The hardware implementation of features used and how
they are processed starting by collecting raw EEG data up
to final data normalization after which the data is ready to be
classified as shown in figure 3. Raw data normalization was
used in order to reduce the number of bits needed in the fixed
point notation used, so as to reduce power consumption and
hardware area. Most of the hardware expensive blocks, such
as multipliers, are implemented in serial way that exploits the
long waiting periods between each two samples acquired from
EEG (1/256 sec). That implementation yields 75 W power
for the different features in table I .
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TABLE II: Comparison between this work and [1] results.
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Fig. 3: Block diagram for feature extraction hardware flow.

B. The Trainer and Classifier

Figure 4 shows a block diagram for the hardware implemen-
tation of SMO-SVM as a complete trainer. If the configuration
used as a standalone trainer, i.e. it needs a memory to store the
training data, its power consumption reaches 14 mW, which is
why the training can not be done inside the brain. On the other
hand, if it’s used as a real time classifier only using predefined
parameters it consumes only 15 pW. Figure 5 shows the
layout of the classifier part along with the features extraction
hardware using UMC 0.18 pm technology.

VI. CONCLUSION

A Support Vector Machine (SVM) was used to detect the
seizure onset and a training algorithm namely the “Sequential
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Fig. 4: Block diagram for SMO-SVM hardware modules.

Fig. 5: Layout of the implantable classifier and feature extrac-
tion hardware parts.

Minimal Optimization” (SMO) was used in the model devel-
opment and training the SVM algorithm to detect the seizure.
A number of discriminant features were used and the most
distinct features were selected in training the model to detect
and classify the seizure states from non-seizure states. The
trainer, features and classifier HLL description was converted
to HDL language, the produced hardware was tested against
the simulation results and their classification decisions was
the same with maximum difference in classification function
of 0.06. Total classification power and features extraction cost

was 90 pW.
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