
978-1-7281-1184-1/19/$31.00 ©2019 IEEE

2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST)

1

Interfacing USRP Kit With Zynq-7000 Evaluation
Kit

Khadija Khaled1, Chaymaa Osama1, Mahetab Osama1, Heba Magdy1, Heba Mahmoud1, Yara Hossam1, Sherif
Hosny2, and Hassan Mostafa1,3

1Electronics and Communications Engineering Department, Cairo University, Egypt.
2Mentor Graphics.

3University of Science and technology, Nanotechnology and Nanoelectronics Program, Zewail City of Science
and Technology, October Gardens, 6th of October, Giza 12578, Egypt.

{khadija.k4a@gmail.com, chaymaa.ossama@gmail.com, mahetabo17@gmail.com, Heba.m.elgohary@gmail.com,
heba.m.yassin@gmail.com, yarahossam7196@gmail.com, sherif hosny@mentor.com, hmostafa@uwaterloo.ca}

Abstract—Digital Front End Reconfiguration is a promising
techniques to deploy the concept of Software Defined Radio
(SDR). SDR is a radio communication system whose components
are implemented by means of software using Universal Software
Radio Peripheral (USRP) and GNU Radio. SDR not only provides
cheap and flexible multi-standard-terminals for end users, but
also offers a physical layer platform where functions are software
defined. Dynamic Partial Reconfiguration (DPR) has proved
itself in implementing SDR system on Field Programmable
Gate Arrays (FPGAs). This work implements the physical layer
of Wi-Fi transceiver chain on Xilinx Zynq board supporting
DPR flow. Data is modulated via real communication channel
using the USRP RF section connected to the FPGA. A new
approach is proposed to enable running the DPR flow and USRP
application simultaneously on the same FPGA. Bit Error Rate
(BER) calculations are evaluated versus the distance for testing
the system integrity.

Keywords—Software Defined Radio, Universal Software Radio
Peripheral, Dynamic Partial Reconfiguration, and Field Pro-
grammable Gate Array.

I. INTRODUCTION

Over the past decade, modern wireless communication
systems witnessed a new era of high data rates. The number of
users of mobile devices has increased significantly. Different
standards have been implemented not only to achieve high data
rates, but also to compromise between area, power, quality
and the large number of users. Each standard has its own
transceiver which results in large area utilization and power
consumption affecting the battery lifetime. The SDR is a
proposed solution to tackle these challenges [1].

The SDR is a way to implement the physical layer of
wireless communication standards using software which re-
sults in decreasing the utilized area. Different technologies
can be used to implement the SDR such as Digital Signal
Processors (DSPs) and FPGAs. The FPGA is suitable for
high rate applications due to its short design cycle and low
power consumption. The high flexibility of the FPGA achieved
by Dynamic Partial Reconfiguration (DPR) makes it the best
candidate for implementing SDR transceivers [2], [3].

USRP has become a popular platform for hardware based
research in the field of SDR and cognitive radio (CR) [4].

The recent released versions of USRPs currently offer a
scalable, simpler, and easier tools to use combined platforms.
Integrating the GNU Radio software with the USRP enables
the user to build a complete open software radio system that
supports host-based signal processing on any platform.

This paper is organized as follows: Section II shows a list
of related work. Section III gives details about the overall
system implementation. Section IV illustrates the hardware
implementation of the Wi-Fi transceiver followed by the
way of interfacing the USRP with the FPGA in Section V.
Simulation results are listed in Section VI. Ultimately, Section
VII shows the paper conclusion and future work.

II. BACKGROUND AND PREVIOUS WORK

The proposed approach mentioned in [5] provides an
overview on the procedures of establishing a TCP/IP link
between two NI-USRP-29xx kits. The internal FPGA imple-
mented inside the USRP kit is used to communicate with the
PC for implementing extra functionalities.

The authors in [6] used the Texas Instruments Beagleboard
OMAP3 as a host for low-cost SDR platform implemented
through the GNU Radio. Altera Cyclone III FPGA is used to
perform signal processing activities such as filtering, down-
sampling, digital down-conversion on the transmitted/received
data from the RF section. Communication between the FPGA
and the Beagleboard is performed using SPI interface.

The survey applied in [7] on different radio transport
protocols shows that they can be used to build complex
processing systems and potentially decrease development time
for heterogeneous systems. The survey shows that routing
architecture integrated in third-generation USRPs will increase
performance in SDRs.

The authors in [8] use the USRPB200 kit as a host for
implementing Wide Band Frequency Modulation (WBFM)
mobile phone transceiver. The software model for each block
in the design is implemented using GNU Radio. An audio
file is transmitted and received via real channel using the
USRP RF section. The design mentioned in [9] is focused
on implementing the Wi-Fi 802.11a and 802.15.4 ZigBee

2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST)

2

transceiver as a soft model using GNU Radio for evaluating
the performance of wireless networks.

The contribution of this work is implementing the physical
layer of Wi-Fi transceiver chain on an external Zynq board
supporting DPR technology. The RF section in the USRP
kit is used for sending and receiving the modulated data via
real communication channel. A synchronization approach is
being deployed between each FPGA core to perform certain
independent operations. Communication between the FPGAs
and the USRPs is performed using GNU Radio. In order to test
the system robustness, BER calculations are evaluated versus
the distance.

III. SDR SYSTEM OVERVIEW

The USRP Software Defined Radio Device is a tunable
transceiver for prototyping wireless communication systems.
It offers frequency ranges up to 6 GHz with instantaneous
bandwidth up to 56 MHz. The USRP Hardware Driver (UHD)
is connected to USB 3.0 whose data rate is up to 5Gbps.
UHD is a hardware driver library serving all types USRPs
and daughter-boards by providing unique APIs for software
radio implementation. The driver can be standalone, or with
third party applications such as: GNU Radio, Labview, and
Simulink [10].

Figure 1 shows the overall system implementation. The
connection between the USRP kit and Zynq FPGA is through
USB cable. The GNU Radio provides a soft model in the
form of flow graph that enables configuring the USRP easily
[11]. Compiling the flow graph generates a python code that
is executed from the Linux image through UART terminal.

The Linux image is created by using the Yocto project using
Xilinx tools. The two main components of the project along
with the open embedded project are: BitBake, the build engine,
and Open Embedded-Core, the basic layer containing common
functions and packages for all builds. The Linux image is
customized to support the Zynq board and USRP by adding
new layers offered by Xilinx and Yocto community. Theses
Layers are:

• Meta-Xilinx: which provides packages and information
for the Zynq board.

• Meta-Xilinx-Tools: which supports Xilinx tools on the
Zynq board.

• Meta-SDR: which includes GNU Radio and UHD for
the USRP.

The whole design flow is performed using Xilinx Vivado.
The process invoked simulating the RTL design of the Wi-
Fi transceiver, synthesis, placing, routing, and eventually bit
stream file generation to program each FPGA. After building
and configuring the Linux image, Xilinx SDK manages the
following tasks:

• Configuring the PL side with the bitstream files generated
by Xilinx Vivado. This is performed using a C-application
that calls reserved APIs for configuring the PL side
and the Partial Reconfiguration Controller PRC used to
control the ICAP to support the DPR flow [12].

• Creating the bootable image from the Linux boot loader
generated by the Yocto project.

• Propagating the test data through the Wi-Fi transceiver to
generate the modulated symbols. Data is transferred from
the DDR to the PL side through DMAs.

• Executing the python application generated by the GNU
Radio to configure the USRP.

GNU Radio
(Python)

Xilinx
Vivado

(Bitstream)

Yocto
Project
(Linux
Image)

SD Card Xilinx SDK UART

USB

PC

USRP

Fig. 1: System peripherals

The python application generated by the GNU Radio trans-
mits the modulated symbols from the implemented Wi-Fi
transmitter on the Zynq board to the USRP RF section
as illustrated in Figure 2. The RF section uses Gaussian
Minimum Shift Keying (GMSK) technique to transmit the
data on high frequency range to the receiving antenna. The
GNU Radio at the receiver side regenerates the modulated
symbols and transmits them to the implemented Wi-Fi receiver
on the other Zynq board. Ultimately, a comparison is being
performed between the received demodulated data and the
original reference model for error checking.

Distortion in the transmitted files is dependent on the dis-
tance between the antennas of the two USRPs. As the distance
increases, the probability of losing packets increases. The
maximum distance where the two USRPs can communicate
is defined by the gain and bandwidth. Channel estimation
techniques are used to repeal the effect of distortion and bit
error rate.

Fig. 2: Tranceiver block diagram

IV. WI-FI TRANCEIVER DESIGN

The Wi-Fi 802.11a [13] is used as a case study for the
proposed system. Figure 3 shows all implemented blocks in
Wi-Fi chain. The transmitter includes all blocks from scram-
bler to preamble. The rest are the receiver chain. Scrambler is
responsible for randomizing the MAC layer data in order to
prevent the presence of long 1s or 0s sequences. Convolutional
encoder with coding rate equals to 1/2 is used for data
replication in order to decrease the bit error rate (BER) and
enable the decoder to deduce the correct transmitted bits. Since
both blocks uses generator polynomials, shift registers with
XOR gates are used for hardware implementation.

2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST)

3

Scrambler

Encoder

Puncture

Interleaver

Mapper

IFFT

Preamble Packet
Divider

FFT

Demapper

Deinterleaver

Depuncture

Decoder

Descrambler

Tx Rx

Fig. 3: Wi-Fi chain block diagram [13]

Puncturing technique of coding rate 3/4 is used to stealing
specific encoded bits to increase the coding rate. Interleaver
is used to get rid of burst errors by rearranging the data bits.
Implementation of these blocks is performed using memory
controllers for easily storing and reading the data.

Symbols are then modulated using 16-QAM modulation
scheme. Since Wi-Fi is Orthogonal Frequency Division Mul-
tiplexing (OFDM) based, the 128-point IFFT is used to
modulate the symbols on several sub-carriers instead of single
carrier in order to reduce the channel fading. The cyclic prefix
is added to eliminate the Inter Symbol Interference (ISI).
Ultimately, the preamble is used to add short and long headers
for synchronization purpose.

The packet divider receives the modulated symbols and
removes the reserved preamble bits from the stored data. The
demapper specifies the decision region of the received real and
imaginary symbols from the FFT, then converts the symbols
to a stream of bits.

Deinterleaving process is used to repeal the effect of the
interleaver at the transmitter side. The depuncture pads dummy
bits in the position of the removed punctured bits. Viterbi
decoder is used because of its ability for error detection and
correction. Descrambler uses the same equation used by the
scrambler in the transmitter.

Figure 4 shows the established test environment on the PL
side. The test data stored in the SD card is transferred to the
DDR within the run-time. The data flow in the PL side is
conducted using the following steps:

1) the input data is transferred from the DDR memory to
be stored in the Direct Memory Access (DMA) that
adjusts the rate according to the clock of each wireless
communication system.

2) an intermediate block “Input Interface” is used to adjust
the data input rate and system reset.

3) data is transferred through the system.
4) another intermediate block “Output Interface” is used to

adjust output data rate for the DMA.

5) the output data is stored in a second DMA to be finally
transferred to the DDR for verification.

DMA
Input

Interface
Wi-Fi

Transceiver
Output

Interface DMA

Fig. 4: Test environment on the PL side

V. USRP AND FPGA INTERFACING

Xilinx Zynq-7000 kit provides two Cortex-A9 processors
that share common memory and other peripherals. Asymmetric
multiprocessing (AMP) mechanism allows both processors to
concurrently run independent OS or bare-metal applications
allowing each one to communicate with the other through
a shared memory called On-Chip Memory (OCM). OCM
provides very high performance and low latency compared
to the DDR.

As illustrated in Figure 5, the Linux image launched on
CPU0, the system master is responsible for the following:

• Initializing the system.
• Controlling CPU1 startup.
• Communicating with CPU1 through the OCM.
• Running USRP applications using the USRP Hardware

Driver (UHD) and GNU Radio installed on the file
system.

• Interacting with the user through the UART terminal. The
user has the ability to choose to configure the system or
testing it.

Meanwhile, the bare-metal application running on CPU1 gen-
erated by compiling the C-application that uses the DPR APIs
is responsible for:

• loading the bitstream files to configure the PL side.
• managing the test data for Wi-Fi tranceiver. This is

performed by propagating the data from the SD card to
the DDR then to the PL side through the DMA.

• communicating with CPU0 through OCM.
This technique manages to run the SDK bare metal and USRP
python applications on the same Zynq board. Synchronization
between the two processors is being deployed in order to
prevent conflicts on shared hardware resources such as: OCM,
global timer, and L2 cache.

The Linux image is configured as symmetric multiprocess-
ing (SMP) with a single CPU in order to operate in the
AMP configuration The device tree is modified to reduce the
allocated memory for Linux image in order to provide some
space for CPU1 to run its applications.

This technique manages to run the SDK bare metal and
USRP python applications on the same Zynq board. Synchro-
nization between the two processors is being deployed in order
to prevent conflicts on shared Hardware resources such as:
OCM, global timer, and L2 cache.

The AMP system is divided into three software sections:
1) Xilinx native First stage boot loader (FSBL).
2) The Linux OS and USRP operating on CPU0.
3) The Bare-metal OS and SDK operating on CPU1.

According to Figure 6, the following procedures are being
performed:

2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST)

4

Fig. 5: AMP system configuration

• System Initialization: Initially, after power on, the FSBL
is launched on CPU0 to reset the PS system and program
the PL side using the bitstream file. The FSBL is also
responsible for loading the ELF application from the
DDR and executing it.

• Linux Image Loading: The Linux image is loaded on
CPU0 which starts CPU1.

• Modulated Symbols Generation: The bare-metal on
CPU1 loads the ELF file on the SD card to pass the
Wi-Fi test data to the chain and generate the modulation
symbols.

• Configuring USRPs: The python application is launched
on the Linux image through the UART terminal to
configure the USRP kit.

• Sending Data To RF Section: Eventually, The USRP
sends the modulated data through the RF section.

System
Initialization

Linux
Image

Loading

Modulated
Symbols

Generation

Configuring
USRPs

Sending
Data To

RF Section

Fig. 6: System initialization procedures

VI. SIMULATION RESULTS

Testing the system is performed by sending data through
the implemented Wi-Fi 802.11a transceiver. Figure 7 shows
the BER calculations versus distance between the two USRPs.
As the gain increases the BER decreases. The BER percentage
increases proportionally with the distance until reaching nearly
50% at 50 cm. Implementing the channel estimation RTL
block will enable the receiver to correct the received data
frames which will result in decreasing the BER percentage.

(a) BER for gain 45 (b) BER for gain 50

Fig. 7: BER percentage Vs Distance

VII. CONCLUSION AND FUTURE WORK

Interfacing the Zynq board with the USRP kit, config-
ured using GNU Radio, offers a complete solution for SDR

implementation. The AMP technique is used to run bare-
metal applications and load the Linux image on the same
Zynq board. The Wi-Fi 802.11a physical layer implementation
is performed on the board FPGA as a case study. Data
is modulated through the air between the two USRPs and
received with reasonable BER.

Connecting the Zynq board with the USRP via Ethernet
cable instead of the USB to increase the data rate is a proposed
future work. Reducing the BER can be achieved through
implementing the channel estimation RTL blocks.

VIII. ACKNOWLEDGEMENT

This work is partially funded by ONE Lab at Zewail City
of Science and Technology and at Cairo University, NTRA,
ITIDA, ASRT, and NSERC.

REFERENCES

[1] G. Sklivanitis, A. Gannon, S. N. Batalama, and D. A. Pados, “Addressing
next generation wireless challenges with commercial software-defined
radio platform,” in IEEE Communications Magazine, Vol. 54, No. 1, pp.
59-67, Jan 2016.

[2] S. Hosny, E. Elnader, M. Gamal, A. Hussien, A. H. Khalil, and
H. Mostafa, “A Software Defined Radio Transceiver Based on Dynamic
Partial Reconfiguration,” IEEE New Generation of Circuits and Systems
(NGCAS 2018), Valletta, Malta, pp. 158-161, Nov. 2018.

[3] A. K. ELdin, S. Hosny, K. Mohamed, M. Gamal, A. Hussein, E. Elnader,
A. Shalash, A. M. Obeid, Y. Ismail, and H. Mostafa, “A Reconfigurable
Hardware Platform Implementation for Software Defined Radio using
Dynamic Partial Reconfiguration on Xilinx Zynq FPGA,” IEEE Interna-
tional Midwest Symposium on Circuits and Systems (MWSCAS 2017),
Boston, MA, USA, pp. 1540-1543, Aug. 2017.

[4] O. N. Samijayani, P. Gitomojati, D. Astharini, S. Rahmatia, and
N. I. H. Pratama, “Implementation of SDR for video transmission using
GNU radio and USRP B200,” in International Conference on Cyber and
IT Service Management (CITSM), Denpasar, Indonesia, pp. 1-4, Aug.
2017.

[5] B. A. Vithalapara1, V. D. Parmar2, S. Agrawal3, and S. P. Singh,
“Experimental Study of USRP Radio Transport VITA Communication
Protocol,” in International Journal of Emerging Technology and Advanced
Engineering, Vol. 5, No. 4, pp. 361-366, April 2015.

[6] C. Anderson, G. Schaertl, and P. Balister, “A Low-Cost Embedded
SDR Solution for Prototyping and Experimentation,” in Software Defined
Radio Technical Conf.Digest of Papers, Washington, DC, Dec. 2009.

[7] J. Malsbury and M. Ettus, “Simplifying FPGA design with a novel
network-on-chip architecture,” in Proceedings of the second workshop
on Software radio implementation forum, pp. 45-52, Aug. 2013.

[8] D. Kushnure, M. Jiniyawala, S. Molawade, and S. Patil, “Implemen-
tation of FM Transceiver using Software Defined Radio (SDR),” in
IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication (ISPCS), Beijing, China, Oct.
2015.

[9] I. Chao, K. B. Lee, R. Candell, F. Proctor, C. C. Shen, and S.Lin,
“Software-defined Radio Based Measurement Platform for Wireless Net-
works,” in The International journal of Engineering development and
research (IJEDR), Vol. 5, No. 2, Aug. 2018.

[10] M. Fhnle, “Software-Defined Radio with GNU Radio and USRP/2 Hard-
ware Frontend: Setup and FM/GSM Applications,” Thesis in Hochschule
Ulm University of Applied Sciences Institute of Communication Tech-
nology, Ulm, Germany, Oct. 2009.

[11] C. Y. Chen, F. Tseng, K. Chang, H. C. Chao, and J. L. Chen, “Reconfig-
urable Software Defined Radio and Its Applications,” in Tamkang Journal
of Science and Engineering, Vol. 13, No. 1, pp. 29-38, Feb. 2010.

[12] A. K. ELdin, A. Mohamed, A. Nagy, Y. Gamal, A. Shalash, Y. Ismail,
and H. Mostafa, “Design Guidelines for the High-Speed Dynamic Partial
Reconfiguration Based Software Defined Radio Implementations on Xil-
inx Zynq FPGA,” IEEE International Symposium on Circuits and Systems
(ISCAS 2017), Baltimore, USA, pp. 1-4, May 2017.

[13] IEEE Computer Society, “IEEE Std 802.11-2012,” March 2012.

