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Abstract

Dynamic Partial Reconfiguration (DPR) on Field Programmable Gate Arrays
(FPGAS) allows a portion of the logic to be reconfigured at runtime while the rest of the
logic keeps operating. Such category of designs called Dynamically Reconfigurable
Systems (DRS) designs. This feature enables the designers to build complex systems
such as Software Defined Radio (SDR) in a reasonable area. Despite of the flexibility
provided by the DPR, there are new challenges to design and verify the designs which
utilize the DPR technique when it is compared to static FPGA systems.

In this thesis, a new verification methodology for DPR is presented. The new
methodology addresses DPR specific logic and issues such as guaranteeing proper
connections for the ports of the Reconfigurable Modules (RMs) which share the same
Reconfigurable Region (RR) on the FPGA, waiting for running computations on a
module before reconfiguring it, isolation of the reconfigurable modules during the
reconfiguration process, and initialization of the reconfigurable module after
the reconfiguration process is done. This DPR logic is verified using Assertion Based
Verification (ABV) by modeling its functionality using System Verilog Assertion
(SVA) properties, then instrument the design with these properties. Following that,
these properties are verified using simulation or formal methods to check the
correctness of the DPR logic. Also, this thesis presents an automated flow for Clock
Domain Crossings (CDC) verification for DRS designs.

In addition, this thesis demonstrates the power of utilizing the DPR technique to
minimize the cost of designing applications which perform time multiplexing of the
digital logic, such as debugging of FPGAs. Because of the limited accessibility to the
internal signals of the designs implemented on FPGAs, the debugging of FPGAS is a
hard task. Embedded logic analyzers enhance the signal observability for FPGAs.
These analyzers are implemented on the FPGA resources, and they use the embedded
memory blocks as trace buffers, so a limited number of signals can be observed using
these analyzers due to resources constraints. Changing the traced set of signals requires
re-synthesis, placement and routing of the whole design. In this thesis, a new
methodology for FPGA debugging is proposed to change dynamically the set of signals
to be observed at runtime, and consequently, minimize the time required for debugging.
The proposed methodology utilizes the DPR technique to dynamically switch between
different sets of signals. DPR creates a reconfigurable module (RM) to route each set of
signals to an embedded logic analyzer. The proposed approach is demonstrated using
Xilinx FPGA tools, finding that changing the set of signals to be observed requires only
few milli-seconds to re-program the reconfigurable region (RR). The area overhead of
the proposed methodology is lower than other traditional methods of using multiplexers
as the DPR allows the routing module to only use buffers to connect a set of signals to
the embedded logic analyzer.



Chapter 1 : Introduction

Design and verification of Integrated Circuits (ICs) have become a complex task
during the last two decades due to the need to integrate extra functionalities and
applications into a single chip. Consequently, the costs of developing modern ICs have
been multiplying. Such increase in the costs is representing a threat to the continuance
of the semiconductor evolution [1]. The development cost has been estimated to reach
over 0.17 billion US dollars for a chip at 28 nm technology node [2]. Moreover, the
significant engineering efforts and investments do not minimize the possibility of the
failure of the project. The cycle of development of the chips takes from few months to
years with high uncertainty [1], and it includes a lot of testing and verification efforts to
ensure the correctness of its functionality when it is fabricated.

The development of customized IC solutions is accompanied with huge risks and
costs. Therefore, it is only justified for a small number of ultra-high volume electronic
products. As a second choice, the electronics industry has started moving into using
reconfigurable platforms such as FPGAs as computing platforms. The major advantage
of an FPGA is that it can be configured at the design time of the system to implement a
logic application, also it can be reconfigured at runtime and after deployment. The
FPGA is considered a programmable type of integrated circuits. Compared with custom
chips, the programmability of reconfigurable devices has enlarged the ability of easily
modifying the designs while inserting acceptable overheads in performance, area, and
power. The systems (either hardware or software) can realize shorter time to market
when they are implemented on reconfigurable devices. Also, they are more responsive
to bug fixes or upgrades throughout the product life cycle. By 2024, it is expected that,
on average 70% of the chip functionalities will be reprogrammable [1].

Application Specific A

Slow Development Cycle Rapid Prototyping

>

DSP

Reconfigurability

Figure 1.1: Trade-off between Different SDR Hardware Platforms [12]



In the recent years, the FPGAs capabilities are enhanced and developed to be more
flexible and reconfigurable at runtime [10,11] by the introduction of the concept of
DPR. DPR allows the FPGA to be reconfigured at runtime by reconfiguring a specific
part on the FPGA without turning off the rest of FPGA. DPR pushes the FPGAS to
become a promising reconfigurable hardware platform with a high degree of flexibility
that allows it to be used as the target hardware platform for the implementation of
complex systems such as SDR. Figure 1.1 shows the trade-off between design time and
reconfigurability for different hardware platforms suitable for the hardware
implementation of SDR [12]. As shown in Figure 1.1, applying DPR on the FPGA
platform increase the reconfigurability of the FPGA to be more reconfigurable than
traditional software programmable platforms such as the Digital Signal Processors
(DSPs) and General Purpose Processors (GPPs). DPR offers the benefits of efficient
resources utilization for the FPGA hardware resources as well as low power
consumption for the SDR system.

Currently, there are more designs start targeting FPGAs while the amount of
designs that target Application-Specific Integrated Circuits (ASICs) is in decline [4].
The vendors of FPGAs are now fabricating programmable System-on-Chip platforms,
they are switching into ASIC markets (e.g., [3, 4]). Recently, there are new FPGA
systems which permit sub-modules of hardware to be reconfigured partially at runtime
while the rest of the system components keep operating, such FPGA systems are called
Dynamically Reconfigurable Systems (DRS). The flexibility of the design is extended
in DRS designs relative to traditional statically configured FPGA systems:

e By allowing the same physical reconfigurable region (RR) of the FPGA to
serve and accommodate multiple reconfigurable hardware modules (RM),
the required modules are being loaded on demand by the system, the
switching can be automatically triggered or by user interference, which
saves resource usage significantly, maximizes design density, and
minimizes system cost [6].

e At runtime, the modules can be time-multiplexed to respond to the changes
in the operation requirements of an application. For example, a networked
multiport switch [7] and an SDR [8] reconfigure the processing logic of
their protocol according to the protocol of the incoming traffic.

e The functionality of a system can be expanded at runtime, by reconfiguring
the design with new modules. For example, when identifying suspected
attacks for network flow analysis application, the application reconfigures
one of its unused modules to implement an intruder detection module [9].

Figure 1.2 shows the idea of the DPR technique which is supported in the modern
FPGAs. Figure 1.2.a shows the full configuration of the FPGA in which the application
consumes big area. Figure 1.2.b shows that the size of the application can be decreased
by utilizing the DPR technique, i.e. if this application has some blocks that not
operating at the same time so such modules can be time multiplexed. Each module can
be loaded to operate for a certain period of time then another module to be loaded.
Figure 1.2.c shows that using DPR increases the size of the FPGA theoretically to
realize more applications than regular FPGA configuration, this leads to a better
utilization of the FPGA resources. This concept may also be generalized to different
fields of study, in this thesis it is demonstrated on runtime debugging of FPGAs.
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Figure 1.2: (a) Shows FPGA full configuration; (b) DPR technique is utilized to get
the same system; (c) Shows how the FPGA size increased theoretically

Despite the flexibility provided by the DRS designs, there are more challenges to
design and validate a DRS design compared with static conventional FPGA systems.

Design Flow of FPGA and DRS Designs

The typical flow of design is shown in Figure 1.3 for hardware systems targeting
reconfigurable devices. The designer creates a specification document to fulfill and
describe the functionalities of the design intent. After that, the designer uses a
Hardware Description Languages (HDL) to translate the specification document into a
Register Transfer Level (RTL) representation. Such translation process could also
include re-using modules from previous projects or instantiation of Intellectual Property
(IP) from third parties, and the IP is modeled as synthesized macros or HDL code. After
that, the design is constrained by the designer, then it synthesized and implemented
using Computer Aided Design (CAD) FPGA tools (e.g., Xilinx ISE [13]).

Also, high-level description languages such as SystemC [14] can be used to
represent the design. In such case, High-Level Synthesis (HLS) tools (e.g., Vivado-
HLS [15]) are used to synthesize the design to the target FPGA device. After this
sequence of translations and design activities, the implemented design is programmed
and downloaded on the target FPGA device and it is ready to run. In order to make sure
of the correctness of the design and its functionality, each translation step should be
verified and any change in the behavior or inconsistency in the representations between
two successive steps is considered as a bug. Such errors or bugs should be fixed as
early as they are identified, because the cost of the fixing an error or a bug is increased
as designers go through the design flow. The bugs or errors that are introduced in the
process of implementing the design such as timing violations and bad design
constraints can be caught and identified using the vendor FPGA tools [13]. The errors
and bugs injected into the specification and the translated design (i.e. human bugs) are
called functional bugs. The process of identifying and fixing functional bugs to
guarantee that the captured design fulfills and meets the intent of the design, is called
functional verification [16].
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Figure 1.3: Hardware typical design flow

For the functional verification of ASIC or FPGA systems, simulation, and RTL
simulation, especially, is the most widely used methodology. Off the shelf simulators,
such as ModelSim [17] and ISim [18], compile and elaborate the captured design
source (e.g., RTL code). Designers can review the waveforms which simulate the
behavior of the design under some specified design inputs for all the signals in the
design in order to debug errors that are injected into the design. A typical simulation
environment is shown in Figure 1.4. Since functional verification only focuses on
identifying functional bugs, simulation usually only involves the user design and does
not include the physical layer.

The flow of design of DRS designs is similar to that of statically configured
designs, except for few things. To explain the challenges and extra efforts needed to
design a DRS, the modular reconfiguration flow [19,7] is considered as an example:

1. The design should be split into reconfigurable and static parts, and the
designer has to design the application logic of the modules of these two
parts. The static parts are those parts that operate during all the
configuration modes of the design (i.e. they are needed all the time and
cannot be shut down). Also, the reconfiguration mechanism of the system
has to be added into the design to control and manage the process of
reconfiguration. Such mechanism can be only hardware or a combination of
both software and hardware.

2. The designer has to specify the border of the reconfigurable and static
regions in order to lock down the signals traversing such borders. The
designer also has to add placement constraints for modules, assign RRs to
RMs, and generate partial bitstreams to configure the RR according to the
modes of its associated RMs.
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Figure 1.4: Typical simulation environment

The errors and bugs which are related to the implementation of the DRS designs
can be detected and excluded by FPGA vendor tools which is similar to the case of the
static designs. In particular, the vendors of FPGA tools define a group of rules for the
physical layer design constraints, and it will do automatic check and verification for the
DRS design against these rules. An example of such rules is that the wires or signals
which are traversing the reconfigurable-static border should be assigned to the exact
same FPGA resources for all the RMs. On the other hand, functional bugs in DRS
designs cannot be automatically identified and caught by the FPGA vendors CAD tools.

It is the responsibility of the designers to check and verify the correctness of the
captured design to make sure that it fulfills the intent of the design and meets the
specification of the design. Consequently, the designers have to identify functional bugs
that are injected into the system, which is similar to the case of the statically configured
designs. In particular, since DRS designs include a newly added logic and a machinery
for reconfiguration, the designer needs to verify that the reconfiguration logic and
machinery are 1) correct which means that the reconfiguration modules needs to be
verified standalone to make sure of the correctness of their functionality, and 2) are
correctly integrated with the rest of the system, which means the reconfiguration
components should be put into the integrated DRS design, and then the DRS design
should be verified as a whole to verify and test the interactions of the reconfiguration
components with the rest of the design’s logic, which means that the testing of the
reconfiguration mechanism’s units as standalone components is necessary but not
sufficient.

Functional Verification Challenges for DRS Designs

DPR offers a flexibility for designs of digital systems when being compared with
static traditional FPGA designs. But, new challenges have been introduced into the
functional verification of the design. In conventional simulation methodologies (such as
RTL simulation), the hierarchy of the design is assumed to be always defined at
compile time, such methods cannot understand the modules swapping during the
simulation run. Furthermore, these traditional simulation tools cannot understand or
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interpret the configuration bitstreams which are used to reprogram the FPGA, only the
FPGA device can interpret such configuration bitstreams.

Vendors of FPGA devices and CAD software, such as Xilinx, claim that every
valid mode of configuration of a DRS can be tested separately by utilizing conventional
simulation methodologies, but the simulation of the process of reconfiguration itself is
not supported [7]. While, the behavioral simulation of the DPR process is proposed by
Altera, but this simulation support has not been incorporated yet into Altera’s tool flow
[20]. Previous research works have proposed frameworks to support both high-level
and RTL simulation for DRS designs. However, previously proposed frameworks fail
to offer the precision needed to check and test the design being reconfigured. Hence,
new simulation tools for the functional verification of DRS designs have to be
developed.

Even if there are reliable tools available for simulation, it is not guaranteed if the
well-established traditional methodologies of verification for statically configured
designs are still applicable for usage with DRS designs. Particularly, since the design
hierarchy and logic of a DRS design can be modified at runtime of the system, DPR
come up with new testing cases that cannot be applied for statically configured designs.
For example, in order to test if the RMs are stopped properly when a reconfiguration
request arrives, the simulation environment needs to test partial reconfiguration in all
possible states of the currently active RM. In order to verify that an ongoing
reconfiguration doesn’t inject any error (e.g., deadlock) to the rest of the design, the
simulation needs to exercise all valid transitions between any two RMs. In this way,
new rules and guidelines should be provided to the designers to aid the verification of
the scenarios related to DPR in a design and ensure its correctness.

From the user design’s point of view, the process of reconfiguration introduces
new scenarios such as transferring partial bitstreams, and isolating, initializing, and
synchronizing the RMs. These scenarios should be tested in simulation to ensure the
correctness of the reconfiguration machinery, and verify the connections and
communications between the whole design and the reconfiguration logic. From a
timing perspective, the scenarios of reconfiguration can be classified as per the phase of
the process of partial reconfiguration during which these scenarios may happen, i.e.,
AFTER, DURING, or BEFORE reconfiguration. Before reconfiguration, it is important
to synchronize the process of reconfiguration according to the ongoing computations on
the RMs of the DRS design, as an example for SDR systems if a packet is being
processed for Wi-Fi standard, the computation should be completed before switching to
another communication standard. During reconfiguration, it is important to properly
isolate the RR being reconfigured in order to guarantee that no erroneous values will be
propagated from the RM being reconfigured to the static logic or the output ports of the
DRS design. After reconfiguration, the new loaded RM should be initialized to a known
state to make sure of the correct operation of the RM, otherwise there will be undefined
values or states propagated from the RM to the static part of the design.

Thesis Objectives

This thesis explores the functional verification of DRS designs that utilize DPR
technique, and also explores the usage of the DPR to minimize the cost of runtime



debugging for FPGAs as an application for the DPR technique. The main objectives of
this thesis are:

1. Provide essential verification guidelines for functional verification of DPR.

2. Modeling the DPR logic and activities using System Verilog Assertion
(SVA) [21].

3. Develop a technique to verify DPR using Assertion Based Verification
(ABV) [22].

4. Provide a flow for Clock Domain Crossing (CDC) [23] verification for
DRS designs.

5. Provide a technique to utilize DPR to minimize the cost of debugging on
FPGA devices.

1.4. Organization of the Thesis

The thesis presents functional verification methodologies for DPR and DPR
implementation to minimize the cost of FPGA debugging. The thesis is organized as
follows.

Chapter 2 presents a summary on the FPGA as well as its construction. The details
about DPR is introduced in this chapter as well.

Chapter 3 presents a functional verification methodology for DPR. The common
issues for DPR logic are presented such as guaranteeing proper connections for the
ports of the Reconfigurable Modules (RMs) which share the same Reconfigurable
Region (RR) on the FPGA, waiting for running computations on a module before
reconfiguring it, isolation of the reconfigurable modules during the process of
reconfiguration, and initialization of the reconfigurable module after the process of
reconfiguration is done. A verification methodology for the DPR logic using Assertion
Based Verification (ABV) is presented and demonstrated on SDR system which utilizes
DPR.

Chapter 4 presents an automated verification approach for Clock Domain Crossing
(CDC) verification for DRS designs. A Perl utility is implemented to automate the
generation of the RTL code for each operating mode of the design, and then the RTL is
provided to a CDC CAD tool to verify the CDC signals in the design, the results of
CDC verification of different operating modes of the design are collected and presented
in a single report to the designer to ease the CDC verification process.

Chapter 5 presents the usage of DPR to minimize the cost of the FPGA debugging.
The traditional FPGA debugging flow is presented as well as its drawbacks. The usage
of DPR for FPGA debugging allows the designer to switch between different signals to
be traced by the embedded logic analyzers at runtime, which reduce the total time taken
for debugging on FPGA:s.



Chapter 2 Overview about FPGAs and Dynamic Partial
Reconfiguration

FPGAs were introduced almost thirty years ago. Since their first appearance, they
have been rapidly-growing as a means of digital circuits” implementation. FPGAs great
advantage is their flexibility, which arises from their programmable nature as compared
to systems using ASICs [24]. In some cases, where the specifications of the system are
time-dependent, not all modules need to operate concurrently. An unused module on
the FPGA wastes power, area, and cost. So, it would be beneficial if a module is loaded
only when its application is running, and removed when the application is done with the
required computations [25]. Accordingly, a new concept has evolved in FPGA industry,
which is known as dynamic partial reconfiguration (DPR). This new technology can be
exploited in many applications, for example, to fulfill area requirements in small
portable systems, to create a system-on-a-chip with a very high degree of flexibility,

and to realize adaptive hardware algorithms [26].

In this chapter, various aspects of FPGA and FPGA dynamic partial
reconfiguration are covered. First, an introduction of FPGA basics is presented to cover
FPGA programming technologies, routing architecture, and software flow. Then, the
FPGA reconfiguration technology is presented, such as reconfigurable logic and routing
techniques, benefits of using partial reconfiguration, and partial reconfiguration in

space and time.

2.1. FPGA Overview

FPGAs are pre-made silicon devices that can be electrically programmed to build
any intended type of digital circuits or systems. They offer a number of competing
advantages over ASIC technologies, such as standard cells. ASIC fabrication costs
incomparable amount of time and money to obtain the first device. On the other hand,
reconfiguration of an FPGA takes less than a second. But the flexible nature of an
FPGA appears negatively as a significant cost in power consumption, delay, and area.
As per the comparison of implementing digital designs on FPGAs versus standard cell
ASIC [27], the speed performance for FPGAs is 2 to 4 times slower, the physical area
for using FPGAs is 20 to 30 times bigger, and the consumption of power of FPGAS is
10 times higher. These drawbacks basically stand out from the FPGA’s programmable
routing fabric which trades power, speed, and area in return for immediate fabrication.
The two essential technologies which distinguish FPGAs are architecture and CAD

tools which users must adapt to build FPGA designs [24].

FPGAs, as shown in Figure 2.1, consist of an array of programmable logic blocks

of noticeably different types, as follows [28]:
1. Programmable logic blocks, whose task is to implement logic functions.

2. Programmable routing blocks, which work on connecting these logic functions.

3. 1/0 blocks, which are wired to logic blocks by routing interconnects and make
off-chip connections.
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Figure 2.1: Basic FPGA structure [24]

2.2. FPGA Programming Technologies:

FPGA re-programmability depends on reconfigurable switches, which are
controlled by an underlying programming technology. There are various technologies
for FPGA programming, such as EPROM, EEPROM, flash [64], static memory [65],
and anti-fuses [66]. The differences between these technologies have an outstanding
influence on the architecture of the programmable logic. In modern FPGAs, only flash
[64], static memory [65] and anti-fuse [66] technologies are commonly utilized. In this
section, all modern technologies of FPGA programming will be reviewed to give a
more comprehensive understanding of all technologies used in FPGA manufacturing.

2.2.1. Static Memory

Static memory cells are the building blocks for SRAM programming technology
which is commonly utilized in Xilinx, Intel (Altera), and Lattice devices. In these
devices, static memory cells are spread throughout the device to support
configurability. An example for static memory cell is shown in Figure 2.2. SRAM cells
are used for two main purposes. One of them is to control the values of the routing
multiplexers’ select lines, while the other one is to store the data in lookup-tables,
which are used to implement logic functions. Figures 2.3 and 2.4 illustrate these two

different approaches.
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SRAM technology is considered the most adequate programming technology for
FPGAs because of two main reasons: compatibility with the standard CMOS
fabrication process and re-programmability. Practically, an SRAM cell can be
programmed an infinite number of times. A specific dedicated circuit on the FPGA
does the task of initializing all SRAM bits on power up and configures the bits with a
user-defined configuration. Unlike other technologies of FPGA programming, the
utilization of SRAM cells needs no special IC processing beyond standard CMOS. So,
SRAM-based FPGAs can use the latest CMOS technology available, and therefore,
make use of the increased integration, the enhanced speeds, and the minimized dynamic
power dissipation of new processes with smaller minimum geometries. However,
SRAM-based programming technologies have the following disadvantages:

(1) Size. An SRAM cell consists of either 5 or 6 transistors and the programmable
element used to interconnect signals needs at least a single transistor.

(2) Volatility. The volatility of the SRAM cell requires the use of external devices
for permanent storage of configuration data when the device’s power is down.
These external flash or EEPROM devices are an added cost to SRAM-based
FPGA [67].

(3) Security. The possibility of the configuration information being viewed or
stolen for use in a competing system exists. This is due to having
configuration information loaded into the device at power up stage. Currently,
some FPGA families secure the configuration information through the use of
encryption systems [68].

(4) Electrical properties of pass transistors. SRAM-based FPGAs surely depend
on the use of pass transistors to implement multiplexers. However, they are
not considered perfect switches as they have high on-resistances and present a
significant capacitive load.

2.2.2.  Flash Programming Technology

One substitute that addresses some of the limitations of SRAM based technology is
the use of floating gate programming technologies that inject charges onto a floating
gate above the transistor. This methodology is used in flash or EEPROM memory cells.
These cells are non-volatile; in other words, they do not lose electrical signals
(information) when the device is turned off. Traditionally, EEPROM memory cells
were mainly used to implement wired-AND functions in PLD devices. They were not
used directly to switch FPGA signals [69].

Such methodologies are no longer used because of their static power consumption,
they are only used for very low-capacity devices. With modern IC manufacturing
techniques, it is possible to implement switches using floating gate cells. Particularly,
flash memory cells are used due to their area competence. The extensive use of flash
memory cells for non-volatile memory chips guarantees that flash fabrication processes
will benefit from steady reductions in process geometries. Figure 2.5 illustrates the
flash-based approach used in Actel’s ProASIC devices [59].
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2.2.3. Anti-fuse programming technology

Anti-fuse FPGA programming technology is used as an alternative to SRAM and
floating gate-based technologies. This technology depends on structures, which reveal
very high-resistance under ordinary surroundings, but can be re-programmed to create a
low resistance connection. This link is permanent if compared to floating gate or
SRAM programming technologies. The programmable component, an anti-fuse, is
directly used for propagating FPGA signals. The major advantage of anti-fuse
programming technology is the drop in programmability area overhead. As there is no
silicon area required to establish connections, only metal-to-metal anti-fuses. But, this
area reduction is compensated by the need for large programming transistors, which are
needed for the anti-fuse programming to provide the large currents required to program
the anti-fuses [28]. This area can be paid back with clever programming architecture,
which contributes considerably to the overall area. An added advantage to the anti-fuse
technology is that they have lower parasitic capacitances and on resistances than other
programming technologies. As a result, it is possible to include more switches per
device than that of other technologies. Also, the whole system cost is reduced as there
is no need for additional memory for storing programming information as the device
works instantly once programmed. Programming and transmitting the bitstream to the
FPGA need only to be done once. As a result, this can be done in a secure environment
which improves the security of the design on the FPGA [70].

This programming technology still has some disadvantages. Specifically, anti-fuse-
based FPGASs require a nonstandard CMOS procedure; they are typically late in the
manufacturing processes that they can adopt compared to SRAM-based FPGAs.
Moreover, scaling challenges emerge when considering new IC fabrication processes as
the fundamental mechanism of programming using this technology requires significant
changes to the properties of the fuse materials.
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2.3. Configurable Logic Blocks

The elementary component of an FPGA, which provides the basic logic and
storage functionality for a target application design, is the configurable logic block
(CLB). In order to provide the fundamental logic and storage capability, the basic unit
can be either a transistor or an entire processor. However, this example is very extreme.
For the transistor example, which is in a very simple form, and requires a large amount
of programmable interconnect. That leads to an FPGA that might suffer from area-
inefficiency, low functionality, and high power dissipation. On the other hand, for the
processor example, the basic logic block is very sophisticated and cannot be used to
implement small functions as it will lead to resource waste. As a compromise of these
two extremes, there exists a range of basic logic blocks. Some of them include logic
blocks that are made of NAND gates, an interconnection of Multiplexers (MUXes),
Look Up Table (LUT), and Programmable Array Logic (PAL) style with wide input
gates [71].

LUT-based CLBs are used by commercial vendors, such as Intel (Altera) and
Xilinx. These vendors use LUT-based CLBs to offer fundamental logic and storage
functionality. LUT-based CLBs offer a good trade-off between too simple and too
complicated logic blocks. A CLB can consist of one Basic Logic Element (BLE), or a
cluster (i.e. group) of BLEs which are locally interconnected, as shown in Figure 2.7.
The basic component of a simple BLE is a LUT, and a Flip-Flop (FF). A LUT with n
inputs (LUT-n) contains 2" configuration bits and it can implement any n-input boolean
function. Figure 2.6 shows a simple BLE comprising of a 4 input LUT (LUT-4) and a
D Flip-Flop. The LUT-4 uses 16 SRAM bits to implement any 4-inputs boolean
function. The output of LUT-4 is connected to an optional Flip-Flop. A multiplexer
selects the BLE output to be either the output of a Flip-Flop or the LUT-4.
Additionally, a CLB can contain a cluster of BLEs connected through a local routing
network. Figure 2.7 shows a cluster of four BLES; each BLE consists of a LUT-4 and a
FF. The BLE output is accessible to other BLEs of the same cluster through a local
routing network. The number of cluster’s output pins equals the total number of BLEs
in a cluster. However, the number cluster’s input pins can be less than or equal to the
summation of input pins required by all the BLEs in the cluster. Modern FPGAS
contain typically 4 to 10 BLEs in a single cluster [69].
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2.4. FPGA Routing Architectures

Programmable logic blocks provide computing functionality. These blocks are
connected through re-programmable routing network, which provides routing for any
pre-defined circuitry through enabling/disabling connections among 1/0O and logic
blocks. Wires and programmable switches are the main component of FPGA
interconnects. The used programming technology is responsible for the configuration
of these programmable switches. Since it has been known that any digital circuit can be
implemented on FPGA architecture, the flexibility of FPGA routing interconnects is a
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must. So, they can adopt a wide-ranging diversity of circuits, which require variable
routing limitations. FPGA routing connects can be designed in an optimum way if they
support specific common features of routing requirements of most circuits (taking into
consideration that these requirements might differ from a circuit to another). For
instance, for designs that require locality, considerably-short wires are to be used. Yet
simultaneously, there might be some detached connections, which will need thin, but
long wires. Consequently, both flexibility and efficiency need to be considered during
the design of routing interconnects for FPGA. The relative arrangement of both
architecture logic blocks and routing resources must be well-thought-out, as it
dramatically affects the overall architecture efficiency. This arrangement is labeled here
as global routing architecture, while the tiny details regarding the switching topology of
different switch blocks are labeled as detailed routing architecture. According to the
routing resources global arrangement, FPGA architectures can be classified to either
island-style or hierarchical.

2.4.1. Island-Style Routing Architecture

Figure 2.8 shows traditional island-style FPGA architecture, which is also known
as mesh-based FPGA architecture. From both academic and industrial point of view,
island-style architecture is the most widely-used architecture. The reason behind this
naming convention (island-style) is that in this architecture, configurable logic blocks
look exactly like islands surrounded by a sea of routing interconnects. CLBs are
organized on a 2D grid and are connected internally by a programmable routing
network. The peripheral (1/0) blocks are also connected to the programmable routing
network.

The routing network includes pre-manufactured wiring segments and
programmable switches that are organized in vertical and horizontal routing channels.
80-90% percent of FPGA total area is occupied by the routing network, while only 10-
20% of the total area is occupied by the logic blocks. The flexibility of an FPGA totally
depends on programmable routing network. A mesh-based FPGA routing network
consists of vertical and horizontal routing channels, which are connected through
switch boxes (SB). Connection boxes (CB) are used to connect logic blocks to the
routing network. The flexibility of a connection box (Fc) is calculated as the number of
routing tracks of the neighboring channel connected to the pin of a block. Fc(in) is the
connectivity of logic blocks input pins with the neighboring routing channel, whereas
Fc(out) is the connectivity of logic block output pins with the neighboring channel. For
example, if Fc(out) equals 1, it indicates that all neighboring routing channel tracks are
connected to logic blocks output pins.

Architecture channel width is calculated as the number of tracks in routing channel.
The very same channel width is used for all vertical and horizontal architecture’s
routing channels. Commonly, pass transistors are used to connect a block’s output pins
to routing tracks. Each pass transistor creates a tri-state output that can be turned on/off
individually. Nevertheless, the technique of single-driver wiring can similarly be used
to connect output pins of a block to the neighboring routing tracks. Tristate logic cannot
be used in single-driver (unidirectional) wiring as the block output needs to be
connected to the neighboring routing network through multiplexors in the switch box.
The commercial trend in FPGA made modern FPGA architectures move towards using
single-driver, directional routing tracks. It has been proven that 9% improvement in
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delay, 25% improvement in area, and 32% improvement in area-delay can be
accomplished if the single-driver directional wiring is used instead of bidirectional
wiring [24]. All these gains are attained without any major changes in the CAD flow of
FPGA. Variable-length wires are created to reduce delay in mesh-based FPGAs. Figure
2.9 shows an example of dissimilar length wires. Longer wire segments go across
multiple blocks requiring fewer switches, thus decreasing routing delay and area. On
the other hand, routing flexibility is reduced, which decreases the probability to route a
hardware circuit efficaciously. Up-to-date commercial FPGAs frequently use a
permutation of short and long wires to balance routing network area, delay, and
flexibility [72].
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2.4.2. Hierarchical Routing Architecture

Most logic designs demonstrate locality of connections; therefore indicating a
hierarchy in connections placement and routing between different logic blocks.
Hierarchical routing architectures take advantage of the locality principle by dividing
FPGA logic blocks into individual clusters. These clusters are recursively connected to
create a hierarchical structure. In a hierarchical architecture, connections between logic
blocks within the same cluster are made by wire segments at the hierarchy lowest level.
Though, the connection between blocks existing in different groups involves the
traversal of one or more hierarchy levels. The signal bandwidth varies as it moves
further from the bottom level and generally it reaches its widest at the top level of
hierarchy in a hierarchical architecture. A large number of commercially-based FPGAs
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families use the hierarchical routing architecture, such as Altera Flex10K, Apex and
Apexll architectures [73].

Software Flow

FPGA architectures have been strongly explored for the past 20 years. A key
aspect of FPGA architecture research is the improvement of CAD tools for mapping
applications to FPGAs. It is well recognized that the superiority of an FPGA-based
implementation is largely defined by the efficiency of the associated suite of CAD
tools. Benefits of a well-designed, feature-sufficient FPGA architecture might be
compromised if the CAD tools cannot take advantage of the features that the FPGA
supports. Thus, research in CAD algorithms is essential to the architectural
advancement to fill the performance gaps between other computational devices, such as
ASICs. The software flow takes an application design described in HDL language and
converts it to a stream of bits that is actually programmed on the FPGA. The procedure
of altering a circuit description into a format that can be loaded into an FPGA can be
divided into five distinct steps, which are: synthesis, technology mapping, clustering,
placement, and routing. FFGA CAD tools’ final output is a bitstream that configures
the state of the memory bits in an FPGA. The state of these bits determines the logical
function that the FPGA implements. Figure 2.10 shows a comprehensive software flow
for programming an application-specific circuit on an FPGA. A description of several
steps of software flow is given in the following part of this section. The details of these
steps are usually similar to the kind of routing architecture used and they can be applied
to both architectures described earlier.
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Figure 2.10: FPGA software basic flow [24]
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2.5.1. Logic Synthesis

The FPGA flow begins with the logic synthesis of the netlist mapped on it. Logic
synthesis transforms an HDL code (Verilog or VHDL) into a group of boolean Flip-
Flops and gates. The synthesis tools transform the RTL interpretation of a design into a
hierarchical boolean network. Numerous technology-independent methodologies are
being applied to optimize the generated boolean network. The conventional cost of
optimizations which are technology-independent is the total exact count of the factored
representation of the logic function. Such count is directly proportional to the area of
the circuit [74].

2.5.2.  Technology Mapping

Synthesis tools output is a netlist. The netlist contains a circuit description of
boolean logic gates, wiring connections, and flip-flops between these elements. The
circuit can similarly be characterized by a Directed Acyclic Graph (DAG). Each node
in the graph represents a gate, a primary input/output, or a flip-flop. Each edge in the
graph symbolizes a connection between two circuit elements. Figure 2.11 demonstrates
an example of a circuit DAG representation. Given a library of cells, the technology
mapping problem can be stated as finding a network of cells that implement the
boolean network. In the problem of technology mapping for FPGAs, the library of cells
consists of n-input flip-flops and LUTs. Thus, technology mapping for FPGA includes
converting the boolean network into n-bounded cells. After that, each cell is
implemented as an independent n-LUT. Figure 2.12 shows an example of transforming
a Boolean network into n-bounded cells. Algorithms of technology mapping can
optimize a design for a set of goals including power, area, or depth. The FlowMap [64]
algorithm is the most widely used tool for FPGA technology mapping in academic
research. FlowMap is able to find a depth-optimal solution in polynomial time and
promises depth optimality as a return of logic duplication. Hence, it is considered a
great discovery in technology mapping for FPGAs. After the first presentation of
FlowMap, a lot of technology mapping tools have been designed that optimize for run-
time and area while still maintaining the depth-optimality of the circuit. The result of
the technology mapping step generates a network of n-bounded LUTSs and flip-flops.

A Boolean Network An Equivalent Directed
Acyclic Graph (DAG)

Figure 2.11: DAG representation of a circuit [24]
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Figure 2.12: Example of technology mapping [24]

2.5.3. Clustering/Packing

The logic elements in Mesh-based FPGAs are naturally arranged in two levels of
hierarchy. The first level contains LBs which are flip-flops and n-input LUT pairs. The
second level hierarchy combines each k LBs together to create logic blocks clusters.
The clustering stage of the FPGA CAD flow is the process of creating groups of k LBs.
These clusters can then be mapped instantly to a logic element on an FPGA. Figure
2.13 shows an example of the clustering process. Clustering algorithms can be roughly
classified into three general methodologies, which are depth-optimal, top-down, and
bottom-up. Depth-optimal methodology tries to decrease delay at the expense of logic
replication [75]. Top-down methodology divides the LBs into clusters by consecutively
subdividing the network or by iteratively moving LBs between parts [76]. The bottom-
up methodology is commonly favored for FPGA CAD tools due to their fast run times
and sensible timing delays [77]. They consider only the information of local
connectivity and can simply meet constraints of clusters pin. The top-down approaches
offer the best solutions. But, they still have the disadvantage of unaffordable
computational complexity.

I — c— cnf  — — —
| r |
Clusters

lvv hl lvl | f [v Y |
BLE1 BLE2 BLE3 BLE1 BLE2 BLE4 | |
= _; e s s i m *_ -

#
Yy Yoy |i#__ [ ﬁl‘ I
BLE4 BLES | | BLE3 BLES | |

byl o el — e

Figure 2.13: packing example [24]
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2.5.4. Placement

Determination of which logic block in an FPGA should implement the
corresponding logic block required by the circuit is the responsibility of placement
algorithms. The optimization objectives are to locate connected logic blocks close to
each other to decrease the required wiring, and sometimes to locate blocks to balance
the wiring density across the FPGA or to take full advantage of circuit speed. The 3
major approaches of placers used nowadays are min-cut [78], analytic [79], which are
often followed by local iterative enhancement, and simulated hardening based placers
[80]. To inspect architectures objectively, users must validate that CAD tools are trying
to use every FPGA’s feature. This means that the optimization approach and objectives
of the placer might be altered from architecture to another. The most commonly-used in
FPGA CAD tools are partitioning and simulated hardening approaches.

2.5.5. Routing

The routing problem of an FPGA lies in assigning nets to the routing resources to
guarantee that no routing resource is being shared by more than one net. Path finder is
the current and most up-to-date FPGA routing algorithm [81]. Path finder operates on a
directed graph abstraction G(V,E) of the routing resources in an FPGA. The set of
vertices V in the graph represents the I/O terminals of logic blocks and the routing
wires in the interconnect structure. An edge between two vertices represents a possible
connection between them. Figure 2.14 represents part of the routing graph in a Mesh-
based interconnect. Given this graph, finding a directed tree that is embedded in G and
connects the source and sink terminal together is the definition of the routing problem.
Because there is an inadequate number of routing resources in an FPGA, the aim of
finding non-intersecting, unique trees for all the nets in a netlist is a challenging
problem. Path finder uses an iterative, negotiation-based methodology to fruitfully
route all the nets in a netlist. Nets are easily routed without taking care of resource
sharing only during the first routing iteration. Individual nets are routed using Dijkstra’s
shortest path algorithm [82]. Resources may be overcrowded because many nets have
used them at the end of the first iteration. During subsequent iterations, the cost of
using a resource is greater than before, depending on the history of congestion on the
resource and the number of nets that share that resource. If a resource is highly
congested, nets which can use lower congestion alternatives are forced to use this
capability. In contrast, if the alternatives are more overcrowded than the resource, then
a net may still use that resource.

’ : source
wire3  wired

out

out i} wire3

inl in2 I wirel wire2

L1
_j\/ inl in2
wirel )Uf\/
: sink
wire2

Figure 2.14: Modeling FPGA architecture as a directed graph [24]
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2.6.

2.5.6. Timing Analysis

Timing analysis is used for two main motives; first, to specify the circuits’ speeds,
which have been entirely placed and routed, and second, to estimate the slack of each
source-sink connection during routing in order to decide which connections must be
made through fast paths to avoid slowing down the circuit [83].

At the beginning, the considered circuit is presented as a directed graph. Nodes in
the graph symbolize input and output pins of circuit elements such as LUTs, 1/Os, and
registers. Connections between these nodes are shown with edges in the graph. Edges
are added between the inputs of combinational logic Blocks (LUTSs) and their outputs.
These edges are marked with a delay consistent with the physical delay between the
nodes. Register input pins are not joined to register output pins. A traversal is done on
the graph starting at sources to identify the circuit delay. Then the arrival time (Tarriva)
at all nodes in the circuit is computed with the following equation:

Tarrival (N) = MaXm € fanin(y{ Tarrivar (M) + delay(m,n)} Q)

Where node n is the node currently being analyzed, and delay(m, n) is the delay
value of the edge connecting node m to node n. The circuit delay is then calculated as
the maximum arrival time, Dmax, Of all the circuit nodes. For guiding a placement or
routing algorithm, it is beneficial to know how much extra delay may be inserted into a
connection before the path that the connection is on becomes critical. The amount of
extra delay that may be inserted into a connection before it becomes critical is called
the slack of that connection. To calculate the slack of a connection, one must calculate
the required arrival time, Trequired, at all the nodes in the circuit. The Trequired IS adjusted
at all sinks (register inputs and output pads) to be Dmax. Required arrival time is then
propagated backward starting from the sinks with the following equation:

Trequired(N) = MiNm € fanout(n){ T required(m) — delay(m,n)} 2

Finally, the slack of a connection (n, m) driving node, m, is defined as:

Slack(n,m) = Trequired(M) — Tarrivar (n) — delay(n, m) 3)

2.5.7. Bitstream Generation

Bitstream information is generated for the netlist immediately after a netlist is
placed and routed on an FPGA. A bitstream loader is used to program this bitstream on
the FPGA. The bitstream of a netlist contains information of which SRAM bit of an
FPGA is programmed to a logic value of 0 or 1. The bitstream generator reads the
technology mapping, packing, and placement information to program the SRAM bits of
Look-Up Tables. Finally, the routing information of a netlist is used to correctly
program the SRAM bits of both connection and switch boxes.

Dynamic Partial Reconfiguration

DPR is a feature of SRAM-FPGAs that offers the benefit of flexibility to
reconfigure a part of FPGA at runtime with reusing the same hardware resources [60].
Xilinx DPR design flow imposes the splitting of the design into a dynamic part and a
static part [7] as shown in Figure 2.15. The dynamic part consists of the reconfigurable
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modules (RMs) of the system, whereas the static part consists of the static modules that
are not changed during the reconfiguration (i.e. they are available in all the operating
modes of the design). The dynamic part contains multiple Reconfigurable Regions
(RRs). Each RR is used for a set of RMs, which can be swapped during runtime
without disruption. A partial bitstream is generated for each RM to be mapped into a
specific RR during reconfiguration. Partial bitstreams are loaded from a non-volatile
memory to the FPGA configuration memory using dedicated configuration interfaces.
DPR are categorized based on the configuration modes as internal or external
reconfiguration methodologies, based on how the reconfiguration is handled either
internally within the FPGA or via an external device such as a PC or another FPGA.
Xilinx 7-series FPGAs have two internal configuration interfaces to the FPGA
configuration memory [61]: (i) The Internal Configuration Access Port (ICAP) that is
physically located on the FPGA fabric. (ii) Processor Configuration Access Port
(PCAP) only available for the Xilinx 7-series Zynq FPGA equipped with a hard macro
ARM processor. Also, three external configuration interfaces are used through the
serial configuration ports: JTAG, Serial mode, and Select-Map.

[FPGA

Figure 2.15: Dynamic Partial Reconfiguration in SRAM-FPGAS.

2.6.1. Configuration Modes

DPR can be performed by loading RMs partial bitstreams to the FPGA
configuration memory. Accessing the configuration memory is achieved through
numerous FPGA configuration modes or configuration ports [61]. Configuration modes
are classified according to the type of configuration interface used to access the
configuration memory. Table 2.1 shows the different configuration modes for Zynq
FPGA.

2.6.1.1. External Modes

External configuration modes use external FPGA interfaces to load the partial bit
files to the configuration memory of the FPGA. JTAG is the only external
configuration port for Zynq FPGA. The partial bitstreams are transferred from an
external memory storage source, for example, the PC through the JTAG serial interface
to the configuration memory. The data rate of the JTAG configuration interface is
limited to 8.25 MB/S and not suitable for real-time application such as the SDR system
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[62] and requires an external PR controller, such as CPU or another FPGA to control
the process of reconfiguration.

2.6.1.2. Internal Modes

Internal configuration modes use internal FPGA interfaces to load the partial bit
files to the FPGA configuration memory. Two internal configuration modes are used in
Xilinx Zyng FPGA. 1) ICAP configuration mode is based on the ICAP hard macro 32-
bit configuration port primitive located on the PL side to access the configuration
memory with a theoretical data rate of 400 MB/S. 2) PCAP configuration mode is
based on the PCAP 32-bit configuration port in the PS side controlled by the ARM
processor to access the configuration memory with a data rate of 400 MB/S:

Table 2.1: Configuration Modes of Zyng FPGA

Configuration . Max
Mode Type Max Clock Data Width Bandwidth
ICAP Internal 100 MHZ 32-bit 400 MB/S
PCAP Internal 100 MHZ 32-bit 400 MB/S
JTAG External 66 MHZ 1-bit 8.25 MB/S

2.6.2. Advantages and Disadvantages of DPR

The main advantages of the reconfigurable systems are:

1. Resources utilization: in traditional design implementation, most of the
hardware resources are not used at till the time when it is activated to operate
for a certain period of time. Using reconfigurable hardware and DPR will
increase the resource utilization by only implementing the active part of the
design in the required time and time multiplexing the resources between the
design hardware modules in consistence with activity schedule.

2. Scalability: wusing reconfigurable hardware allows upgrading system to
accommodate freshly defined tasks to handle the growth in technology and
features. It also enables the deploying of bug fixing in hardware, which
decreases the cost of re-deploying new hardware and increase the time-to-
market for products.

3. Reusability: reusing the resources for different design implementations is
enabled, where a system can be customized for adaptability.

4. Power reduction: considered the most important detail, where power dissipated
in the system although most of the parts are not working. In the Integrated
Circuits (IC) design, the leakage power is the power consumed by the device,
while it is even not active. FPGA reconfiguration helps in delaying the
implementation of a specific part until the time of operation, which decreases
the consumed power over time and though the battery lifetime.

5. Area: instead of implementing a full system in a horizontal way, which
consumes area, a system can be optimized by vertical implementation idea
which uses programming in space and time, where a stack of blocks are stored
and loaded at the time of operation. This will save the area used by the same
blocks in the horizontal design.

Quite the reverse, there are some disadvantages for the DPR and they are being
improved by research, such as:
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2.1.

1. Latency: latency increased by the time overhead added by the reconfiguration
time [63]. It could be improved by using high-speed PR controller to accelerate
the reconfiguration time.

2. Memory: as blocks will be stored, more memory is needed for storing the
different implementations until the time of operation. As the storage sizes are
increasing, this item is improved. For example, 5 files of few kilobytes contain
the new reconfiguration can be stored on gigabytes of the attached storage
device. Reconfiguration files can be stored on servers and accessed through the
network, as the network accessing process is improving by time.

2.6.3. Terms of DPR

Reconfigurable Region (RR) is “the region of the FPGA logic core that will be
reconfigured, each RP can be reconfigured with one or more Reconfigurable Module
(RM), among which swapping occurs”. Reconfigurable Module (RM) is “the module
that contains the application to be run. It is designed using HDL or using netlist”.

Summary

In this chapter, various aspects of FPGA and FPGA DPR were covered. The
chapter presented an introduction of FPGA basics o cover FPGA programming
technologies, routing architecture, and software flow. Then, the FPGA reconfiguration
technology was presented, such as reconfigurable logic and routing techniques, benefits
of using DPR. In the next chapter, the verification of DPR using ABV is covered.
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Chapter 3 : Dynamic Partial Reconfiguration Verification

3.1.

Using Assertion Based Verification

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime while
the rest of the logic keeps operating. This feature allows the designers to build complex
systems such as SDR in a reasonable area. However, utilizing DPR needs extra care to
be taken for new issues, such as guaranteeing proper connections for the ports of the
Reconfigurable Modules (RMs) which share the same Reconfigurable Region (RR) on
the FPGA, waiting for running computations on a module before reconfiguring it,
isolation of the reconfigurable modules during the process of reconfiguration, and
initialization of the reconfigurable module after the process of reconfiguration is done.
This chapter proposes a technique to verify these newly introduced issues using
Assertion Based Verification (ABV). The proposal is to first automatically model these
issues using System Verilog Assertions (SVASs), then instrument the design with the
generated assertions. Following that, the instrumented design is verified using
simulation or formal methods to check the existence of these issues. The proposed
technique proves effectiveness in finding issues on real designs that utilize DPR
technique.

Introduction

DPR on FPGAs allows reconfiguration of some of the logic at runtime while the
rest of the logic keeps operating. It allows the implementation of complex circuits as
SDR and Internet of Things (loT) applications within a reasonable area on the FPGA.
Consequently, the power consumption of the circuit is reduced. Currently, Xilinx and
Intel (Altera) are the main FPGA device vendors on the market. They provide a series
of FPGA families that support the DPR design flow. In this chapter, the Xilinx DPR
design flow is considered [7].

Configl Static_Module_1 Reconf_Module1l_Model Static_Module_2
Config? Static_Module_1 Reconf_Module1l_Mode2 Static_Module 2
Config3 Static_Module_1 Reconf_Modulel_Mode3 Static_Module_2
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Figure 3.1: An example of DPR design with 3 modes of configuration and 1
reconfigurable module per configuration

In DPR, the design consists of a number of Reconfigurable Modules (RMs). At
runtime, each module has modes that are swapped according to the system operating
modes. A Reconfigurable Region (RR) is a location on the FPGA in which the
reconfigurable module is implemented on. An example of DPR system is shown in
Figure 3.1, it has three configuration modes: Configl, Config2, and Config3. Each
configuration has three modules, two of them are static (i.e. they are not changed in any
of the operating modes of the design): Static_Module_1 and Static_Module_2, and one
of them is reconfigurable module: Reconf _Modulel, the reconfigurable module has
three modes: Model, Mode2, and Mode3.

The DRS extend the design flexibility through the mapping of multiple
reconfigurable modules to the same physical reconfigurable region, which reduces the
design cost and the resource usage. In the example of Figure 3.1, the design will have
one RR on the FPGA for the reconfigurable module Reconf_Modulel. The RR can be
configured by an RM mode according to the configuration mode of the design. In the
configuration mode Configl, the RR will be loaded by the RM mode
Reconf_Modulel_Model and so on. Utilizing DPR technique for FPGA designs adds a
new aspect in the design and verification of FPGA designs. For Xilinx FPGAs, the
consistency of RMs is one of the basic requirements of a partially reconfigurable design
[7]. As one module is swapped for another, the connections between the static design
and the RM must be identical. Such requirement adds an extra work on the designer to
create a wrapper module to encapsulate all the modes of the RM, and to have a fixed
interface between the static design and the RM. This interface must work for all the
modes of the RM, the process of connecting the interface to different modes of the RM
is an error-prone task and should be verified on the RTL before moving to the
implementation of the design on the FPGA.

Designers also add extra logic in their DPR designs for 1) delaying any
reconfiguration request till the computations done by the RM is completed, 2) isolating
the RM during the process of reconfiguration, and 3) initializing the RM after the
process of reconfiguration is done. The added logic for these tasks should be verified on
the RTL to make sure they are working as expected, and any bugs are caught as early as
possible in the design cycle. The detection of real reconfiguration issues is very
challenging, especially in the early design stages. If such errors are not tackled and
verified early in the design cycle, they may cause functional errors during on-chip
verification which are hard to debug. In this chapter, a new methodology is proposed to
verify the added logic for the reconfiguration process of DPR using ABV, the
contributions of this work are:

1. Automatically extract the connections of the ports of the modes of the RM,
and write SVA properties to verify these connections on the RM wrapper
module.

2. Model the functionality of the added logic for the partial reconfiguration
process (i.e. delaying the reconfiguration request, isolating the RM during
the reconfiguration, and initializing the module after reconfiguration) using
SVA properties to verify their functionality.

3. Embed the generated assertions into the RTL, and feed them to simulation
or formal verification to verify the functionality of the design.

26



4. A case study for using the proposed verification methodology on a DPR
design and identifying bugs in the design.

3.2. Background

3.2.1. Functional Verification

To understand why verification is important and what methods are used for testing
circuits, it is important to understand the hardware development cycle. The first step in
the hardware development cycle is the specification stage, where architects specify the
behavior of a circuit. This may include creating system-level models to simulate this
behavior. The next step is to specify the RTL implementation using an HDL, such as
Verilog, which describes the flow of data in a circuit, and how that data is manipulated
to achieve the desired behavior.

The RTL implementation is then synthesized into a gate-level implementation,
which specifies how the circuit must be constructed out of individual logic gates. This
gate-level implementation is then mapped out to determine where the transistors and
wiring will be physically located on a chip. This physical layout is then manufactured at
a fabrication plant where the circuits are printed onto silicon. This silicon is placed into
a package which can potentially interface with other systems. For using FPGA as the
target device for designs, there is no physical layout needed for the design and similarly
for the fabrication, instead the design is synthesized into a gate-level representation in
terms of the FPGA basic cells (LUTs and FFs) of the target device. After that, a bit-
stream is generated to be programmed on the FPGA to implement the circuit, the
generation of the bit-streams is done by the vendor software such as Xilinx ISE [13].

Since there are so much work and cost that goes into each step of the development
cycle of hardware, hardware designers exert an extremely large effort into making sure
that each step is done correctly. Making a mistake in one of the steps means that all of
the following steps will be wrong, costing even more time and money. Classification of
functional verification is shown in Figure 3.2. This chapter focuses on the testing of the
RTL design. There are many strategies used in the testing of the RTL design.
Traditionally, designers use black-boxing techniques to testing the requirements against
the design implementation. This involves the creation of a test-bench with instantiating
the Design Under Verification (DUV) in the test-bench. Test patterns are saved into a
file with the expected output results, and the test-bench reads the test vectors from that
file to drive the DUV, the outputs are then captured and compared to the results of the
reference model. For the generation of the test patterns for the DUV, designers use
different techniques and strategies. One strategy involves driving the DUV with
specific patterns to hit some known scenarios and create some expected behavior, that
strategy is called directed testing. Sanity mechanisms (such as results comparison) with
directed testing should be used to ensure the matching of the actual behavior for the
design’s internal states and the design’s outputs. Another strategy is to drive the inputs
with random stimulus to produce completely random behavior. This random simulation
has to be paired with many checkers that ensure that circuit behavior is legal for the
whole system. Also, this random simulation has to be guided by design constraints to
avoid exploring invalid states for the design under test. Recently, test-benches have
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become complex verification environments that are often built with a Hardware
Verification Language (HVL), which dramatically evolved to standardize and support:
automatic vector generation, output response validation, code coverage analysis,
constraint solver, and functional coverage.
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Figure 3.3 and Figure 3.4 shows the evolvement of the functional verification
trends as announced by the Wilson Research Group [34,50]. The trends show the
number of designs being verified by advanced techniques such as “Assertions”, it
shows that that number has been increased over the last ten years. Such increase is
mainly due to the increased complexity of the hardware designs, and consequently, the
amount of money that will be lost in case of any bug escapes into the fabricated chip.
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Figure 3.3: Trends for techniques of functional verification for ASIC/IC Design
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In order to help designers decide when enough verification is done, they need
coverage metrics to measure the progress of the verification and assess its effectiveness
in simulation-based verification. With the incorporation of technologies and tools that
help in bug finding, engineers can evaluate coverage results and decide on what to do
next, and when a design can move to tape-out.

3.2.2. Assertion Based Verification

ABV provides techniques for designers to define assertions in one or more
commonly used languages (PSL, Verilog, VHDL, SVA or OVL). These assertions
(checkers, monitors) are then folded into the verification test-bench and exercised
during simulation, or they can be provided as proof targets to a formal property
checking engine.

When assertions are interpreted by verification tools a pass or fail result is the
minimal feedback that a tool must provide. In simulation-based verification with
assertions, the test-bench should contain test vectors that cover as much as possible of
the design’s states, i.e. the scenarios considered should be meaningful and relevant to
gain confidence about the level of verification being done. If an assertion did not fail
because of the absence of proper stimulus, this is not an indication that the design is
error free. It indicates that the behaviors, which are specified by the set of assertions,
are respected under the given test-bench. When using assertions with formal methods,
they provide a proven or fired assertion. Proven means that the assertion passes under
any valid test patterns, and fired means that there is a pattern that can cause the
assertion to fail. For fired assertions, formal methods generate a waveform (counter
examples) which causes the assertion to fail. However, input stimulus doesn’t need to
be provided for formal or static methods, formal methods mathematically prove the
result of the assertions, that’s a big advantage of the formal methods when they are
compared to simulation.

In general, an assertion is a statement about a specific intended behavior of the
design that must hold true under normal operating conditions. Figure 3.5 shows an
example of a simple handshake behavior which is intentionally described as after the
assertion of the request signal, the acknowledge signal has to be asserted 1 to 3 cycles
late.

0 1 2 3 4 3

req

ack

Figure 3.5: Waveform for a request-acknowledge handshake behavior

The above behavior can be described using System Verilog Assertion as
property single_req ;
@( posedge clk ) disable iff ( rst)( $rose(req) ) |=> ( (lack && req )[*0:2] ##1 ack ) ;
Endproperty
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Assertions can be encapsulated within the RTL design, as illustrated in Figure 3.6,
or it can be added in a separate module, and bound to the RTL design, as illustrated in
Figure 3.7, 3.8, and 3.9. The RTL can be simulated with the associated stimulus .The
simulator analyses the execution run and reports the status of the assertions. On the
other side, the RTL with the associated properties can be passed to formal verifiers
(Model Checkers), which will report proofs or counter examples for the design
properties. Formal proof indicates that the property has been mathematically proven to
be always true for this design, and in the event of a failure, counter examples can also
be generated to show up what is the sequence of stimulus which if applied to the RTL it
will violate the design properties.

nodule dut(clk,rst,in,out);
input clk,rst,in;

output out;

req [1:0]pos;

req out;
req a;
alwvays @ (posedge clk)
beqin
if (rst) begin
pos = 2'b00 ;
a <= 1'b0;
end
else
1f (pos == 2'bll)
begin
out <= 1'hl;
pos =2'b00;
a <= 1'h0;
end
else
1f (pos == 2'h00)
beqin
a<=1'bl;
out <= 1'h0;
pos= pos + 1;
end
else
pos=pos+l;

end

property propl;

@(posedge clk) disable iff (rst) S$rose(a) |-> Srose(a) 3 $rose(out);
endproperty

assert property(propl);

_endnodule

Figure 3.6: Example for assertions embedded into the RTL

Figure 3.7 shows an example for a Verilog module that will be verified using System
Verilog Assertions (SVA), unlike the example in Figure 3.6, there are no assertions
written into this Verilog module. The assertions used to verify the Verilog module are
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written into a separate module (called verification module), this verification module
will be bound to the Verilog design module to apply the assertions to the design under
test, the verification module is shown in Figure 3.8, the binding of the Verilog design
module to the verification module is shown and illustrated in Figure 3.9.

[[+++++++++++++++ R

/I DUT With assertions
fI+++++++++ -+ A R R R
module bi nd assertion(

ianIt wire oclk, req, reset,

output reg gnt):

‘ll o e o e o e e e e e e e e e e . e o e e o e e o e o e o o o e . e

Il Actual DUT RTL

‘ll o e o e o e e e e e e e e e e . e o e e o e e o e o e o o o e . e

LE-RN - - R NN - RN+ R RN - R - T

10 always @ (posedge cix)

11 gnt == req:
12

13 endmodule

Figure 3.7: Verilog design example to be bound to an assertions module

T LB s o o o o o

3 /|l Assertion Verification IP

R m s R R

4 module assertion_ip{input wire clk ip, req ip,reset ip,gnt ip):

5 ! S S S S S S S S S S S S S S S S S SSS ESSSSSESSSSSS=SS=SS==========

& /| Sequence Layer

8 sequence req gnt seq:
9 (~req_ip & gnt_ip) A (~req_ip & ~gnt_ip):
i0 endsequence

13 I/ Property Specification Layer

14 property req_gnt_prop:
15 @ (posedge cik ip)

16 disable iff (reset ip)

17 req ip |=:-" req gnt seq;

18 endproperty

20 // Assertion Directive Layer

22 req gnt assert . assert property {req gnt prop)

23 else

24 $display ("@%0dns Assertion Failed", $time);
25

26 endmodule

Figure 3.8: Assertions module to be bound to the DUT
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3 |/ Binding File
RSt e e

4 module binding module() :

5 ‘ll o o o e o e e e e o o

& // Bind by Module name : This will bind all instance
7 Il of DUT

B ‘ll o o o e o e e e e o o

§ // Here RTL : stands for design under test
1@ /| VIP : Assertion file
11 // RTL Module Name VIP module Name Instance Name

12 bind bind assertion assertion ip U assert ip (

i3 I/ .vip port (RTL port)
14 .clk ip (clk),

15 .req ip (req),
16 .reset ip (reset),
17 .gnt ip (gnt)

18 )

3@ // Bind by instance name : This will bind only instance
21 I/ names in list

53 I/ Here RTL : stands for design under test

24 /I VIP : Assertion file

85 /I RTL Module Name Instance Path VIP module Name Instance Name
9§ //bind bind_assertion :$root.bind_assertion_tb.dut assertion_ip U_assert_ip (
57 Il .vip port (RTL port)

98 Il .clk_ip (clk),

35 I/ .req_ip (req),

30 I/ .reset_ip (reset),

3 // .gnt_ip (gnt)

3z Il);

33 ‘ll o o o e o e e e e o o

34
35 endmodule

Figure 3.9: Binding of the Verilog design module to the verification module

For being familiar with the anatomy of hardware design properties, a property can
be formally defined as: “A collection of logical and temporal relationships between and
among subordinate boolean expressions, sequential expressions and other properties
that in aggregate represent a set of behavior”. When studying them, it is easier to look
at their compositions as four distinct layers:

1. Boolean layer: This layer consists of boolean expressions that are formed
using variables of the design model. For example sell and sel2 are mutually
exclusive can be modeled as !(sell && sel2).
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2. Temporal layer (timed seqguences): This layer permits the verification
engineer to describe the boolean expressions’ relationships to each other
over time. It allows the engineer to define the sequence in which the
boolean expression must be satisfied.

3. Modeling layer (properties): This layer provides a clear and concise way
to describe the circuit’s behavior, specify when a sequence should or should
not happen. Inside this layer, the engineer can specify when a property
should be disabled or enabled.

4. Verification layer (Directives: assert, cover, assume): This layer
describes how a property is used during verification, i.e should it be used as
an assertion and hence it will be checked? Or, should the property be used
as an assumption or a constraint to the design? Or, should the property be
used to define an event that is used to collect functional coverage
information?

These layers of RTL properties specification are shown in Figure 3.10.

Assertion

: > Checker packagi
fperon ecker packaging

Directives » Assert, assume, cover

(assert, cover) ol . .
> Specification of behavior,

Properties desired or undesired

Sequences > HO“' B()()lean events are
(Sequential Expressions) related over time

Boolean Expressions » True or False eXI)l'eSSi()ll

Figure 3.10: Compositions of hardware design assertion properties

Properties are often classified in the context of their temporal and verification layers.
Furthermore, properties can be also categorized by their method of evaluation (that is,
concurrent or sequential activation)

1. Safety versus Liveness: Safety property says that some bad sequence
cannot occur. This is a property that must evaluate to true all the time. On
the other side, a property that indicates some good behavior will happen in
the future is called a liveness property. It defines a possibility that is
unbounded in time. Examples:

property safety _property_example ;
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@( posedge clk ) counter_value <= maximum_allowed_value ;
endproperty

property liveness_property example ;
s_eventually counter_value ==1;
endproperty

2. Constraint versus Assertion: A Constraint is a property that lists the
acceptable values (or sequences of values) which are permitted on an input.
The design cannot be ensured to function correctly if its input value (or
sequence of values) violates a specified constraint. While an assertion is a
property that specifies that the expected design output behavior must stay
valid or true. To guarantee a correct design functionality, all the assertions
should evaluate to true for any permissible sequence of input values applied
to a design.

3. Declarative versus procedural: A declarative property describes the
expected behavior of the design independent of its RTL procedural details.
Hence, it is not necessary to understand the procedural code to understand
the required expected behavior. On the other hand, the procedural property
describes the expected behavior of the design in the current context at a
particular line within the procedural code. Hence it is necessary to
understand the details of the procedural code to fully understand the
expected behavior. Expressing interface properties declaratively is
generally more intuitive than expressing these properties procedurally,
since the interface requirement is typically independent of the details of the
block implementation. While capturing internal implementation of an RTL
design intent procedurally, will generally reduce the amount of extra code
required to express these properties.

4. Concurrent versus sequential: A design model typically consists of a
static, hierarchal structure, in which primitives interact through the network
of interconnections. These primitives may be built in simple functions or
large more complex procedural or algorithmic descriptions. Within a
procedural description, statements execute in sequence. However within the
design as a whole, the primitives and their communication interact
concurrently. Just as the design model, properties may also be represented
as declarative or procedural statements. Hence, a declarative assertion is a
statement that is always active and is evaluated concurrently with other
layers or primitives in the design. A procedural assertion, on the other hand,
is a statement within the context of a process that executes sequentially in
its turn as the procedural code executes.

Hardware Verification Languages (HVLs) are used to write assertions. Property
Specification Language (PSL) [51] and System Verilog Assertions (SVA) [21] are the
most commonly used HVLs. SVA is part of the System Verilog Language [21]. Also,
HW verification engineers can select from a readymade, pre-verified assertion libraries,
such as the Open Verification Library (OVL) [52]. Table 3.1 describes the advantages
and the disadvantages of each of them:

Table 3.1: Advantages and Disadvantages of HVLs

Assertion Languages Assertion Libraries
(PSL, SVA) (Checker-Ware, OVL)
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Advantages e Customization e Pre-verified checker IP
e Abstraction and powerful e Drop-in solutions for most
pattern matching common checking tasks
e Designers like it (Low effort)
Disadvantages | ¢ Implementation effort e Exact checking requirements
e Power = complexity may not match available
e Learning curve components

To summarize, there is a vast array of scenarios where assertions and assertion
checkers play an important role in verification, hardware emulation, post-fabrication
debugging, permanent online monitoring, simulation, and formal verification.
Synthesizing assertion checkers is beneficial and in most of these cases essential to
allow the assertion paradigm to be used in these areas.

ABYV is one aspect of any complete SoC or Silicon fabrication flow. The design
intent and specifications are captured by the assertions in an executable form. During
simulation, these assertions are acting as monitors to detect errors close to their source,
and to report both errors and coverage information. Assertions also enable formal
analysis, which can provide exhaustive verification of blocks and interfaces. With
incorporating the usage of assertions in the verification process, verification can start
earlier, design and verification teams can detect and remove bugs faster, and designers
can incorporate their intent into the design code to minimize integration issues later on.

Assertion languages provide the grammar needed to explicitly codify properties.
Two languages are prevalent in the industry, are accepted standards, and are supported
by most of the RTL simulation or formal verification tools: SVA 21] and PSL [51].
Both languages’ sets of operators and constructs are almost equivalent, they differ by
some nomenclatures, syntax and minor features. Figure 3.11 shows the syntax of
writing a property.

Assertion Specification property name
disabling condition

property mem addr seqg check p;
@ (posedge clk) di=able iff (rst
cgﬁﬁ%ﬁg ,r"’ﬂr'$rusa{chnnnn1_rﬂy] |-> ##[1:%] Srose(address_rdy);
endproperty

mem_addr seg check check: assert property mem addr seg check p;

/

assertion label property expression assertion directive

Property Expression

antecedent implication operator consequent
-
Srose(channel_xrdy) |—} ##2 foo[*2:7] Srose(address_rdy);
cycle delay operator consecutive built-in function
repetition

Figure 3.11: Property syntax
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In which:

Property name is an identifier for the property used in the assertion directive.
Also, it can be used within the specifications of other properties to simplify the
specifications of complex properties.

Clocking condition specifies when the signals in the property are sampled.
Disabling condition specifies when the property is disabled (used as a reset
condition).

Assertion label is an identifier for the assertion used in reports and to help with
the debugging.

Assertion directive is a statement that instantiates the property in verification
logic as an assertion (assert keyword), assumption (assume keyword) or
coverage monitor (cover keyword).

Property expression is a specification for the property. Specification can be an
invariant (for example, !($isunknown(ctrl)) or an implication. An implication is
“an expression with a left-hand-side (LHS), an implication operator, and a right-
hand-side (RHS)”. The LHS is called the antecedent, which is a condition that,
when sampled true, initiates a thread for the property. The thread starts as soon
as the LHS starts evaluating. The RHS is called the consequent, which is a
condition that is tested for each thread. If the consequent is true, the property
holds for the thread. If the consequent condition is shown to be false for a
thread, the property fails for the thread. Asserted properties are supposed to hold
for all possible threads. Assumed properties are assumed to hold for all possible
threads. Property expressions can include boolean expressions and the following
constructs:

o Built-in functions which are constructs that automate the specification of
common expressions (for example, $rose, $onehot, $past and $fell).

o Cycle delay operator (##) which separates sub-properties in different
cycles (relative to the defined clock). For example, a ##5 b means a is
true, then 5 cycles later, b is true.

o Consecutive repetition operator ([*n:m]) — indicates repetition of
signals, or cycles (when applied to the cycle operator).

System Verilog Assertions (SVA) [21] form a subset of the System Verilog
extension to Verilog [53] that pertains to assertions. SVA assertion code must be
embedded in System Verilog modules. The language provides structures for defining
sequences of events and combining sequences into design properties. The SVA assert
statement generates the assertion that verifies its associated property. Figure 3.12 shows
an example for an SVA assert property.
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segquence sS_rst_sigs;
##1l (uart_out && !done);
endsequence
sequence s_rst_ done;
{sys_rst_1)[->1] ##1 (done throughout ((xmit)[-=1])};
endsequence
seguence sS_rst_pair;
s_rast_sigs and s_rst_done;
endsequence

property p_post_rst;
@ {posedge sys_clk) (Sfell(sys_rst_1)) |—} s_rst_pair;
endproperty

assert_post_rst: assert property (p_post_rst)
else Sdisplay ("%m : device did not reset properly?);

Figure 3.12: SVA assert property example

Property Specification Language (PSL) is an assertion language. PSL assertion
code can be embedded in Verilog and VHDL modules, and can be placed in vunits
bound to design units. The PSL assert statement generates the assertion logic that
verifies its associated property. Figure 3.13 shows an example for a PSL assert

property.

vunit psl_rst(top) {
default clock is rising edge(sys_clk);

sequence s_rst_sigs is {uart_out:fell (done) };
saquence s_rst_done is {(sys_rst_1)[-=1]; (done: (zmit) [-=1])};
sequence s_rst_pair is (s_rst_sigs & s_rst_done);

proparty p_post_rst is (always fell(sys_rst_1) -> s_rst_pair);

assert p_post_rst;

Figure 3.13: PSL assert property example

In Figure 3.14, an example is shown to how to define assertions from a given
specification to verify the implemented design, the example considered in Figure 3.14
is for a bus and its states for transferring data. The bus state has 3 valid states: START,
INACTIVE, and ACTIVE. The valid bus state transitions are as follows:

1. INACTIVE to START

2. START to ACTIVE

3. ACTIVE to INACTIVE

4. ACTIVE to START
Any other transitions are not allowed. Figure 3.14 shows the specification, as well as
the Finite State Machine (FSM) of the bus transitions, and how the properties are
defined in terms of the bus control signals (en and sel[0]).
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Property Name

Description

p_valid_inactive_transition

Only INACTIVE or START states follows INACTIVE

p_valid_start_transition

Only ACTIVE state follows START

p_valid_active_transition

Only INACTIVE or START states follows ACTIVE

p_no_error_state

Conceptual Bus State Transitions

Bus state must be valid: !(sel[0]==0 & en==1)

property p_valid_start_ transition;
@(posedge clk) disable iff (bus_reset)
{ bus_start ) |== ( bus_ active );

endproperty

assert property (p_valid__start__transition);

no transfer

INACTIVE
self0] == 0

el —

setup

—_—

START
seffd] == 1

\an==0 )

transfer

ACTIVE

selfo] == 1

en == 1

no transfer

setup

bus_inactive = ~sel[0] & ~en;
bus_start = sel[0] & ~en;
bus_active = sel[0] & en;
bus_error = ~sel[0] & en;

Figure 3.14: How assertions are defined?

40




3.3. Related Work

Several works have proposed frameworks to help in functional verification of
DRS. The Dynamic Circuit Switch (DCS) method [54] adds artifacts for simulation
purposes only to mimic the behavior of reconfiguration activities such as module
swapping and undefined state of the RM after reconfiguration. ReChannel [55,56] is an
open source SystemC library which models DPR. In order to represent swapping of
modules and other reconfiguration operations, ReChannel added new SystemC classes.
The extension of ReChannel [57] proposed new classes to monitor and verify the
details of reconfiguration at behavioral, Transaction Level Modeling (TLM) and RTL
levels. To use ReChannel, designers should be aware of using SystemC for modeling
and verification of digital designs, and extra efforts are needed to set up the simulation
environment on the behavioral level, TLM level, and RTL.

In [58], a SystemC-based design methodology (OSSS+R) is used to automate the
modeling, synthesis, and simulation of DRS designs. It automatically generates
synthesizable code for the reconfiguration controller to manage the module swapping of
RMs. But, it uses only pre-defined reconfiguration control mechanism, so it cannot
handle all styles of DPR designs. ReSim [29] is a System Verilog library built on the
Open Verification Methodology (OVM) which uses a simulation-only bitstream to hide
the physically dependent features of DPR designs. It models traffic of bitstream and the
process of reconfiguration of DPR. ReSim, as well, has a support for the cycle-accurate
RTL simulation of the DRS design immediately during, before and after
reconfiguration. So, it can detect functional bugs that were missed by DCS, ReChannel,
and OSSS+R. Setting up the design to use the ReSim setup needs extra effort by the
designer. The ReSim library is extended in [30] to support state saving and restoration
of the RMs.

The existing works in literature have some disadvantages and limitations:

1. They model the DPR activities using simulation-only artifacts (i.e. un-
synthesizable models), so they cannot be used with formal verification
methods. The test-benches used for testing the design should thoroughly
cover all the corner cases, such requirement is impractical in some cases.

2. Extra effort is needed to set up the verification environment as SystemC
modeling or OVM environment setup.

3. When an error is caught, extra effort is needed to debug the error and
pinpoint the root cause of the issue, it can be related to non-DPR logic.

The proposed methodology in this chapter has some advantages when compared to
the existing works in literature:

1. It models specific DPR activities using ABV [22], the assertions can be
used for formal verification or RTL simulation, and it also can be
integrated with any previous work that performs RTL simulation.

2. It enhances the observability, reduces the debug time, and improves error
detection. When an assertion fails in RTL simulation or formal
verification, it pinpoints to the root cause of the issue with no extra effort.

3. The assertions can be synthesized [31] on the FPGA to perform runtime
verification for DPR, this is not covered in this thesis.
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3.4. Assertion Based Verification for DPR

3.4.1. Port Connections of the Reconfigurable Modules

The first step for creating a dynamically reconfigurable design is to identify the
static logic (i.e. logic that is always active in all the operating modes of the design), and
the reconfigurable logic (i.e. the logic that can change from one operating mode to
another) in the design. For Xilinx DPR flow [7], the interface of a reconfigurable
module should be consistent across all its modes, such requirement adds an extra step in
the design flow to create an RTL wrapper for each RM to encapsulate all its modes.
Issues appear in this step when there is a mismatch in the number of ports between
different modes of the RM, the RTL wrapper of that RM will have number of ports
equal to the maximum number of ports in all the modes of the RM, in that case the
designer should take care when connecting the ports for each mode of the RM to not
affect the functionality of the circuit.

A simple example for the design modifications needed for DPR is shown in Figure
3.15, if the port in3 is used in in the first mode of the RR ‘RR_model.v’, then the
design functionality will be altered. Such modifications in the RTL should be verified
before moving to implement the design on the FPGA. The modification for the
interfaces of the RMs is an error-prone task, especially for large designs which have a
large number of ports for the modes of the RMs and a mismatch in the sizes of these
modules such as the case of the SDR. In this thesis, the connectivity verification
approach [32,33] is utilized in this section to verify the changes in the interfaces of the
reconfigurable modules.

The verification flow is shown in Figure 3.16. After the RTL files are compiled
and the design is synthesized, the netlist of the design is traversed using netlist access
Application Programming Interfaces (APIs) to extract the connections of the
reconfigurable modules from the original design, the output of this step is a Comma
Separated Values (CSV) file that lists the hierarchical paths of the RM ports and their
connections. An SVA generator takes the CSV file and writes an assertion for every
source and destination pair. The following SVA property is generated for every source
and destination pair to verify their connection:

property connect pair ( clock , source , destination ) ;
@ ( posedge clock ) disable iff( ~( "RM MODE ENABLE ) )

( source == destination ) ;

endproperty

Where RM_MODE_ENABLE is a macro which can be set by the designer such that
when its logic value is 1, it indicates a specific RM mode is active. This macro is
different from one RM mode to another because only one RM mode can be active at a
time. For each RM mode, there will be a separate CSV file to test its connections, and
consequently, a unique set of assertions. The assertions generated for each mode can be
verified using RTL simulation or formal verification.
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Original RTL
Files

designl.v

Extracting
Design Info

Generating Modified
RTL for DPR

design.v

module design (input inl, clkl, output outl);
wire regl, reg2, reg3;
shift_regl SR1(inl, clkl, regl, reg2, reg3);
accuml AC1({regl, reg2, outl);
endmodule
module shift_regl (input in1, clkl, output reg outl, out2, out3);
always @(posedge clk1) begin
outl <=inl;
out? <= putl;
out3 <= put2;
end
endmodule
module accuml (input inl, in2, output outl);
assign outl =inl +in2;
endmodule

design2.v

Static Logic:
shift_regl module
Reconfigurable Logic:
accuml maodule
accum2 module
Number of needed RMs:
Only one to switch
between accuml &
accum?2
Number of modes for RM:
Two modes one for
accuml and the other
for accum2

module design_dpr (input inl, clk1, output outl);
wire regl, reg2, reg3;
shift_regl SR1(in1, clkl, regl, reg2, reg3);
RR1 RR1_inst (regl, reg2, reg3, outl);
endmodule
module shift_regl (input inl, clkl, output reg outl, out2, out3);
always @(posedge clk1) begin
outl <=inl;
out? <= outl;
out3 <= out2;
end
endmodule

RR_model.v

module design (input inl, clkl, output outl);
wire regl, reg2, reg3;
shift_regl SR1(in1, clkl, regl, reg2, reg3);
accuml AC1({regl, reg2, reg3, outl);
endmodule
module shift_regl (input inl, clkl, output reg outl, out2, out3);
always @(posedge clkl) begin
outl <=inl;
out? <= putl;
out3 <= put2;
end
endmodule
module accum2 (input inl, in2, in3, output outl);
assignoutl =inl +in2 +in3;
endmodule

module RR1 (input inl, in2, in3, output outl);
// Note: in3 port is not used in this mode
accuml AC1(.in1(in1), .in2(in2), .outl({outl));

endmodule

module accuml (input inl, in2, output outl);
assign outl =inl +in2;

endmodule

RR_mode2.v

module RR1 (input inl, in2, in3, output outl);
// Note: in3 port is used in this mode
accum2 AC2(.inl(inl1), .in2(in2), .in3(in3), .outl{outl));
endmodule
module accum? (input inl, in2, in3, output outl);
assign outl =inl +in2 + in3;
endmodule

Figure 3.15: Design modifications in RTL files for DPR
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Figure 3.16: Design modifications in RTL files for DPR

3.4.2. Isolation Logic

During the reconfiguration process of the RM, the values of the newly downloaded
bitstream may drive incorrect values to the static logic side, so designers add isolation
logic for all the ports of the RM to prevent the transmission of the data from the RM to
the static logic during the reconfiguration process. The typical structure of designs that
utilize DPR is shown in Figure 3.17, the Internal Configuration Access Port (ICAP) is
used to interface to the FPGA configuration memory (e.g. read or write operations).

=
[1°]
(=]
o —
= wy
& S
=21 -
\/Os _| Static | 3 | = Static _1/0s
- " L [=x = L A =
Logic =3 = Logic
oq
s =
= T
Reset _ o
Reconfiguration
Requests
I Reset control Logic
ICAP Busy

ICAP  le—> ICAP

Controller

Figure 3.17: Typical structure of a design that utilizes DPR
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A controller is needed for the ICAP to handle the reconfiguration requests, handle the
control of the ICAP, and monitor its status. The output port of the ICAP can be used to
monitor its status. The yellow blocks in Figure 3.4 are added by the designer to have a
correct operation for the design during and after the reconfiguration process. For the
isolation logic, it is verified using the following SVA property for every output port of
the RM:

property verify isol ( clock , source , destination , ICAP BUSY )

@ ( posedge clock )

( ( Schanged( source ) && ICAP BUSY ) |=> $stable( destination ) ) ;
endproperty

Where the source signal is an output port of the RM, the destination signal is the
register driven by the output port on the static side, and the ICAP_BUSY is the signal
which indicates that there is a reconfiguration process in progress.

3.4.3. Reset Control Logic for the RM

After the reconfiguration process is done, the sequential elements of the RM should
be reset to guarantee proper operation of the circuit. If the RM is not reset after
reconfiguration, the state of sequential elements will be undefined and may be affected
by erroneous values from the previous RMs that share the same physical area on the
FPGA. The reset control logic is verified using the following SVA property:

property verify reset (clock , RM reset , ICAP BUSY )
@( posedge clock )

( $fall( ICAP _BUSY ) |-> Srose( RM reset ) ) ;
endproperty

Where RM_reset is the reset signal of the RM, and the ICAP_BUSY is the signal which
indicates that there is a reconfiguration process in progress. The assertion implies that
when the ICAP_BUSY is changed from a logic value of 1 to O (i.e. the reconfiguration
through ICAP is done), then the reset signal of the RM should be asserted to reset all
the sequential elements of the RM.

3.4.4. Synchronizing the Reconfiguration Process

When a computation is being done in the RM, the designers want to block any
reconfiguration request until such computation is done. For applications such as SDR,
such mechanism will be required such that when a packet is being processed for 3G
standard as an example, it should be processed completely before switching to any
other standard such as WiFi or 4G. The synchronization of the reconfiguration requests
is verified using the following SVA property:

property verify sync ( clock , RM busy , ICAP GO ) ;
@( posedge clock )

( $rose( ICAP_GO ) until $fall( RM busy ) ) ;
endproperty

Where RM_busy is the signal which indicates that a computation is being done by the
RM, and ICAP_GO is the control signal which tells the ICAP to start a new
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reconfiguration process. For some applications, it is not needed to check such
synchronization, as it is acceptable to flush the data of the RM.

3.5. Case Study

The approach presented in this chapter for verification of DPR is applied on an
SDR chain presented in [45,46]. The SDR test case has four reconfigurable modules: 1)
convolutional encoder, 2) modulator, 3) Discrete Fourier Transform (DFT), and 4)
Inverse Fast Fourier Transform (IFFT). Table 3.2 shows the number of modes per each
block.

Table 3.2: Number of modes per each RM of the design under test

Block Number of Modes
Convolutional Encoder 4
Modulator 3
DFT 2
IFFT 2

The block diagram and the schematic of the design are shown in Figure 3.18 and
Figure 3.19 respectively.

4G 173 16-QAM

Filler
3G 172 QPSK Filler 256-Point
3G 13 BPSK 64-Pont 64-Pont
Input from @ @ Output to
previousstages | (fanpe] . DET 153 S N
Coding L M-Point N-Point

Figure 3.18: Block diagram of the SDR case study
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Figure 3.19: Schematic of the SDR case study

The port connections are verified using SVA properties as explained in the
previous section. The port connections should be verified for every mode of each RM,
the number of assertions generated for verifying port connections is proportional to the
number of modes and the number of ports for each mode. The SVA properties are
verified and run on the DPR design using Questa Formal tool [47]. Figure 3.20 shows
an example for the CSV file extracted for the first mode of the convolutional encoder
RM. Figure 3.21 shows an example for the generated assertions to verify the port
connections in the CSV file of Figure 3.20, and Figure 3.22 shows the results of Questa
Formal tool in which all the assertions are proven.

source destination

LTE_top.convo_in LTE_top.xlxi_l.convo_in
LTE_top.clk LTE_top.xIxi_1.clk

LTE top.reset LTE top.xlxi_l.convo_reset
LTE_top.convo_valid_in LTE_top.xlxi_l.convo_valid_in
LTE_top.xIxi_1l.convo_out LTE_top.xIxn_18
LTE=top.xIxi=1.convo=ual id=out LTE=top.xIxr1=17

Figure 3.20: CSV file extracted for connections of the first mode of the
convolutional encoder block
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connect_pair_0: assert property(connect_pair (LTE_top. Ik, LTE_top. convo_in,LTE_top.X]xi_l.convo_in));

connect _pair_L: assert property(connect_pair (LTE_top. cIk, LTE_top. clk,LTE_top.xIxi_L.cIk));

connect_pair_2: assert property(connect_pair (LTE_top. cIk, LTE_top.reset, LTE_top.xIxi_L. convo_reset));
connect_pair_3: assert property(connect_pair (LTE_top. cIk, LTE_top. convo_valid_in,LTE _top.XIxi_L. convo_valid_in));
connect _pair_4: assert property(connect_pair (LTE_top.clk, LTE_top.xIxi_L.covo_out ,LTE_top.xIxn_18));
connect_pair_5: assert property(connect_pair (LTE_top. Ik, LTE_top.xIxi_1. convo_valid_out, LTE_top.xIxn_17));

Figure 3.21: Assertions generated for connections of the first mode of the
convolutional encoder block

v Name Time
©® wmem checkers_inst.connect_pair_0 2s
©® wem checkers_inst.connect_pair_1 2s
© wmem checkers_inst.connect_pair_2 2s
© wem checkers_inst.connect_pair_3 2s
©@ wmem checkers_inst.connect_pair_4 2s
©® wem checkers_inst.connect_pair_5 2s

Figure 3.22: Results of Questa Formal tool for the assertions generated for
connections of the first mode of the convolutional encode block, all assertions are
proven

Table 3.3 shows the number of ports for every RM, and Table 3.4 shows the number of
assertions generated for verification of port connections, isolation logic, reset control
logic, and the synchronization logic. The number of assertions for the isolation logic
equals to the number of output ports for all the RMs, the number of assertions for the
reset control logic equals to the number of RMs because each RM will have its own
reset control logic, and only one assertion is generated to test the synchronization logic
of the DPR controller.

Table 3.3: Ports information about the RMs of the design under test

Module Number of Ports (Total) | Number of Ports (Outputs only)
Convolutional Encoder 6 2
Modulator 7 3
DFT 7 3
IFFT 7 3
Table 3.4: Generated assertion properties for DPR verification

Verification Goal Number of Assertions

Connections of the Ports (6x4)+(7x3)+(7x2)+(7x3)=80

Isolation Logic of Output Ports 11

Logic for Reset Control 1x4=4

Logic for Synchronization 1

Total 96
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All the assertions of the port connections are proven by the Questa Formal tool. But,
when applying the assertions for isolation logic, reset control logic and synchronization
logic, Questa Formal tool reports firings for their SVA properties, and 3 bugs have been
identified in the design under verification:

1. The output ports of the RMs were not isolated during the reconfiguration
process. This should be fixed in the design such that the output ports of the RMs
are totally isolated from the static logic during the reconfiguration process to
avoid the propagation of any erroneous values from the RMs to the static logic.

2. The reset signals of the RMs were not activated right after the completion of the
reconfiguration process. This should be fixed in the design such that the reset
signals should be asserted after the reconfiguration to put the RM in a defined
initial state before its operation.

3. The DPR controller was not handling the case in which a new reconfiguration
request is received when the RM is still processing data.

Summary

In this chapter, a verification flow for DPR is presented using Assertion Based
Verification (ABV). Designers can use this flow to verify their DPR designs and the
dedicated logic added for DPR activities such as the isolation logic, reset control logic
and the synchronization logic of the DPR controller. SVA properties are used to verify
these functionalities. The SVA properties can be used in RTL simulation or formal
verification. Using a case study from literature, it has been demonstrated how the
proposed verification flow identified three issues in the DPR logic of the design. In the
next chapter, the CDC verification for DPR is covered.
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4.1.

Chapter 4 : Clock Domain Crossing Verification for

Dynamically Reconfigurable Systems

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime while
the other remaining logic keeps operating. This kind of designs are called Dynamically
Reconfigurable System (DRS) designs, they can operate in multiple modes. The
verification of the DRS designs is a complicated task due to the need to verify all the
modes of the designs, and the lack of CAD tools support for DRS designs. In this
chapter, an automatic Clock Domain Crossing (CDC) verification flow is proposed for
DRS designs. A Perl utility is implemented which automates the generation of the
designs files for each operating mode of the design, generates the script to run CDC
analysis on the design, runs a CDC analysis tool, and collates the results in a user-
friendly representation for debugging.

Introduction

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime, while
the other remaining logic keeps operating. It allows the implementation of complex
circuits as SDR and loT applications within a reasonable area on the FPGA.
Consequently, the power consumption of the circuit is reduced. Recent FPGA families
support the implementation of DRS through the DPR technique.

In DPR, the design is composed of a number of Reconfigurable Modules (RM),
each RM has modes that are changed during runtime according to the system operating
modes. A Reconfigurable Region (RR) is a location on the FPGA in which the
reconfigurable module is implemented on. An example for DPR system is shown in
Figure 4.1, it has five configuration modes: Configl, Config2, Config3, Config4 and
Configh. Each configuration has four reconfigurable modules: ModuleA, ModuleB,
ModuleC and ModuleD, each with four modes: Model, Mode2, Mode3 and Mode4.
DRS designs extend the design flexibility through the mapping of multiple
reconfigurable modules to the same physical reconfigurable region, which reduces the
design cost and the resources usage. In the example of Figure 4.1, the design will have
4 RRs on the FPGA, each RR is used for a uniqgue RM. The RR can be configured by
an RM mode according to the configuration mode of the DRS design. In the
configuration mode Configl, the first RR will be loaded by the RM mode
(ModuleA_Model), the second RR will be loaded by the RM mode (ModuleB_Model)
and so on.

Most complex recent designs have more than one clock, and many of these clocks
are asynchronous. For these designs, the clock domain of an asynchronous clock is
formed by the logic clocked by that clock. Problems arise from signals that connect
logic in different clock domains. Proper synchronization must be done for signals that
traverse the boundaries of clock domain, and relevant transfer protocols must be
followed. During the metastability window of the receiving register (setup and hold
time), if any CDC signal is not kept stable, then the register can end up in a metastable
state, which means its output can unsystematically settle to an unknown value that is
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not the same as the value the engineer sees in RTL simulation, an example is shown in

Figure 4.2. Errors in functionality can happen due to these metastability issues.

Configl ModuleA_Model ModuleB_Model ModuleC_Model ModuleD_Model
Config2 ModuleA_Mode2 ModuleB_Mode2 ModuleC_Mode2 ModuleD_Mode2
Config3 ModuleA_Mode3 ModuleB_Mode3 ModuleC_Mode3 ModuleD_Mode3
Configd ModuleA_Mode4 ModuleB_Mode4 ModuleC_Moded ModuleD_Mode4
Config5 ModuleA_Model ModuleB_Mode2 ModuleC_Mode3 ModuleD_Mode4

Figure 4.1: An example of DPR design with five modes of configuration and four
reconfigurable modules per configuration.

setup and hold time

clk
S q
S _/
CIk ’ '-.-III.--I-IIl-I-III
q _/f‘\ /

Figure 4.2: Example for a metastability issue caused by CDC signal

CDC verification [23] of DRS designs is a complicated task due to the need of
verifying every operating mode of the design to make sure no metastability issues can
occur in the design. Currently, there are no Computer Aided Design tools that support
the CDC verification of DRS. As an example in Figure 4.1, designers should verify all
the configuration modes of the design, to make sure any CDC signals between adjacent
modules are properly synchronized. If CDC errors are not verified and tackled early in
the design cycle, they may cause functional errors later in the synthesis and place &
route phases which may waste the designer's time to repeat the design cycle after fixing
the CDC errors.

In this chapter, a new automated flow is proposed for CDC verification of DRS. A
Perl utility is implemented to 1) automate the generation of the RTL representation of
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every operating mode of the reconfigurable system, 2) generate the run scripts to run a
commercial CDC tool for every mode, 3) invoke the run for CDC analysis and 4)
collates the result for every mode and report it to the user.

Background

The verification of DRS designs is still an open question. The lack of CAD tools
that understand the dynamic nature of these designs forces the designers and
verification engineers to innovate and implement their own verification methodologies.
Several works have proposed techniques for simulation-based verification of DRS
designs, and verification of issues that may arise before, during, and after
reconfiguration of some part of the design.

The Dynamic Circuit Switch (DCS) method [54] adds artifacts in the RTL code of
the DRS design for simulation purposes only to switch between hardware tasks, it
improves the simulation precision of DRS designs in various aspects. But, using this
method cannot detect bugs introduced by bitstream transfer and the module swapping
in DRS designs.

ReChannel [55,56] is an open source SystemC library which models DPR, it was
extended in [57]. In order to represent swapping of modules and other reconfiguration
operations, ReChannel added new SystemC classes. The extension of ReChannel [57]
proposed new classes to monitor and verify the details of reconfiguration at behavioral,
Transaction Level Modeling (TLM) and RTL levels. However, DCS and ReChannel do
not accurately verify the design undergoing reconfiguration since the bitstream traffic is
not simulated.

OSSS+R [58] is a methodology to automate the modeling, synthesis, and
simulation of DRS designs. It generates synthesizable code for the reconfiguration
controller to manage the module swapping of RMs. But, it uses only pre-defined
reconfiguration control mechanism, so it cannot handle all styles of DPR designs.

ReSim [29] is a reusable library which uses a simulation-only bitstream to hide the
physically dependent details of DPR designs. It models traffic of bitstream and the
reconfiguration process of DPR. ReSim, as well, has a support for the cycle-accurate
RTL simulation of the DRS design immediately before, during and after
reconfiguration. So, it can detect functional bugs that were missed by DCS, ReChannel
and OSSS+R.

The existing work in literature focuses on simulation-based functional verification
of DRS designs, there are more advanced verification topics that are not still addressed
for DRS designs such as CDC verification, reset verification, power-aware verification,
formal verification and runtime verification. In this chapter, a framework for CDC
verification is introduced for DRS designs.
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4.3. What is CDC Verification?

Most complex designs have more than one clock. In addition, many of these clocks
are asynchronous. For these designs, the clock domain of an asynchronous clock is
formed by the logic clocked by that clock. The logic that lies completely inside a clock
domain can be validated with the same methodology as that for a single-clock design.
However, problems arise from signals that connect logic in different clock domains.
Proper synchronization must be done for signals that traverse clock domain
“boundaries”, and relevant transfer protocols must be followed. The procedure of
validating these necessities is called clock domain crossing (CDC) analysis.

But, even CDC signals that are properly synchronized and obey protocol rules do
not guarantee valid functionality. During the metastability window of the receiving
register (i.e. setup and hold time), if a CDC signal is not kept stable, the register can
end up in a metastable state, which means its output can randomly settle to an unknown
value that is not the same as the value the engineer sees in RTL simulation.

In effect, data values that traverse clock domains can be advanced or delayed
randomly relative to RTL simulation. Functional errors can occur if the logic of the
receiver is not designed specially to be tolerable for these metastability effects.
Unfortunately, standard simulation cannot precisely demonstrate effects of
metastability in a design. An expansion to standard functional verification is needed to
demonstrate the effects of metastability in a design.

43.1. Clock Domains

A clock domain is a portion of a design that has a clock asynchronous to (or which
has an inconstant phase relationship to) another clock in the design. For example,
suppose one clock is derived from another clock through a clock divider. These two
clocks have a constant phase relationship; therefore, the two sections of the design that
use these clocks are really part of the same clock domain (Figure 4.3). However,
suppose two clocks have frequencies of 50 MHz and 33 MHz. These clocks’ phase
relationships change over time; therefore, they clock two different clock domains
(Figure 4.4).

clock divider clk

ekt clk/2 —\

>

Single Clock Domain

Figure 4.3: Multiple clock signals belong to the same clock domain.
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When multiple clocks from different sources (i.e. asynchronous clocks) are inputs
to a circuit, then these distinct clock domains are created because of these asynchronous
clocks, as shown in Figure 4.5. When the circuit’s inputs are asynchronous to the
circuit’s clock domains, then these asynchronous inputs are in distinct clock domain, as
shown in Figure 4.6. Clocks are defined as the clock signals of registers and the enable
signals of latches.

clk clk33
IR G

PLL} clk50
clk50.

Multiple Clock Domains

Figure 4.4: Multiple clock signals in two different clock domains

clk33
clk33 —>

clk50
clk50 >

Asynchronous Clocks

Figure 4.5: Asynchronous inputs clocks form different clock domains

>

>
clk clk

Asynchronous Inputs

Figure 4.6: Inputs to the circuit are asynchronous to the circuit
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43.2. Metastability

A clock domain crossing (CDC) signal is a signal created in a clock domain and
traverses the boundary into another domain (where these two domains are
asynchronous to each other), and is then sampled by a register in that asynchronous
clock domain.

When the active edge of the receiver (RX) register’s clock and the active edge of
transmitter (TX) register’s clock are too close to each other, metastability occurs if data
changes within the setup or hold time. The register’s output settles to an unpredictable
value. Metastability can occur when having unpredictable skews between synchronous
clocks, or if the clocks are asynchronous. Flip-flop and latch storage elements are
sensitive to metastability. The design of flip-flops and latches must tolerate the
metastability effects.

The properties of metastability are unsystematic and unpredictable in hardware as
the output signal can settle randomly to 1 or 0. However, designers got predictable
results in RTL simulation. As a result, the hardware behavior and implementation are
not accurately modeled in RTL simulation when metastability is existing. Functional
verification techniques must consider technology beyond RTL simulation to make sure
a circuit design is tolerable and immune to metastability effects. Designers need to
understand how hardware registers behave with metastability and how registers behave
in RTL simulation under the conditions of metastability, in order to design circuits
which are tolerable to the effects of metastability.

The following statement is quoted from [48] regarding metastability:
“When sampling a changing data signal with a clock ... the order of the
events determines the outcome. The smaller the time difference between
the events, the longer it takes to determine which came first. When two
events occur very close together, the decision process can take longer
than the time allotted, and a synchronization failure occurs.”

aclkis dat adat ??

asynchronous
aclk

hdatl
h, S

> T Only one
belk synchronizing flip-flop

to belk

‘ ‘ L Data

aclk | changing

s |(t —_— A
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_,—o—'—"_'_'_'_'_ - - - -
— while it is changing
| E L
\ ;
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bdatl W—— next rising edge of belk
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Figure 4.6: Example for synchronization failure [23]
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Figure 4.6 shows an example for failure in synchronization which happens when a
signal is generated in one clock domain, and then sampled very close to the active edge
of a clock signal from a different clock domain. Synchronization failure is triggered by
an output going into a metastable state and not converging to a valid steady state when
the sampling of the output must be done.

In hardware, a register value is metastable when its input signal changes the value
in the transmitter’s domain too close to the time the signal is sampled in the receiver’s
domain. In Figure 4.7, the flip-flop DFF is sampling a 1-bit CDC signal (s). Since
signal (s) is originated from a different clock domain, then its value of can change at
any time relative to the clock of the DFF (clk). If the value of the wire (s) is not kept
stable at 0 or 1 through the metastability window of the DFF (i.e. setup and hold time of
the DFF), then the output (q) might acquire an intermediate voltage value for an
indeterminate amount of time. Following that, (q) settles randomly to either O or 1. The
flip-flop is said to be metastable for that interval.

setup and hold time

clk
S q
DFF S /
CIk } ----II--I-IIIIl-I-III
q _,"\ /

Figure 4.7: Metastable flip-flop

The following mean-time-between-failure (MTBF) equation expects the rate of
occurrence of metastability:
MTBF = ———— )

feeX fin X tg

Where f.is the clock frequency of the receiving flip-flop, f;,, is the frequency of the
asynchronous input signal, and ¢t is the setup and hold window.

Metastability is considered a problem because a metastable signal which feeds
additional logic in the receiving clock domain may cause invalid signal values to be
propagated through the design, and consequently, the behavior of the circuit cannot be
expected in such case. The metastable signal can fluctuate for some amount of time.
The logic which samples the metastable signal in the receiving domain may identify the
logic value of the fluctuating signal to be different values, and consequently, will cause
erroneous signal values to be propagated through the design, Figure 4.8 is showing an
example for such cases.

For any design, each flip-flop has a specified metastability window defined (i.e.
setup and hold time window), which is the time that the input data is not allowed to be
changed within, and it is mandatory to the keep the input signals stable during this
window to avoid them being changed very close to the clock edge of the receiving
clock edge. This protects the output of the flip-flop from going into a metastable state.
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Figure 4.8: A metastable signal is causing erroneous signal values to be

propagated through the design [23]

4.3.3. Synchronizers

Designers usually assume the signals of the circuit to be in-band, which means they
have a value of either logic 0 or logic 1. Metastable signals can have values that are
neither 0 nor 1; therefore, they are considered out-of-band signals. Out-of-band signals
have unanticipated effects and propagate unpredictably. To handle CDC signals,
designers isolate potentially metastable logic to ensure logic beyond such isolation
boundary only needs to handle in-band signals. The logic inside the isolation area is
called a synchronizer, an example is shown in Figure 4.9.

I

I

out-of-band value

tx_clk

Tx Clock Domain.

cdc_d

int_d

sync logic
A

in-band value

rx_clk

synchronizer

Figure 4.9: Synchronizer example
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Metastability appears in the form of mutable delays in signal transitions of the
outputs of registers driven by CDC signals. Transitions are accidentally advanced or
delayed when compared to normal simulation. Every CDC signal is affected by that
behavior. Even if a CDC signal or data bus has a synchronizer, the output of the
synchronizer may suffer from mutable delays. Logic outside the isolation area in the
receiving domain might not interpret receive data correctly in the presence of variable
delays. Functional errors occur in hardware due to this intolerance of metastability
special effects, even when RTL simulation reports “0” functional errors.

Designers implement different kinds of synchronizers as appropriate for particular
situations and design styles. For each type of synchronizer, the implemented logic
assumes a group of prerequisites about the operation of the circuit during operation and
regarding the logic which is being connected to the synchronizer. During compilation,
the rules for the synchronizer’s connections can be checked. During simulation, transfer
protocols can only be checked as the circuit operates. A synchronizer, alongside its
transfer protocol and rules of connections, is called a synchronization scheme as shown
in Figure 4.10.

glitch-free X CDC signal stable no combo logic
transmit logic* for multiple cycles™* in path*
I =
CdC_d |nt_d sync |ogic
: A :
tx_clk ' ] . x_clk
Tx Clock Domain: synchronizer ' Rx Clock Domain

Figure 4.10: Synchronizer scheme

Most CDC implementations use one or more synchronizers from a set of popular,
well-characterized synchronization schemes. These structured synchronizers must
follow well-defined connection rules and should obey specific transfer protocols.
Software or custom logic synchronizers should be used to synchronize any CDC signal
that does not have a structured synchronizer. These ad hoc synchronizers block the
receiver’s registers from reading CDC signal values when they are not stable.
Therefore, the receiver register’s outputs cannot enter a metastable state. For example,
an ad hoc synchronizer can use specific logic to control the load enable signal of the
receiver register, or software might control the loading of a circuit’s configuration
registers.

For control signals (i.e. scalar signals) synchronizers, the two D-flip-flop (2DFF) is
commonly used. An example for 2DFF synchronizer is shown in Figure 4.11, it is the
most widely used synchronizer for scalar CDC control signals. In Figure 4.11, if the
first register (R1) enters a metastable state, it almost always settles to 1 or O before the
second register (R2) reads its output (ql). There exist various structured synchronizers,
such as the 3DFF synchronizer, 2DFF synchronizer with a pulse (pulse synchronizer),
and 4-latch synchronizer.

58



Tx Clock: 2DFF synchronizer :Rx Clock
Domain: -Domain

cdc_s int_s q
R1 R2

rx_clk

Figure 4.11: 2DFF synchronizer

The connection rules of the 2DFF synchronizers re as follows:
1) No glitches in the path of cdc_s
2) No combinational logic is permitted the path of int_s
3) The cdc_s signal must be held stable by the transmit clock domain logic for at
least the following:

period,y ¢y + tsetup T thota T tmax_skew

Another example for the 2DFF synchronizer is shown in Figure 4.12.
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Figure 4.12: 2DFF synchronizer in operation [23]

2DFF synchronizers are adequate for synchronizing CDC control signals, but not
data vectors (i.e. buses). Control signal synchronization does not ensure that correlated
bits of a bus are transmitted together, since variable delays on any bit of the bus corrupt
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the data. Data vector synchronizers (i.e. bus synchronizers) ensure that all bits of the
bus are transmitted together and prevents the corruption of data. FIFO, DMUX, and
handshake synchronization schemes are used to synchronize vector CDC data using
different logic configurations.

An example for the DMUX synchronizer is shown in Figure 4.12, the control select
signal from the TX clock domain (which is synchronized using a 2DFF synchronizer)
enables a multiplexer (MUX) when the transmitted data value is ready. Following
connection rules should be respected:

1) 2DFF synchronizer must obey CDC transfer protocol for tx_sel.

2) cdc_d must be held stable by the transmit clock domain logic while tx_sel or

rx_sel are asserting.

dmux synchronizer

cdc_d |
Tx Clock - . Rx Clock
Domain. L8 . Domain
tx sel - 2DFF
— | synchronizer
/\ '
! ' rx_clk

Figure 4.12: DMUX synchronizer

Asynchronous FIFO synchronizers can be used for sending and receiving multiple
bits between two different clock domains. The multi-bit signals can be either data bits
or control bits. An asynchronous FIFO is a dual port memory in which the data is
inserted from the write clock domain and data is removed from the read clock domain.
Since both transmitter and receiver operate within their own respective clock domains,
using a dual-port buffer, such as a FIFO, is a safe way to pass multi-bit values between
clock domains. An example for the asynchronous FIFO synchronizer is shown in figure
4.13. As long as the FIFO is not full, the data or control words can be inserted into the
FIFO, and the receiver can read a control or data word from the FIFO as long as it is
not empty. The operation of the asynchronous FIFO synchronizer is described in details
in [49], its detailed structure us shown in Figure 4.14.

fifo synchronizer : Frtadki
' ren
[ F
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Figure 4.13: FIFO synchronizer
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Figure 4.14: FIFO synchronizer detailed structure

4.4. CDC Verification Flow for DRS Designs

The proposed CDC Verification flow is shown in Figure 4.15.
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A Perl utility is implemented to automate the flow. The inputs for the utility are 1) RTL
files of RMs modes, 2) RTL wrapper for DRS design and 3) Comma Separated Values
(CSV) file to define the configuration modes of the design. In a typical DPR design
flow, the RTL files of the RMs modes and the wrapper of the DRS design should be
provided by the designer, so there is no extra effort needed for the creation of these files
to use the proposed CDC verification flow. Following is an example for Verilog RTL
code which defines two modes of the RM (ModuleA) in Figure 4.1:

module ModuleA_model ( input wire inl,in2,a_rst, clkl ,output reg outl) ;
always @( posedge clkl , posedgea _rst)
begin
if (a_rst)outl <=1’b0;
else outl <=inl|in2;
end
endmodule

module ModuleA_mode2 ( input wire inl, in2,a_rst, clkl, output reg outl ) ;
always @( posedge clkl , posedgea rst)
begin
if(arst)outl<=1’b0;
elseoutl <=inl &in2;
end
endmodule

The following Verilog RTL mode shows an example for the wrapper of the DPR design
example in Figure 4.1:

module RR1( input wireinl,in2,a_rst,clkl, outputoutl);
/1 Empty . A mode for ModuleA will be instantiated here
endmodule

module RR2( input wire inl,in2,a_rst, clkl, output outl);
/1 Empty . A mode for ModuleB will be instantiated here
endmodule

module RR3( input wireinl,in2,a_rst,clkl, outputoutl);
[/ Empty . A mode for ModuleC will be instantiated here
endmodule

module RR4( inputwireinl,in2,a_rst,clkl, outputoutl);
/1 Empty . A mode for ModuleD will be instantiated here
endmodule

module DRS1 (input wireinl,in2,in3,in4,in5,
a_rst, clkl, clk2, output wire outl ) ;

wire A _outl, B outl,C outl, D outl;

RR1 ModuleA inst (inl,in2,a_rst,clkl, A outl);
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RR2 ModuleB_inst (in3, A outl,clkl, B outl);
RR3 ModuleC_inst (in4 , B_outl, clk2 , C_outl);
RR4 ModuleD _inst (in5, C_outl,clk2,D_outl);
assign outl = D_outl ;

endmodule

The above code for the RTL wrapper is a placeholder for the DRS design. In each
operating mode of the design, there will be a module instantiated inside each RR
module, as an example for the DRS design in Figure 4.1, in the first mode (Configl) of
the design, the module ModuleA_model will be instantiated inside the module of RR1,
the module ModuleB_Model will be instantiated inside the module of RR2, the module
ModuleC_Model will be instantiated inside the module of RR3, and the module
ModuleD_Model will be instantiated inside the module of RR4. The CSV file is needed
to define the configuration modes of the design, so that the utility can know how many
RRs in the design and what are the RMs mapped to a specific RR. The following CSV
file is an example for the DPR design in Figure 4.1:

RR, RR1

RR, RR2

RR, RR3

RR, RR4

RM , ModuleA , {ModuleA_Model , ModuleA Mod2 , ModuleA_Mode3,
ModuleA_Mode4}

RM , ModuleB , {ModuleB_Model , ModuleB_Mod2 , ModuleB_Mode3,
ModuleB_Mode4}

RM , ModuleC , {ModuleC_Model , ModuleC_Mod2 , ModuleC_Mode3 ,
ModuleC_Mode4}

RM , ModuleD , {ModuleD_Model , ModuleD_Mod2 , ModuleD_Mode3,
ModuleD_Mode4}

ConfigMode , Configl , {{RR1, ModuleA_Model} , {RR2, ModuleB_Model}
, {RR3, ModuleC_Model}, {RR4 , ModuleD_Model}}

ConfigMode , Config2 , {{RR1, ModuleA_Mode2} , {RR2, ModuleB_Mode2}
, {RR3, ModuleC_Mode2} , {RR4 , ModuleD_Mode2}}

ConfigMode , Config3 , {{RR1, ModuleA_Mode3} , {RR2 , ModuleB_Mode3}
, {RR3, ModuleC_Mode3} , {RR4 , ModuleD_Mode2}}

ConfigMode , Configd , {{RR1, ModuleA_Mode4} , {RR2, ModuleB_Mode4}
, {RR3, ModuleC_Mode4} , {RR4 , ModuleD_Mode4}}

ConfigMode , Config5 , {{RR1, ModuleA_Model} , {RR2, ModuleB_Mode2}

, {RR3, ModuleC_Mode3}, {RR4 , ModuleD_Mode4}}

The words RR, RM and ConfigMode are reserved words, they are used to define an
RR, RM and a configuration mode for the DRS design respectively.

The first step performed by the utility is a sanity check for the interfaces of the
modes of the same RM, for DPR flow it is required to have the same number of ports
for the RM modes. The sizes and names of these ports should be the same across the
modes of the same RM. For Xilinx [7] tools, if this requirement is violated, the
implementation of the DPR flow will fail in the place & route step, which is late in the
design cycle. In the proposed Perl utility, the sanity check for interfaces is done to catch
any errors as early as possible. The Perl code in Appendix B.1 is used to the check the
RMs’ ports.
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The second step is to pick one configuration mode of the DRS design and generate an
RTL file for this mode. Following is an example for the generated Verilog RTL file for
configuration mode (Configl) in the DPR example in Figure 4.1:

module RR1 (input wireinl,in2,a _rst, clkl, output outl);
ModuleA_model ModA_1 inst (inl,in2,a_rst,clkl,outl);
endmodule

module RR2 (input wireinl,in2,a_rst,clkl, outputoutl);
ModuleB_model ModB_1 inst (inl,in2,a_rst,clkl,outl);
endmodule

module RR3 (input wireinl,in2,a_rst,clkl, outputoutl);
ModuleC_model ModC_1 inst (inl,in2,a_rst,clkl,outl);
endmodule

module RR4 (input wireinl,in2,a_rst, clkl, output outl);
ModuleD_model ModD_1 inst (inl,in2,a_rst,clkl,outl);
endmodule

module DRS1 (input wire inl,in2,in3,in4,in5,
a_rst,clkl, clk2 , output wire outl) ;

wire A outl, B outl,C outl, D outl;

RR1 ModuleA inst (inl,in2,a _rst,clkl, A outl);

RR2 ModuleB_inst (in3, A outl,clkl, B outl);

RR3 ModuleC _inst (in4 , B_outl, clk2, C_outl);

RR4 ModuleD _inst (in5, C _outl,clk2,D_outl);

assign outl = D_outl ;

endmodule

The third step is to generate the CDC analysis run script, the generated script is written
to be run by Questa CDC tool from Mentor Graphics to perform the CDC analysis on
the design. The implemented Perl utility performs some heuristics based on the port
names of the DRS design to constrain the design, as an example it defines the ports
match (clk) regular expression as clocks. Similarly, it defines the ports that match (rst)
regular expression as resets, and define scan enable and test signals as constants.
Following is an example for the generated script to run CDC analysis on configuration
mode (Configl) in the DPR example in Figure 4.1:

64



onerror {exit 1)

## Compile the Verilog RTL file generated from Step?2
viib work
viog RTL_Configl.v

## Constrain the design

netlist cloek clkl

netlist clock clk2

netlist reset async posedge a_rst

## Put the results in a separate directory
configure output directory Configl_Results

## Run CDC analvsis
cde run —d DRSI1

exit 0

The fourth step is to run CDC analysis using Questa CDC tool, and save the
results. The Perl utility then repeats the first four steps for all the configuration modes
of the design. The fifth step is to generate a report for the CDC analysis of DRS design.
Following is a sample of the output report for the DRS in Figure 4.1:

CDC Results for Mode: Configl

A) Synchronized CDC Paths:
<None>

B) Un-synchronized CDC Paths:
1) From 'ModuleB_inst.ModB_1_inst.outl' (clk1)
To 'ModuleC_inst.ModC_1_inst.outl' (clk2)

4.5. Case Study

The value of using the proposed CDC Verification flow is demonstrated by a case
study of the SDR system presented in [45,46]. This SDR system is implemented using
the DPR flow, it switches between blocks of communication standards 3G, 4G and
WIFI. The SDR test case has four reconfigurable modules: 1) convolutional encoder, 2)
modulator, 3) Discrete Fourier Transform (DFT), and 4) Inverse Fast Fourier
Transform (IFFT). Table 4.1 shows the number of modes per each block.

Table 4.1: Number of modes per each RM of the design under test

Block Number of Modes
Convolutional Encoder 4
Modulator 3
DFT 2
IFFT 2
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The block diagram and the schematic of the SDR design are shown in Figure 4.16 and
Figure 4.17 respectively. The design has two clocks, the first clock (clk) is used for the
channel encoder, while the other clock (clk2) is used for the rest of the blocks. It also
has one asynchronous reset signal (reset).

16-QAM

4G 13 Filler |
3G 12 QPSK 256-Point
3G 173 BPSK 04-Point
Input from @ @ Output to
previous sages | (el . [FFT HERL fges
Coding ianiion M—Pomt N-Point

Figure 4.16: Block diagram of the SDR case study
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Figure 4.17: Schematic of the SDR case study
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The following CSV is provided to the utility for the configuration modes of the design
with the RTL files of the reconfigurable modules as explained in the previous section:

RR , encoder

RR , modulator

RR, dft

RR, ifft

RM, conv_enc, {enc_3G_half, enc_3G_third , enc_ WIFI_half ,

enc_4G_third}

RM , modulator , {bpsk , gpsk , gam_16}

RM, dft, {dft 64 point, filler_mod}

RM | ifft, {ifft_ 64, ifft_ 256, filler_mod}

ConfigMode , Configl , {{encoder , enc_3G_half} , {modulator , bpsk} ,
{dft, filler_mod} , {ifft, filler_mod}}

ConfigMode , Config2 , {{encoder , enc_3G_half} , {modulator , gpsk} ,
{dft, filler_mod} , {ifft, filler_mod}}

ConfigMode , Config3, {{encoder, enc_3G_half} , {modulator , gam_16},
{dft, filler_mod} , {ifft, filler_mod}}

ConfigMode , Config4 , {{encoder , enc_3G_third} , {modulator , bpsk} ,
{dft, filler_mod} , {ifft, filler_mod}}

ConfigMode , Config5 , {{encoder , enc_3G_third} , {modulator , qpsk} ,
{dft, filler_mod} , {ifft, filler_mod}}

ConfigMode , Config6 , {{encoder , enc_3G_third} , {modulator , gam_16},
{dft, filler_mod} , {ifft, filler_mod}}

ConfigMode , Config7 , {{encoder , enc_ WIFI_half} , {modulator , bpsk} ,
{dft, filler_mod} , {ifft, filler_mod}}

ConfigMode , Config8 , {{encoder , enc_ WIFI_half} , {modulator , qpsk} ,
{dft, filler_mod} , {ifft, filler_mod}}

ConfigMode , Config9 , {{encoder , enc_ WIFI_half} , {modulator , gam_16} ,
{dft, filler_mod} , {ifft, filler_mod}}

ConfigMode , Configl0 , {{encoder , enc_4G_third} , {modulator , bpsk} ,
{dft, dft_64} , {ifft, ifft_256}}

ConfigMode , Configll , {{encoder , enc_4G_third} , {modulator , gpsk} ,
{dft, dft_64} , {ifft, ifft_256}}

ConfigMode , Configl2 , {{encoder , enc_4G_third} , {modulator , gam_16} ,
{dft, dft_64} , {ifft, ifft_256}}

The Perl utility generates RTL design for every mode and a script to run Questa CDC
tool for CDC verification, the tool then generates a report for the CDC results for all the
runs of the modes of the design.

Using the proposed CDC verification flow, it has identified two CDC errors in all
the 12 modes of the design that may cause functional errors during the operation of the
system. The first error is found for the signals that are generated in clock domain of
(clk) inside the convolutional encoder block and sampled in clock domain of (clk2)
inside the modulator block. The modulator block’s design was missing synchronizing
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4.6.

these CDC signals to clock domain of (clk2) which may cause metastability issues for
the registers in the modulator block.

The second error shows up due to the usage of an asynchronous reset signal (reset).
The asynchronous reset signal was used without being synchronized to the clock
domains of (clk) and (clk2). This may cause metastability issues for the registers in the
design, because an asynchronous reset signal will be de-asserted asynchronous to the
clock signal of the register, so it may violate the reset recovery time requirement for the
register. Recovery time is the “minimum required time to the next active clock edge
after the reset is released”. The Questa CDC results for one of the 4G modes of the
design are shown in Figure 4.19, the first two violations are related to the first CDC
error (i.e. signals cross from encoder to the modulator), while the other 14 violations
are related to the second CDC error (i.e. missing synchronization of the asynchronous
reset). The schematic of the first CDC error is shown in Figure 4.18. The design has to
be fixed by using CDC data synchronizers for the crossing signals, and an
asynchronous reset synchronizer for the (reset) signal. The proposed approach can be
used again to verify the design after the design is fixed to make sure no more issues
CDC issues exist in the design.

encoder modulator
convo_valid_out ff

D comvo_valid_out Lo
ok —K—- b D o
14 convvalidinf EN q g

| chk2 ¢ -

conv_enc 2

ck2 [ \

FTC

Modulator_mod

Figure 4.18: Schematic of the first CDC violation in the design

Summary

CDC verification for digital designs is essential due to the usage of multiple clock
domains in the recent designs. The CDC verification for DRS designs is a challenging
task due to the lack of CAD tools support for DRS designs and the multiple operating
modes of the design. In this chapter a complete automated flow for CDC verification is
presented for DRS designs. Designers can use this flow with no extra effort to create
the new setup for CDC verification, and it can be easily integrated into the design and
verification cycle of DRS designs. The CDC verification should be done before moving
to implement the design on the FPGA, as any error caught during CDC verification will
force the designs to restart the implementation cycle after fixing the CDC errors in the
design. Using a case study from literature, it demonstrated how the proposed CDC
verification flow identifies a couple of real CDC errors in the design which were
overlooked during the design cycle. In the next chapter, a new methodolody for
debugging on FPGAs is proposed, the methodology is utilizing DPR.
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| Severity Check v|TX Signal RX Signal \TX Clock |RX Clock
-} Violation (16)

[ Violation Single-bit signal does not have proper synchronizer encoder.convo_valid_out medulator.ff.q_tmp clk clk2

“ Violation Multiple-bit signal across clock domain boundary encoder.convo_out modulator.p2s.din s clk clk2

I Violation Asynchronous reset does not have proper synchronization (14)

</ Violation  Asynchronous reset does not have proper synchronization reset (14)

-[HEf Violation  Asynchronous reset does not have proper synchronization reset encoder.a Async clk
-[HEf Violation  Asynchronous reset does not have proper synchronization reset encoder.b Async clk
-[HEf Violation  Asynchronous reset does not have proper synchronization reset encoder.c Async clk
- Violation  Asynchronous reset does not have proper synchronization reset encoder.convo out Async clk
-[HEf Violation  Asynchronous reset does not have proper synchronization reset encoder.convo valid out Async clk
-[HEf Violation  Asynchronous reset does not have proper synchronization reset encoder.d Async clk
-[HEf Violation  Asynchronous reset does not have proper synchronization reset encoder.e Async clk
-[HEf Violation  Asynchronous reset does not have proper synchronization reset encoder f Async clk
-[HEf Violation  Asynchronous reset does not have proper synchronization reset modulator.bpsk.mod_out im Async clk2
-[HEf Violation  Asynchronous reset does not have proper synchronization reset modulator.bpsk.mod_out re Async clk2
-[HEf Violation  Asynchronous reset does not have proper synchronization reset modulator.bpsk.mod_valid_out Async clk2
-[HEf Violation  Asynchronous reset does not have proper synchronization reset modulator.ff.q_tmp Async clk2
-[HEf Violation  Asynchronous reset does not have proper synchronization reset modulator.p2s.din s Async clk2
-[Hf Violation  Asynchronous reset does not have proper synchronization reset modulator.p2s.ps Async clk2

Figure 4.19: CDC results from Questa CDC tool for one of the 4G configuration modes of the design
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Chapter 5 : Utilizing Dynamic Partial Reconfiguration to

5.1

Reduce the Cost of FPGA Debugging

Debugging of FPGAs is a difficult task due to the limited access to the internal
signals of the design. Embedded logic analyzers enhance the signal observability for
FPGAs. These analyzers are implemented on the FPGA resources and they use the
embedded memory blocks as trace buffers, so a limited number of signals can be
observed using these analyzers due to resources constraints. Changing the traced set of
signals requires re-synthesis, placement and routing of the whole design. In this
chapter, a new methodology for FPGA debugging is proposed to change dynamically
the set of signals to be observed at runtime, and consequently, minimize the time
required for debugging. The proposed methodology utilizes the DPR technique to
dynamically switch between different sets of signals. DPR creates a reconfigurable
module to route each set of signals to an embedded logic analyzer. The proposed
approach is demonstrated using Xilinx FPGA tools, finding that changing the set of
signals to be observed requires only a few milli-seconds to re-program the
reconfigurable region. The area overhead of the proposed methodology is lower than
other traditional methods of using multiplexers as the DPR allows the routing module
to only use buffers to connect a set of signals to the embedded logic analyzer.

Introduction

Verification is one of the most challenging tasks in the Integrated Circuits (ICs)
development process. Any uncaught bugs or errors during the design and verification
phases can cause re-spins for silicon IC. Studies revealed that about half of designer's
effort is spent on functional verification [34]. With the increased complexity and size of
the designs, traditional functional verification methodologies such as RTL simulation
are no longer sufficient to uncover bugs and errors in the design because some real-
world interactions only show up when implemented on hardware. The simulation also
runs at lower speeds than real hardware execution [35,36] which makes the thorough
analysis of large designs infeasible.

Reconfigurability of FPGAs attracts designers to do prototyping for their systems.
FPGAs can run at higher speeds than that of simulation, and will catch bugs and errors
that cannot be caught in simulation such as system timing issues. Debugging design and
system integration issues on FPGAs is a difficult task due to the limited access to
internal signals, the designer can only observe the signals connected to the FPGA
output pins. Embedded logic analyzers are used to provide visibility for internal signals
inside the FPGA [37,38,39]. These analyzers are implemented on the FPGA resources,
they use embedded memory blocks as trace buffers. Designers use the Joint Test Action
Group (JTAG) port to access the analyzer, and the recorded data can be replayed on a
Personal Computer (PC). The traditional design and debug flow for FPGAs is shown in
Figure 5.1.
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Figure 5.1: Design and debugging flow for FPGAs

The major disadvantage of using embedded logic analyzers is that the observed
signals that are connected to the trace buffer of the embedded logic analyzer are
selected before the user design is synthesized, placed and routed. In order to change the
set of observed signals, it will require the recompilation of the FPGA design flow. Also,
the debug circuitry added in the design consumes a part of the FPGA resources, so the
Design Under Test (DUT) may no longer fit in the FPGA device. The amount of
resources required for debugging is directly proportional to the number of selected
signals to be observed.

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime while
the other remaining logic keeps operating. It allows the implementation of complex
designs that have multiple operating modes such as SDR applications within a
reasonable area on the FPGA. In DPR, the design consists of a number of
Reconfigurable Modules (RMs), each module has a number of modes that are swapped
at runtime according to the system operating modes. A Reconfigurable Region (RR) is
a location on the FPGA in which the reconfigurable module is allocated on. An
example for DPR system is shown in Figure 5.2, it has five configuration modes:
Configl, Config2, Config3, Configd and Configs. Each configuration has four
reconfigurable modules: ModuleA, ModuleB, ModuleC and ModuleD, each with four
modes: Model, Mode2, Mode3 and Mode4. DPR extends the design flexibility through
mapping of multiple reconfigurable modules to the same physical reconfigurable
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region, which reduces the design cost and the resource usage. In the example of Figure

5.2, the design will have 4 RRs on the FPGA, each RR is used for a unique RM.

Configl ModuleA_Model ModuleB_Model ModuleC_Model ModuleD_Mode1
Config2 ModuleA_Mode2 ModuleB_Mode2 ModuleC_Mode2 ModuleD_Maode2
Config3 ModuleA_Mode3 ModuleB_Mode3 ModuleC_Mode3 ModuleD_Made3
Configd ModuleA_Mode4 ModuleB_Mode4 ModuleC_Mode4 ModuleD_Mode4
Config5 ModuleA_Model ModuleB_Mode2 ModuleC_Mode3 ModuleD_Moded

Figure 5.2: An example of DPR design with five modes of configuration and four
reconfigurable modules per configuration

The approach proposed in this chapter utilizes DPR on FPGAs to alleviate the
issues of using embedded logic analyzers by 1) dividing the large number of all
potential signals for debugging Nsigs into number of small signals sets Nsets (equals
Nsigs/Nprobes), 2) defining one Reconfigurable Module (RM) in the design, the
number of modes for this RM is Nmodes (equals Nsigs/Nprobes), where Nprobes is the
number of probes of the embedded logic analyzer. For every mode of the RM, a set of
signals is connected to the probes of the embedded logic analyzer. The methodology
can be extended to use the output pins of the FPGA for observing the selected signals
instead of the embedded logic analyzer, by connecting the outputs of the RM to the
output pins of the FPGA, in that case the number of modes (or signals sets) will be
equal to the number of signals divided by the number of available output pins for
debugging Nsigs/Nopins.

The changes in the connections of the signals sets to the analyzer are done at
runtime. So, the proposed methodology avoids the recompilation of the whole FPGA
flow by changing the observed signals during runtime. Also, it controls the size of the
logic analyzer by controlling the number of its probes Nprobes without affecting the
observability of potential debugging signals, as they are still observable by changing
the mode of the RM at runtime. For large designs which need most of the FPGA
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5.2,

5.3.

resources, designers need to keep the number of the analyzer's probes as minimum as
possible to limit the size of the analyzer.

Related Work

Several works have proposed techniques to enhance the debugging of FPGASs using
scan-based or trace-based techniques. In [40] a scan-based technique is proposed to
connect all the FFs in sequence by using the soft-logic of the FPGA. This technique has
a high area overhead due to the usage of the soft-logic to implement the scan-chains in
the design.

A bitstream modification technique is presented in [41] to modify the bitstreams
within tens of seconds to minutes. This can reduce the time spent in debugging the
design, and decrease design's time to market. But, when the selected set of signals for
tracing is changed, re-routing needs to be performed which can significantly affect the
design’s time to market. Software-like debug features are presented in [42] such as
watch-points and break-points to enhance debug capability in reconfigurable platforms.
But, any change in watch-points or breakpoints needs recompilation of designs.

In [43], a new methodology is proposed to permit a large number of internal
signals to be traced for an arbitrary number of clock cycles using a limited number of
external pins. It operates without the need for iterative executions of the design re-
synthesis, placement and routing tools. This is achieved by inserting a Multiplexer
(MUX) into the design implemented on the FPGA, with the MUX inputs are all the
signals that designer potentially needs to trace. Then, the select signals of the MUX are
controlled by manipulating the bitstream of the design to select different signals to be
traced. The disadvantage of this methodology is the area overhead of the MUX, and the
need to re-program the whole FPGA for any change in the selected signals to be traced.

An Approach For FPGA Debugging Using Dynamic Partial

Reconfiguration

This section presents a new approach to enhance the observability of FPGA
designs for debugging. The traditional debugging flow for FPGA designs is shown in
Figure 5.1, the design is synthesized, placed and routed on the target FPGA, then the
generated bitstream is used to program the FPGA. During the testing, if an issue is
caught, a set of signals is selected to be observed by an embedded logic analyzer, or by
routing them to the available output pins. In that case, the designer needs to repeat the
FPGA design flow from synthesis to FPGA programming which is time-consuming.
Additionally, observing a large number of signals is not feasible in the traditional
debugging flow because of the limited resources of the FPGA either for the memory
blocks and look-up tables (LUTS) in case of the embedded logic analyzer, or for the
output pins in case these pins are used for debugging. This forces the designer to repeat
the FPGA design flow multiple times in order to observe different sets of signals to
debug different faulty scenarios. For the rest of this chapter, it is assumed that an
embedded logic analyzer is being used for debugging for simplicity, the proposed
approach and the results presented are still applicable for using the output pins for
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debugging, the only difference is to replace the number of analyzer's probes by the
number of the output pins available for debugging.

A new approach for FPGA debugging is presented in this chapter to overcome the
limitations of the traditional FPGA debugging flow. This approach allows the designer
to switch between the signals at runtime without the need to repeat the FPGA design
flow. This is achieved by inserting a Reconfigurable Module (RM) in the design to
switch Dbetween the signals to be observed. This RM is implemented on a
Reconfigurable Region (RR) on the FPGA. All the potential signals to be observed are
connected as inputs to this module. The outputs of the RM are connected to the
embedded logic analyzer or the debug output pins. Figure 5.3 shows the connections of
the RM. Depending on the available resources on the FPGA, the number of modes of
the RM is decided. For a number of signals to be observed Nsigs and number of probes
Nprobes for the embedded logic analyzer, the number of modes of the RM is
Nsigs/Nprobes.

Reconfigurable Region on FPGA

_____________________ 1

|
— | :
sig_1 _:_) | Outputs of the RM
sig 2 —L1—| : are connected to
i3 ' | the logic analyzer
- - . |
. | Reconfigurable |
Sl.g‘4 | probe_1
g 5——  Module | Prove,
g 6—L— (RM) ! praze :
) | probe
sig_1—+— I = .
All potential signals g8 | | probe_4 Embedded Logic
for debugging _J T : Analyzer
are connected as ' : :
inputs to the RM ' : | probe_M
o |
vl |
. |
|
| B Note: FPGA Output
o B pins can beused o
sig_N-l—-ﬁ | observation instead
g N —+ | of the Embedded
- | | Logic Analyzer
|
L e e e )

Figure 5.3: Reconfigurable module to connect the set of signals to the embedded
logic analyzer probes
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For each mode of the RM, a set of signals is connected to the probes of the
embedded logic analyzer. So, in each mode a, subset of the signals will be used while
the others will not be used at all. This allows to keep the unused subset of the signals
unconnected. Hence, for each mode, a set of signals is routed to the output while the
others remain unconnected, so buffers only will be used to do this connection, and
LUTSs of the FPGA will not be used. This is a major advantage for using this approach
because the area will be as minimum as possible when compared with other approaches
that use MUXes to switch between the signals sets such as the proposed approach in
[43].

An example for 4-inputs and 2-outputs case is shown in Figure 5.4, the RM will
have two modes of operation, the first mode of operation is to connect the first two
input signals to the outputs, and the second mode of operation is to connect the second
two inputs signals to the outputs. Figure 5.5 shows an example for the case of 8-inputs
and 2-output, the RM will have 4 modes of operation, each mode of these four modes
will connect a different two inputs signals to the outputs. Figure 5.6 shows an example
for the case of 8-inputs and 4-outputs, the RM will have two modes of operation, the
first mode of operation is to connect the first four input signals to the outputs, and the
second mode of operation is to connect the second four input signals to the outputs. The
same synthesis will be applied on other cases which have a higher number of inputs to
the RM, i.e. in all the operating modes of the RM, it is sufficient to use 1-input LUTS to
act alike buffers to connect the inputs of the RM to the outputs.

sig 1 ——3
sig 2 —= -
sig 33—
_

sig_ 4 ————>

(a) Mode 1
sig. 1 ———>
sig 2 —— o
sig 3 ————3 |
sig 4 ——— |

(b) Mode 2

Figure 5.4: Synthesis of the modes of the RM for 4-inputs and 2-outputs case.
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Figure 5.5: Synthesis of the modes of the RM for 8-inputs and 2-outputs case.
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Figure 5.6: Synthesis of the modes of the RM for 8-inputs and 4-outputs case.
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For each mode, a partial bitstream is generated and it will be used to re-program
the RR at runtime. Partial bitstreams are generated during the DPR design flow and are
saved into an external memory. The reconfigurable region size is affecting the size of
the partial bitstream in a directly proportional relationship [7]. Since the area consumed
by each mode of the RM is very small because it only uses buffers, the size of the
partial bitstream will be small, and consequently, the reconfiguration will require a few
milli-seconds to re-program the RR. The small reconfiguration time is a major
advantage for the proposed approach in this work when compared with the traditional
FPGA debugging flow as it avoids re-compilation, and also when compared with other
approaches which do modifications in the bitstream then re-program the whole FPGA
as in [43]. The proposed FPGA debugging flow is shown in Figure 5.7.

Design

Select all potential Number of signals = Nsigs
signals for debugging All potential signals for debugging are connected to ports of the RR

Divide signals into Number of sets = Nsigs/Nprobes for using embedded logic analyzer
or
smaller sets Number of sets = Nsigs/Nopins for using output pins
Elaboration & Synthesis : Debugging Loop
(Original Design + Modes Change the observed signals
of RR) set using DPR control signals
Will program the RR
with the desired partial
Place & Route bit-stream
No

|

|

|

|

|

|

|

|

|

|

|

|
Generate Bit-streams : Testing ,
L . . : No issues
(Original Design + Partial i &
|
|
|
|
|
|

found?

Bit-streams) Collecting Data

Figure 5.7: Proposed FPGA debugging flow.

In order to generate multiple designs to evaluate the performance of the proposed
mechanism, the Perl code in Appendix B.2 is implemented to generate RTL designs
and run scripts for Vivado.
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The following RTL Verilog file is showing one of the generated designs using the
script, it is for the trace setting of 128-16 (i.e. 128 signals to be traced in total, and only
16 of them are traced concurrently), the file in Appendix B.3 is used as a test case for
debugging using MUX’es to compare it with the behavior of the proposed debugging
flow using DPR.

When using DPR instead of the MUXes for debugging, the ila_mux module is replaced
by the modes of the RM, below is an example of the first mode (out of 8 modes) for the
128-16 trace settings (i.e. 128 signals to be traced in total, and only 16 of them are
traced concurrently).

module ila_mux (inl,in2,in3,in4,in5,in6,in7,in8,in9,in10,inll,inl2,inl3,inl4,inl5
,in16 ,in17 ,in18,in19,in20, in21 , in22 , in23, in24 , in25, in26 , in27 , in28 , in29 , in30 ,
in31,in32,in33,1in34,in35, in36, in37,in38,in39,in40, in41 , in42 , in43 , in44 , in45 , in46
, in47 ,in48 , in49 , in50 , in51 , in52 , in53 , in54 , in55, in56 , in57 , in58 , in59 , in60 , in61 ,
in62 , in63 , in64 , in65 , in66 , IN67 , in68 , iN69 , in70, in71,in72,in73,in74 ,in75,in76, in77
, In78 ,in79,in80 , in81 , in82 , in83 , in84 , in85 , in86 , in87 , in88 , in89 , in90 , in91 , in92 ,
in93,in9%4 , in95 , in96 , in97 , in98 , in99 , in100 , in101 , in102 , in103 , in104 , in105 , in106 ,
in107 , in108 , in109 , in110, in111, in112, in113, in114 , in115,inl116, in117 , in118 , in119 ,
in120,in121,in122,in123,in124 ,inl125, in126 , in127 , in128 , outl, out2, out3, out4 , out5,
out6 , out7 , out8 , out9, outl0, outll, outl?, outl3, outld, outl5, outl6) ;

[/l Parameters

parameter DATA_ WIDTH=1;

/1'1/O ports

input [ DATA WIDTH -1:01]1inl,in2,in3,in4,in5,in6,in7,in8,in9, inl0, inll
in12,in13,inl14 ,in15,inl16,inl17,inl18,in19,in20,in21,in22,in23,in24 ,in25, in26 , in27
,in28 ,in29,in30, in31,in32,in33,in34 , in35, in36 , in37 , in38 , in39 , in40 , in41 , in42 ,
in43 ,ind44 ,in45 ,in46 ,in47 , in48 ,in49 ,in50 , in51 , in52 , in53, in54 , in55 , in56 , in57 , in58
, In59 , in60 , in61 , in62 , in63 , in64 , in65 , IN66 , IN67 , IN68 , IN69 , in70, Iin71 , in72 ,in73,
in74 ,in75,in76 , in77 ,in78,in79,in80, in81,in82,in83,in84 , in85, in86 , in87 , in88 , in89
,in90,1in91 ,1in92 ,in93,in9%4 ,in95,in9%6 , in97,in98,in99, in100, in101, in102 , in103, in104
,in105 , in106 , in107 , in108 , in109, in110, in111 ,in112,in113,in114 ,inl115, in116 , in117 ,
in118,in119,in120, in121,in122,in123,in124 ,in125,in126, in127,inl128 ;

output wire [ DATA WIDTH-1:0]outl, out2, out3, out4 , out5, out6 , out7 , out8 , out9
,outl0, outll, outl?2, outl3, outld , outl5, outl6 ;

Il Logic

assign outl = ~inl ;

assign out2 = ~in9 ;

assign out3 = ~inl7;

assign out4 = ~in25 ;

assign out5 = ~in33;

assign out6 = ~in41 ;

assign out7 = ~in49 ;

assign out8 = ~in57 ;

assign out9 = ~in65 ;

assign out10 = ~in73 ;

assign outll = ~in81 ;

assign out12 = ~in89 ;

assign outl3 = ~in97 ;

assign outl4 = ~in105 ;

assign out15 = ~in113;

assign out16 = ~in121 ;

endmodule
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5.4. Experimental Results

The experiment aims to study the utilization of DPR to minimize the cost of FPGA
debugging in terms of area overhead of the reconfigurable module, time of
reconfiguration (i.e. time needed to switch between different sets of traced signals), and
the usability of the FPGA debugging flow.

54.1. System Implementation and Setup

The experimentation is carried out using Xilinx Zynq XC7Z020LG484-1 FPGA
and tested with a ZC702 board [44]. The DPR flow has been carried out using Xilinx
Vivado tool. The complete system is developed as shown in Figure 5.8. The Zynq
FPGA device consists of two parts: i) The Programmable Logic (PL) and ii) The
Processing System (PS) part. The PL part contains: 1) the Design Under Test (DUT)
that is used as a test case to evaluate the proposed FPGA debugging flow, 2) The
reconfigurable partition region which is used to host the reconfigurable module modes
of the debugging interfaces, 3) The embedded logic analyzer (Xilinx Integrated Logic
Analyzer (ILA)) is used to capture the observed signals and send them to an external
PC. The proposed flow can be applied using the output pins of the FPGA instead of the
embedded logic analyzer, so the interest of this section is to calculate the performance
metrics for the reconfigurable module to compare it with the area-optimized MUX
presented in [43]. The PS part contains the ARM processor and the FPGA 1/0
interfaces to the external ZC702 board peripherals such as UART, SD-Card ... etc. The
PS unit is connected with the PL part via AXI bus interfaces. The PS unit is used to
send control signals to the DUT and the ILA. The DPR process is done using the serial
JTAG external configuration port to load the partial bitstreams of the debugging modes
interfaces from an external PC to the FPGA configuration memory with a data rate of

66 Mbl/s [7].
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Figure 5.8: Implementation and setup of the test environment for the proposed
FPGA debugging flow.

In these experiments, the same DUT setup as in [43] is used to compare the results
of the two proposals against each other. The DUT was modified to connect the traced
signals to the proposed RM. Xilinx's attribute, keep, was used to prevent the removal of
these signals during optimization. In the following subsections, the notation, m-w,
represents the tracing setting where m signals are candidates for tracing and w signals
are traced concurrently.

5.4.2. AreaOverhead

The area overheads of the proposed Reconfigurable Module (RM) for 6 different
tracing settings are shown in Table 3.1. It is found that the area overhead is directly
proportional to the number of signals observed concurrently (i.e. those connected to the
embedded logic analyzer), it is not changing with the number of candidate signals for
debugging. Xilinx Vivado's place and route tool creates a partition pin for every input
port of the RM. Partition pins “are physical connections between static logic and
reconfigurable logic, they are automatically created for all Reconfigurable Partition
ports” [7]. The partition pins are implemented on the interconnect resources of the RR
on the FPGA. In the following table, the notation, m-w, represents the tracing setting
where m signals are candidates for tracing and w signals are traced concurrently.

Table 5.1: Area overhead of the RM

Trace Setting 128-2 | 128-4 | 128-8
Number of 1-input LUTSs (Buffers) 2 4 8
Trace Setting 256-2 | 256-4 | 256-8
Number of 1-input LUTSs (Buffers) 2 4 8

Table 5.2 reports the area overhead for the proposed structure in [43] in terms of 4-
input LUTSs. This overhead is calculated by multiplying the number of Adaptive Logic
Modules (ALMs) by two, this is because each ALM in an Altera Stratix Il device can
contain two 4-input LUTs [43]. The area overhead of the proposed approach is smaller
than that of [43]. This is expected because two 64:1 MUXes are needed for the 128-2
trace setting in [43], while the proposed DPR approach will only use two 1-input LUTs
for the 128-2 trace setting.

Table 5.2: Area overhead of the proposed structure in [43]

Trace Setting 128-2 | 128-4 | 128-8
Average Number of 4-input LUTs 50 50 50
Trace Setting 256-2 | 256-4 | 256-8
Average Number of 4-input LUTS 100 100 100
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5.4.3. Time for Changing the Traced Signal Set

The time needed to switch between different signals sets is equivalent to the
reconfiguration time of the RR. The reconfiguration time of the RR is calculated as:

S1Z€phs

trecon fig = 1
reconfig b*.it_-ra.tejmg ( )

Where treconfig iS the time to switch between a traced set of signals to another, sizepps is
the size of the partial bitstream file, and bit_ratejiag is the bit rate of the JTAG port
which is used to re-program the RR on the FPGA. For the setup considered in this
work, the bit_ratejiag is 66 Mb/s [7], and the size of the partial bitstream is ~30 KB. So,
the time to switch between a traced set of signals to another is 3.63 ms.

The time needed to cover all the signals sets is calculated as:

ttota,l_s-w = Armodes * t'r'e::oir?,figl (2)

Where tiotar_sw 1S the time needed to cover all the signals sets of the candidate signals for
debugging, Nmodes is the number of modes of the RM that are implemented on the RR,
and treconfig 1S the time needed to reconfigure the RR as calculated in (1). Table 3.3
shows the total switching time required to trace all the signals sets.

Table 5.3: Total switching time required to trace all the signal sets

Trace Setting 128-2 128-4 128-8
Number of modes 64 32 16
Time to cover all signals sets 232.32ms | 116.16 ms | 58.08 ms
Trace Setting 256-2 256-4 256-8
Number of modes 128 64 32
Time to cover all signals sets 464.64 ms | 232.32ms | 116.16 ms

The switching time for the proposed debugging flow is much less than that of [43].
In [43], the bitstream should be manipulated to change the select signals of the area
optimized MUX, then the whole FPGA needs to be re-programmed. The authors of [43]
report that it takes seconds to change the traced signal set. Similarly, the switching time
of the DPR proposed flow is much faster than the switching time of the traditional
debugging flow which requires minutes for the re-compilation of the FPGA design
flow. Another advantage of the proposed flow, is that the switching of the signals sets
can be done at runtime, unlike other methodologies which require the whole FPGA to
be re-programmed.

5.4.4. Recommendations for FPGA debugging

This section is proposing recommendations for selecting a methodology for FPGA
debugging. This is based on the results presented in this chapter, and results of the
related works. The recommendations are based on five metrics: 1) area overhead of the
debugging structure, 2) concurrent observability of FPGA internal signals, 3) ease of
setup, 4) compilation time of the design, and 5) switching time to change the traced
signal set. Four methodologies are considered for the recommendations: 1) DPR flow
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for FPGA Debugging, 2) traditional FPGA debugging flow, 3) area-optimized MUX in
[43], and 4) scan-based technique in [40].

It is recommended to use the DPR flow for FPGA debugging for cases in which the
designer is interested in low area overhead, and low switching time to change the traced
signal set, because the DPR flow has very low area overhead and low switching time as
it is shown in this chapter. If the area-overhead is not a problem and full observability
and controllability is required, it is recommended to use the scan-based approach in
[40], as the scan-based approach for debugging of FPGAs [40] provides full access to
the FFs of the FPGA, and consequently, improves the controllability and observability
during the debugging process.

If the designers are interested in very low overhead in the compilation time, the
area-optimized MUX approach in [43] is recommended, as this optimized MUX
approach provides low compilation time as it doesn’t add lots of logic, the DPR flow
also doesn’t add lots of logic but it requires more time during compilation to prepare
the partial bit-streams to reconfigure the RR on the FPGA. But, when using the
optimized MUX approach [43], the designer should be able to manipulate the bitstream
of the FPGA device, which is not an easy task and it is not fully explained in [43]. The
traditional flow is recommended to be used for small designs in which a small set of
signals are needed for debugging, and there is no need to change this set of signals
during debugging, because in such cases no runtime changes are needed for the traced
signal set, and hence it doesn’t make sense to utilize one of the advanced debugging
approaches. The recommendations and comparison in this section are summarized in
Table 5.4.

Table 5.4: Recommendations for FPGA debugging flows

DPR Area- Traditional Scan-based
optimized Flow Technique
MUX
Area overhead Very low Low No overhead Very high
Concurrent Partial Partial Partial Full
observability
Ease of setup Easy Hard (Needs Easy Easy
(DPR flow bitstream (FFs are
is well manipulation) modified in the
documented) RTL)
Compilation Moderate Low Lowest Moderate
time (Modes of
the RM are
compiled)
Switching time Lowest Low (Few Very high N/A
(Few milli- seconds) (Minutes as it
seconds) needs
recompilation)
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5.5. Summary

Debugging of FPGA devices is a difficult task due to the limited access to the
internal signals in the design. Traditional debugging flow requires re-compilation of the
FPGA design flow in order to change set of observed signals either through embedded
logic analyzer or output pins of the FPGA. This chapter presented a new technique to
use the DPR design flow to reduce the cost of the debugging on FPGA devices. The
new technique has a small area usage as the DPR flow allows the switching between
signals to use buffers only to wire a selected signal set to the embedded logic analyzer
or the FPGA output pins. The FPGA reconfiguration to switch the traced signal set
requires milli-seconds to program the RR on the FPGA.
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Chapter 6 : Conclusion and Proposed Future Work

In this research, the problem of functional verification of DPR is discussed, as well
as the usage of DPR to improve the effectiveness of debugging on FPGAs. In Chapter
2, an overview is presented for the FPGA structure and technology, as well as the DPR
details and terminology. In addition, Chapter 2 discusses the advantages and
disadvantages of DPR when compared to the static FPGAs design flow.

Chapter 3 presented an overview about techniques of functional verification and
ABV, as well as how to define assertion properties for the design under test. It also
addressed the functional verification of DPR specific logic for: 1) synchronization of
reconfiguration requests when there is a computation being done by the RM, 2)
initialization of the RM after the reconfiguration process is done to make sure the RM
is set on an initial state, 3) isolation of the RMs during the reconfiguration process to
ensure that there no buggy logic values propagate to the static logic from the RM
outputs during the reconfiguration process, and 4) verification of the RM connections
to make sure that these connections are not altered when translating the design to utilize
the DPR technique. This DPR logic is verified using Assertion Based Verification
(ABV) by modeling its functionality using System Verilog Assertion (SVA) properties,
then instrument the design with these properties. Following that, these properties are
using simulation or formal methods to check the correctness of the DPR logic. The
presented framework is demonstrated on a case study from literature. 96 assertions
were used to verify the DPR logic of the case study, and 3 functional bugs have been
identified in the design which highlights the power of the proposed framework.

Chapter 4 presented an overview about the CDC problem in digital design, and
how asynchronous clocks can cause flip-flops to enter a metastable state. After that, it
presented the concept of clock domains in digital designs, and the common
synchronizers structure that are used to avoid metastability issues. The chapter then
presented a flow for performing CDC verification for designs that utilize DPR
technique. The presented flow solves the issues of the lack of CAD tools that support
DRS. The flow is demonstrated on a case study from literature, and 2 CDC issues have
been identified in the designs, these issues should be fixed to avoid metastability issues
in the design.

Chapter 5 presented the problem of FPGA debugging due to the limited resources
available on the FPGA which prevent the designer to trace all the candidate signals for
debugging, and also because of the limited observability and controllability of the
internal signals in the design. This chapter proposed the usage of DPR in the problem
of FPGA debugging to minimize the resources usage of the added circuitry as well as
minimizing the time needed to switch between the traced signal sets for debugging. The
proposal involves usage of one RM in the design to multiplex between the candidate
signals for debugging at runtime, and since the RM only creates connections between
outputs and inputs, the area usage of the RM is minimum as the design will only need
1-input LUTs to connect one input to one output. The proposal is evaluated and
compared to a framework which uses a MUX to switch between the different signals
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for debugging. The proposed approach saved 80% of the area overhead when compared
to MUX-based approach. The FPGA reconfiguration to switch the traced signal set
requires milli-seconds to program the RR on the FPGA.

6.1. Proposals for Future Work

1. Exploring new functional verification areas for DPR such as power-aware
verification and runtime verification

2. Investigate the synthesis of assertion properties defined for DPR logic on the
FPGA to help with the debugging process and the run-time verification of the
circuit

3. Implementing and developing CAD tools to help with the design and
verification process for DPR
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Appendix B: Codes

B.1. Perl code to check interfaces of RMs ports

#! /usr/bin/perl

use FindBin ;

use lib SFindBin::Bin ;

use File::Basename ;

use rvp ;

use Getopt::Long;

my SscriptName =" check_ports_for_pdr";
if ( &GetOptions( "filelist=s"  =>\S$filelist,

"config=s" => \SconfigFile ,
"help" =>\ShelpOption ) ==0) {
die " ERROR: lllegal command or option. Use ' SscriptName —h ' for help \n" ;

}
if ( ShelpOption ) {
print " Usage : check_ports_for_pdr.pl\n".
" -filelist <File list of Verilog files>\n" .
" -config <CSV file for configurations>\n" ;
exit 0;
}
if (! Sfilelist ) {
die "ERROR: Please specify the input filelist of the Verilog files" ;
}
my @files = * cat Sfilelist *;
chomp( @files ) ;
## Parse the Verilog files
my Svdata = rvp->read_verilog( \@files, [], {def1=>1},1,[1,1[1,");
# Print out all the found modules
foreach Smodule ( Svdata->get_modules() ) {
print " INFO : Iterating over the ports of module ' Smodule "\n " ;
foreach my Sport ( @{Svdata->{modules{Smodule{port_order}}) {
my Srange = Svdata->{modules}{Smodule}signals}{Sport{range} ;
my Stype = Svdata->{modules}{Smodule}{signals}{Sport}{type};
my Ssize ;
if (Srange eq ") {
Ssize = 1;
}elsif ( Srange =~ m/(\d+):(\d+)/ ) {
if ($2>51){
Ssize=$2-S1+1;
} else {
Ssize=51-52+1;
!
}
print" Sport Srange Stype Ssize\n " ;
}
## Parse the configuration files
if (! SconfigFile ) {
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print " WARNING: No config file is provided, port checks will be skipped \n " ;
exit0;
}
my %RRs ;
open ( CONFIG_FILE, "<", "SconfigFile") or die " ERROR: Config file ' SconfigFile ' is not
found. \n";
while (<CONFIG_FILE> ) {
if ($_=~m/"RR/){
my SRR_name=S_;
my Smodules_of RR=S_;
SRR_name =~ s/("RR.*?),.*/$1/;
Smodules_of RR="~s/ARR.*?,//;
chomp(SRR_name);
SRRs{modules}{SRR_name} = Smodules_of RR;
}

}
foreach ( keys ( SRRs{modules})) {

print " For RR S_, the following modules exist SRRs{modules}{S_N\n";
}

## Checks for every module of an RR
foreach my SRR ( keys (SRRs{modules}) ) {
my @modules_of RR = split (',',SRRs{modules}{SRR}) ;
chomp ( @modules_of RR);
if ( scalar ( @modules_of RR)<=1){
print "ERROR : The Reconfigurable-region 'SRR' only has 1 module, it should be part of
the static region\n";
}else {
print " INFO : The Reconfigurable-region 'SRR' has ", scalar ( @modules_of RR),"
modules: ", join (" ", @modules_of RR),"\n";

}

print " INFO : Checking ports of modules in the Reconfigurable-region 'SRR'\n " ;

my$i=0;
my Sreference_module ;
my @ports_of _reference_module ;

foreach my Smodule ( @modules_of RR){
my @ports_of_module = @{Svdata->{modules}{Smodule}{port_order}};
if (5i==0){
Sreference_module = Smodule ;
@ports_of_reference_module = @{Svdata-
>{modules}{Sreference_module}port_order}};

print" :The module 'Sreference_module' will be taken as the reference.\n" ;
}else {
print" : Comparing module 'Smodule' against the reference module

'Sreference_module' \n";
print" :Performing Check #1: Number of ports:\n";
if ( scalar(@ports_of module) == scalar(@ports_of reference_module) ) {
print" : Number of ports for both modules matched, both have ",
scalar(@ports_of _module), " ports.\n";
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} else {
print" : Number of ports for both modules is different. ",
" Reference module 'Sreference_module ' has
" ,scalar(@ports_of_reference_module), "ports, ",
" while module ' Smodule ' has ", scalar(@ports_of_module), " ports.\n";

}

print" :Performing Check #2: Name, order and size of ports: \n " ;
for (my Si=0; Si<scalar( @ports_of_reference_module); Si++ ) {
my Sport = Sports_of _module[$i] ;
my Sref_port = Sports_of reference_module[Si] ;
my Sport_type = Svdata->{modulesH{Smodule}{signals}{Sport}{type};
my Sref_port_type = Svdata-
>{modules}{Sreference_module}Hsignals}{Sref port}{type};
my Sport_range = Svdata->{modules{$module}signals}{Sport}{range} ;
my Sref_port_range = Svdata-
>{modules}{Sreference_module}signals}{Sref port{range};
my Sport_size = get_port_size(Sport_range) ;
my Sref_port_size = get_port_size(Sref_port_range) ;
print" : Port #Si-->'Smodule":Sports_of_module[$i] (Type: Sport_type, Size:
Sport_size) vs. ".
"'Sreference_module':Sports_of_reference_module[Si] ( Type:
Sref _port_type, Size: Sref_port_size )\n" ;
if (! (Smodules_of _port[Si] eq Smodules_of port[Si] ) ) {

print" : Error for port naming of Port #Si\n";
}else {
print" : Port naming of Port #Siis OK. \n";
}
if (! ( Sport_type eq Sref_port_type) ) {
print" : Error for port type of Port #Si\n " ;
}else {
print" : Porttype of Port #Siis OK. \n";
}
if (! ( Sport_size == Sref_port_size) ) {
print" : Errorfor port size of Port #Si\n";
}else {
print" : Portsize of Port #Siis OK.\n";
}
}
}
Si++
}
}

sub get_port_size {

my Srange = $_[0] ;

if (Srangeeq ") {
Ssize = 1;

}elsif ( Srange =~ m/(\d+):(\d+)/ ) {
if ($2>$1){

Ssize=$2-51+1;

}else {
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Ssize=61-82+1;
}
}

return Ssize ;

}

B.2. Perl code to generate RTL designs and run scripts for Vivado
#! /usr/bin/perl
use Getopt::Long;

my @mux_mode _iters= (8) ;
my @DATA_WIDTH jters= (1,2,4,8,16,32,64,128,256) ; my @num_sigs_iters =
(4,8,16,32,64,128,256) ; @num_sigs_iters= (8,16,32,64,128,256) ;

my Sdpr_mode =1 ;

foreach my Smux_mode_iter ( @mux_mode_iters ) {foreach my SDATA_WIDTH_iter (
@DATA_WIDTH_iters ) {foreach my Snum_sigs_iter ( @num_sigs_iters ) {

# Default Config

my Smux_mode =0;

my SDATA_WIDTH = 16 ;

my Snum_sigs_observed =6 ;

# Using the iterations variables
Smux_mode = Smux_mode_iter ;
SDATA_WIDTH = $SDATA_WIDTH_iter ;
Snum_sigs_observed = Snum_sigs_iter ;

my Sproject_name =

"debug_numS${num_sigs_observed} widthS{DATA_WIDTH} mux$mux_mode" ; my
Sproject_path =
"/home/iahmed/Masters1l/Debugging/Vivado_projects/prjs_mux8/${project_name}" ;

‘mkdir -p Sproject_path";

my Svivado_file = "Sproject_path/run_vivado.tcl " ; my Sdut_file =
"Sproject_path/dut_debug.v"; my Sdpr_mux_filel = "Sproject_path/ila_muxl.v"; my
Sdpr_mux_file2 = "Sproject_path/ila_mux2.v" ; my Sdpr_mux_file3 =
"Sproject_path/ila_mux3.v" ; my Sdpr_mux_file4 = "Sproject_path/ila_mux4.v " ; my
Sdpr_mux_file5 = "Sproject_path/ila_mux5.v" ; my Sdpr_mux_file6 =
"Sproject_path/ila_mux6.v " ; my Sdpr_mux_file7 = "Sproject_path/ila_mux7.v" ; my
Sdpr_mux_file8 = "Sproject_path/ila_mux8.v" ;

if ( Sdpr_mode ==1 && Smux_mode ==2) {

open ( FHDPR1, " >S$dpr_mux_file1") ;

open ( FHDPR2, "> Sdpr_mux_file2") ; }elsif ( Sdpr_mode == 1 && Smux_mode ==
4){
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open ( FHDPR1, "> Sdpr_mux_filel") ;
open ( FHDPR2, "> Sdpr_mux_file2") ;
open ( FHDPR3, "> Sdpr_mux_file3") ;

open (FHDPR4, "> Sdpr_mux_filed ") ; }elsif ( Sdpr_mode == 1 && Smux_mode ==

8 ) {
open ( FHDPR1, "> Sdpr_mux_filel") ;
open ( FHDPR2, "> Sdpr_mux_file2 ") ;
open ( FHDPR3, "> Sdpr_mux_file3") ;
open ( FHDPR4, "> Sdpr_mux_filed ") ;
open ( FHDPR5, "> Sdpr_mux_file5") ;
open ( FHDPR6, "> Sdpr_mux_file6 ") ;
open ( FHDPR7, "> Sdpr_mux_file7 ") ;
open ( FHDPRS, "> Sdpr_mux_file8") ;}

open (FHV, "> Sproject_path/run_vivado.tcl") ; open (FHD, ">
Sproject_path/dut_debug.v") ;

print FHD <<EOL ;
‘timescale 1ns / 1ps

module dut ( debug_mode, inl, in2, in3, in4, in5, in6, clkl, outl, out2) ;
// Parameters
parameter DATA_WIDTH=1;
// 1/0 ports
input wire debug_mode ;
input wire [ DATA_WIDTH-1:01]in1, in2, in3, in4, in5, in6;
input wire clkl ;
output wire [ DATA_WIDTH-1:0]outl, out2;
// Internal  registers (to be observed )
// 256  registers

(* keep="true " *) reg [ DATA_WIDTH-1:0]regl , reg2 , reg3 , reg5 , reg6 ,

reg7 , reg9 , reglO , regll , regl3 , regld , regl5 ;

(* keep="true " *) reg [ DATA_WIDTH-1:0]regl7 , regl8 , regl9 , reg2l , reg22

, reg23 , reg25 , reg26 , reg27 , reg29 , reg30 , reg31 ;

(* keep ="true" *) reg [ DATA_WIDTH-1:0]reg33 , reg34 , reg35 , reg37 , reg38

, reg39 , regdl , regd2 , reg43 , regd5 , regd6 , regld7 ;

(* keep ="true" *) reg [ DATA_WIDTH-1:0]reg49 , regh0 , regh1 , reg53 , reg54

, regh5 , regh7 , regh8 , regh9 , regbl , regb2 , reg63 ;

(* keep="true" *) reg [ DATA_WIDTH-1:0]reg65 , regb6 , regb7 , reg69 , reg70

, reg71 , reg73 , reg74 , reg75 , reg77 , reg78 , reg79 ;

(* keep ="true" *) reg [ DATA_WIDTH-1:0]reg81 , reg82 , reg83 , reg85 , reg86

, reg87 , reg89 , reg90 , reg9l , reg93 , reg94 , reg9s ;

(* keep="true" *) reg [ DATA_WIDTH-1:0]reg97 , reg98 , reg99 , reglOl,
regl02, regl03, regl05, regl06, regl07, regl09, regllO, reglll;

(* keep="true" *) reg [ DATA_WIDTH-1:0]regl13, regll4, regll5, regll7,
regll8, regll9, regl2l, regl22, regl23, regl25, regl26, regl27;

(* keep="true " *) reg [ DATA_WIDTH-1:0]regl129, reg130, regl3l, regl33,
regl34, regl35, regl37, regl38, regl39, regldl, regld2, regld3;

(* keep="true" *) reg [ DATA_WIDTH-1:0]regld5, regld6, regld7, regld9,
regl50, regl51, regl53, regl54, regl55, regl57, regl58, regl59;
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(* keep="true" *) reg [ DATA_WIDTH-1:0]regl6l, regl62, regl63, regl6s,
regl66, regl67, regl69, regl70, regl71, regl73, regl74, regl75;

(* keep="true" *) reg [ DATA_WIDTH-1:0]regl77, regl78, regl79, regl8l,
regl82, regl83, regl85, regl86, regl87, regl89, reglo0, reglol;

(* keep="true" *) reg [ DATA_WIDTH-1:0]regl193, regl94, regl95, regl97,
regl98, regl99, reg201, reg202, reg203, reg205, reg206, reg207;

(* keep ="true " *) reg [ DATA_WIDTH-1:0]reg209, reg210, reg211, reg213,
reg214, reg215, reg217, reg218, reg219, reg221, reg222, reg223;

(* keep ="true" *) reg [ DATA_WIDTH-1:0]reg225, reg226, reg227, reg229,
reg230, reg231, reg233, reg234, reg235, reg237, reg238, reg239;

(* keep="true" *) reg [ DATA_WIDTH-1:0]reg241, reg242, reg243, reg245,
reg246, reg247, reg249, reg250, reg251, reg253, reg254, reg255;

(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg4;

(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg8;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl2;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl6;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg20;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg24;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg28;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg32;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg36;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg40;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg44,;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg48;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg52;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg56;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg60;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg64;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg68;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg72;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg76;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg80;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg84;
(* keep =" true " *) wire [ DATA_WIDTH-1:0] reg88;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg92;
(* keep =" true " *) wire [ DATA_WIDTH-1:0] reg96;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl00;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl04;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl08;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl12;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regll6;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl20;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl24;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl28;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl32;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl36;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl40;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl44,;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl48;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl52;
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(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl56;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl60;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl64;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl68;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl72;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl76;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl80;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl84;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl88;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl92;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl96;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg200;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg204 ;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg208 ;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg212;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg216;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg220;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg224;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg228;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg232;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg236;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg240;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg244;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg248;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg252;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg256;

// Logic of the registers to be observed
always @ ( posedge clkl) begin

regl <=inl|in2;

reg2 <=inl&in2;

reg3 <=inl”in2;

reg5 <=inl&in3;

regb <=inl”in3;

reg7 <=inl|in4;

reg9 <=inl”"in4;

regl0 <=inl | in6;

regll <=inl &in6;

regl3 <=inl|in2;

regld <=inl &in6;

regl5 <=in37in2;

regl7 <=in5 | in2;
regl8 <=in5 | in2;
regl9 <=in5 | in2;
reg2l <=in5&in2;
reg22 <=in5 | in2;
reg23 <=in5 | in2;
reg25 <=in5&in2;
reg26 <=in5&in2;
reg27 <=in5 | in2;
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reg29
reg30
reg31l

reg33
reg34
reg35
reg37
reg38
reg39
regdl
regd?2
reg43
regd5
reg46
regd’7

reg49
reg50
reg51
reg53
reg54
reg55
reg57
reg58
reg59
regbl
reg62
reg63

regb5
regb6
reg67

reg69
reg70
reg71

reg73
reg74
reg75

reg77
reg78
reg79

reg81
reg82
reg83

reg85

<=in5&in2;
<=in5&in2;
<=in5&in2;

<=in6 | in2;
in6 | in2;
<=in6 | in2;
in6 &in2;
in6 | in2;
in6 | in2;
in6 &in2;
in6 &in2;
in6 | in2;
<=in6 &in2;
<=in6 & in2;
<=in6 & in2;

AN
1}

AN N AN AN N AN
| | R | R 1 R 1}

<=inl1”"in2;
<=inl1”"in2;
<=inl1”"in2;
<=in4 Nin2;
<=in4 Nin2;
<=in4 &in2;
<=in4 &in2;
<=in4 &in2;
<=in4 | in2;
<=in4 | in2;
<=in4 | in2;
<=in4 | in2;

<=in4 | in3;
<=in4 | in3;
<=in4 | in3;

<=in3 | in2;
<=in3 | in2;
<=in3 | in2;

<=in3 &in4;
<=in3 &in4;
<=in3 &in4;

<=in3 | in5;
<=in3 | in5;
<=in3 | in5;
<=in3 | in6;
<=in3 | in6;

<=in3 | in6;

<=in4 | in5;
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reg86 <=in4 | in5;
reg87 <=in4 | in5;

reg89 <=in4 &in5;
reg90 <=in4 & in5;
reg91 <=in4 & in5;

reg93 <=in4 *in5;
reg94 <=in4 ~in5;
reg95 <=in4 ~in5;

reg97 <=in4 | in5;
reg98 <=in4 & in5;
reg99 <=in4 *in5;

regl0l <=in4 & in2;
regl02 <=in4 & inl;
regl03 <=in4 M in3;

regl05<=in57in6;
regl06 <=in5 & in6 ;
regl07 <=in5 & in6 ;

regl09 <=in5 | in6;
regl1l0<=in5 & in6;
reglll <=in5"in6;

regll3 <=in5"in2;
regll4 <=in5”"in2;
regll5 <=in5"in2;

regll7 <=inl &in2;
regl18 <=inl &in2;
regll9 <=inl "in2;

regl21<=in3 | in2;
regl22<=inl | in4;
regl23<=inl | in5;

regl25<=in17in3;
regl26 <=inl"in4;
regl27 <=inl7in5;

regl29<=inl | in4;
regl30<=inl | in5;
regl31<=inl | in6;

regl33<=in4 | in5;

regl34 <=in2 | in6;
regl35<=in3 | in5;
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regl37 <=inl &in5;
regl38 <=in2 M in6 ;
regl39<=in4 | in4;

regl4l<=inl1”"in4;
regld2 <=in2 &in5;
regl43 <=in4 | in6;

regl45<=inl | in2;
regld6 <=in6 & in2;
regld7 <=in4 Min2 ;

regl49 <=inl &in2;
regl50<=in2 Min5;
regl51<=inl | in6;

regl53 <=inl;
regl54 <=in2;
regl55<=in3;

regl57 <=in4;
regl58 <=in5;
regl59 <=in6 ;

reglel <=inl;
regl62 <=in2;
regle3 <=in4;

regle5 <=inl;
regl66b <=in2 ;
regle7 <=in5;

regle9 <=inl;
regl70 <=in2;
regl71<=1in6;

regl73<=inl;
regl74 <=in3;
regl75<=in4;

regl77 <=inl;
regl78 <=in3 | in2;
regl79<=in5 | in2;

regl81 <=inl;
regl82 <=in3;
regl83 <=in5;

regl85<=inl & in2;

regl86 <=in3 ;
regl87 <=in6 ;
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regl89 <=inl;
regl90 <=in3;
regl91 <=in6;

regl93 <=inl | in2;
regl94 <=in4 & in2;
regl95 <=in6 "in2;

regl97 <=inl;
reglo98 <=in4;
regl99 <=1in6 ;

reg201 <=inl;
reg202 <=in5"7in2;
reg203 <=in6 & in3;

reg205 <=inl;
reg206 <=in5 ;
reg207 <=in6 ;

reg209 <=in2;
reg210<=in3;
reg2l1<=in4;

reg213<=in2;
reg214 <=in3;
reg215<=in5;

reg217 <=in2;
reg218 <=in3;
reg219<=in6 ;

reg221<=in3;
reg222 <=in4;
reg223<=in5;

reg225<=in3;
reg226 <=in4;
reg227 <=in6;

reg229<=in3 | in2;
reg230<=in4 | in2;
reg231<=in6 | in2;

reg233<=in3 &in2;
reg234<=in4 & in2;
reg235<=in6 & in2;

reg237 <=in3 7in2;
reg238 <=in4 Min2 ;
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reg239 <=in6 " in2;

reg241 <=in3 & in2;
reg242 <=in4 & in2;
reg243 <=in5 & in2;

reg245<=in3 | inl;
reg246 <=in4 | inl;
reg247 <=in5 | in1;

reg249 <=in3 | in2;
reg250<=in4 | in1;
reg251<=in5 | in6;

reg253<=in3 & in2;

reg254 <=in4 & in6 ;

reg255<=in5 & in2;
end

// Logic

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid1_inst (regl, reg2,

reg3, clkl, regd) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid2_inst ( reg5, reg6,

reg7, clkl, reg8) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid3_inst ( reg9, regl0,

regll, clkl, regl2) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid4_inst ( regl3, regl4,

regl5, clkl, regl6) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid5_inst ( regl7, regl8,

regl9, clkl, reg20) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid6_inst ( reg21, reg22,

reg23, clkl, reg24) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid7_inst ( reg25, reg26,

reg27, clkl, reg28) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid8_inst ( reg29, reg30,

reg31, clkl, reg32) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid9_inst ( reg33, reg34,

reg35, clkl, reg36) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid10_inst ( reg37, reg38,

reg39, clkl, regd0) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid11_inst ( reg41,

regd3, clkl, regd4) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid12_inst ( reg45,

regd7, clkl, regd8) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid13_inst ( reg49,

reg51, clkl, reg52) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid14_inst ( reg53,

reg55, clkl, reg56) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid15_inst ( reg57,

reg59, clkl, reg60) ;
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(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid16_inst ( reg61,

reg63, clkl, regb4) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid17_inst ( reg65,

reg67, clkl, reg68) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid18_inst ( reg69,

reg71, clkl, reg72) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid19 _inst ( reg73,

reg75, clkl, reg76) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid20_inst ( reg77,

reg79, clkl, reg80) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid21_inst ( reg81,

reg83, clkl, reg84) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid22_inst ( reg85,

reg87, clkl, reg88) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid23_inst ( reg89,

reg91, clkl, reg92) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid24_inst ( reg93,

reg95, clkl, reg96) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid25_inst ( reg97,

reg99, clkl, regl00) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid26_inst ( regl01,

regl02, regl03, clkl, regl04) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid27_inst ( regl05,

regl06, regl07, clkl, regl08) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid28_inst ( regl09,

regl10, reglll, clkl, regll2) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid29_inst ( regl113,

reglld, regll5, clkl, regll6) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid30_inst ( regll7,

regll8, regll9, clkl, regl20) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid31_inst ( regl21,

regl22, regl23, clkl, regl24) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid32_inst ( regl25,

regl26, regl27, clkl, regl28) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid33_inst ( regl29,

reg130, regl31, clkl, regl32) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid34 _inst ( reg133,

reg134, regl35, clkl, regl36) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid35_inst ( reg137,

reg138, regl139, clkl, regld0) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid36_inst ( regl41,

regl42, regld3, clkl, regld4) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid37_inst ( regl45,

regl46, regld7, clkl, regld8) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid38_inst ( reg149,

regl50, regl51, clkl, regl52) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid39_inst ( regl53,

regl54, regl55, clkl, regl56) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid40_inst ( regl57,

regl58, regl59, clkl, regl60) ;
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(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid41_inst ( regl61,
regl62, regl63, clkl, regl6d) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid42_inst ( regl65,
regle6, regl67, clkl, regl68) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid43_inst ( regl69,
regl70, regl71, clkl, regl72) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid44_inst ( regl73,
regl74, regl75, clkl, regl76) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid45_inst ( regl77,
regl78, regl79, clkl, regl80) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid46_inst ( regl81,
regl182, regl83, clkl, regl84) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid47_inst ( regl85,
regl186, regl87, clkl, regl88) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid48_inst ( regl89,
regl190, regl91, clkl, regl92) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid49 inst ( regl93,
regl94, regl95, clkl, regl96) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid50 _inst ( regl197,
regl198, regl99, clkl, reg200) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid51_inst ( reg201,
reg202, reg203, clkl, reg204) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid52_inst ( reg205,
reg206, reg207, clkl, reg208) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid53_inst ( reg209,
reg210, reg211, clkl, reg212) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid54_inst ( reg213,
reg214, reg215, clkl, reg216) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid55_inst ( reg217,
reg218, reg219, clkl, reg220) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid56_inst ( reg221,
reg222, reg223, clkl, reg224) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid57_inst ( reg225,
reg226, reg227, clkl, reg228) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid58_inst ( reg229,
reg230, reg231, clkl, reg232) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid59 inst ( reg233,
reg234, reg235, clkl, reg236) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid60 _inst ( reg237,
reg238, reg239, clkl, reg240) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid61_inst ( reg241,
reg242, reg243, clkl, reg244) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid62_inst ( reg245,
reg246, reg247, clkl, reg248) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid63_inst ( reg249,
reg250, reg251, clkl, reg252) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid64_inst ( reg253,
reg254, reg255, clkl, reg256) ;

assign outl = (regd | reg8 | regl2 | regl6) & (reg20 | reg24 | reg28 | reg32) & (
reg36 | regd0 | regd4 | regd8) & (reg52 | reg56 | regb0 | regbd ) & (regb8 | reg72 |
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reg76 | reg80) & (reg84 | reg88 | reg92 | reg96) & (reglO0 | regl04 | reglO8 |
regll2) & (regll6 | regl20 | regl24 | regl28) ;

assign out2 = (regl32 | reg136 | reg140 | regl44 ) & (regl48 | regl52 | regl56 |
regle0) & (regl6d | regl6e8 | regl72 | regl76) & (regl80 | regl84 | regl88 | regl92
) & (regl96 | reg200 | reg204 | reg208) & (reg212 | reg216 | reg220 | reg224) & (
reg228 | reg232 | reg236 | reg240 ) & ( reg244 | reg248 | reg252 | reg256) ;

EOL
my Snum_of_mux_signals=0;

if ( Smux_mode==2 ) {
Snum_of _ila_ports = Snum_sigs_observed / Smux_mode ;
Snum_of_mux_signals = Snum_sigs_observed ; } elsif ( Smux_mode ==4 ) {
Snum_of_ila_ports = Snum_sigs_observed / Smux_mode ;
Snum_of_mux_signals = Snum_sigs_observed ; } elsif ( Smux_mode ==8 ) {
Snum_of _ila_ports = Snum_sigs_observed / Smux_mode ;
Snum_of_mux_signals = Snum_sigs_observed ; } else {
# No MUX is needed
Snum_of_ila_ports = Snum_sigs_observed ;
Snum_of_mux_signals =0 ;

}

print "MUX: Snum_of_mux_signals\n" ;
print "MUX: Snum_of_ila_ports\n" ;
print "MUX: \n" ;
my @sigs_observed ;
my @ila_mux_outs ;
for (my Si=1; Si<=Snum_of _ila_ports ; Si++) {
push ( @ila_mux_outs, "ila_mux_outSi") ; }for ( my Si=1; Si<=Snum_sigs_observed
; Sit+) {
push ( @sigs_observed, "reg$i") ;}

my $sigs_observed_str = join (",", @sigs_observed ) ; my Sila_mux_outs_str =join (",
", @ila_mux_outs) ;if ( Snum_of_mux_signals =0 ) {
print FHD <<EOL ;
// MUXes for the ILA
wire [ DATA_WIDTH -1 :0] Sila_mux_outs_str;
(* keep_hierarchy =" yes " *) ila_mux # ( DATA_WIDTH ) ila_mux_inst ( debug_mode,
Ssigs_observed_str, Sila_mux_outs_str) ; EOL } print FHD <<EOL ;
// ILA instance
ila_Oila_inst_O (
.clk(clk1) , //input wire clk EOLif ( Snum_of _mux_signals =0 ) {
for (my Si=1; Si<=Snum_of ila_ports ; Si++) {
my Sprobe_num = $i-1;
if (Sil=Snum_of ila_ports ) {
print FHD "  .probeSprobe_num ( Sila_mux_outs[Sprobe_num]) , \n";
}else {
print FHD "  .probeSprobe_num ( Sila_mux_outs[Sprobe_num] ) \n";
}
}
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}else {
for (my Si=1; Si<=Snum_of_ila_ports ; Si++ ) {
my Sprobe_num = $i-1;
if ( Sil=Snum_sigs_observed ) {
print FHD "  .probeSprobe_num ( $sigs_observed[Sprobe_num]) , \n";
}else {
print FHD "  .probeSprobe_num ( $Ssigs_observed[Sprobe_num] ) \n";
}
}
}
print FHD " ) ;\n";
print FHD "endmodule\n" ;
if ( Smux_mode==2 ) {
my @ila_mux_out_ports ;
for (my Si=1; Si<=Snum_of_ila_ports ; Si++ ) {
push ( @ila_mux_out_ports, "outSi") ;
}
my @ila_mux_in_ports ;
for (my Si=1; Si <= Snum_sigs_observed ; Si++ ) {
push ( @ila_mux_in_ports, "inSi") ;
}
my Sila_mux_out_ports_str=join (",", @ila_mux_out_ports) ;
my Sila_mux_in_ports_str=join (",", @ila_mux_in_ports) ;
if ( Sdpr_mode !1=1 ) {
print FHD <<EOL ;
module ila_mux ( mode, Sila_mux_in_ports_str, Sila_mux_out_ports_str) ; EOL
}else {
print FHD <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ; EOL
}
print FHD <<EOL ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
EOL
if ( Sdpr_mode =1 ) {
print FHD <<EOL ;
input wire mode ;
EOL
}
print FHD <<EOL ;
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
if ( Sdpr_mode =1 ) {
for (my Si=1; Si<=Snum_of_ila_ports ; Si++) {
print FHD " assign outSi=mode ?in", 2*Si-1, ":in", 2*Si, ";\n";
}
}else {
print FHDPR1 <<EOL ;
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module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
// 1/0 ports
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of_ila_ports ; Si++) {
print FHDPR1 " assign outSi="~in", 2*Si-1, ";\n";
}
print FHDPR1 <<EOL ;
endmodule
EOL
print FHDPR2 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
// 1/0 ports
input [ DATA_WIDTH - 1:0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of ila_ports ; Si++) {
print FHDPR2 " assign outSi = ~in", 2*Si, ";\n";
}
print FHDPR2 <<EOL;
endmodule
EOL
}
print FHD <<EOL ;
endmodule
EOL
Yelsif ( Smux_mode==4 ) {
my @ila_mux_out_ports;
for (my Si=1; Si<=Snum_of ila_ports ; Si++) {
push ( @ila_mux_out_ports, "outSi") ;
}
my @ila_mux_in_ports ;
for ( my Si=1; Si <= Snum_sigs_observed ; Si++) {
push ( @ila_mux_in_ports, "inSi") ;
}
my Sila_mux_out_ports_str =join (",", @ila_mux_out_ports) ;
my Sila_mux_in_ports_str=join (",", @ila_mux_in_ports) ;
if ( Sdpr_mode =1 ) {
print FHD <<EOL ;
module ila_mux ( mode, Sila_mux_in_ports_str, Sila_mux_out_ports_str) ; EOL
}else {
print FHD <<EOL;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ; EOL

}
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print FHD <<EOL ;
module ila_mux ( mode, Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
EOL
if ( Sdpr_mode !=1 ) {
print FHD <<EOL ;
input wire [1:0] mode;
EOL
}
print FHD <<EOL ;
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
if ( Sdpr_mode =1 ) {
for (my Si=1; Si<=Snum_of ila_ports ; Si++) {
print FHD " (* keep_hierarchy =\"yes\" *) mux4_mod # ( DATA_WIDTH )
mux4_mod_instSi ( mode , in", 4*Si-3, ", in", 4*$i-2, ", in", 4*Si-1, ", in", 4*Si,
", ooutSi)", ";\n";
}
}else {
print FHDPR1 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of _ila_ports ; Si++) {
print FHDPR1 " assign outSi="~in", 4*Si-3, ";\n";
}
print FHDPR1 <<EOL ;
endmodule
EOL
print FHDPR2 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of ila_ports ; Si++) {
print FHDPR2 " assign outSi=~in", 4*Si-2, ";\n";
}
print FHDPR2 <<EOL ;
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endmodule
EOL
print FHDPR3 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for ( my Si=1; Si<=Snum_of ila_ports; Si++) {
print FHDPR3 " assign outSi =~in", 4*Si-1, ";\n";
}
print FHDPR3 <<EOL ;
endmodule
EOL
print FHDPR4 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
// 1/0 ports
input [ DATA_WIDTH - 1:0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of _ila_ports ; Si++) {
print FHDPR4 " assign outSi = ~in", 4*Si, ";\n";
}
print FHDPR4 <<EOL ;
endmodule
EOL
}
print FHD <<EOL ;
endmodule
EOL
if ( Sdpr_mode =1 ) {
print FHD <<EOL ;
module mux4_mod ( mode, inl, in2, in3, ind4, outl, out2) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
input [1:0] mode;
input [ DATA_WIDTH-1:0]in1, in2, in3, in4;
output reg [ DATA_WIDTH-1:0]outl, out2;
// Logic
always @ (inl1, in2, in3, in4, mode) begin
case ( mode)
2'b00 : outl <=inl;
2'b01 : outl <=in2;
2'b10 : outl <=in3;
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default : outl <=in4;
endcase
end
endmodule
EOL
}
}elsif ( Smux_mode ==8 ) {
my @ila_mux_out_ports ;
for (my Si=1; Si<=Snum_of ila_ports ; Si++) {
push ( @ila_mux_out_ports, "outSi") ;
}
my @ila_mux_in_ports ;
for ( my Si=1; Si <= Snum_sigs_observed ; Si++) {
push ( @ila_mux_in_ports, "inSi") ;
}
my Sila_mux_out_ports_str=join (",", @ila_mux_out_ports) ;
my Sila_mux_in_ports_str=join (",", @ila_mux_in_ports) ;
if ( Sdpr_mode =1 ) {
print FHD <<EOL ;
module ila_mux ( mode, Sila_mux_in_ports_str, Sila_mux_out_ports_str) ; EOL
}else {
print FHD <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ; EOL
}
print FHD <<EOL ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
EOL
if ( Sdpr_mode =1 ) {
print FHD <<EOL ;
input wire [2:0 ] mode ;
EOL
}
print FHD <<EOL ;
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
if ( Sdpr_mode =1 ) {
for (my Si=1; Si<=Snum_of ila_ports; Si++) {
print FHD " (* keep_hierarchy =\"yes\" *) mux8_mod # ( DATA_WIDTH )
mux8_mod_instSi ( mode, in", 8*Si-7, ", in", 8*Si-6, ", in", 8*Si-5, ", in", 8*Si-4
, ", in", 8*%Si-3, ", in", 8*Si-2, ", in", 8*Si-1, ", in", 8*Si, ", outSi)", ";\n";
}
}else {
print FHDPR1 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
// 1/0 ports
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input [ DATA_WIDTH - 1:0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of_ila_ports ; Si++) {
print FHDPR1 " assign outSi="~in", 8*Si-7, ";\n";
}
print FHDPR1 <<EOL ;
endmodule
EOL
print FHDPR2 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
// 1/0 ports
input [ DATA_WIDTH - 1:0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of ila_ports ; Si++) {
print FHDPR2 " assign outSi =~in", 8*$i-6, ";\n";
}
print FHDPR2 <<EOL ;
endmodule
EOL
print FHDPR3 <<EOL;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of ila_ports; Si++) {
print FHDPR3 " assign outSi=~in", 8*Si-5, ";\n";
}
print FHDPR3 <<EOL ;
endmodule
EOL
print FHDPR4 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
input [ DATA_WIDTH - 1:0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of _ila_ports ; Si++) {
print FHDPR4 " assign outSi=~in", 8*Si-4, ";\n";
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}
print FHDPR4 <<EOL ;

endmodule
EOL
print FHDPRS <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of_ila_ports ; Si++) {
print FHDPR5 " assign outSi=~in", 8*Si-3, ";\n";
}
print FHDPRS <<EOL;
endmodule
EOL
print FHDPR6 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
// 1/0 ports
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of _ila_ports ; Si++) {
print FHDPR6 " assign outSi="~in", 8*Si-2, ";\n";
}
print FHDPR6 <<EOL ;
endmodule
EOL
print FHDPR7 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
input [ DATA_WIDTH - 1: 0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of ila_ports; Si++) {
print FHDPR7 " assign outSi="~in", 8*Si-1, ";\n";
}
print FHDPR7 <<EOL ;
endmodule
EOL
print FHDPR8 <<EOL ;
module ila_mux ( Sila_mux_in_ports_str, Sila_mux_out_ports_str) ;
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// Parameters
parameter DATA_WIDTH=1;
// 1/0 ports
input [ DATA_WIDTH - 1:0] Sila_mux_in_ports_str;
output wire [ DATA_WIDTH - 1: 0] Sila_mux_out_ports_str;
// Logic
EOL
for (my Si=1; Si<=Snum_of_ila_ports ; Si++) {
print FHDPR8 " assign outSi =~in", 8*Si, ";\n";
}
print FHDPR8 <<EOL ;
endmodule
EOL
}
print FHD <<EOL ;
endmodule
EOL

if ( Sdpr_mode !=1 ) {
print FHD <<EOL ;
module mux8_mod ( mode, inl, in2, in3, in4, in5, in6, in7, in8, outl, out2) ;
// Parameters
parameter DATA_WIDTH=1;
// 1/0 ports
input [2:0 ] mode ;
input [ DATA_WIDTH-1:0]inl, in2, in3, in4, in5, in6, in7, in8;
output reg [ DATA_WIDTH-1:0]outl, out2;
// Logic
always @ (inl1, in2, in3, in4, in5, in6, in7, in8, mode) begin
case (mode)
3'b000 : outl <=inl;
3'b001 : outl<=in2;
3'b010 :outl<=in3;
3'b011 :outl<=in4;
3'b100 :outl<=in5;
3'b101 :outl<=in6;
3'b110 :outl<=in7;
default : outl <=in8;
endcase
end
endmodule
EOL
}

}

print FHD <<EOL ;

module mid_mod (inl, in2, in3, clkl, outl) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0Os
input wire [ DATA_WIDTH-1:0]inl1, in2, in3;
input wire clkl ;
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output wire [ DATA_WIDTH-1:0]outl;
// Logic
genvari;
for (i=0; i<DATA_WIDTH ; i=i+1) begin: LEAF_GEN
leaf_mod leaf inst (inl[i], in2[i], in3[i], outl[i]) ;
end
endmodule

module leaf_mod (in1, in2, clkl, outl) ;
//1/0s
input wire inl, in2, clkl;
output reg outl;
// Internal signals
(* keep="true" *) regrl, r2, r3;
// Logic
always @ ( posedge clkl) begin
rl<=inl;
r2<=in2;
r3<=rl|r2;
outl<=r3;
end
endmodule
EOL

print FHV <<EOL ;

## project details

set DATA_WIDTH SDATA_WIDTH

set num_of _ila_ports 3

set project_name \"Sproject_name\"
set project_path \"Sproject_path\"

## clean project (if exists) , and create a new one set to_be_removed [glob -
nocomplain Sproject_path/debug_*] if {\Sto_be_removed !=\"\"}{

file delete -force {*}[glob -nocomplain Sproject_path/debug_*] } set to_be_removed
[glob -nocomplain Sproject_path/debug_*]if { \Sto_be_removed !=\"\" }{

file delete -force {*}[glob -nocomplain Sproject_path/vivado*] } create_project
\${project_name} \${project_path} -part xc7z020clg484-1 set_property board_part
xilinx.com:zc702:part0:1.2 [current_project]

file mkdir \"\S{project_path}/\S{project_name}.srcs/sources_1/new\"

## create the dut file
file copy Sdut_file \S{project_path}/\S{project_name}.srcs/sources_1/new/dut.v

## add files and update file lists

add_files \"\${project_path}/\S{project_name}.srcs/sources_1/new/dut.v\"
update_compile_order -fileset sources_1

update_compile_order -fileset sim_1

set_property generic \"DATA_WIDTH=SDATA_WIDTH\" [current_fileset]

## createip
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create_ip -name ila -vendor xilinx.com -library ip -version 5.1 -module_name ila_0 EOL

my Sila_cmd ;
for (my Si=Snum_of _ila_ports-1; Si>=0; Si--) {
$ila_cmd .= "CONFIG.C_PROBES{i} WIDTH $DATA_WIDTH " ; } print Sila_cmd , "\n";

print FHV <<EOL ;

set_property -dict [list Sila_cmd CONFIG.C_NUM_OF_PROBES $Snum_of_ila_ports]
[get_ipsila_0] generate_target {instantiation_template} [get_files
\"\${project_path}/\S{project_name}.srcs/sources_1/ip/ila_0/ila_0.xci\"]
update_compile_order -fileset sources_1

generate_target all [get_files
\"\${project_path}/\S{project_name}.srcs/sources_1/ip/ila_0/ila_0.xci\"]

set_property generate_synth_checkpoint false [get_files
\${project_path}/\S{project_name}.srcs/sources_1/ip/ila_0/ila_0.xci]
generate_target all [get_files
\${project_path}/\S{project_name}.srcs/sources_1/ip/ila_0/ila_0.xci]
launch_runs synth_1 -jobs 4

wait_on_run synth_1

open_run synth_1 -name synth_1
report_utilization -file \${project_path}/utilization.rpt -hierarchical EOL

close (FHV) ;
close (FHD) ;
}
}
}

if ( Sdpr_mode ==1 && Smux_mode ==2) {
close (FHDPR1) ;
close (FHDPR2) ;
}elsif ( Sdpr_mode == 1 && Smux_mode ==4 ) {
close (FHDPR1) ;
close ( FHDPR2) ;
close ( FHDPR3) ;
close (FHDPR4) ;
}elsif ( Sdpr_mode == 1 && Smux_mode ==8 ) {
close ( FHDPR1) ;
close ( FHDPR2) ;
close ( FHDPR3) ;
close (FHDPR4) ;
close (FHDPR5S) ;
close ( FHDPR6) ;
close (FHDPR7) ;
close ( FHDPR8) ;

116



B.3. Verilog test case to use for debugging on FPGA using
MUX’es and compare it with the behavior of the proposed
debugging flow using DPR

‘timescale 1ns / 1ps

module dut ( debug_mode, inl1, in2, in3, in4, in5, in6, clkl, outl, out2) ;

// Parameters

parameter DATA_WIDTH=1;

//1/0 ports

input wire debug_mode ;

input wire [ DATA_WIDTH-1:0]in1, in2, in3, in4, in5, in6;

input wire clkl ;

output wire [ DATA_WIDTH-1:0]outl, out2;

// Internal  registers (to be observed )

// 256 registers

(* keep="true" *) reg [ DATA_WIDTH-1:0]regl , reg2 , reg3 , reg5 , regb , reg7
, reg9 , reglO , regll , regl3 , regld , regl5 ;

(* keep="true" *) reg [ DATA_WIDTH-1:0]regl7 , regl8 , regl9 , reg2l , reg22 ,
reg23 , reg25 , reg26 , reg27 , reg29 , reg30 , reg3l ;

(* keep="true" *) reg [ DATA_WIDTH-1:0]reg33 , reg34 , reg35 , reg37 , reg38 ,
reg39 , regdl , regd2 , regd3 , regd5 , regd6 , regld7 ;

(* keep ="true" *) reg [ DATA_WIDTH-1:0]reg49 , reg5h0 , reg5s1 , reg53 , regs4 ,
reg55 , regh7 , reg58 , reg59 , regbl , regb2 , reg63 ;

(* keep="true " *) reg [ DATA_WIDTH-1:0] reg65 , regb6 , regb67 , reg69 , reg70 ,
reg71 , reg73 , reg74 , reg75 , reg77 , reg78 , reg79 ;

(* keep="true " *) reg [ DATA_WIDTH-1:0]reg81 , reg82 , reg83 , reg85 , reg86 ,
reg87 , reg89 , reg90 , reg91 , reg93 , reg94 , reg9s ;

(* keep="true" *) reg [ DATA_WIDTH-1:0]reg97 , reg98 , reg99 , reglOl, regl02,
regl03, regl05, regl06, regl07, regl09, regllO, reglll;

(* keep="true " *) reg [ DATA_WIDTH-1:0]regl13, regll4, regll5, regll7, reglls,
regll9, regl2l, regl22, regl23, regl25, regl26, regl27;

(* keep="true " *) reg [ DATA_WIDTH-1:0]regl129, regl30, regl3l, regl33, regl34,
regl35, regl37, regl38, regl39, regldl, regld2, regld3;

(* keep="true" *) reg [ DATA_WIDTH-1:0]regl45, regld6, regld7, regld9, regl50,
regl51, regl53, regl54, regl55, regl57, regl58, reglh9;

(* keep="true" *) reg [ DATA_WIDTH-1:0]regl6l, regl62, regl63, regl65, regl66,
regl67, regl69, regl70, regl71, regl73, regl74, regl75;

(* keep="true" *) reg [ DATA_WIDTH-1:0]regl77, regl78, regl79, regl81, regl82,
regl83, regl85, regl86, regl87, regl89, reglo0, reglol;

(* keep="true" *) reg [ DATA_WIDTH-1:0]regl193, regl94, regl95, regl97, reglos,
regl99, reg201, reg202, reg203, reg205, reg206, reg207;

(* keep ="true " *) reg [ DATA_WIDTH-1:0]reg209, reg210, reg211, reg213, reg214,
reg215, reg217, reg218, reg219, reg221, reg222, reg223;

(* keep="true " *) reg [ DATA_WIDTH-1:0]reg225, reg226, reg227, reg229, reg230,
reg231, reg233, reg234, reg235, reg237, reg238, reg239;

(* keep="true" *) reg [ DATA_WIDTH-1:0]reg241, reg242, reg243, reg245, reg246,
reg247, reg249, reg250, reg251, reg253, reg254, reg255;

(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg4;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg8;
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(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl2;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl6;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg20;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg24;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg28;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg32;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg36;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg40;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regd4;
(* keep="true " *) wire [ DATA_WIDTH-1:0]reg48;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg52;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg56;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg60;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regb4;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg68;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg72;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg76;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg80;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg84;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg88;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg92;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg96;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl00;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl04;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl08;
(* keep = " true " *) wire [ DATA_WIDTH-1:0]regll2;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regll6;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl20;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl24;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl28;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl32;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl36;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl40;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl44;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl48;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl52;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl56;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl60;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl64;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl68;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl72;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl76;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl80;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl84;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]regl88;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl92;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]regl96;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg200;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg204;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg208;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg212;
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(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg216;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg220;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg224;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg228;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg232;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg236;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg240;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg244;
(* keep =" true " *) wire [ DATA_WIDTH-1:0]reg248;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg252;
(* keep ="true " *) wire [ DATA_WIDTH-1:0]reg256;

// Logic of the registers to be observed
always @ ( posedge clkl) begin

regl <=inl|in2;

reg2 <=inl&in2;

reg3 <=inl”"in2;

regs <=inl1&in3;

regb <=inl”"in3;

reg7 <=inl|in4;

reg9 <=inl”"in4;

regl0 <=inl | in6;

regll inl &in6;

regl3 <=inl|in2;

regld <=inl &in6;

regl5 <=in37in2;

AN
oo

regl7 in5 | in2;
regl8 <=in5 | in2;
regl9 <=in5 | in2;
reg2l <=in5&in2;
reg22 <=in5 | in2;
reg23 <=in5 | in2;
reg25 <=in5&in2;
reg26 <=in5&in2;
reg27 <=in5 | in2;
reg29 <=in5&in2;
reg30 <=in5&in2;
reg3l <=in5&in2;

AN
I}

reg33 <=in6 | in2;
reg34 <=in6 | in2;
reg35 <=in6 | in2;
reg37 <=in6 &in2;
reg38 <=in6 | in2;
reg39 <=in6 | in2;
regdl <=in6 & in2;
regd2 <=in6 & in2;
regd3 <=in6 | in2;
regd5 <=in6 & in2;
regd6 <=in6 & in2;
regd7 <=in6 & in2;
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regd9 <=inl”in2;
regh0 <=inl”in2;
regbhl <=inl”in2;
regh3 <=in4 " in2;
regh4 <=in4 "in2;
regh5 <=in4 & in2;
regh7 <=in4 & in2;
regh8 <=in4 & in2;
reg59 <=in4 | in2;
regbl <=in4 | in2;
regb2 <=in4 | in2;
regb3 <=in4 | in2;

regb5 <=in4 | in3;
regbb <=in4 | in3;
regb7 <=in4 | in3;

reg69 <=in3 | in2;
reg70 <=in3 | in2;
reg71 <=in3 | in2;

reg73 <=in3 &in4;
reg74 <=in3 & in4;
reg75 in3 &in4;

AN
1}

reg77 <
reg78 <
reg79 <

in3 | in5;
in3 | in5;
in3 | in5;

reg81 <=in3 | in6;
reg82 <=in3 | in6;
reg83 <=in3 | in6;

reg85 <=in4 | in5;
reg86 <=in4 | in5;
reg87 <=in4 | in5;

reg89 <=in4 &in5;
reg90 <=in4 & in5;
reg91 <=in4 &in5;

reg93 <=in4 M in5;
reg94 <=in4 M in5;
reg95 <=in4 A in5;

reg97 <=in4 | in5;
reg98 <=in4 & in5;
reg99 <=in4 *in5;

regl0l <=in4 & in2;
regl02 <=in4 & inl;
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regl03 <=in4 M in3;

regl05<=in5"in6;
regl06 <=in5 & in6 ;
regl07 <=in5 & in6 ;

regl09 <=in5 | in6;
regll0<=in5 & in6;
reglll <=in57in6;

regl13<=in5"in2;
regll4 <=in57in2;
regll5<=in5"in2;

regll7 <=inl &in2;
regll8 <=inl & in2;
regll9 <=inl17in2;

regl21<=in3 | in2;
regl22 <=inl | in4;
regl23 <=inl | in5;

regl25<=inl1"in3;
regl26 <=inl"in4;
regl27 <=inl "in5;

regl29<=inl | in4;
reg1l30<=inl | in5;
regl31<=inl | in6;

regl33<=in4 | in5;
regl34 <=in2 | in6;
regl35<=in3 | in5;

regl37 <=inl &in5;
regl38<=in2 M in6;
regl39<=ind | in4;

regldl <=inl " in4;
regld2 <=in2 & in5;
regld43 <=in4 | in6;

regl45<=inl | in2;
regld6 <=in6 & in2 ;
regld7 <=in4d Min2 ;

regl4d9 <=inl &in2;
regl50 <=in2 M in5;
regl51<=inl | in6;

regl53<=inl;
regl54 <=in2;
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regl55<=in3;

regl57 <=in4;
regl58 <=in5;
regl59 <=in6 ;

reglel <=inl;
regl62 <=in2;
regle3 <=in4;

regl65 <=inl;
regl6b <=in2;
regle7 <=in5;

regl6e9 <=inl;
regl70 <=in2;
regl71<=in6;

regl73<=inl;
regl74 <=in3;
regl75<=in4;

regl77 <=inl;
regl78<=in3 | in2;
regl79 <=in5 | in2;

regl81 <=inl;
regl82 <=in3;
regl83 <=in5;

regl85<=inl &in2;
regl86<=in3 ;
regl87 <=in6 ;

regl89 <=inl;
regl90 <=in3;
regl91 <=in6;

regl93<=inl | in2;
regl94 <=in4 & in2;
regl95 <=in6 " in2;

regl97 <=inl;
reglo8 <=in4;
regl99 <=in6;

reg201 <=inl;
reg202 <=in57in2;
reg203 <=in6 & in3;

reg205<=inl;
reg206 <=in5;
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reg207 <=in6 ;

reg209 <=in2;
reg210<=in3;
reg2ll<=in4;

reg213<=in2;
reg214 <=in3;
reg215<=in5;

reg2l7 <=in2;
reg218 <=in3;
reg219<=in6;

reg221<=in3;
reg222 <=in4;
reg223<=in5;

reg225<=in3;
reg226 <=in4 ;
reg227 <=in6;

reg229<=in3 | in2;
reg230<=in4 | in2;
reg231<=in6 | in2;

reg233<=in3 &in2;
reg234<=in4 & in2;
reg235<=in6 & in2;

reg237 <=in3"in2;
reg238 <=in4 Nin2;
reg239<=in6 " in2;

reg241<=in3 & in2;
reg242 <=in4 & in2;
reg243 <=in5 & in2;

reg245<=in3 | inl;
reg246 <=in4 | inl;
reg247 <=in5 | inl;

reg249 <=in3 | in2;
reg250<=in4 | in1;
reg251<=in5 | in6;

reg253<=in3 &in2;
reg254 <=in4 & in6 ;

reg255<=in5 & in2;
end

// Logic
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(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid1_inst ( regl, reg2, reg3,

clkl, regd) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid2_inst ( reg5, reg6, reg7,
clkl, reg8) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid3_inst ( reg9, regl0, regll
, clkl, regl2) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid4_inst ( regl3, regl4,
regl5, clkl, regl6) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid5_inst ( regl7, regl8,
regl9, clkl, reg20) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid6_inst ( reg21, reg22,
reg23, clkl, reg24) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid7_inst ( reg25, reg26,
reg27, clkl, reg28) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid8_inst ( reg29, reg30,
reg31, clkl, reg32) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid9_inst ( reg33, reg34,
reg35, clkl, reg36) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid10_inst ( reg37, reg38,
reg39, clkl, regd0) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid11_inst ( regdl, regd2,
regd3, clkl, regdd) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid12_inst ( regd5, regd6,
regd7, clkl, regd8) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid13_inst ( reg49, reg50,
reg51, clkl, reg52) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid14_inst ( reg53, reg54,
reg55, clkl, reg56) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid15_inst ( reg57, reg58,
reg59, clkl, reg60) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid16_inst ( reg6l, reg62,
reg63, clkl, regb4) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid17_inst ( reg65, reg66,
reg67, clkl, reg68) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid18_inst ( reg69, reg70,
reg71, clkl, reg72) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid19 inst ( reg73, reg74,
reg75, clkl, reg76) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid20_inst ( reg77, reg78,
reg79, clkl, reg80) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid21_inst ( reg81, reg82,
reg83, clkl, reg84) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid22_inst ( reg85, reg86,
reg87, clkl, reg88) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid23_inst ( reg89, reg90,
reg91, clkl, reg92) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid24_inst ( reg93, reg94,
reg95, clkl, reg96) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid25_inst ( reg97, reg98,
reg99, clkl, regl00) ;
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(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid26_inst ( regl01,

regl03, clkl, regl04) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid27_inst ( regl05,

regl07, clkl, regl08) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid28_inst ( regl09,

reglll, clkl, regll2) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid29 _inst ( regl113,

regll15, clkl, reglil6) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid30 _inst ( regl17,

regl19, clkl, regl20) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid31_inst ( regl21,

regl123, clkl, regl24) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid32_inst ( regl25,

regl27, clkl, regl28) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid33_inst ( regl29,

regl31, clkl, regl32) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid34_inst ( regl133,

regl35, clkl, regl36) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid35_inst ( regl37,

regl39, clkl, regld0) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid36_inst ( regl41,

regld3, clkl, regld4) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid37_inst ( regl45,

regld7, clkl, regld8) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid38_inst ( regl49,

regl51, clkl, regl52) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid39_inst ( regl53,

regl55, clkl, regl56) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid40_inst ( regl57,

regl59, clkl, regl60) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid41_inst ( regl6l,

regl63, clkl, regl6d) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid42_inst ( regl65,

regl6e7, clkl, regl68) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid43_inst ( regl69,

regl71, clkl, regl72) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid44 _inst ( regl73,

regl75, clkl, regl76) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid45_inst ( regl77,

regl79, clkl, regl80) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid46_inst ( regl181,

regl83, clkl, regl84) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid47_inst ( regl85,

reg187, clkl, regl88) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid48_inst ( reg189,

regl91, clkl, regl92) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid49_inst ( regl193,

regl95, clkl, regl96) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid50_inst ( regl197,

regl99, clkl, reg200) ;
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(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid51_inst ( reg201, reg202,
reg203, clkl, reg204) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid52_inst ( reg205, reg206,
reg207, clkl, reg208) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid53_inst ( reg209, reg210,
reg211, clkl, reg212) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid54 _inst ( reg213, reg214,
reg215, clkl, reg216) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid55_inst ( reg217, reg218,
reg219, clkl, reg220) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid56_inst ( reg221, reg222,
reg223, clkl, reg224) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid57_inst ( reg225, reg226,
reg227, clkl, reg228) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid58_inst ( reg229, reg230,
reg231, clkl, reg232) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid59 inst ( reg233, reg234,
reg235, clkl, reg236) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid60 _inst ( reg237, reg238,
reg239, clkl, reg240) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid61_inst ( reg241, reg242,
reg243, clkl, reg244) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid62_inst ( reg245, reg246,
reg247, clkl, reg248) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid63_inst ( reg249, reg250,
reg251, clkl, reg252) ;

(* keep_hierarchy =" yes " *) mid_mod # ( DATA_WIDTH ) mid64_inst ( reg253, reg254,
reg255, clkl, reg256) ;

assignoutl = (regd | reg8 | regl2 | regl6) & (reg20 | reg24 | reg28 | reg32) & (reg36 |
regd0 | regd4 | regd8) & (reg52 | reg56 | regb0 | regbd ) & (regb8 | reg72 | reg76 | reg80
) & (reg84 | reg88 | reg92 | reg96) & (regl00 | regl04 | regl08 | regll2 ) & (regll6 |
regl120 | regl124 | regl28) ;

assignout2 = (regl32 | regl36 | regl40 | regl44 ) & (regld8 | regl52 | regl56 | regl60)
& (regl6d | regl68 | regl72 | regl76) & (regl80 | regl84 | regl88 | regl192) & (regl96
| reg200 | reg204 | reg208 ) & (reg212 | reg216 | reg220 | reg224 ) & (reg228 | reg232 |
reg236 | reg240 ) & ( reg244 | reg248 | reg252 | reg256) ;

// MUXes for the ILA

wire [ DATA_WIDTH - 1:0]ila_mux_outl, ila_mux_out2, ila_mux_out3, ila_mux_out4,
ila_mux_out5, ila_mux_out6 , ila_mux_out7, ila_mux_out8 , ila_mux_out9, ila_mux_out10,
ila_mux_outll,ila_mux_outl2,ila_mux_outl3, ila_mux_outl4, ila_mux_outl5,
ila_mux_outl6;

(* keep_hierarchy =" yes " *) ila_mux # ( DATA_WIDTH ) ila_mux_inst ( debug_mode, regl
,reg2,reg3,regd, regs, regb,reg7,reg8,reg9, regl0, regll, regl2,regl3, regld, reglh
,regl6, regl7,regl8, regl9, reg20, reg2l, reg22,reg23, reg24 ,reg25, reg26, reg27,
reg28,reg29, reg30, reg31, reg32,reg33,reg34, reg35, reg36, reg37,reg38, reg39,
regd0, regdl, regd?2 , regl3, regldd , regd5, regd6 , regd7 ,regd8,regd9, reg50, reg5l,
reg52 ,reg53, reg54, regh5, regh6 , reg57 , reg58, reg59, reg60 , regbl, regb2 , regb3,
regb4 , regb5, regb6, regb7 , regb8 , regb9 , reg70, reg71, reg72 ,reg73,reg74 ,reg75,
reg76,reg77,reg78,reg79, reg80, reg81, reg82, reg83, reg84 , reg85 , reg86 , reg87,
reg88 , reg89, reg90, reg91, reg92 , reg93, reg94 , reg95, reg96 , reg97 , reg98, reg99,
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regl00, regl01, regl02, regl03, regl04, reglO5, regl06, regl07 , regl08, regl09, regll0
,reglll,regll2,regll3,b reglld,regll5, regll6, regll7 ,regll8, regll9, regl20,
regl2l,regl22,regl23,regl24,regl25, regl26,regl27, regl28, ila_mux_outl,
ila_mux_out2,ila_mux_out3,ila_mux_out4, ila_mux_out5, ila_mux_out6, ila_mux_out7,
ila_mux_out8, ila_mux_out9, ila_mux_out10, ila_mux_outll, ila_mux_outl2,
ila_mux_outl13, ila_mux_outl4, ila_mux_outl5, ila_mux_outl6) ;
// ILA instance
ila_0Oila_inst_0 (
.clk(clk1l) , //input wire clk
.probe0 (ila_mux_outl) ,
.probel (ila_mux_out2) ,
.probe2 (ila_mux_out3) ,
.probe3 (ila_mux_out4) ,
.probe4 (ila_mux_out5) ,
.probe5 (ila_mux_out6) ,
.probe6 (ila_mux_out7) ,
.probe7 (ila_mux_out8) ,
.probe8 (ila_mux_out9) ,
.probe9 (ila_mux_outl0) ,
.probel0 (ila_mux_outll) ,
.probell (ila_mux outl2) ,
.probel2 (ila_mux_outl3) ,
.probel3 (ila_mux_outld) ,
.probel4 (ila_mux_outl5) ,
.probel5 (ila_mux_outl6)
)
endmodule
module ila_mux ( mode, inl,in2,in3,in4,in5,in6,in7,in8,in9,inl0, in1l,in12,in13,
in14,inl15,in16,inl17,in18,inl19,in20, in21,in22,in23,in24,in25,in26,in27,in28,
in29,in30,in31,in32,in33,in34,in35,in36,in37,in38,in39,in40,in41,in42,in43,
in44 ,in45,in46,in47,in48,in49,in50, in51,in52,in53,in54,in55,in56, in57, in58,
in59,in60, in61,in62,in63,in64 ,in65, in66 , in67 , in68 ,in69, in70,in71,in72,in73,
in74,in75,in76,in77,in78,in79,in80, in81,in82,in83,in84,in85,in86, in87, in88,
in89,in90,in91,in92,in93,in94 ,in95, in96, in97,in98,in99, in100, in101, in102,in103
,in104 ,in105,in106,in107,in108,in109,in110, in111, in112,in113,in114,in115,
in116,in117,in118,in119, in120, in121, in122,in123,in124,in125, in126, in127,in128
, outl, out2, out3, outd, out5, out6, out7, out8, out9, outl0, outll, outl2, outl3,
outl4, outl5, outl6) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
input wire [2:0 ] mode ;
input [ DATA_WIDTH-1:0]in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,inl11,inl12,
in13,in14,in15,in16,in17,in18,in19, in20, in21, in22, in23, in24,in25, in26, in27,
in28,in29,in30,in31,in32,in33,in34,in35,in36,in37,in38,in39,in40, in41,in42,
ind3,in44 ,in45,ind6,in47,in48,in49,in50,in51,in52,in53,in54,in55, in56 , in57,
in58,1in59, in60, in61,in62,in63,in64 ,in65,in66 ,in67 ,in68,in69,in70,in71,in72,
in73,in74,in75,in76,in77,in78,in79,in80, in81,in82,in83,in84,in85, in86, in87,
in88,in89,in90,in91,in92,in93,in9%4,in95,in96,in97,in98,in99,in100,in101,in102,
in103,in104,in105,in106,in107,in108,in109,in110,in111,in112,in113,in114,in115
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,inl116,in117,in118,in119,in120,in121,in122,in123,in124,in125,in126,in127,
in128;
output wire [ DATA_WIDTH-1:0] outl, out2, out3, outd4, out5, out6 , out7, out8, out9,
outl0, outll, outl2, outl3, outld, outl5, outl6;
// Logic
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 mod_instl ( mode, inl,
in2, in3, in4, in5, in6, in7, in8, outl) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 mod_inst2 ( mode, in9,
in10, in11, in12, in13, in14, in15, in1l6, out2) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 mod_inst3 ( mode, in17
, in18, in19, in20, in21, in22, in23, in24, out3) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 _mod_inst4 ( mode, in25
, in26, in27, in28, in29, in30, in31, in32, out4) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 mod_inst5 ( mode, in33
, in34, in35, in36, in37, in38, in39, in40, out5) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 _mod_inst6 ( mode, in41
, ind2, in43, ind44, in45, ind6, ind7, ind8, out6) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 _mod_inst7 ( mode, in49
, in50, in51, in52, in53, in54, in55, in56, out7) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 _mod_inst8 ( mode, in57
, in58, in59, in60, in6l, in62, iNn63, In64, OUL8) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 _mod_inst9 ( mode, in65
, in66, in67, in68, in69, in70, in71, in72, out9) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 _mod_inst10 ( mode,
in73, in74, in75, in76, in77, in78, in79, in80, outl0) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8_mod_instll ( mode,
in81, in82, in83, in84, in85, in86, in87, in88, outll) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8_mod_inst12 ( mode,
in89, in90, in91, in92, in93, in94, in95, in96, outl2) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8_mod_inst13 ( mode,
in97, in98, in99, in100, in101, in102, in103, in104, outl3) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8_mod_inst14 ( mode,
in105, in106, in107, in108, in109, in110, in111, in112, outl4) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8_mod_inst15 ( mode,
in113, in114, in115, in116, in117, in118, in119, in120, outl5) ;
(* keep_hierarchy =" yes " *) mux8_mod # ( DATA_WIDTH ) mux8 mod_inst16 ( mode,
in121, in122, in123, in124, in125, in126, in127, in128, outl6) ; endmodule
module mux8_mod ( mode, inl, in2, in3, in4, in5, in6, in7, in8, outl, out2) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0 ports
input [2:0 ] mode ;
input [ DATA_WIDTH-1:0]in1, in2, in3, in4, in5, in6, in7, in8;
output reg [ DATA_ WIDTH-1:0]outl, out2;
// Logic
always @ (in1, in2, in3, in4, in5, in6, in7, in8, mode) begin
case (mode)
3'b000 :outl<=inl;
3'b001 :outl<=in2;
3'b010 :outl<=in3;
3'b011 :outl<=in4;
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3'b100 :outl<=in5;
3'b101 :outl<=in6;
3'b110 :outl<=in7;
default : outl <=in8;
endcase
end
endmodule
module mid_mod (inl1, in2, in3, clkl, outl) ;
// Parameters
parameter DATA_WIDTH=1;
//1/0s
input wire [ DATA_WIDTH-1:0]inl1, in2, in3;
input wire clkl ;
output wire [ DATA_WIDTH-1:0] outl;
// Logic
genvari;
for (i=0;i<DATA_WIDTH ; i=i+1) begin: LEAF_GEN
leaf_mod leaf inst (inl[i], in2[i], in3[i], outl[i]) ;
end
endmodule

module leaf_mod (in1, in2, clkl, outl) ;
//1/0s
input wire inl, in2, clkl;
output reg outl;
// Internal signals
(*keep="true" *) regrl, r2, r3;
// Logic
always @ ( posedge clkl) begin
rl<=inl;
r2<=in2;
r3<=rl|r2;
outl<=r3;
end
endmodule
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