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Abstract 

Dynamic Partial Reconfiguration (DPR) on Field Programmable Gate Arrays 

(FPGAs) allows a portion of the logic to be reconfigured at runtime while the rest of the 

logic keeps operating. Such category of designs called Dynamically Reconfigurable 

Systems (DRS) designs. This feature enables the designers to build complex systems 

such as Software Defined Radio (SDR) in a reasonable area. Despite of the flexibility 

provided by the DPR, there are new challenges to design and verify the designs which 

utilize the DPR technique when it is compared to static FPGA systems. 

 

In this thesis, a new verification methodology for DPR is presented. The new 

methodology addresses DPR specific logic and issues such as guaranteeing proper 

connections for the ports of the Reconfigurable Modules (RMs) which share the same 

Reconfigurable Region (RR) on the FPGA, waiting for running computations on a 

module before reconfiguring it, isolation of the reconfigurable modules during the 

reconfiguration process, and initialization of the reconfigurable module after 

the reconfiguration process is done. This DPR logic is verified using Assertion Based 

Verification (ABV) by modeling its functionality using System Verilog Assertion 

(SVA) properties, then instrument the design with these properties. Following that, 

these properties are verified using simulation or formal methods to check the 

correctness of the DPR logic. Also, this thesis presents an automated flow for Clock 

Domain Crossings (CDC) verification for DRS designs.  

 

In addition, this thesis demonstrates the power of utilizing the DPR technique to 

minimize the cost of designing applications which perform time multiplexing of the 

digital logic, such as debugging of FPGAs. Because of the limited accessibility to the 

internal signals of the designs implemented on FPGAs, the debugging of FPGAs is a 

hard task. Embedded logic analyzers enhance the signal observability for FPGAs. 

These analyzers are implemented on the FPGA resources, and they use the embedded 

memory blocks as trace buffers, so a limited number of signals can be observed using 

these analyzers due to resources constraints. Changing the traced set of signals requires 

re-synthesis, placement and routing of the whole design. In this thesis, a new 

methodology for FPGA debugging is proposed to change dynamically the set of signals 

to be observed at runtime, and consequently, minimize the time required for debugging. 

The proposed methodology utilizes the DPR technique to dynamically switch between 

different sets of signals. DPR creates a reconfigurable module (RM) to route each set of 

signals to an embedded logic analyzer. The proposed approach is demonstrated using 

Xilinx FPGA tools, finding that changing the set of signals to be observed requires only 

few milli-seconds to re-program the reconfigurable region (RR). The area overhead of 

the proposed methodology is lower than other traditional methods of using multiplexers 

as the DPR allows the routing module to only use buffers to connect a set of signals to 

the embedded logic analyzer. 
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Chapter 1 : Introduction  

Design and verification of Integrated Circuits (ICs) have become a complex task 

during the last two decades due to the need to integrate extra functionalities and 

applications into a single chip. Consequently, the costs of developing modern ICs have 

been multiplying. Such increase in the costs is representing a threat to the continuance 

of the semiconductor evolution [1]. The development cost has been estimated to reach 

over 0.17 billion US dollars for a chip at 28 nm technology node [2]. Moreover, the 

significant engineering efforts and investments do not minimize the possibility of the 

failure of the project. The cycle of development of the chips takes from few months to 

years with high uncertainty [1], and it includes a lot of testing and verification efforts to 

ensure the correctness of its functionality when it is fabricated.  

 

The development of customized IC solutions is accompanied with huge risks and 

costs. Therefore, it is only justified for a small number of ultra-high volume electronic 

products. As a second choice, the electronics industry has started moving into using 

reconfigurable platforms such as FPGAs as computing platforms. The major advantage 

of an FPGA is that it can be configured at the design time of the system to implement a 

logic application, also it can be reconfigured at runtime and after deployment. The 

FPGA is considered a programmable type of integrated circuits. Compared with custom 

chips, the programmability of reconfigurable devices has enlarged the ability of easily 

modifying the designs while inserting acceptable overheads in performance, area, and 

power. The systems (either hardware or software) can realize shorter time to market 

when they are implemented on reconfigurable devices. Also, they are more responsive 

to bug fixes or upgrades throughout the product life cycle. By 2024, it is expected that, 

on average 70% of the chip functionalities will be reprogrammable [1].  

 

Slow Development Cycle Rapid Prototyping

Application Specific

Reconfigurability

FPGA

Hybrid 
FPGA 

(Zynq)+
DPR

DSP

GPP

Hybrid 
FPGA/

GPP

ASIC

 

Figure 1.1: Trade-off between Different SDR Hardware Platforms [12] 
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In the recent years, the FPGAs capabilities are enhanced and developed to be more 

flexible and reconfigurable at runtime [10,11] by the introduction of the concept of 

DPR. DPR allows the FPGA to be reconfigured at runtime by reconfiguring a specific 

part on the FPGA without turning off the rest of FPGA. DPR pushes the FPGAs to 

become a promising reconfigurable hardware platform with a high degree of flexibility 

that allows it to be used as the target hardware platform for the implementation of 

complex systems such as SDR. Figure 1.1 shows the trade-off between design time and 

reconfigurability for different hardware platforms suitable for the hardware 

implementation of SDR [12]. As shown in Figure 1.1, applying DPR on the FPGA 

platform increase the reconfigurability of the FPGA to be more reconfigurable than 

traditional software programmable platforms such as the Digital Signal Processors 

(DSPs) and General Purpose Processors (GPPs). DPR offers the benefits of efficient 

resources utilization for the FPGA hardware resources as well as low power 

consumption for the SDR system. 

 

Currently, there are more designs start targeting FPGAs while the amount of 

designs that target Application-Specific Integrated Circuits (ASICs) is in decline [4]. 

The vendors of FPGAs are now fabricating programmable System-on-Chip platforms, 

they are switching into ASIC markets (e.g., [3, 4]). Recently, there are new FPGA 

systems which permit sub-modules of hardware to be reconfigured partially at runtime 

while the rest of the system components keep operating, such FPGA systems are called 

Dynamically Reconfigurable Systems (DRS). The flexibility of the design is extended 

in DRS designs relative to traditional statically configured FPGA systems: 

 By allowing the same physical reconfigurable region (RR) of the FPGA to 

serve and accommodate multiple reconfigurable hardware modules (RM), 

the required modules are being loaded on demand by the system, the 

switching can be automatically triggered or by user interference, which 

saves resource usage significantly, maximizes design density, and 

minimizes system cost [6]. 

 At runtime, the modules can be time-multiplexed to respond to the changes 

in the operation requirements of an application. For example, a networked 

multiport switch [7] and an SDR [8] reconfigure the processing logic of 

their protocol according to the protocol of the incoming traffic.  

 The functionality of a system can be expanded at runtime, by reconfiguring 

the design with new modules. For example, when identifying suspected 

attacks for network flow analysis application, the application reconfigures 

one of its unused modules to implement an intruder detection module [9]. 

 

Figure 1.2 shows the idea of the DPR technique which is supported in the modern 

FPGAs. Figure 1.2.a shows the full configuration of the FPGA in which the application 

consumes big area. Figure 1.2.b shows that the size of the application can be decreased 

by utilizing the DPR technique, i.e. if this application has some blocks that not 

operating at the same time so such modules can be time multiplexed. Each module can 

be loaded to operate for a certain period of time then another module to be loaded. 

Figure 1.2.c shows that using DPR increases the size of the FPGA theoretically to 

realize more applications than regular FPGA configuration, this leads to a better 

utilization of the FPGA resources. This concept may also be generalized to different 

fields of study, in this thesis it is demonstrated on runtime debugging of FPGAs.  
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Figure 1.2: (a) Shows FPGA full configuration; (b) DPR technique is utilized to get 

the same system; (c) Shows how the FPGA size increased theoretically 

Despite the flexibility provided by the DRS designs, there are more challenges to 

design and validate a DRS design compared with static conventional FPGA systems. 

1.1. Design Flow of FPGA and DRS Designs 

The typical flow of design is shown in Figure 1.3 for hardware systems targeting 

reconfigurable devices. The designer creates a specification document to fulfill and 

describe the functionalities of the design intent. After that, the designer uses a 

Hardware Description Languages (HDL) to translate the specification document into a 

Register Transfer Level (RTL) representation. Such translation process could also 

include re-using modules from previous projects or instantiation of Intellectual Property 

(IP) from third parties, and the IP is modeled as synthesized macros or HDL code. After 

that, the design is constrained by the designer, then it synthesized and implemented 

using Computer Aided Design (CAD) FPGA tools (e.g., Xilinx ISE [13]).  

 

Also, high-level description languages such as SystemC [14] can be used to 

represent the design. In such case, High-Level Synthesis (HLS) tools (e.g., Vivado-

HLS [15]) are used to synthesize the design to the target FPGA device. After this 

sequence of translations and design activities, the implemented design is programmed 

and downloaded on the target FPGA device and it is ready to run. In order to make sure 

of the correctness of the design and its functionality, each translation step should be 

verified and any change in the behavior or inconsistency in the representations between 

two successive steps is considered as a bug. Such errors or bugs should be fixed as 

early as they are identified, because the cost of the fixing an error or a bug is increased 

as designers go through the design flow. The bugs or errors that are introduced in the 

process of implementing the design such as timing violations and bad design 

constraints can be caught and identified using the vendor FPGA tools [13]. The errors 

and bugs injected into the specification and the translated design (i.e. human bugs) are 

called functional bugs. The process of identifying and fixing functional bugs to 

guarantee that the captured design fulfills and meets the intent of the design, is called 

functional verification [16].  
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Figure 1.3: Hardware typical design flow 

For the functional verification of ASIC or FPGA systems, simulation, and RTL 

simulation, especially, is the most widely used methodology. Off the shelf simulators, 

such as ModelSim [17] and ISim [18], compile and elaborate the captured design 

source (e.g., RTL code). Designers can review the waveforms which simulate the 

behavior of the design under some specified design inputs for all the signals in the 

design in order to debug errors that are injected into the design. A typical simulation 

environment is shown in Figure 1.4. Since functional verification only focuses on 

identifying functional bugs, simulation usually only involves the user design and does 

not include the physical layer.  

 

The flow of design of DRS designs is similar to that of statically configured 

designs, except for few things. To explain the challenges and extra efforts needed to 

design a DRS, the modular reconfiguration flow [19,7] is considered as an example: 

1. The design should be split into reconfigurable and static parts, and the 

designer has to design the application logic of the modules of these two 

parts. The static parts are those parts that operate during all the 

configuration modes of the design (i.e. they are needed all the time and 

cannot be shut down). Also, the reconfiguration mechanism of the system 

has to be added into the design to control and manage the process of 

reconfiguration. Such mechanism can be only hardware or a combination of 

both software and hardware. 

2. The designer has to specify the border of the reconfigurable and static 

regions in order to lock down the signals traversing such borders. The 

designer also has to add placement constraints for modules, assign RRs to 

RMs, and generate partial bitstreams to configure the RR according to the 

modes of its associated RMs. 
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The errors and bugs which are related to the implementation of the DRS designs 

can be detected and excluded by FPGA vendor tools which is similar to the case of the 

static designs. In particular, the vendors of FPGA tools define a group of rules for the 

physical layer design constraints, and it will do automatic check and verification for the 

DRS design against these rules. An example of such rules is that the wires or signals 

which are traversing the reconfigurable-static border should be assigned to the exact 

same FPGA resources for all the RMs. On the other hand, functional bugs in DRS 

designs cannot be automatically identified and caught by the FPGA vendors CAD tools.  

 

It is the responsibility of the designers to check and verify the correctness of the 

captured design to make sure that it fulfills the intent of the design and meets the 

specification of the design. Consequently, the designers have to identify functional bugs 

that are injected into the system, which is similar to the case of the statically configured 

designs. In particular, since DRS designs include a newly added logic and a machinery 

for reconfiguration, the designer needs to verify that the reconfiguration logic and 

machinery are 1) correct which means that the reconfiguration modules needs to be 

verified standalone to make sure of the correctness of their functionality, and 2) are 

correctly integrated with the rest of the system, which means the reconfiguration 

components should be put into the integrated DRS design, and then the DRS design 

should be verified as a whole to verify and test the interactions of the reconfiguration 

components with the rest of the design’s logic, which means that the testing of the 

reconfiguration mechanism’s units as standalone components is necessary but not 

sufficient. 

1.2. Functional Verification Challenges for DRS Designs 

DPR offers a flexibility for designs of digital systems when being compared with 

static traditional FPGA designs. But, new challenges have been introduced into the 

functional verification of the design. In conventional simulation methodologies (such as 

RTL simulation), the hierarchy of the design is assumed to be always defined at 

compile time, such methods cannot understand the modules swapping during the 

simulation run. Furthermore, these traditional simulation tools cannot understand or 

 

Figure 1.4: Typical simulation environment 
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interpret the configuration bitstreams which are used to reprogram the FPGA, only the 

FPGA device can interpret such configuration bitstreams.  

 

Vendors of FPGA devices and CAD software, such as Xilinx, claim that every 

valid mode of configuration of a DRS can be tested separately by utilizing conventional 

simulation methodologies, but the simulation of the process of reconfiguration itself is 

not supported [7]. While, the behavioral simulation of the DPR process is proposed by 

Altera, but this simulation support has not been incorporated yet into Altera’s tool flow 

[20]. Previous research works have proposed frameworks to support both high-level 

and RTL simulation for DRS designs. However, previously proposed frameworks fail 

to offer the precision needed to check and test the design being reconfigured. Hence, 

new simulation tools for the functional verification of DRS designs have to be 

developed.  

 

Even if there are reliable tools available for simulation, it is not guaranteed if the 

well-established traditional methodologies of verification for statically configured 

designs are still applicable for usage with DRS designs. Particularly, since the design 

hierarchy and logic of a DRS design can be modified at runtime of the system, DPR 

come up with new testing cases that cannot be applied for statically configured designs. 

For example, in order to test if the RMs are stopped properly when a reconfiguration 

request arrives, the simulation environment needs to test partial reconfiguration in all 

possible states of the currently active RM. In order to verify that an ongoing 

reconfiguration doesn’t inject any error (e.g., deadlock) to the rest of the design, the 

simulation needs to exercise all valid transitions between any two RMs. In this way, 

new rules and guidelines should be provided to the designers to aid the verification of 

the scenarios related to DPR in a design and ensure its correctness. 

 

From the user design’s point of view, the process of reconfiguration introduces 

new scenarios such as transferring partial bitstreams, and isolating, initializing, and 

synchronizing the RMs. These scenarios should be tested in simulation to ensure the 

correctness of the reconfiguration machinery, and verify the connections and 

communications between the whole design and the reconfiguration logic. From a 

timing perspective, the scenarios of reconfiguration can be classified as per the phase of 

the process of partial reconfiguration during which these scenarios may happen, i.e., 

AFTER, DURING, or BEFORE reconfiguration. Before reconfiguration, it is important 

to synchronize the process of reconfiguration according to the ongoing computations on 

the RMs of the DRS design, as an example for SDR systems if a packet is being 

processed for Wi-Fi standard, the computation should be completed before switching to 

another communication standard. During reconfiguration, it is important to properly 

isolate the RR being reconfigured in order to guarantee that no erroneous values will be 

propagated from the RM being reconfigured to the static logic or the output ports of the 

DRS design. After reconfiguration, the new loaded RM should be initialized to a known 

state to make sure of the correct operation of the RM, otherwise there will be undefined 

values or states propagated from the RM to the static part of the design.  

1.3. Thesis Objectives 

This thesis explores the functional verification of DRS designs that utilize DPR 

technique, and also explores the usage of the DPR to minimize the cost of runtime 
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debugging for FPGAs as an application for the DPR technique. The main objectives of 

this thesis are: 

 

1. Provide essential verification guidelines for functional verification of DPR. 

 

2. Modeling the DPR logic and activities using System Verilog Assertion 

(SVA) [21]. 

 

3. Develop a technique to verify DPR using Assertion Based Verification 

(ABV) [22]. 

 

4. Provide a flow for Clock Domain Crossing (CDC) [23] verification for 

DRS designs. 

 

5. Provide a technique to utilize DPR to minimize the cost of debugging on 

FPGA devices. 

1.4. Organization of the Thesis 

The thesis presents functional verification methodologies for DPR and DPR 

implementation to minimize the cost of FPGA debugging. The thesis is organized as 

follows. 

 

Chapter 2 presents a summary on the FPGA as well as its construction. The details 

about DPR is introduced in this chapter as well. 

 

Chapter 3 presents a functional verification methodology for DPR. The common 

issues for DPR logic are presented such as guaranteeing proper connections for the 

ports of the Reconfigurable Modules (RMs) which share the same Reconfigurable 

Region (RR) on the FPGA, waiting for running computations on a module before 

reconfiguring it, isolation of the reconfigurable modules during the process of 

reconfiguration, and initialization of the reconfigurable module after the process of 

reconfiguration is done. A verification methodology for the DPR logic using Assertion 

Based Verification (ABV) is presented and demonstrated on SDR system which utilizes 

DPR. 

 

Chapter 4 presents an automated verification approach for Clock Domain Crossing 

(CDC) verification for DRS designs. A Perl utility is implemented to automate the 

generation of the RTL code for each operating mode of the design, and then the RTL is 

provided to a CDC CAD tool to verify the CDC signals in the design, the results of 

CDC verification of different operating modes of the design are collected and presented 

in a single report to the designer to ease the CDC verification process. 

 

Chapter 5 presents the usage of DPR to minimize the cost of the FPGA debugging. 

The traditional FPGA debugging flow is presented as well as its drawbacks. The usage 

of DPR for FPGA debugging allows the designer to switch between different signals to 

be traced by the embedded logic analyzers at runtime, which reduce the total time taken 

for debugging on FPGAs. 
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Chapter 2 Overview about FPGAs and Dynamic Partial 

Reconfiguration 

FPGAs were introduced almost thirty years ago. Since their first appearance, they 

have been rapidly-growing as a means of digital circuits’ implementation. FPGAs great 

advantage is their flexibility, which arises from their programmable nature as compared 

to systems using ASICs [24]. In some cases, where the specifications of the system are 

time-dependent, not all modules need to operate concurrently. An unused module on 

the FPGA wastes power, area, and cost. So, it would be beneficial if a module is loaded 

only when its application is running, and removed when the application is done with the 

required computations [25]. Accordingly, a new concept has evolved in FPGA industry, 

which is known as dynamic partial reconfiguration (DPR).  This new technology can be 

exploited in many applications, for example, to fulfill area requirements in small 

portable systems, to create a system-on-a-chip with a very high degree of flexibility, 

and to realize adaptive hardware algorithms [26]. 

In this chapter, various aspects of FPGA and FPGA dynamic partial 

reconfiguration are covered. First, an introduction of FPGA basics is presented to cover 

FPGA programming technologies, routing architecture, and software flow. Then, the 

FPGA reconfiguration technology is presented, such as reconfigurable logic and routing 

techniques, benefits of using partial reconfiguration, and partial reconfiguration in 

space and time.  

2.1. FPGA Overview 

FPGAs are pre-made silicon devices that can be electrically programmed to build 

any intended type of digital circuits or systems. They offer a number of competing 

advantages over ASIC technologies, such as standard cells. ASIC fabrication costs 

incomparable amount of time and money to obtain the first device. On the other hand, 

reconfiguration of an FPGA takes less than a second. But the flexible nature of an 

FPGA appears negatively as a significant cost in power consumption, delay, and area. 

As per the comparison of implementing digital designs on FPGAs versus standard cell 

ASIC [27], the speed performance for FPGAs is 2 to 4 times slower, the physical area 

for using FPGAs is 20 to 30 times bigger, and the consumption of power of FPGAs is 

10 times higher. These drawbacks basically stand out from the FPGA’s programmable 

routing fabric which trades power, speed, and area in return for immediate fabrication. 

The two essential technologies which distinguish FPGAs are architecture and CAD 

tools which users must adapt to build FPGA designs [24].  

 

FPGAs, as shown in Figure 2.1, consist of an array of programmable logic blocks 

of noticeably different types, as follows [28]:  

1. Programmable logic blocks, whose task is to implement logic functions. 

2. Programmable routing blocks, which work on connecting these logic functions. 

3. I/O blocks, which are wired to logic blocks by routing interconnects and make 

off-chip connections. 
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Figure 2.1: Basic FPGA structure [24] 

2.2. FPGA Programming Technologies:  

FPGA re-programmability depends on reconfigurable switches, which are 

controlled by an underlying programming technology. There are various technologies 

for FPGA programming, such as EPROM, EEPROM, flash [64], static memory [65], 

and anti-fuses [66]. The differences between these technologies have an outstanding 

influence on the architecture of the programmable logic. In modern FPGAs, only flash 

[64], static memory [65] and anti-fuse [66] technologies are commonly utilized. In this 

section, all modern technologies of FPGA programming will be reviewed to give a 

more comprehensive understanding of all technologies used in FPGA manufacturing.  

 Static Memory 

Static memory cells are the building blocks for SRAM programming technology 

which is commonly utilized in Xilinx, Intel (Altera), and Lattice devices. In these 

devices, static memory cells are spread throughout the device to support 

configurability.  An example for static memory cell is shown in Figure 2.2. SRAM cells 

are used for two main purposes. One of them is to control the values of the routing 

multiplexers’ select lines, while the other one is to store the data in lookup-tables, 

which are used to implement logic functions. Figures 2.3 and 2.4 illustrate these two 

different approaches.  
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Figure 2.2: Static memory cell [28] 

 

Figure 2.3: Multiplexer with static memory cell [28] 

 

Figure 2.4: Static memory cells and lookup table [28] 
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SRAM technology is considered the most adequate programming technology for 

FPGAs because of two main reasons: compatibility with the standard CMOS 

fabrication process and re-programmability. Practically, an SRAM cell can be 

programmed an infinite number of times. A specific dedicated circuit on the FPGA 

does the task of initializing all SRAM bits on power up and configures the bits with a 

user-defined configuration. Unlike other technologies of FPGA programming, the 

utilization of SRAM cells needs no special IC processing beyond standard CMOS. So, 

SRAM-based FPGAs can use the latest CMOS technology available, and therefore, 

make use of the increased integration, the enhanced speeds, and the minimized dynamic 

power dissipation of new processes with smaller minimum geometries. However, 

SRAM-based programming technologies have the following disadvantages:  

(1) Size. An SRAM cell consists of either 5 or 6 transistors and the programmable 

element used to interconnect signals needs at least a single transistor. 

(2) Volatility. The volatility of the SRAM cell requires the use of external devices 

for permanent storage of configuration data when the device’s power is down. 

These external flash or EEPROM devices are an added cost to SRAM-based 

FPGA [67].  

(3) Security. The possibility of the configuration information being viewed or 

stolen for use in a competing system exists. This is due to having 

configuration information loaded into the device at power up stage. Currently, 

some FPGA families secure the configuration information through the use of 

encryption systems [68].  

(4) Electrical properties of pass transistors. SRAM-based FPGAs surely depend 

on the use of pass transistors to implement multiplexers. However, they are 

not considered perfect switches as they have high on-resistances and present a 

significant capacitive load. 

 Flash Programming Technology 

One substitute that addresses some of the limitations of SRAM based technology is 

the use of floating gate programming technologies that inject charges onto a floating 

gate above the transistor. This methodology is used in flash or EEPROM memory cells. 

These cells are non-volatile; in other words, they do not lose electrical signals 

(information) when the device is turned off. Traditionally, EEPROM memory cells 

were mainly used to implement wired-AND functions in PLD devices. They were not 

used directly to switch FPGA signals [69]. 

 

Such methodologies are no longer used because of their static power consumption, 

they are only used for very low-capacity devices. With modern IC manufacturing 

techniques, it is possible to implement switches using floating gate cells. Particularly, 

flash memory cells are used due to their area competence.  The extensive use of flash 

memory cells for non-volatile memory chips guarantees that flash fabrication processes 

will benefit from steady reductions in process geometries. Figure 2.5 illustrates the 

flash-based approach used in Actel’s ProASIC devices [59].  
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Figure 2.5: Floating gate transistor [28] 

 Anti-fuse programming technology 

Anti-fuse FPGA programming technology is used as an alternative to SRAM and 

floating gate-based technologies. This technology depends on structures, which reveal 

very high-resistance under ordinary surroundings, but can be re-programmed to create a 

low resistance connection. This link is permanent if compared to floating gate or 

SRAM programming technologies. The programmable component, an anti-fuse, is 

directly used for propagating FPGA signals. The major advantage of anti-fuse 

programming technology is the drop in programmability area overhead. As there is no 

silicon area required to establish connections, only metal-to-metal anti-fuses. But, this 

area reduction is compensated by the need for large programming transistors, which are 

needed for the anti-fuse programming to provide the large currents required to program 

the anti-fuses [28]. This area can be paid back with clever programming architecture, 

which contributes considerably to the overall area. An added advantage to the anti-fuse 

technology is that they have lower parasitic capacitances and on resistances than other 

programming technologies. As a result, it is possible to include more switches per 

device than that of other technologies. Also, the whole system cost is reduced as there 

is no need for additional memory for storing programming information as the device 

works instantly once programmed. Programming and transmitting the bitstream to the 

FPGA need only to be done once.  As a result, this can be done in a secure environment 

which improves the security of the design on the FPGA [70].  

 

This programming technology still has some disadvantages. Specifically, anti-fuse-

based FPGAs require a nonstandard CMOS procedure; they are typically late in the 

manufacturing processes that they can adopt compared to SRAM-based FPGAs. 

Moreover, scaling challenges emerge when considering new IC fabrication processes as 

the fundamental mechanism of programming using this technology requires significant 

changes to the properties of the fuse materials. 
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2.3. Configurable Logic Blocks 

The elementary component of an FPGA, which provides the basic logic and 

storage functionality for a target application design, is the configurable logic block 

(CLB). In order to provide the fundamental logic and storage capability, the basic unit 

can be either a transistor or an entire processor. However, this example is very extreme. 

For the transistor example, which is in a very simple form, and requires a large amount 

of programmable interconnect. That leads to an FPGA that might suffer from area-

inefficiency, low functionality, and high power dissipation. On the other hand, for the 

processor example, the basic logic block is very sophisticated and cannot be used to 

implement small functions as it will lead to resource waste. As a compromise of these 

two extremes, there exists a range of basic logic blocks. Some of them include logic 

blocks that are made of NAND gates, an interconnection of Multiplexers (MUXes), 

Look Up Table (LUT), and Programmable Array Logic (PAL) style with wide input 

gates [71]. 

 

LUT-based CLBs are used by commercial vendors, such as Intel (Altera) and 

Xilinx. These vendors use LUT-based CLBs to offer fundamental logic and storage 

functionality. LUT-based CLBs offer a good trade-off between too simple and too 

complicated logic blocks. A CLB can consist of one Basic Logic Element (BLE), or a 

cluster (i.e. group) of BLEs which are locally interconnected, as shown in Figure 2.7. 

The basic component of a simple BLE is a LUT, and a Flip-Flop (FF). A LUT with n 

inputs (LUT-n) contains 2n configuration bits and it can implement any n-input boolean 

function. Figure 2.6 shows a simple BLE comprising of a 4 input LUT (LUT-4) and a 

D Flip-Flop. The LUT-4 uses 16 SRAM bits to implement any 4-inputs boolean 

function. The output of LUT-4 is connected to an optional Flip-Flop. A multiplexer 

selects the BLE output to be either the output of a Flip-Flop or the LUT-4. 

Additionally, a CLB can contain a cluster of BLEs connected through a local routing 

network. Figure 2.7 shows a cluster of four BLEs; each BLE consists of a LUT-4 and a 

FF. The BLE output is accessible to other BLEs of the same cluster through a local 

routing network. The number of cluster’s output pins equals the total number of BLEs 

in a cluster. However, the number cluster’s input pins can be less than or equal to the 

summation of input pins required by all the BLEs in the cluster. Modern FPGAs 

contain typically 4 to 10 BLEs in a single cluster [69].  
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Figure 2.6: Basic logic element (BLE) [24] 

 

Figure 2.7: A CLB having four BLEs [24] 

2.4. FPGA Routing Architectures 

Programmable logic blocks provide computing functionality. These blocks are 

connected through re-programmable routing network, which provides routing for any 

pre-defined circuitry through enabling/disabling connections among I/O and logic 

blocks. Wires and programmable switches are the main component of FPGA 

interconnects.  The used programming technology is responsible for the configuration 

of these programmable switches. Since it has been known that any digital circuit can be 

implemented on FPGA architecture, the flexibility of FPGA routing interconnects is a 
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must. So, they can adopt a wide-ranging diversity of circuits, which require variable 

routing limitations. FPGA routing connects can be designed in an optimum way if they 

support specific common features of routing requirements of most circuits (taking into 

consideration that these requirements might differ from a circuit to another). For 

instance, for designs that require locality, considerably-short wires are to be used. Yet 

simultaneously, there might be some detached connections, which will need thin, but 

long wires. Consequently, both flexibility and efficiency need to be considered during 

the design of routing interconnects for FPGA. The relative arrangement of both 

architecture logic blocks and routing resources must be well-thought-out, as it 

dramatically affects the overall architecture efficiency. This arrangement is labeled here 

as global routing architecture, while the tiny details regarding the switching topology of 

different switch blocks are labeled as detailed routing architecture. According to the 

routing resources global arrangement, FPGA architectures can be classified to either 

island-style or hierarchical. 

 Island-Style Routing Architecture 

Figure 2.8 shows traditional island-style FPGA architecture, which is also known 

as mesh-based FPGA architecture. From both academic and industrial point of view, 

island-style architecture is the most widely-used architecture. The reason behind this 

naming convention (island-style) is that in this architecture, configurable logic blocks 

look exactly like islands surrounded by a sea of routing interconnects. CLBs are 

organized on a 2D grid and are connected internally by a programmable routing 

network. The peripheral (I/O) blocks are also connected to the programmable routing 

network.  

 

The routing network includes pre-manufactured wiring segments and 

programmable switches that are organized in vertical and horizontal routing channels. 

80-90% percent of FPGA total area is occupied by the routing network, while only 10-

20% of the total area is occupied by the logic blocks. The flexibility of an FPGA totally 

depends on programmable routing network. A mesh-based FPGA routing network 

consists of vertical and horizontal routing channels, which are connected through 

switch boxes (SB). Connection boxes (CB) are used to connect logic blocks to the 

routing network. The flexibility of a connection box (Fc) is calculated as the number of 

routing tracks of the neighboring channel connected to the pin of a block. Fc(in) is the 

connectivity of logic blocks input pins with the neighboring routing channel, whereas 

Fc(out) is the connectivity of logic block output pins with the neighboring channel. For 

example, if Fc(out) equals 1, it indicates that all neighboring routing channel tracks are 

connected to logic blocks output pins.  

 

Architecture channel width is calculated as the number of tracks in routing channel. 

The very same channel width is used for all vertical and horizontal architecture’s 

routing channels. Commonly, pass transistors are used to connect a block’s output pins 

to routing tracks. Each pass transistor creates a tri-state output that can be turned on/off 

individually. Nevertheless, the technique of single-driver wiring can similarly be used 

to connect output pins of a block to the neighboring routing tracks. Tristate logic cannot 

be used in single-driver (unidirectional) wiring as the block output needs to be 

connected to the neighboring routing network through multiplexors in the switch box. 

The commercial trend in FPGA made modern FPGA architectures move towards using 

single-driver, directional routing tracks. It has been proven that 9% improvement in 
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delay, 25% improvement in area, and 32% improvement in area-delay can be 

accomplished if the single-driver directional wiring is used instead of bidirectional 

wiring [24]. All these gains are attained without any major changes in the CAD flow of 

FPGA. Variable-length wires are created to reduce delay in mesh-based FPGAs. Figure 

2.9 shows an example of dissimilar length wires. Longer wire segments go across 

multiple blocks requiring fewer switches, thus decreasing routing delay and area. On 

the other hand, routing flexibility is reduced, which decreases the probability to route a 

hardware circuit efficaciously. Up-to-date commercial FPGAs frequently use a 

permutation of short and long wires to balance routing network area, delay, and 

flexibility [72]. 

 

Figure 2.8: Overview of mesh-based FPGA architecture [24] 

 

Figure 2.9: Distribution of channel signal [24] 

 Hierarchical  Routing Architecture   

Most logic designs demonstrate locality of connections; therefore indicating a 

hierarchy in connections placement and routing between different logic blocks. 

Hierarchical routing architectures take advantage of the locality principle by dividing 

FPGA logic blocks into individual clusters. These clusters are recursively connected to 

create a hierarchical structure. In a hierarchical architecture, connections between logic 

blocks within the same cluster are made by wire segments at the hierarchy lowest level. 

Though, the connection between blocks existing in different groups involves the 

traversal of one or more hierarchy levels. The signal bandwidth varies as it moves 

further from the bottom level and generally it reaches its widest at the top level of 

hierarchy in a hierarchical architecture. A large number of commercially-based FPGAs 
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families use the hierarchical routing architecture, such as Altera Flex10K, Apex and 

ApexII architectures [73]. 

2.5. Software Flow 

FPGA architectures have been strongly explored for the past 20 years. A key 

aspect of FPGA architecture research is the improvement of CAD tools for mapping 

applications to FPGAs. It is well recognized that the superiority of an FPGA-based 

implementation is largely defined by the efficiency of the associated suite of CAD 

tools. Benefits of a well-designed, feature-sufficient FPGA architecture might be 

compromised if the CAD tools cannot take advantage of the features that the FPGA 

supports. Thus, research in CAD algorithms is essential to the architectural 

advancement to fill the performance gaps between other computational devices, such as 

ASICs. The software flow takes an application design described in HDL language and 

converts it to a stream of bits that is actually programmed on the FPGA. The procedure 

of altering a circuit description into a format that can be loaded into an FPGA can be 

divided into five distinct steps, which are: synthesis, technology mapping, clustering, 

placement, and routing. FPGA CAD tools’ final output is a bitstream that configures 

the state of the memory bits in an FPGA. The state of these bits determines the logical 

function that the FPGA implements. Figure 2.10 shows a comprehensive software flow 

for programming an application-specific circuit on an FPGA. A description of several 

steps of software flow is given in the following part of this section. The details of these 

steps are usually similar to the kind of routing architecture used and they can be applied 

to both architectures described earlier. 

 

 

Figure 2.10: FPGA software basic flow [24] 
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 Logic Synthesis  

The FPGA flow begins with the logic synthesis of the netlist mapped on it. Logic 

synthesis transforms an HDL code (Verilog or VHDL) into a group of boolean Flip-

Flops and gates. The synthesis tools transform the RTL interpretation of a design into a 

hierarchical boolean network. Numerous technology-independent methodologies are 

being applied to optimize the generated boolean network. The conventional cost of 

optimizations which are technology-independent is the total exact count of the factored 

representation of the logic function. Such count is directly proportional to the area of 

the circuit [74].  

 Technology Mapping  

Synthesis tools output is a netlist. The netlist contains a circuit description of 

boolean logic gates, wiring connections, and flip-flops between these elements. The 

circuit can similarly be characterized by a Directed Acyclic Graph (DAG). Each node 

in the graph represents a gate, a primary input/output, or a flip-flop.  Each edge in the 

graph symbolizes a connection between two circuit elements. Figure 2.11 demonstrates 

an example of a circuit DAG representation. Given a library of cells, the technology 

mapping problem can be stated as finding a network of cells that implement the 

boolean network. In the problem of technology mapping for FPGAs, the library of cells 

consists of n-input flip-flops and LUTs. Thus, technology mapping for FPGA includes 

converting the boolean network into n-bounded cells. After that, each cell is 

implemented as an independent n-LUT. Figure 2.12 shows an example of transforming 

a Boolean network into n-bounded cells. Algorithms of technology mapping can 

optimize a design for a set of goals including power, area, or depth. The FlowMap [64] 

algorithm is the most widely used tool for FPGA technology mapping in academic 

research. FlowMap is able to find a depth-optimal solution in polynomial time and 

promises depth optimality as a return of logic duplication. Hence, it is considered a 

great discovery in technology mapping for FPGAs. After the first presentation of 

FlowMap, a lot of technology mapping tools have been designed that optimize for run-

time and area while still maintaining the depth-optimality of the circuit. The result of 

the technology mapping step generates a network of n-bounded LUTs and flip-flops. 

 

 

Figure 2.11: DAG representation of a circuit [24] 
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Figure 2.12: Example of technology mapping [24] 

 Clustering/Packing  

The logic elements in Mesh-based FPGAs are naturally arranged in two levels of 

hierarchy. The first level contains LBs which are flip-flops and n-input LUT pairs. The 

second level hierarchy combines each k LBs together to create logic blocks clusters. 

The clustering stage of the FPGA CAD flow is the process of creating groups of k LBs. 

These clusters can then be mapped instantly to a logic element on an FPGA. Figure 

2.13 shows an example of the clustering process. Clustering algorithms can be roughly 

classified into three general methodologies, which are depth-optimal, top-down, and 

bottom-up. Depth-optimal methodology tries to decrease delay at the expense of logic 

replication [75]. Top-down methodology divides the LBs into clusters by consecutively 

subdividing the network or by iteratively moving LBs between parts [76]. The bottom-

up methodology is commonly favored for FPGA CAD tools due to their fast run times 

and sensible timing delays [77]. They consider only the information of local 

connectivity and can simply meet constraints of clusters pin. The top-down approaches 

offer the best solutions. But, they still have the disadvantage of unaffordable 

computational complexity. 

 

 

Figure 2.13: packing example [24] 
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 Placement  

Determination of which logic block in an FPGA should implement the 

corresponding logic block required by the circuit is the responsibility of placement 

algorithms. The optimization objectives are to locate connected logic blocks close to 

each other to decrease the required wiring, and sometimes to locate blocks to balance 

the wiring density across the FPGA or to take full advantage of circuit speed. The 3 

major approaches of placers used nowadays are min-cut [78], analytic [79], which are 

often followed by local iterative enhancement, and simulated hardening based placers 

[80]. To inspect architectures objectively, users must validate that CAD tools are trying 

to use every FPGA’s feature. This means that the optimization approach and objectives 

of the placer might be altered from architecture to another. The most commonly-used in 

FPGA CAD tools are partitioning and simulated hardening approaches.  

 Routing  

The routing problem of an FPGA lies in assigning nets to the routing resources to 

guarantee that no routing resource is being shared by more than one net. Path finder is 

the current and most up-to-date FPGA routing algorithm [81]. Path finder operates on a 

directed graph abstraction G(V,E) of the routing resources in an FPGA. The set of 

vertices V in the graph represents the I/O terminals of logic blocks and the routing 

wires in the interconnect structure. An edge between two vertices represents a possible 

connection between them. Figure 2.14 represents part of the routing graph in a Mesh-

based interconnect. Given this graph, finding a directed tree that is embedded in G and 

connects the source and sink terminal together is the definition of the routing problem. 

Because there is an inadequate number of routing resources in an FPGA, the aim of 

finding non-intersecting, unique trees for all the nets in a netlist is a challenging 

problem. Path finder uses an iterative, negotiation-based methodology to fruitfully 

route all the nets in a netlist. Nets are easily routed without taking care of resource 

sharing only during the first routing iteration. Individual nets are routed using Dijkstra’s 

shortest path algorithm [82]. Resources may be overcrowded because many nets have 

used them at the end of the first iteration. During subsequent iterations, the cost of 

using a resource is greater than before, depending on the history of congestion on the 

resource and the number of nets that share that resource. If a resource is highly 

congested, nets which can use lower congestion alternatives are forced to use this 

capability. In contrast, if the alternatives are more overcrowded than the resource, then 

a net may still use that resource.  

 

Figure 2.14: Modeling FPGA architecture as a directed graph [24] 
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 Timing Analysis  

Timing analysis is used for two main motives; first, to specify the circuits’ speeds, 

which have been entirely placed and routed, and second, to estimate the slack of each 

source-sink connection during routing in order to decide which connections must be 

made through fast paths to avoid slowing down the circuit [83]. 

  

At the beginning, the considered circuit is presented as a directed graph. Nodes in 

the graph symbolize input and output pins of circuit elements such as LUTs, I/Os, and 

registers. Connections between these nodes are shown with edges in the graph. Edges 

are added between the inputs of combinational logic Blocks (LUTs) and their outputs. 

These edges are marked with a delay consistent with the physical delay between the 

nodes. Register input pins are not joined to register output pins. A traversal is done on 

the graph starting at sources to identify the circuit delay. Then the arrival time (Tarrival) 

at all nodes in the circuit is computed with the following equation: 

Tarrival (n) = maxm ∈ fanin(n){Tarrival (m) + delay(m,n)}                             (1) 

Where node n is the node currently being analyzed, and delay(m, n) is the delay 

value of the edge connecting node m to node n. The circuit delay is then calculated as 

the maximum arrival time, Dmax, of all the circuit nodes. For guiding a placement or 

routing algorithm, it is beneficial to know how much extra delay may be inserted into a 

connection before the path that the connection is on becomes critical. The amount of 

extra delay that may be inserted into a connection before it becomes critical is called 

the slack of that connection. To calculate the slack of a connection, one must calculate 

the required arrival time, Trequired, at all the nodes in the circuit. The Trequired is adjusted 

at all sinks (register inputs and output pads) to be Dmax. Required arrival time is then 

propagated backward starting from the sinks with the following equation: 

Trequired(n) = minm ∈ fanout(n){Trequired(m) − delay(m,n)}                            (2) 

Finally, the slack of a connection (n, m) driving node, m, is defined as: 

Slack(n,m) = Trequired(m) − Tarrival (n) − delay(n, m)                              (3) 

 Bitstream Generation  

Bitstream information is generated for the netlist immediately after a netlist is 

placed and routed on an FPGA. A bitstream loader is used to program this bitstream on 

the FPGA. The bitstream of a netlist contains information of which SRAM bit of an 

FPGA is programmed to a logic value of 0 or 1. The bitstream generator reads the 

technology mapping, packing, and placement information to program the SRAM bits of 

Look-Up Tables. Finally, the routing information of a netlist is used to correctly 

program the SRAM bits of both connection and switch boxes.  

2.6. Dynamic Partial Reconfiguration 

DPR is a feature of SRAM-FPGAs that offers the benefit of flexibility to 

reconfigure a part of FPGA at runtime with reusing the same hardware resources [60]. 

Xilinx DPR design flow imposes the splitting of the design into a dynamic part and a 

static part [7] as shown in Figure 2.15. The dynamic part consists of the reconfigurable 
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modules (RMs) of the system, whereas the static part consists of the static modules that 

are not changed during the reconfiguration (i.e. they are available in all the operating 

modes of the design). The dynamic part contains multiple Reconfigurable Regions 

(RRs). Each RR is used for a set of RMs, which can be swapped during runtime 

without disruption. A partial bitstream is generated for each RM to be mapped into a 

specific RR during reconfiguration. Partial bitstreams are loaded from a non-volatile 

memory to the FPGA configuration memory using dedicated configuration interfaces. 

DPR are categorized based on the configuration modes as internal or external 

reconfiguration methodologies, based on how the reconfiguration is handled either 

internally within the FPGA or via an external device such as a PC or another FPGA. 

Xilinx 7-series FPGAs have two internal configuration interfaces to the FPGA 

configuration memory [61]: (i) The Internal Configuration Access Port (ICAP) that is 

physically located on the FPGA fabric. (ii) Processor Configuration Access Port 

(PCAP) only available for the Xilinx 7-series Zynq FPGA equipped with a hard macro 

ARM processor. Also, three external configuration interfaces are used through the 

serial configuration ports: JTAG, Serial mode, and Select-Map. 

  

 

Figure 2.15: Dynamic Partial Reconfiguration in SRAM-FPGAS. 

 Configuration Modes 

DPR can be performed by loading RMs partial bitstreams to the FPGA 

configuration memory. Accessing the configuration memory is achieved through 

numerous FPGA configuration modes or configuration ports [61]. Configuration modes 

are classified according to the type of configuration interface used to access the 

configuration memory. Table 2.1 shows the different configuration modes for Zynq 

FPGA.    

2.6.1.1. External Modes 

External configuration modes use external FPGA interfaces to load the partial bit 

files to the configuration memory of the FPGA. JTAG is the only external 

configuration port for Zynq FPGA. The partial bitstreams are transferred from an 

external memory storage source, for example, the PC through the JTAG serial interface 

to the configuration memory. The data rate of the JTAG configuration interface is 

limited to 8.25 MB/S and not suitable for real-time application such as the SDR system 
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[62] and requires an external PR controller, such as CPU or another FPGA to control 

the process of reconfiguration. 

2.6.1.2. Internal Modes 

Internal configuration modes use internal FPGA interfaces to load the partial bit 

files to the FPGA configuration memory. Two internal configuration modes are used in 

Xilinx Zynq FPGA. 1) ICAP configuration mode is based on the ICAP hard macro 32-

bit configuration port primitive located on the PL side to access the configuration 

memory with a theoretical data rate of 400 MB/S. 2) PCAP configuration mode is 

based on the PCAP 32-bit configuration port in the PS side controlled by the ARM 

processor to access the configuration memory with a data rate of 400 MB/S: 

Table 2.1: Configuration Modes of Zynq FPGA 

Configuration 

Mode 
Type Max Clock Data Width 

Max 

Bandwidth 

ICAP Internal 100 MHZ 32-bit 400 MB/S 

PCAP Internal 100 MHZ 32-bit 400 MB/S 

JTAG External 66 MHZ 1-bit 8.25 MB/S 

 Advantages and Disadvantages of DPR 

The main advantages of the reconfigurable systems are: 

1. Resources utilization: in traditional design implementation, most of the 

hardware resources are not used at till the time when it is activated to operate 

for a certain period of time. Using reconfigurable hardware and DPR will 

increase the resource utilization by only implementing the active part of the 

design in the required time and time multiplexing the resources between the 

design hardware modules in consistence with activity schedule. 

2. Scalability: using reconfigurable hardware allows upgrading system to 

accommodate freshly defined tasks to handle the growth in technology and 

features. It also enables the deploying of bug fixing in hardware, which 

decreases the cost of re-deploying new hardware and increase the time-to-

market for products. 

3. Reusability: reusing the resources for different design implementations is 

enabled, where a system can be customized for adaptability. 

4. Power reduction: considered the most important detail, where power dissipated 

in the system although most of the parts are not working. In the Integrated 

Circuits (IC) design, the leakage power is the power consumed by the device, 

while it is even not active. FPGA reconfiguration helps in delaying the 

implementation of a specific part until the time of operation, which decreases 

the consumed power over time and though the battery lifetime. 

5. Area: instead of implementing a full system in a horizontal way, which 

consumes area, a system can be optimized by vertical implementation idea 

which uses programming in space and time, where a stack of blocks are stored 

and loaded at the time of operation. This will save the area used by the same 

blocks in the horizontal design.  

Quite the reverse, there are some disadvantages for the DPR and they are being 

improved by research, such as:  
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1. Latency: latency increased by the time overhead added by the reconfiguration 

time [63]. It could be improved by using high-speed PR controller to accelerate 

the reconfiguration time. 

2. Memory: as blocks will be stored, more memory is needed for storing the 

different implementations until the time of operation. As the storage sizes are 

increasing, this item is improved. For example, 5 files of few kilobytes contain 

the new reconfiguration can be stored on gigabytes of the attached storage 

device. Reconfiguration files can be stored on servers and accessed through the 

network, as the network accessing process is improving by time. 

 Terms of DPR 

Reconfigurable Region (RR) is “the region of the FPGA logic core that will be 

reconfigured, each RP can be reconfigured with one or more Reconfigurable Module 

(RM), among which swapping occurs”. Reconfigurable Module (RM) is “the module 

that contains the application to be run. It is designed using HDL or using netlist”. 

2.7. Summary 

In this chapter, various aspects of FPGA and FPGA DPR were covered. The 

chapter presented an introduction of FPGA basics o cover FPGA programming 

technologies, routing architecture, and software flow. Then, the FPGA reconfiguration 

technology was presented, such as reconfigurable logic and routing techniques, benefits 

of using DPR. In the next chapter, the verification of DPR using ABV is covered. 
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Chapter 3 : Dynamic Partial Reconfiguration Verification 

Using Assertion Based Verification 

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime while 

the rest of the logic keeps operating. This feature allows the designers to build complex 

systems such as SDR in a reasonable area. However, utilizing DPR needs extra care to 

be taken for new issues, such as guaranteeing proper connections for the ports of the 

Reconfigurable Modules (RMs) which share the same Reconfigurable Region (RR) on 

the FPGA, waiting for running computations on a module before reconfiguring it, 

isolation of the reconfigurable modules during the process of reconfiguration, and 

initialization of the reconfigurable module after the process of reconfiguration is done. 

This chapter proposes a technique to verify these newly introduced issues using 

Assertion Based Verification (ABV). The proposal is to first automatically model these 

issues using System Verilog Assertions (SVAs), then instrument the design with the 

generated assertions. Following that, the instrumented design is verified using 

simulation or formal methods to check the existence of these issues. The proposed 

technique proves effectiveness in finding issues on real designs that utilize DPR 

technique. 

3.1. Introduction 

DPR on FPGAs allows reconfiguration of some of the logic at runtime while the 

rest of the logic keeps operating. It allows the implementation of complex circuits as 

SDR and Internet of Things (loT) applications within a reasonable area on the FPGA. 

Consequently, the power consumption of the circuit is reduced. Currently, Xilinx and 

Intel (Altera) are the main FPGA device vendors on the market. They provide a series 

of FPGA families that support the DPR design flow. In this chapter, the Xilinx DPR 

design flow is considered [7].  
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Figure 3.1: An example of DPR design with 3 modes of configuration and 1 

reconfigurable module per configuration 

In DPR, the design consists of a number of Reconfigurable Modules (RMs). At 

runtime, each module has modes that are swapped according to the system operating 

modes. A Reconfigurable Region (RR) is a location on the FPGA in which the 

reconfigurable module is implemented on. An example of DPR system is shown in 

Figure 3.1, it has three configuration modes: Config1, Config2, and Config3. Each 

configuration has three modules, two of them are static (i.e. they are not changed in any 

of the operating modes of the design): Static_Module_1 and Static_Module_2, and one 

of them is reconfigurable module: Reconf_Module1, the reconfigurable module has 

three modes: Mode1, Mode2, and Mode3.  

 

The DRS extend the design flexibility through the mapping of multiple 

reconfigurable modules to the same physical reconfigurable region, which reduces the 

design cost and the resource usage. In the example of Figure 3.1, the design will have 

one RR on the FPGA for the reconfigurable module Reconf_Module1. The RR can be 

configured by an RM mode according to the configuration mode of the design. In the 

configuration mode Config1, the RR will be loaded by the RM mode 

Reconf_Module1_Mode1 and so on. Utilizing DPR technique for FPGA designs adds a 

new aspect in the design and verification of FPGA designs. For Xilinx FPGAs, the 

consistency of RMs is one of the basic requirements of a partially reconfigurable design 

[7]. As one module is swapped for another, the connections between the static design 

and the RM must be identical. Such requirement adds an extra work on the designer to 

create a wrapper module to encapsulate all the modes of the RM, and to have a fixed 

interface between the static design and the RM. This interface must work for all the 

modes of the RM, the process of connecting the interface to different modes of the RM 

is an error-prone task and should be verified on the RTL before moving to the 

implementation of the design on the FPGA. 

Designers also add extra logic in their DPR designs for 1) delaying any 

reconfiguration request till the computations done by the RM is completed, 2) isolating 

the RM during the process of reconfiguration, and 3) initializing the RM after the 

process of reconfiguration is done. The added logic for these tasks should be verified on 

the RTL to make sure they are working as expected, and any bugs are caught as early as 

possible in the design cycle. The detection of real reconfiguration issues is very 

challenging, especially in the early design stages. If such errors are not tackled and 

verified early in the design cycle, they may cause functional errors during on-chip 

verification which are hard to debug. In this chapter, a new methodology is proposed to 

verify the added logic for the reconfiguration process of DPR using ABV, the 

contributions of this work are: 

1. Automatically extract the connections of the ports of the modes of the RM, 

and write SVA properties to verify these connections on the RM wrapper 

module. 

2. Model the functionality of the added logic for the partial reconfiguration 

process (i.e. delaying the reconfiguration request, isolating the RM during 

the reconfiguration, and initializing the module after reconfiguration) using 

SVA properties to verify their functionality. 

3. Embed the generated assertions into the RTL, and feed them to simulation 

or formal verification to verify the functionality of the design. 
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4. A case study for using the proposed verification methodology on a DPR 

design and identifying bugs in the design. 
 

3.2. Background 

 Functional Verification 

To understand why verification is important and what methods are used for testing 

circuits, it is important to understand the hardware development cycle. The first step in 

the hardware development cycle is the specification stage, where architects specify the 

behavior of a circuit. This may include creating system-level models to simulate this 

behavior. The next step is to specify the RTL implementation using an HDL, such as 

Verilog, which describes the flow of data in a circuit, and how that data is manipulated 

to achieve the desired behavior.  

 

The RTL implementation is then synthesized into a gate-level implementation, 

which specifies how the circuit must be constructed out of individual logic gates. This 

gate-level implementation is then mapped out to determine where the transistors and 

wiring will be physically located on a chip. This physical layout is then manufactured at 

a fabrication plant where the circuits are printed onto silicon. This silicon is placed into 

a package which can potentially interface with other systems. For using FPGA as the 

target device for designs, there is no physical layout needed for the design and similarly 

for the fabrication, instead the design is synthesized into a gate-level representation in 

terms of the FPGA basic cells (LUTs and FFs) of the target device. After that, a bit-

stream is generated to be programmed on the FPGA to implement the circuit, the 

generation of the bit-streams is done by the vendor software such as Xilinx ISE [13]. 

 

Since there are so much work and cost that goes into each step of the development 

cycle of hardware, hardware designers exert an extremely large effort into making sure 

that each step is done correctly. Making a mistake in one of the steps means that all of 

the following steps will be wrong, costing even more time and money. Classification of 

functional verification is shown in Figure 3.2. This chapter focuses on the testing of the 

RTL design. There are many strategies used in the testing of the RTL design. 

Traditionally, designers use black-boxing techniques to testing the requirements against 

the design implementation. This involves the creation of a test-bench with instantiating 

the Design Under Verification (DUV) in the test-bench. Test patterns are saved into a 

file with the expected output results, and the test-bench reads the test vectors from that 

file to drive the DUV, the outputs are then captured and compared to the results of the 

reference model. For the generation of the test patterns for the DUV, designers use 

different techniques and strategies. One strategy involves driving the DUV with 

specific patterns to hit some known scenarios and create some expected behavior, that 

strategy is called directed testing. Sanity mechanisms (such as results comparison) with 

directed testing should be used to ensure the matching of the actual behavior for the 

design’s internal states and the design’s outputs. Another strategy is to drive the inputs 

with random stimulus to produce completely random behavior. This random simulation 

has to be paired with many checkers that ensure that circuit behavior is legal for the 

whole system. Also, this random simulation has to be guided by design constraints to 

avoid exploring invalid states for the design under test. Recently, test-benches have 
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become complex verification environments that are often built with a Hardware 

Verification Language (HVL), which dramatically evolved to standardize and support: 

automatic vector generation, output response validation, code coverage analysis, 

constraint solver, and functional coverage.  
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Figure 3.2: Categorization of different methods for functional verification
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Figure 3.3 and Figure 3.4 shows the evolvement of the functional verification 

trends as announced by the Wilson Research Group [34,50]. The trends show the 

number of designs being verified by advanced techniques such as “Assertions”, it 

shows that that number has been increased over the last ten years. Such increase is 

mainly due to the increased complexity of the hardware designs, and consequently, the 

amount of money that will be lost in case of any bug escapes into the fabricated chip. 

 

 

Figure 3.3: Trends for techniques of functional verification for ASIC/IC Design 

Projects 

 

Figure 3.4: Trends for techniques of functional verification for FPGA Design 

Projects 
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In order to help designers decide when enough verification is done, they need 

coverage metrics to measure the progress of the verification and assess its effectiveness 

in simulation-based verification. With the incorporation of technologies and tools that 

help in bug finding, engineers can evaluate coverage results and decide on what to do 

next, and when a design can move to tape-out.   

 Assertion Based Verification 

ABV provides techniques for designers to define assertions in one or more 

commonly used languages (PSL, Verilog, VHDL, SVA or OVL). These assertions 

(checkers, monitors) are then folded into the verification test-bench and exercised 

during simulation, or they can be provided as proof targets to a formal property 

checking engine.  

 

When assertions are interpreted by verification tools a pass or fail result is the 

minimal feedback that a tool must provide. In simulation-based verification with 

assertions, the test-bench should contain test vectors that cover as much as possible of 

the design’s states, i.e. the scenarios considered should be meaningful and relevant to 

gain confidence about the level of verification being done. If an assertion did not fail 

because of the absence of proper stimulus, this is not an indication that the design is 

error free. It indicates that the behaviors, which are specified by the set of assertions, 

are respected under the given test-bench. When using assertions with formal methods, 

they provide a proven or fired assertion. Proven means that the assertion passes under 

any valid test patterns, and fired means that there is a pattern that can cause the 

assertion to fail. For fired assertions, formal methods generate a waveform (counter 

examples) which causes the assertion to fail. However, input stimulus doesn’t need to 

be provided for formal or static methods, formal methods mathematically prove the 

result of the assertions, that’s a big advantage of the formal methods when they are 

compared to simulation. 

 

In general, an assertion is a statement about a specific intended behavior of the 

design that must hold true under normal operating conditions. Figure 3.5 shows an 

example of a simple handshake behavior which is intentionally described as after the 

assertion of the request signal, the acknowledge signal has to be asserted 1 to 3 cycles 

late. 

 

 

Figure 3.5: Waveform for a request-acknowledge handshake behavior 

The above behavior can be described using System Verilog Assertion as 
property single_req ; 

   @( posedge clk ) disable iff ( rst )( $rose(req) ) |=> ( ( !ack && req )[*0:2] ##1 ack ) ; 

Endproperty 
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Assertions can be encapsulated within the RTL design, as illustrated in Figure 3.6, 

or it can be added in a separate module, and bound to the RTL design, as illustrated in 

Figure 3.7, 3.8, and 3.9. The RTL can be simulated with the associated stimulus .The 

simulator analyses the execution run and reports the status of the assertions. On the 

other side, the RTL with the associated properties can be passed to formal verifiers 

(Model Checkers), which will report proofs or counter examples for the design 

properties. Formal proof indicates that the property has been mathematically proven to 

be always true for this design, and in the event of a failure, counter examples can also 

be generated to show up what is the sequence of stimulus which if applied to the RTL it 

will violate the design properties.  

 

 

Figure 3.6: Example for assertions embedded into the RTL 

Figure 3.7 shows an example for a Verilog module that will be verified using System 

Verilog Assertions (SVA), unlike the example in Figure 3.6, there are no assertions 

written into this Verilog module. The assertions used to verify the Verilog module are 
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written into a separate module (called verification module), this verification module 

will be bound to the Verilog design module to apply the assertions to the design under 

test, the verification module is shown in Figure 3.8, the binding of the Verilog design 

module to the verification module is shown and illustrated in Figure 3.9. 

 

 

Figure 3.7: Verilog design example to be bound to an assertions module 

 

Figure 3.8: Assertions module to be bound to the DUT 
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Figure 3.9: Binding of the Verilog design module to the verification module 

For being familiar with the anatomy of hardware design properties, a property can 

be formally defined as: “A collection of logical and temporal relationships between and 

among subordinate boolean expressions, sequential expressions and other properties 

that in aggregate represent a set of behavior”. When studying them, it is easier to look 

at their compositions as four distinct layers: 

1. Boolean layer: This layer consists of boolean expressions that are formed 

using variables of the design model. For example sel1 and sel2 are mutually 

exclusive can be modeled as !(sel1 && sel2). 
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2. Temporal layer (timed sequences): This layer permits the verification 

engineer to describe the boolean expressions’ relationships to each other 

over time. It allows the engineer to define the sequence in which the 

boolean expression must be satisfied. 

3. Modeling layer (properties): This layer provides a clear and concise way 

to describe the circuit’s behavior, specify when a sequence should or should 

not happen. Inside this layer, the engineer can specify when a property 

should be disabled or enabled.  

4. Verification layer (Directives: assert, cover, assume): This layer 

describes how a property is used during verification, i.e should it be used as 

an assertion and hence it will be checked? Or, should the property be used 

as an assumption or a constraint to the design? Or, should the property be 

used to define an event that is used to collect functional coverage 

information? 

 

These layers of RTL properties specification are shown in Figure 3.10. 

 

 

Figure 3.10: Compositions of hardware design assertion properties 

Properties are often classified in the context of their temporal and verification layers. 

Furthermore, properties can be also categorized by their method of evaluation (that is, 

concurrent or sequential activation)  

1. Safety versus Liveness: Safety property says that some bad sequence 

cannot occur. This is a property that must evaluate to true all the time. On 

the other side, a property that indicates some good behavior will happen in 

the future is called a liveness property. It defines a possibility that is 

unbounded in time. Examples: 
property safety_property_example ; 
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   @( posedge clk ) counter_value <= maximum_allowed_value ; 

endproperty 

 

property liveness_property_example ; 

   s_eventually counter_value == 1 ; 

endproperty 

2. Constraint versus Assertion: A Constraint is a property that lists the 

acceptable values (or sequences of values) which are permitted on an input. 

The design cannot be ensured to function correctly if its input value (or 

sequence of values) violates a specified constraint. While an assertion is a 

property that specifies that the expected design output behavior must stay 

valid or true. To guarantee a correct design functionality, all the assertions 

should evaluate to true for any permissible sequence of input values applied 

to a design. 

3. Declarative versus procedural: A declarative property describes the 

expected behavior of the design independent of its RTL procedural details. 

Hence, it is not necessary to understand the procedural code to understand 

the required expected behavior. On the other hand, the procedural property 

describes the expected behavior of the design in the current context at a 

particular line within the procedural code. Hence it is necessary to 

understand the details of the procedural code to fully understand the 

expected behavior. Expressing interface properties declaratively is 

generally more intuitive than expressing these properties procedurally, 

since the interface requirement is typically independent of the details of the 

block implementation. While capturing internal implementation of an RTL 

design intent procedurally, will generally reduce the amount of extra code 

required to express these properties. 

4. Concurrent versus sequential: A design model typically consists of a 

static, hierarchal structure, in which primitives interact through the network 

of interconnections. These primitives may be built in simple functions or 

large more complex procedural or algorithmic descriptions. Within a 

procedural description, statements execute in sequence. However within the 

design as a whole, the primitives and their communication interact 

concurrently. Just as the design model, properties may also be represented 

as declarative or procedural statements. Hence, a declarative assertion is a 

statement that is always active and is evaluated concurrently with other 

layers or primitives in the design. A procedural assertion, on the other hand, 

is a statement within the context of a process that executes sequentially in 

its turn as the procedural code executes. 

 

Hardware Verification Languages (HVLs) are used to write assertions.  Property 

Specification Language (PSL) [51] and System Verilog Assertions (SVA) [21] are the 

most commonly used HVLs. SVA is part of the System Verilog Language [21]. Also, 

HW verification engineers can select from a readymade, pre-verified assertion libraries, 

such as the Open Verification Library (OVL) [52]. Table 3.1 describes the advantages 

and the disadvantages of each of them: 

 

Table 3.1: Advantages and Disadvantages of HVLs 

 Assertion Languages 
(PSL, SVA) 

Assertion Libraries 
(Checker-Ware, OVL) 
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Advantages  Customization 

 Abstraction and powerful 

pattern matching 

 Pre-verified checker IP 

 Drop-in solutions for most 
common checking tasks 

 Designers like it (Low effort) 
Disadvantages  Implementation effort 

 Power = complexity 

 Learning curve 

 Exact checking requirements 
may not match available 
components 

 

To summarize, there is a vast array of scenarios where assertions and assertion 

checkers play an important role in verification, hardware emulation, post-fabrication 

debugging, permanent online monitoring, simulation, and formal verification. 

Synthesizing assertion checkers is beneficial and in most of these cases essential to 

allow the assertion paradigm to be used in these areas.  

 

ABV is one aspect of any complete SoC or Silicon fabrication flow. The design 

intent and specifications are captured by the assertions in an executable form. During 

simulation, these assertions are acting as monitors to detect errors close to their source, 

and to report both errors and coverage information. Assertions also enable formal 

analysis, which can provide exhaustive verification of blocks and interfaces. With 

incorporating the usage of assertions in the verification process, verification can start 

earlier, design and verification teams can detect and remove bugs faster, and designers 

can incorporate their intent into the design code to minimize integration issues later on. 

 

Assertion languages provide the grammar needed to explicitly codify properties. 

Two languages are prevalent in the industry, are accepted standards, and are supported 

by most of the RTL simulation or formal verification tools: SVA 21] and PSL [51]. 

Both languages’ sets of operators and constructs are almost equivalent, they differ by 

some nomenclatures, syntax and minor features. Figure 3.11 shows the syntax of 

writing a property. 

 

 

Figure 3.11: Property syntax 
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In which: 

 Property name is an identifier for the property used in the assertion directive. 

Also, it can be used within the specifications of other properties to simplify the 

specifications of complex properties. 

 Clocking condition specifies when the signals in the property are sampled. 

 Disabling condition specifies when the property is disabled (used as a reset 

condition). 

 Assertion label is an identifier for the assertion used in reports and to help with 

the debugging. 

 Assertion directive is a statement that instantiates the property in verification 

logic as an assertion (assert keyword), assumption (assume keyword) or 

coverage monitor (cover keyword). 

 Property expression is a specification for the property. Specification can be an 

invariant (for example, !($isunknown(ctrl)) or an implication. An implication is 

“an expression with a left-hand-side (LHS), an implication operator, and a right-

hand-side (RHS)”. The LHS is called the antecedent, which is a condition that, 

when sampled true, initiates a thread for the property. The thread starts as soon 

as the LHS starts evaluating. The RHS is called the consequent, which is a 

condition that is tested for each thread. If the consequent is true, the property 

holds for the thread. If the consequent condition is shown to be false for a 

thread, the property fails for the thread. Asserted properties are supposed to hold 

for all possible threads. Assumed properties are assumed to hold for all possible 

threads. Property expressions can include boolean expressions and the following 

constructs: 

o Built-in functions which are constructs that automate the specification of 

common expressions (for example, $rose, $onehot, $past and $fell). 

o Cycle delay operator (##) which separates sub-properties in different 

cycles (relative to the defined clock). For example, a ##5 b means a is 

true, then 5 cycles later, b is true. 

o Consecutive repetition operator ([*n:m]) — indicates repetition of 

signals, or cycles (when applied to the cycle operator). 

 

System Verilog Assertions (SVA) [21] form a subset of the System Verilog 

extension to Verilog [53] that pertains to assertions. SVA assertion code must be 

embedded in System Verilog modules. The language provides structures for defining 

sequences of events and combining sequences into design properties. The SVA assert 

statement generates the assertion that verifies its associated property. Figure 3.12 shows 

an example for an SVA assert property. 
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Figure 3.12: SVA assert property example 

Property Specification Language (PSL) is an assertion language. PSL assertion 

code can be embedded in Verilog and VHDL modules, and can be placed in vunits 

bound to design units. The PSL assert statement generates the assertion logic that 

verifies its associated property. Figure 3.13 shows an example for a PSL assert 

property. 

 

 

Figure 3.13: PSL assert property example 

In Figure 3.14, an example is shown to how to define assertions from a given 

specification to verify the implemented design, the example considered in Figure 3.14 

is for a bus and its states for transferring data. The bus state has 3 valid states: START, 

INACTIVE, and ACTIVE. The valid bus state transitions are as follows: 

1. INACTIVE  to START 

2. START to ACTIVE  

3. ACTIVE to INACTIVE 

4. ACTIVE to START 

Any other transitions are not allowed. Figure 3.14 shows the specification, as well as 

the Finite State Machine (FSM) of the bus transitions, and how the properties are 

defined in terms of the bus control signals (en and sel[0]). 

 

 



 

40 
 

 

Figure 3.14: How assertions are defined?
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3.3. Related Work 

Several works have proposed frameworks to help in functional verification of 

DRS. The Dynamic Circuit Switch (DCS) method [54] adds artifacts for simulation 

purposes only to mimic the behavior of reconfiguration activities such as module 

swapping and undefined state of the RM after reconfiguration. ReChannel [55,56] is an 

open source SystemC library which models DPR. In order to represent swapping of 

modules and other reconfiguration operations, ReChannel added new SystemC classes. 

The extension of ReChannel [57] proposed new classes to monitor and verify the 

details of reconfiguration at behavioral, Transaction Level Modeling (TLM) and RTL 

levels. To use ReChannel, designers should be aware of using SystemC for modeling 

and verification of digital designs, and extra efforts are needed to set up the simulation 

environment on the behavioral level, TLM level, and RTL. 

 

In [58], a SystemC-based design methodology (OSSS+R) is used to automate the 

modeling, synthesis, and simulation of DRS designs. It automatically generates 

synthesizable code for the reconfiguration controller to manage the module swapping of 

RMs. But, it uses only pre-defined reconfiguration control mechanism, so it cannot 

handle all styles of DPR designs. ReSim [29] is a System Verilog library built on the 

Open Verification Methodology (OVM) which uses a simulation-only bitstream to hide 

the physically dependent features of DPR designs. It models traffic of bitstream and the 

process of reconfiguration of DPR. ReSim, as well, has a support for the cycle-accurate 

RTL simulation of the DRS design immediately during, before and after 

reconfiguration. So, it can detect functional bugs that were missed by DCS, ReChannel, 

and OSSS+R. Setting up the design to use the ReSim setup needs extra effort by the 

designer. The ReSim library is extended in [30] to support state saving and restoration 

of the RMs.  

 

The existing works in literature have some disadvantages and limitations: 

1. They model the DPR activities using simulation-only artifacts (i.e. un- 

synthesizable models), so they cannot be used with formal verification 

methods. The test-benches used for testing the design should thoroughly 

cover all the corner cases, such requirement is impractical in some cases. 

2. Extra effort is needed to set up the verification environment as SystemC 

modeling or OVM environment setup. 

3. When an error is caught, extra effort is needed to debug the error and 

pinpoint the root cause of the issue, it can be related to non-DPR logic. 

 

The proposed methodology in this chapter has some advantages when compared to 

the existing works in literature: 

1. It models specific DPR activities using ABV [22], the assertions can be 

used for formal verification or RTL simulation, and it also can be 

integrated with any previous work that performs RTL simulation. 

2. It enhances the observability, reduces the debug time, and improves error 

detection. When an assertion fails in RTL simulation or formal 

verification, it pinpoints to the root cause of the issue with no extra effort. 

3. The assertions can be synthesized [31] on the FPGA to perform runtime 

verification for DPR, this is not covered in this thesis. 
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3.4. Assertion Based Verification for DPR 

 Port Connections of the Reconfigurable Modules 

The first step for creating a dynamically reconfigurable design is to identify the 

static logic (i.e. logic that is always active in all the operating modes of the design), and 

the reconfigurable logic (i.e. the logic that can change from one operating mode to 

another) in the design. For Xilinx DPR flow [7], the interface of a reconfigurable 

module should be consistent across all its modes, such requirement adds an extra step in 

the design flow to create an RTL wrapper for each RM to encapsulate all its modes. 

Issues appear in this step when there is a mismatch in the number of ports between 

different modes of the RM, the RTL wrapper of that RM will have number of ports 

equal to the maximum number of ports in all the modes of the RM, in that case the 

designer should take care when connecting the ports for each mode of the RM to not 

affect the functionality of the circuit.  

 

A simple example for the design modifications needed for DPR is shown in Figure 

3.15, if the port in3 is used in in the first mode of the RR ‘RR_mode1.v’, then the 

design functionality will be altered. Such modifications in the RTL should be verified 

before moving to implement the design on the FPGA. The modification for the 

interfaces of the RMs is an error-prone task, especially for large designs which have a 

large number of ports for the modes of the RMs and a mismatch in the sizes of these 

modules such as the case of the SDR. In this thesis, the connectivity verification 

approach [32,33] is utilized in this section to verify the changes in the interfaces of the 

reconfigurable modules.  

 

The verification flow is shown in Figure 3.16. After the RTL files are compiled 

and the design is synthesized, the netlist of the design is traversed using netlist access 

Application Programming Interfaces (APIs) to extract the connections of the 

reconfigurable modules from the original design, the output of this step is a Comma 

Separated Values (CSV) file that lists the hierarchical paths of the RM ports and their 

connections. An SVA generator takes the CSV file and writes an assertion for every 

source and destination pair. The following SVA property is generated for every source 

and destination pair to verify their connection: 

 
  property connect_pair ( clock , source , destination ) ; 

  @( posedge clock ) disable iff( ~( `RM_MODE_ENABLE ) ) 

  ( source == destination ) ; 

  endproperty 

Where RM_MODE_ENABLE is a macro which can be set by the designer such that 

when its logic value is 1, it indicates a specific RM mode is active. This macro is 

different from one RM mode to another because only one RM mode can be active at a 

time. For each RM mode, there will be a separate CSV file to test its connections, and 

consequently, a unique set of assertions. The assertions generated for each mode can be 

verified using RTL simulation or formal verification. 
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Figure 3.15: Design modifications in RTL files for DPR 
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 Isolation Logic 

During the reconfiguration process of the RM, the values of the newly downloaded 

bitstream may drive incorrect values to the static logic side, so designers add isolation 

logic for all the ports of the RM to prevent the transmission of the data from the RM to 

the static logic during the reconfiguration process. The typical structure of designs that 

utilize DPR is shown in Figure 3.17, the Internal Configuration Access Port (ICAP) is 

used to interface to the FPGA configuration memory (e.g. read or write operations).  

 

 

Figure 3.16: Design modifications in RTL files for DPR 

 

 

Figure 3.17: Typical structure of a design that utilizes DPR 
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A controller is needed for the ICAP to handle the reconfiguration requests, handle the 

control of the ICAP, and monitor its status.  The output port of the ICAP can be used to 

monitor its status. The yellow blocks in Figure 3.4 are added by the designer to have a 

correct operation for the design during and after the reconfiguration process. For the 

isolation logic, it is verified using the following SVA property for every output port of 

the RM: 
 

  property verify_isol ( clock , source , destination , ICAP_BUSY ) ; 

  @( posedge clock ) 

  ( ( $changed( source ) && ICAP_BUSY ) |=> $stable( destination ) ) ; 

  endproperty 

Where the source signal is an output port of the RM, the destination signal is the 

register driven by the output port on the static side, and the ICAP_BUSY is the signal 

which indicates that there is a reconfiguration process in progress. 

 Reset Control Logic for the RM 

After the reconfiguration process is done, the sequential elements of the RM should 

be reset to guarantee proper operation of the circuit. If the RM is not reset after 

reconfiguration, the state of sequential elements will be undefined and may be affected 

by erroneous values from the previous RMs that share the same physical area on the 

FPGA. The reset control logic is verified using the following SVA property: 

 
  property verify_reset (clock , RM_reset , ICAP_BUSY ) ; 

  @( posedge clock ) 

  ( $fall( ICAP_BUSY ) |-> $rose( RM_reset ) ) ; 

  endproperty 

Where RM_reset is the reset signal of the RM, and the ICAP_BUSY is the signal which 

indicates that there is a reconfiguration process in progress. The assertion implies that 

when the ICAP_BUSY is changed from a logic value of 1 to 0 (i.e. the reconfiguration 

through ICAP is done), then the reset signal of the RM should be asserted to reset all 

the sequential elements of the RM. 

 Synchronizing the Reconfiguration Process 

When a computation is being done in the RM, the designers want to block any 

reconfiguration request until such computation is done. For applications such as SDR, 

such mechanism will be required such that when a packet is being processed for 3G 

standard as an example, it should be processed completely before switching to any 

other standard such as WiFi or 4G. The synchronization of the reconfiguration requests 

is verified using the following SVA property: 

 
  property verify_sync ( clock , RM_busy , ICAP_GO ) ; 

  @( posedge clock ) 

  ( $rose( ICAP_GO ) until $fall( RM_busy ) ) ; 

  endproperty 

Where RM_busy is the signal which indicates that a computation is being done by the 

RM, and ICAP_GO is the control signal which tells the ICAP to start a new 
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reconfiguration process. For some applications, it is not needed to check such 

synchronization, as it is acceptable to flush the data of the RM. 

3.5. Case Study 

The approach presented in this chapter for verification of DPR is applied on an 

SDR chain presented in [45,46]. The SDR test case has four reconfigurable modules: 1) 

convolutional encoder, 2) modulator, 3) Discrete Fourier Transform (DFT), and 4) 

Inverse Fast Fourier Transform (IFFT). Table 3.2 shows the number of modes per each 

block. 

 

Table 3.2: Number of modes per each RM of the design under test 

Block  Number of Modes 

Convolutional Encoder 4 
Modulator 3 
DFT 2 
IFFT 2 

 

 

The block diagram and the schematic of the design are shown in Figure 3.18 and 

Figure 3.19 respectively.  

 

 

 

Figure 3.18: Block diagram of the SDR case study 
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Figure 3.19: Schematic of the SDR case study 

The port connections are verified using SVA properties as explained in the 

previous section. The port connections should be verified for every mode of each RM, 

the number of assertions generated for verifying port connections is proportional to the 

number of modes and the number of ports for each mode. The SVA properties are 

verified and run on the DPR design using Questa Formal tool [47]. Figure 3.20 shows 

an example for the CSV file extracted for the first mode of the convolutional encoder 

RM. Figure 3.21 shows an example for the generated assertions to verify the port 

connections in the CSV file of Figure 3.20, and Figure 3.22 shows the results of Questa 

Formal tool in which all the assertions are proven. 

 

 

 

Figure 3.20: CSV file extracted for connections of the first mode of the 

convolutional encoder block 
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Figure 3.21: Assertions generated for connections of the first mode of the 

convolutional encoder block 

 

Figure 3.22: Results of Questa Formal tool for the assertions generated for 

connections of the first mode of the convolutional encode block, all assertions are 

proven 

Table 3.3 shows the number of ports for every RM, and Table 3.4 shows the number of 

assertions generated for verification of port connections, isolation logic, reset control 

logic, and the synchronization logic. The number of assertions for the isolation logic 

equals to the number of output ports for all the RMs, the number of assertions for the 

reset control logic equals to the number of RMs because each RM will have its own 

reset control logic, and only one assertion is generated to test the synchronization logic 

of the DPR controller. 

Table 3.3: Ports information about the RMs of the design under test 

Module   Number of Ports (Total) Number of Ports (Outputs only) 

Convolutional Encoder 6 2 
Modulator 7 3 
DFT 7 3 
IFFT 7 3 

Table 3.4: Generated assertion properties for DPR verification 

Verification Goal Number of Assertions 

Connections of the Ports (6 x 4) + (7 x 3) + (7 x 2) + (7 x 3) = 80 
Isolation Logic of Output Ports 11 
Logic for Reset Control 1 x 4 = 4 
Logic for Synchronization 1 

Total 96 
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All the assertions of the port connections are proven by the Questa Formal tool. But, 

when applying the assertions for isolation logic, reset control logic and synchronization 

logic, Questa Formal tool reports firings for their SVA properties, and 3 bugs have been 

identified in the design under verification: 

1. The output ports of the RMs were not isolated during the reconfiguration 

process. This should be fixed in the design such that the output ports of the RMs 

are totally isolated from the static logic during the reconfiguration process to 

avoid the propagation of any erroneous values from the RMs to the static logic. 

2. The reset signals of the RMs were not activated right after the completion of the 

reconfiguration process. This should be fixed in the design such that the reset 

signals should be asserted after the reconfiguration to put the RM in a defined 

initial state before its operation. 

3. The DPR controller was not handling the case in which a new reconfiguration 

request is received when the RM is still processing data. 

3.6. Summary 

In this chapter, a verification flow for DPR is presented using Assertion Based 

Verification (ABV). Designers can use this flow to verify their DPR designs and the 

dedicated logic added for DPR activities such as the isolation logic, reset control logic 

and the synchronization logic of the DPR controller. SVA properties are used to verify 

these functionalities. The SVA properties can be used in RTL simulation or formal 

verification. Using a case study from literature, it has been demonstrated how the 

proposed verification flow identified three issues in the DPR logic of the design. In the 

next chapter, the CDC verification for DPR is covered. 
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Chapter 4 : Clock Domain Crossing Verification for 

Dynamically Reconfigurable Systems 

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime while 

the other remaining logic keeps operating. This kind of designs are called Dynamically 

Reconfigurable System (DRS) designs, they can operate in multiple modes. The 

verification of the DRS designs is a complicated task due to the need to verify all the 

modes of the designs, and the lack of CAD tools support for DRS designs. In this 

chapter, an automatic Clock Domain Crossing (CDC) verification flow is proposed for 

DRS designs. A Perl utility is implemented which automates the generation of the 

designs files for each operating mode of the design, generates the script to run CDC 

analysis on the design, runs a CDC analysis tool, and collates the results in a user-

friendly representation for debugging. 

4.1. Introduction 

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime, while 

the other remaining logic keeps operating. It allows the implementation of complex 

circuits as SDR and loT applications within a reasonable area on the FPGA. 

Consequently, the power consumption of the circuit is reduced. Recent FPGA families 

support the implementation of DRS through the DPR technique. 

 

In DPR, the design is composed of a number of Reconfigurable Modules (RM), 

each RM has modes that are changed during runtime according to the system operating 

modes. A Reconfigurable Region (RR) is a location on the FPGA in which the 

reconfigurable module is implemented on. An example for DPR system is shown in 

Figure 4.1, it has five configuration modes: Config1, Config2, Config3, Config4 and 

Config5. Each configuration has four reconfigurable modules: ModuleA, ModuleB, 

ModuleC and ModuleD, each with four modes: Mode1, Mode2, Mode3 and Mode4. 

DRS designs extend the design flexibility through the mapping of multiple 

reconfigurable modules to the same physical reconfigurable region, which reduces the 

design cost and the resources usage. In the example of Figure 4.1, the design will have 

4 RRs on the FPGA, each RR is used for a unique RM. The RR can be configured by 

an RM mode according to the configuration mode of the DRS design. In the 

configuration mode Config1, the first RR will be loaded by the RM mode 

(ModuleA_Mode1), the second RR will be loaded by the RM mode (ModuleB_Mode1) 

and so on.  

 

Most complex recent designs have more than one clock, and many of these clocks 

are asynchronous. For these designs, the clock domain of an asynchronous clock is 

formed by the logic clocked by that clock. Problems arise from signals that connect 

logic in different clock domains. Proper synchronization must be done for signals that 

traverse the boundaries of clock domain, and relevant transfer protocols must be 

followed. During the metastability window of the receiving register (setup and hold 

time), if any CDC signal is not kept stable, then the register can end up in a metastable 

state, which means its output can unsystematically settle to an unknown value that is 
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not the same as the value the engineer sees in RTL simulation, an example is shown in 

Figure 4.2. Errors in functionality can happen due to these metastability issues. 

 

 

Figure 4.1: An example of DPR design with five modes of configuration and four 

reconfigurable modules per configuration. 

 

Figure 4.2: Example for a metastability issue caused by CDC signal 

CDC verification [23] of DRS designs is a complicated task due to the need of 

verifying every operating mode of the design to make sure no metastability issues can 

occur in the design. Currently, there are no Computer Aided Design tools that support 

the CDC verification of DRS. As an example in Figure 4.1, designers should verify all 

the configuration modes of the design, to make sure any CDC signals between adjacent 

modules are properly synchronized. If CDC errors are not verified and tackled early in 

the design cycle, they may cause functional errors later in the synthesis and place & 

route phases which may waste the designer's time to repeat the design cycle after fixing 

the CDC errors. 

 

In this chapter, a new automated flow is proposed for CDC verification of DRS. A 

Perl utility is implemented to 1) automate the generation of the RTL representation of 
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every operating mode of the reconfigurable system, 2) generate the run scripts to run a 

commercial CDC tool for every mode, 3) invoke the run for CDC analysis and 4) 

collates the result for every mode and report it to the user. 

4.2. Background 

The verification of DRS designs is still an open question. The lack of CAD tools 

that understand the dynamic nature of these designs forces the designers and 

verification engineers to innovate and implement their own verification methodologies. 

Several works have proposed techniques for simulation-based verification of DRS 

designs, and verification of issues that may arise before, during, and after 

reconfiguration of some part of the design. 

 

The Dynamic Circuit Switch (DCS) method [54] adds artifacts in the RTL code of 

the DRS design for simulation purposes only to switch between hardware tasks, it 

improves the simulation precision of DRS designs in various aspects. But, using this 

method cannot detect bugs introduced by bitstream transfer and the module swapping 

in DRS designs.  

 

ReChannel [55,56] is an open source SystemC library which models DPR, it was 

extended in [57]. In order to represent swapping of modules and other reconfiguration 

operations, ReChannel added new SystemC classes. The extension of ReChannel [57] 

proposed new classes to monitor and verify the details of reconfiguration at behavioral, 

Transaction Level Modeling (TLM) and RTL levels. However, DCS and ReChannel do 

not accurately verify the design undergoing reconfiguration since the bitstream traffic is 

not simulated. 

 

OSSS+R [58] is a methodology to automate the modeling, synthesis, and 

simulation of DRS designs. It generates synthesizable code for the reconfiguration 

controller to manage the module swapping of RMs. But, it uses only pre-defined 

reconfiguration control mechanism, so it cannot handle all styles of DPR designs. 

 

ReSim [29] is a reusable library which uses a simulation-only bitstream to hide the 

physically dependent details of DPR designs. It models traffic of bitstream and the 

reconfiguration process of DPR. ReSim, as well, has a support for the cycle-accurate 

RTL simulation of the DRS design immediately before, during and after 

reconfiguration. So, it can detect functional bugs that were missed by DCS, ReChannel 

and OSSS+R. 

 

The existing work in literature focuses on simulation-based functional verification 

of DRS designs, there are more advanced verification topics that are not still addressed 

for DRS designs such as CDC verification, reset verification, power-aware verification, 

formal verification and runtime verification. In this chapter, a framework for CDC 

verification is introduced for DRS designs. 
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4.3. What is CDC Verification? 

Most complex designs have more than one clock. In addition, many of these clocks 

are asynchronous. For these designs, the clock domain of an asynchronous clock is 

formed by the logic clocked by that clock. The logic that lies completely inside a clock 

domain can be validated with the same methodology as that for a single-clock design. 

However, problems arise from signals that connect logic in different clock domains. 

Proper synchronization must be done for signals that traverse clock domain 

“boundaries”, and relevant transfer protocols must be followed. The procedure of 

validating these necessities is called clock domain crossing (CDC) analysis.  

 

But, even CDC signals that are properly synchronized and obey protocol rules do 

not guarantee valid functionality. During the metastability window of the receiving 

register (i.e. setup and hold time), if a CDC signal is not kept stable, the register can 

end up in a metastable state, which means its output can randomly settle to an unknown 

value that is not the same as the value the engineer sees in RTL simulation.  

 

In effect, data values that traverse clock domains can be advanced or delayed 

randomly relative to RTL simulation. Functional errors can occur if the logic of the 

receiver is not designed specially to be tolerable for these metastability effects. 

Unfortunately, standard simulation cannot precisely demonstrate effects of 

metastability in a design. An expansion to standard functional verification is needed to 

demonstrate the effects of metastability in a design. 

 Clock Domains 

A clock domain is a portion of a design that has a clock asynchronous to (or which 

has an inconstant phase relationship to) another clock in the design. For example, 

suppose one clock is derived from another clock through a clock divider. These two 

clocks have a constant phase relationship; therefore, the two sections of the design that 

use these clocks are really part of the same clock domain (Figure 4.3). However, 

suppose two clocks have frequencies of 50 MHz and 33 MHz. These clocks’ phase 

relationships change over time; therefore, they clock two different clock domains 

(Figure 4.4). 

 

Figure 4.3: Multiple clock signals belong to the same clock domain. 
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When multiple clocks from different sources (i.e. asynchronous clocks) are inputs 

to a circuit, then these distinct clock domains are created because of these asynchronous 

clocks, as shown in Figure 4.5. When the circuit’s inputs are asynchronous to the 

circuit’s clock domains, then these asynchronous inputs are in distinct clock domain, as 

shown in Figure 4.6. Clocks are defined as the clock signals of registers and the enable 

signals of latches. 

 

Figure 4.4: Multiple clock signals in two different clock domains 

 

Figure 4.5: Asynchronous inputs clocks form different clock domains 

 

Figure 4.6: Inputs to the circuit are asynchronous to the circuit 
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 Metastability 

A clock domain crossing (CDC) signal is a signal created in a clock domain and 

traverses the boundary into another domain (where these two domains are 

asynchronous to each other), and is then sampled by a register in that asynchronous 

clock domain.  

 

When the active edge of the receiver (RX) register’s clock and the active edge of 

transmitter (TX) register’s clock are too close to each other, metastability occurs if data 

changes within the setup or hold time. The register’s output settles to an unpredictable 

value. Metastability can occur when having unpredictable skews between synchronous 

clocks, or if the clocks are asynchronous. Flip-flop and latch storage elements are 

sensitive to metastability. The design of flip-flops and latches must tolerate the 

metastability effects.  

 

The properties of metastability are unsystematic and unpredictable in hardware as 

the output signal can settle randomly to 1 or 0. However, designers got predictable 

results in RTL simulation. As a result, the hardware behavior and implementation are 

not accurately modeled in RTL simulation when metastability is existing. Functional 

verification techniques must consider technology beyond RTL simulation to make sure 

a circuit design is tolerable and immune to metastability effects. Designers need to 

understand how hardware registers behave with metastability and how registers behave 

in RTL simulation under the conditions of metastability, in order to design circuits 

which are tolerable to the effects of metastability. 

 

The following statement is quoted from [48] regarding metastability: 

“When sampling a changing data signal with a clock ... the order of the 

events determines the outcome. The smaller the time difference between 

the events, the longer it takes to determine which came first. When two 

events occur very close together, the decision process can take longer 

than the time allotted, and a synchronization failure occurs.” 

 

 
Figure 4.6: Example for synchronization failure [23] 
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Figure 4.6 shows an example for failure in synchronization which happens when a 

signal is generated in one clock domain, and then sampled very close to the active edge 

of a clock signal from a different clock domain. Synchronization failure is triggered by 

an output going into a metastable state and not converging to a valid steady state when 

the sampling of the output must be done. 

 

In hardware, a register value is metastable when its input signal changes the value 

in the transmitter’s domain too close to the time the signal is sampled in the receiver’s 

domain. In Figure 4.7, the flip-flop DFF is sampling a 1-bit CDC signal (s). Since 

signal (s) is originated from a different clock domain, then its value of can change at 

any time relative to the clock of the DFF (clk). If the value of the wire (s) is not kept 

stable at 0 or 1 through the metastability window of the DFF (i.e. setup and hold time of 

the DFF), then the output (q) might acquire an intermediate voltage value for an 

indeterminate amount of time. Following that, (q) settles randomly to either 0 or 1. The 

flip-flop is said to be metastable for that interval. 

 

 

Figure 4.7: Metastable flip-flop 

The following mean-time-between-failure (MTBF) equation expects the rate of 

occurrence of metastability: 

                                             𝑀𝑇𝐵𝐹 =  
1

𝑓𝑐𝑙𝑘× 𝑓𝑖𝑛 × 𝑡𝑑
                                                 (1) 

 

Where 𝑓𝑐𝑙𝑘is the clock frequency of the receiving flip-flop, 𝑓𝑖𝑛 is the frequency of the 

asynchronous input signal, and 𝑡𝑑 is the setup and hold window. 

 

Metastability is considered a problem because a metastable signal which feeds 

additional logic in the receiving clock domain may cause invalid signal values to be 

propagated through the design, and consequently, the behavior of the circuit cannot be 

expected in such case. The metastable signal can fluctuate for some amount of time. 

The logic which samples the metastable signal in the receiving domain may identify the 

logic value of the fluctuating signal to be different values, and consequently, will cause 

erroneous signal values to be propagated through the design, Figure 4.8 is showing an 

example for such cases. 

 

For any design, each flip-flop has a specified metastability window defined (i.e. 

setup and hold time window), which is the time that the input data is not allowed to be 

changed within, and it is mandatory to the keep the input signals stable during this 

window to avoid them being changed very close to the clock edge of the receiving 

clock edge. This protects the output of the flip-flop from going into a metastable state. 
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Figure 4.8: A metastable signal is causing erroneous signal values to be 

propagated through the design [23] 

 Synchronizers 

Designers usually assume the signals of the circuit to be in-band, which means they 

have a value of either logic 0 or logic 1. Metastable signals can have values that are 

neither 0 nor 1; therefore, they are considered out-of-band signals. Out-of-band signals 

have unanticipated effects and propagate unpredictably. To handle CDC signals, 

designers isolate potentially metastable logic to ensure logic beyond such isolation 

boundary only needs to handle in-band signals. The logic inside the isolation area is 

called a synchronizer, an example is shown in Figure 4.9. 

 

 

Figure 4.9: Synchronizer example 
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Metastability appears in the form of mutable delays in signal transitions of the 

outputs of registers driven by CDC signals. Transitions are accidentally advanced or 

delayed when compared to normal simulation. Every CDC signal is affected by that 

behavior. Even if a CDC signal or data bus has a synchronizer, the output of the 

synchronizer may suffer from mutable delays. Logic outside the isolation area in the 

receiving domain might not interpret receive data correctly in the presence of variable 

delays. Functional errors occur in hardware due to this intolerance of metastability 

special effects, even when RTL simulation reports “0” functional errors. 

 

Designers implement different kinds of synchronizers as appropriate for particular 

situations and design styles. For each type of synchronizer, the implemented logic 

assumes a group of prerequisites about the operation of the circuit during operation and 

regarding the logic which is being connected to the synchronizer. During compilation, 

the rules for the synchronizer’s connections can be checked. During simulation, transfer 

protocols can only be checked as the circuit operates. A synchronizer, alongside its 

transfer protocol and rules of connections, is called a synchronization scheme as shown 

in Figure 4.10. 

 

 

 

Figure 4.10: Synchronizer scheme 

Most CDC implementations use one or more synchronizers from a set of popular, 

well-characterized synchronization schemes. These structured synchronizers must 

follow well-defined connection rules and should obey specific transfer protocols. 

Software or custom logic synchronizers should be used to synchronize any CDC signal 

that does not have a structured synchronizer. These ad hoc synchronizers block the 

receiver’s registers from reading CDC signal values when they are not stable. 

Therefore, the receiver register’s outputs cannot enter a metastable state. For example, 

an ad hoc synchronizer can use specific logic to control the load enable signal of the 

receiver register, or software might control the loading of a circuit’s configuration 

registers. 

 

For control signals (i.e. scalar signals) synchronizers, the two D-flip-flop (2DFF) is 

commonly used. An example for 2DFF synchronizer is shown in Figure 4.11, it is the 

most widely used synchronizer for scalar CDC control signals. In Figure 4.11, if the 

first register (R1) enters a metastable state, it almost always settles to 1 or 0 before the 

second register (R2) reads its output (q1). There exist various structured synchronizers, 

such as the 3DFF synchronizer, 2DFF synchronizer with a pulse (pulse synchronizer), 

and 4-latch synchronizer. 
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Figure 4.11: 2DFF synchronizer 

The connection rules of the 2DFF synchronizers re as follows: 

1) No glitches in the path of cdc_s 

2) No combinational logic is permitted the path of int_s 

3) The cdc_s signal must be held stable by the transmit clock domain logic for at 

least the following: 

𝑝𝑒𝑟𝑖𝑜𝑑𝑟𝑥_𝑐𝑙𝑘 +  𝑡𝑠𝑒𝑡𝑢𝑝 + 𝑡ℎ𝑜𝑙𝑑 +  𝑡max _𝑠𝑘𝑒𝑤 

 

Another example for the 2DFF synchronizer is shown in Figure 4.12. 

 

 

Figure 4.12: 2DFF synchronizer in operation [23] 

2DFF synchronizers are adequate for synchronizing CDC control signals, but not 

data vectors (i.e. buses). Control signal synchronization does not ensure that correlated 

bits of a bus are transmitted together, since variable delays on any bit of the bus corrupt 
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the data. Data vector synchronizers (i.e. bus synchronizers) ensure that all bits of the 

bus are transmitted together and prevents the corruption of data. FIFO, DMUX, and 

handshake synchronization schemes are used to synchronize vector CDC data using 

different logic configurations.  

 

An example for the DMUX synchronizer is shown in Figure 4.12, the control select 

signal from the TX clock domain (which is synchronized using a 2DFF synchronizer) 

enables a multiplexer (MUX) when the transmitted data value is ready. Following 

connection rules should be respected: 

1) 2DFF synchronizer must obey CDC transfer protocol for tx_sel. 

2) cdc_d must be held stable by the transmit clock domain logic while tx_sel or 

rx_sel are asserting. 

 

 

Figure 4.12: DMUX synchronizer 

Asynchronous FIFO synchronizers can be used for sending and receiving multiple 

bits between two different clock domains. The multi-bit signals can be either data bits 

or control bits. An asynchronous FIFO is a dual port memory in which the data is 

inserted from the write clock domain and data is removed from the read clock domain. 

Since both transmitter and receiver operate within their own respective clock domains, 

using a dual-port buffer, such as a FIFO, is a safe way to pass multi-bit values between 

clock domains. An example for the asynchronous FIFO synchronizer is shown in figure 

4.13. As long as the FIFO is not full, the data or control words can be inserted into the 

FIFO, and the receiver can read a control or data word from the FIFO as long as it is 

not empty. The operation of the asynchronous FIFO synchronizer is described in details 

in [49], its detailed structure us shown in Figure 4.14. 

 

Figure 4.13: FIFO synchronizer 



 

61 
 

 

 

Figure 4.14: FIFO synchronizer detailed structure 

4.4. CDC Verification Flow for DRS Designs 

The proposed CDC Verification flow is shown in Figure 4.15.  

 

 

Figure 4.15: Proposed flow for CDC verification 



 

62 
 

A Perl utility is implemented to automate the flow. The inputs for the utility are 1) RTL 

files of RMs modes, 2) RTL wrapper for DRS design and 3) Comma Separated Values 

(CSV) file to define the configuration modes of the design. In a typical DPR design 

flow, the RTL files of the RMs modes and the wrapper of the DRS design should be 

provided by the designer, so there is no extra effort needed for the creation of these files 

to use the proposed CDC verification flow. Following is an example for Verilog RTL 

code which defines two modes of the RM (ModuleA) in Figure 4.1: 

 

module ModuleA_mode1 ( input wire in1 , in2 , a_rst , clk1 ,output reg out1 ) ; 1 
always @( posedge clk1 , posedge a _ r s t )  2 
begin 3 
    if ( a_rst ) out1 <= 1 ’ b0 ;  4 
    else out1 <= in1 | in2 ;  5 
end 6 
endmodule 7 
 8 
module ModuleA_mode2 ( input wire in1 , in2 , a_rst , clk1 , output reg out1 ) ; 9 
always @( posedge clk1 , posedge a _ r s t )  10 
begin 11 
    i f ( a_rst ) out1 <= 1 ’ b0 ;  12 
    e l s e out1 <= in1 & in2 ;  13 
end 14 
endmodule15 

The following Verilog RTL mode shows an example for the wrapper of the DPR design 

example in Figure 4.1: 

 
module RR1( input wire in1 , in2 , a _ r s t , clk1 , output out1 ) ; 1 

/ / Empty . A mode for ModuleA will be instantiated here 2 

endmodule 3 

 4 

module RR2( input wire in1 , in2 , a _ r s t , clk1 , output out1 ) ; 5 

/ / Empty . A mode for ModuleB will be instantiated here 6 

endmodule 7 

 8 

module RR3( input wire in1 , in2 , a _ r s t , clk1 , output out1 ) ; 9 

/ / Empty . A mode for ModuleC will be instantiated here 10 

endmodule 11 

 12 

module RR4( input wire in1 , in2 , a _ r s t , clk1 , output out1 ) ; 13 

/ / Empty . A mode for ModuleD will be instantiated here 14 

endmodule 15 

 16 

module DRS1 ( input wire in1 , in2 , in3 , in4 , in5 , 17 

                          a_rst , clk1 , clk2 , output wire out1 ) ; 18 

wire A_out1 , B_out1 , C_out1 , D_out1 ; 19 

RR1 ModuleA_inst ( in1 , in2 , a _ r s t , clk1 , A_out1 ) ; 20 
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RR2 ModuleB_inst ( in3 , A_out1 , clk1 , B_out1 ) ; 21 

RR3 ModuleC_inst ( in4 , B_out1 , clk2 , C_out1 ) ; 22 

RR4 ModuleD_inst ( in5 , C_out1 , clk2 , D_out1 ) ; 23 

assign out1 = D_out1 ; 24 

endmodule25 

The above code for the RTL wrapper is a placeholder for the DRS design. In each 

operating mode of the design, there will be a module instantiated inside each RR 

module, as an example for the DRS design in Figure 4.1, in the first mode (Config1) of 

the design, the module ModuleA_mode1 will be instantiated inside the module of RR1, 

the module ModuleB_Mode1 will be instantiated inside the module of RR2, the module 

ModuleC_Mode1 will be instantiated inside the module of RR3, and the module 

ModuleD_Mode1 will be instantiated inside the module of RR4. The CSV file is needed 

to define the configuration modes of the design, so that the utility can know how many 

RRs in the design and what are the RMs mapped to a specific RR. The following CSV 

file is an example for the DPR design in Figure 4.1: 
1 

RR , RR1 1 
RR , RR2 2 
RR , RR3 3 
RR , RR4 4 
RM , ModuleA , {ModuleA_Mode1 , ModuleA_Mod2 , ModuleA_Mode3 ,   5 
          ModuleA_Mode4} 6 
RM , ModuleB , {ModuleB_Mode1 , ModuleB_Mod2 , ModuleB_Mode3 ,  7 
          ModuleB_Mode4} 8 
RM , ModuleC , {ModuleC_Mode1 , ModuleC_Mod2 , ModuleC_Mode3 ,  9 
          ModuleC_Mode4} 10 
RM , ModuleD , {ModuleD_Mode1 , ModuleD_Mod2 , ModuleD_Mode3 ,  11 
          ModuleD_Mode4} 12 
ConfigMode , Config1 , {{RR1 , ModuleA_Mode1} , {RR2 , ModuleB_Mode1}  13 
          , {RR3 , ModuleC_Mode1} , {RR4 , ModuleD_Mode1}} 14 
ConfigMode , Config2 , {{RR1 , ModuleA_Mode2} , {RR2 , ModuleB_Mode2}  15 
          , {RR3 , ModuleC_Mode2} , {RR4 , ModuleD_Mode2}} 16 
ConfigMode , Config3 , {{RR1 , ModuleA_Mode3} , {RR2 , ModuleB_Mode3}  17 
          , {RR3 , ModuleC_Mode3} , {RR4 , ModuleD_Mode2}} 18 
ConfigMode , Config4 , {{RR1 , ModuleA_Mode4} , {RR2 , ModuleB_Mode4}  19 
          , {RR3 , ModuleC_Mode4} , {RR4 , ModuleD_Mode4}} 20 
ConfigMode , Config5 , {{RR1 , ModuleA_Mode1} , {RR2 , ModuleB_Mode2}  21 

          , {RR3 , ModuleC_Mode3} , {RR4 , ModuleD_Mode4}}22 

The words RR, RM and ConfigMode are reserved words, they are used to define an 

RR, RM and a configuration mode for the DRS design respectively. 

  

The first step performed by the utility is a sanity check for the interfaces of the 

modes of the same RM, for DPR flow it is required to have the same number of ports 

for the RM modes. The sizes and names of these ports should be the same across the 

modes of the same RM. For Xilinx [7] tools, if this requirement is violated, the 

implementation of the DPR flow will fail in the place & route step, which is late in the 

design cycle. In the proposed Perl utility, the sanity check for interfaces is done to catch 

any errors as early as possible. The Perl code in Appendix B.1 is used to the check the 

RMs’ ports. 
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The second step is to pick one configuration mode of the DRS design and generate an 

RTL file for this mode. Following is an example for the generated Verilog RTL file for 

configuration mode (Config1) in the DPR example in Figure 4.1: 

 
module RR1 ( input wire in1 , in2 , a _ rst , clk1 , output out1 ) ; 1 

ModuleA_mode1 ModA_1_inst ( in1 , in2 , a _ r s t , clk1 , out1 ) ; 2 

endmodule 3 

 4 

module RR2 ( input wire in1 , in2 , a _ r s t , clk1 , output out1 ) ; 5 

ModuleB_mode1 ModB_1_inst ( in1 , in2 , a _ r s t , clk1 , out1 ) ; 6 

endmodule 7 

 8 

module RR3 ( input wire in1 , in2 , a _ r s t , clk1 , output out1 ) ; 9 

ModuleC_mode1 ModC_1_inst ( in1 , in2 , a _ r s t , clk1 , out1 ) ; 10 

endmodule 11 

 12 

module RR4 ( input wire in1 , in2 , a _ r s t , clk1 , output out1 ) ; 13 

ModuleD_mode1 ModD_1_inst ( in1 , in2 , a _ r s t , clk1 , out1 ) ; 14 

endmodule 15 

 16 

module DRS1 ( input wire in1 , in2 , in3 , in4 , in5 ,  17 

                           a _ rst , clk1 , clk2 , output wire out1 ) ; 18 

wire A_out1 , B_out1 , C_out1 , D_out1 ; 19 

RR1 ModuleA_inst ( in1 , in2 , a _ rst , clk1 , A_out1 ) ; 20 

RR2 ModuleB_inst ( in3 , A_out1 , clk1 , B_out1 ) ; 21 

RR3 ModuleC_inst ( in4 , B_out1 , clk2 , C_out1 ) ; 22 

RR4 ModuleD_inst ( in5 , C_out1 , clk2 , D_out1 ) ; 23 

assign out1 = D_out1 ; 24 

endmodule25 

 

The third step is to generate the CDC analysis run script, the generated script is written 

to be run by Questa CDC tool from Mentor Graphics to perform the CDC analysis on 

the design. The implemented Perl utility performs some heuristics based on the port 

names of the DRS design to constrain the design, as an example it defines the ports 

match (clk) regular expression as clocks. Similarly, it defines the ports that match (rst) 

regular expression as resets, and define scan enable and test signals as constants. 

Following is an example for the generated script to run CDC analysis on configuration 

mode (Config1) in the DPR example in Figure 4.1: 
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The fourth step is to run CDC analysis using Questa CDC tool, and save the 

results. The Perl utility then repeats the first four steps for all the configuration modes 

of the design. The fifth step is to generate a report for the CDC analysis of DRS design. 

Following is a sample of the output report for the DRS in Figure 4.1: 

4.5. Case Study 

The value of using the proposed CDC Verification flow is demonstrated by a case 

study of the SDR system presented in [45,46]. This SDR system is implemented using 

the DPR flow, it switches between blocks of communication standards 3G, 4G and 

WIFI. The SDR test case has four reconfigurable modules: 1) convolutional encoder, 2) 

modulator, 3) Discrete Fourier Transform (DFT), and 4) Inverse Fast Fourier 

Transform (IFFT). Table 4.1 shows the number of modes per each block. 

Table 4.1: Number of modes per each RM of the design under test 

Block  Number of Modes 

Convolutional Encoder 4 
Modulator 3 
DFT 2 
IFFT 2 

 

CDC Results for Mode: Config1 

---------------------------------------- 

       A) Synchronized CDC Paths: 

       <None> 

 

       B) Un-synchronized CDC Paths: 

            1) From 'ModuleB_inst.ModB_1_inst.out1' (clk1)  

                To 'ModuleC_inst.ModC_1_inst.out1' (clk2) 
... 
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The block diagram and the schematic of the SDR design are shown in Figure 4.16 and 

Figure 4.17 respectively. The design has two clocks, the first clock (clk) is used for the 

channel encoder, while the other clock (clk2) is used for the rest of the blocks. It also 

has one asynchronous reset signal (reset). 

 

 

 

Figure 4.16: Block diagram of the SDR case study 

 

 

 

Figure 4.17: Schematic of the SDR case study 
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The following CSV is provided to the utility for the configuration modes of the design 

with the RTL files of the reconfigurable modules as explained in the previous section: 

 

RR , encoder 1 

RR , modulator 2 
RR , dft 3 
RR , ifft 4 
RM , conv_enc , {enc_3G_half , enc_3G_third , enc_WIFI_half , 5 
enc_4G_third} 6 
RM , modulator , {bpsk , qpsk , qam_16} 7 
RM , dft , {dft_64_point , filler_mod} 8 
RM , ifft , {ifft_64 , ifft_256 , filler_mod} 9 

ConfigMode , Config1 , {{encoder , enc_3G_half} , {modulator , bpsk} ,  10 
       {dft , filler_mod} , {ifft , filler_mod}} 11 
ConfigMode , Config2 , {{encoder , enc_3G_half} , {modulator , qpsk} ,  12 
       {dft , filler_mod} , {ifft , filler_mod}} 13 

ConfigMode , Config3 , {{encoder , enc_3G_half} , {modulator , qam_16} ,  14 
       {dft , filler_mod} , {ifft , filler_mod}} 15 

ConfigMode , Config4 , {{encoder , enc_3G_third} , {modulator , bpsk} ,  16 
       {dft , filler_mod} , {ifft , filler_mod}} 17 

ConfigMode , Config5 , {{encoder , enc_3G_third} , {modulator , qpsk} ,  18 

       {dft , filler_mod} , {ifft , filler_mod}} 19 

ConfigMode , Config6 , {{encoder , enc_3G_third} , {modulator , qam_16} ,  20 
       {dft , filler_mod} , {ifft , filler_mod}} 21 

ConfigMode , Config7 , {{encoder , enc_WIFI_half} , {modulator , bpsk} ,  22 
       {dft , filler_mod} , {ifft , filler_mod}} 23 
ConfigMode , Config8 , {{encoder , enc_WIFI_half} , {modulator , qpsk} ,  24 

       {dft , filler_mod} , {ifft , filler_mod}} 25 
ConfigMode , Config9 , {{encoder , enc_WIFI_half} , {modulator , qam_16} ,  26 

       {dft , filler_mod} , {ifft , filler_mod}} 27 
ConfigMode , Config10 , {{encoder , enc_4G_third} , {modulator , bpsk} ,  28 
       {dft , dft_64} , {ifft , ifft_256}} 29 

ConfigMode , Config11 , {{encoder , enc_4G_third} , {modulator , qpsk} ,  30 
       {dft , dft_64} , {ifft , ifft_256}} 31 
ConfigMode , Config12 , {{encoder , enc_4G_third} , {modulator , qam_16} ,  32 

       {dft , dft_64} , {ifft , ifft_256}}33 

 

The Perl utility generates RTL design for every mode and a script to run Questa CDC 

tool for CDC verification, the tool then generates a report for the CDC results for all the 

runs of the modes of the design. 

 

Using the proposed CDC verification flow, it has identified two CDC errors in all 

the 12 modes of the design that may cause functional errors during the operation of the 

system. The first error is found for the signals that are generated in clock domain of 

(clk) inside the convolutional encoder block and sampled in clock domain of (clk2) 

inside the modulator block. The modulator block’s design was missing synchronizing 
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these CDC signals to clock domain of (clk2) which may cause metastability issues for 

the registers in the modulator block. 

 

The second error shows up due to the usage of an asynchronous reset signal (reset). 

The asynchronous reset signal was used without being synchronized to the clock 

domains of (clk) and (clk2). This may cause metastability issues for the registers in the 

design, because an asynchronous reset signal will be de-asserted asynchronous to the 

clock signal of the register, so it may violate the reset recovery time requirement for the 

register. Recovery time is the “minimum required time to the next active clock edge 

after the reset is released”. The Questa CDC results for one of the 4G modes of the 

design are shown in Figure 4.19, the first two violations are related to the first CDC 

error (i.e. signals cross from encoder to the modulator), while the other 14 violations 

are related to the second CDC error (i.e. missing synchronization of the asynchronous 

reset). The schematic of the first CDC error is shown in Figure 4.18. The design has to 

be fixed by using CDC data synchronizers for the crossing signals, and an 

asynchronous reset synchronizer for the (reset) signal. The proposed approach can be 

used again to verify the design after the design is fixed to make sure no more issues 

CDC issues exist in the design. 

 

 

Figure 4.18: Schematic of the first CDC violation in the design 

4.6. Summary 

CDC verification for digital designs is essential due to the usage of multiple clock 

domains in the recent designs. The CDC verification for DRS designs is a challenging 

task due to the lack of CAD tools support for DRS designs and the multiple operating 

modes of the design. In this chapter a complete automated flow for CDC verification is 

presented for DRS designs. Designers can use this flow with no extra effort to create 

the new setup for CDC verification, and it can be easily integrated into the design and 

verification cycle of DRS designs. The CDC verification should be done before moving 

to implement the design on the FPGA, as any error caught during CDC verification will 

force the designs to restart the implementation cycle after fixing the CDC errors in the 

design. Using a case study from literature, it demonstrated how the proposed CDC 

verification flow identifies a couple of real CDC errors in the design which were 

overlooked during the design cycle. In the next chapter, a new methodolody for 

debugging on FPGAs is proposed, the methodology is utilizing DPR. 
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Figure 4.19: CDC results from Questa CDC tool for one of the 4G configuration modes of the design
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Chapter 5 : Utilizing Dynamic Partial Reconfiguration to 

Reduce the Cost of FPGA Debugging 

Debugging of FPGAs is a difficult task due to the limited access to the internal 

signals of the design. Embedded logic analyzers enhance the signal observability for 

FPGAs. These analyzers are implemented on the FPGA resources and they use the 

embedded memory blocks as trace buffers, so a limited number of signals can be 

observed using these analyzers due to resources constraints. Changing the traced set of 

signals requires re-synthesis, placement and routing of the whole design. In this 

chapter, a new methodology for FPGA debugging is proposed to change dynamically 

the set of signals to be observed at runtime, and consequently, minimize the time 

required for debugging. The proposed methodology utilizes the DPR technique to 

dynamically switch between different sets of signals. DPR creates a reconfigurable 

module to route each set of signals to an embedded logic analyzer. The proposed 

approach is demonstrated using Xilinx FPGA tools, finding that changing the set of 

signals to be observed requires only a few milli-seconds to re-program the 

reconfigurable region. The area overhead of the proposed methodology is lower than 

other traditional methods of using multiplexers as the DPR allows the routing module 

to only use buffers to connect a set of signals to the embedded logic analyzer. 

5.1. Introduction 

Verification is one of the most challenging tasks in the Integrated Circuits (ICs) 

development process. Any uncaught bugs or errors during the design and verification 

phases can cause re-spins for silicon IC. Studies revealed that about half of designer's 

effort is spent on functional verification [34]. With the increased complexity and size of 

the designs, traditional functional verification methodologies such as RTL simulation 

are no longer sufficient to uncover bugs and errors in the design because some real-

world interactions only show up when implemented on hardware. The simulation also 

runs at lower speeds than real hardware execution [35,36] which makes the thorough 

analysis of large designs infeasible.  

 

Reconfigurability of FPGAs attracts designers to do prototyping for their systems. 

FPGAs can run at higher speeds than that of simulation, and will catch bugs and errors 

that cannot be caught in simulation such as system timing issues. Debugging design and 

system integration issues on FPGAs is a difficult task due to the limited access to 

internal signals, the designer can only observe the signals connected to the FPGA 

output pins. Embedded logic analyzers are used to provide visibility for internal signals 

inside the FPGA [37,38,39]. These analyzers are implemented on the FPGA resources, 

they use embedded memory blocks as trace buffers. Designers use the Joint Test Action 

Group (JTAG) port to access the analyzer, and the recorded data can be replayed on a 

Personal Computer (PC). The traditional design and debug flow for FPGAs is shown in 

Figure 5.1. 
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 The major disadvantage of using embedded logic analyzers is that the observed 

signals that are connected to the trace buffer of the embedded logic analyzer are 

selected before the user design is synthesized, placed and routed. In order to change the 

set of observed signals, it will require the recompilation of the FPGA design flow. Also, 

the debug circuitry added in the design consumes a part of the FPGA resources, so the 

Design Under Test (DUT) may no longer fit in the FPGA device. The amount of 

resources required for debugging is directly proportional to the number of selected 

signals to be observed.  

 

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime while 

the other remaining logic keeps operating. It allows the implementation of complex 

designs that have multiple operating modes such as SDR applications within a 

reasonable area on the FPGA. In DPR, the design consists of a number of 

Reconfigurable Modules (RMs), each module has a number of modes that are swapped 

at runtime according to the system operating modes. A Reconfigurable Region (RR) is 

a location on the FPGA in which the reconfigurable module is allocated on. An 

example for DPR system is shown in Figure 5.2, it has five configuration modes: 

Config1, Config2, Config3, Config4 and Config5. Each configuration has four 

reconfigurable modules: ModuleA, ModuleB, ModuleC and ModuleD, each with four 

modes: Mode1, Mode2, Mode3 and Mode4. DPR extends the design flexibility through 

mapping of multiple reconfigurable modules to the same physical reconfigurable 

 

Figure 5.1: Design and debugging flow for FPGAs 
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region, which reduces the design cost and the resource usage. In the example of Figure 

5.2, the design will have 4 RRs on the FPGA, each RR is used for a unique RM.  

 

 

Figure 5.2: An example of DPR design with five modes of configuration and four 

reconfigurable modules per configuration 

The approach proposed in this chapter utilizes DPR on FPGAs to alleviate the 

issues of using embedded logic analyzers by 1) dividing the large number of all 

potential signals for debugging Nsigs into number of small signals sets Nsets (equals 

Nsigs/Nprobes), 2) defining one Reconfigurable Module (RM) in the design, the 

number of modes for this RM is Nmodes (equals Nsigs/Nprobes), where Nprobes is the 

number of probes of the embedded logic analyzer. For every mode of the RM, a set of 

signals is connected to the probes of the embedded logic analyzer. The methodology 

can be extended to use the output pins of the FPGA for observing the selected signals 

instead of the embedded logic analyzer, by connecting the outputs of the RM to the 

output pins of the FPGA, in that case the number of modes (or signals sets) will be 

equal to the number of signals divided by the number of available output pins for 

debugging Nsigs/Nopins. 

 

The changes in the connections of the signals sets to the analyzer are done at 

runtime. So, the proposed methodology avoids the recompilation of the whole FPGA 

flow by changing the observed signals during runtime. Also, it controls the size of the 

logic analyzer by controlling the number of its probes Nprobes without affecting the 

observability of potential debugging signals, as they are still observable by changing 

the mode of the RM at runtime. For large designs which need most of the FPGA 
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resources, designers need to keep the number of the analyzer's probes as minimum as 

possible to limit the size of the analyzer. 

5.2. Related Work 

Several works have proposed techniques to enhance the debugging of FPGAs using 

scan-based or trace-based techniques. In [40] a scan-based technique is proposed to 

connect all the FFs in sequence by using the soft-logic of the FPGA. This technique has 

a high area overhead due to the usage of the soft-logic to implement the scan-chains in 

the design. 

 

A bitstream modification technique is presented in [41] to modify the bitstreams 

within tens of seconds to minutes. This can reduce the time spent in debugging the 

design, and decrease design's time to market. But, when the selected set of signals for 

tracing is changed, re-routing needs to be performed which can significantly affect the 

design's time to market. Software-like debug features are presented in [42] such as 

watch-points and break-points to enhance debug capability in reconfigurable platforms. 

But, any change in watch-points or breakpoints needs recompilation of designs. 

 

In [43], a new methodology is proposed to permit a large number of internal 

signals to be traced for an arbitrary number of clock cycles using a limited number of 

external pins. It operates without the need for iterative executions of the design re-

synthesis, placement and routing tools. This is achieved by inserting a Multiplexer 

(MUX) into the design implemented on the FPGA, with the MUX inputs are all the 

signals that designer potentially needs to trace. Then, the select signals of the MUX are 

controlled by manipulating the bitstream of the design to select different signals to be 

traced. The disadvantage of this methodology is the area overhead of the MUX, and the 

need to re-program the whole FPGA for any change in the selected signals to be traced. 

5.3. An Approach For FPGA Debugging Using Dynamic Partial 

Reconfiguration 

This section presents a new approach to enhance the observability of FPGA 

designs for debugging. The traditional debugging flow for FPGA designs is shown in 

Figure 5.1, the design is synthesized, placed and routed on the target FPGA, then the 

generated bitstream is used to program the FPGA. During the testing, if an issue is 

caught, a set of signals is selected to be observed by an embedded logic analyzer, or by 

routing them to the available output pins. In that case, the designer needs to repeat the 

FPGA design flow from synthesis to FPGA programming which is time-consuming. 

Additionally, observing a large number of signals is not feasible in the traditional 

debugging flow because of the limited resources of the FPGA either for the memory 

blocks and look-up tables (LUTs) in case of the embedded logic analyzer, or for the 

output pins in case these pins are used for debugging. This forces the designer to repeat 

the FPGA design flow multiple times in order to observe different sets of signals to 

debug different faulty scenarios. For the rest of this chapter, it is assumed that an 

embedded logic analyzer is being used for debugging for simplicity, the proposed 

approach and the results presented are still applicable for using the output pins for 
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debugging, the only difference is to replace the number of analyzer's probes by the 

number of the output pins available for debugging. 

 

A new approach for FPGA debugging is presented in this chapter to overcome the 

limitations of the traditional FPGA debugging flow. This approach allows the designer 

to switch between the signals at runtime without the need to repeat the FPGA design 

flow. This is achieved by inserting a Reconfigurable Module (RM) in the design to 

switch between the signals to be observed. This RM is implemented on a 

Reconfigurable Region (RR) on the FPGA. All the potential signals to be observed are 

connected as inputs to this module. The outputs of the RM are connected to the 

embedded logic analyzer or the debug output pins. Figure 5.3 shows the connections of 

the RM. Depending on the available resources on the FPGA, the number of modes of 

the RM is decided. For a number of signals to be observed Nsigs and number of probes 

Nprobes for the embedded logic analyzer, the number of modes of the RM is 

Nsigs/Nprobes. 

 

 

 

Figure 5.3: Reconfigurable module to connect the set of signals to the embedded 

logic analyzer probes 
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For each mode of the RM, a set of signals is connected to the probes of the 

embedded logic analyzer. So, in each mode a, subset of the signals will be used while 

the others will not be used at all. This allows to keep the unused subset of the signals 

unconnected. Hence, for each mode, a set of signals is routed to the output while the 

others remain unconnected, so buffers only will be used to do this connection, and 

LUTs of the FPGA will not be used. This is a major advantage for using this approach 

because the area will be as minimum as possible when compared with other approaches 

that use MUXes to switch between the signals sets such as the proposed approach in 

[43].  

 

An example for 4-inputs and 2-outputs case is shown in Figure 5.4, the RM will 

have two modes of operation, the first mode of operation is to connect the first two 

input signals to the outputs, and the second mode of operation is to connect the second 

two inputs signals to the outputs. Figure 5.5 shows an example for the case of 8-inputs 

and 2-output, the RM will have 4 modes of operation, each mode of these four modes 

will connect a different two inputs signals to the outputs. Figure 5.6 shows an example 

for the case of 8-inputs and 4-outputs, the RM will have two modes of operation, the 

first mode of operation is to connect the first four input signals to the outputs, and the 

second mode of operation is to connect the second four input signals to the outputs. The 

same synthesis will be applied on other cases which have a higher number of inputs to 

the RM, i.e. in all the operating modes of the RM, it is sufficient to use 1-input LUTs to 

act alike buffers to connect the inputs of the RM to the outputs. 

 

 

 

Figure 5.4: Synthesis of the modes of the RM for 4-inputs and 2-outputs case. 
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Figure 5.5: Synthesis of the modes of the RM for 8-inputs and 2-outputs case. 

 

 
 

Figure 5.6: Synthesis of the modes of the RM for 8-inputs and 4-outputs case. 
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For each mode, a partial bitstream is generated and it will be used to re-program 

the RR at runtime. Partial bitstreams are generated during the DPR design flow and are 

saved into an external memory. The reconfigurable region size is affecting the size of 

the partial bitstream in a directly proportional relationship [7]. Since the area consumed 

by each mode of the RM is very small because it only uses buffers, the size of the 

partial bitstream will be small, and consequently, the reconfiguration will require a few 

milli-seconds to re-program the RR. The small reconfiguration time is a major 

advantage for the proposed approach in this work when compared with the traditional 

FPGA debugging flow as it avoids re-compilation, and also when compared with other 

approaches which do modifications in the bitstream then re-program the whole FPGA 

as in [43]. The proposed FPGA debugging flow is shown in Figure 5.7. 

 

 

 

Figure 5.7: Proposed FPGA debugging flow. 

In order to generate multiple designs to evaluate the performance of the proposed 

mechanism, the Perl code in Appendix B.2 is implemented to generate RTL designs 

and run scripts for Vivado.

1 
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The following RTL Verilog file is showing one of the generated designs using the 

script, it is for the trace setting of 128-16 (i.e. 128 signals to be traced in total, and only 

16 of them are traced concurrently), the file in Appendix B.3 is used as a test case for 

debugging using MUX’es to compare it with the behavior of the proposed debugging 

flow using DPR. 
 

When using DPR instead of the MUXes for debugging, the ila_mux module is replaced 

by the modes of the RM, below is an example of the first mode (out of 8 modes) for the 

128-16 trace settings (i.e. 128 signals to be traced in total, and only 16 of them are 

traced concurrently). 

 
module ila_mux ( in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , in9 , in10 , in11 , in12 , in13 , in14 , in15 1 
, in16 , in17 , in18 , in19 , in20 , in21 , in22 , in23 , in24 , in25 , in26 , in27 , in28 , in29 , in30 , 2 
in31 , in32 , in33 , in34 , in35 , in36 , in37 , in38 , in39 , in40 , in41 , in42 , in43 , in44 , in45 , in46 3 
, in47 , in48 , in49 , in50 , in51 , in52 , in53 , in54 , in55 , in56 , in57 , in58 , in59 , in60 , in61 , 4 
in62 , in63 , in64 , in65 , in66 , in67 , in68 , in69 , in70 , in71 , in72 , in73 , in74 , in75 , in76 , in77 5 
, in78 , in79 , in80 , in81 , in82 , in83 , in84 , in85 , in86 , in87 , in88 , in89 , in90 , in91 , in92 , 6 
in93 , in94 , in95 , in96 , in97 , in98 , in99 , in100 , in101 , in102 , in103 , in104 , in105 , in106 , 7 
in107 , in108 , in109 , in110 , in111 , in112 , in113 , in114 , in115 , in116 , in117 , in118 , in119 , 8 
in120 , in121 , in122 , in123 , in124 , in125 , in126 , in127 , in128 ,  out1 , out2 , out3 , out4 , out5 , 9 
out6 , out7 , out8 , out9 , out10 , out11 , out12 , out13 , out14 , out15 , out16 )  ; 10 

  // Parameters 11 
  parameter DATA_WIDTH = 1 ; 12 
  // I/O ports 13 
  input [ DATA_WIDTH - 1 : 0 ] in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , in9 , in10 , in11 , 14 

in12 , in13 , in14 , in15 , in16 , in17 , in18 , in19 , in20 , in21 , in22 , in23 , in24 , in25 , in26 , in27 15 
, in28 , in29 , in30 , in31 , in32 , in33 , in34 , in35 , in36 , in37 , in38 , in39 , in40 , in41 , in42 , 16 
in43 , in44 , in45 , in46 , in47 , in48 , in49 , in50 , in51 , in52 , in53 , in54 , in55 , in56 , in57 , in58 17 
, in59 , in60 , in61 , in62 , in63 , in64 , in65 , in66 , in67 , in68 , in69 , in70 , in71 , in72 , in73 , 18 
in74 , in75 , in76 , in77 , in78 , in79 , in80 , in81 , in82 , in83 , in84 , in85 , in86 , in87 , in88 , in89 19 
, in90 , in91 , in92 , in93 , in94 , in95 , in96 , in97 , in98 , in99 , in100 , in101 , in102 , in103 , in104 20 
, in105 , in106 , in107 , in108 , in109 , in110 , in111 , in112 , in113 , in114 , in115 , in116 , in117 , 21 
in118 , in119 , in120 , in121 , in122 , in123 , in124 , in125 , in126 , in127 , in128 ; 22 

  output wire [ DATA_WIDTH - 1 : 0 ] out1 , out2 , out3 , out4 , out5 , out6 , out7 , out8 , out9 23 
, out10 , out11 , out12 , out13 , out14 , out15 , out16 ; 24 

  // Logic 25 
  assign out1 = ~in1 ; 26 
  assign out2 = ~in9 ; 27 
  assign out3 = ~in17 ; 28 
  assign out4 = ~in25 ; 29 
  assign out5 = ~in33 ; 30 
  assign out6 = ~in41 ; 31 
  assign out7 = ~in49 ; 32 
  assign out8 = ~in57 ; 33 
  assign out9 = ~in65 ; 34 
  assign out10 = ~in73 ; 35 
  assign out11 = ~in81 ; 36 
  assign out12 = ~in89 ; 37 
  assign out13 = ~in97 ; 38 
  assign out14 = ~in105 ; 39 
  assign out15 = ~in113 ; 40 
  assign out16 = ~in121 ; 41 

endmodule 42 

1 



 

79 
 

5.4. Experimental Results 

The experiment aims to study the utilization of DPR to minimize the cost of FPGA 

debugging in terms of area overhead of the reconfigurable module, time of 

reconfiguration (i.e. time needed to switch between different sets of traced signals), and 

the usability of the FPGA debugging flow.  

 System Implementation and Setup 

The experimentation is carried out using Xilinx Zynq XC7Z020LG484-1 FPGA 

and tested with a ZC702 board [44]. The DPR flow has been carried out using Xilinx 

Vivado tool. The complete system is developed as shown in Figure 5.8. The Zynq 

FPGA device consists of two parts: i) The Programmable Logic (PL) and ii) The 

Processing System (PS) part. The PL part contains: 1) the Design Under Test (DUT) 

that is used as a test case to evaluate the proposed FPGA debugging flow, 2) The 

reconfigurable partition region which is used to host the reconfigurable module modes 

of the debugging interfaces, 3) The embedded logic analyzer (Xilinx Integrated Logic 

Analyzer (ILA)) is used to capture the observed signals and send them to an external 

PC. The proposed flow can be applied using the output pins of the FPGA instead of the 

embedded logic analyzer, so the interest of this section is to calculate the performance 

metrics for the reconfigurable module to compare it with the area-optimized MUX 

presented in [43]. The PS part contains the ARM processor and the FPGA I/O 

interfaces to the external ZC702 board peripherals such as UART, SD-Card ... etc. The 

PS unit is connected with the PL part via AXI bus interfaces. The PS unit is used to 

send control signals to the DUT and the ILA. The DPR process is done using the serial 

JTAG external configuration port to load the partial bitstreams of the debugging modes 

interfaces from an external PC to the FPGA configuration memory with a data rate of 

66 Mb/s [7]. 
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Figure 5.8: Implementation and setup of the test environment for the proposed 

FPGA debugging flow. 

In these experiments, the same DUT setup as in [43] is used to compare the results 

of the two proposals against each other. The DUT was modified to connect the traced 

signals to the proposed RM. Xilinx's attribute, keep, was used to prevent the removal of 

these signals during optimization. In the following subsections, the notation, m-w, 

represents the tracing setting where m signals are candidates for tracing and w signals 

are traced concurrently. 

 

 Area Overhead 

The area overheads of the proposed Reconfigurable Module (RM) for 6 different 

tracing settings are shown in Table 3.1. It is found that the area overhead is directly 

proportional to the number of signals observed concurrently (i.e. those connected to the 

embedded logic analyzer), it is not changing with the number of candidate signals for 

debugging. Xilinx Vivado's place and route tool creates a partition pin for every input 

port of the RM. Partition pins “are physical connections between static logic and 

reconfigurable logic, they are automatically created for all Reconfigurable Partition 

ports” [7]. The partition pins are implemented on the interconnect resources of the RR 

on the FPGA. In the following table, the notation, m-w, represents the tracing setting 

where m signals are candidates for tracing and w signals are traced concurrently. 

Table 5.1: Area overhead of the RM 

Trace Setting 128-2 128-4 128-8 

Number of 1-input LUTs (Buffers) 2 4 8 

    

Trace Setting 256-2 256-4 256-8 

Number of 1-input LUTs (Buffers) 2 4 8 

 

Table 5.2 reports the area overhead for the proposed structure in [43] in terms of 4-

input LUTs. This overhead is calculated by multiplying the number of Adaptive Logic 

Modules (ALMs) by two, this is because each ALM in an Altera Stratix III device can 

contain two 4-input LUTs [43]. The area overhead of the proposed approach is smaller 

than that of [43]. This is expected because two 64:1 MUXes are needed for the 128-2 

trace setting in [43], while the proposed DPR approach will only use two 1-input LUTs 

for the 128-2 trace setting. 

 

Table 5.2: Area overhead of the proposed structure in [43] 

Trace Setting 128-2 128-4 128-8 

Average Number of 4-input LUTs 50 50 50 

    

Trace Setting 256-2 256-4 256-8 

Average Number of 4-input LUTs 100 100 100 
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 Time for Changing the Traced Signal Set 

The time needed to switch between different signals sets is equivalent to the 

reconfiguration time of the RR. The reconfiguration time of the RR is calculated as: 

 

  
Where treconfig is the time to switch between a traced set of signals to another, sizepbs is 

the size of the partial bitstream file, and bit_ratejtag is the bit rate of the JTAG port 

which is used to re-program the RR on the FPGA. For the setup considered in this 

work, the bit_ratejtag is 66 Mb/s [7], and the size of the partial bitstream is ~30 KB. So, 

the time to switch between a traced set of signals to another is 3.63 ms. 

 

The time needed to cover all the signals sets is calculated as: 

 

 

Where ttotal_sw is the time needed to cover all the signals sets of the candidate signals for 

debugging, Nmodes is the number of modes of the RM that are implemented on the RR, 

and treconfig is the time needed to reconfigure the RR as calculated in (1). Table 3.3 

shows the total switching time required to trace all the signals sets. 

Table 5.3: Total switching time required to trace all the signal sets 

Trace Setting 128-2 128-4 128-8 

Number of modes 64 32 16 

Time to cover all signals sets 232.32 ms 116.16 ms 58.08 ms 

    

Trace Setting 256-2 256-4 256-8 

Number of modes 128 64 32 

Time to cover all signals sets 464.64 ms 232.32 ms 116.16 ms 

 

The switching time for the proposed debugging flow is much less than that of [43]. 

In [43], the bitstream should be manipulated to change the select signals of the area 

optimized MUX, then the whole FPGA needs to be re-programmed. The authors of [43] 

report that it takes seconds to change the traced signal set. Similarly, the switching time 

of the DPR proposed flow is much faster than the switching time of the traditional 

debugging flow which requires minutes for the re-compilation of the FPGA design 

flow. Another advantage of the proposed flow, is that the switching of the signals sets 

can be done at runtime, unlike other methodologies which require the whole FPGA to 

be re-programmed. 

 Recommendations for FPGA debugging 

This section is proposing recommendations for selecting a methodology for FPGA 

debugging. This is based on the results presented in this chapter, and results of the 

related works. The recommendations are based on five metrics: 1) area overhead of the 

debugging structure, 2) concurrent observability of FPGA internal signals, 3) ease of 

setup, 4) compilation time of the design, and 5) switching time to change the traced 

signal set. Four methodologies are considered for the recommendations: 1) DPR flow 
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for FPGA Debugging, 2) traditional FPGA debugging flow, 3) area-optimized MUX in 

[43], and 4) scan-based technique in [40]. 

 

It is recommended to use the DPR flow for FPGA debugging for cases in which the 

designer is interested in low area overhead, and low switching time to change the traced 

signal set, because the DPR flow has very low area overhead and low switching time as 

it is shown in this chapter. If the area-overhead is not a problem and full observability 

and controllability is required, it is recommended to use the scan-based approach in 

[40], as the scan-based approach for debugging of FPGAs [40] provides full access to 

the FFs of the FPGA, and consequently, improves the controllability and observability 

during the debugging process. 

 

If the designers are interested in very low overhead in the compilation time, the 

area-optimized MUX approach in [43] is recommended, as this optimized MUX 

approach provides low compilation time as it doesn’t add lots of logic, the DPR flow 

also doesn’t add lots of logic but it requires more time during compilation to prepare 

the partial bit-streams to reconfigure the RR on the FPGA. But, when using the 

optimized MUX approach [43], the designer should be able to manipulate the bitstream 

of the FPGA device, which is not an easy task and it is not fully explained in [43]. The 

traditional flow is recommended to be used for small designs in which a small set of 

signals are needed for debugging, and there is no need to change this set of signals 

during debugging, because in such cases no runtime changes are needed for the traced 

signal set, and hence it doesn’t make sense to utilize one of the advanced debugging 

approaches. The recommendations and comparison in this section are summarized in 

Table 5.4. 

Table 5.4: Recommendations for FPGA debugging flows 

 DPR Area-

optimized 

MUX 

Traditional 

Flow 

Scan-based 

Technique 

Area overhead Very low Low No overhead Very high 

Concurrent 

observability 

Partial Partial Partial Full 

Ease of setup Easy 

(DPR flow 

is well 

documented) 

Hard (Needs 

bitstream 

manipulation) 

Easy Easy 

(FFs are 

modified in the 

RTL) 

Compilation 

time 

Moderate 

(Modes of 

the RM are 

compiled) 

Low Lowest Moderate 

Switching time Lowest 

(Few milli-

seconds) 

Low (Few 

seconds) 

Very high 

(Minutes as it 

needs 

recompilation) 

N/A 
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5.5. Summary 

Debugging of FPGA devices is a difficult task due to the limited access to the 

internal signals in the design. Traditional debugging flow requires re-compilation of the 

FPGA design flow in order to change set of observed signals either through embedded 

logic analyzer or output pins of the FPGA. This chapter presented a new technique to 

use the DPR design flow to reduce the cost of the debugging on FPGA devices. The 

new technique has a small area usage as the DPR flow allows the switching between 

signals to use buffers only to wire a selected signal set to the embedded logic analyzer 

or the FPGA output pins. The FPGA reconfiguration to switch the traced signal set 

requires milli-seconds to program the RR on the FPGA. 
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Chapter 6 : Conclusion and Proposed Future Work 

In this research, the problem of functional verification of DPR is discussed, as well 

as the usage of DPR to improve the effectiveness of debugging on FPGAs. In Chapter 

2, an overview is presented for the FPGA structure and technology, as well as the DPR 

details and terminology. In addition, Chapter 2 discusses the advantages and 

disadvantages of DPR when compared to the static FPGAs design flow. 

 

Chapter 3 presented an overview about techniques of functional verification and 

ABV, as well as how to define assertion properties for the design under test. It also 

addressed the functional verification of DPR specific logic for: 1) synchronization of 

reconfiguration requests when there is a computation being done by the RM, 2) 

initialization of the RM after the reconfiguration process is done to make sure the RM 

is set on an initial state, 3) isolation of the RMs during the reconfiguration process to 

ensure that there no buggy logic values propagate to the static logic from the RM 

outputs during the reconfiguration process, and 4) verification of the RM connections  

to make sure that these connections are not altered when translating the design to utilize 

the DPR technique. This DPR logic is verified using Assertion Based Verification 

(ABV) by modeling its functionality using System Verilog Assertion (SVA) properties, 

then instrument the design with these properties. Following that, these properties are 

using simulation or formal methods to check the correctness of the DPR logic. The 

presented framework is demonstrated on a case study from literature. 96 assertions 

were used to verify the DPR logic of the case study, and 3 functional bugs have been 

identified in the design which highlights the power of the proposed framework. 

 

Chapter 4 presented an overview about the CDC problem in digital design, and 

how asynchronous clocks can cause flip-flops to enter a metastable state. After that, it 

presented the concept of clock domains in digital designs, and the common 

synchronizers structure that are used to avoid metastability issues. The chapter then 

presented a flow for performing CDC verification for designs that utilize DPR 

technique. The presented flow solves the issues of the lack of CAD tools that support 

DRS. The flow is demonstrated on a case study from literature, and 2 CDC issues have 

been identified in the designs, these issues should be fixed to avoid metastability issues 

in the design. 

 

Chapter 5 presented the problem of FPGA debugging due to the limited resources 

available on the FPGA which prevent the designer to trace all the candidate signals for 

debugging, and also because of the limited observability and controllability of the 

internal signals in the design. This chapter proposed the usage of DPR in the problem 

of FPGA debugging to minimize the resources usage of the added circuitry as well as 

minimizing the time needed to switch between the traced signal sets for debugging. The 

proposal involves usage of one RM in the design to multiplex between the candidate 

signals for debugging at runtime, and since the RM only creates connections between 

outputs and inputs, the area usage of the RM is minimum as the design will only need 

1-input LUTs to connect one input to one output. The proposal is evaluated and 

compared to a framework which uses a MUX to switch between the different signals 
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for debugging. The proposed approach saved 80% of the area overhead when compared 

to MUX-based approach. The FPGA reconfiguration to switch the traced signal set 

requires milli-seconds to program the RR on the FPGA. 

6.1. Proposals for Future Work 

1. Exploring new functional verification areas for DPR such as power-aware 

verification and runtime verification 

 

2. Investigate the synthesis of assertion properties defined for DPR logic on the 

FPGA to help with the debugging process and the run-time verification of the 

circuit 

 

3. Implementing and developing CAD tools to help with the design and 

verification process for DPR 
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Appendix B: Codes 

B.1. Perl code to check interfaces of RMs ports 

#! /usr/bin/perl  
use FindBin ; 
use lib $FindBin::Bin ; 
use File::Basename ; 
use rvp ; 
use Getopt::Long ; 
my $scriptName = " check_ports_for_pdr " ; 
if ( &GetOptions( "filelist=s"      => \$filelist , 
                "config=s"        => \$configFile , 
                "help"            => \$helpOption ) == 0 ) { 
  die " ERROR: Illegal command or option. Use ' $scriptName –h ' for help \n" ; 
}  
if ( $helpOption ) { 
  print " Usage : check_ports_for_pdr.pl \n " . 
        "            -filelist <File list of Verilog files>\n" . 
        "            -config   <CSV file for configurations>\n" ; 
  exit 0; 
} 
if ( ! $filelist ) { 
  die "ERROR: Please specify the input filelist of the Verilog files" ; 
} 
my @files = ` cat $filelist ` ; 
chomp( @files ) ; 
## Parse the Verilog files 
my $vdata = rvp->read_verilog( \@files , [] , {def1=>1} , 1 , [] , [] , '' ) ; 
# Print out all the found modules 
foreach $module ( $vdata->get_modules() ) { 
  print " INFO : Iterating over the ports of module ' $module '\n " ; 
  foreach my $port ( @{$vdata->{modules}{$module}{port_order}} ) { 
    my $range = $vdata->{modules}{$module}{signals}{$port}{range} ; 
    my $type  = $vdata->{modules}{$module}{signals}{$port}{type} ; 
    my $size  ; 
    if ($range eq '') { 
      $size = 1; 
    } elsif ( $range =~ m/(\d+):(\d+)/ ) { 
      if ( $2 > $1 ) { 
        $size = $2 - $1 + 1 ; 
      } else { 
        $size = $1 - $2 + 1 ; 
      } 
    } 
    print "  $port $range $type $size\n " ; 
  } 
## Parse the configuration files 
if ( ! $configFile ) { 
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  print " WARNING: No config file is provided, port checks will be skipped \n " ; 
  exit 0 ; 
} 
my %RRs ; 
open ( CONFIG_FILE , "<" , "$configFile") or die " ERROR: Config file ' $configFile ' is not 
found. \n" ; 
while ( <CONFIG_FILE> ) { 
  if ( $_ =~ m/^RR/ ) { 
    my $RR_name = $_ ; 
    my $modules_of_RR = $_ ; 
    $RR_name =~ s/(^RR.*?),.*/$1/ ; 
    $modules_of_RR =~ s/^RR.*?,// ; 
    chomp($RR_name); 
    $RRs{modules}{$RR_name} = $modules_of_RR ; 
  } 
} 
foreach ( keys ( $RRs{modules} ) ) { 
  print " For RR $_, the following modules exist $RRs{modules}{$_}\n " ; 
} 
 
## Checks for every module of an RR 
foreach my $RR ( keys ($RRs{modules}) ) { 
  my @modules_of_RR = split (',',$RRs{modules}{$RR}) ; 
  chomp ( @modules_of_RR ) ; 
  if ( scalar ( @modules_of_RR ) <= 1 ) { 
    print "ERROR : The Reconfigurable-region '$RR' only has 1 module, it should be part of 
the static region \n " ; 
  } else { 
    print " INFO : The Reconfigurable-region '$RR' has " , scalar ( @modules_of_RR ) , " 
modules: " , join ( " ", @modules_of_RR ), " \n " ; 
  } 
 

  print " INFO : Checking ports of modules in the Reconfigurable-region '$RR' \n " ; 
 
  my $i = 0 ; 
  my $reference_module ; 
  my @ports_of_reference_module ; 
 
  foreach my $module ( @modules_of_RR ) { 
    my @ports_of_module = @{$vdata->{modules}{$module}{port_order}} ; 
    if ( $i == 0 ) { 
      $reference_module = $module ; 
      @ports_of_reference_module = @{$vdata-
>{modules}{$reference_module}{port_order}} ; 
      print "     : The module '$reference_module' will be taken as the reference. \n " ; 
    } else { 
      print "     : Comparing module '$module' against the reference module 
'$reference_module' \n " ; 
      print "     : Performing Check #1: Number of ports: \n " ; 
      if ( scalar(@ports_of_module) == scalar(@ports_of_reference_module) ) { 
        print "     :   Number of ports for both modules matched, both have ", 
scalar(@ports_of_module), " ports. \n " ; 
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      } else { 
        print "     :   Number of ports for both modules is different. " , 
                        " Reference module  '$reference_module ' has 
",scalar(@ports_of_reference_module), "ports, ", 
                        " while module ' $module ' has ", scalar(@ports_of_module), " ports. \n " ; 
      } 
 
      print "     : Performing Check #2: Name, order and size of ports: \n " ; 
      for (my $i = 0 ; $i < scalar( @ports_of_reference_module); $i++ ) { 
        my $port = $ports_of_module[$i] ; 
        my $ref_port = $ports_of_reference_module[$i] ; 
        my $port_type = $vdata->{modules}{$module}{signals}{$port}{type} ; 
        my $ref_port_type = $vdata-
>{modules}{$reference_module}{signals}{$ref_port}{type} ; 
        my $port_range = $vdata->{modules}{$module}{signals}{$port}{range} ; 
        my $ref_port_range = $vdata-
>{modules}{$reference_module}{signals}{$ref_port}{range} ; 
        my $port_size = get_port_size($port_range) ; 
        my $ref_port_size = get_port_size($ref_port_range) ; 
        print "     :   Port #$i --> '$module':$ports_of_module[$i] (Type: $port_type, Size: 
$port_size) vs. ". 
                                    "'$reference_module':$ports_of_reference_module[$i] ( Type: 
$ref_port_type, Size: $ref_port_size )\n" ; 
        if ( ! ( $modules_of_port[$i] eq $modules_of_port[$i] ) ) { 
          print "     :     Error for port naming of Port #$i \n " ; 
        } else { 
          print "     :     Port naming of Port #$i is OK. \n " ; 
        } 
        if ( ! ( $port_type eq $ref_port_type) ) { 
          print "     :     Error for port type of Port #$i \n " ; 
        } else { 
          print "     :     Port type of Port #$i is OK. \n " ; 
        } 
        if ( ! ( $port_size == $ref_port_size) ) { 
          print "     :     Error for port size of Port #$i \n " ; 
        } else { 
          print "     :     Port size of Port #$i is OK. \n " ; 
        } 
      } 
    } 
    $i++ ; 
  } 
} 
sub get_port_size { 
  my $range = $_[0] ; 
  if ( $range eq '' ) { 
    $size = 1; 
  } elsif ( $range =~ m/(\d+):(\d+)/ ) { 
    if ( $2 > $1 ) { 
      $size = $2 - $1 + 1 ; 
    } else { 
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      $size = $1 - $2 + 1 ; 
    } 
  } 
  return $size ; 

} 

B.2. Perl code to generate RTL designs and run scripts for Vivado 

#! /usr/bin/perl 
 
use Getopt::Long ; 
 
my @mux_mode_iters =  ( 8 )  ; 
my @DATA_WIDTH_iters =  ( 1 , 2 , 4 , 8 , 16 , 32 , 64 , 128 , 256 )  ; my @num_sigs_iters =  
( 4 , 8 , 16 , 32 , 64 , 128 , 256 )  ; @num_sigs_iters =  ( 8 , 16 , 32 , 64 , 128 , 256 )  ; 
 
my $dpr_mode = 1 ; 
 
foreach my $mux_mode_iter  ( @mux_mode_iters )  { foreach my $DATA_WIDTH_iter  ( 
@DATA_WIDTH_iters )  { foreach my $num_sigs_iter  ( @num_sigs_iters )  { 
 
# Default Config 
my $mux_mode = 0 ; 
my $DATA_WIDTH = 16 ; 
my $num_sigs_observed = 6 ; 
 
# Using the iterations variables 
$mux_mode = $mux_mode_iter ; 
$DATA_WIDTH = $DATA_WIDTH_iter ; 
$num_sigs_observed = $num_sigs_iter ; 
 
my $project_name = 
"debug_num${num_sigs_observed}_width${DATA_WIDTH}_mux$mux_mode" ; my 
$project_path = 
"/home/iahmed/Masters1/Debugging/Vivado_projects/prjs_mux8/${project_name}" ; 
 
`mkdir -p $project_path` ; 
 
my $vivado_file = "$project_path/run_vivado.tcl " ; my $dut_file = 
"$project_path/dut_debug.v " ; my $dpr_mux_file1 = "$project_path/ila_mux1.v " ; my 
$dpr_mux_file2 = "$project_path/ila_mux2.v " ; my $dpr_mux_file3 = 
"$project_path/ila_mux3.v " ; my $dpr_mux_file4 = "$project_path/ila_mux4.v " ; my 
$dpr_mux_file5 = "$project_path/ila_mux5.v " ; my $dpr_mux_file6 = 
"$project_path/ila_mux6.v " ; my $dpr_mux_file7 = "$project_path/ila_mux7.v " ; my 
$dpr_mux_file8 = "$project_path/ila_mux8.v " ; 
 
if  (  $dpr_mode == 1 && $mux_mode == 2 )  { 
  open  ( FHDPR1 ,  " > $dpr_mux_file1 " )  ; 
  open  ( FHDPR2 ,  " > $dpr_mux_file2 " )  ; } elsif  (  $dpr_mode == 1 && $mux_mode == 
4  )  { 
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  open  ( FHDPR1 ,  " > $dpr_mux_file1 " )  ; 
  open  ( FHDPR2 ,  " > $dpr_mux_file2 " )  ; 
  open  ( FHDPR3 ,  " > $dpr_mux_file3 " )  ; 
  open  ( FHDPR4 ,  " > $dpr_mux_file4 " )  ; } elsif  (  $dpr_mode == 1 && $mux_mode == 
8  )  { 
  open  ( FHDPR1 ,  " > $dpr_mux_file1 " )  ; 
  open  ( FHDPR2 ,  " > $dpr_mux_file2 " )  ; 
  open  ( FHDPR3 ,  " > $dpr_mux_file3 " )  ; 
  open  ( FHDPR4 ,  " > $dpr_mux_file4 " )  ; 
  open  ( FHDPR5 ,  " > $dpr_mux_file5 " )  ; 
  open  ( FHDPR6 ,  " > $dpr_mux_file6 " )  ; 
  open  ( FHDPR7 ,  " > $dpr_mux_file7 " )  ; 
  open  ( FHDPR8 ,  " > $dpr_mux_file8 " )  ; } 
 
open  ( FHV ,  " > $project_path/run_vivado.tcl " )  ; open  ( FHD ,  " > 
$project_path/dut_debug.v " )  ; 
 
print FHD <<EOL ; 
`timescale 1ns / 1ps 
 
module dut ( debug_mode ,  in1 ,  in2 ,  in3 ,  in4 ,  in5 ,  in6 ,  clk1 ,  out1 ,  out2 )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input wire debug_mode ; 
  input wire [ DATA_WIDTH - 1 : 0 ] in1 ,  in2 ,  in3 ,  in4 ,  in5 ,  in6 ; 
  input wire clk1 ; 
  output wire [ DATA_WIDTH - 1 : 0 ] out1 ,  out2 ; 
  // Internal     registers  ( to be observed )  
  // 256     registers 
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg1   ,  reg2   ,  reg3   ,  reg5   ,  reg6   ,  
reg7   ,  reg9   ,  reg10  ,  reg11  ,  reg13  ,  reg14  ,  reg15  ; 
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg17  ,  reg18  ,  reg19  ,  reg21  ,  reg22  
,  reg23  ,  reg25  ,  reg26  ,  reg27  ,  reg29  ,  reg30  ,  reg31  ; 
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg33  ,  reg34  ,  reg35  ,  reg37  ,  reg38  
,  reg39  ,  reg41  ,  reg42  ,  reg43  ,  reg45  ,  reg46  ,  reg47  ; 
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg49  ,  reg50  ,  reg51  ,  reg53  ,  reg54  
,  reg55  ,  reg57  ,  reg58  ,  reg59  ,  reg61  ,  reg62  ,  reg63  ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg65  ,  reg66  ,  reg67  ,  reg69  ,  reg70  
,  reg71  ,  reg73  ,  reg74  ,  reg75  ,  reg77  ,  reg78  ,  reg79  ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg81  ,  reg82  ,  reg83  ,  reg85  ,  reg86  
,  reg87  ,  reg89  ,  reg90  ,  reg91  ,  reg93  ,  reg94  ,  reg95  ; 
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg97  ,  reg98  ,  reg99  ,  reg101 ,  
reg102 ,  reg103 ,  reg105 ,  reg106 ,  reg107 ,  reg109 ,  reg110 ,  reg111 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg113 ,  reg114 ,  reg115 ,  reg117 ,  
reg118 ,  reg119 ,  reg121 ,  reg122 ,  reg123 ,  reg125 ,  reg126 ,  reg127 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg129 ,  reg130 ,  reg131 ,  reg133 ,  
reg134 ,  reg135 ,  reg137 ,  reg138 ,  reg139 ,  reg141 ,  reg142 ,  reg143 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg145 ,  reg146 ,  reg147 ,  reg149 ,  
reg150 ,  reg151 ,  reg153 ,  reg154 ,  reg155 ,  reg157 ,  reg158 ,  reg159 ;  
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   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg161 ,  reg162 ,  reg163 ,  reg165 ,  
reg166 ,  reg167 ,  reg169 ,  reg170 ,  reg171 ,  reg173 ,  reg174 ,  reg175 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg177 ,  reg178 ,  reg179 ,  reg181 ,  
reg182 ,  reg183 ,  reg185 ,  reg186 ,  reg187 ,  reg189 ,  reg190 ,  reg191 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg193 ,  reg194 ,  reg195 ,  reg197 ,  
reg198 ,  reg199 ,  reg201 ,  reg202 ,  reg203 ,  reg205 ,  reg206 ,  reg207 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg209 ,  reg210 ,  reg211 ,  reg213 ,  
reg214 ,  reg215 ,  reg217 ,  reg218 ,  reg219 ,  reg221 ,  reg222 ,  reg223 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg225 ,  reg226 ,  reg227 ,  reg229 ,  
reg230 ,  reg231 ,  reg233 ,  reg234 ,  reg235 ,  reg237 ,  reg238 ,  reg239 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg241 ,  reg242 ,  reg243 ,  reg245 ,  
reg246 ,  reg247 ,  reg249 ,  reg250 ,  reg251 ,  reg253 ,  reg254 ,  reg255 ; 
 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg4 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg8 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg12 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg16 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg20 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg24 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg28 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg32 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg36 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg40 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg44 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg48 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg52 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg56 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg60 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg64 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg68 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg72 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg76 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg80 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg84 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg88 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg92 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg96 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg100 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg104 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg108 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg112 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg116 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg120 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg124 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg128 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg132 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg136 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg140 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg144 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg148 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg152 ; 
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   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg156 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg160 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg164 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg168 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg172 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg176 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg180 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg184 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg188 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg192 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg196 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg200 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg204 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg208 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg212 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg216 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg220 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg224 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg228 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg232 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg236 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg240 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg244 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg248 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg252 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg256 ; 
 
  // Logic of the registers to be observed 
  always @ ( posedge clk1 )  begin 
    reg1   <= in1 | in2 ;  
    reg2   <= in1 & in2 ;  
    reg3   <= in1 ^ in2 ;  
    reg5   <= in1 & in3 ;  
    reg6   <= in1 ^ in3 ;  
    reg7   <= in1 | in4 ;  
    reg9   <= in1 ^ in4 ;  
    reg10  <= in1 | in6 ;  
    reg11  <= in1 & in6 ;  
    reg13  <= in1 | in2 ;  
    reg14  <= in1 & in6 ;  
    reg15  <= in3 ^ in2 ;  
 
    reg17  <= in5 | in2 ;  
    reg18  <= in5 | in2 ;  
    reg19  <= in5 | in2 ;  
    reg21  <= in5 & in2 ;  
    reg22  <= in5 | in2 ;  
    reg23  <= in5 | in2 ;  
    reg25  <= in5 & in2 ;  
    reg26  <= in5 & in2 ;  
    reg27  <= in5 | in2 ;  
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    reg29  <= in5 & in2 ;  
    reg30  <= in5 & in2 ;  
    reg31  <= in5 & in2 ;  
 
    reg33  <= in6 | in2 ;  
    reg34  <= in6 | in2 ;  
    reg35  <= in6 | in2 ;  
    reg37  <= in6 & in2 ;  
    reg38  <= in6 | in2 ;  
    reg39  <= in6 | in2 ;  
    reg41  <= in6 & in2 ;  
    reg42  <= in6 & in2 ;  
    reg43  <= in6 | in2 ;  
    reg45  <= in6 & in2 ;  
    reg46  <= in6 & in2 ;  
    reg47  <= in6 & in2 ;  
 
    reg49  <= in1 ^ in2 ;  
    reg50  <= in1 ^ in2 ;  
    reg51  <= in1 ^ in2 ;  
    reg53  <= in4 ^ in2 ;  
    reg54  <= in4 ^ in2 ;  
    reg55  <= in4 & in2 ;  
    reg57  <= in4 & in2 ;  
    reg58  <= in4 & in2 ;  
    reg59  <= in4 | in2 ;  
    reg61  <= in4 | in2 ;  
    reg62  <= in4 | in2 ;  
    reg63  <= in4 | in2 ;  
 
    reg65  <= in4 | in3 ;  
    reg66  <= in4 | in3 ;  
    reg67  <= in4 | in3 ;  
 
    reg69  <= in3 | in2 ;  
    reg70  <= in3 | in2 ;  
    reg71  <= in3 | in2 ;  
 
    reg73  <= in3 & in4 ;  
    reg74  <= in3 & in4 ;  
    reg75  <= in3 & in4 ;  
 
    reg77  <= in3 | in5 ;  
    reg78  <= in3 | in5 ;  
    reg79  <= in3 | in5 ;  
 
    reg81  <= in3 | in6 ;  
    reg82  <= in3 | in6 ;  
    reg83  <= in3 | in6 ;  
 
    reg85  <= in4 | in5 ;  
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    reg86  <= in4 | in5 ;  
    reg87  <= in4 | in5 ;  
 
    reg89  <= in4 & in5 ;  
    reg90  <= in4 & in5 ;  
    reg91  <= in4 & in5 ;  
 
    reg93  <= in4 ^ in5 ;  
    reg94  <= in4 ^ in5 ;  
    reg95  <= in4 ^ in5 ;  
 
    reg97  <= in4 | in5 ;  
    reg98  <= in4 & in5 ;  
    reg99  <= in4 ^ in5 ;  
     
    reg101 <= in4 & in2 ;  
    reg102 <= in4 & in1 ;  
    reg103 <= in4 ^ in3 ;  
    
    reg105 <= in5 ^ in6 ;  
    reg106 <= in5 & in6 ;  
    reg107 <= in5 & in6 ;  
   
    reg109 <= in5 | in6 ;  
    reg110 <= in5 & in6 ;  
    reg111 <= in5 ^ in6 ;  
  
    reg113 <= in5 ^ in2 ;  
    reg114 <= in5 ^ in2 ;  
    reg115 <= in5 ^ in2 ;  
 
    reg117 <= in1 & in2 ;  
    reg118 <= in1 & in2 ;  
    reg119 <= in1 ^ in2 ;  
 
    reg121 <= in3 | in2 ;  
    reg122 <= in1 | in4 ;  
    reg123 <= in1 | in5 ;  
 
    reg125 <= in1 ^ in3 ;  
    reg126 <= in1 ^ in4 ;  
    reg127 <= in1 ^ in5 ;  
 
    reg129 <= in1 | in4 ;  
    reg130 <= in1 | in5 ;  
    reg131 <= in1 | in6 ;  
     
    reg133 <= in4 | in5 ;  
    reg134 <= in2 | in6 ;  
    reg135 <= in3 | in5 ;  
    



 

101 
 

    reg137 <= in1 & in5 ;  
    reg138 <= in2 ^ in6 ;  
    reg139 <= in4 | in4 ;  
   
    reg141 <= in1 ^ in4 ;  
    reg142 <= in2 & in5 ;  
    reg143 <= in4 | in6 ;  
  
    reg145 <= in1 | in2 ;  
    reg146 <= in6 & in2 ;  
    reg147 <= in4 ^ in2 ;  
 
    reg149 <= in1 & in2 ;  
    reg150 <= in2 ^ in5 ;  
    reg151 <= in1 | in6 ;  
 
    reg153 <= in1 ;  
    reg154 <= in2 ;  
    reg155 <= in3 ;  
 
    reg157 <= in4 ;  
    reg158 <= in5 ;  
    reg159 <= in6 ;  
 
    reg161 <= in1 ;  
    reg162 <= in2 ;  
    reg163 <= in4 ;  
 
    reg165 <= in1 ;  
    reg166 <= in2 ;  
    reg167 <= in5 ;  
 
    reg169 <= in1 ;  
    reg170 <= in2 ;  
    reg171 <= in6 ;  
 
    reg173 <= in1 ;  
    reg174 <= in3 ;  
    reg175 <= in4 ;  
 
    reg177 <= in1 ;  
    reg178 <= in3 | in2 ;  
    reg179 <= in5 | in2 ;  
     
    reg181 <= in1 ;  
    reg182 <= in3 ;  
    reg183 <= in5 ;  
    
    reg185 <= in1 & in2 ;  
    reg186 <= in3  ;  
    reg187 <= in6 ;  
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    reg189 <= in1 ;  
    reg190 <= in3 ;  
    reg191 <= in6 ;  
  
    reg193 <= in1 | in2 ;  
    reg194 <= in4 & in2 ;  
    reg195 <= in6 ^ in2 ;  
 
    reg197 <= in1 ;  
    reg198 <= in4 ;  
    reg199 <= in6 ;  
 
    reg201 <= in1 ;  
    reg202 <= in5 ^ in2 ;  
    reg203 <= in6 & in3 ;  
 
    reg205 <= in1 ;  
    reg206 <= in5 ;  
    reg207 <= in6 ;  
 
    reg209 <= in2 ;  
    reg210 <= in3 ;  
    reg211 <= in4 ;  
 
    reg213 <= in2 ;  
    reg214 <= in3 ;  
    reg215 <= in5 ;  
 
    reg217 <= in2 ;  
    reg218 <= in3 ;  
    reg219 <= in6 ;  
 
    reg221 <= in3 ;  
    reg222 <= in4 ;  
    reg223 <= in5 ;  
 
    reg225 <= in3 ;  
    reg226 <= in4 ;  
    reg227 <= in6 ;  
     
    reg229 <= in3 | in2 ;  
    reg230 <= in4 | in2 ;  
    reg231 <= in6 | in2 ;  
    
    reg233 <= in3 & in2 ;  
    reg234 <= in4 & in2 ;  
    reg235 <= in6 & in2 ;  
   
    reg237 <= in3 ^ in2 ;  
    reg238 <= in4 ^ in2 ;  
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    reg239 <= in6 ^ in2 ;  
  
    reg241 <= in3 & in2 ;  
    reg242 <= in4 & in2 ;  
    reg243 <= in5 & in2 ;  
     
    reg245 <= in3 | in1 ;  
    reg246 <= in4 | in1 ;  
    reg247 <= in5 | in1 ;  
    
    reg249 <= in3 | in2 ;  
    reg250 <= in4 | in1 ;  
    reg251 <= in5 | in6 ;  
   
    reg253 <= in3 & in2 ;  
    reg254 <= in4 & in6 ;  
    reg255 <= in5 & in2 ; 
  end 
 
  // Logic 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid1_inst ( reg1 ,  reg2 ,  
reg3 ,  clk1 ,  reg4 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid2_inst ( reg5 ,  reg6 ,  
reg7 ,  clk1 ,  reg8 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid3_inst ( reg9 ,  reg10 ,  
reg11 ,  clk1 ,  reg12 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid4_inst ( reg13 ,  reg14 ,  
reg15 ,  clk1 ,  reg16 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid5_inst ( reg17 ,  reg18 ,  
reg19 ,  clk1 ,  reg20 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid6_inst ( reg21 ,  reg22 ,  
reg23 ,  clk1 ,  reg24 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid7_inst ( reg25 ,  reg26 ,  
reg27 ,  clk1 ,  reg28 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid8_inst ( reg29 ,  reg30 ,  
reg31 ,  clk1 ,  reg32 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid9_inst ( reg33 ,  reg34 ,  
reg35 ,  clk1 ,  reg36 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid10_inst ( reg37 ,  reg38 ,  
reg39 ,  clk1 ,  reg40 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid11_inst ( reg41 ,  reg42 ,  
reg43 ,  clk1 ,  reg44 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid12_inst ( reg45 ,  reg46 ,  
reg47 ,  clk1 ,  reg48 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid13_inst ( reg49 ,  reg50 ,  
reg51 ,  clk1 ,  reg52 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid14_inst ( reg53 ,  reg54 ,  
reg55 ,  clk1 ,  reg56 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid15_inst ( reg57 ,  reg58 ,  
reg59 ,  clk1 ,  reg60 )  ; 
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   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid16_inst ( reg61 ,  reg62 ,  
reg63 ,  clk1 ,  reg64 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid17_inst ( reg65 ,  reg66 ,  
reg67 ,  clk1 ,  reg68 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid18_inst ( reg69 ,  reg70 ,  
reg71 ,  clk1 ,  reg72 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid19_inst ( reg73 ,  reg74 ,  
reg75 ,  clk1 ,  reg76 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid20_inst ( reg77 ,  reg78 ,  
reg79 ,  clk1 ,  reg80 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid21_inst ( reg81 ,  reg82 ,  
reg83 ,  clk1 ,  reg84 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid22_inst ( reg85 ,  reg86 ,  
reg87 ,  clk1 ,  reg88 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid23_inst ( reg89 ,  reg90 ,  
reg91 ,  clk1 ,  reg92 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid24_inst ( reg93 ,  reg94 ,  
reg95 ,  clk1 ,  reg96 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid25_inst ( reg97 ,  reg98 ,  
reg99 ,  clk1 ,  reg100 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid26_inst ( reg101 ,  
reg102 ,  reg103 ,  clk1 ,  reg104 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid27_inst ( reg105 ,  
reg106 ,  reg107 ,  clk1 ,  reg108 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid28_inst ( reg109 ,  
reg110 ,  reg111 ,  clk1 ,  reg112 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid29_inst ( reg113 ,  
reg114 ,  reg115 ,  clk1 ,  reg116 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid30_inst ( reg117 ,  
reg118 ,  reg119 ,  clk1 ,  reg120 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid31_inst ( reg121 ,  
reg122 ,  reg123 ,  clk1 ,  reg124 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid32_inst ( reg125 ,  
reg126 ,  reg127 ,  clk1 ,  reg128 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid33_inst ( reg129 ,  
reg130 ,  reg131 ,  clk1 ,  reg132 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid34_inst ( reg133 ,  
reg134 ,  reg135 ,  clk1 ,  reg136 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid35_inst ( reg137 ,  
reg138 ,  reg139 ,  clk1 ,  reg140 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid36_inst ( reg141 ,  
reg142 ,  reg143 ,  clk1 ,  reg144 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid37_inst ( reg145 ,  
reg146 ,  reg147 ,  clk1 ,  reg148 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid38_inst ( reg149 ,  
reg150 ,  reg151 ,  clk1 ,  reg152 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid39_inst ( reg153 ,  
reg154 ,  reg155 ,  clk1 ,  reg156 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid40_inst ( reg157 ,  
reg158 ,  reg159 ,  clk1 ,  reg160 )  ; 
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   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid41_inst ( reg161 ,  
reg162 ,  reg163 ,  clk1 ,  reg164 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid42_inst ( reg165 ,  
reg166 ,  reg167 ,  clk1 ,  reg168 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid43_inst ( reg169 ,  
reg170 ,  reg171 ,  clk1 ,  reg172 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid44_inst ( reg173 ,  
reg174 ,  reg175 ,  clk1 ,  reg176 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid45_inst ( reg177 ,  
reg178 ,  reg179 ,  clk1 ,  reg180 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid46_inst ( reg181 ,  
reg182 ,  reg183 ,  clk1 ,  reg184 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid47_inst ( reg185 ,  
reg186 ,  reg187 ,  clk1 ,  reg188 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid48_inst ( reg189 ,  
reg190 ,  reg191 ,  clk1 ,  reg192 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid49_inst ( reg193 ,  
reg194 ,  reg195 ,  clk1 ,  reg196 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid50_inst ( reg197 ,  
reg198 ,  reg199 ,  clk1 ,  reg200 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid51_inst ( reg201 ,  
reg202 ,  reg203 ,  clk1 ,  reg204 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid52_inst ( reg205 ,  
reg206 ,  reg207 ,  clk1 ,  reg208 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid53_inst ( reg209 ,  
reg210 ,  reg211 ,  clk1 ,  reg212 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid54_inst ( reg213 ,  
reg214 ,  reg215 ,  clk1 ,  reg216 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid55_inst ( reg217 ,  
reg218 ,  reg219 ,  clk1 ,  reg220 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid56_inst ( reg221 ,  
reg222 ,  reg223 ,  clk1 ,  reg224 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid57_inst ( reg225 ,  
reg226 ,  reg227 ,  clk1 ,  reg228 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid58_inst ( reg229 ,  
reg230 ,  reg231 ,  clk1 ,  reg232 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid59_inst ( reg233 ,  
reg234 ,  reg235 ,  clk1 ,  reg236 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid60_inst ( reg237 ,  
reg238 ,  reg239 ,  clk1 ,  reg240 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid61_inst ( reg241 ,  
reg242 ,  reg243 ,  clk1 ,  reg244 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid62_inst ( reg245 ,  
reg246 ,  reg247 ,  clk1 ,  reg248 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid63_inst ( reg249 ,  
reg250 ,  reg251 ,  clk1 ,  reg252 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid64_inst ( reg253 ,  
reg254 ,  reg255 ,  clk1 ,  reg256 )  ; 
 
  assign out1 =  ( reg4 | reg8 | reg12 | reg16 )  &  ( reg20 | reg24 | reg28 | reg32 )  &  ( 
reg36 | reg40 | reg44 | reg48 )  &  ( reg52 | reg56 | reg60 | reg64 )  &  ( reg68 | reg72 | 
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reg76 | reg80 )  &  ( reg84 | reg88 | reg92 | reg96 )  &  ( reg100 | reg104 | reg108 | 
reg112 )  &  ( reg116 | reg120 | reg124 | reg128 )  ; 
  assign out2 =  ( reg132 | reg136 | reg140 | reg144  )  &  ( reg148 | reg152 | reg156 | 
reg160 )  &  ( reg164 | reg168 | reg172 | reg176 )  &  ( reg180 | reg184 | reg188 | reg192 
)  &  ( reg196 | reg200 | reg204 | reg208 )  &  ( reg212 | reg216 | reg220 | reg224 )  &  ( 
reg228 | reg232 | reg236 | reg240  )  &  (  reg244 | reg248 | reg252 | reg256 )   ;  
 
EOL 
 
my $num_of_mux_signals = 0 ; 
 
if  (  $mux_mode == 2  )  { 
  $num_of_ila_ports = $num_sigs_observed / $mux_mode ; 
  $num_of_mux_signals = $num_sigs_observed ; } elsif  (  $mux_mode == 4  )  { 
  $num_of_ila_ports = $num_sigs_observed / $mux_mode ; 
  $num_of_mux_signals = $num_sigs_observed ; } elsif  (  $mux_mode == 8  )  { 
  $num_of_ila_ports = $num_sigs_observed / $mux_mode ; 
  $num_of_mux_signals = $num_sigs_observed ; } else { 
  # No MUX is needed 
  $num_of_ila_ports = $num_sigs_observed ; 
  $num_of_mux_signals =0 ; 
} 
 
print "MUX: $num_of_mux_signals\n" ; 
print "MUX: $num_of_ila_ports\n" ; 
print "MUX: \n" ; 
my @sigs_observed ; 
my @ila_mux_outs ; 
for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
   push  ( @ila_mux_outs ,  "ila_mux_out$i" )  ; } for  ( my $i=1 ; $i <= $num_sigs_observed 
; $i++ )  { 
   push  ( @sigs_observed ,  "reg$i" )  ; } 
 
my $sigs_observed_str = join  ( " , " , @sigs_observed )  ; my $ila_mux_outs_str = join  ( " , 
" ,  @ila_mux_outs )  ; if  (  $num_of_mux_signals != 0  )  { 
  print FHD <<EOL ; 
  // MUXes for the ILA 
  wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_outs_str ; 
   (* keep_hierarchy = " yes " *)  ila_mux # ( DATA_WIDTH )  ila_mux_inst ( debug_mode ,  
$sigs_observed_str ,  $ila_mux_outs_str )  ; EOL } print FHD <<EOL ; 
  // ILA instance 
    ila_0 ila_inst_0  (  
      .clk ( clk1 )  ,  // input wire clk EOL if  (  $num_of_mux_signals != 0  )  { 
  for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
    my $probe_num = $i-1 ; 
    if  (  $i != $num_of_ila_ports  )  { 
      print FHD "      .probe$probe_num ( $ila_mux_outs[$probe_num] )  , \n" ; 
    } else { 
      print FHD "      .probe$probe_num ( $ila_mux_outs[$probe_num] ) \n" ; 
    } 
  } 
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} else { 
  for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
    my $probe_num = $i-1 ; 
    if  (  $i != $num_sigs_observed  )  { 
      print FHD "      .probe$probe_num ( $sigs_observed[$probe_num] )  , \n" ; 
    } else { 
      print FHD "      .probe$probe_num ( $sigs_observed[$probe_num] ) \n" ; 
    } 
  } 
} 
print FHD "   )  ;\n" ; 
print FHD "endmodule\n" ; 
if  (  $mux_mode == 2  )  { 
  my @ila_mux_out_ports ; 
  for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
    push  ( @ila_mux_out_ports ,  "out$i" )  ; 
  } 
  my @ila_mux_in_ports ; 
  for  ( my $i=1 ; $i <= $num_sigs_observed ; $i++ )  { 
    push  ( @ila_mux_in_ports ,  "in$i" )  ; 
  } 
  my $ila_mux_out_ports_str = join  ( " , " , @ila_mux_out_ports )  ; 
  my $ila_mux_in_ports_str = join  ( " , " ,  @ila_mux_in_ports )  ; 
  if  (  $dpr_mode != 1  )  { 
    print FHD <<EOL ; 
module ila_mux ( mode ,  $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; EOL 
  } else { 
    print FHD <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; EOL 
  } 
  print FHD <<EOL ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
EOL 
  if  (  $dpr_mode != 1  )  { 
    print FHD <<EOL ; 
  input wire mode ; 
EOL 
  } 
  print FHD <<EOL ; 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
  if  (  $dpr_mode != 1  )  { 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHD "  assign out$i = mode ? in" ,  2*$i-1 ,  " : in" ,  2*$i ,  " ;\n" ; 
    } 
  } else { 
    print FHDPR1 <<EOL ; 
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module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR1 "  assign out$i = ~in" ,  2*$i-1 ,  " ;\n" ; 
    } 
    print FHDPR1 <<EOL ; 
endmodule 
EOL 
    print FHDPR2 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR2 "  assign out$i = ~in" ,  2*$i ,  " ;\n" ; 
    } 
    print FHDPR2 <<EOL ; 
endmodule 
EOL 
  } 
  print FHD <<EOL ; 
endmodule 
EOL 
} elsif  (  $mux_mode == 4  )  { 
  my @ila_mux_out_ports ; 
  for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
    push  ( @ila_mux_out_ports ,  "out$i" )  ; 
  } 
  my @ila_mux_in_ports ; 
  for  ( my $i=1 ; $i <= $num_sigs_observed ; $i++ )  { 
    push  ( @ila_mux_in_ports ,  "in$i" )  ; 
  } 
  my $ila_mux_out_ports_str = join  ( " , " , @ila_mux_out_ports )  ; 
  my $ila_mux_in_ports_str = join  ( " , " ,  @ila_mux_in_ports )  ; 
  if  (  $dpr_mode != 1  )  { 
    print FHD <<EOL ; 
module ila_mux ( mode ,  $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; EOL 
  } else { 
    print FHD <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; EOL 
  } 
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  print FHD <<EOL ; 
module ila_mux ( mode ,  $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
EOL 
  if  (  $dpr_mode != 1  )  { 
    print FHD <<EOL ; 
  input wire [1 : 0 ] mode ; 
EOL 
  } 
  print FHD <<EOL ; 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
  if  (  $dpr_mode != 1  )  { 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHD "   (* keep_hierarchy = \"yes\" *)  mux4_mod # ( DATA_WIDTH )  
mux4_mod_inst$i ( mode , in" ,  4*$i-3 ,  " ,  in" ,  4*$i-2 ,  " ,  in" ,  4*$i-1 ,  " ,  in" ,  4*$i ,  
" ,  out$i ) " ,   " ;\n" ; 
    } 
  } else { 
    print FHDPR1 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR1 "  assign out$i = ~in" ,  4*$i-3 ,  " ;\n" ; 
    } 
    print FHDPR1 <<EOL ; 
endmodule 
EOL 
    print FHDPR2 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR2 "  assign out$i = ~in" ,  4*$i-2 ,  " ;\n" ; 
    } 
    print FHDPR2 <<EOL ; 
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endmodule 
EOL 
    print FHDPR3 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR3 "  assign out$i = ~in" ,  4*$i-1 ,  " ;\n" ; 
    } 
    print FHDPR3 <<EOL ; 
endmodule 
EOL 
    print FHDPR4 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR4 "  assign out$i = ~in" ,  4*$i ,  " ;\n" ; 
    } 
    print FHDPR4 <<EOL ; 
endmodule 
EOL 
  } 
  print FHD <<EOL ; 
endmodule 
EOL 
  if  (  $dpr_mode != 1  )  { 
    print FHD <<EOL ; 
module mux4_mod  ( mode ,  in1 ,  in2 ,  in3 ,  in4 ,  out1 ,  out2 )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [1 : 0 ] mode ; 
  input [ DATA_WIDTH - 1 : 0 ] in1 ,  in2 ,  in3 ,  in4 ; 
  output reg [ DATA_WIDTH - 1 : 0 ] out1 ,  out2 ; 
  // Logic 
  always @ ( in1 ,  in2 ,  in3 ,  in4 ,  mode )  begin 
    case  ( mode )  
      2'b00 : out1 <= in1 ; 
      2'b01 : out1 <= in2 ; 
      2'b10 : out1 <= in3 ; 
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      default : out1 <= in4 ; 
    endcase 
  end 
endmodule 
EOL 
  } 
} elsif  (  $mux_mode == 8  )  { 
  my @ila_mux_out_ports ; 
  for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
    push  ( @ila_mux_out_ports ,  "out$i" )  ; 
  } 
  my @ila_mux_in_ports ; 
  for  ( my $i=1 ; $i <= $num_sigs_observed ; $i++ )  { 
    push  ( @ila_mux_in_ports ,  "in$i" )  ; 
  } 
  my $ila_mux_out_ports_str = join  ( " , " , @ila_mux_out_ports )  ; 
  my $ila_mux_in_ports_str = join  ( " , " ,  @ila_mux_in_ports )  ; 
  if  (  $dpr_mode != 1  )  { 
    print FHD <<EOL ; 
module ila_mux ( mode ,  $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; EOL 
  } else { 
    print FHD <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; EOL 
  } 
  print FHD <<EOL ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
EOL 
  if  (  $dpr_mode != 1  )  { 
    print FHD <<EOL ; 
  input wire [2:0 ] mode ; 
EOL 
  } 
  print FHD <<EOL ; 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
  if  (  $dpr_mode != 1  )  { 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHD "   (* keep_hierarchy = \"yes\" *)  mux8_mod # ( DATA_WIDTH )  
mux8_mod_inst$i ( mode , in" ,  8*$i-7 ,  " ,  in" ,  8*$i-6 ,  " ,  in" ,  8*$i-5 ,  " ,  in" ,  8*$i-4 
,  " ,  in" ,  8*$i-3 ,  " ,  in" ,  8*$i-2 ,  " ,  in" ,  8*$i-1 ,  " ,  in" ,  8*$i ,  " ,  out$i ) " ,   " ;\n" ; 
    } 
  } else { 
    print FHDPR1 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
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  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR1 "  assign out$i = ~in" ,  8*$i-7 ,  " ;\n" ; 
    } 
    print FHDPR1 <<EOL ; 
endmodule 
EOL 
    print FHDPR2 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR2 "  assign out$i = ~in" ,  8*$i-6 ,  " ;\n" ; 
    } 
    print FHDPR2 <<EOL ; 
endmodule 
EOL 
    print FHDPR3 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR3 "  assign out$i = ~in" ,  8*$i-5 ,  " ;\n" ; 
    } 
    print FHDPR3 <<EOL ; 
endmodule 
EOL 
    print FHDPR4 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR4 "  assign out$i = ~in" ,  8*$i-4 ,  " ;\n" ; 
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    } 
    print FHDPR4 <<EOL ; 
endmodule 
EOL 
    print FHDPR5 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR5 "  assign out$i = ~in" ,  8*$i-3 ,  " ;\n" ; 
    } 
    print FHDPR5 <<EOL ; 
endmodule 
EOL 
    print FHDPR6 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR6 "  assign out$i = ~in" ,  8*$i-2 ,  " ;\n" ; 
    } 
    print FHDPR6 <<EOL ; 
endmodule 
EOL 
    print FHDPR7 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR7 "  assign out$i = ~in" ,  8*$i-1 ,  " ;\n" ; 
    } 
    print FHDPR7 <<EOL ; 
endmodule 
EOL 
    print FHDPR8 <<EOL ; 
module ila_mux ( $ila_mux_in_ports_str ,  $ila_mux_out_ports_str )  ; 
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  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [ DATA_WIDTH - 1 : 0 ] $ila_mux_in_ports_str ; 
  output wire [ DATA_WIDTH - 1 : 0 ] $ila_mux_out_ports_str ; 
  // Logic 
EOL 
    for  ( my $i=1 ; $i <= $num_of_ila_ports ; $i++ )  { 
      print FHDPR8 "  assign out$i = ~in" ,  8*$i ,  " ;\n" ; 
    } 
    print FHDPR8 <<EOL ; 
endmodule 
EOL 
  } 
  print FHD <<EOL ; 
endmodule 
EOL 
 
  if  (  $dpr_mode != 1  )  { 
    print FHD <<EOL ; 
module mux8_mod  ( mode ,  in1 ,  in2 ,  in3 ,  in4 ,  in5 ,  in6 ,  in7 ,  in8 ,  out1 ,  out2 )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [2:0 ] mode ; 
  input [ DATA_WIDTH - 1 : 0 ] in1 ,  in2 ,  in3 ,  in4 ,  in5 ,  in6 ,  in7 ,  in8 ; 
  output reg [ DATA_WIDTH - 1 : 0 ] out1 ,  out2 ; 
  // Logic 
  always @ ( in1 ,  in2 ,  in3 ,  in4 ,  in5 ,  in6 ,  in7 ,  in8 ,  mode )  begin 
    case  ( mode )  
      3'b000  : out1 <= in1 ; 
      3'b001  : out1 <= in2 ; 
      3'b010  : out1 <= in3 ; 
      3'b011  : out1 <= in4 ; 
      3'b100  : out1 <= in5 ; 
      3'b101  : out1 <= in6 ; 
      3'b110  : out1 <= in7 ; 
      default : out1 <= in8 ; 
    endcase 
  end 
endmodule 
EOL 
  } 
} 
print FHD <<EOL ; 
module mid_mod  ( in1 ,  in2 ,  in3 ,  clk1 ,  out1 )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/Os 
  input wire [ DATA_WIDTH - 1 : 0 ] in1 ,  in2 ,  in3 ; 
  input wire clk1 ; 
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  output wire [ DATA_WIDTH - 1 : 0 ] out1 ; 
  // Logic 
  genvar i ; 
  for  ( i=0 ; i<DATA_WIDTH ; i=i+1 )  begin: LEAF_GEN 
    leaf_mod leaf_inst ( in1[i] ,  in2[i] ,  in3[i] ,  out1[i] )  ; 
  end 
endmodule 
 
module leaf_mod  ( in1 ,  in2 ,  clk1 ,  out1 )  ; 
  // I/Os 
  input wire in1 ,  in2 ,  clk1 ; 
  output reg out1 ; 
  // Internal signals 
   (* keep = " true " *)  reg r1 ,  r2 ,  r3 ; 
  // Logic 
  always @ ( posedge clk1 )  begin 
    r1 <= in1 ; 
    r2 <= in2 ; 
    r3 <= r1 | r2 ; 
    out1 <= r3 ; 
  end 
endmodule 
EOL 
 
print FHV <<EOL ; 
## project details 
set DATA_WIDTH $DATA_WIDTH 
set num_of_ila_ports 3 
set project_name \"$project_name\" 
set project_path \"$project_path\" 
 
## clean project  ( if exists )  ,  and create a new one set to_be_removed [glob -
nocomplain $project_path/debug_*] if { \$to_be_removed != \"\"} { 
  file delete -force {*}[glob -nocomplain $project_path/debug_*] } set to_be_removed 
[glob -nocomplain $project_path/debug_*] if { \$to_be_removed != \"\" } { 
  file delete -force {*}[glob -nocomplain $project_path/vivado*] } create_project 
\${project_name} \${project_path} -part xc7z020clg484-1 set_property board_part 
xilinx.com:zc702:part0:1.2 [current_project] 
 
file mkdir \"\${project_path}/\${project_name}.srcs/sources_1/new\" 
 
## create the dut file 
file copy $dut_file \${project_path}/\${project_name}.srcs/sources_1/new/dut.v 
 
## add files and update file lists 
add_files \"\${project_path}/\${project_name}.srcs/sources_1/new/dut.v\" 
update_compile_order -fileset sources_1 
update_compile_order -fileset sim_1 
set_property generic \"DATA_WIDTH=$DATA_WIDTH\" [current_fileset] 
 
## create ip 



 

116 
 

create_ip -name ila -vendor xilinx.com -library ip -version 5.1 -module_name ila_0 EOL 
 
my $ila_cmd ; 
for  ( my $i=$num_of_ila_ports-1 ; $i >= 0 ; $i-- )  { 
  $ila_cmd .= "CONFIG.C_PROBE${i}_WIDTH $DATA_WIDTH " ; } print $ila_cmd ,  "\n" ; 
 
print FHV <<EOL ; 
set_property -dict [list $ila_cmd CONFIG.C_NUM_OF_PROBES $num_of_ila_ports] 
[get_ips ila_0 ] generate_target {instantiation_template} [get_files 
\"\${project_path}/\${project_name}.srcs/sources_1/ip/ila_0/ila_0.xci\"] 
update_compile_order -fileset sources_1 
 
generate_target all [get_files  
\"\${project_path}/\${project_name}.srcs/sources_1/ip/ila_0/ila_0.xci\"] 
 
set_property generate_synth_checkpoint false [get_files 
\${project_path}/\${project_name}.srcs/sources_1/ip/ila_0/ila_0.xci] 
generate_target all [get_files  
\${project_path}/\${project_name}.srcs/sources_1/ip/ila_0/ila_0.xci] 
launch_runs synth_1 -jobs 4 
wait_on_run synth_1 
 
open_run synth_1 -name synth_1 
report_utilization -file \${project_path}/utilization.rpt -hierarchical EOL 
 
close  ( FHV )  ; 
close  ( FHD )  ; 
} 
} 
} 
 
if  (  $dpr_mode == 1 && $mux_mode == 2 )  { 
  close ( FHDPR1 )  ; 
  close ( FHDPR2 )  ; 
} elsif  (  $dpr_mode == 1 && $mux_mode == 4  )  { 
  close ( FHDPR1 )  ; 
  close ( FHDPR2 )  ; 
  close ( FHDPR3 )  ; 
  close ( FHDPR4 )  ; 
} elsif  (  $dpr_mode == 1 && $mux_mode == 8  )  { 
  close ( FHDPR1 )  ; 
  close ( FHDPR2 )  ; 
  close ( FHDPR3 )  ; 
  close ( FHDPR4 )  ; 
  close ( FHDPR5 )  ; 
  close ( FHDPR6 )  ; 
  close ( FHDPR7 )  ; 
  close ( FHDPR8 )  ; 
} 
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B.3. Verilog test case to use for debugging on FPGA using 

MUX’es and compare it with the behavior of the proposed 

debugging flow using DPR 

`timescale 1ns / 1ps 
 
module dut ( debug_mode ,  in1 ,  in2 ,  in3 ,  in4 ,  in5 ,  in6 ,  clk1 ,  out1 ,  out2 )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input wire debug_mode ; 
  input wire [ DATA_WIDTH - 1 : 0 ] in1 ,  in2 ,  in3 ,  in4 ,  in5 ,  in6 ; 
  input wire clk1 ; 
  output wire [ DATA_WIDTH - 1 : 0 ] out1 ,  out2 ; 
  // Internal     registers  ( to be observed )  
  // 256     registers 
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg1   ,  reg2   ,  reg3   ,  reg5   ,  reg6   ,  reg7   
,  reg9   ,  reg10  ,  reg11  ,  reg13  ,  reg14  ,  reg15  ; 
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg17  ,  reg18  ,  reg19  ,  reg21  ,  reg22  ,  
reg23  ,  reg25  ,  reg26  ,  reg27  ,  reg29  ,  reg30  ,  reg31  ; 
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg33  ,  reg34  ,  reg35  ,  reg37  ,  reg38  ,  
reg39  ,  reg41  ,  reg42  ,  reg43  ,  reg45  ,  reg46  ,  reg47  ; 
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg49  ,  reg50  ,  reg51  ,  reg53  ,  reg54  ,  
reg55  ,  reg57  ,  reg58  ,  reg59  ,  reg61  ,  reg62  ,  reg63  ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg65  ,  reg66  ,  reg67  ,  reg69  ,  reg70  ,  
reg71  ,  reg73  ,  reg74  ,  reg75  ,  reg77  ,  reg78  ,  reg79  ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg81  ,  reg82  ,  reg83  ,  reg85  ,  reg86  ,  
reg87  ,  reg89  ,  reg90  ,  reg91  ,  reg93  ,  reg94  ,  reg95  ; 
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg97  ,  reg98  ,  reg99  ,  reg101 ,  reg102 ,  
reg103 ,  reg105 ,  reg106 ,  reg107 ,  reg109 ,  reg110 ,  reg111 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg113 ,  reg114 ,  reg115 ,  reg117 ,  reg118 ,  
reg119 ,  reg121 ,  reg122 ,  reg123 ,  reg125 ,  reg126 ,  reg127 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg129 ,  reg130 ,  reg131 ,  reg133 ,  reg134 ,  
reg135 ,  reg137 ,  reg138 ,  reg139 ,  reg141 ,  reg142 ,  reg143 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg145 ,  reg146 ,  reg147 ,  reg149 ,  reg150 ,  
reg151 ,  reg153 ,  reg154 ,  reg155 ,  reg157 ,  reg158 ,  reg159 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg161 ,  reg162 ,  reg163 ,  reg165 ,  reg166 ,  
reg167 ,  reg169 ,  reg170 ,  reg171 ,  reg173 ,  reg174 ,  reg175 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg177 ,  reg178 ,  reg179 ,  reg181 ,  reg182 ,  
reg183 ,  reg185 ,  reg186 ,  reg187 ,  reg189 ,  reg190 ,  reg191 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg193 ,  reg194 ,  reg195 ,  reg197 ,  reg198 ,  
reg199 ,  reg201 ,  reg202 ,  reg203 ,  reg205 ,  reg206 ,  reg207 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg209 ,  reg210 ,  reg211 ,  reg213 ,  reg214 ,  
reg215 ,  reg217 ,  reg218 ,  reg219 ,  reg221 ,  reg222 ,  reg223 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg225 ,  reg226 ,  reg227 ,  reg229 ,  reg230 ,  
reg231 ,  reg233 ,  reg234 ,  reg235 ,  reg237 ,  reg238 ,  reg239 ;  
   (* keep = " true " *)  reg [ DATA_WIDTH - 1 : 0 ] reg241 ,  reg242 ,  reg243 ,  reg245 ,  reg246 ,  
reg247 ,  reg249 ,  reg250 ,  reg251 ,  reg253 ,  reg254 ,  reg255 ; 
 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg4 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg8 ; 
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   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg12 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg16 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg20 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg24 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg28 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg32 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg36 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg40 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg44 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg48 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg52 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg56 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg60 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg64 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg68 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg72 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg76 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg80 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg84 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg88 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg92 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg96 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg100 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg104 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg108 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg112 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg116 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg120 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg124 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg128 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg132 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg136 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg140 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg144 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg148 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg152 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg156 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg160 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg164 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg168 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg172 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg176 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg180 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg184 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg188 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg192 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg196 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg200 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg204 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg208 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg212 ; 
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   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg216 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg220 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg224 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg228 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg232 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg236 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg240 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg244 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg248 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg252 ; 
   (* keep = " true " *)  wire [ DATA_WIDTH - 1 : 0 ] reg256 ; 
 
  // Logic of the registers to be observed 
  always @ ( posedge clk1 )  begin 
    reg1   <= in1 | in2 ;  
    reg2   <= in1 & in2 ;  
    reg3   <= in1 ^ in2 ;  
    reg5   <= in1 & in3 ;  
    reg6   <= in1 ^ in3 ;  
    reg7   <= in1 | in4 ;  
    reg9   <= in1 ^ in4 ;  
    reg10  <= in1 | in6 ;  
    reg11  <= in1 & in6 ;  
    reg13  <= in1 | in2 ;  
    reg14  <= in1 & in6 ;  
    reg15  <= in3 ^ in2 ;  
 
    reg17  <= in5 | in2 ;  
    reg18  <= in5 | in2 ;  
    reg19  <= in5 | in2 ;  
    reg21  <= in5 & in2 ;  
    reg22  <= in5 | in2 ;  
    reg23  <= in5 | in2 ;  
    reg25  <= in5 & in2 ;  
    reg26  <= in5 & in2 ;  
    reg27  <= in5 | in2 ;  
    reg29  <= in5 & in2 ;  
    reg30  <= in5 & in2 ;  
    reg31  <= in5 & in2 ;  
 
    reg33  <= in6 | in2 ;  
    reg34  <= in6 | in2 ;  
    reg35  <= in6 | in2 ;  
    reg37  <= in6 & in2 ;  
    reg38  <= in6 | in2 ;  
    reg39  <= in6 | in2 ;  
    reg41  <= in6 & in2 ;  
    reg42  <= in6 & in2 ;  
    reg43  <= in6 | in2 ;  
    reg45  <= in6 & in2 ;  
    reg46  <= in6 & in2 ;  
    reg47  <= in6 & in2 ;  
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    reg49  <= in1 ^ in2 ;  
    reg50  <= in1 ^ in2 ;  
    reg51  <= in1 ^ in2 ;  
    reg53  <= in4 ^ in2 ;  
    reg54  <= in4 ^ in2 ;  
    reg55  <= in4 & in2 ;  
    reg57  <= in4 & in2 ;  
    reg58  <= in4 & in2 ;  
    reg59  <= in4 | in2 ;  
    reg61  <= in4 | in2 ;  
    reg62  <= in4 | in2 ;  
    reg63  <= in4 | in2 ;  
 
    reg65  <= in4 | in3 ;  
    reg66  <= in4 | in3 ;  
    reg67  <= in4 | in3 ;  
 

    reg69  <= in3 | in2 ;  
    reg70  <= in3 | in2 ;  
    reg71  <= in3 | in2 ;  
 

    reg73  <= in3 & in4 ;  
    reg74  <= in3 & in4 ;  
    reg75  <= in3 & in4 ;  
 

    reg77  <= in3 | in5 ;  
    reg78  <= in3 | in5 ;  
    reg79  <= in3 | in5 ;  
 
    reg81  <= in3 | in6 ;  
    reg82  <= in3 | in6 ;  
    reg83  <= in3 | in6 ;  
 
    reg85  <= in4 | in5 ;  
    reg86  <= in4 | in5 ;  
    reg87  <= in4 | in5 ;  
 
    reg89  <= in4 & in5 ;  
    reg90  <= in4 & in5 ;  
    reg91  <= in4 & in5 ;  
 
    reg93  <= in4 ^ in5 ;  
    reg94  <= in4 ^ in5 ;  
    reg95  <= in4 ^ in5 ;  
 
    reg97  <= in4 | in5 ;  
    reg98  <= in4 & in5 ;  
    reg99  <= in4 ^ in5 ;  
     
    reg101 <= in4 & in2 ;  
    reg102 <= in4 & in1 ;  
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    reg103 <= in4 ^ in3 ;  
    
    reg105 <= in5 ^ in6 ;  
    reg106 <= in5 & in6 ;  
    reg107 <= in5 & in6 ;  
   
    reg109 <= in5 | in6 ;  
    reg110 <= in5 & in6 ;  
    reg111 <= in5 ^ in6 ;  
  
    reg113 <= in5 ^ in2 ;  
    reg114 <= in5 ^ in2 ;  
    reg115 <= in5 ^ in2 ;  
 

    reg117 <= in1 & in2 ;  
    reg118 <= in1 & in2 ;  
    reg119 <= in1 ^ in2 ;  
 

    reg121 <= in3 | in2 ;  
    reg122 <= in1 | in4 ;  
    reg123 <= in1 | in5 ;  
 

    reg125 <= in1 ^ in3 ;  
    reg126 <= in1 ^ in4 ;  
    reg127 <= in1 ^ in5 ;  
 
    reg129 <= in1 | in4 ;  
    reg130 <= in1 | in5 ;  
    reg131 <= in1 | in6 ;  
     
    reg133 <= in4 | in5 ;  
    reg134 <= in2 | in6 ;  
    reg135 <= in3 | in5 ;  
    
    reg137 <= in1 & in5 ;  
    reg138 <= in2 ^ in6 ;  
    reg139 <= in4 | in4 ;  
   
    reg141 <= in1 ^ in4 ;  
    reg142 <= in2 & in5 ;  
    reg143 <= in4 | in6 ;  
  
    reg145 <= in1 | in2 ;  
    reg146 <= in6 & in2 ;  
    reg147 <= in4 ^ in2 ;  
 
    reg149 <= in1 & in2 ;  
    reg150 <= in2 ^ in5 ;  
    reg151 <= in1 | in6 ;  
 
    reg153 <= in1 ;  
    reg154 <= in2 ;  
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    reg155 <= in3 ;  
 
    reg157 <= in4 ;  
    reg158 <= in5 ;  
    reg159 <= in6 ;  
 
    reg161 <= in1 ;  
    reg162 <= in2 ;  
    reg163 <= in4 ;  
 
    reg165 <= in1 ;  
    reg166 <= in2 ;  
    reg167 <= in5 ;  
 

    reg169 <= in1 ;  
    reg170 <= in2 ;  
    reg171 <= in6 ;  
 

    reg173 <= in1 ;  
    reg174 <= in3 ;  
    reg175 <= in4 ;  
 

    reg177 <= in1 ;  
    reg178 <= in3 | in2 ;  
    reg179 <= in5 | in2 ;  
     
    reg181 <= in1 ;  
    reg182 <= in3 ;  
    reg183 <= in5 ;  
    
    reg185 <= in1 & in2 ;  
    reg186 <= in3  ;  
    reg187 <= in6 ;  
   
    reg189 <= in1 ;  
    reg190 <= in3 ;  
    reg191 <= in6 ;  
  
    reg193 <= in1 | in2 ;  
    reg194 <= in4 & in2 ;  
    reg195 <= in6 ^ in2 ;  
 
    reg197 <= in1 ;  
    reg198 <= in4 ;  
    reg199 <= in6 ;  
 
    reg201 <= in1 ;  
    reg202 <= in5 ^ in2 ;  
    reg203 <= in6 & in3 ;  
 
    reg205 <= in1 ;  
    reg206 <= in5 ;  
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    reg207 <= in6 ;  
 
    reg209 <= in2 ;  
    reg210 <= in3 ;  
    reg211 <= in4 ;  
 
    reg213 <= in2 ;  
    reg214 <= in3 ;  
    reg215 <= in5 ;  
 
    reg217 <= in2 ;  
    reg218 <= in3 ;  
    reg219 <= in6 ;  
 

    reg221 <= in3 ;  
    reg222 <= in4 ;  
    reg223 <= in5 ;  
 

    reg225 <= in3 ;  
    reg226 <= in4 ;  
    reg227 <= in6 ;  
     
    reg229 <= in3 | in2 ;  
    reg230 <= in4 | in2 ;  
    reg231 <= in6 | in2 ;  
    
    reg233 <= in3 & in2 ;  
    reg234 <= in4 & in2 ;  
    reg235 <= in6 & in2 ;  
   
    reg237 <= in3 ^ in2 ;  
    reg238 <= in4 ^ in2 ;  
    reg239 <= in6 ^ in2 ;  
  
    reg241 <= in3 & in2 ;  
    reg242 <= in4 & in2 ;  
    reg243 <= in5 & in2 ;  
     
    reg245 <= in3 | in1 ;  
    reg246 <= in4 | in1 ;  
    reg247 <= in5 | in1 ;  
    
    reg249 <= in3 | in2 ;  
    reg250 <= in4 | in1 ;  
    reg251 <= in5 | in6 ;  
   
    reg253 <= in3 & in2 ;  
    reg254 <= in4 & in6 ;  
    reg255 <= in5 & in2 ; 
  end 
 
  // Logic 
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   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid1_inst ( reg1 ,  reg2 ,  reg3 ,  
clk1 ,  reg4 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid2_inst ( reg5 ,  reg6 ,  reg7 ,  
clk1 ,  reg8 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid3_inst ( reg9 ,  reg10 ,  reg11 
,  clk1 ,  reg12 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid4_inst ( reg13 ,  reg14 ,  
reg15 ,  clk1 ,  reg16 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid5_inst ( reg17 ,  reg18 ,  
reg19 ,  clk1 ,  reg20 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid6_inst ( reg21 ,  reg22 ,  
reg23 ,  clk1 ,  reg24 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid7_inst ( reg25 ,  reg26 ,  
reg27 ,  clk1 ,  reg28 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid8_inst ( reg29 ,  reg30 ,  
reg31 ,  clk1 ,  reg32 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid9_inst ( reg33 ,  reg34 ,  
reg35 ,  clk1 ,  reg36 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid10_inst ( reg37 ,  reg38 ,  
reg39 ,  clk1 ,  reg40 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid11_inst ( reg41 ,  reg42 ,  
reg43 ,  clk1 ,  reg44 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid12_inst ( reg45 ,  reg46 ,  
reg47 ,  clk1 ,  reg48 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid13_inst ( reg49 ,  reg50 ,  
reg51 ,  clk1 ,  reg52 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid14_inst ( reg53 ,  reg54 ,  
reg55 ,  clk1 ,  reg56 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid15_inst ( reg57 ,  reg58 ,  
reg59 ,  clk1 ,  reg60 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid16_inst ( reg61 ,  reg62 ,  
reg63 ,  clk1 ,  reg64 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid17_inst ( reg65 ,  reg66 ,  
reg67 ,  clk1 ,  reg68 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid18_inst ( reg69 ,  reg70 ,  
reg71 ,  clk1 ,  reg72 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid19_inst ( reg73 ,  reg74 ,  
reg75 ,  clk1 ,  reg76 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid20_inst ( reg77 ,  reg78 ,  
reg79 ,  clk1 ,  reg80 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid21_inst ( reg81 ,  reg82 ,  
reg83 ,  clk1 ,  reg84 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid22_inst ( reg85 ,  reg86 ,  
reg87 ,  clk1 ,  reg88 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid23_inst ( reg89 ,  reg90 ,  
reg91 ,  clk1 ,  reg92 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid24_inst ( reg93 ,  reg94 ,  
reg95 ,  clk1 ,  reg96 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid25_inst ( reg97 ,  reg98 ,  
reg99 ,  clk1 ,  reg100 )  ; 
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   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid26_inst ( reg101 ,  reg102 ,  
reg103 ,  clk1 ,  reg104 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid27_inst ( reg105 ,  reg106 ,  
reg107 ,  clk1 ,  reg108 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid28_inst ( reg109 ,  reg110 ,  
reg111 ,  clk1 ,  reg112 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid29_inst ( reg113 ,  reg114 ,  
reg115 ,  clk1 ,  reg116 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid30_inst ( reg117 ,  reg118 ,  
reg119 ,  clk1 ,  reg120 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid31_inst ( reg121 ,  reg122 ,  
reg123 ,  clk1 ,  reg124 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid32_inst ( reg125 ,  reg126 ,  
reg127 ,  clk1 ,  reg128 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid33_inst ( reg129 ,  reg130 ,  
reg131 ,  clk1 ,  reg132 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid34_inst ( reg133 ,  reg134 ,  
reg135 ,  clk1 ,  reg136 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid35_inst ( reg137 ,  reg138 ,  
reg139 ,  clk1 ,  reg140 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid36_inst ( reg141 ,  reg142 ,  
reg143 ,  clk1 ,  reg144 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid37_inst ( reg145 ,  reg146 ,  
reg147 ,  clk1 ,  reg148 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid38_inst ( reg149 ,  reg150 ,  
reg151 ,  clk1 ,  reg152 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid39_inst ( reg153 ,  reg154 ,  
reg155 ,  clk1 ,  reg156 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid40_inst ( reg157 ,  reg158 ,  
reg159 ,  clk1 ,  reg160 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid41_inst ( reg161 ,  reg162 ,  
reg163 ,  clk1 ,  reg164 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid42_inst ( reg165 ,  reg166 ,  
reg167 ,  clk1 ,  reg168 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid43_inst ( reg169 ,  reg170 ,  
reg171 ,  clk1 ,  reg172 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid44_inst ( reg173 ,  reg174 ,  
reg175 ,  clk1 ,  reg176 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid45_inst ( reg177 ,  reg178 ,  
reg179 ,  clk1 ,  reg180 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid46_inst ( reg181 ,  reg182 ,  
reg183 ,  clk1 ,  reg184 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid47_inst ( reg185 ,  reg186 ,  
reg187 ,  clk1 ,  reg188 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid48_inst ( reg189 ,  reg190 ,  
reg191 ,  clk1 ,  reg192 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid49_inst ( reg193 ,  reg194 ,  
reg195 ,  clk1 ,  reg196 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid50_inst ( reg197 ,  reg198 ,  
reg199 ,  clk1 ,  reg200 )  ; 
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   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid51_inst ( reg201 ,  reg202 ,  
reg203 ,  clk1 ,  reg204 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid52_inst ( reg205 ,  reg206 ,  
reg207 ,  clk1 ,  reg208 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid53_inst ( reg209 ,  reg210 ,  
reg211 ,  clk1 ,  reg212 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid54_inst ( reg213 ,  reg214 ,  
reg215 ,  clk1 ,  reg216 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid55_inst ( reg217 ,  reg218 ,  
reg219 ,  clk1 ,  reg220 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid56_inst ( reg221 ,  reg222 ,  
reg223 ,  clk1 ,  reg224 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid57_inst ( reg225 ,  reg226 ,  
reg227 ,  clk1 ,  reg228 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid58_inst ( reg229 ,  reg230 ,  
reg231 ,  clk1 ,  reg232 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid59_inst ( reg233 ,  reg234 ,  
reg235 ,  clk1 ,  reg236 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid60_inst ( reg237 ,  reg238 ,  
reg239 ,  clk1 ,  reg240 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid61_inst ( reg241 ,  reg242 ,  
reg243 ,  clk1 ,  reg244 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid62_inst ( reg245 ,  reg246 ,  
reg247 ,  clk1 ,  reg248 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid63_inst ( reg249 ,  reg250 ,  
reg251 ,  clk1 ,  reg252 )  ; 
   (* keep_hierarchy = " yes " *)  mid_mod # ( DATA_WIDTH )  mid64_inst ( reg253 ,  reg254 ,  
reg255 ,  clk1 ,  reg256 )  ; 
 
  assign out1 =  ( reg4 | reg8 | reg12 | reg16 )  &  ( reg20 | reg24 | reg28 | reg32 )  &  ( reg36 | 
reg40 | reg44 | reg48 )  &  ( reg52 | reg56 | reg60 | reg64 )  &  ( reg68 | reg72 | reg76 | reg80 
)  &  ( reg84 | reg88 | reg92 | reg96 )  &  ( reg100 | reg104 | reg108 | reg112 )  &  ( reg116 | 
reg120 | reg124 | reg128 )  ; 
  assign out2 =  ( reg132 | reg136 | reg140 | reg144  )  &  ( reg148 | reg152 | reg156 | reg160 )  
&  ( reg164 | reg168 | reg172 | reg176 )  &  ( reg180 | reg184 | reg188 | reg192 )  &  ( reg196 
| reg200 | reg204 | reg208 )  &  ( reg212 | reg216 | reg220 | reg224 )  &  ( reg228 | reg232 | 
reg236 | reg240  )  &  (  reg244 | reg248 | reg252 | reg256 )   ;  
 
  // MUXes for the ILA 
  wire [ DATA_WIDTH - 1 : 0 ] ila_mux_out1 , ila_mux_out2 , ila_mux_out3 , ila_mux_out4 , 
ila_mux_out5 , ila_mux_out6 , ila_mux_out7 , ila_mux_out8 , ila_mux_out9 , ila_mux_out10 , 
ila_mux_out11 , ila_mux_out12 , ila_mux_out13 , ila_mux_out14 , ila_mux_out15 , 
ila_mux_out16 ; 
   (* keep_hierarchy = " yes " *)  ila_mux # ( DATA_WIDTH )  ila_mux_inst ( debug_mode ,  reg1 
, reg2 , reg3 , reg4 , reg5 , reg6 , reg7 , reg8 , reg9 , reg10 , reg11 , reg12 , reg13 , reg14 , reg15 
, reg16 , reg17 , reg18 , reg19 , reg20 , reg21 , reg22 , reg23 , reg24 , reg25 , reg26 , reg27 , 
reg28 , reg29 , reg30 , reg31 , reg32 , reg33 , reg34 , reg35 , reg36 , reg37 , reg38 , reg39 , 
reg40 , reg41 , reg42 , reg43 , reg44 , reg45 , reg46 , reg47 , reg48 , reg49 , reg50 , reg51 , 
reg52 , reg53 , reg54 , reg55 , reg56 , reg57 , reg58 , reg59 , reg60 , reg61 , reg62 , reg63 , 
reg64 , reg65 , reg66 , reg67 , reg68 , reg69 , reg70 , reg71 , reg72 , reg73 , reg74 , reg75 , 
reg76 , reg77 , reg78 , reg79 , reg80 , reg81 , reg82 , reg83 , reg84 , reg85 , reg86 , reg87 , 
reg88 , reg89 , reg90 , reg91 , reg92 , reg93 , reg94 , reg95 , reg96 , reg97 , reg98 , reg99 , 
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reg100 , reg101 , reg102 , reg103 , reg104 , reg105 , reg106 , reg107 , reg108 , reg109 , reg110 
, reg111 , reg112 , reg113 , reg114 , reg115 , reg116 , reg117 , reg118 , reg119 , reg120 , 
reg121 , reg122 , reg123 , reg124 , reg125 , reg126 , reg127 , reg128 ,  ila_mux_out1 , 
ila_mux_out2 , ila_mux_out3 , ila_mux_out4 , ila_mux_out5 , ila_mux_out6 , ila_mux_out7 , 
ila_mux_out8 , ila_mux_out9 , ila_mux_out10 , ila_mux_out11 , ila_mux_out12 , 
ila_mux_out13 , ila_mux_out14 , ila_mux_out15 , ila_mux_out16 )  ; 
  // ILA instance 
    ila_0 ila_inst_0  (  
      .clk ( clk1 )  ,  // input wire clk 
      .probe0 ( ila_mux_out1 )  ,  
      .probe1 ( ila_mux_out2 )  ,  
      .probe2 ( ila_mux_out3 )  ,  
      .probe3 ( ila_mux_out4 )  ,  
      .probe4 ( ila_mux_out5 )  ,  
      .probe5 ( ila_mux_out6 )  ,  
      .probe6 ( ila_mux_out7 )  ,  
      .probe7 ( ila_mux_out8 )  ,  
      .probe8 ( ila_mux_out9 )  ,  
      .probe9 ( ila_mux_out10 )  ,  
      .probe10 ( ila_mux_out11 )  ,  
      .probe11 ( ila_mux_out12 )  ,  
      .probe12 ( ila_mux_out13 )  ,  
      .probe13 ( ila_mux_out14 )  ,  
      .probe14 ( ila_mux_out15 )  ,  
      .probe15 ( ila_mux_out16 )  
   )  ; 
endmodule 
module ila_mux ( mode ,  in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , in9 , in10 , in11 , in12 , in13 , 
in14 , in15 , in16 , in17 , in18 , in19 , in20 , in21 , in22 , in23 , in24 , in25 , in26 , in27 , in28 , 
in29 , in30 , in31 , in32 , in33 , in34 , in35 , in36 , in37 , in38 , in39 , in40 , in41 , in42 , in43 , 
in44 , in45 , in46 , in47 , in48 , in49 , in50 , in51 , in52 , in53 , in54 , in55 , in56 , in57 , in58 , 
in59 , in60 , in61 , in62 , in63 , in64 , in65 , in66 , in67 , in68 , in69 , in70 , in71 , in72 , in73 , 
in74 , in75 , in76 , in77 , in78 , in79 , in80 , in81 , in82 , in83 , in84 , in85 , in86 , in87 , in88 , 
in89 , in90 , in91 , in92 , in93 , in94 , in95 , in96 , in97 , in98 , in99 , in100 , in101 , in102 , in103 
, in104 , in105 , in106 , in107 , in108 , in109 , in110 , in111 , in112 , in113 , in114 , in115 , 
in116 , in117 , in118 , in119 , in120 , in121 , in122 , in123 , in124 , in125 , in126 , in127 , in128 
,  out1 , out2 , out3 , out4 , out5 , out6 , out7 , out8 , out9 , out10 , out11 , out12 , out13 , 
out14 , out15 , out16 )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input wire [2:0 ] mode ; 
  input [ DATA_WIDTH - 1 : 0 ] in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , in9 , in10 , in11 , in12 , 
in13 , in14 , in15 , in16 , in17 , in18 , in19 , in20 , in21 , in22 , in23 , in24 , in25 , in26 , in27 , 
in28 , in29 , in30 , in31 , in32 , in33 , in34 , in35 , in36 , in37 , in38 , in39 , in40 , in41 , in42 , 
in43 , in44 , in45 , in46 , in47 , in48 , in49 , in50 , in51 , in52 , in53 , in54 , in55 , in56 , in57 , 
in58 , in59 , in60 , in61 , in62 , in63 , in64 , in65 , in66 , in67 , in68 , in69 , in70 , in71 , in72 , 
in73 , in74 , in75 , in76 , in77 , in78 , in79 , in80 , in81 , in82 , in83 , in84 , in85 , in86 , in87 , 
in88 , in89 , in90 , in91 , in92 , in93 , in94 , in95 , in96 , in97 , in98 , in99 , in100 , in101 , in102 , 
in103 , in104 , in105 , in106 , in107 , in108 , in109 , in110 , in111 , in112 , in113 , in114 , in115 
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, in116 , in117 , in118 , in119 , in120 , in121 , in122 , in123 , in124 , in125 , in126 , in127 , 
in128 ; 
  output wire [ DATA_WIDTH - 1 : 0 ] out1 , out2 , out3 , out4 , out5 , out6 , out7 , out8 , out9 , 
out10 , out11 , out12 , out13 , out14 , out15 , out16 ; 
  // Logic 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst1 ( mode , in1 ,  
in2 ,  in3 ,  in4 ,  in5 ,  in6 ,  in7 ,  in8 ,  out1 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst2 ( mode , in9 ,  
in10 ,  in11 ,  in12 ,  in13 ,  in14 ,  in15 ,  in16 ,  out2 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst3 ( mode , in17 
,  in18 ,  in19 ,  in20 ,  in21 ,  in22 ,  in23 ,  in24 ,  out3 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst4 ( mode , in25 
,  in26 ,  in27 ,  in28 ,  in29 ,  in30 ,  in31 ,  in32 ,  out4 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst5 ( mode , in33 
,  in34 ,  in35 ,  in36 ,  in37 ,  in38 ,  in39 ,  in40 ,  out5 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst6 ( mode , in41 
,  in42 ,  in43 ,  in44 ,  in45 ,  in46 ,  in47 ,  in48 ,  out6 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst7 ( mode , in49 
,  in50 ,  in51 ,  in52 ,  in53 ,  in54 ,  in55 ,  in56 ,  out7 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst8 ( mode , in57 
,  in58 ,  in59 ,  in60 ,  in61 ,  in62 ,  in63 ,  in64 ,  out8 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst9 ( mode , in65 
,  in66 ,  in67 ,  in68 ,  in69 ,  in70 ,  in71 ,  in72 ,  out9 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst10 ( mode , 
in73 ,  in74 ,  in75 ,  in76 ,  in77 ,  in78 ,  in79 ,  in80 ,  out10 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst11 ( mode , 
in81 ,  in82 ,  in83 ,  in84 ,  in85 ,  in86 ,  in87 ,  in88 ,  out11 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst12 ( mode , 
in89 ,  in90 ,  in91 ,  in92 ,  in93 ,  in94 ,  in95 ,  in96 ,  out12 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst13 ( mode , 
in97 ,  in98 ,  in99 ,  in100 ,  in101 ,  in102 ,  in103 ,  in104 ,  out13 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst14 ( mode , 
in105 ,  in106 ,  in107 ,  in108 ,  in109 ,  in110 ,  in111 ,  in112 ,  out14 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst15 ( mode , 
in113 ,  in114 ,  in115 ,  in116 ,  in117 ,  in118 ,  in119 ,  in120 ,  out15 )  ; 
   (* keep_hierarchy = " yes " *)  mux8_mod # ( DATA_WIDTH )  mux8_mod_inst16 ( mode , 
in121 ,  in122 ,  in123 ,  in124 ,  in125 ,  in126 ,  in127 ,  in128 ,  out16 )  ; endmodule  
module mux8_mod  ( mode ,  in1 ,  in2 ,  in3 ,  in4 ,  in5 ,  in6 ,  in7 ,  in8 ,  out1 ,  out2 )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/O ports 
  input [2:0 ] mode ; 
  input [ DATA_WIDTH - 1 : 0 ] in1 ,  in2 ,  in3 ,  in4 ,  in5 ,  in6 ,  in7 ,  in8 ; 
  output reg [ DATA_WIDTH - 1 : 0 ] out1 ,  out2 ; 
  // Logic 
  always @ ( in1 ,  in2 ,  in3 ,  in4 ,  in5 ,  in6 ,  in7 ,  in8 ,  mode )  begin 
    case  ( mode )  
      3'b000  : out1 <= in1 ; 
      3'b001  : out1 <= in2 ; 
      3'b010  : out1 <= in3 ; 
      3'b011  : out1 <= in4 ; 
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      3'b100  : out1 <= in5 ; 
      3'b101  : out1 <= in6 ; 
      3'b110  : out1 <= in7 ; 
      default : out1 <= in8 ; 
    endcase 
  end 
endmodule 
module mid_mod  ( in1 ,  in2 ,  in3 ,  clk1 ,  out1 )  ; 
  // Parameters 
  parameter DATA_WIDTH = 1 ; 
  // I/Os 
  input wire [ DATA_WIDTH - 1 : 0 ] in1 ,  in2 ,  in3 ; 
  input wire clk1 ; 
  output wire [ DATA_WIDTH - 1 : 0 ] out1 ; 
  // Logic 
  genvar i ; 
  for  ( i=0 ; i<DATA_WIDTH ; i=i+1 )  begin: LEAF_GEN 
    leaf_mod leaf_inst ( in1[i] ,  in2[i] ,  in3[i] ,  out1[i] )  ; 
  end 
endmodule 
 
module leaf_mod  ( in1 ,  in2 ,  clk1 ,  out1 )  ; 
  // I/Os 
  input wire in1 ,  in2 ,  clk1 ; 
  output reg out1 ; 
  // Internal signals 
   (* keep = " true " *)  reg r1 ,  r2 ,  r3 ; 
  // Logic 
  always @ ( posedge clk1 )  begin 
    r1 <= in1 ; 
    r2 <= in2 ; 
    r3 <= r1 | r2 ; 
    out1 <= r3 ; 
  end 
endmodule  



 

 أ
 

  ملخصال

تشكيل عادة ( بإFPGA) مصفوفات البوابات المنطقية القابلة للبرمجة( على DPR) التشكيل الجزئى الديناميكىيسمح إعادة 

م القابلة بعض التصميم في وقت التشغيل بينما يستمر باقي التصميم في العمل. هذه الفئة من التصاميم تسمى التصامي
( في SDR)ٍ (. هذه الميزة تسمح للمصممين لبناء أنظمة معقدة مثل نظام الراديو المعرف برمجيا DRS) لاعادة التكوين

ت جديدة ( ، هناك تحدياDPR) التشكيل الجزئى الديناميكىتي توفرها إعادة مساحة مناسبة. على الرغم من المرونة ال

 ثابتة.( مقارنة مع الانظمة الDPR) التشكيل الجزئى الديناميكىلتصميم والتحقق من التصاميم التي تستخدم أسلوب 
 

جية الجديدة مع (. تتعامل المنهDPR) التشكيل الجزئى الديناميكى، يتم تقديم منهجية تحقق جديدة لاعادة  في هذه الرسالة

وحدات مثل ضمان التوصيلات الصحيحة لمنافذ ال حالات( و DPR) التشكيل الجزئى الديناميكىالمنطق المحدد لاعادة 

لبوابات ( على مصفوفات اRR( التي تشترك في نفس المنطقة القابلة لاعادة البرمجة  )RMsالقابلة لإعادة التهيئة )

 عزل الوحدات (، انتظار إجراء العمليات الحسابية على وحدة نمطية قبل إعادة تشكيلها،FPGAلبرمجة )المنطقية القابلة ل

ة التشكيل. يتم عملية إعاد القابلة لإعادة التكوين أثناء عملية إعادة التكوين، وتهيئة الوحدة القابلة لإعادة التكوين بعد اتمام
ديد وظائفه ( من خلال تحABVباستخدام التحقق القائم على التوكيد ) (DPR) التشكيل الجزئى الديناميكىالتحقق من منطق 

 (، ثم صك التصميم مع هذه الخصائص ، ثم يمكن التحقق من هذه الخصائص باستخدامSVAباستخدام خصائص تأكيد )

ا البحث . كما يقدم هذ(DPR) التشكيل الجزئى الديناميكى منطق عدم صحةالمحاكاة أو الطرق الرسمية لإثبات صحة أو 

 .(DRS) القابلة لاعادة التشكيل تصاميملل (CDC)احتياز مجال الساعات تقديراً آليا يقترن بالتحقق من سجلات 

 
يقات التي تؤدي لتقليل تكلفة تصميم التطب (DPR) التشكيل الجزئى الديناميكى توضح هذه الرسالة أيضًا قوة استخدام تقنية

. يعد (FPGAمصفوفات البوابات المنطقية القابلة للبرمجة ) على مثل تصحيح أخطاء على مدا الوقت منطق الرقميغير الت

إلى  ( مهمة صعبة بسبب الوصول المحدودFPGAمصفوفات البوابات المنطقية القابلة للبرمجة )على   خطاءالأ تصحيح

ت المنطقية مصفوفات البواباعلى الإشارات الداخلية للتصميم. يقوم محلل المنطق المدمج بتحسين إمكانية رصد إشارات 
 ، (FPGAمجة )مصفوفات البوابات المنطقية القابلة للبرعلى . يتم تنفيذ هذه المحلل على موارد (FPGAالقابلة للبرمجة )

محلل بسبب تخدم كتل الذاكرة المضمنة كمخازن تتبع ، لذلك يمكن ملاحظة عدد محدود من الإشارات باستخدام هذه الوتس
ي هذه فإعادة تركيب كل التصميم وتصميمه وتوجيهه. نقترح  تبعةالموارد. يتطلب تغيير مجموعة الإشارات المت لةق
ة الإشارات لتغيير مجموع (FPGAات المنطقية القابلة للبرمجة )مصفوفات البواب خطاءالأمنهجية جديدة لتصحيح  رسالةال

رحة نهجية المقتالتي يجب مراعاتها في وقت التشغيل بشكل ديناميكي ، وبالتالي تقليل الوقت اللازم للتصحيح. تستخدم الم
التشكيل إعادة شئ ( للتبديل ديناميكياً بين مجموعات مختلفة من الإشارات. ينDPR) التشكيل الجزئى الديناميكىتقنية إعادة 

ي ( لتوجيه كل مجموعة من الإشارات إلى محلل منطقRMوحدة قابلة لإعادة التكوين ) (DPR) الجزئى الديناميكى

شارات المراد ، حيث وجد أن تغيير مجموعة الإ Xilinx FPGAمضمن. تم توضيح النهج المقترح باستخدام أدوات 

ة أقل هجية المقترح. إن المساحة الزائدة للمنالمنطقة القابلة لإعادة التكوينمراقبتها يتطلب بضع ثوان فقط لإعادة برمجة 
ن متسمح لوحدة التوجيه أن تستخدم فقط المخازن المؤقتة لتوصيل مجموعة  DPRمن الطرق التقليدية الأخرى لأن 

 مج.الإشارات إلى محلل المنطق المد
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