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Abstract— In this paper, different window sizes for EEG
signal segmentation are investigated in order to optimize
the performance of seizure detection systems. To differentiate
between epileptic and non-epileptic epochs, the time axis of
the EEG signal is divided into non-overlapping windows. The
window period should be long enough for the lapse to be
informative but not too long for it to stay stationary. Hence, the
KPSS test is used to determine signal stationarity for different
window sizes, then the optimal window is chosen such that it
corresponds to the smallest number of non- stationary segments
in the signal of interest. The seizure detection system is then
applied to the piece-wise stationary segments. Compared to the
exhaustive examination, it is found that the KPSS test optimal
window results in the highest sensitivity.

Index Terms– Seizure Detection, Segmentation, Window
Size, KPSS.

I. INTRODUCTION

Epilepsy is a neurological disease characterized by recur-
rent episodes of involuntary movement called seizures [1].
According to the World Health Organization, about 5 million
people of the world population currently live with active
epilepsy [2]. Seizures cause psychological conditions and
severe physical problems that include loss of awareness and
sensation.

Multiple studies have aimed to choose the optimal de-
tection device by studying seizure types and their main
semiological components. One approach is muscle activ-
ity analysis with surface electromyography (SEMG) since
epileptic seizures have a motor component [3]. However,
SEMG sensors cannot detect all seizure types and are
easily detached from the skin [3,4]. Another approach is
electrocardiogram (ECG) measurement since electrovascular
changes can be easily monitored[5]. One disadvantage of
ECG in seizure detection is low specificity in heart beat
changes [5]. A third approach is the analysis of brain
signals with electroencephalographic (EEG) devices. EEG
is a representation of the brain electrical signals obtained by
connecting multiple electrodes on patient’s scalp. EEG has
been the most frequently used technique in seizure detection
for years. Patients wear scalp electrodes or portable devices
that can be attached to a belt [6]. EEG signal processing
is widely used for assessing disorders of brain function,
especially for epilepsy diagnosis. The traditional method
used to identify seizures is dependent on the visual analysis

of the EEG recordings by the trained professionals. This is
a very costly as well as tedious task to review a 24-hour
continuous EEG recording, particularly if the number of EEG
channels increases. Hence, automated seizure detection and
prediction systems are evolving [2].

The detection process using EEG involves many stages:
obtaining brain signal, removing artifacts, segmenting the
EEG, extracting relevant features, calculating the value of
each feature per segment, then using a classifier to determine
whether the signal contains seizures or not. Signals have to
be segmented into time epochs before applying machine-
learning algorithms for easier processing.

Signal segmentation is an established approach in EEG
analysis since EEG is not generally stationary and many
analysis techniques are only defined for stationary signals
[7]. This paper investigates the hypothesis that dividing
the EEG signal based on stationarity optimizes the seizure-
detection performance.

The rest of the paper is organized as follows. Section II
presents a literature review of signal segmentation based on
stationarity. Section III discusses the fundamental mathemat-
ics of the KPSS stationarity test. The simulation setup in
section IV introduces some information about the datasets
and the extracted features. Section V presents the results and
discussion. Finally, section VI presents the conclusion.

II. LITERATURE REVIEW

To be stationary, the signal statistics should be constant.
A lot of research has been done to further investigate the
approach of signal segmentation based on stationarity and
Gaussianity. However, not so many studies have attempted to
find the correlation between EEG segmentation and seizure-
detection performance. Researchers either rely on the ap-
proach of trial and error till they find the optimal window
duration or segment signals based on the most-frequently
used durations. However, each signal has an optimal window
duration that maximizes the performance of seizure detection
and prediction.

In 2015, authors in [8] used a window size of 4 seconds
for seizure detection without justification of the choice. The
work of Candera in [9] investigates the effect of window
sizes on the classification of EEG- emotion signal. The
work in [9] proposes that shorter window lengths achieve
higher classification accuracy. However, the authors reported
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a maximum accuracy of only 65% using the wavelet entropy
of 3 to 12 second signal segments [9]. Many studies feature
different EEG classification methods and maximization of
seizure-detection performance metrics but there is nothing
that further investigates window-size optimization in this
context. The lack of studies in this part is also highlighted
in a degree project in [10]. This project in [10] is the most
recent work in the state of the art regarding window length
optimization. The approach iteratively tries many window
sizes as inputs to determine the probability that a segment
is pre-ictal using SVM (Support Vector Machines). It then
evaluates the rest of the segment and finds the whole segment
probability by averaging those of the individual window
sizes. The reported results show that window sizes smaller
than 60 seconds or greater than 180 seconds give inconsistent
results with considerably-varying probabilities. However, the
authors only reached a maximum accuracy of 80% around
90 seconds, mentioned that these are not the results they
expected and attributed that to possible inefficiencies in the
used software or not training enough data [10].

III. KPSS TEST

In 1991, Kwiatkowski proposed today’s most-used
segmentation test known as the KPSS test. KPSS examines
the null hypothesis that a time series is trend stationary
against the alternative hypothesis of a unit root [11]. Let the
signal of interest be a time series:

yt, t= 1,2,...,T,

which can be expressed as the sum of deterministic trend,
random walk, and stationary error:

yt = ζt + rt+ εt

The random walk

rt = rt−1 + ut,

where the ut are independent and identically distributed
random variables iid(0,σ2). Verifying the null hypothesis
indicates that the random walk has a zero variance, σ2=
0 [11]. Therefore, In this paper a proposal is presented to
use the KPSS test to determine the optimal window size that
maximizes the sensitivity of seizure detection and prediction.
This is done by applying the test on the signal with different
window sizes and choosing the window size that results in
the minimum number of non-stationary time epochs.

IV. SIMULATION SETUP

Two datasets are used in this paper to answer the research
question of the correlation between signal segmentation and
detection performance. The first dataset is published by
MIT. It has been collected at the Childrens Hospital Boston
from 22 subjects with intractable seizures. For each subject,
23 channels have been recorded from different electrodes
[12]. The second dataset is released by Kaggle in a data

science competition. The data includes records of patients
and dogs with naturally occurring epilepsy. Dogs EEG has
been sampled from 16 electrodes at 400 Hz while patients
EEG with varying numbers of electrodes has been sampled
at 5000 Hz. The seizure detection system in [13] is used
to measure the performance, in terms of sensitivity, of all
window sizes starting from 3 seconds up to 10 seconds [13].
The system consists of a combination of 3 features that are
used along with a linear support vector machines (SVM)
classifier.

The KPSS test is used to determine the window size
with the smallest number of non-stationary segments.
This window size is then compared to the results of the
exhaustive method to determine whether or not this duration
has the optimal performance. We extracted the following
feature list [13]:
1- Standard Deviation (STD)

STD =
√

1
N−1

∑N
i=1(xi − x)2

2- Fractal Dimension (FD)
Fractal dimension includes information about the geometrical
structure of the signal. It is calculated using Higuchi’s
algorithm with k=5.

3- Hurst Exponent
It is used to discriminate between white noise and
information within the signal.

4- Skew
Skew measures the asymmetry in a signal.

Skew = 1
M

∑N
i=1

X
σ−µ

3

5- Kurtosis

It has the same formula as the skew with higher order.

Kurtosis = 1
M

∑N
i=1

X
σ−µ

4

6- Variance

σ2 =

n∑
i=1

(xi − µ)2

n

7- Permutation Entropy
It measures the degree of disorder in the signal.

8- Approximate Entropy (ApEn)
It measures how ordered or disordered the EEG signal is.

9- Shannon Entropy
It estimates how many bits are needed for encoding.

10- Renyie Entropy
It is a generalization for the Shannon entropy.

11- Average Energy

E =
∑N
i=1 x

2
i
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12- Fluctuation Index (FI)
FI measures signal fluctuation during seizure and non-seizure
periods.

FI =
∑N
i=1 |xi+1 − xi|

13- Hjorth parameter: Mobility
Mobility is the ratio between the square root of the first
derivative variance and signal variance.

14- Hjorth parameter: Complexity
Complexity tracks frequency changes with respect to a sine
wave.

15- Mean absolute value (MAV)

MAV = 1
N

∑N
i=1 |xi|

16- Maximum Absolute Value
It is the maximum absolute value of each segment. Zhang
and Chen used this feature to obtain an accuracy of 98%[14].

17- Minimum Absolute Value
It is the minimum absolute value of each segment.

18- Root mean square (RMS)

RMS =

√
1

N

N∑
i=1

x2i

Sensitivity, which is the true positive rate, is the performance
metric used in this paper.

Sensitivity =
TP

TP + FN

V. RESULTS AND DISCUSSION

After feature reduction by trial and error on all feature
combinations, we used two feature combinations from the
above list; combination A and combination B. Combination
A includes the following features: fractal dimension, Hurst
exponent and fluctuation index. The following features are
included in combination B: mean absolute value, maximum
absolute value and minimum absolute value. The KPSS test
is applied as follows. A signal of duration x seconds is
divided into n segments of length x

n seconds. The KPSS
test is applied to the n segments to return the number
of non-stationary segments found in the whole x second
signal. Thus, the smaller the number of indicated non-
stationary segments, the better the expected performance.
While iteratively using different window sizes and obtaining
detection sensitivity for each one, we have been applying the
KPSS test on each case to determine the optimal window
sizes. The results of both methods show high consistency.
The column ”Window in seconds” indicates the window size
in seconds. The columns ”A sensitivity” and ”B sensitivity”

TABLE I
MIT PATIENT 1 SENSITIVITY RATIOS FOR DIFFERENT DURATIONS

Window in seconds A Sensitivity B Sensitivity KPSS
3 sec 100% 85.7% 9
4 sec 100% 100% 0
5 sec 100% 100% 0
6 sec 87.5% 87.5% 22
7 sec 85.7% 100% 26
8 sec 83.3% 100% 16
9 sec 80% 90% 11

10 sec 100% 91% 15
Best Performance 3,4,5,10 4,5,8 4,5

TABLE II
MIT PATIENT 2 SENSITIVITY RATIOS FOR DIFFERENT DURATIONS

Window in seconds A Sensitivity B Sensitivity KPSS
3 96.4% 78.57% 0
4 95.4% 77.27% 0
5 94.12% 88.23% 0
6 86.66% 66.66% 4
7 84.6% 84.615% 6
8 90.9% 63.63% 4
9 80% 70% 7
10 88.88% 66.66% 10

Best Performance 3,4,5 5,7,3,4 3,4,5

TABLE III
MIT PATIENT 3 SENSITIVITY RATIOS FOR DIFFERENT DURATIONS

Window in seconds A Sensitivity B Sensitivity KPSS
3 95.8% 91.66% 0
4 94.4% 94.44% 0
5 91.8% 93.33% 0
6 91.66% 91.66% 4
7 81.81% 81.82% 6
8 88.88% 88.88% 4
9 87.5% 87.5% 7
10 87.5% 87.5% 10

Best Performance 4,5,3,6 5,7,3,4 3,4,5

TABLE IV
KAGGLE DOG 2 SENSITIVITY RATIOS FOR DIFFERENT DURATIONS

Window in seconds A Sensitivity B Sensitivity KPSS
3 66.6% 66.6% 1
4 100% 100% 0
5 100% 100% 0
6 100% 100% 0
7 100% 100% 3
8 100% 100% 1
9 50% 100% 1k8
10 50% 100% 1

Best Performance All except 3,9,10 All except 3 4,5,6

TABLE V
KAGGLE PATIENT 1 SENSITIVITY RATIOS FOR DIFFERENT DURATIONS

Window in seconds A Sensitivity B Sensitivity KPSS
3 100% 100% 0
4 100% 100% 0
5 100% 100% 0
6 100% 100% 1
7 100% 66.66% 1
8 100% 100% 1
9 100% 100% 1
10 100% 100% 1

Best Performance All All except 7 3,4,5
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indicate the detection sensitivity of feature combinations A
and B respectively. The column labeled ”KPSS” includes
the number of non-stationary segments found in the signal
of interest when the KPSS test is applied.

The first row of the first table reads as follows: for a
window size of 3 seconds, combination A shows detection
sensitivity of 100%, combination B shows sensitivity of
85.7% and the number of non-stationary segments returned
by the KPSS test in the EEG signal of patient 1 is 9 segments.
As shown in Table I, the best performance of combination A
which is 100% is obtained by dividing the signal into window
sizes of 3, 4, 5 or 10 seconds and that of combination B
corresponds to window sizes 4,5 and 8 seconds. Applying
the KPSS test to the patient 1 from MIT dataset indicates
that the signal is maximally stationary for durations of 4
and 5 seconds because these window sizes guarantee zero
non-stationary segments in the EEG signal. As expected,
the 4 and 5 seconds indicated as optimal windows by the
KPSS test are the optimal window sizes combination A and
combination B have in common. What these results tell about
patient 1 is that instead of trying all window sizes in search
for the optimal performance, a researcher can rely on the
stationarity test and only use a window size of either 4 or 5
seconds for the highest sensitivity regardless of the feature
combination used.

Table II shows that the KPSS results of MIT patient 2 EEG
are consistent with those found by examining all durations as
the windows with maximum performance in combination A
are 3, 4 and 5 seconds, in combination B are 5, 7, 3 and 4 and
in the KPSS test are 3, 4 and 5 seconds. We observe that all
the windows indicated by the KPSS test correspond to high
performance in combination A and combination B but the
opposite is not true. The 7 second window is not one of the
best windows indicated by the KPSS test although it is the
second best window obtained from feature combination B.
This is because a window of 7 seconds returns low sensitivity
when combination A is used, 84.6%, and thus is not indicated
as an optimal window that guarantees good performance
regardless of the feature combination.

The same research methodology has been applied also on
a dog and a patient from Kaggle dataset. In Tables IV and
V, the optimal window sizes from the KPSS test result in a
100% performance for both feature combinations.

VI. CONCLUSION

The performance of seizure detection systems, regardless
of the extracted features, depends on the duration of the
processed EEG epochs. Thus, signal segmentation based
on stationarity is a crucial step before feature extraction
and classification. The KPSS stationarity test can be used
efficiently to determine the best window in EEG signal
segmentation for Seizure detection by applying it on the
desired signal with different window sizes then choosing the
window size with the minimum number of non-stationary
segments. This proposal has been experimentally supported
by testing it on MIT and Kaggle EEG datasets.
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