

DYNAMIC PARTIAL RECONFIGURATION

VERIFICATION AND APPLICATIONS ON FPGA

DEBUGGING

By

Islam Osama Ahmed Mounir Mostafa

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Electrical Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2018

DYNAMIC PARTIAL RECONFIGURATION

VERIFICATION AND APPLICATIONS ON FPGA

DEBUGGING

By

Islam Osama Ahmed Mounir Mostafa

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Electrical Communications Engineering

Under the Supervision of

Prof. Dr. Ahmed Nader

Mohieldin

……………………………….

 Dr. Hassan Mostafa Hassan

……………………………….

Associate Professor of Electronics and

Communications

Department of Electronics and Electrical

Communications Engineering

Faculty of Engineering, Cairo University

 Assistant Professor of Nanoelectronics,

Bioelectronics and Optoelectronics

Department of Electronics and Electrical

Communications Engineering

 Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2018

DYNAMIC PARTIAL RECONFIGURATION

VERIFICATION AND APPLICATIONS ON FPGA

DEBUGGING

By

Islam Osama Ahmed Mounir Mostafa

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Electrical Communications Engineering

Approved by the

Examining Committee

Prof. Dr. First S. Name, External Examiner

Prof. Dr. Second E. Name, Internal Examiner

Prof. Dr. Third E. Name, Thesis Main Advisor

Prof. Dr. Fourth E. Name, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2018

Engineer’s Name: Islam Osama Ahmed Mounir

Mostafa

Date of Birth: 10/03/1990

Nationality: Egyptian

E-mail: islam.osama.ahmed@gmail.com

Phone: 01115037902

Address:

Registration Date: 01/10/2013

Awarding Date:

Degree: Master of Science

Department: Electronics and Electrical Communications Engineering

Supervisors:

 Prof. Ahmed Nader Mohieldon

Dr. Hassan Mostafa Hassan

Examiners:

 Prof. ………………… (External examiner)

 Prof. ………………… (Internal examiner)

 Porf. ………………… (Thesis main advisor)

Porf. ………………… (Member)

Title of Thesis:

Dynamic Partial Reconfiguration Verification and Applications on FPGA Debugging.

Key Words:

Dynamic Partial Reconfiguration (DPR); Verification; Debugging; Software Defined

Radio (SDR); Field Programmable Gate Arrays (FPGA); Reconfigurable Systems.

Summary:

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

i

Acknowledgments

Alhamdulillah, all praises and gratitude to Allah, the Almighty, for all his blessings

and support me with the strength and health to complete this thesis. I would like to

thank my academic supervisors Prof. Ahmed Nader and Dr. Hassan Mustafa for their

guidance and help during the thesis work.

I would like to thank as well Eng. Ahmed Kamal (Former Research Assistant at

ONE Lab) for helping me with working on the Dynamic Partial Reconfiguration flow. I

would like as well to thank my managers and colleagues in Mentor Graphics for their

support (Eman El-Mandouh, Haytham Shoukry, Khaled Nouh and Amr Abbas).

Last but absolutely not least, I want to extend my deepest and most sincere

gratitude and thanks to my family for their support throughout my study years, and for

Hala Ibrahim, my fiancé, for her support and help to write this thesis.

ii

Table of Contents

ACKNOWLEDGMENTS .. I

TABLE OF CONTENTS .. II

LIST OF TABLES ... IV

LIST OF FIGURES ... V

NOMENCLATURE ... VII

ABSTRACT ... IX

CHAPTER 1 : INTRODUCTION .. 1

1.1. DESIGN FLOW OF FPGA AND DRS DESIGNS 3

1.2. FUNCTIONAL VERIFICATION CHALLENGES FOR DRS DESIGNS 5

1.3. THESIS OBJECTIVES ... 6

1.4. ORGANIZATION OF THE THESIS .. 7

CHAPTER 2 OVERVIEW ABOUT FPGAS AND DYNAMIC PARTIAL

RECONFIGURATION .. 8

2.1. FPGA OVERVIEW .. 8

2.2. FPGA PROGRAMMING TECHNOLOGIES: .. 9

 Static memory programming technology .. 9

 Flash Programming Technology ... 11

 Anti-fuse programming technology .. 12

2.3. CONFIGURABLE LOGIC BLOCKS ... 13

2.4. FPGA ROUTING ARCHITECTURES ... 14

 Island-Style Routing Architecture... 15

 Hierarchal Routing Architecture ... 16

2.5. SOFTWARE FLOW ... 17

 Logic Synthesis ... 18

 Technology Mapping .. 18

 Clustering/Packing .. 19

 Placement .. 20

 Routing .. 20

 Timing Analysis .. 21

 Bitstream Generation .. 21

2.6. DYNAMIC PARTIAL RECONFIGURATION ... 21

 Configuration Modes .. 22
2.6.1.1. External Modes .. 22
2.6.1.2. Internal Modes ... 23

 Advantages and Disadvantages of DPR .. 23

 Terms of DPR ... 24

CHAPTER 3 : DYNAMIC PARTIAL RECONFIGURATION VERIFICATION

USING ASSERTION BASED VERIFICATION .. 25

iii

3.1. INTRODUCTION .. 25

3.2. BACKGROUND 27

 Functional Verification ... 27

 Assertion Based Verification .. 31

3.3. RELATED WORK .. 41

3.4. ASSERTION BASED VERIFICATION FOR DPR 42

 Port Connections of the Reconfigurable Modules 42

 Isolation Logic .. 44

 Reset Control Logic for the RM ... 45

 Synchronizing the Reconfiguration Process ... 45

3.5. CASE STUDY 46

3.6. SUMMARY 49

CHAPTER 4 : CLOCK DOMAIN CROSSING VERIFICATION FOR

DYNAMICALLY RECONFIGURABLE SYSTEMS .. 50

4.1. INTRODUCTION .. 50

4.2. BACKGROUND 52

4.3. WHAT IS CDC VERIFICATION? .. 53

 Clock Domains .. 53

 Metastability ... 55

 Synchronizers .. 57

4.4. CDC VERIFICATION FLOW FOR DRS DESIGNS 61

4.5. CASE STUDY 65

4.6. SUMMARY 68

CHAPTER 5 : UTILIZING DYNAMIC PARTIAL RECONFIGURATION TO

REDUCE THE COST OF FPGA DEBUGGING ... 70

5.1. INTRODUCTION .. 70

5.2. RELATED WORK .. 73

5.3. AN APPROACH FOR FPGA DEBUGGING USING DYNAMIC PARTIAL

RECONFIGURATION ... 73

5.4. EXPERIMENTAL RESULTS ... 79

 System Implementation and Setup .. 79

 Area Overhead .. 80

 Time for Changing the Traced Signal Set ... 81

 Recommendations for FPGA debugging .. 81

CHAPTER 6 : CONCLUSION AND FUTURE WORK .. 84

6.1. PROPOSALS FOR FUTURE WORK .. 85

REFERENCES ... 86

APPENDIX A: LIST OF PUBLICATIONS .. 91

iv

List of Tables

Table 2.1: Configuration Modes of Zynq FPGA.. 23

Table 3.1: Advantages and Disadvantages of HVLs .. 36
Table 3.2: Number of modes per each RM of the design under test 46
Table 3.3: Ports information about the RMs of the design under test 48
Table 3.4: Generated assertion properties for DPR verification 48
Table 4.1: Number of modes per each RM of the design under test 65

Table 5.1: Area overhead of the RM .. 80

Table 5.2: Area overhead of the proposed structure in [43] ... 80

Table 5.3: Total switching time required to trace all the signal sets 81
Table 5.4: Recommendations for FPGA debugging flows .. 82

v

List of Figures

Figure 1.1: Trade-off between Different SDR Hardware Platforms [12] 1

Figure 1.2: (a) Shows FPGA full configuration; (b) DPR technique is utilized to get the

same system; (c) Shows how the FPGA size increased theoretically 3
Figure 1.3: Hardware typical design flow .. 4
Figure 1.4: Typical simulation environment .. 5
Figure 2.1: Basic FPGA structure [24] ... 9

Figure 2.2: Static memory cell [28] .. 10

Figure 2.3: Multiplexer with static memory cell [28] .. 10

Figure 2.4: Static memory cells and lookup table [28] .. 10
Figure 2.5: Floating gate transistor [28] ... 12
Figure 2.6: Basic logic element (BLE) [24] ... 14
Figure 2.7: A CLB having four BLEs [24]... 14
Figure 2.8: Overview of mesh-based FPGA architecture [24] 16

Figure 2.9: Distribution of channel signal [24] .. 16
Figure 2.10: FPGA software basic flow [24] ... 17
Figure 2.11: DAG representation of a circuit [24] ... 18
Figure 2.12: Example of technology mapping [24].. 19

Figure 2.13: packing example [24] ... 19
Figure 2.14: Modeling FPGA architecture as a directed graph [24] 20

Figure 2.15: Dynamic Partial Reconfiguration in SRAM-FPGAS. 22
Figure 3.1: An example of DPR design with 3 modes of configuration and 1

reconfigurable module per configuration ... 26
Figure 3.2: Categorization of different methods for functional verification 29
Figure 3.3: Trends for techniques of functional verification for ASIC/IC Design

Projects ... 30
Figure 3.4: Trends for techniques of functional verification for FPGA Design Projects

 .. 30
Figure 3.5: Waveform for a request-acknowledge handshake behavior 31
Figure 3.6: Example for assertions embedded into the RTL .. 32
Figure 3.7: Verilog design example to be bound to an assertions module 33

Figure 3.8: Assertions module to be bound to the DUT... 33
Figure 3.9: Binding of the Verilog design module to the verification module 34

Figure 3.10: Compositions of hardware design assertion properties 35
Figure 3.11: Property syntax .. 37
Figure 3.12: SVA assert property example .. 39
Figure 3.13: PSL assert property example ... 39
Figure 3.14: How assertions are defined? .. 40

Figure 3.15: Design modifications in RTL files for DPR .. 43
Figure 3.16: Design modifications in RTL files for DPR .. 44
Figure 3.17: Typical structure of a design that utilizes DPR ... 44
Figure 3.18: Block diagram of the SDR case study ... 46
Figure 3.19: Schematic of the SDR case study .. 47

Figure 3.20: CSV file extracted for connections of the first mode of the convolutional

encoder block.. 47

Figure 3.21: Assertions generated for connections of the first mode of the convolutional

encoder block.. 48

file:///F:/Masters/Partial%20Dynamic%20Configuration/Thesis/Thesis%20Verisions/FECU-Thesis-islam_ahmed-Final.docx%23_Toc530436762
file:///F:/Masters/Partial%20Dynamic%20Configuration/Thesis/Thesis%20Verisions/FECU-Thesis-islam_ahmed-Final.docx%23_Toc530436792
file:///F:/Masters/Partial%20Dynamic%20Configuration/Thesis/Thesis%20Verisions/FECU-Thesis-islam_ahmed-Final.docx%23_Toc530436793
file:///F:/Masters/Partial%20Dynamic%20Configuration/Thesis/Thesis%20Verisions/FECU-Thesis-islam_ahmed-Final.docx%23_Toc530436794

vi

Figure 3.22: Results of Questa Formal tool for the assertions generated for connections

of the first mode of the convolutional encode block, all assertions are proven 48
Figure 4.1: An example of DPR design with five modes of configuration and four

reconfigurable modules per configuration. ... 51
Figure 4.2: Example for a metastability issue caused by CDC signal............................ 51

Figure 4.3: Multiple clock signals belong to the same clock domain. 53
Figure 4.4: Multiple clock signals in two different clock domains 54
Figure 4.5: Asynchronous inputs clocks form different clock domains 54
Figure 4.6: Inputs to the circuit are asynchronous to the circuit 54
Figure 4.6: Example for synchronization failure [23] .. 55

Figure 4.7: Metastable flip-flop .. 56

Figure 4.8: A metastable signal is causing erroneous signal values to be propagated

through the design [23] ... 57
Figure 4.9: Synchronizer example .. 57
Figure 4.10: Synchronizer scheme ... 58
Figure 4.11: 2DFF synchronizer... 59
Figure 4.12: 2DFF synchronizer in operation [23] ... 59

Figure 4.12: DMUX synchronizer .. 60
Figure 4.13: FIFO synchronizer ... 60
Figure 4.14: FIFO synchronizer detailed structure ... 61
Figure 4.15: Proposed flow for CDC verification .. 61

Figure 4.16: Block diagram of the SDR case study ... 66
Figure 4.17: Schematic of the SDR case study .. 66

Figure 4.18: Schematic of the first CDC violation in the design 68
Figure 4.19: CDC results from Questa CDC tool for one of the 4G configuration modes

of the design ... 69
Figure 5.1: Design and debugging flow for FPGAs ... 71

Figure 5.2: An example of DPR design with five modes of configuration and four

reconfigurable modules per configuration .. 72
Figure 5.3: Reconfigurable module to connect the set of signals to the embedded logic

analyzer probes ... 74
Figure 5.4: Synthesis of the modes of the RM for 4-inputs and 2-outputs case. 75
Figure 5.5: Synthesis of the modes of the RM for 8-inputs and 2-outputs case. 76

Figure 5.6: Synthesis of the modes of the RM for 8-inputs and 4-outputs case. 76

Figure 5.7: Proposed FPGA debugging flow. .. 77

Figure 5.8: Implementation and setup of the test environment for the proposed FPGA

debugging flow. .. 80

file:///F:/Masters/Partial%20Dynamic%20Configuration/Thesis/Thesis%20Verisions/FECU-Thesis-islam_ahmed-Final.docx%23_Toc530436821

vii

Nomenclature

Abbreviation Description

 3G

Third Mobile Generation.

 ABV

Assertion Based Verification

 ASIC

Application Specific Integrated Circuit

 BLE

Basic Logic Element

 CAD

Computer Aided Design

 CDC

Clock Domain Crossing

 CLB

Configurable Logic Block

 DAG

Directed Acyclic Graph

 DFT

Discrete Fourier Transform

 DPR

Dynamic Partial Reconfiguration

 DRS

Dynamically Reconfigurable Systems

 DSP

Digital Signal Processing

 FF

Flip Flop

 FIFO

First Input First Output

 FPGA

Field Programmable Gate Arrays

 FSM

Finite State Machine

 GPP

General Purpose Processor

 HLS

High-level Synthesis

 HDL

Hardware Description Language

 HVL

Hardware Verification Language

 ICAP

Internal Configuration Access Port

 IFFT Inverse Fast Fourier Transform

viii

 ILA

Integrated Logic Analyzer

 IP

Intellectual Property

 JTAG

Joint test Action Group

 LTE

Long Term Evolution

 LUT

Look Up Table

 PC

Personal Computer

 PCAP

Processor Configuration Access Port

 PL

Programmable Logic

 PS

Processing System

 RM

Reconfigurable Module

 RR

Reconfigurable Region

 RTL

Register Transfer Level

 Rx/Tx

Receiver/Transmitter

 SC-FDMA

Single carrier-Frequency Division Multiple Access

 SDR

Software Defined Radio

 SoC

System on Chip

 SVA

System Verilog Assertion

ix

Abstract

Dynamic Partial Reconfiguration (DPR) on Field Programmable Gate Arrays

(FPGAs) allows a portion of the logic to be reconfigured at runtime while the rest of the

logic keeps operating. Such category of designs called Dynamically Reconfigurable

Systems (DRS) designs. This feature enables the designers to build complex systems

such as Software Defined Radio (SDR) in a reasonable area. Despite of the flexibility

provided by the DPR, there are new challenges to design and verify the designs which

utilize the DPR technique when it is compared to static FPGA systems.

In this thesis, a new verification methodology for DPR is presented. The new

methodology addresses DPR specific logic and issues such as guaranteeing proper

connections for the ports of the Reconfigurable Modules (RMs) which share the same

Reconfigurable Region (RR) on the FPGA, waiting for running computations on a

module before reconfiguring it, isolation of the reconfigurable modules during the

reconfiguration process, and initialization of the reconfigurable module after

the reconfiguration process is done. This DPR logic is verified using Assertion Based

Verification (ABV) by modeling its functionality using System Verilog Assertion

(SVA) properties, then instrument the design with these properties. Following that,

these properties are verified using simulation or formal methods to check the

correctness of the DPR logic. Also, this thesis presents an automated flow for Clock

Domain Crossings (CDC) verification for DRS designs.

In addition, this thesis demonstrates the power of utilizing the DPR technique to

minimize the cost of designing applications which perform time multiplexing of the

digital logic, such as debugging of FPGAs. Because of the limited accessibility to the

internal signals of the designs implemented on FPGAs, the debugging of FPGAs is a

hard task. Embedded logic analyzers enhance the signal observability for FPGAs.

These analyzers are implemented on the FPGA resources, and they use the embedded

memory blocks as trace buffers, so a limited number of signals can be observed using

these analyzers due to resources constraints. Changing the traced set of signals requires

re-synthesis, placement and routing of the whole design. In this thesis, a new

methodology for FPGA debugging is proposed to change dynamically the set of signals

to be observed at runtime, and consequently, minimize the time required for debugging.

The proposed methodology utilizes the DPR technique to dynamically switch between

different sets of signals. DPR creates a reconfigurable module (RM) to route each set of

signals to an embedded logic analyzer. The proposed approach is demonstrated using

Xilinx FPGA tools, finding that changing the set of signals to be observed requires only

few milli-seconds to re-program the reconfigurable region (RR). The area overhead of

the proposed methodology is lower than other traditional methods of using multiplexers

as the DPR allows the routing module to only use buffers to connect a set of signals to

the embedded logic analyzer.

1

Chapter 1 : Introduction

Design and verification of Integrated Circuits (ICs) have become a complex task

during the last two decades due to the need to integrate extra functionalities and

applications into a single chip. Consequently, the costs of developing modern ICs have

been multiplying. Such increase in the costs is representing a threat to the continuance

of the semiconductor evolution [1]. The development cost has been estimated to reach

over 0.17 billion US dollars for a chip at 28 nm technology node [2]. Moreover, the

significant engineering efforts and investments do not minimize the possibility of the

failure of the project. The cycle of development of the chips takes from few months to

years with high uncertainty [1], and it includes a lot of testing and verification efforts to

ensure the correctness of its functionality when it is fabricated.

The development of customized IC solutions is accompanied with huge risks and

costs. Therefore, it is only justified for a small number of ultra-high volume electronic

products. As a second choice, the electronics industry has started moving into using

reconfigurable platforms such as FPGAs as computing platforms. The major advantage

of an FPGA is that it can be configured at the design time of the system to implement a

logic application, also it can be reconfigured at runtime and after deployment. The

FPGA is considered a programmable type of integrated circuits. Compared with custom

chips, the programmability of reconfigurable devices has enlarged the ability of easily

modifying the designs while inserting acceptable overheads in performance, area, and

power. The systems (either hardware or software) can realize shorter time to market

when they are implemented on reconfigurable devices. Also, they are more responsive

to bug fixes or upgrades throughout the product life cycle. By 2024, it is expected that,

on average 70% of the chip functionalities will be reprogrammable [1].

Slow Development Cycle Rapid Prototyping

Application Specific

Reconfigurability

FPGA

Hybrid
FPGA

(Zynq)+
DPR

DSP

GPP

Hybrid
FPGA/

GPP

ASIC

Figure 1.1: Trade-off between Different SDR Hardware Platforms [12]

2

In the recent years, the FPGAs capabilities are enhanced and developed to be more

flexible and reconfigurable at runtime [10,11] by the introduction of the concept of

DPR. DPR allows the FPGA to be reconfigured at runtime by reconfiguring a specific

part on the FPGA without turning off the rest of FPGA. DPR pushes the FPGAs to

become a promising reconfigurable hardware platform with a high degree of flexibility

that allows it to be used as the target hardware platform for the implementation of

complex systems such as SDR. Figure 1.1 shows the trade-off between design time and

reconfigurability for different hardware platforms suitable for the hardware

implementation of SDR [12]. As shown in Figure 1.1, applying DPR on the FPGA

platform increase the reconfigurability of the FPGA to be more reconfigurable than

traditional software programmable platforms such as the Digital Signal Processors

(DSPs) and General Purpose Processors (GPPs). DPR offers the benefits of efficient

resources utilization for the FPGA hardware resources as well as low power

consumption for the SDR system.

Currently, there are more designs start targeting FPGAs while the amount of

designs that target Application-Specific Integrated Circuits (ASICs) is in decline [4].

The vendors of FPGAs are now fabricating programmable System-on-Chip platforms,

they are switching into ASIC markets (e.g., [3, 4]). Recently, there are new FPGA

systems which permit sub-modules of hardware to be reconfigured partially at runtime

while the rest of the system components keep operating, such FPGA systems are called

Dynamically Reconfigurable Systems (DRS). The flexibility of the design is extended

in DRS designs relative to traditional statically configured FPGA systems:

 By allowing the same physical reconfigurable region (RR) of the FPGA to

serve and accommodate multiple reconfigurable hardware modules (RM),

the required modules are being loaded on demand by the system, the

switching can be automatically triggered or by user interference, which

saves resource usage significantly, maximizes design density, and

minimizes system cost [6].

 At runtime, the modules can be time-multiplexed to respond to the changes

in the operation requirements of an application. For example, a networked

multiport switch [7] and an SDR [8] reconfigure the processing logic of

their protocol according to the protocol of the incoming traffic.

 The functionality of a system can be expanded at runtime, by reconfiguring

the design with new modules. For example, when identifying suspected

attacks for network flow analysis application, the application reconfigures

one of its unused modules to implement an intruder detection module [9].

Figure 1.2 shows the idea of the DPR technique which is supported in the modern

FPGAs. Figure 1.2.a shows the full configuration of the FPGA in which the application

consumes big area. Figure 1.2.b shows that the size of the application can be decreased

by utilizing the DPR technique, i.e. if this application has some blocks that not

operating at the same time so such modules can be time multiplexed. Each module can

be loaded to operate for a certain period of time then another module to be loaded.

Figure 1.2.c shows that using DPR increases the size of the FPGA theoretically to

realize more applications than regular FPGA configuration, this leads to a better

utilization of the FPGA resources. This concept may also be generalized to different

fields of study, in this thesis it is demonstrated on runtime debugging of FPGAs.

3

Figure 1.2: (a) Shows FPGA full configuration; (b) DPR technique is utilized to get

the same system; (c) Shows how the FPGA size increased theoretically

Despite the flexibility provided by the DRS designs, there are more challenges to

design and validate a DRS design compared with static conventional FPGA systems.

1.1. Design Flow of FPGA and DRS Designs

The typical flow of design is shown in Figure 1.3 for hardware systems targeting

reconfigurable devices. The designer creates a specification document to fulfill and

describe the functionalities of the design intent. After that, the designer uses a

Hardware Description Languages (HDL) to translate the specification document into a

Register Transfer Level (RTL) representation. Such translation process could also

include re-using modules from previous projects or instantiation of Intellectual Property

(IP) from third parties, and the IP is modeled as synthesized macros or HDL code. After

that, the design is constrained by the designer, then it synthesized and implemented

using Computer Aided Design (CAD) FPGA tools (e.g., Xilinx ISE [13]).

Also, high-level description languages such as SystemC [14] can be used to

represent the design. In such case, High-Level Synthesis (HLS) tools (e.g., Vivado-

HLS [15]) are used to synthesize the design to the target FPGA device. After this

sequence of translations and design activities, the implemented design is programmed

and downloaded on the target FPGA device and it is ready to run. In order to make sure

of the correctness of the design and its functionality, each translation step should be

verified and any change in the behavior or inconsistency in the representations between

two successive steps is considered as a bug. Such errors or bugs should be fixed as

early as they are identified, because the cost of the fixing an error or a bug is increased

as designers go through the design flow. The bugs or errors that are introduced in the

process of implementing the design such as timing violations and bad design

constraints can be caught and identified using the vendor FPGA tools [13]. The errors

and bugs injected into the specification and the translated design (i.e. human bugs) are

called functional bugs. The process of identifying and fixing functional bugs to

guarantee that the captured design fulfills and meets the intent of the design, is called

functional verification [16].

4

Figure 1.3: Hardware typical design flow

For the functional verification of ASIC or FPGA systems, simulation, and RTL

simulation, especially, is the most widely used methodology. Off the shelf simulators,

such as ModelSim [17] and ISim [18], compile and elaborate the captured design

source (e.g., RTL code). Designers can review the waveforms which simulate the

behavior of the design under some specified design inputs for all the signals in the

design in order to debug errors that are injected into the design. A typical simulation

environment is shown in Figure 1.4. Since functional verification only focuses on

identifying functional bugs, simulation usually only involves the user design and does

not include the physical layer.

The flow of design of DRS designs is similar to that of statically configured

designs, except for few things. To explain the challenges and extra efforts needed to

design a DRS, the modular reconfiguration flow [19,7] is considered as an example:

1. The design should be split into reconfigurable and static parts, and the

designer has to design the application logic of the modules of these two

parts. The static parts are those parts that operate during all the

configuration modes of the design (i.e. they are needed all the time and

cannot be shut down). Also, the reconfiguration mechanism of the system

has to be added into the design to control and manage the process of

reconfiguration. Such mechanism can be only hardware or a combination of

both software and hardware.

2. The designer has to specify the border of the reconfigurable and static

regions in order to lock down the signals traversing such borders. The

designer also has to add placement constraints for modules, assign RRs to

RMs, and generate partial bitstreams to configure the RR according to the

modes of its associated RMs.

5

The errors and bugs which are related to the implementation of the DRS designs

can be detected and excluded by FPGA vendor tools which is similar to the case of the

static designs. In particular, the vendors of FPGA tools define a group of rules for the

physical layer design constraints, and it will do automatic check and verification for the

DRS design against these rules. An example of such rules is that the wires or signals

which are traversing the reconfigurable-static border should be assigned to the exact

same FPGA resources for all the RMs. On the other hand, functional bugs in DRS

designs cannot be automatically identified and caught by the FPGA vendors CAD tools.

It is the responsibility of the designers to check and verify the correctness of the

captured design to make sure that it fulfills the intent of the design and meets the

specification of the design. Consequently, the designers have to identify functional bugs

that are injected into the system, which is similar to the case of the statically configured

designs. In particular, since DRS designs include a newly added logic and a machinery

for reconfiguration, the designer needs to verify that the reconfiguration logic and

machinery are 1) correct which means that the reconfiguration modules needs to be

verified standalone to make sure of the correctness of their functionality, and 2) are

correctly integrated with the rest of the system, which means the reconfiguration

components should be put into the integrated DRS design, and then the DRS design

should be verified as a whole to verify and test the interactions of the reconfiguration

components with the rest of the design’s logic, which means that the testing of the

reconfiguration mechanism’s units as standalone components is necessary but not

sufficient.

1.2. Functional Verification Challenges for DRS Designs

DPR offers a flexibility for designs of digital systems when being compared with

static traditional FPGA designs. But, new challenges have been introduced into the

functional verification of the design. In conventional simulation methodologies (such as

RTL simulation), the hierarchy of the design is assumed to be always defined at

compile time, such methods cannot understand the modules swapping during the

simulation run. Furthermore, these traditional simulation tools cannot understand or

Figure 1.4: Typical simulation environment

6

interpret the configuration bitstreams which are used to reprogram the FPGA, only the

FPGA device can interpret such configuration bitstreams.

Vendors of FPGA devices and CAD software, such as Xilinx, claim that every

valid mode of configuration of a DRS can be tested separately by utilizing conventional

simulation methodologies, but the simulation of the process of reconfiguration itself is

not supported [7]. While, the behavioral simulation of the DPR process is proposed by

Altera, but this simulation support has not been incorporated yet into Altera’s tool flow

[20]. Previous research works have proposed frameworks to support both high-level

and RTL simulation for DRS designs. However, previously proposed frameworks fail

to offer the precision needed to check and test the design being reconfigured. Hence,

new simulation tools for the functional verification of DRS designs have to be

developed.

Even if there are reliable tools available for simulation, it is not guaranteed if the

well-established traditional methodologies of verification for statically configured

designs are still applicable for usage with DRS designs. Particularly, since the design

hierarchy and logic of a DRS design can be modified at runtime of the system, DPR

come up with new testing cases that cannot be applied for statically configured designs.

For example, in order to test if the RMs are stopped properly when a reconfiguration

request arrives, the simulation environment needs to test partial reconfiguration in all

possible states of the currently active RM. In order to verify that an ongoing

reconfiguration doesn’t inject any error (e.g., deadlock) to the rest of the design, the

simulation needs to exercise all valid transitions between any two RMs. In this way,

new rules and guidelines should be provided to the designers to aid the verification of

the scenarios related to DPR in a design and ensure its correctness.

From the user design’s point of view, the process of reconfiguration introduces

new scenarios such as transferring partial bitstreams, and isolating, initializing, and

synchronizing the RMs. These scenarios should be tested in simulation to ensure the

correctness of the reconfiguration machinery, and verify the connections and

communications between the whole design and the reconfiguration logic. From a

timing perspective, the scenarios of reconfiguration can be classified as per the phase of

the process of partial reconfiguration during which these scenarios may happen, i.e.,

AFTER, DURING, or BEFORE reconfiguration. Before reconfiguration, it is important

to synchronize the process of reconfiguration according to the ongoing computations on

the RMs of the DRS design, as an example for SDR systems if a packet is being

processed for Wi-Fi standard, the computation should be completed before switching to

another communication standard. During reconfiguration, it is important to properly

isolate the RR being reconfigured in order to guarantee that no erroneous values will be

propagated from the RM being reconfigured to the static logic or the output ports of the

DRS design. After reconfiguration, the new loaded RM should be initialized to a known

state to make sure of the correct operation of the RM, otherwise there will be undefined

values or states propagated from the RM to the static part of the design.

1.3. Thesis Objectives

This thesis explores the functional verification of DRS designs that utilize DPR

technique, and also explores the usage of the DPR to minimize the cost of runtime

7

debugging for FPGAs as an application for the DPR technique. The main objectives of

this thesis are:

1. Provide essential verification guidelines for functional verification of DPR.

2. Modeling the DPR logic and activities using System Verilog Assertion

(SVA) [21].

3. Develop a technique to verify DPR using Assertion Based Verification

(ABV) [22].

4. Provide a flow for Clock Domain Crossing (CDC) [23] verification for

DRS designs.

5. Provide a technique to utilize DPR to minimize the cost of debugging on

FPGA devices.

1.4. Organization of the Thesis

The thesis presents functional verification methodologies for DPR and DPR

implementation to minimize the cost of FPGA debugging. The thesis is organized as

follows.

Chapter 2 presents a summary on the FPGA as well as its construction. The details

about DPR is introduced in this chapter as well.

Chapter 3 presents a functional verification methodology for DPR. The common

issues for DPR logic are presented such as guaranteeing proper connections for the

ports of the Reconfigurable Modules (RMs) which share the same Reconfigurable

Region (RR) on the FPGA, waiting for running computations on a module before

reconfiguring it, isolation of the reconfigurable modules during the process of

reconfiguration, and initialization of the reconfigurable module after the process of

reconfiguration is done. A verification methodology for the DPR logic using Assertion

Based Verification (ABV) is presented and demonstrated on SDR system which utilizes

DPR.

Chapter 4 presents an automated verification approach for Clock Domain Crossing

(CDC) verification for DRS designs. A Perl utility is implemented to automate the

generation of the RTL code for each operating mode of the design, and then the RTL is

provided to a CDC CAD tool to verify the CDC signals in the design, the results of

CDC verification of different operating modes of the design are collected and presented

in a single report to the designer to ease the CDC verification process.

Chapter 5 presents the usage of DPR to minimize the cost of the FPGA debugging.

The traditional FPGA debugging flow is presented as well as its drawbacks. The usage

of DPR for FPGA debugging allows the designer to switch between different signals to

be traced by the embedded logic analyzers at runtime, which reduce the total time taken

for debugging on FPGAs.

8

Chapter 2 Overview about FPGAs and Dynamic Partial

Reconfiguration

FPGAs were introduced almost thirty years ago. Since their first appearance, they

have been rapidly-growing as a means of digital circuits’ implementation. FPGAs great

advantage is their flexibility, which arises from their programmable nature as compared

to systems using ASICs [24]. In some cases, where the specifications of the system are

time-dependent, not all modules need to operate concurrently. An unused module on

the FPGA wastes power, area, and cost. So, it would be beneficial if a module is loaded

only when its application is running, and removed when the application is done with the

required computations [25]. Accordingly, a new concept has evolved in FPGA industry,

which is known as dynamic partial reconfiguration (DPR). This new technology can be

exploited in many applications, for example, to fulfill area requirements in small

portable systems, to create a system-on-a-chip with a very high degree of flexibility,

and to realize adaptive hardware algorithms [26].

In this chapter, various aspects of FPGA and FPGA dynamic partial

reconfiguration are covered. First, an introduction of FPGA basics is presented to cover

FPGA programming technologies, routing architecture, and software flow. Then, the

FPGA reconfiguration technology is presented, such as reconfigurable logic and routing

techniques, benefits of using partial reconfiguration, and partial reconfiguration in

space and time.

2.1. FPGA Overview

FPGAs are pre-made silicon devices that can be electrically programmed to build

any intended type of digital circuits or systems. They offer a number of competing

advantages over ASIC technologies, such as standard cells. ASIC fabrication costs

incomparable amount of time and money to obtain the first device. On the other hand,

reconfiguration of an FPGA takes less than a second. But the flexible nature of an

FPGA appears negatively as a significant cost in power consumption, delay, and area.

As per the comparison of implementing digital designs on FPGAs versus standard cell

ASIC [27], the speed performance for FPGAs is 2 to 4 times slower, the physical area

for using FPGAs is 20 to 30 times bigger, and the consumption of power of FPGAs is

10 times higher. These drawbacks basically stand out from the FPGA’s programmable

routing fabric which trades power, speed, and area in return for immediate fabrication.

The two essential technologies which distinguish FPGAs are architecture and CAD

tools which users must adapt to build FPGA designs [24].

FPGAs, as shown in Figure 2.1, consist of an array of programmable logic blocks

of noticeably different types, as follows [28]:

1. Programmable logic blocks, whose task is to implement logic functions.

2. Programmable routing blocks, which work on connecting these logic functions.

3. I/O blocks, which are wired to logic blocks by routing interconnects and make

off-chip connections.

9

Figure 2.1: Basic FPGA structure [24]

2.2. FPGA Programming Technologies:

FPGA re-programmability depends on reconfigurable switches, which are

controlled by an underlying programming technology. There are various technologies

for FPGA programming, such as EPROM, EEPROM, flash [64], static memory [65],

and anti-fuses [66]. The differences between these technologies have an outstanding

influence on the architecture of the programmable logic. In modern FPGAs, only flash

[64], static memory [65] and anti-fuse [66] technologies are commonly utilized. In this

section, all modern technologies of FPGA programming will be reviewed to give a

more comprehensive understanding of all technologies used in FPGA manufacturing.

 Static Memory

Static memory cells are the building blocks for SRAM programming technology

which is commonly utilized in Xilinx, Intel (Altera), and Lattice devices. In these

devices, static memory cells are spread throughout the device to support

configurability. An example for static memory cell is shown in Figure 2.2. SRAM cells

are used for two main purposes. One of them is to control the values of the routing

multiplexers’ select lines, while the other one is to store the data in lookup-tables,

which are used to implement logic functions. Figures 2.3 and 2.4 illustrate these two

different approaches.

10

Figure 2.2: Static memory cell [28]

Figure 2.3: Multiplexer with static memory cell [28]

Figure 2.4: Static memory cells and lookup table [28]

11

SRAM technology is considered the most adequate programming technology for

FPGAs because of two main reasons: compatibility with the standard CMOS

fabrication process and re-programmability. Practically, an SRAM cell can be

programmed an infinite number of times. A specific dedicated circuit on the FPGA

does the task of initializing all SRAM bits on power up and configures the bits with a

user-defined configuration. Unlike other technologies of FPGA programming, the

utilization of SRAM cells needs no special IC processing beyond standard CMOS. So,

SRAM-based FPGAs can use the latest CMOS technology available, and therefore,

make use of the increased integration, the enhanced speeds, and the minimized dynamic

power dissipation of new processes with smaller minimum geometries. However,

SRAM-based programming technologies have the following disadvantages:

(1) Size. An SRAM cell consists of either 5 or 6 transistors and the programmable

element used to interconnect signals needs at least a single transistor.

(2) Volatility. The volatility of the SRAM cell requires the use of external devices

for permanent storage of configuration data when the device’s power is down.

These external flash or EEPROM devices are an added cost to SRAM-based

FPGA [67].

(3) Security. The possibility of the configuration information being viewed or

stolen for use in a competing system exists. This is due to having

configuration information loaded into the device at power up stage. Currently,

some FPGA families secure the configuration information through the use of

encryption systems [68].

(4) Electrical properties of pass transistors. SRAM-based FPGAs surely depend

on the use of pass transistors to implement multiplexers. However, they are

not considered perfect switches as they have high on-resistances and present a

significant capacitive load.

 Flash Programming Technology

One substitute that addresses some of the limitations of SRAM based technology is

the use of floating gate programming technologies that inject charges onto a floating

gate above the transistor. This methodology is used in flash or EEPROM memory cells.

These cells are non-volatile; in other words, they do not lose electrical signals

(information) when the device is turned off. Traditionally, EEPROM memory cells

were mainly used to implement wired-AND functions in PLD devices. They were not

used directly to switch FPGA signals [69].

Such methodologies are no longer used because of their static power consumption,

they are only used for very low-capacity devices. With modern IC manufacturing

techniques, it is possible to implement switches using floating gate cells. Particularly,

flash memory cells are used due to their area competence. The extensive use of flash

memory cells for non-volatile memory chips guarantees that flash fabrication processes

will benefit from steady reductions in process geometries. Figure 2.5 illustrates the

flash-based approach used in Actel’s ProASIC devices [59].

12

Figure 2.5: Floating gate transistor [28]

 Anti-fuse programming technology

Anti-fuse FPGA programming technology is used as an alternative to SRAM and

floating gate-based technologies. This technology depends on structures, which reveal

very high-resistance under ordinary surroundings, but can be re-programmed to create a

low resistance connection. This link is permanent if compared to floating gate or

SRAM programming technologies. The programmable component, an anti-fuse, is

directly used for propagating FPGA signals. The major advantage of anti-fuse

programming technology is the drop in programmability area overhead. As there is no

silicon area required to establish connections, only metal-to-metal anti-fuses. But, this

area reduction is compensated by the need for large programming transistors, which are

needed for the anti-fuse programming to provide the large currents required to program

the anti-fuses [28]. This area can be paid back with clever programming architecture,

which contributes considerably to the overall area. An added advantage to the anti-fuse

technology is that they have lower parasitic capacitances and on resistances than other

programming technologies. As a result, it is possible to include more switches per

device than that of other technologies. Also, the whole system cost is reduced as there

is no need for additional memory for storing programming information as the device

works instantly once programmed. Programming and transmitting the bitstream to the

FPGA need only to be done once. As a result, this can be done in a secure environment

which improves the security of the design on the FPGA [70].

This programming technology still has some disadvantages. Specifically, anti-fuse-

based FPGAs require a nonstandard CMOS procedure; they are typically late in the

manufacturing processes that they can adopt compared to SRAM-based FPGAs.

Moreover, scaling challenges emerge when considering new IC fabrication processes as

the fundamental mechanism of programming using this technology requires significant

changes to the properties of the fuse materials.

13

2.3. Configurable Logic Blocks

The elementary component of an FPGA, which provides the basic logic and

storage functionality for a target application design, is the configurable logic block

(CLB). In order to provide the fundamental logic and storage capability, the basic unit

can be either a transistor or an entire processor. However, this example is very extreme.

For the transistor example, which is in a very simple form, and requires a large amount

of programmable interconnect. That leads to an FPGA that might suffer from area-

inefficiency, low functionality, and high power dissipation. On the other hand, for the

processor example, the basic logic block is very sophisticated and cannot be used to

implement small functions as it will lead to resource waste. As a compromise of these

two extremes, there exists a range of basic logic blocks. Some of them include logic

blocks that are made of NAND gates, an interconnection of Multiplexers (MUXes),

Look Up Table (LUT), and Programmable Array Logic (PAL) style with wide input

gates [71].

LUT-based CLBs are used by commercial vendors, such as Intel (Altera) and

Xilinx. These vendors use LUT-based CLBs to offer fundamental logic and storage

functionality. LUT-based CLBs offer a good trade-off between too simple and too

complicated logic blocks. A CLB can consist of one Basic Logic Element (BLE), or a

cluster (i.e. group) of BLEs which are locally interconnected, as shown in Figure 2.7.

The basic component of a simple BLE is a LUT, and a Flip-Flop (FF). A LUT with n

inputs (LUT-n) contains 2n configuration bits and it can implement any n-input boolean

function. Figure 2.6 shows a simple BLE comprising of a 4 input LUT (LUT-4) and a

D Flip-Flop. The LUT-4 uses 16 SRAM bits to implement any 4-inputs boolean

function. The output of LUT-4 is connected to an optional Flip-Flop. A multiplexer

selects the BLE output to be either the output of a Flip-Flop or the LUT-4.

Additionally, a CLB can contain a cluster of BLEs connected through a local routing

network. Figure 2.7 shows a cluster of four BLEs; each BLE consists of a LUT-4 and a

FF. The BLE output is accessible to other BLEs of the same cluster through a local

routing network. The number of cluster’s output pins equals the total number of BLEs

in a cluster. However, the number cluster’s input pins can be less than or equal to the

summation of input pins required by all the BLEs in the cluster. Modern FPGAs

contain typically 4 to 10 BLEs in a single cluster [69].

14

Figure 2.6: Basic logic element (BLE) [24]

Figure 2.7: A CLB having four BLEs [24]

2.4. FPGA Routing Architectures

Programmable logic blocks provide computing functionality. These blocks are

connected through re-programmable routing network, which provides routing for any

pre-defined circuitry through enabling/disabling connections among I/O and logic

blocks. Wires and programmable switches are the main component of FPGA

interconnects. The used programming technology is responsible for the configuration

of these programmable switches. Since it has been known that any digital circuit can be

implemented on FPGA architecture, the flexibility of FPGA routing interconnects is a

15

must. So, they can adopt a wide-ranging diversity of circuits, which require variable

routing limitations. FPGA routing connects can be designed in an optimum way if they

support specific common features of routing requirements of most circuits (taking into

consideration that these requirements might differ from a circuit to another). For

instance, for designs that require locality, considerably-short wires are to be used. Yet

simultaneously, there might be some detached connections, which will need thin, but

long wires. Consequently, both flexibility and efficiency need to be considered during

the design of routing interconnects for FPGA. The relative arrangement of both

architecture logic blocks and routing resources must be well-thought-out, as it

dramatically affects the overall architecture efficiency. This arrangement is labeled here

as global routing architecture, while the tiny details regarding the switching topology of

different switch blocks are labeled as detailed routing architecture. According to the

routing resources global arrangement, FPGA architectures can be classified to either

island-style or hierarchical.

 Island-Style Routing Architecture

Figure 2.8 shows traditional island-style FPGA architecture, which is also known

as mesh-based FPGA architecture. From both academic and industrial point of view,

island-style architecture is the most widely-used architecture. The reason behind this

naming convention (island-style) is that in this architecture, configurable logic blocks

look exactly like islands surrounded by a sea of routing interconnects. CLBs are

organized on a 2D grid and are connected internally by a programmable routing

network. The peripheral (I/O) blocks are also connected to the programmable routing

network.

The routing network includes pre-manufactured wiring segments and

programmable switches that are organized in vertical and horizontal routing channels.

80-90% percent of FPGA total area is occupied by the routing network, while only 10-

20% of the total area is occupied by the logic blocks. The flexibility of an FPGA totally

depends on programmable routing network. A mesh-based FPGA routing network

consists of vertical and horizontal routing channels, which are connected through

switch boxes (SB). Connection boxes (CB) are used to connect logic blocks to the

routing network. The flexibility of a connection box (Fc) is calculated as the number of

routing tracks of the neighboring channel connected to the pin of a block. Fc(in) is the

connectivity of logic blocks input pins with the neighboring routing channel, whereas

Fc(out) is the connectivity of logic block output pins with the neighboring channel. For

example, if Fc(out) equals 1, it indicates that all neighboring routing channel tracks are

connected to logic blocks output pins.

Architecture channel width is calculated as the number of tracks in routing channel.

The very same channel width is used for all vertical and horizontal architecture’s

routing channels. Commonly, pass transistors are used to connect a block’s output pins

to routing tracks. Each pass transistor creates a tri-state output that can be turned on/off

individually. Nevertheless, the technique of single-driver wiring can similarly be used

to connect output pins of a block to the neighboring routing tracks. Tristate logic cannot

be used in single-driver (unidirectional) wiring as the block output needs to be

connected to the neighboring routing network through multiplexors in the switch box.

The commercial trend in FPGA made modern FPGA architectures move towards using

single-driver, directional routing tracks. It has been proven that 9% improvement in

16

delay, 25% improvement in area, and 32% improvement in area-delay can be

accomplished if the single-driver directional wiring is used instead of bidirectional

wiring [24]. All these gains are attained without any major changes in the CAD flow of

FPGA. Variable-length wires are created to reduce delay in mesh-based FPGAs. Figure

2.9 shows an example of dissimilar length wires. Longer wire segments go across

multiple blocks requiring fewer switches, thus decreasing routing delay and area. On

the other hand, routing flexibility is reduced, which decreases the probability to route a

hardware circuit efficaciously. Up-to-date commercial FPGAs frequently use a

permutation of short and long wires to balance routing network area, delay, and

flexibility [72].

Figure 2.8: Overview of mesh-based FPGA architecture [24]

Figure 2.9: Distribution of channel signal [24]

 Hierarchical Routing Architecture

Most logic designs demonstrate locality of connections; therefore indicating a

hierarchy in connections placement and routing between different logic blocks.

Hierarchical routing architectures take advantage of the locality principle by dividing

FPGA logic blocks into individual clusters. These clusters are recursively connected to

create a hierarchical structure. In a hierarchical architecture, connections between logic

blocks within the same cluster are made by wire segments at the hierarchy lowest level.

Though, the connection between blocks existing in different groups involves the

traversal of one or more hierarchy levels. The signal bandwidth varies as it moves

further from the bottom level and generally it reaches its widest at the top level of

hierarchy in a hierarchical architecture. A large number of commercially-based FPGAs

17

families use the hierarchical routing architecture, such as Altera Flex10K, Apex and

ApexII architectures [73].

2.5. Software Flow

FPGA architectures have been strongly explored for the past 20 years. A key

aspect of FPGA architecture research is the improvement of CAD tools for mapping

applications to FPGAs. It is well recognized that the superiority of an FPGA-based

implementation is largely defined by the efficiency of the associated suite of CAD

tools. Benefits of a well-designed, feature-sufficient FPGA architecture might be

compromised if the CAD tools cannot take advantage of the features that the FPGA

supports. Thus, research in CAD algorithms is essential to the architectural

advancement to fill the performance gaps between other computational devices, such as

ASICs. The software flow takes an application design described in HDL language and

converts it to a stream of bits that is actually programmed on the FPGA. The procedure

of altering a circuit description into a format that can be loaded into an FPGA can be

divided into five distinct steps, which are: synthesis, technology mapping, clustering,

placement, and routing. FPGA CAD tools’ final output is a bitstream that configures

the state of the memory bits in an FPGA. The state of these bits determines the logical

function that the FPGA implements. Figure 2.10 shows a comprehensive software flow

for programming an application-specific circuit on an FPGA. A description of several

steps of software flow is given in the following part of this section. The details of these

steps are usually similar to the kind of routing architecture used and they can be applied

to both architectures described earlier.

Figure 2.10: FPGA software basic flow [24]

18

 Logic Synthesis

The FPGA flow begins with the logic synthesis of the netlist mapped on it. Logic

synthesis transforms an HDL code (Verilog or VHDL) into a group of boolean Flip-

Flops and gates. The synthesis tools transform the RTL interpretation of a design into a

hierarchical boolean network. Numerous technology-independent methodologies are

being applied to optimize the generated boolean network. The conventional cost of

optimizations which are technology-independent is the total exact count of the factored

representation of the logic function. Such count is directly proportional to the area of

the circuit [74].

 Technology Mapping

Synthesis tools output is a netlist. The netlist contains a circuit description of

boolean logic gates, wiring connections, and flip-flops between these elements. The

circuit can similarly be characterized by a Directed Acyclic Graph (DAG). Each node

in the graph represents a gate, a primary input/output, or a flip-flop. Each edge in the

graph symbolizes a connection between two circuit elements. Figure 2.11 demonstrates

an example of a circuit DAG representation. Given a library of cells, the technology

mapping problem can be stated as finding a network of cells that implement the

boolean network. In the problem of technology mapping for FPGAs, the library of cells

consists of n-input flip-flops and LUTs. Thus, technology mapping for FPGA includes

converting the boolean network into n-bounded cells. After that, each cell is

implemented as an independent n-LUT. Figure 2.12 shows an example of transforming

a Boolean network into n-bounded cells. Algorithms of technology mapping can

optimize a design for a set of goals including power, area, or depth. The FlowMap [64]

algorithm is the most widely used tool for FPGA technology mapping in academic

research. FlowMap is able to find a depth-optimal solution in polynomial time and

promises depth optimality as a return of logic duplication. Hence, it is considered a

great discovery in technology mapping for FPGAs. After the first presentation of

FlowMap, a lot of technology mapping tools have been designed that optimize for run-

time and area while still maintaining the depth-optimality of the circuit. The result of

the technology mapping step generates a network of n-bounded LUTs and flip-flops.

Figure 2.11: DAG representation of a circuit [24]

19

Figure 2.12: Example of technology mapping [24]

 Clustering/Packing

The logic elements in Mesh-based FPGAs are naturally arranged in two levels of

hierarchy. The first level contains LBs which are flip-flops and n-input LUT pairs. The

second level hierarchy combines each k LBs together to create logic blocks clusters.

The clustering stage of the FPGA CAD flow is the process of creating groups of k LBs.

These clusters can then be mapped instantly to a logic element on an FPGA. Figure

2.13 shows an example of the clustering process. Clustering algorithms can be roughly

classified into three general methodologies, which are depth-optimal, top-down, and

bottom-up. Depth-optimal methodology tries to decrease delay at the expense of logic

replication [75]. Top-down methodology divides the LBs into clusters by consecutively

subdividing the network or by iteratively moving LBs between parts [76]. The bottom-

up methodology is commonly favored for FPGA CAD tools due to their fast run times

and sensible timing delays [77]. They consider only the information of local

connectivity and can simply meet constraints of clusters pin. The top-down approaches

offer the best solutions. But, they still have the disadvantage of unaffordable

computational complexity.

Figure 2.13: packing example [24]

20

 Placement

Determination of which logic block in an FPGA should implement the

corresponding logic block required by the circuit is the responsibility of placement

algorithms. The optimization objectives are to locate connected logic blocks close to

each other to decrease the required wiring, and sometimes to locate blocks to balance

the wiring density across the FPGA or to take full advantage of circuit speed. The 3

major approaches of placers used nowadays are min-cut [78], analytic [79], which are

often followed by local iterative enhancement, and simulated hardening based placers

[80]. To inspect architectures objectively, users must validate that CAD tools are trying

to use every FPGA’s feature. This means that the optimization approach and objectives

of the placer might be altered from architecture to another. The most commonly-used in

FPGA CAD tools are partitioning and simulated hardening approaches.

 Routing

The routing problem of an FPGA lies in assigning nets to the routing resources to

guarantee that no routing resource is being shared by more than one net. Path finder is

the current and most up-to-date FPGA routing algorithm [81]. Path finder operates on a

directed graph abstraction G(V,E) of the routing resources in an FPGA. The set of

vertices V in the graph represents the I/O terminals of logic blocks and the routing

wires in the interconnect structure. An edge between two vertices represents a possible

connection between them. Figure 2.14 represents part of the routing graph in a Mesh-

based interconnect. Given this graph, finding a directed tree that is embedded in G and

connects the source and sink terminal together is the definition of the routing problem.

Because there is an inadequate number of routing resources in an FPGA, the aim of

finding non-intersecting, unique trees for all the nets in a netlist is a challenging

problem. Path finder uses an iterative, negotiation-based methodology to fruitfully

route all the nets in a netlist. Nets are easily routed without taking care of resource

sharing only during the first routing iteration. Individual nets are routed using Dijkstra’s

shortest path algorithm [82]. Resources may be overcrowded because many nets have

used them at the end of the first iteration. During subsequent iterations, the cost of

using a resource is greater than before, depending on the history of congestion on the

resource and the number of nets that share that resource. If a resource is highly

congested, nets which can use lower congestion alternatives are forced to use this

capability. In contrast, if the alternatives are more overcrowded than the resource, then

a net may still use that resource.

Figure 2.14: Modeling FPGA architecture as a directed graph [24]

21

 Timing Analysis

Timing analysis is used for two main motives; first, to specify the circuits’ speeds,

which have been entirely placed and routed, and second, to estimate the slack of each

source-sink connection during routing in order to decide which connections must be

made through fast paths to avoid slowing down the circuit [83].

At the beginning, the considered circuit is presented as a directed graph. Nodes in

the graph symbolize input and output pins of circuit elements such as LUTs, I/Os, and

registers. Connections between these nodes are shown with edges in the graph. Edges

are added between the inputs of combinational logic Blocks (LUTs) and their outputs.

These edges are marked with a delay consistent with the physical delay between the

nodes. Register input pins are not joined to register output pins. A traversal is done on

the graph starting at sources to identify the circuit delay. Then the arrival time (Tarrival)

at all nodes in the circuit is computed with the following equation:

Tarrival (n) = maxm ∈ fanin(n){Tarrival (m) + delay(m,n)} (1)

Where node n is the node currently being analyzed, and delay(m, n) is the delay

value of the edge connecting node m to node n. The circuit delay is then calculated as

the maximum arrival time, Dmax, of all the circuit nodes. For guiding a placement or

routing algorithm, it is beneficial to know how much extra delay may be inserted into a

connection before the path that the connection is on becomes critical. The amount of

extra delay that may be inserted into a connection before it becomes critical is called

the slack of that connection. To calculate the slack of a connection, one must calculate

the required arrival time, Trequired, at all the nodes in the circuit. The Trequired is adjusted

at all sinks (register inputs and output pads) to be Dmax. Required arrival time is then

propagated backward starting from the sinks with the following equation:

Trequired(n) = minm ∈ fanout(n){Trequired(m) − delay(m,n)} (2)

Finally, the slack of a connection (n, m) driving node, m, is defined as:

Slack(n,m) = Trequired(m) − Tarrival (n) − delay(n, m) (3)

 Bitstream Generation

Bitstream information is generated for the netlist immediately after a netlist is

placed and routed on an FPGA. A bitstream loader is used to program this bitstream on

the FPGA. The bitstream of a netlist contains information of which SRAM bit of an

FPGA is programmed to a logic value of 0 or 1. The bitstream generator reads the

technology mapping, packing, and placement information to program the SRAM bits of

Look-Up Tables. Finally, the routing information of a netlist is used to correctly

program the SRAM bits of both connection and switch boxes.

2.6. Dynamic Partial Reconfiguration

DPR is a feature of SRAM-FPGAs that offers the benefit of flexibility to

reconfigure a part of FPGA at runtime with reusing the same hardware resources [60].

Xilinx DPR design flow imposes the splitting of the design into a dynamic part and a

static part [7] as shown in Figure 2.15. The dynamic part consists of the reconfigurable

22

modules (RMs) of the system, whereas the static part consists of the static modules that

are not changed during the reconfiguration (i.e. they are available in all the operating

modes of the design). The dynamic part contains multiple Reconfigurable Regions

(RRs). Each RR is used for a set of RMs, which can be swapped during runtime

without disruption. A partial bitstream is generated for each RM to be mapped into a

specific RR during reconfiguration. Partial bitstreams are loaded from a non-volatile

memory to the FPGA configuration memory using dedicated configuration interfaces.

DPR are categorized based on the configuration modes as internal or external

reconfiguration methodologies, based on how the reconfiguration is handled either

internally within the FPGA or via an external device such as a PC or another FPGA.

Xilinx 7-series FPGAs have two internal configuration interfaces to the FPGA

configuration memory [61]: (i) The Internal Configuration Access Port (ICAP) that is

physically located on the FPGA fabric. (ii) Processor Configuration Access Port

(PCAP) only available for the Xilinx 7-series Zynq FPGA equipped with a hard macro

ARM processor. Also, three external configuration interfaces are used through the

serial configuration ports: JTAG, Serial mode, and Select-Map.

Figure 2.15: Dynamic Partial Reconfiguration in SRAM-FPGAS.

 Configuration Modes

DPR can be performed by loading RMs partial bitstreams to the FPGA

configuration memory. Accessing the configuration memory is achieved through

numerous FPGA configuration modes or configuration ports [61]. Configuration modes

are classified according to the type of configuration interface used to access the

configuration memory. Table 2.1 shows the different configuration modes for Zynq

FPGA.

2.6.1.1. External Modes

External configuration modes use external FPGA interfaces to load the partial bit

files to the configuration memory of the FPGA. JTAG is the only external

configuration port for Zynq FPGA. The partial bitstreams are transferred from an

external memory storage source, for example, the PC through the JTAG serial interface

to the configuration memory. The data rate of the JTAG configuration interface is

limited to 8.25 MB/S and not suitable for real-time application such as the SDR system

23

[62] and requires an external PR controller, such as CPU or another FPGA to control

the process of reconfiguration.

2.6.1.2. Internal Modes

Internal configuration modes use internal FPGA interfaces to load the partial bit

files to the FPGA configuration memory. Two internal configuration modes are used in

Xilinx Zynq FPGA. 1) ICAP configuration mode is based on the ICAP hard macro 32-

bit configuration port primitive located on the PL side to access the configuration

memory with a theoretical data rate of 400 MB/S. 2) PCAP configuration mode is

based on the PCAP 32-bit configuration port in the PS side controlled by the ARM

processor to access the configuration memory with a data rate of 400 MB/S:

Table 2.1: Configuration Modes of Zynq FPGA

Configuration

Mode
Type Max Clock Data Width

Max

Bandwidth

ICAP Internal 100 MHZ 32-bit 400 MB/S

PCAP Internal 100 MHZ 32-bit 400 MB/S

JTAG External 66 MHZ 1-bit 8.25 MB/S

 Advantages and Disadvantages of DPR

The main advantages of the reconfigurable systems are:

1. Resources utilization: in traditional design implementation, most of the

hardware resources are not used at till the time when it is activated to operate

for a certain period of time. Using reconfigurable hardware and DPR will

increase the resource utilization by only implementing the active part of the

design in the required time and time multiplexing the resources between the

design hardware modules in consistence with activity schedule.

2. Scalability: using reconfigurable hardware allows upgrading system to

accommodate freshly defined tasks to handle the growth in technology and

features. It also enables the deploying of bug fixing in hardware, which

decreases the cost of re-deploying new hardware and increase the time-to-

market for products.

3. Reusability: reusing the resources for different design implementations is

enabled, where a system can be customized for adaptability.

4. Power reduction: considered the most important detail, where power dissipated

in the system although most of the parts are not working. In the Integrated

Circuits (IC) design, the leakage power is the power consumed by the device,

while it is even not active. FPGA reconfiguration helps in delaying the

implementation of a specific part until the time of operation, which decreases

the consumed power over time and though the battery lifetime.

5. Area: instead of implementing a full system in a horizontal way, which

consumes area, a system can be optimized by vertical implementation idea

which uses programming in space and time, where a stack of blocks are stored

and loaded at the time of operation. This will save the area used by the same

blocks in the horizontal design.

Quite the reverse, there are some disadvantages for the DPR and they are being

improved by research, such as:

24

1. Latency: latency increased by the time overhead added by the reconfiguration

time [63]. It could be improved by using high-speed PR controller to accelerate

the reconfiguration time.

2. Memory: as blocks will be stored, more memory is needed for storing the

different implementations until the time of operation. As the storage sizes are

increasing, this item is improved. For example, 5 files of few kilobytes contain

the new reconfiguration can be stored on gigabytes of the attached storage

device. Reconfiguration files can be stored on servers and accessed through the

network, as the network accessing process is improving by time.

 Terms of DPR

Reconfigurable Region (RR) is “the region of the FPGA logic core that will be

reconfigured, each RP can be reconfigured with one or more Reconfigurable Module

(RM), among which swapping occurs”. Reconfigurable Module (RM) is “the module

that contains the application to be run. It is designed using HDL or using netlist”.

2.7. Summary

In this chapter, various aspects of FPGA and FPGA DPR were covered. The

chapter presented an introduction of FPGA basics o cover FPGA programming

technologies, routing architecture, and software flow. Then, the FPGA reconfiguration

technology was presented, such as reconfigurable logic and routing techniques, benefits

of using DPR. In the next chapter, the verification of DPR using ABV is covered.

25

Chapter 3 : Dynamic Partial Reconfiguration Verification

Using Assertion Based Verification

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime while

the rest of the logic keeps operating. This feature allows the designers to build complex

systems such as SDR in a reasonable area. However, utilizing DPR needs extra care to

be taken for new issues, such as guaranteeing proper connections for the ports of the

Reconfigurable Modules (RMs) which share the same Reconfigurable Region (RR) on

the FPGA, waiting for running computations on a module before reconfiguring it,

isolation of the reconfigurable modules during the process of reconfiguration, and

initialization of the reconfigurable module after the process of reconfiguration is done.

This chapter proposes a technique to verify these newly introduced issues using

Assertion Based Verification (ABV). The proposal is to first automatically model these

issues using System Verilog Assertions (SVAs), then instrument the design with the

generated assertions. Following that, the instrumented design is verified using

simulation or formal methods to check the existence of these issues. The proposed

technique proves effectiveness in finding issues on real designs that utilize DPR

technique.

3.1. Introduction

DPR on FPGAs allows reconfiguration of some of the logic at runtime while the

rest of the logic keeps operating. It allows the implementation of complex circuits as

SDR and Internet of Things (loT) applications within a reasonable area on the FPGA.

Consequently, the power consumption of the circuit is reduced. Currently, Xilinx and

Intel (Altera) are the main FPGA device vendors on the market. They provide a series

of FPGA families that support the DPR design flow. In this chapter, the Xilinx DPR

design flow is considered [7].

26

Figure 3.1: An example of DPR design with 3 modes of configuration and 1

reconfigurable module per configuration

In DPR, the design consists of a number of Reconfigurable Modules (RMs). At

runtime, each module has modes that are swapped according to the system operating

modes. A Reconfigurable Region (RR) is a location on the FPGA in which the

reconfigurable module is implemented on. An example of DPR system is shown in

Figure 3.1, it has three configuration modes: Config1, Config2, and Config3. Each

configuration has three modules, two of them are static (i.e. they are not changed in any

of the operating modes of the design): Static_Module_1 and Static_Module_2, and one

of them is reconfigurable module: Reconf_Module1, the reconfigurable module has

three modes: Mode1, Mode2, and Mode3.

The DRS extend the design flexibility through the mapping of multiple

reconfigurable modules to the same physical reconfigurable region, which reduces the

design cost and the resource usage. In the example of Figure 3.1, the design will have

one RR on the FPGA for the reconfigurable module Reconf_Module1. The RR can be

configured by an RM mode according to the configuration mode of the design. In the

configuration mode Config1, the RR will be loaded by the RM mode

Reconf_Module1_Mode1 and so on. Utilizing DPR technique for FPGA designs adds a

new aspect in the design and verification of FPGA designs. For Xilinx FPGAs, the

consistency of RMs is one of the basic requirements of a partially reconfigurable design

[7]. As one module is swapped for another, the connections between the static design

and the RM must be identical. Such requirement adds an extra work on the designer to

create a wrapper module to encapsulate all the modes of the RM, and to have a fixed

interface between the static design and the RM. This interface must work for all the

modes of the RM, the process of connecting the interface to different modes of the RM

is an error-prone task and should be verified on the RTL before moving to the

implementation of the design on the FPGA.

Designers also add extra logic in their DPR designs for 1) delaying any

reconfiguration request till the computations done by the RM is completed, 2) isolating

the RM during the process of reconfiguration, and 3) initializing the RM after the

process of reconfiguration is done. The added logic for these tasks should be verified on

the RTL to make sure they are working as expected, and any bugs are caught as early as

possible in the design cycle. The detection of real reconfiguration issues is very

challenging, especially in the early design stages. If such errors are not tackled and

verified early in the design cycle, they may cause functional errors during on-chip

verification which are hard to debug. In this chapter, a new methodology is proposed to

verify the added logic for the reconfiguration process of DPR using ABV, the

contributions of this work are:

1. Automatically extract the connections of the ports of the modes of the RM,

and write SVA properties to verify these connections on the RM wrapper

module.

2. Model the functionality of the added logic for the partial reconfiguration

process (i.e. delaying the reconfiguration request, isolating the RM during

the reconfiguration, and initializing the module after reconfiguration) using

SVA properties to verify their functionality.

3. Embed the generated assertions into the RTL, and feed them to simulation

or formal verification to verify the functionality of the design.

27

4. A case study for using the proposed verification methodology on a DPR

design and identifying bugs in the design.

3.2. Background

 Functional Verification

To understand why verification is important and what methods are used for testing

circuits, it is important to understand the hardware development cycle. The first step in

the hardware development cycle is the specification stage, where architects specify the

behavior of a circuit. This may include creating system-level models to simulate this

behavior. The next step is to specify the RTL implementation using an HDL, such as

Verilog, which describes the flow of data in a circuit, and how that data is manipulated

to achieve the desired behavior.

The RTL implementation is then synthesized into a gate-level implementation,

which specifies how the circuit must be constructed out of individual logic gates. This

gate-level implementation is then mapped out to determine where the transistors and

wiring will be physically located on a chip. This physical layout is then manufactured at

a fabrication plant where the circuits are printed onto silicon. This silicon is placed into

a package which can potentially interface with other systems. For using FPGA as the

target device for designs, there is no physical layout needed for the design and similarly

for the fabrication, instead the design is synthesized into a gate-level representation in

terms of the FPGA basic cells (LUTs and FFs) of the target device. After that, a bit-

stream is generated to be programmed on the FPGA to implement the circuit, the

generation of the bit-streams is done by the vendor software such as Xilinx ISE [13].

Since there are so much work and cost that goes into each step of the development

cycle of hardware, hardware designers exert an extremely large effort into making sure

that each step is done correctly. Making a mistake in one of the steps means that all of

the following steps will be wrong, costing even more time and money. Classification of

functional verification is shown in Figure 3.2. This chapter focuses on the testing of the

RTL design. There are many strategies used in the testing of the RTL design.

Traditionally, designers use black-boxing techniques to testing the requirements against

the design implementation. This involves the creation of a test-bench with instantiating

the Design Under Verification (DUV) in the test-bench. Test patterns are saved into a

file with the expected output results, and the test-bench reads the test vectors from that

file to drive the DUV, the outputs are then captured and compared to the results of the

reference model. For the generation of the test patterns for the DUV, designers use

different techniques and strategies. One strategy involves driving the DUV with

specific patterns to hit some known scenarios and create some expected behavior, that

strategy is called directed testing. Sanity mechanisms (such as results comparison) with

directed testing should be used to ensure the matching of the actual behavior for the

design’s internal states and the design’s outputs. Another strategy is to drive the inputs

with random stimulus to produce completely random behavior. This random simulation

has to be paired with many checkers that ensure that circuit behavior is legal for the

whole system. Also, this random simulation has to be guided by design constraints to

avoid exploring invalid states for the design under test. Recently, test-benches have

28

become complex verification environments that are often built with a Hardware

Verification Language (HVL), which dramatically evolved to standardize and support:

automatic vector generation, output response validation, code coverage analysis,

constraint solver, and functional coverage.

29

Figure 3.2: Categorization of different methods for functional verification

30

Figure 3.3 and Figure 3.4 shows the evolvement of the functional verification

trends as announced by the Wilson Research Group [34,50]. The trends show the

number of designs being verified by advanced techniques such as “Assertions”, it

shows that that number has been increased over the last ten years. Such increase is

mainly due to the increased complexity of the hardware designs, and consequently, the

amount of money that will be lost in case of any bug escapes into the fabricated chip.

Figure 3.3: Trends for techniques of functional verification for ASIC/IC Design

Projects

Figure 3.4: Trends for techniques of functional verification for FPGA Design

Projects

31

In order to help designers decide when enough verification is done, they need

coverage metrics to measure the progress of the verification and assess its effectiveness

in simulation-based verification. With the incorporation of technologies and tools that

help in bug finding, engineers can evaluate coverage results and decide on what to do

next, and when a design can move to tape-out.

 Assertion Based Verification

ABV provides techniques for designers to define assertions in one or more

commonly used languages (PSL, Verilog, VHDL, SVA or OVL). These assertions

(checkers, monitors) are then folded into the verification test-bench and exercised

during simulation, or they can be provided as proof targets to a formal property

checking engine.

When assertions are interpreted by verification tools a pass or fail result is the

minimal feedback that a tool must provide. In simulation-based verification with

assertions, the test-bench should contain test vectors that cover as much as possible of

the design’s states, i.e. the scenarios considered should be meaningful and relevant to

gain confidence about the level of verification being done. If an assertion did not fail

because of the absence of proper stimulus, this is not an indication that the design is

error free. It indicates that the behaviors, which are specified by the set of assertions,

are respected under the given test-bench. When using assertions with formal methods,

they provide a proven or fired assertion. Proven means that the assertion passes under

any valid test patterns, and fired means that there is a pattern that can cause the

assertion to fail. For fired assertions, formal methods generate a waveform (counter

examples) which causes the assertion to fail. However, input stimulus doesn’t need to

be provided for formal or static methods, formal methods mathematically prove the

result of the assertions, that’s a big advantage of the formal methods when they are

compared to simulation.

In general, an assertion is a statement about a specific intended behavior of the

design that must hold true under normal operating conditions. Figure 3.5 shows an

example of a simple handshake behavior which is intentionally described as after the

assertion of the request signal, the acknowledge signal has to be asserted 1 to 3 cycles

late.

Figure 3.5: Waveform for a request-acknowledge handshake behavior

The above behavior can be described using System Verilog Assertion as
property single_req ;

 @(posedge clk) disable iff (rst)($rose(req)) |=> ((!ack && req)[*0:2] ##1 ack) ;

Endproperty

32

Assertions can be encapsulated within the RTL design, as illustrated in Figure 3.6,

or it can be added in a separate module, and bound to the RTL design, as illustrated in

Figure 3.7, 3.8, and 3.9. The RTL can be simulated with the associated stimulus .The

simulator analyses the execution run and reports the status of the assertions. On the

other side, the RTL with the associated properties can be passed to formal verifiers

(Model Checkers), which will report proofs or counter examples for the design

properties. Formal proof indicates that the property has been mathematically proven to

be always true for this design, and in the event of a failure, counter examples can also

be generated to show up what is the sequence of stimulus which if applied to the RTL it

will violate the design properties.

Figure 3.6: Example for assertions embedded into the RTL

Figure 3.7 shows an example for a Verilog module that will be verified using System

Verilog Assertions (SVA), unlike the example in Figure 3.6, there are no assertions

written into this Verilog module. The assertions used to verify the Verilog module are

33

written into a separate module (called verification module), this verification module

will be bound to the Verilog design module to apply the assertions to the design under

test, the verification module is shown in Figure 3.8, the binding of the Verilog design

module to the verification module is shown and illustrated in Figure 3.9.

Figure 3.7: Verilog design example to be bound to an assertions module

Figure 3.8: Assertions module to be bound to the DUT

34

Figure 3.9: Binding of the Verilog design module to the verification module

For being familiar with the anatomy of hardware design properties, a property can

be formally defined as: “A collection of logical and temporal relationships between and

among subordinate boolean expressions, sequential expressions and other properties

that in aggregate represent a set of behavior”. When studying them, it is easier to look

at their compositions as four distinct layers:

1. Boolean layer: This layer consists of boolean expressions that are formed

using variables of the design model. For example sel1 and sel2 are mutually

exclusive can be modeled as !(sel1 && sel2).

35

2. Temporal layer (timed sequences): This layer permits the verification

engineer to describe the boolean expressions’ relationships to each other

over time. It allows the engineer to define the sequence in which the

boolean expression must be satisfied.

3. Modeling layer (properties): This layer provides a clear and concise way

to describe the circuit’s behavior, specify when a sequence should or should

not happen. Inside this layer, the engineer can specify when a property

should be disabled or enabled.

4. Verification layer (Directives: assert, cover, assume): This layer

describes how a property is used during verification, i.e should it be used as

an assertion and hence it will be checked? Or, should the property be used

as an assumption or a constraint to the design? Or, should the property be

used to define an event that is used to collect functional coverage

information?

These layers of RTL properties specification are shown in Figure 3.10.

Figure 3.10: Compositions of hardware design assertion properties

Properties are often classified in the context of their temporal and verification layers.

Furthermore, properties can be also categorized by their method of evaluation (that is,

concurrent or sequential activation)

1. Safety versus Liveness: Safety property says that some bad sequence

cannot occur. This is a property that must evaluate to true all the time. On

the other side, a property that indicates some good behavior will happen in

the future is called a liveness property. It defines a possibility that is

unbounded in time. Examples:
property safety_property_example ;

36

 @(posedge clk) counter_value <= maximum_allowed_value ;

endproperty

property liveness_property_example ;

 s_eventually counter_value == 1 ;

endproperty

2. Constraint versus Assertion: A Constraint is a property that lists the

acceptable values (or sequences of values) which are permitted on an input.

The design cannot be ensured to function correctly if its input value (or

sequence of values) violates a specified constraint. While an assertion is a

property that specifies that the expected design output behavior must stay

valid or true. To guarantee a correct design functionality, all the assertions

should evaluate to true for any permissible sequence of input values applied

to a design.

3. Declarative versus procedural: A declarative property describes the

expected behavior of the design independent of its RTL procedural details.

Hence, it is not necessary to understand the procedural code to understand

the required expected behavior. On the other hand, the procedural property

describes the expected behavior of the design in the current context at a

particular line within the procedural code. Hence it is necessary to

understand the details of the procedural code to fully understand the

expected behavior. Expressing interface properties declaratively is

generally more intuitive than expressing these properties procedurally,

since the interface requirement is typically independent of the details of the

block implementation. While capturing internal implementation of an RTL

design intent procedurally, will generally reduce the amount of extra code

required to express these properties.

4. Concurrent versus sequential: A design model typically consists of a

static, hierarchal structure, in which primitives interact through the network

of interconnections. These primitives may be built in simple functions or

large more complex procedural or algorithmic descriptions. Within a

procedural description, statements execute in sequence. However within the

design as a whole, the primitives and their communication interact

concurrently. Just as the design model, properties may also be represented

as declarative or procedural statements. Hence, a declarative assertion is a

statement that is always active and is evaluated concurrently with other

layers or primitives in the design. A procedural assertion, on the other hand,

is a statement within the context of a process that executes sequentially in

its turn as the procedural code executes.

Hardware Verification Languages (HVLs) are used to write assertions. Property

Specification Language (PSL) [51] and System Verilog Assertions (SVA) [21] are the

most commonly used HVLs. SVA is part of the System Verilog Language [21]. Also,

HW verification engineers can select from a readymade, pre-verified assertion libraries,

such as the Open Verification Library (OVL) [52]. Table 3.1 describes the advantages

and the disadvantages of each of them:

Table 3.1: Advantages and Disadvantages of HVLs

 Assertion Languages
(PSL, SVA)

Assertion Libraries
(Checker-Ware, OVL)

37

Advantages Customization

 Abstraction and powerful

pattern matching

 Pre-verified checker IP

 Drop-in solutions for most
common checking tasks

 Designers like it (Low effort)
Disadvantages Implementation effort

 Power = complexity

 Learning curve

 Exact checking requirements
may not match available
components

To summarize, there is a vast array of scenarios where assertions and assertion

checkers play an important role in verification, hardware emulation, post-fabrication

debugging, permanent online monitoring, simulation, and formal verification.

Synthesizing assertion checkers is beneficial and in most of these cases essential to

allow the assertion paradigm to be used in these areas.

ABV is one aspect of any complete SoC or Silicon fabrication flow. The design

intent and specifications are captured by the assertions in an executable form. During

simulation, these assertions are acting as monitors to detect errors close to their source,

and to report both errors and coverage information. Assertions also enable formal

analysis, which can provide exhaustive verification of blocks and interfaces. With

incorporating the usage of assertions in the verification process, verification can start

earlier, design and verification teams can detect and remove bugs faster, and designers

can incorporate their intent into the design code to minimize integration issues later on.

Assertion languages provide the grammar needed to explicitly codify properties.

Two languages are prevalent in the industry, are accepted standards, and are supported

by most of the RTL simulation or formal verification tools: SVA 21] and PSL [51].

Both languages’ sets of operators and constructs are almost equivalent, they differ by

some nomenclatures, syntax and minor features. Figure 3.11 shows the syntax of

writing a property.

Figure 3.11: Property syntax

38

In which:

 Property name is an identifier for the property used in the assertion directive.

Also, it can be used within the specifications of other properties to simplify the

specifications of complex properties.

 Clocking condition specifies when the signals in the property are sampled.

 Disabling condition specifies when the property is disabled (used as a reset

condition).

 Assertion label is an identifier for the assertion used in reports and to help with

the debugging.

 Assertion directive is a statement that instantiates the property in verification

logic as an assertion (assert keyword), assumption (assume keyword) or

coverage monitor (cover keyword).

 Property expression is a specification for the property. Specification can be an

invariant (for example, !($isunknown(ctrl)) or an implication. An implication is

“an expression with a left-hand-side (LHS), an implication operator, and a right-

hand-side (RHS)”. The LHS is called the antecedent, which is a condition that,

when sampled true, initiates a thread for the property. The thread starts as soon

as the LHS starts evaluating. The RHS is called the consequent, which is a

condition that is tested for each thread. If the consequent is true, the property

holds for the thread. If the consequent condition is shown to be false for a

thread, the property fails for the thread. Asserted properties are supposed to hold

for all possible threads. Assumed properties are assumed to hold for all possible

threads. Property expressions can include boolean expressions and the following

constructs:

o Built-in functions which are constructs that automate the specification of

common expressions (for example, $rose, $onehot, $past and $fell).

o Cycle delay operator (##) which separates sub-properties in different

cycles (relative to the defined clock). For example, a ##5 b means a is

true, then 5 cycles later, b is true.

o Consecutive repetition operator ([*n:m]) — indicates repetition of

signals, or cycles (when applied to the cycle operator).

System Verilog Assertions (SVA) [21] form a subset of the System Verilog

extension to Verilog [53] that pertains to assertions. SVA assertion code must be

embedded in System Verilog modules. The language provides structures for defining

sequences of events and combining sequences into design properties. The SVA assert

statement generates the assertion that verifies its associated property. Figure 3.12 shows

an example for an SVA assert property.

39

Figure 3.12: SVA assert property example

Property Specification Language (PSL) is an assertion language. PSL assertion

code can be embedded in Verilog and VHDL modules, and can be placed in vunits

bound to design units. The PSL assert statement generates the assertion logic that

verifies its associated property. Figure 3.13 shows an example for a PSL assert

property.

Figure 3.13: PSL assert property example

In Figure 3.14, an example is shown to how to define assertions from a given

specification to verify the implemented design, the example considered in Figure 3.14

is for a bus and its states for transferring data. The bus state has 3 valid states: START,

INACTIVE, and ACTIVE. The valid bus state transitions are as follows:

1. INACTIVE to START

2. START to ACTIVE

3. ACTIVE to INACTIVE

4. ACTIVE to START

Any other transitions are not allowed. Figure 3.14 shows the specification, as well as

the Finite State Machine (FSM) of the bus transitions, and how the properties are

defined in terms of the bus control signals (en and sel[0]).

40

Figure 3.14: How assertions are defined?

41

3.3. Related Work

Several works have proposed frameworks to help in functional verification of

DRS. The Dynamic Circuit Switch (DCS) method [54] adds artifacts for simulation

purposes only to mimic the behavior of reconfiguration activities such as module

swapping and undefined state of the RM after reconfiguration. ReChannel [55,56] is an

open source SystemC library which models DPR. In order to represent swapping of

modules and other reconfiguration operations, ReChannel added new SystemC classes.

The extension of ReChannel [57] proposed new classes to monitor and verify the

details of reconfiguration at behavioral, Transaction Level Modeling (TLM) and RTL

levels. To use ReChannel, designers should be aware of using SystemC for modeling

and verification of digital designs, and extra efforts are needed to set up the simulation

environment on the behavioral level, TLM level, and RTL.

In [58], a SystemC-based design methodology (OSSS+R) is used to automate the

modeling, synthesis, and simulation of DRS designs. It automatically generates

synthesizable code for the reconfiguration controller to manage the module swapping of

RMs. But, it uses only pre-defined reconfiguration control mechanism, so it cannot

handle all styles of DPR designs. ReSim [29] is a System Verilog library built on the

Open Verification Methodology (OVM) which uses a simulation-only bitstream to hide

the physically dependent features of DPR designs. It models traffic of bitstream and the

process of reconfiguration of DPR. ReSim, as well, has a support for the cycle-accurate

RTL simulation of the DRS design immediately during, before and after

reconfiguration. So, it can detect functional bugs that were missed by DCS, ReChannel,

and OSSS+R. Setting up the design to use the ReSim setup needs extra effort by the

designer. The ReSim library is extended in [30] to support state saving and restoration

of the RMs.

The existing works in literature have some disadvantages and limitations:

1. They model the DPR activities using simulation-only artifacts (i.e. un-

synthesizable models), so they cannot be used with formal verification

methods. The test-benches used for testing the design should thoroughly

cover all the corner cases, such requirement is impractical in some cases.

2. Extra effort is needed to set up the verification environment as SystemC

modeling or OVM environment setup.

3. When an error is caught, extra effort is needed to debug the error and

pinpoint the root cause of the issue, it can be related to non-DPR logic.

The proposed methodology in this chapter has some advantages when compared to

the existing works in literature:

1. It models specific DPR activities using ABV [22], the assertions can be

used for formal verification or RTL simulation, and it also can be

integrated with any previous work that performs RTL simulation.

2. It enhances the observability, reduces the debug time, and improves error

detection. When an assertion fails in RTL simulation or formal

verification, it pinpoints to the root cause of the issue with no extra effort.

3. The assertions can be synthesized [31] on the FPGA to perform runtime

verification for DPR, this is not covered in this thesis.

42

3.4. Assertion Based Verification for DPR

 Port Connections of the Reconfigurable Modules

The first step for creating a dynamically reconfigurable design is to identify the

static logic (i.e. logic that is always active in all the operating modes of the design), and

the reconfigurable logic (i.e. the logic that can change from one operating mode to

another) in the design. For Xilinx DPR flow [7], the interface of a reconfigurable

module should be consistent across all its modes, such requirement adds an extra step in

the design flow to create an RTL wrapper for each RM to encapsulate all its modes.

Issues appear in this step when there is a mismatch in the number of ports between

different modes of the RM, the RTL wrapper of that RM will have number of ports

equal to the maximum number of ports in all the modes of the RM, in that case the

designer should take care when connecting the ports for each mode of the RM to not

affect the functionality of the circuit.

A simple example for the design modifications needed for DPR is shown in Figure

3.15, if the port in3 is used in in the first mode of the RR ‘RR_mode1.v’, then the

design functionality will be altered. Such modifications in the RTL should be verified

before moving to implement the design on the FPGA. The modification for the

interfaces of the RMs is an error-prone task, especially for large designs which have a

large number of ports for the modes of the RMs and a mismatch in the sizes of these

modules such as the case of the SDR. In this thesis, the connectivity verification

approach [32,33] is utilized in this section to verify the changes in the interfaces of the

reconfigurable modules.

The verification flow is shown in Figure 3.16. After the RTL files are compiled

and the design is synthesized, the netlist of the design is traversed using netlist access

Application Programming Interfaces (APIs) to extract the connections of the

reconfigurable modules from the original design, the output of this step is a Comma

Separated Values (CSV) file that lists the hierarchical paths of the RM ports and their

connections. An SVA generator takes the CSV file and writes an assertion for every

source and destination pair. The following SVA property is generated for every source

and destination pair to verify their connection:

 property connect_pair (clock , source , destination) ;

 @(posedge clock) disable iff(~(`RM_MODE_ENABLE))

 (source == destination) ;

 endproperty

Where RM_MODE_ENABLE is a macro which can be set by the designer such that

when its logic value is 1, it indicates a specific RM mode is active. This macro is

different from one RM mode to another because only one RM mode can be active at a

time. For each RM mode, there will be a separate CSV file to test its connections, and

consequently, a unique set of assertions. The assertions generated for each mode can be

verified using RTL simulation or formal verification.

43

Figure 3.15: Design modifications in RTL files for DPR

44

 Isolation Logic

During the reconfiguration process of the RM, the values of the newly downloaded

bitstream may drive incorrect values to the static logic side, so designers add isolation

logic for all the ports of the RM to prevent the transmission of the data from the RM to

the static logic during the reconfiguration process. The typical structure of designs that

utilize DPR is shown in Figure 3.17, the Internal Configuration Access Port (ICAP) is

used to interface to the FPGA configuration memory (e.g. read or write operations).

Figure 3.16: Design modifications in RTL files for DPR

Figure 3.17: Typical structure of a design that utilizes DPR

45

A controller is needed for the ICAP to handle the reconfiguration requests, handle the

control of the ICAP, and monitor its status. The output port of the ICAP can be used to

monitor its status. The yellow blocks in Figure 3.4 are added by the designer to have a

correct operation for the design during and after the reconfiguration process. For the

isolation logic, it is verified using the following SVA property for every output port of

the RM:

 property verify_isol (clock , source , destination , ICAP_BUSY) ;

 @(posedge clock)

 (($changed(source) && ICAP_BUSY) |=> $stable(destination)) ;

 endproperty

Where the source signal is an output port of the RM, the destination signal is the

register driven by the output port on the static side, and the ICAP_BUSY is the signal

which indicates that there is a reconfiguration process in progress.

 Reset Control Logic for the RM

After the reconfiguration process is done, the sequential elements of the RM should

be reset to guarantee proper operation of the circuit. If the RM is not reset after

reconfiguration, the state of sequential elements will be undefined and may be affected

by erroneous values from the previous RMs that share the same physical area on the

FPGA. The reset control logic is verified using the following SVA property:

 property verify_reset (clock , RM_reset , ICAP_BUSY) ;

 @(posedge clock)

 ($fall(ICAP_BUSY) |-> $rose(RM_reset)) ;

 endproperty

Where RM_reset is the reset signal of the RM, and the ICAP_BUSY is the signal which

indicates that there is a reconfiguration process in progress. The assertion implies that

when the ICAP_BUSY is changed from a logic value of 1 to 0 (i.e. the reconfiguration

through ICAP is done), then the reset signal of the RM should be asserted to reset all

the sequential elements of the RM.

 Synchronizing the Reconfiguration Process

When a computation is being done in the RM, the designers want to block any

reconfiguration request until such computation is done. For applications such as SDR,

such mechanism will be required such that when a packet is being processed for 3G

standard as an example, it should be processed completely before switching to any

other standard such as WiFi or 4G. The synchronization of the reconfiguration requests

is verified using the following SVA property:

 property verify_sync (clock , RM_busy , ICAP_GO) ;

 @(posedge clock)

 ($rose(ICAP_GO) until $fall(RM_busy)) ;

 endproperty

Where RM_busy is the signal which indicates that a computation is being done by the

RM, and ICAP_GO is the control signal which tells the ICAP to start a new

46

reconfiguration process. For some applications, it is not needed to check such

synchronization, as it is acceptable to flush the data of the RM.

3.5. Case Study

The approach presented in this chapter for verification of DPR is applied on an

SDR chain presented in [45,46]. The SDR test case has four reconfigurable modules: 1)

convolutional encoder, 2) modulator, 3) Discrete Fourier Transform (DFT), and 4)

Inverse Fast Fourier Transform (IFFT). Table 3.2 shows the number of modes per each

block.

Table 3.2: Number of modes per each RM of the design under test

Block Number of Modes

Convolutional Encoder 4
Modulator 3
DFT 2
IFFT 2

The block diagram and the schematic of the design are shown in Figure 3.18 and

Figure 3.19 respectively.

Figure 3.18: Block diagram of the SDR case study

47

Figure 3.19: Schematic of the SDR case study

The port connections are verified using SVA properties as explained in the

previous section. The port connections should be verified for every mode of each RM,

the number of assertions generated for verifying port connections is proportional to the

number of modes and the number of ports for each mode. The SVA properties are

verified and run on the DPR design using Questa Formal tool [47]. Figure 3.20 shows

an example for the CSV file extracted for the first mode of the convolutional encoder

RM. Figure 3.21 shows an example for the generated assertions to verify the port

connections in the CSV file of Figure 3.20, and Figure 3.22 shows the results of Questa

Formal tool in which all the assertions are proven.

Figure 3.20: CSV file extracted for connections of the first mode of the

convolutional encoder block

48

Figure 3.21: Assertions generated for connections of the first mode of the

convolutional encoder block

Figure 3.22: Results of Questa Formal tool for the assertions generated for

connections of the first mode of the convolutional encode block, all assertions are

proven

Table 3.3 shows the number of ports for every RM, and Table 3.4 shows the number of

assertions generated for verification of port connections, isolation logic, reset control

logic, and the synchronization logic. The number of assertions for the isolation logic

equals to the number of output ports for all the RMs, the number of assertions for the

reset control logic equals to the number of RMs because each RM will have its own

reset control logic, and only one assertion is generated to test the synchronization logic

of the DPR controller.

Table 3.3: Ports information about the RMs of the design under test

Module Number of Ports (Total) Number of Ports (Outputs only)

Convolutional Encoder 6 2
Modulator 7 3
DFT 7 3
IFFT 7 3

Table 3.4: Generated assertion properties for DPR verification

Verification Goal Number of Assertions

Connections of the Ports (6 x 4) + (7 x 3) + (7 x 2) + (7 x 3) = 80
Isolation Logic of Output Ports 11
Logic for Reset Control 1 x 4 = 4
Logic for Synchronization 1

Total 96

49

All the assertions of the port connections are proven by the Questa Formal tool. But,

when applying the assertions for isolation logic, reset control logic and synchronization

logic, Questa Formal tool reports firings for their SVA properties, and 3 bugs have been

identified in the design under verification:

1. The output ports of the RMs were not isolated during the reconfiguration

process. This should be fixed in the design such that the output ports of the RMs

are totally isolated from the static logic during the reconfiguration process to

avoid the propagation of any erroneous values from the RMs to the static logic.

2. The reset signals of the RMs were not activated right after the completion of the

reconfiguration process. This should be fixed in the design such that the reset

signals should be asserted after the reconfiguration to put the RM in a defined

initial state before its operation.

3. The DPR controller was not handling the case in which a new reconfiguration

request is received when the RM is still processing data.

3.6. Summary

In this chapter, a verification flow for DPR is presented using Assertion Based

Verification (ABV). Designers can use this flow to verify their DPR designs and the

dedicated logic added for DPR activities such as the isolation logic, reset control logic

and the synchronization logic of the DPR controller. SVA properties are used to verify

these functionalities. The SVA properties can be used in RTL simulation or formal

verification. Using a case study from literature, it has been demonstrated how the

proposed verification flow identified three issues in the DPR logic of the design. In the

next chapter, the CDC verification for DPR is covered.

50

Chapter 4 : Clock Domain Crossing Verification for

Dynamically Reconfigurable Systems

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime while

the other remaining logic keeps operating. This kind of designs are called Dynamically

Reconfigurable System (DRS) designs, they can operate in multiple modes. The

verification of the DRS designs is a complicated task due to the need to verify all the

modes of the designs, and the lack of CAD tools support for DRS designs. In this

chapter, an automatic Clock Domain Crossing (CDC) verification flow is proposed for

DRS designs. A Perl utility is implemented which automates the generation of the

designs files for each operating mode of the design, generates the script to run CDC

analysis on the design, runs a CDC analysis tool, and collates the results in a user-

friendly representation for debugging.

4.1. Introduction

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime, while

the other remaining logic keeps operating. It allows the implementation of complex

circuits as SDR and loT applications within a reasonable area on the FPGA.

Consequently, the power consumption of the circuit is reduced. Recent FPGA families

support the implementation of DRS through the DPR technique.

In DPR, the design is composed of a number of Reconfigurable Modules (RM),

each RM has modes that are changed during runtime according to the system operating

modes. A Reconfigurable Region (RR) is a location on the FPGA in which the

reconfigurable module is implemented on. An example for DPR system is shown in

Figure 4.1, it has five configuration modes: Config1, Config2, Config3, Config4 and

Config5. Each configuration has four reconfigurable modules: ModuleA, ModuleB,

ModuleC and ModuleD, each with four modes: Mode1, Mode2, Mode3 and Mode4.

DRS designs extend the design flexibility through the mapping of multiple

reconfigurable modules to the same physical reconfigurable region, which reduces the

design cost and the resources usage. In the example of Figure 4.1, the design will have

4 RRs on the FPGA, each RR is used for a unique RM. The RR can be configured by

an RM mode according to the configuration mode of the DRS design. In the

configuration mode Config1, the first RR will be loaded by the RM mode

(ModuleA_Mode1), the second RR will be loaded by the RM mode (ModuleB_Mode1)

and so on.

Most complex recent designs have more than one clock, and many of these clocks

are asynchronous. For these designs, the clock domain of an asynchronous clock is

formed by the logic clocked by that clock. Problems arise from signals that connect

logic in different clock domains. Proper synchronization must be done for signals that

traverse the boundaries of clock domain, and relevant transfer protocols must be

followed. During the metastability window of the receiving register (setup and hold

time), if any CDC signal is not kept stable, then the register can end up in a metastable

state, which means its output can unsystematically settle to an unknown value that is

51

not the same as the value the engineer sees in RTL simulation, an example is shown in

Figure 4.2. Errors in functionality can happen due to these metastability issues.

Figure 4.1: An example of DPR design with five modes of configuration and four

reconfigurable modules per configuration.

Figure 4.2: Example for a metastability issue caused by CDC signal

CDC verification [23] of DRS designs is a complicated task due to the need of

verifying every operating mode of the design to make sure no metastability issues can

occur in the design. Currently, there are no Computer Aided Design tools that support

the CDC verification of DRS. As an example in Figure 4.1, designers should verify all

the configuration modes of the design, to make sure any CDC signals between adjacent

modules are properly synchronized. If CDC errors are not verified and tackled early in

the design cycle, they may cause functional errors later in the synthesis and place &

route phases which may waste the designer's time to repeat the design cycle after fixing

the CDC errors.

In this chapter, a new automated flow is proposed for CDC verification of DRS. A

Perl utility is implemented to 1) automate the generation of the RTL representation of

52

every operating mode of the reconfigurable system, 2) generate the run scripts to run a

commercial CDC tool for every mode, 3) invoke the run for CDC analysis and 4)

collates the result for every mode and report it to the user.

4.2. Background

The verification of DRS designs is still an open question. The lack of CAD tools

that understand the dynamic nature of these designs forces the designers and

verification engineers to innovate and implement their own verification methodologies.

Several works have proposed techniques for simulation-based verification of DRS

designs, and verification of issues that may arise before, during, and after

reconfiguration of some part of the design.

The Dynamic Circuit Switch (DCS) method [54] adds artifacts in the RTL code of

the DRS design for simulation purposes only to switch between hardware tasks, it

improves the simulation precision of DRS designs in various aspects. But, using this

method cannot detect bugs introduced by bitstream transfer and the module swapping

in DRS designs.

ReChannel [55,56] is an open source SystemC library which models DPR, it was

extended in [57]. In order to represent swapping of modules and other reconfiguration

operations, ReChannel added new SystemC classes. The extension of ReChannel [57]

proposed new classes to monitor and verify the details of reconfiguration at behavioral,

Transaction Level Modeling (TLM) and RTL levels. However, DCS and ReChannel do

not accurately verify the design undergoing reconfiguration since the bitstream traffic is

not simulated.

OSSS+R [58] is a methodology to automate the modeling, synthesis, and

simulation of DRS designs. It generates synthesizable code for the reconfiguration

controller to manage the module swapping of RMs. But, it uses only pre-defined

reconfiguration control mechanism, so it cannot handle all styles of DPR designs.

ReSim [29] is a reusable library which uses a simulation-only bitstream to hide the

physically dependent details of DPR designs. It models traffic of bitstream and the

reconfiguration process of DPR. ReSim, as well, has a support for the cycle-accurate

RTL simulation of the DRS design immediately before, during and after

reconfiguration. So, it can detect functional bugs that were missed by DCS, ReChannel

and OSSS+R.

The existing work in literature focuses on simulation-based functional verification

of DRS designs, there are more advanced verification topics that are not still addressed

for DRS designs such as CDC verification, reset verification, power-aware verification,

formal verification and runtime verification. In this chapter, a framework for CDC

verification is introduced for DRS designs.

53

4.3. What is CDC Verification?

Most complex designs have more than one clock. In addition, many of these clocks

are asynchronous. For these designs, the clock domain of an asynchronous clock is

formed by the logic clocked by that clock. The logic that lies completely inside a clock

domain can be validated with the same methodology as that for a single-clock design.

However, problems arise from signals that connect logic in different clock domains.

Proper synchronization must be done for signals that traverse clock domain

“boundaries”, and relevant transfer protocols must be followed. The procedure of

validating these necessities is called clock domain crossing (CDC) analysis.

But, even CDC signals that are properly synchronized and obey protocol rules do

not guarantee valid functionality. During the metastability window of the receiving

register (i.e. setup and hold time), if a CDC signal is not kept stable, the register can

end up in a metastable state, which means its output can randomly settle to an unknown

value that is not the same as the value the engineer sees in RTL simulation.

In effect, data values that traverse clock domains can be advanced or delayed

randomly relative to RTL simulation. Functional errors can occur if the logic of the

receiver is not designed specially to be tolerable for these metastability effects.

Unfortunately, standard simulation cannot precisely demonstrate effects of

metastability in a design. An expansion to standard functional verification is needed to

demonstrate the effects of metastability in a design.

 Clock Domains

A clock domain is a portion of a design that has a clock asynchronous to (or which

has an inconstant phase relationship to) another clock in the design. For example,

suppose one clock is derived from another clock through a clock divider. These two

clocks have a constant phase relationship; therefore, the two sections of the design that

use these clocks are really part of the same clock domain (Figure 4.3). However,

suppose two clocks have frequencies of 50 MHz and 33 MHz. These clocks’ phase

relationships change over time; therefore, they clock two different clock domains

(Figure 4.4).

Figure 4.3: Multiple clock signals belong to the same clock domain.

54

When multiple clocks from different sources (i.e. asynchronous clocks) are inputs

to a circuit, then these distinct clock domains are created because of these asynchronous

clocks, as shown in Figure 4.5. When the circuit’s inputs are asynchronous to the

circuit’s clock domains, then these asynchronous inputs are in distinct clock domain, as

shown in Figure 4.6. Clocks are defined as the clock signals of registers and the enable

signals of latches.

Figure 4.4: Multiple clock signals in two different clock domains

Figure 4.5: Asynchronous inputs clocks form different clock domains

Figure 4.6: Inputs to the circuit are asynchronous to the circuit

55

 Metastability

A clock domain crossing (CDC) signal is a signal created in a clock domain and

traverses the boundary into another domain (where these two domains are

asynchronous to each other), and is then sampled by a register in that asynchronous

clock domain.

When the active edge of the receiver (RX) register’s clock and the active edge of

transmitter (TX) register’s clock are too close to each other, metastability occurs if data

changes within the setup or hold time. The register’s output settles to an unpredictable

value. Metastability can occur when having unpredictable skews between synchronous

clocks, or if the clocks are asynchronous. Flip-flop and latch storage elements are

sensitive to metastability. The design of flip-flops and latches must tolerate the

metastability effects.

The properties of metastability are unsystematic and unpredictable in hardware as

the output signal can settle randomly to 1 or 0. However, designers got predictable

results in RTL simulation. As a result, the hardware behavior and implementation are

not accurately modeled in RTL simulation when metastability is existing. Functional

verification techniques must consider technology beyond RTL simulation to make sure

a circuit design is tolerable and immune to metastability effects. Designers need to

understand how hardware registers behave with metastability and how registers behave

in RTL simulation under the conditions of metastability, in order to design circuits

which are tolerable to the effects of metastability.

The following statement is quoted from [48] regarding metastability:

“When sampling a changing data signal with a clock ... the order of the

events determines the outcome. The smaller the time difference between

the events, the longer it takes to determine which came first. When two

events occur very close together, the decision process can take longer

than the time allotted, and a synchronization failure occurs.”

Figure 4.6: Example for synchronization failure [23]

56

Figure 4.6 shows an example for failure in synchronization which happens when a

signal is generated in one clock domain, and then sampled very close to the active edge

of a clock signal from a different clock domain. Synchronization failure is triggered by

an output going into a metastable state and not converging to a valid steady state when

the sampling of the output must be done.

In hardware, a register value is metastable when its input signal changes the value

in the transmitter’s domain too close to the time the signal is sampled in the receiver’s

domain. In Figure 4.7, the flip-flop DFF is sampling a 1-bit CDC signal (s). Since

signal (s) is originated from a different clock domain, then its value of can change at

any time relative to the clock of the DFF (clk). If the value of the wire (s) is not kept

stable at 0 or 1 through the metastability window of the DFF (i.e. setup and hold time of

the DFF), then the output (q) might acquire an intermediate voltage value for an

indeterminate amount of time. Following that, (q) settles randomly to either 0 or 1. The

flip-flop is said to be metastable for that interval.

Figure 4.7: Metastable flip-flop

The following mean-time-between-failure (MTBF) equation expects the rate of

occurrence of metastability:

 𝑀𝑇𝐵𝐹 =
1

𝑓𝑐𝑙𝑘× 𝑓𝑖𝑛 × 𝑡𝑑
 (1)

Where 𝑓𝑐𝑙𝑘is the clock frequency of the receiving flip-flop, 𝑓𝑖𝑛 is the frequency of the

asynchronous input signal, and 𝑡𝑑 is the setup and hold window.

Metastability is considered a problem because a metastable signal which feeds

additional logic in the receiving clock domain may cause invalid signal values to be

propagated through the design, and consequently, the behavior of the circuit cannot be

expected in such case. The metastable signal can fluctuate for some amount of time.

The logic which samples the metastable signal in the receiving domain may identify the

logic value of the fluctuating signal to be different values, and consequently, will cause

erroneous signal values to be propagated through the design, Figure 4.8 is showing an

example for such cases.

For any design, each flip-flop has a specified metastability window defined (i.e.

setup and hold time window), which is the time that the input data is not allowed to be

changed within, and it is mandatory to the keep the input signals stable during this

window to avoid them being changed very close to the clock edge of the receiving

clock edge. This protects the output of the flip-flop from going into a metastable state.

57

Figure 4.8: A metastable signal is causing erroneous signal values to be

propagated through the design [23]

 Synchronizers

Designers usually assume the signals of the circuit to be in-band, which means they

have a value of either logic 0 or logic 1. Metastable signals can have values that are

neither 0 nor 1; therefore, they are considered out-of-band signals. Out-of-band signals

have unanticipated effects and propagate unpredictably. To handle CDC signals,

designers isolate potentially metastable logic to ensure logic beyond such isolation

boundary only needs to handle in-band signals. The logic inside the isolation area is

called a synchronizer, an example is shown in Figure 4.9.

Figure 4.9: Synchronizer example

58

Metastability appears in the form of mutable delays in signal transitions of the

outputs of registers driven by CDC signals. Transitions are accidentally advanced or

delayed when compared to normal simulation. Every CDC signal is affected by that

behavior. Even if a CDC signal or data bus has a synchronizer, the output of the

synchronizer may suffer from mutable delays. Logic outside the isolation area in the

receiving domain might not interpret receive data correctly in the presence of variable

delays. Functional errors occur in hardware due to this intolerance of metastability

special effects, even when RTL simulation reports “0” functional errors.

Designers implement different kinds of synchronizers as appropriate for particular

situations and design styles. For each type of synchronizer, the implemented logic

assumes a group of prerequisites about the operation of the circuit during operation and

regarding the logic which is being connected to the synchronizer. During compilation,

the rules for the synchronizer’s connections can be checked. During simulation, transfer

protocols can only be checked as the circuit operates. A synchronizer, alongside its

transfer protocol and rules of connections, is called a synchronization scheme as shown

in Figure 4.10.

Figure 4.10: Synchronizer scheme

Most CDC implementations use one or more synchronizers from a set of popular,

well-characterized synchronization schemes. These structured synchronizers must

follow well-defined connection rules and should obey specific transfer protocols.

Software or custom logic synchronizers should be used to synchronize any CDC signal

that does not have a structured synchronizer. These ad hoc synchronizers block the

receiver’s registers from reading CDC signal values when they are not stable.

Therefore, the receiver register’s outputs cannot enter a metastable state. For example,

an ad hoc synchronizer can use specific logic to control the load enable signal of the

receiver register, or software might control the loading of a circuit’s configuration

registers.

For control signals (i.e. scalar signals) synchronizers, the two D-flip-flop (2DFF) is

commonly used. An example for 2DFF synchronizer is shown in Figure 4.11, it is the

most widely used synchronizer for scalar CDC control signals. In Figure 4.11, if the

first register (R1) enters a metastable state, it almost always settles to 1 or 0 before the

second register (R2) reads its output (q1). There exist various structured synchronizers,

such as the 3DFF synchronizer, 2DFF synchronizer with a pulse (pulse synchronizer),

and 4-latch synchronizer.

59

Figure 4.11: 2DFF synchronizer

The connection rules of the 2DFF synchronizers re as follows:

1) No glitches in the path of cdc_s

2) No combinational logic is permitted the path of int_s

3) The cdc_s signal must be held stable by the transmit clock domain logic for at

least the following:

𝑝𝑒𝑟𝑖𝑜𝑑𝑟𝑥_𝑐𝑙𝑘 + 𝑡𝑠𝑒𝑡𝑢𝑝 + 𝑡ℎ𝑜𝑙𝑑 + 𝑡max _𝑠𝑘𝑒𝑤

Another example for the 2DFF synchronizer is shown in Figure 4.12.

Figure 4.12: 2DFF synchronizer in operation [23]

2DFF synchronizers are adequate for synchronizing CDC control signals, but not

data vectors (i.e. buses). Control signal synchronization does not ensure that correlated

bits of a bus are transmitted together, since variable delays on any bit of the bus corrupt

60

the data. Data vector synchronizers (i.e. bus synchronizers) ensure that all bits of the

bus are transmitted together and prevents the corruption of data. FIFO, DMUX, and

handshake synchronization schemes are used to synchronize vector CDC data using

different logic configurations.

An example for the DMUX synchronizer is shown in Figure 4.12, the control select

signal from the TX clock domain (which is synchronized using a 2DFF synchronizer)

enables a multiplexer (MUX) when the transmitted data value is ready. Following

connection rules should be respected:

1) 2DFF synchronizer must obey CDC transfer protocol for tx_sel.

2) cdc_d must be held stable by the transmit clock domain logic while tx_sel or

rx_sel are asserting.

Figure 4.12: DMUX synchronizer

Asynchronous FIFO synchronizers can be used for sending and receiving multiple

bits between two different clock domains. The multi-bit signals can be either data bits

or control bits. An asynchronous FIFO is a dual port memory in which the data is

inserted from the write clock domain and data is removed from the read clock domain.

Since both transmitter and receiver operate within their own respective clock domains,

using a dual-port buffer, such as a FIFO, is a safe way to pass multi-bit values between

clock domains. An example for the asynchronous FIFO synchronizer is shown in figure

4.13. As long as the FIFO is not full, the data or control words can be inserted into the

FIFO, and the receiver can read a control or data word from the FIFO as long as it is

not empty. The operation of the asynchronous FIFO synchronizer is described in details

in [49], its detailed structure us shown in Figure 4.14.

Figure 4.13: FIFO synchronizer

61

Figure 4.14: FIFO synchronizer detailed structure

4.4. CDC Verification Flow for DRS Designs

The proposed CDC Verification flow is shown in Figure 4.15.

Figure 4.15: Proposed flow for CDC verification

62

A Perl utility is implemented to automate the flow. The inputs for the utility are 1) RTL

files of RMs modes, 2) RTL wrapper for DRS design and 3) Comma Separated Values

(CSV) file to define the configuration modes of the design. In a typical DPR design

flow, the RTL files of the RMs modes and the wrapper of the DRS design should be

provided by the designer, so there is no extra effort needed for the creation of these files

to use the proposed CDC verification flow. Following is an example for Verilog RTL

code which defines two modes of the RM (ModuleA) in Figure 4.1:

module ModuleA_mode1 (input wire in1 , in2 , a_rst , clk1 ,output reg out1) ; 1
always @(posedge clk1 , posedge a _ r s t) 2
begin 3
 if (a_rst) out1 <= 1 ’ b0 ; 4
 else out1 <= in1 | in2 ; 5
end 6
endmodule 7
 8
module ModuleA_mode2 (input wire in1 , in2 , a_rst , clk1 , output reg out1) ; 9
always @(posedge clk1 , posedge a _ r s t) 10
begin 11
 i f (a_rst) out1 <= 1 ’ b0 ; 12
 e l s e out1 <= in1 & in2 ; 13
end 14
endmodule15

The following Verilog RTL mode shows an example for the wrapper of the DPR design

example in Figure 4.1:

module RR1(input wire in1 , in2 , a _ r s t , clk1 , output out1) ; 1

/ / Empty . A mode for ModuleA will be instantiated here 2

endmodule 3

 4

module RR2(input wire in1 , in2 , a _ r s t , clk1 , output out1) ; 5

/ / Empty . A mode for ModuleB will be instantiated here 6

endmodule 7

 8

module RR3(input wire in1 , in2 , a _ r s t , clk1 , output out1) ; 9

/ / Empty . A mode for ModuleC will be instantiated here 10

endmodule 11

 12

module RR4(input wire in1 , in2 , a _ r s t , clk1 , output out1) ; 13

/ / Empty . A mode for ModuleD will be instantiated here 14

endmodule 15

 16

module DRS1 (input wire in1 , in2 , in3 , in4 , in5 , 17

 a_rst , clk1 , clk2 , output wire out1) ; 18

wire A_out1 , B_out1 , C_out1 , D_out1 ; 19

RR1 ModuleA_inst (in1 , in2 , a _ r s t , clk1 , A_out1) ; 20

63

RR2 ModuleB_inst (in3 , A_out1 , clk1 , B_out1) ; 21

RR3 ModuleC_inst (in4 , B_out1 , clk2 , C_out1) ; 22

RR4 ModuleD_inst (in5 , C_out1 , clk2 , D_out1) ; 23

assign out1 = D_out1 ; 24

endmodule25

The above code for the RTL wrapper is a placeholder for the DRS design. In each

operating mode of the design, there will be a module instantiated inside each RR

module, as an example for the DRS design in Figure 4.1, in the first mode (Config1) of

the design, the module ModuleA_mode1 will be instantiated inside the module of RR1,

the module ModuleB_Mode1 will be instantiated inside the module of RR2, the module

ModuleC_Mode1 will be instantiated inside the module of RR3, and the module

ModuleD_Mode1 will be instantiated inside the module of RR4. The CSV file is needed

to define the configuration modes of the design, so that the utility can know how many

RRs in the design and what are the RMs mapped to a specific RR. The following CSV

file is an example for the DPR design in Figure 4.1:
1

RR , RR1 1
RR , RR2 2
RR , RR3 3
RR , RR4 4
RM , ModuleA , {ModuleA_Mode1 , ModuleA_Mod2 , ModuleA_Mode3 , 5
 ModuleA_Mode4} 6
RM , ModuleB , {ModuleB_Mode1 , ModuleB_Mod2 , ModuleB_Mode3 , 7
 ModuleB_Mode4} 8
RM , ModuleC , {ModuleC_Mode1 , ModuleC_Mod2 , ModuleC_Mode3 , 9
 ModuleC_Mode4} 10
RM , ModuleD , {ModuleD_Mode1 , ModuleD_Mod2 , ModuleD_Mode3 , 11
 ModuleD_Mode4} 12
ConfigMode , Config1 , {{RR1 , ModuleA_Mode1} , {RR2 , ModuleB_Mode1} 13
 , {RR3 , ModuleC_Mode1} , {RR4 , ModuleD_Mode1}} 14
ConfigMode , Config2 , {{RR1 , ModuleA_Mode2} , {RR2 , ModuleB_Mode2} 15
 , {RR3 , ModuleC_Mode2} , {RR4 , ModuleD_Mode2}} 16
ConfigMode , Config3 , {{RR1 , ModuleA_Mode3} , {RR2 , ModuleB_Mode3} 17
 , {RR3 , ModuleC_Mode3} , {RR4 , ModuleD_Mode2}} 18
ConfigMode , Config4 , {{RR1 , ModuleA_Mode4} , {RR2 , ModuleB_Mode4} 19
 , {RR3 , ModuleC_Mode4} , {RR4 , ModuleD_Mode4}} 20
ConfigMode , Config5 , {{RR1 , ModuleA_Mode1} , {RR2 , ModuleB_Mode2} 21

 , {RR3 , ModuleC_Mode3} , {RR4 , ModuleD_Mode4}}22

The words RR, RM and ConfigMode are reserved words, they are used to define an

RR, RM and a configuration mode for the DRS design respectively.

The first step performed by the utility is a sanity check for the interfaces of the

modes of the same RM, for DPR flow it is required to have the same number of ports

for the RM modes. The sizes and names of these ports should be the same across the

modes of the same RM. For Xilinx [7] tools, if this requirement is violated, the

implementation of the DPR flow will fail in the place & route step, which is late in the

design cycle. In the proposed Perl utility, the sanity check for interfaces is done to catch

any errors as early as possible. The Perl code in Appendix B.1 is used to the check the

RMs’ ports.

64

The second step is to pick one configuration mode of the DRS design and generate an

RTL file for this mode. Following is an example for the generated Verilog RTL file for

configuration mode (Config1) in the DPR example in Figure 4.1:

module RR1 (input wire in1 , in2 , a _ rst , clk1 , output out1) ; 1

ModuleA_mode1 ModA_1_inst (in1 , in2 , a _ r s t , clk1 , out1) ; 2

endmodule 3

 4

module RR2 (input wire in1 , in2 , a _ r s t , clk1 , output out1) ; 5

ModuleB_mode1 ModB_1_inst (in1 , in2 , a _ r s t , clk1 , out1) ; 6

endmodule 7

 8

module RR3 (input wire in1 , in2 , a _ r s t , clk1 , output out1) ; 9

ModuleC_mode1 ModC_1_inst (in1 , in2 , a _ r s t , clk1 , out1) ; 10

endmodule 11

 12

module RR4 (input wire in1 , in2 , a _ r s t , clk1 , output out1) ; 13

ModuleD_mode1 ModD_1_inst (in1 , in2 , a _ r s t , clk1 , out1) ; 14

endmodule 15

 16

module DRS1 (input wire in1 , in2 , in3 , in4 , in5 , 17

 a _ rst , clk1 , clk2 , output wire out1) ; 18

wire A_out1 , B_out1 , C_out1 , D_out1 ; 19

RR1 ModuleA_inst (in1 , in2 , a _ rst , clk1 , A_out1) ; 20

RR2 ModuleB_inst (in3 , A_out1 , clk1 , B_out1) ; 21

RR3 ModuleC_inst (in4 , B_out1 , clk2 , C_out1) ; 22

RR4 ModuleD_inst (in5 , C_out1 , clk2 , D_out1) ; 23

assign out1 = D_out1 ; 24

endmodule25

The third step is to generate the CDC analysis run script, the generated script is written

to be run by Questa CDC tool from Mentor Graphics to perform the CDC analysis on

the design. The implemented Perl utility performs some heuristics based on the port

names of the DRS design to constrain the design, as an example it defines the ports

match (clk) regular expression as clocks. Similarly, it defines the ports that match (rst)

regular expression as resets, and define scan enable and test signals as constants.

Following is an example for the generated script to run CDC analysis on configuration

mode (Config1) in the DPR example in Figure 4.1:

65

The fourth step is to run CDC analysis using Questa CDC tool, and save the

results. The Perl utility then repeats the first four steps for all the configuration modes

of the design. The fifth step is to generate a report for the CDC analysis of DRS design.

Following is a sample of the output report for the DRS in Figure 4.1:

4.5. Case Study

The value of using the proposed CDC Verification flow is demonstrated by a case

study of the SDR system presented in [45,46]. This SDR system is implemented using

the DPR flow, it switches between blocks of communication standards 3G, 4G and

WIFI. The SDR test case has four reconfigurable modules: 1) convolutional encoder, 2)

modulator, 3) Discrete Fourier Transform (DFT), and 4) Inverse Fast Fourier

Transform (IFFT). Table 4.1 shows the number of modes per each block.

Table 4.1: Number of modes per each RM of the design under test

Block Number of Modes

Convolutional Encoder 4
Modulator 3
DFT 2
IFFT 2

CDC Results for Mode: Config1

--

 A) Synchronized CDC Paths:

 <None>

 B) Un-synchronized CDC Paths:

 1) From 'ModuleB_inst.ModB_1_inst.out1' (clk1)

 To 'ModuleC_inst.ModC_1_inst.out1' (clk2)
...

66

The block diagram and the schematic of the SDR design are shown in Figure 4.16 and

Figure 4.17 respectively. The design has two clocks, the first clock (clk) is used for the

channel encoder, while the other clock (clk2) is used for the rest of the blocks. It also

has one asynchronous reset signal (reset).

Figure 4.16: Block diagram of the SDR case study

Figure 4.17: Schematic of the SDR case study

67

The following CSV is provided to the utility for the configuration modes of the design

with the RTL files of the reconfigurable modules as explained in the previous section:

RR , encoder 1

RR , modulator 2
RR , dft 3
RR , ifft 4
RM , conv_enc , {enc_3G_half , enc_3G_third , enc_WIFI_half , 5
enc_4G_third} 6
RM , modulator , {bpsk , qpsk , qam_16} 7
RM , dft , {dft_64_point , filler_mod} 8
RM , ifft , {ifft_64 , ifft_256 , filler_mod} 9

ConfigMode , Config1 , {{encoder , enc_3G_half} , {modulator , bpsk} , 10
 {dft , filler_mod} , {ifft , filler_mod}} 11
ConfigMode , Config2 , {{encoder , enc_3G_half} , {modulator , qpsk} , 12
 {dft , filler_mod} , {ifft , filler_mod}} 13

ConfigMode , Config3 , {{encoder , enc_3G_half} , {modulator , qam_16} , 14
 {dft , filler_mod} , {ifft , filler_mod}} 15

ConfigMode , Config4 , {{encoder , enc_3G_third} , {modulator , bpsk} , 16
 {dft , filler_mod} , {ifft , filler_mod}} 17

ConfigMode , Config5 , {{encoder , enc_3G_third} , {modulator , qpsk} , 18

 {dft , filler_mod} , {ifft , filler_mod}} 19

ConfigMode , Config6 , {{encoder , enc_3G_third} , {modulator , qam_16} , 20
 {dft , filler_mod} , {ifft , filler_mod}} 21

ConfigMode , Config7 , {{encoder , enc_WIFI_half} , {modulator , bpsk} , 22
 {dft , filler_mod} , {ifft , filler_mod}} 23
ConfigMode , Config8 , {{encoder , enc_WIFI_half} , {modulator , qpsk} , 24

 {dft , filler_mod} , {ifft , filler_mod}} 25
ConfigMode , Config9 , {{encoder , enc_WIFI_half} , {modulator , qam_16} , 26

 {dft , filler_mod} , {ifft , filler_mod}} 27
ConfigMode , Config10 , {{encoder , enc_4G_third} , {modulator , bpsk} , 28
 {dft , dft_64} , {ifft , ifft_256}} 29

ConfigMode , Config11 , {{encoder , enc_4G_third} , {modulator , qpsk} , 30
 {dft , dft_64} , {ifft , ifft_256}} 31
ConfigMode , Config12 , {{encoder , enc_4G_third} , {modulator , qam_16} , 32

 {dft , dft_64} , {ifft , ifft_256}}33

The Perl utility generates RTL design for every mode and a script to run Questa CDC

tool for CDC verification, the tool then generates a report for the CDC results for all the

runs of the modes of the design.

Using the proposed CDC verification flow, it has identified two CDC errors in all

the 12 modes of the design that may cause functional errors during the operation of the

system. The first error is found for the signals that are generated in clock domain of

(clk) inside the convolutional encoder block and sampled in clock domain of (clk2)

inside the modulator block. The modulator block’s design was missing synchronizing

68

these CDC signals to clock domain of (clk2) which may cause metastability issues for

the registers in the modulator block.

The second error shows up due to the usage of an asynchronous reset signal (reset).

The asynchronous reset signal was used without being synchronized to the clock

domains of (clk) and (clk2). This may cause metastability issues for the registers in the

design, because an asynchronous reset signal will be de-asserted asynchronous to the

clock signal of the register, so it may violate the reset recovery time requirement for the

register. Recovery time is the “minimum required time to the next active clock edge

after the reset is released”. The Questa CDC results for one of the 4G modes of the

design are shown in Figure 4.19, the first two violations are related to the first CDC

error (i.e. signals cross from encoder to the modulator), while the other 14 violations

are related to the second CDC error (i.e. missing synchronization of the asynchronous

reset). The schematic of the first CDC error is shown in Figure 4.18. The design has to

be fixed by using CDC data synchronizers for the crossing signals, and an

asynchronous reset synchronizer for the (reset) signal. The proposed approach can be

used again to verify the design after the design is fixed to make sure no more issues

CDC issues exist in the design.

Figure 4.18: Schematic of the first CDC violation in the design

4.6. Summary

CDC verification for digital designs is essential due to the usage of multiple clock

domains in the recent designs. The CDC verification for DRS designs is a challenging

task due to the lack of CAD tools support for DRS designs and the multiple operating

modes of the design. In this chapter a complete automated flow for CDC verification is

presented for DRS designs. Designers can use this flow with no extra effort to create

the new setup for CDC verification, and it can be easily integrated into the design and

verification cycle of DRS designs. The CDC verification should be done before moving

to implement the design on the FPGA, as any error caught during CDC verification will

force the designs to restart the implementation cycle after fixing the CDC errors in the

design. Using a case study from literature, it demonstrated how the proposed CDC

verification flow identifies a couple of real CDC errors in the design which were

overlooked during the design cycle. In the next chapter, a new methodolody for

debugging on FPGAs is proposed, the methodology is utilizing DPR.

69

Figure 4.19: CDC results from Questa CDC tool for one of the 4G configuration modes of the design

70

Chapter 5 : Utilizing Dynamic Partial Reconfiguration to

Reduce the Cost of FPGA Debugging

Debugging of FPGAs is a difficult task due to the limited access to the internal

signals of the design. Embedded logic analyzers enhance the signal observability for

FPGAs. These analyzers are implemented on the FPGA resources and they use the

embedded memory blocks as trace buffers, so a limited number of signals can be

observed using these analyzers due to resources constraints. Changing the traced set of

signals requires re-synthesis, placement and routing of the whole design. In this

chapter, a new methodology for FPGA debugging is proposed to change dynamically

the set of signals to be observed at runtime, and consequently, minimize the time

required for debugging. The proposed methodology utilizes the DPR technique to

dynamically switch between different sets of signals. DPR creates a reconfigurable

module to route each set of signals to an embedded logic analyzer. The proposed

approach is demonstrated using Xilinx FPGA tools, finding that changing the set of

signals to be observed requires only a few milli-seconds to re-program the

reconfigurable region. The area overhead of the proposed methodology is lower than

other traditional methods of using multiplexers as the DPR allows the routing module

to only use buffers to connect a set of signals to the embedded logic analyzer.

5.1. Introduction

Verification is one of the most challenging tasks in the Integrated Circuits (ICs)

development process. Any uncaught bugs or errors during the design and verification

phases can cause re-spins for silicon IC. Studies revealed that about half of designer's

effort is spent on functional verification [34]. With the increased complexity and size of

the designs, traditional functional verification methodologies such as RTL simulation

are no longer sufficient to uncover bugs and errors in the design because some real-

world interactions only show up when implemented on hardware. The simulation also

runs at lower speeds than real hardware execution [35,36] which makes the thorough

analysis of large designs infeasible.

Reconfigurability of FPGAs attracts designers to do prototyping for their systems.

FPGAs can run at higher speeds than that of simulation, and will catch bugs and errors

that cannot be caught in simulation such as system timing issues. Debugging design and

system integration issues on FPGAs is a difficult task due to the limited access to

internal signals, the designer can only observe the signals connected to the FPGA

output pins. Embedded logic analyzers are used to provide visibility for internal signals

inside the FPGA [37,38,39]. These analyzers are implemented on the FPGA resources,

they use embedded memory blocks as trace buffers. Designers use the Joint Test Action

Group (JTAG) port to access the analyzer, and the recorded data can be replayed on a

Personal Computer (PC). The traditional design and debug flow for FPGAs is shown in

Figure 5.1.

71

 The major disadvantage of using embedded logic analyzers is that the observed

signals that are connected to the trace buffer of the embedded logic analyzer are

selected before the user design is synthesized, placed and routed. In order to change the

set of observed signals, it will require the recompilation of the FPGA design flow. Also,

the debug circuitry added in the design consumes a part of the FPGA resources, so the

Design Under Test (DUT) may no longer fit in the FPGA device. The amount of

resources required for debugging is directly proportional to the number of selected

signals to be observed.

DPR on FPGAs permits a portion of the logic to be reconfigured at runtime while

the other remaining logic keeps operating. It allows the implementation of complex

designs that have multiple operating modes such as SDR applications within a

reasonable area on the FPGA. In DPR, the design consists of a number of

Reconfigurable Modules (RMs), each module has a number of modes that are swapped

at runtime according to the system operating modes. A Reconfigurable Region (RR) is

a location on the FPGA in which the reconfigurable module is allocated on. An

example for DPR system is shown in Figure 5.2, it has five configuration modes:

Config1, Config2, Config3, Config4 and Config5. Each configuration has four

reconfigurable modules: ModuleA, ModuleB, ModuleC and ModuleD, each with four

modes: Mode1, Mode2, Mode3 and Mode4. DPR extends the design flexibility through

mapping of multiple reconfigurable modules to the same physical reconfigurable

Figure 5.1: Design and debugging flow for FPGAs

72

region, which reduces the design cost and the resource usage. In the example of Figure

5.2, the design will have 4 RRs on the FPGA, each RR is used for a unique RM.

Figure 5.2: An example of DPR design with five modes of configuration and four

reconfigurable modules per configuration

The approach proposed in this chapter utilizes DPR on FPGAs to alleviate the

issues of using embedded logic analyzers by 1) dividing the large number of all

potential signals for debugging Nsigs into number of small signals sets Nsets (equals

Nsigs/Nprobes), 2) defining one Reconfigurable Module (RM) in the design, the

number of modes for this RM is Nmodes (equals Nsigs/Nprobes), where Nprobes is the

number of probes of the embedded logic analyzer. For every mode of the RM, a set of

signals is connected to the probes of the embedded logic analyzer. The methodology

can be extended to use the output pins of the FPGA for observing the selected signals

instead of the embedded logic analyzer, by connecting the outputs of the RM to the

output pins of the FPGA, in that case the number of modes (or signals sets) will be

equal to the number of signals divided by the number of available output pins for

debugging Nsigs/Nopins.

The changes in the connections of the signals sets to the analyzer are done at

runtime. So, the proposed methodology avoids the recompilation of the whole FPGA

flow by changing the observed signals during runtime. Also, it controls the size of the

logic analyzer by controlling the number of its probes Nprobes without affecting the

observability of potential debugging signals, as they are still observable by changing

the mode of the RM at runtime. For large designs which need most of the FPGA

73

resources, designers need to keep the number of the analyzer's probes as minimum as

possible to limit the size of the analyzer.

5.2. Related Work

Several works have proposed techniques to enhance the debugging of FPGAs using

scan-based or trace-based techniques. In [40] a scan-based technique is proposed to

connect all the FFs in sequence by using the soft-logic of the FPGA. This technique has

a high area overhead due to the usage of the soft-logic to implement the scan-chains in

the design.

A bitstream modification technique is presented in [41] to modify the bitstreams

within tens of seconds to minutes. This can reduce the time spent in debugging the

design, and decrease design's time to market. But, when the selected set of signals for

tracing is changed, re-routing needs to be performed which can significantly affect the

design's time to market. Software-like debug features are presented in [42] such as

watch-points and break-points to enhance debug capability in reconfigurable platforms.

But, any change in watch-points or breakpoints needs recompilation of designs.

In [43], a new methodology is proposed to permit a large number of internal

signals to be traced for an arbitrary number of clock cycles using a limited number of

external pins. It operates without the need for iterative executions of the design re-

synthesis, placement and routing tools. This is achieved by inserting a Multiplexer

(MUX) into the design implemented on the FPGA, with the MUX inputs are all the

signals that designer potentially needs to trace. Then, the select signals of the MUX are

controlled by manipulating the bitstream of the design to select different signals to be

traced. The disadvantage of this methodology is the area overhead of the MUX, and the

need to re-program the whole FPGA for any change in the selected signals to be traced.

5.3. An Approach For FPGA Debugging Using Dynamic Partial

Reconfiguration

This section presents a new approach to enhance the observability of FPGA

designs for debugging. The traditional debugging flow for FPGA designs is shown in

Figure 5.1, the design is synthesized, placed and routed on the target FPGA, then the

generated bitstream is used to program the FPGA. During the testing, if an issue is

caught, a set of signals is selected to be observed by an embedded logic analyzer, or by

routing them to the available output pins. In that case, the designer needs to repeat the

FPGA design flow from synthesis to FPGA programming which is time-consuming.

Additionally, observing a large number of signals is not feasible in the traditional

debugging flow because of the limited resources of the FPGA either for the memory

blocks and look-up tables (LUTs) in case of the embedded logic analyzer, or for the

output pins in case these pins are used for debugging. This forces the designer to repeat

the FPGA design flow multiple times in order to observe different sets of signals to

debug different faulty scenarios. For the rest of this chapter, it is assumed that an

embedded logic analyzer is being used for debugging for simplicity, the proposed

approach and the results presented are still applicable for using the output pins for

74

debugging, the only difference is to replace the number of analyzer's probes by the

number of the output pins available for debugging.

A new approach for FPGA debugging is presented in this chapter to overcome the

limitations of the traditional FPGA debugging flow. This approach allows the designer

to switch between the signals at runtime without the need to repeat the FPGA design

flow. This is achieved by inserting a Reconfigurable Module (RM) in the design to

switch between the signals to be observed. This RM is implemented on a

Reconfigurable Region (RR) on the FPGA. All the potential signals to be observed are

connected as inputs to this module. The outputs of the RM are connected to the

embedded logic analyzer or the debug output pins. Figure 5.3 shows the connections of

the RM. Depending on the available resources on the FPGA, the number of modes of

the RM is decided. For a number of signals to be observed Nsigs and number of probes

Nprobes for the embedded logic analyzer, the number of modes of the RM is

Nsigs/Nprobes.

Figure 5.3: Reconfigurable module to connect the set of signals to the embedded

logic analyzer probes

75

For each mode of the RM, a set of signals is connected to the probes of the

embedded logic analyzer. So, in each mode a, subset of the signals will be used while

the others will not be used at all. This allows to keep the unused subset of the signals

unconnected. Hence, for each mode, a set of signals is routed to the output while the

others remain unconnected, so buffers only will be used to do this connection, and

LUTs of the FPGA will not be used. This is a major advantage for using this approach

because the area will be as minimum as possible when compared with other approaches

that use MUXes to switch between the signals sets such as the proposed approach in

[43].

An example for 4-inputs and 2-outputs case is shown in Figure 5.4, the RM will

have two modes of operation, the first mode of operation is to connect the first two

input signals to the outputs, and the second mode of operation is to connect the second

two inputs signals to the outputs. Figure 5.5 shows an example for the case of 8-inputs

and 2-output, the RM will have 4 modes of operation, each mode of these four modes

will connect a different two inputs signals to the outputs. Figure 5.6 shows an example

for the case of 8-inputs and 4-outputs, the RM will have two modes of operation, the

first mode of operation is to connect the first four input signals to the outputs, and the

second mode of operation is to connect the second four input signals to the outputs. The

same synthesis will be applied on other cases which have a higher number of inputs to

the RM, i.e. in all the operating modes of the RM, it is sufficient to use 1-input LUTs to

act alike buffers to connect the inputs of the RM to the outputs.

Figure 5.4: Synthesis of the modes of the RM for 4-inputs and 2-outputs case.

76

Figure 5.5: Synthesis of the modes of the RM for 8-inputs and 2-outputs case.

Figure 5.6: Synthesis of the modes of the RM for 8-inputs and 4-outputs case.

77

For each mode, a partial bitstream is generated and it will be used to re-program

the RR at runtime. Partial bitstreams are generated during the DPR design flow and are

saved into an external memory. The reconfigurable region size is affecting the size of

the partial bitstream in a directly proportional relationship [7]. Since the area consumed

by each mode of the RM is very small because it only uses buffers, the size of the

partial bitstream will be small, and consequently, the reconfiguration will require a few

milli-seconds to re-program the RR. The small reconfiguration time is a major

advantage for the proposed approach in this work when compared with the traditional

FPGA debugging flow as it avoids re-compilation, and also when compared with other

approaches which do modifications in the bitstream then re-program the whole FPGA

as in [43]. The proposed FPGA debugging flow is shown in Figure 5.7.

Figure 5.7: Proposed FPGA debugging flow.

In order to generate multiple designs to evaluate the performance of the proposed

mechanism, the Perl code in Appendix B.2 is implemented to generate RTL designs

and run scripts for Vivado.

1

78

The following RTL Verilog file is showing one of the generated designs using the

script, it is for the trace setting of 128-16 (i.e. 128 signals to be traced in total, and only

16 of them are traced concurrently), the file in Appendix B.3 is used as a test case for

debugging using MUX’es to compare it with the behavior of the proposed debugging

flow using DPR.

When using DPR instead of the MUXes for debugging, the ila_mux module is replaced

by the modes of the RM, below is an example of the first mode (out of 8 modes) for the

128-16 trace settings (i.e. 128 signals to be traced in total, and only 16 of them are

traced concurrently).

module ila_mux (in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , in9 , in10 , in11 , in12 , in13 , in14 , in15 1
, in16 , in17 , in18 , in19 , in20 , in21 , in22 , in23 , in24 , in25 , in26 , in27 , in28 , in29 , in30 , 2
in31 , in32 , in33 , in34 , in35 , in36 , in37 , in38 , in39 , in40 , in41 , in42 , in43 , in44 , in45 , in46 3
, in47 , in48 , in49 , in50 , in51 , in52 , in53 , in54 , in55 , in56 , in57 , in58 , in59 , in60 , in61 , 4
in62 , in63 , in64 , in65 , in66 , in67 , in68 , in69 , in70 , in71 , in72 , in73 , in74 , in75 , in76 , in77 5
, in78 , in79 , in80 , in81 , in82 , in83 , in84 , in85 , in86 , in87 , in88 , in89 , in90 , in91 , in92 , 6
in93 , in94 , in95 , in96 , in97 , in98 , in99 , in100 , in101 , in102 , in103 , in104 , in105 , in106 , 7
in107 , in108 , in109 , in110 , in111 , in112 , in113 , in114 , in115 , in116 , in117 , in118 , in119 , 8
in120 , in121 , in122 , in123 , in124 , in125 , in126 , in127 , in128 , out1 , out2 , out3 , out4 , out5 , 9
out6 , out7 , out8 , out9 , out10 , out11 , out12 , out13 , out14 , out15 , out16) ; 10

 // Parameters 11
 parameter DATA_WIDTH = 1 ; 12
 // I/O ports 13
 input [DATA_WIDTH - 1 : 0] in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , in9 , in10 , in11 , 14

in12 , in13 , in14 , in15 , in16 , in17 , in18 , in19 , in20 , in21 , in22 , in23 , in24 , in25 , in26 , in27 15
, in28 , in29 , in30 , in31 , in32 , in33 , in34 , in35 , in36 , in37 , in38 , in39 , in40 , in41 , in42 , 16
in43 , in44 , in45 , in46 , in47 , in48 , in49 , in50 , in51 , in52 , in53 , in54 , in55 , in56 , in57 , in58 17
, in59 , in60 , in61 , in62 , in63 , in64 , in65 , in66 , in67 , in68 , in69 , in70 , in71 , in72 , in73 , 18
in74 , in75 , in76 , in77 , in78 , in79 , in80 , in81 , in82 , in83 , in84 , in85 , in86 , in87 , in88 , in89 19
, in90 , in91 , in92 , in93 , in94 , in95 , in96 , in97 , in98 , in99 , in100 , in101 , in102 , in103 , in104 20
, in105 , in106 , in107 , in108 , in109 , in110 , in111 , in112 , in113 , in114 , in115 , in116 , in117 , 21
in118 , in119 , in120 , in121 , in122 , in123 , in124 , in125 , in126 , in127 , in128 ; 22

 output wire [DATA_WIDTH - 1 : 0] out1 , out2 , out3 , out4 , out5 , out6 , out7 , out8 , out9 23
, out10 , out11 , out12 , out13 , out14 , out15 , out16 ; 24

 // Logic 25
 assign out1 = ~in1 ; 26
 assign out2 = ~in9 ; 27
 assign out3 = ~in17 ; 28
 assign out4 = ~in25 ; 29
 assign out5 = ~in33 ; 30
 assign out6 = ~in41 ; 31
 assign out7 = ~in49 ; 32
 assign out8 = ~in57 ; 33
 assign out9 = ~in65 ; 34
 assign out10 = ~in73 ; 35
 assign out11 = ~in81 ; 36
 assign out12 = ~in89 ; 37
 assign out13 = ~in97 ; 38
 assign out14 = ~in105 ; 39
 assign out15 = ~in113 ; 40
 assign out16 = ~in121 ; 41

endmodule 42

1

79

5.4. Experimental Results

The experiment aims to study the utilization of DPR to minimize the cost of FPGA

debugging in terms of area overhead of the reconfigurable module, time of

reconfiguration (i.e. time needed to switch between different sets of traced signals), and

the usability of the FPGA debugging flow.

 System Implementation and Setup

The experimentation is carried out using Xilinx Zynq XC7Z020LG484-1 FPGA

and tested with a ZC702 board [44]. The DPR flow has been carried out using Xilinx

Vivado tool. The complete system is developed as shown in Figure 5.8. The Zynq

FPGA device consists of two parts: i) The Programmable Logic (PL) and ii) The

Processing System (PS) part. The PL part contains: 1) the Design Under Test (DUT)

that is used as a test case to evaluate the proposed FPGA debugging flow, 2) The

reconfigurable partition region which is used to host the reconfigurable module modes

of the debugging interfaces, 3) The embedded logic analyzer (Xilinx Integrated Logic

Analyzer (ILA)) is used to capture the observed signals and send them to an external

PC. The proposed flow can be applied using the output pins of the FPGA instead of the

embedded logic analyzer, so the interest of this section is to calculate the performance

metrics for the reconfigurable module to compare it with the area-optimized MUX

presented in [43]. The PS part contains the ARM processor and the FPGA I/O

interfaces to the external ZC702 board peripherals such as UART, SD-Card ... etc. The

PS unit is connected with the PL part via AXI bus interfaces. The PS unit is used to

send control signals to the DUT and the ILA. The DPR process is done using the serial

JTAG external configuration port to load the partial bitstreams of the debugging modes

interfaces from an external PC to the FPGA configuration memory with a data rate of

66 Mb/s [7].

80

Figure 5.8: Implementation and setup of the test environment for the proposed

FPGA debugging flow.

In these experiments, the same DUT setup as in [43] is used to compare the results

of the two proposals against each other. The DUT was modified to connect the traced

signals to the proposed RM. Xilinx's attribute, keep, was used to prevent the removal of

these signals during optimization. In the following subsections, the notation, m-w,

represents the tracing setting where m signals are candidates for tracing and w signals

are traced concurrently.

 Area Overhead

The area overheads of the proposed Reconfigurable Module (RM) for 6 different

tracing settings are shown in Table 3.1. It is found that the area overhead is directly

proportional to the number of signals observed concurrently (i.e. those connected to the

embedded logic analyzer), it is not changing with the number of candidate signals for

debugging. Xilinx Vivado's place and route tool creates a partition pin for every input

port of the RM. Partition pins “are physical connections between static logic and

reconfigurable logic, they are automatically created for all Reconfigurable Partition

ports” [7]. The partition pins are implemented on the interconnect resources of the RR

on the FPGA. In the following table, the notation, m-w, represents the tracing setting

where m signals are candidates for tracing and w signals are traced concurrently.

Table 5.1: Area overhead of the RM

Trace Setting 128-2 128-4 128-8

Number of 1-input LUTs (Buffers) 2 4 8

Trace Setting 256-2 256-4 256-8

Number of 1-input LUTs (Buffers) 2 4 8

Table 5.2 reports the area overhead for the proposed structure in [43] in terms of 4-

input LUTs. This overhead is calculated by multiplying the number of Adaptive Logic

Modules (ALMs) by two, this is because each ALM in an Altera Stratix III device can

contain two 4-input LUTs [43]. The area overhead of the proposed approach is smaller

than that of [43]. This is expected because two 64:1 MUXes are needed for the 128-2

trace setting in [43], while the proposed DPR approach will only use two 1-input LUTs

for the 128-2 trace setting.

Table 5.2: Area overhead of the proposed structure in [43]

Trace Setting 128-2 128-4 128-8

Average Number of 4-input LUTs 50 50 50

Trace Setting 256-2 256-4 256-8

Average Number of 4-input LUTs 100 100 100

81

 Time for Changing the Traced Signal Set

The time needed to switch between different signals sets is equivalent to the

reconfiguration time of the RR. The reconfiguration time of the RR is calculated as:

Where treconfig is the time to switch between a traced set of signals to another, sizepbs is

the size of the partial bitstream file, and bit_ratejtag is the bit rate of the JTAG port

which is used to re-program the RR on the FPGA. For the setup considered in this

work, the bit_ratejtag is 66 Mb/s [7], and the size of the partial bitstream is ~30 KB. So,

the time to switch between a traced set of signals to another is 3.63 ms.

The time needed to cover all the signals sets is calculated as:

Where ttotal_sw is the time needed to cover all the signals sets of the candidate signals for

debugging, Nmodes is the number of modes of the RM that are implemented on the RR,

and treconfig is the time needed to reconfigure the RR as calculated in (1). Table 3.3

shows the total switching time required to trace all the signals sets.

Table 5.3: Total switching time required to trace all the signal sets

Trace Setting 128-2 128-4 128-8

Number of modes 64 32 16

Time to cover all signals sets 232.32 ms 116.16 ms 58.08 ms

Trace Setting 256-2 256-4 256-8

Number of modes 128 64 32

Time to cover all signals sets 464.64 ms 232.32 ms 116.16 ms

The switching time for the proposed debugging flow is much less than that of [43].

In [43], the bitstream should be manipulated to change the select signals of the area

optimized MUX, then the whole FPGA needs to be re-programmed. The authors of [43]

report that it takes seconds to change the traced signal set. Similarly, the switching time

of the DPR proposed flow is much faster than the switching time of the traditional

debugging flow which requires minutes for the re-compilation of the FPGA design

flow. Another advantage of the proposed flow, is that the switching of the signals sets

can be done at runtime, unlike other methodologies which require the whole FPGA to

be re-programmed.

 Recommendations for FPGA debugging

This section is proposing recommendations for selecting a methodology for FPGA

debugging. This is based on the results presented in this chapter, and results of the

related works. The recommendations are based on five metrics: 1) area overhead of the

debugging structure, 2) concurrent observability of FPGA internal signals, 3) ease of

setup, 4) compilation time of the design, and 5) switching time to change the traced

signal set. Four methodologies are considered for the recommendations: 1) DPR flow

82

for FPGA Debugging, 2) traditional FPGA debugging flow, 3) area-optimized MUX in

[43], and 4) scan-based technique in [40].

It is recommended to use the DPR flow for FPGA debugging for cases in which the

designer is interested in low area overhead, and low switching time to change the traced

signal set, because the DPR flow has very low area overhead and low switching time as

it is shown in this chapter. If the area-overhead is not a problem and full observability

and controllability is required, it is recommended to use the scan-based approach in

[40], as the scan-based approach for debugging of FPGAs [40] provides full access to

the FFs of the FPGA, and consequently, improves the controllability and observability

during the debugging process.

If the designers are interested in very low overhead in the compilation time, the

area-optimized MUX approach in [43] is recommended, as this optimized MUX

approach provides low compilation time as it doesn’t add lots of logic, the DPR flow

also doesn’t add lots of logic but it requires more time during compilation to prepare

the partial bit-streams to reconfigure the RR on the FPGA. But, when using the

optimized MUX approach [43], the designer should be able to manipulate the bitstream

of the FPGA device, which is not an easy task and it is not fully explained in [43]. The

traditional flow is recommended to be used for small designs in which a small set of

signals are needed for debugging, and there is no need to change this set of signals

during debugging, because in such cases no runtime changes are needed for the traced

signal set, and hence it doesn’t make sense to utilize one of the advanced debugging

approaches. The recommendations and comparison in this section are summarized in

Table 5.4.

Table 5.4: Recommendations for FPGA debugging flows

 DPR Area-

optimized

MUX

Traditional

Flow

Scan-based

Technique

Area overhead Very low Low No overhead Very high

Concurrent

observability

Partial Partial Partial Full

Ease of setup Easy

(DPR flow

is well

documented)

Hard (Needs

bitstream

manipulation)

Easy Easy

(FFs are

modified in the

RTL)

Compilation

time

Moderate

(Modes of

the RM are

compiled)

Low Lowest Moderate

Switching time Lowest

(Few milli-

seconds)

Low (Few

seconds)

Very high

(Minutes as it

needs

recompilation)

N/A

83

5.5. Summary

Debugging of FPGA devices is a difficult task due to the limited access to the

internal signals in the design. Traditional debugging flow requires re-compilation of the

FPGA design flow in order to change set of observed signals either through embedded

logic analyzer or output pins of the FPGA. This chapter presented a new technique to

use the DPR design flow to reduce the cost of the debugging on FPGA devices. The

new technique has a small area usage as the DPR flow allows the switching between

signals to use buffers only to wire a selected signal set to the embedded logic analyzer

or the FPGA output pins. The FPGA reconfiguration to switch the traced signal set

requires milli-seconds to program the RR on the FPGA.

84

Chapter 6 : Conclusion and Proposed Future Work

In this research, the problem of functional verification of DPR is discussed, as well

as the usage of DPR to improve the effectiveness of debugging on FPGAs. In Chapter

2, an overview is presented for the FPGA structure and technology, as well as the DPR

details and terminology. In addition, Chapter 2 discusses the advantages and

disadvantages of DPR when compared to the static FPGAs design flow.

Chapter 3 presented an overview about techniques of functional verification and

ABV, as well as how to define assertion properties for the design under test. It also

addressed the functional verification of DPR specific logic for: 1) synchronization of

reconfiguration requests when there is a computation being done by the RM, 2)

initialization of the RM after the reconfiguration process is done to make sure the RM

is set on an initial state, 3) isolation of the RMs during the reconfiguration process to

ensure that there no buggy logic values propagate to the static logic from the RM

outputs during the reconfiguration process, and 4) verification of the RM connections

to make sure that these connections are not altered when translating the design to utilize

the DPR technique. This DPR logic is verified using Assertion Based Verification

(ABV) by modeling its functionality using System Verilog Assertion (SVA) properties,

then instrument the design with these properties. Following that, these properties are

using simulation or formal methods to check the correctness of the DPR logic. The

presented framework is demonstrated on a case study from literature. 96 assertions

were used to verify the DPR logic of the case study, and 3 functional bugs have been

identified in the design which highlights the power of the proposed framework.

Chapter 4 presented an overview about the CDC problem in digital design, and

how asynchronous clocks can cause flip-flops to enter a metastable state. After that, it

presented the concept of clock domains in digital designs, and the common

synchronizers structure that are used to avoid metastability issues. The chapter then

presented a flow for performing CDC verification for designs that utilize DPR

technique. The presented flow solves the issues of the lack of CAD tools that support

DRS. The flow is demonstrated on a case study from literature, and 2 CDC issues have

been identified in the designs, these issues should be fixed to avoid metastability issues

in the design.

Chapter 5 presented the problem of FPGA debugging due to the limited resources

available on the FPGA which prevent the designer to trace all the candidate signals for

debugging, and also because of the limited observability and controllability of the

internal signals in the design. This chapter proposed the usage of DPR in the problem

of FPGA debugging to minimize the resources usage of the added circuitry as well as

minimizing the time needed to switch between the traced signal sets for debugging. The

proposal involves usage of one RM in the design to multiplex between the candidate

signals for debugging at runtime, and since the RM only creates connections between

outputs and inputs, the area usage of the RM is minimum as the design will only need

1-input LUTs to connect one input to one output. The proposal is evaluated and

compared to a framework which uses a MUX to switch between the different signals

85

for debugging. The proposed approach saved 80% of the area overhead when compared

to MUX-based approach. The FPGA reconfiguration to switch the traced signal set

requires milli-seconds to program the RR on the FPGA.

6.1. Proposals for Future Work

1. Exploring new functional verification areas for DPR such as power-aware

verification and runtime verification

2. Investigate the synthesis of assertion properties defined for DPR logic on the

FPGA to help with the debugging process and the run-time verification of the

circuit

3. Implementing and developing CAD tools to help with the design and

verification process for DPR

86

References

1. International Roadmap Commitee, “The International Technology Roadmap for

Semiconductors”, 2012. [online]. Available: http://www.itrs.net/reports.html

2. Xilinx Inc., “Xilinx Corporate Overview”, 2013. [online]. Available:

http://www.xilinx.com/aboutus/corporate_overview.pdf

3. Altera Corporation, “Arria V Device Handbook”, 2013). [online]. Available:

http://www.altera.com/literature/lit-arria-v.jsp

4. Xilinx Inc., “Zynq-7000 All Programmable SoC Technical Reference Manual

UG585”, 2016.

5. B. Lewis and G. Ramamoorthy, “Market Trends: Worldwide, ASIC and ASSP

Design Starts Continue Declining Trend”, 2012. [online]. Available:

http://www.gartner.com/DisplayDocument?doc_cd=229088&ref=nl

6. M.J. Wirthlin and B.L. Hutchings, “Improving functional density using run-time

circuit reconfiguration”, in IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.

6, no. 2, pp. 247-256, 1998.

7. Xilinx Inc., “Partial Reconfiguration User Guide UG909”, 2016.

8. P. Sedcole, B. Blodget, J. Anderson, P. Lysaght and T. Becker, “Modular partial

reconfiguration in Virtex FPGAs”, in International Conference on Field-

Programmable Logic and Applications (FPL), pp. 211-216, 2005.

9. S. Yusuf, W. Luk, M. Sloman, N. Dulay, E.C. Lupu and G. Brown,

“Reconfigurable architecture for network flow analysis”, in IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., pp. 57-65, 2008.

10. R. Tessier, K. Pocek and A. DeHon, “Reconfigurable Computing Architectures”, in

Proceedings of the IEEE, vol. 103, no. 3, pp. 332-354, 2015.

11. S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First Thirty

Years of FPGA Technology”, Proceedings of the IEEE, vol. 103, no. 3, pp. 318-

331, 2015.

12. J. Delahaye, G. Gogniat, C. Roland and P. Bomel, “Software radio and dynamic

reconfiguration on a DSP/FPGA platform”, in Frequenz, vol. 58, no.5, pp. 152-159,

2003.

13. Xilinx Inc., “ISE In-Depth Tutorial (UG695)”, 2010.

14. IEEE Standard 1666-2011: SystemC Language Reference Manual, 2012

15. Xilinx Inc., “Vivado Design Suite Tutorial – High-Level Synthesis (UG871)”,

2012.

16. A. Piziali, “Functional Verification Coverage Measurement and Analysis”, Boston:

Kluwer Academic, 2004.

17. Mentor Graphics Corporation, “ModelSim SE User’s Manual (Software Version

10.6)”, 2016.

18. Xilinx Inc., “Synthesis and Simulation Design Guide”, 2010.

http://www.itrs.net/reports.html
http://www.xilinx.com/aboutus/corporate_overview.pdf
http://www.altera.com/literature/lit-arria-v.jsp
http://www.gartner.com/DisplayDocument?doc_cd=229088&ref=nl

87

19. Altera Corporation, “Increasing Design Functionality with Partial and Dynamic

Reconfiguration in 28-nm FPGAs”, 2010. [online].

Available: http://www.altera.com/literature/wp/wp-01137-stxv-dynamic-partial-

reconfig.pdf

20. Altera Corporation, “Quartus II Handbook Version 12.1, Volume 1: Design and

Synthesis, Altera Corporation”, 2012.

21. “IEEE Standard for SystemVerilog - Unified Hardware Design, Specification, and

Verification Language”, 2012.

22. M. Litterick, “Assertion-Based Verification using System Verilog”, 2007. [online].

Available: http://www.verilab.com/files/svug_2007_abv_litterick.pdf

23. C. Cummings, “Clock Domain Crossing (CDC) Design & Verification Techniques

Using SystemVerilog”, in Proc. Synopsys User Group Meeting (SNUG), 2008.

[online]. Available: http://www.sunburst-

design.com/papers/CummingsSNUG2008Boston_CDC.pdf

24. U. Farooq et al., “Tree Based Heterogeneous FPGA Architectures, Application

Specific Exploration and Optimization”. Springer, pp. 7-48, 2012.

25. P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, “Modular dynamic

reconfiguration in Virtex FPGAs,” in IEE, vol. 153, no. 3, pp. 157-164, 2006.

26. Wang lie and Wufeng yan, “Dynamic partial reconfiguration in FPGAs”, in Third

International Symposium on Intelligent Information Technology IEEE computer

society, pp. 445-448, 2009.

27. I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs”, in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

26, no. 2, pp. 203-215, 2007.

28. A. Schallenberg, W. Nebel, A. Herrholz, and P. A. Hartmann, “OSSS+R: A

Framework for Application Level Modelling and Synthesis of Reconfigurable

Systems”, in Design, Automation and Test in Europe (DATE), pp. 970-975, 2009.

29. L. Gong and O. Diessel, “ReSim: A Reusable Library for RTL Simulation of

Dynamic Partial Reconfiguration”, in Field-Programmable Technology (FPT),

International Conference on, pp. 1-8, 2011.

30. L. Gong and O. Diessel, “Functionally Verifying State Saving and Restoration in

Dynamically Reconfigurable Systems”, in ACM/SIGDA international symposium

on Field Programmable Gate Arrays, pp. 241-244, 2012.

31. I. Kastelan and Z. Krajacevic, “Synthesizable SystemVerilog Assertions as a

ethodology for SoC Verification”, in First Eastern European Conference on the

Engineering of Computer Based Systems, pp. 120-127, 2009.

32. H. Saafan, M. Watheq and A. Salem, “SoC Connectivity Specification Extraction

using Incomplete RTL Design: An Approach for Formal Connectivity

Verification”, in International Design & Test Symposium (IDT), pp. 110-114,

2016.

33. Mentor Graphics, “Questa Connectivity Check Formal Application”,

www.mentor.com/products/fv/questa-connectivity-check.

http://www.altera.com/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf
http://www.altera.com/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf
http://www.verilab.com/files/svug_2007_abv_litterick.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf
http://www.mentor.com/products/fv/questa-connectivity-check

88

34. H. Foster, “Challenges of Design and Verification in the SoC Era”, 2011. [online].

Available:

http://testandverification.com/files/DVConference2011/2_Harry_Foster.pdf

35. B. Hutchings and J. Keeley, “Rapid Post-Map Insertion of Embedded

Logic Analyzers for Xilinx FPGAs”, in Field-Programmable Custom Computing

Machines (FCCM), pp. 72-79, 2014.

36. S. Asaad, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur, B. Parker, T.

 Roewer, P. Saha, T. Takken, and J. Tierno, “A Cycle-Accurate, Cycle-

Reproducible Multi-FPGA System for Accelerating Multi-core Processor

Simulation”, in Proceedings of the ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 153-162, 2012.

37. Mentor Graphics, “Certus Debug Suite,”

https://www.mentor.com/products/fv/certus-silicon-debug, July 2017.

38. Xilinx, “ChipScope Pro Software and Cores, User Guide UG029”, 2012.

39. Altera, “Quartus II Handbook Version 12.1 Volume 3: Verification”, 2012.

40. T. Wheeler, P. Graham, B. E. Nelson, and B. Hutchings, “Using Design-Level Scan

to Improve FPGA Design Observability and Controllability for Functional

Verification”, in Proceedings of the 11th International Conference on Field

Programmable Logic and Applications, pp. 483-492, 2001.

41. P. Graham, B. Nelson, and B. Hutchings, “Instrumenting Bitstreams for Debugging

FPGA Circuits” in Field-Programmable Custom Computing Machines, pp. 41-50,

2001.

42. L. Lagadec and D. Picard, “Software-like debugging methodology for

reconfigurable platforms”, in IEEE International Symposium on Parallel and

Distributed Processing, pp. 1-4, 2009.

43. Z. Poulos, Y. S. Yang, J. Anderson, A. Veneris and B. Le, “Leveraging

reconfigurability to raise productivity in FPGA functional debug”, in Design,

Automation & Test in Europe Conference & Exhibition (DATE), pp. 292-295,

2012.

44. Xilinx Inc., “ZC702 Evaluation Board, User Guide UG850 (v1.5).

45. A. Sadek, H. Mostafa, and A. Nassar, “On the use of Dynamic Partial

Reconfiguration for MultiBand/MultiStandard Software Defined Radio”, in

International Conference on Electronics, Circuits, and Systems (ICECS), pp. 498-

499, 2015.

46. A. Sadek, H. Mostafa, A. Nassar and Y. Ismail, “Towards the implementation of

multi-band multi-standard software-defined radio using dynamic partial

reconfiguration,” in International Journal of Communications Systems, pp. 33-42

2017.

47. Mentor Graphics, “Questa CDC and Formal Functional Verification”,

www.mentor.com/products/fv/questaformal.

48. William J. Dally and John W. Poulton, Digital Systems Engineering, Cambridge:

University Press, 1998

http://testandverification.com/files/DVConference2011/2_Harry_Foster.pdf

89

49. Clifford E. Cummings, “Simulation and Synthesis Techniques for Asynchronous

FIFO Design”, Proc. Synopsys User Group Meeting (SNUG), 2002. [online].

Available: www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf

50. The 2016 Wilson Research Group Functional Verification Study. [online].

Available:

https://blogs.mentor.com/verificationhorizons/blog/2016/08/08/prologue-the-2016-

wilson-research-group-functional-verification-study/

51. 1850-2010 - IEEE Standard for Property Specification Language (PSL).

52. Accellera, Open Verification Language Reference Manual.

53. 1364-2005 - IEEE Standard for Verilog Hardware Description Language.

54. I. Robertson, J. Irvine, P. Lysaght, and D. Robinson, “Improved Functional

Simulation of Dynamically Reconfigurable Logic”, in Field Programmable Logic

and Applications (FPL), pp. 541-574, 2002.

55. A. Raabe and A. Felke, “A SystemC Language Extension for High-Level

Reconfiguration Modelling”, in Specification, Verification and Design Languages

(FDL), pp. 55-60, 2008.

56. A. Raabe, P. A. Hartmann, and J. K. Anlauf, “ReChannel: Describing and

Simulating Reconfigurable Hardware in SystemC”, in ACM Transactions on

Design Automation of Electronic Systems (TODAES), vol. 13, no.1, pp. 1-18,

2008.

57. L. Gong and O. Diessel, “Modeling Dynamically Reconfigurable Systems for

Simulation-based Functional Verification”, in Field Programmable Custom

Computing Machines (FCCM), IEEE Symposium on, pp. 9-16, 2011.

58. Kuon, I., et al., “FPGA Architecture: Survey and Challenges”, in Foundations and

Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135-253, 2007.

59. Actel Corporation, “ProASIC3 Flash Family FPGAs”, 2005.

60. D. Koch, “Partial Reconfiguration on FPGAs: Architectures, Tools and

Applications”, Springer Publishing Company, 2013.

61. Xilinx Inc., “7 Series FPGAs Configuration User Guide UG470”, 2016.

62. A. Hassan, R. Ahmed, H. Mostafa, H. A. H. Fahmy and A. Hussien, “Performance

evaluation of dynamic partial reconfiguration techniques for software defined radio

implementation on FPGA”, IEEE International Conference on Electronics,

Circuits, and Systems (ICECS), Cairo, pp. 183-186, 2015.

63. K. Papadimitriou, A. Anyfantis and A. Dollas, “An Effective Framework to

Evaluate Dynamic Partial Reconfiguration in FPGA Systems”, in IEEE

Transactions on Instrumentation and Measurement, vol. 59, no. 6, pp. 1642-1651,

2010.

64. J. Cong and Y. Ding, “FlowMap: An optimal technology mapping algorithm for

delay optimization in lookup-table based FPGA designs”, in IEEE Trans. CAD,

vol. 13, no. 1, pp. 1-12, 1994.

http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf
https://blogs.mentor.com/verificationhorizons/blog/2016/08/08/prologue-the-2016-wilson-research-group-functional-verification-study/
https://blogs.mentor.com/verificationhorizons/blog/2016/08/08/prologue-the-2016-wilson-research-group-functional-verification-study/

90

65. J. Birkner, A. Chan, H. T. Chua, A. Chao, K. Gordon, B. Kleinman, P. Kolze, and

R. Wong, “A very-high-speed field-programmable gate array using metal to-metal

antifuse programmable elements”, in Microelectronics Journal, pp. 561-568,

November 1992.

66. D. C. Guterman, I. H. Rimawi, T. L. Chiu, R. D. Halvorson, and D. J. McElroy,

“An electrically alterable nonvolatile memory cell using a floating-gate structure”,

in IEEE Trans. Electron Devices, vol. ED-26, no. 4, pp. 576-586, 1979.

67. Altera Corporation, “MAX II Device Handbook”, 2005.

68. Altera Corporation, “Stratix III Device Handbook, version 1.0”, 2006.

69. S. Brown, R. Francis, J. Rose, and Z. Vranesic, “Field-Programmable Gate Arrays”,

Kluwer Academic Publishers, 1992.

70. Actel Corporation, “Axcelerator Family FPGAs”, 2005.

71. A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. A. El-Ayat, and A. Mohsen,

“An architecture for electrically configurable gate arrays”, in IEEE Journal of

Solid-State Circuits, vol. 24, no. 2, pp. 394-398, 1989.

72. V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for Deep Submicron

FPGAs”, Kluwer Academic Publishers, 1999.

73. A. DeHon, “Balancing Interconnect and Computation in a Reconfigurable

Computing Array (or, why you don’t really want 100% LUT utilization),” in

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp

69-78, 1999.

74. R. K. Brayton, A. L. Sangiovanni-Vincentelli, and G. D. Hachtel, “Multilevel logic

synthesis”, Proc. IEEE, vol. 78, pp. 264-300, 1990.

75. M. Dehkordi and S. Brown, “The effect of cluster packing and node duplication

control in delay driven clustering,” in IEEE International Conference on Field

Programmable Technology, pp. 227-233, 2002.

76. D. J. Huang and A. B. Kahng, “When clusters meet partitions: New density-based

methods for circuit decomposition”, in Proc. Eur. Design Test Conf., pp. 60-64,

1995.

77. A. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic blocks and timing-

driven packing to improve FPGA speed and density,” In ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, pp. 37-46, 1999.

78. A. E. Dunlop, "A Procedure for Placement of Standard Cell VLSI Circuits", IEEE

Transaction on Computer-Aided Design, vol. 4, pp. 92-98, 1985.

79. C. Alpert, T. Chan, A. Kahng, I. Markov, and P. Mulet, “Faster minimization of

linear wirelength for global placement,” IEEE Trans. Computer-Aided Design, vol.

17, no. 1, pp. 3-13, 1998.

80. C. Sechen, A. Sangiovanni-Vincentelli, “The Timberwolf Placement and Routing

Package”, in IEEE Journal of Solid-State Circuits, vol. sc-20, no.2, pp. 510-522,

1985.

81. L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based performance-

driven router for FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field Programmable

Gate Arrays, pp. 111-117, 1995.

91

82. T.H. Cormen, C.E. Leiserson, R.L. Rivest, “Introduction to Algorithms, Section

25:2, Dijkstra’s Algorithm”, Cambridge: The MIT Press, 1990.

83. R. B. Hitchcock, G. L. Smith, and D. D. Cheng, “Timing Analysis of Computer

Hardware”, IBM J. Research and Development, vol. 26, no. 1, pp. 100-105, 1982.

Appendix A: List of Publications

1. I. Ahmed, H. Mostafa, and A. Mohieldin, “Dynamic Partial Reconfiguration

Verification Using Assertion Based Verification”, 13th IEEE International

Conference on Design & Technology of Integrated Systems in Nanoscale

Era (DTIS 2018), Taormina, Italy, 2018.

2. I. Ahmed, A. K. Eldin, H. Mostafa, and A. Mohieldin, "Utilizing Dynamic

Partial Reconfiguration to Reduce the Cost of FPGA Debugging", The 16th

IEEE International NEWCAS Conference (NEWCAS 2018), Montreal,

Canada, 2018.

3. I. Ahmed, H. Mostafa, and A. Mohieldin, “On the Functional Verification of

Dynamic Partial Reconfiguration”, IEEE 61th International Midwest

Symposium on Circuits and Systems (MWSCAS 2018), Windsor, Canada.

2018.

4. I. Ahmed, H. Mostafa, and A. Mohieldin, “Automatic Clock Domain

Crossing Verification Flow For Dynamic Partial Reconfiguration”, 2018

IEEE 61th International Midwest Symposium on Circuits and Systems

(MWSCAS 2018).Windsor, Canada, 2018.

5. A. K. ELdin, I. Ahmed, A. Obeid, A. Shalash, Y. Ismail, and H. Mostafa,

“A Cost-Effective Dynamic Partial Reconfiguration Implementation Flow

for Xilinx FPGA”, IEEE International NEW Generation of Circuits and

Systems (NGCAS 2017), Genova, Italy.

92

Appendix B: Codes

B.1. Perl code to check interfaces of RMs ports

#! /usr/bin/perl
use FindBin ;
use lib $FindBin::Bin ;
use File::Basename ;
use rvp ;
use Getopt::Long ;
my $scriptName = " check_ports_for_pdr " ;
if (&GetOptions("filelist=s" => \$filelist ,
 "config=s" => \$configFile ,
 "help" => \$helpOption) == 0) {
 die " ERROR: Illegal command or option. Use ' $scriptName –h ' for help \n" ;
}
if ($helpOption) {
 print " Usage : check_ports_for_pdr.pl \n " .
 " -filelist <File list of Verilog files>\n" .
 " -config <CSV file for configurations>\n" ;
 exit 0;
}
if (! $filelist) {
 die "ERROR: Please specify the input filelist of the Verilog files" ;
}
my @files = ` cat $filelist ` ;
chomp(@files) ;
Parse the Verilog files
my $vdata = rvp->read_verilog(\@files , [] , {def1=>1} , 1 , [] , [] , '') ;
Print out all the found modules
foreach $module ($vdata->get_modules()) {
 print " INFO : Iterating over the ports of module ' $module '\n " ;
 foreach my $port (@{$vdata->{modules}{$module}{port_order}}) {
 my $range = $vdata->{modules}{$module}{signals}{$port}{range} ;
 my $type = $vdata->{modules}{$module}{signals}{$port}{type} ;
 my $size ;
 if ($range eq '') {
 $size = 1;
 } elsif ($range =~ m/(\d+):(\d+)/) {
 if ($2 > $1) {
 $size = $2 - $1 + 1 ;
 } else {
 $size = $1 - $2 + 1 ;
 }
 }
 print " $port $range $type $size\n " ;
 }
Parse the configuration files
if (! $configFile) {

93

 print " WARNING: No config file is provided, port checks will be skipped \n " ;
 exit 0 ;
}
my %RRs ;
open (CONFIG_FILE , "<" , "$configFile") or die " ERROR: Config file ' $configFile ' is not
found. \n" ;
while (<CONFIG_FILE>) {
 if ($_ =~ m/^RR/) {
 my $RR_name = $_ ;
 my $modules_of_RR = $_ ;
 $RR_name =~ s/(^RR.*?),.*/$1/ ;
 $modules_of_RR =~ s/^RR.*?,// ;
 chomp($RR_name);
 $RRs{modules}{$RR_name} = $modules_of_RR ;
 }
}
foreach (keys ($RRs{modules})) {
 print " For RR $_, the following modules exist $RRs{modules}{$_}\n " ;
}

Checks for every module of an RR
foreach my $RR (keys ($RRs{modules})) {
 my @modules_of_RR = split (',',$RRs{modules}{$RR}) ;
 chomp (@modules_of_RR) ;
 if (scalar (@modules_of_RR) <= 1) {
 print "ERROR : The Reconfigurable-region '$RR' only has 1 module, it should be part of
the static region \n " ;
 } else {
 print " INFO : The Reconfigurable-region '$RR' has " , scalar (@modules_of_RR) , "
modules: " , join (" ", @modules_of_RR), " \n " ;
 }

 print " INFO : Checking ports of modules in the Reconfigurable-region '$RR' \n " ;

 my $i = 0 ;
 my $reference_module ;
 my @ports_of_reference_module ;

 foreach my $module (@modules_of_RR) {
 my @ports_of_module = @{$vdata->{modules}{$module}{port_order}} ;
 if ($i == 0) {
 $reference_module = $module ;
 @ports_of_reference_module = @{$vdata-
>{modules}{$reference_module}{port_order}} ;
 print " : The module '$reference_module' will be taken as the reference. \n " ;
 } else {
 print " : Comparing module '$module' against the reference module
'$reference_module' \n " ;
 print " : Performing Check #1: Number of ports: \n " ;
 if (scalar(@ports_of_module) == scalar(@ports_of_reference_module)) {
 print " : Number of ports for both modules matched, both have ",
scalar(@ports_of_module), " ports. \n " ;

94

 } else {
 print " : Number of ports for both modules is different. " ,
 " Reference module '$reference_module ' has
",scalar(@ports_of_reference_module), "ports, ",
 " while module ' $module ' has ", scalar(@ports_of_module), " ports. \n " ;
 }

 print " : Performing Check #2: Name, order and size of ports: \n " ;
 for (my $i = 0 ; $i < scalar(@ports_of_reference_module); $i++) {
 my $port = $ports_of_module[$i] ;
 my $ref_port = $ports_of_reference_module[$i] ;
 my $port_type = $vdata->{modules}{$module}{signals}{$port}{type} ;
 my $ref_port_type = $vdata-
>{modules}{$reference_module}{signals}{$ref_port}{type} ;
 my $port_range = $vdata->{modules}{$module}{signals}{$port}{range} ;
 my $ref_port_range = $vdata-
>{modules}{$reference_module}{signals}{$ref_port}{range} ;
 my $port_size = get_port_size($port_range) ;
 my $ref_port_size = get_port_size($ref_port_range) ;
 print " : Port #$i --> '$module':$ports_of_module[$i] (Type: $port_type, Size:
$port_size) vs. ".
 "'$reference_module':$ports_of_reference_module[$i] (Type:
$ref_port_type, Size: $ref_port_size)\n" ;
 if (! ($modules_of_port[$i] eq $modules_of_port[$i])) {
 print " : Error for port naming of Port #$i \n " ;
 } else {
 print " : Port naming of Port #$i is OK. \n " ;
 }
 if (! ($port_type eq $ref_port_type)) {
 print " : Error for port type of Port #$i \n " ;
 } else {
 print " : Port type of Port #$i is OK. \n " ;
 }
 if (! ($port_size == $ref_port_size)) {
 print " : Error for port size of Port #$i \n " ;
 } else {
 print " : Port size of Port #$i is OK. \n " ;
 }
 }
 }
 $i++ ;
 }
}
sub get_port_size {
 my $range = $_[0] ;
 if ($range eq '') {
 $size = 1;
 } elsif ($range =~ m/(\d+):(\d+)/) {
 if ($2 > $1) {
 $size = $2 - $1 + 1 ;
 } else {

95

 $size = $1 - $2 + 1 ;
 }
 }
 return $size ;

}

B.2. Perl code to generate RTL designs and run scripts for Vivado

#! /usr/bin/perl

use Getopt::Long ;

my @mux_mode_iters = (8) ;
my @DATA_WIDTH_iters = (1 , 2 , 4 , 8 , 16 , 32 , 64 , 128 , 256) ; my @num_sigs_iters =
(4 , 8 , 16 , 32 , 64 , 128 , 256) ; @num_sigs_iters = (8 , 16 , 32 , 64 , 128 , 256) ;

my $dpr_mode = 1 ;

foreach my $mux_mode_iter (@mux_mode_iters) { foreach my $DATA_WIDTH_iter (
@DATA_WIDTH_iters) { foreach my $num_sigs_iter (@num_sigs_iters) {

Default Config
my $mux_mode = 0 ;
my $DATA_WIDTH = 16 ;
my $num_sigs_observed = 6 ;

Using the iterations variables
$mux_mode = $mux_mode_iter ;
$DATA_WIDTH = $DATA_WIDTH_iter ;
$num_sigs_observed = $num_sigs_iter ;

my $project_name =
"debug_num${num_sigs_observed}_width${DATA_WIDTH}_mux$mux_mode" ; my
$project_path =
"/home/iahmed/Masters1/Debugging/Vivado_projects/prjs_mux8/${project_name}" ;

`mkdir -p $project_path` ;

my $vivado_file = "$project_path/run_vivado.tcl " ; my $dut_file =
"$project_path/dut_debug.v " ; my $dpr_mux_file1 = "$project_path/ila_mux1.v " ; my
$dpr_mux_file2 = "$project_path/ila_mux2.v " ; my $dpr_mux_file3 =
"$project_path/ila_mux3.v " ; my $dpr_mux_file4 = "$project_path/ila_mux4.v " ; my
$dpr_mux_file5 = "$project_path/ila_mux5.v " ; my $dpr_mux_file6 =
"$project_path/ila_mux6.v " ; my $dpr_mux_file7 = "$project_path/ila_mux7.v " ; my
$dpr_mux_file8 = "$project_path/ila_mux8.v " ;

if ($dpr_mode == 1 && $mux_mode == 2) {
 open (FHDPR1 , " > $dpr_mux_file1 ") ;
 open (FHDPR2 , " > $dpr_mux_file2 ") ; } elsif ($dpr_mode == 1 && $mux_mode ==
4) {

96

 open (FHDPR1 , " > $dpr_mux_file1 ") ;
 open (FHDPR2 , " > $dpr_mux_file2 ") ;
 open (FHDPR3 , " > $dpr_mux_file3 ") ;
 open (FHDPR4 , " > $dpr_mux_file4 ") ; } elsif ($dpr_mode == 1 && $mux_mode ==
8) {
 open (FHDPR1 , " > $dpr_mux_file1 ") ;
 open (FHDPR2 , " > $dpr_mux_file2 ") ;
 open (FHDPR3 , " > $dpr_mux_file3 ") ;
 open (FHDPR4 , " > $dpr_mux_file4 ") ;
 open (FHDPR5 , " > $dpr_mux_file5 ") ;
 open (FHDPR6 , " > $dpr_mux_file6 ") ;
 open (FHDPR7 , " > $dpr_mux_file7 ") ;
 open (FHDPR8 , " > $dpr_mux_file8 ") ; }

open (FHV , " > $project_path/run_vivado.tcl ") ; open (FHD , " >
$project_path/dut_debug.v ") ;

print FHD <<EOL ;
`timescale 1ns / 1ps

module dut (debug_mode , in1 , in2 , in3 , in4 , in5 , in6 , clk1 , out1 , out2) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input wire debug_mode ;
 input wire [DATA_WIDTH - 1 : 0] in1 , in2 , in3 , in4 , in5 , in6 ;
 input wire clk1 ;
 output wire [DATA_WIDTH - 1 : 0] out1 , out2 ;
 // Internal registers (to be observed)
 // 256 registers
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg1 , reg2 , reg3 , reg5 , reg6 ,
reg7 , reg9 , reg10 , reg11 , reg13 , reg14 , reg15 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg17 , reg18 , reg19 , reg21 , reg22
, reg23 , reg25 , reg26 , reg27 , reg29 , reg30 , reg31 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg33 , reg34 , reg35 , reg37 , reg38
, reg39 , reg41 , reg42 , reg43 , reg45 , reg46 , reg47 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg49 , reg50 , reg51 , reg53 , reg54
, reg55 , reg57 , reg58 , reg59 , reg61 , reg62 , reg63 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg65 , reg66 , reg67 , reg69 , reg70
, reg71 , reg73 , reg74 , reg75 , reg77 , reg78 , reg79 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg81 , reg82 , reg83 , reg85 , reg86
, reg87 , reg89 , reg90 , reg91 , reg93 , reg94 , reg95 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg97 , reg98 , reg99 , reg101 ,
reg102 , reg103 , reg105 , reg106 , reg107 , reg109 , reg110 , reg111 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg113 , reg114 , reg115 , reg117 ,
reg118 , reg119 , reg121 , reg122 , reg123 , reg125 , reg126 , reg127 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg129 , reg130 , reg131 , reg133 ,
reg134 , reg135 , reg137 , reg138 , reg139 , reg141 , reg142 , reg143 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg145 , reg146 , reg147 , reg149 ,
reg150 , reg151 , reg153 , reg154 , reg155 , reg157 , reg158 , reg159 ;

97

 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg161 , reg162 , reg163 , reg165 ,
reg166 , reg167 , reg169 , reg170 , reg171 , reg173 , reg174 , reg175 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg177 , reg178 , reg179 , reg181 ,
reg182 , reg183 , reg185 , reg186 , reg187 , reg189 , reg190 , reg191 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg193 , reg194 , reg195 , reg197 ,
reg198 , reg199 , reg201 , reg202 , reg203 , reg205 , reg206 , reg207 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg209 , reg210 , reg211 , reg213 ,
reg214 , reg215 , reg217 , reg218 , reg219 , reg221 , reg222 , reg223 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg225 , reg226 , reg227 , reg229 ,
reg230 , reg231 , reg233 , reg234 , reg235 , reg237 , reg238 , reg239 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg241 , reg242 , reg243 , reg245 ,
reg246 , reg247 , reg249 , reg250 , reg251 , reg253 , reg254 , reg255 ;

 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg4 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg8 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg12 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg16 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg20 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg24 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg28 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg32 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg36 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg40 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg44 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg48 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg52 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg56 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg60 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg64 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg68 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg72 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg76 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg80 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg84 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg88 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg92 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg96 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg100 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg104 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg108 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg112 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg116 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg120 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg124 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg128 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg132 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg136 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg140 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg144 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg148 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg152 ;

98

 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg156 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg160 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg164 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg168 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg172 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg176 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg180 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg184 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg188 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg192 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg196 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg200 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg204 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg208 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg212 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg216 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg220 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg224 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg228 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg232 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg236 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg240 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg244 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg248 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg252 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg256 ;

 // Logic of the registers to be observed
 always @ (posedge clk1) begin
 reg1 <= in1 | in2 ;
 reg2 <= in1 & in2 ;
 reg3 <= in1 ^ in2 ;
 reg5 <= in1 & in3 ;
 reg6 <= in1 ^ in3 ;
 reg7 <= in1 | in4 ;
 reg9 <= in1 ^ in4 ;
 reg10 <= in1 | in6 ;
 reg11 <= in1 & in6 ;
 reg13 <= in1 | in2 ;
 reg14 <= in1 & in6 ;
 reg15 <= in3 ^ in2 ;

 reg17 <= in5 | in2 ;
 reg18 <= in5 | in2 ;
 reg19 <= in5 | in2 ;
 reg21 <= in5 & in2 ;
 reg22 <= in5 | in2 ;
 reg23 <= in5 | in2 ;
 reg25 <= in5 & in2 ;
 reg26 <= in5 & in2 ;
 reg27 <= in5 | in2 ;

99

 reg29 <= in5 & in2 ;
 reg30 <= in5 & in2 ;
 reg31 <= in5 & in2 ;

 reg33 <= in6 | in2 ;
 reg34 <= in6 | in2 ;
 reg35 <= in6 | in2 ;
 reg37 <= in6 & in2 ;
 reg38 <= in6 | in2 ;
 reg39 <= in6 | in2 ;
 reg41 <= in6 & in2 ;
 reg42 <= in6 & in2 ;
 reg43 <= in6 | in2 ;
 reg45 <= in6 & in2 ;
 reg46 <= in6 & in2 ;
 reg47 <= in6 & in2 ;

 reg49 <= in1 ^ in2 ;
 reg50 <= in1 ^ in2 ;
 reg51 <= in1 ^ in2 ;
 reg53 <= in4 ^ in2 ;
 reg54 <= in4 ^ in2 ;
 reg55 <= in4 & in2 ;
 reg57 <= in4 & in2 ;
 reg58 <= in4 & in2 ;
 reg59 <= in4 | in2 ;
 reg61 <= in4 | in2 ;
 reg62 <= in4 | in2 ;
 reg63 <= in4 | in2 ;

 reg65 <= in4 | in3 ;
 reg66 <= in4 | in3 ;
 reg67 <= in4 | in3 ;

 reg69 <= in3 | in2 ;
 reg70 <= in3 | in2 ;
 reg71 <= in3 | in2 ;

 reg73 <= in3 & in4 ;
 reg74 <= in3 & in4 ;
 reg75 <= in3 & in4 ;

 reg77 <= in3 | in5 ;
 reg78 <= in3 | in5 ;
 reg79 <= in3 | in5 ;

 reg81 <= in3 | in6 ;
 reg82 <= in3 | in6 ;
 reg83 <= in3 | in6 ;

 reg85 <= in4 | in5 ;

100

 reg86 <= in4 | in5 ;
 reg87 <= in4 | in5 ;

 reg89 <= in4 & in5 ;
 reg90 <= in4 & in5 ;
 reg91 <= in4 & in5 ;

 reg93 <= in4 ^ in5 ;
 reg94 <= in4 ^ in5 ;
 reg95 <= in4 ^ in5 ;

 reg97 <= in4 | in5 ;
 reg98 <= in4 & in5 ;
 reg99 <= in4 ^ in5 ;

 reg101 <= in4 & in2 ;
 reg102 <= in4 & in1 ;
 reg103 <= in4 ^ in3 ;

 reg105 <= in5 ^ in6 ;
 reg106 <= in5 & in6 ;
 reg107 <= in5 & in6 ;

 reg109 <= in5 | in6 ;
 reg110 <= in5 & in6 ;
 reg111 <= in5 ^ in6 ;

 reg113 <= in5 ^ in2 ;
 reg114 <= in5 ^ in2 ;
 reg115 <= in5 ^ in2 ;

 reg117 <= in1 & in2 ;
 reg118 <= in1 & in2 ;
 reg119 <= in1 ^ in2 ;

 reg121 <= in3 | in2 ;
 reg122 <= in1 | in4 ;
 reg123 <= in1 | in5 ;

 reg125 <= in1 ^ in3 ;
 reg126 <= in1 ^ in4 ;
 reg127 <= in1 ^ in5 ;

 reg129 <= in1 | in4 ;
 reg130 <= in1 | in5 ;
 reg131 <= in1 | in6 ;

 reg133 <= in4 | in5 ;
 reg134 <= in2 | in6 ;
 reg135 <= in3 | in5 ;

101

 reg137 <= in1 & in5 ;
 reg138 <= in2 ^ in6 ;
 reg139 <= in4 | in4 ;

 reg141 <= in1 ^ in4 ;
 reg142 <= in2 & in5 ;
 reg143 <= in4 | in6 ;

 reg145 <= in1 | in2 ;
 reg146 <= in6 & in2 ;
 reg147 <= in4 ^ in2 ;

 reg149 <= in1 & in2 ;
 reg150 <= in2 ^ in5 ;
 reg151 <= in1 | in6 ;

 reg153 <= in1 ;
 reg154 <= in2 ;
 reg155 <= in3 ;

 reg157 <= in4 ;
 reg158 <= in5 ;
 reg159 <= in6 ;

 reg161 <= in1 ;
 reg162 <= in2 ;
 reg163 <= in4 ;

 reg165 <= in1 ;
 reg166 <= in2 ;
 reg167 <= in5 ;

 reg169 <= in1 ;
 reg170 <= in2 ;
 reg171 <= in6 ;

 reg173 <= in1 ;
 reg174 <= in3 ;
 reg175 <= in4 ;

 reg177 <= in1 ;
 reg178 <= in3 | in2 ;
 reg179 <= in5 | in2 ;

 reg181 <= in1 ;
 reg182 <= in3 ;
 reg183 <= in5 ;

 reg185 <= in1 & in2 ;
 reg186 <= in3 ;
 reg187 <= in6 ;

102

 reg189 <= in1 ;
 reg190 <= in3 ;
 reg191 <= in6 ;

 reg193 <= in1 | in2 ;
 reg194 <= in4 & in2 ;
 reg195 <= in6 ^ in2 ;

 reg197 <= in1 ;
 reg198 <= in4 ;
 reg199 <= in6 ;

 reg201 <= in1 ;
 reg202 <= in5 ^ in2 ;
 reg203 <= in6 & in3 ;

 reg205 <= in1 ;
 reg206 <= in5 ;
 reg207 <= in6 ;

 reg209 <= in2 ;
 reg210 <= in3 ;
 reg211 <= in4 ;

 reg213 <= in2 ;
 reg214 <= in3 ;
 reg215 <= in5 ;

 reg217 <= in2 ;
 reg218 <= in3 ;
 reg219 <= in6 ;

 reg221 <= in3 ;
 reg222 <= in4 ;
 reg223 <= in5 ;

 reg225 <= in3 ;
 reg226 <= in4 ;
 reg227 <= in6 ;

 reg229 <= in3 | in2 ;
 reg230 <= in4 | in2 ;
 reg231 <= in6 | in2 ;

 reg233 <= in3 & in2 ;
 reg234 <= in4 & in2 ;
 reg235 <= in6 & in2 ;

 reg237 <= in3 ^ in2 ;
 reg238 <= in4 ^ in2 ;

103

 reg239 <= in6 ^ in2 ;

 reg241 <= in3 & in2 ;
 reg242 <= in4 & in2 ;
 reg243 <= in5 & in2 ;

 reg245 <= in3 | in1 ;
 reg246 <= in4 | in1 ;
 reg247 <= in5 | in1 ;

 reg249 <= in3 | in2 ;
 reg250 <= in4 | in1 ;
 reg251 <= in5 | in6 ;

 reg253 <= in3 & in2 ;
 reg254 <= in4 & in6 ;
 reg255 <= in5 & in2 ;
 end

 // Logic
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid1_inst (reg1 , reg2 ,
reg3 , clk1 , reg4) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid2_inst (reg5 , reg6 ,
reg7 , clk1 , reg8) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid3_inst (reg9 , reg10 ,
reg11 , clk1 , reg12) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid4_inst (reg13 , reg14 ,
reg15 , clk1 , reg16) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid5_inst (reg17 , reg18 ,
reg19 , clk1 , reg20) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid6_inst (reg21 , reg22 ,
reg23 , clk1 , reg24) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid7_inst (reg25 , reg26 ,
reg27 , clk1 , reg28) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid8_inst (reg29 , reg30 ,
reg31 , clk1 , reg32) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid9_inst (reg33 , reg34 ,
reg35 , clk1 , reg36) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid10_inst (reg37 , reg38 ,
reg39 , clk1 , reg40) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid11_inst (reg41 , reg42 ,
reg43 , clk1 , reg44) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid12_inst (reg45 , reg46 ,
reg47 , clk1 , reg48) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid13_inst (reg49 , reg50 ,
reg51 , clk1 , reg52) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid14_inst (reg53 , reg54 ,
reg55 , clk1 , reg56) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid15_inst (reg57 , reg58 ,
reg59 , clk1 , reg60) ;

104

 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid16_inst (reg61 , reg62 ,
reg63 , clk1 , reg64) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid17_inst (reg65 , reg66 ,
reg67 , clk1 , reg68) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid18_inst (reg69 , reg70 ,
reg71 , clk1 , reg72) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid19_inst (reg73 , reg74 ,
reg75 , clk1 , reg76) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid20_inst (reg77 , reg78 ,
reg79 , clk1 , reg80) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid21_inst (reg81 , reg82 ,
reg83 , clk1 , reg84) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid22_inst (reg85 , reg86 ,
reg87 , clk1 , reg88) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid23_inst (reg89 , reg90 ,
reg91 , clk1 , reg92) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid24_inst (reg93 , reg94 ,
reg95 , clk1 , reg96) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid25_inst (reg97 , reg98 ,
reg99 , clk1 , reg100) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid26_inst (reg101 ,
reg102 , reg103 , clk1 , reg104) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid27_inst (reg105 ,
reg106 , reg107 , clk1 , reg108) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid28_inst (reg109 ,
reg110 , reg111 , clk1 , reg112) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid29_inst (reg113 ,
reg114 , reg115 , clk1 , reg116) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid30_inst (reg117 ,
reg118 , reg119 , clk1 , reg120) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid31_inst (reg121 ,
reg122 , reg123 , clk1 , reg124) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid32_inst (reg125 ,
reg126 , reg127 , clk1 , reg128) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid33_inst (reg129 ,
reg130 , reg131 , clk1 , reg132) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid34_inst (reg133 ,
reg134 , reg135 , clk1 , reg136) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid35_inst (reg137 ,
reg138 , reg139 , clk1 , reg140) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid36_inst (reg141 ,
reg142 , reg143 , clk1 , reg144) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid37_inst (reg145 ,
reg146 , reg147 , clk1 , reg148) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid38_inst (reg149 ,
reg150 , reg151 , clk1 , reg152) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid39_inst (reg153 ,
reg154 , reg155 , clk1 , reg156) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid40_inst (reg157 ,
reg158 , reg159 , clk1 , reg160) ;

105

 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid41_inst (reg161 ,
reg162 , reg163 , clk1 , reg164) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid42_inst (reg165 ,
reg166 , reg167 , clk1 , reg168) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid43_inst (reg169 ,
reg170 , reg171 , clk1 , reg172) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid44_inst (reg173 ,
reg174 , reg175 , clk1 , reg176) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid45_inst (reg177 ,
reg178 , reg179 , clk1 , reg180) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid46_inst (reg181 ,
reg182 , reg183 , clk1 , reg184) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid47_inst (reg185 ,
reg186 , reg187 , clk1 , reg188) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid48_inst (reg189 ,
reg190 , reg191 , clk1 , reg192) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid49_inst (reg193 ,
reg194 , reg195 , clk1 , reg196) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid50_inst (reg197 ,
reg198 , reg199 , clk1 , reg200) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid51_inst (reg201 ,
reg202 , reg203 , clk1 , reg204) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid52_inst (reg205 ,
reg206 , reg207 , clk1 , reg208) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid53_inst (reg209 ,
reg210 , reg211 , clk1 , reg212) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid54_inst (reg213 ,
reg214 , reg215 , clk1 , reg216) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid55_inst (reg217 ,
reg218 , reg219 , clk1 , reg220) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid56_inst (reg221 ,
reg222 , reg223 , clk1 , reg224) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid57_inst (reg225 ,
reg226 , reg227 , clk1 , reg228) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid58_inst (reg229 ,
reg230 , reg231 , clk1 , reg232) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid59_inst (reg233 ,
reg234 , reg235 , clk1 , reg236) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid60_inst (reg237 ,
reg238 , reg239 , clk1 , reg240) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid61_inst (reg241 ,
reg242 , reg243 , clk1 , reg244) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid62_inst (reg245 ,
reg246 , reg247 , clk1 , reg248) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid63_inst (reg249 ,
reg250 , reg251 , clk1 , reg252) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid64_inst (reg253 ,
reg254 , reg255 , clk1 , reg256) ;

 assign out1 = (reg4 | reg8 | reg12 | reg16) & (reg20 | reg24 | reg28 | reg32) & (
reg36 | reg40 | reg44 | reg48) & (reg52 | reg56 | reg60 | reg64) & (reg68 | reg72 |

106

reg76 | reg80) & (reg84 | reg88 | reg92 | reg96) & (reg100 | reg104 | reg108 |
reg112) & (reg116 | reg120 | reg124 | reg128) ;
 assign out2 = (reg132 | reg136 | reg140 | reg144) & (reg148 | reg152 | reg156 |
reg160) & (reg164 | reg168 | reg172 | reg176) & (reg180 | reg184 | reg188 | reg192
) & (reg196 | reg200 | reg204 | reg208) & (reg212 | reg216 | reg220 | reg224) & (
reg228 | reg232 | reg236 | reg240) & (reg244 | reg248 | reg252 | reg256) ;

EOL

my $num_of_mux_signals = 0 ;

if ($mux_mode == 2) {
 $num_of_ila_ports = $num_sigs_observed / $mux_mode ;
 $num_of_mux_signals = $num_sigs_observed ; } elsif ($mux_mode == 4) {
 $num_of_ila_ports = $num_sigs_observed / $mux_mode ;
 $num_of_mux_signals = $num_sigs_observed ; } elsif ($mux_mode == 8) {
 $num_of_ila_ports = $num_sigs_observed / $mux_mode ;
 $num_of_mux_signals = $num_sigs_observed ; } else {
 # No MUX is needed
 $num_of_ila_ports = $num_sigs_observed ;
 $num_of_mux_signals =0 ;
}

print "MUX: $num_of_mux_signals\n" ;
print "MUX: $num_of_ila_ports\n" ;
print "MUX: \n" ;
my @sigs_observed ;
my @ila_mux_outs ;
for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 push (@ila_mux_outs , "ila_mux_out$i") ; } for (my $i=1 ; $i <= $num_sigs_observed
; $i++) {
 push (@sigs_observed , "reg$i") ; }

my $sigs_observed_str = join (" , " , @sigs_observed) ; my $ila_mux_outs_str = join (" ,
" , @ila_mux_outs) ; if ($num_of_mux_signals != 0) {
 print FHD <<EOL ;
 // MUXes for the ILA
 wire [DATA_WIDTH - 1 : 0] $ila_mux_outs_str ;
 (* keep_hierarchy = " yes " *) ila_mux # (DATA_WIDTH) ila_mux_inst (debug_mode ,
$sigs_observed_str , $ila_mux_outs_str) ; EOL } print FHD <<EOL ;
 // ILA instance
 ila_0 ila_inst_0 (
 .clk (clk1) , // input wire clk EOL if ($num_of_mux_signals != 0) {
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 my $probe_num = $i-1 ;
 if ($i != $num_of_ila_ports) {
 print FHD " .probe$probe_num ($ila_mux_outs[$probe_num]) , \n" ;
 } else {
 print FHD " .probe$probe_num ($ila_mux_outs[$probe_num]) \n" ;
 }
 }

107

} else {
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 my $probe_num = $i-1 ;
 if ($i != $num_sigs_observed) {
 print FHD " .probe$probe_num ($sigs_observed[$probe_num]) , \n" ;
 } else {
 print FHD " .probe$probe_num ($sigs_observed[$probe_num]) \n" ;
 }
 }
}
print FHD ") ;\n" ;
print FHD "endmodule\n" ;
if ($mux_mode == 2) {
 my @ila_mux_out_ports ;
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 push (@ila_mux_out_ports , "out$i") ;
 }
 my @ila_mux_in_ports ;
 for (my $i=1 ; $i <= $num_sigs_observed ; $i++) {
 push (@ila_mux_in_ports , "in$i") ;
 }
 my $ila_mux_out_ports_str = join (" , " , @ila_mux_out_ports) ;
 my $ila_mux_in_ports_str = join (" , " , @ila_mux_in_ports) ;
 if ($dpr_mode != 1) {
 print FHD <<EOL ;
module ila_mux (mode , $ila_mux_in_ports_str , $ila_mux_out_ports_str) ; EOL
 } else {
 print FHD <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ; EOL
 }
 print FHD <<EOL ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
EOL
 if ($dpr_mode != 1) {
 print FHD <<EOL ;
 input wire mode ;
EOL
 }
 print FHD <<EOL ;
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 if ($dpr_mode != 1) {
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHD " assign out$i = mode ? in" , 2*$i-1 , " : in" , 2*$i , " ;\n" ;
 }
 } else {
 print FHDPR1 <<EOL ;

108

module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR1 " assign out$i = ~in" , 2*$i-1 , " ;\n" ;
 }
 print FHDPR1 <<EOL ;
endmodule
EOL
 print FHDPR2 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR2 " assign out$i = ~in" , 2*$i , " ;\n" ;
 }
 print FHDPR2 <<EOL ;
endmodule
EOL
 }
 print FHD <<EOL ;
endmodule
EOL
} elsif ($mux_mode == 4) {
 my @ila_mux_out_ports ;
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 push (@ila_mux_out_ports , "out$i") ;
 }
 my @ila_mux_in_ports ;
 for (my $i=1 ; $i <= $num_sigs_observed ; $i++) {
 push (@ila_mux_in_ports , "in$i") ;
 }
 my $ila_mux_out_ports_str = join (" , " , @ila_mux_out_ports) ;
 my $ila_mux_in_ports_str = join (" , " , @ila_mux_in_ports) ;
 if ($dpr_mode != 1) {
 print FHD <<EOL ;
module ila_mux (mode , $ila_mux_in_ports_str , $ila_mux_out_ports_str) ; EOL
 } else {
 print FHD <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ; EOL
 }

109

 print FHD <<EOL ;
module ila_mux (mode , $ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
EOL
 if ($dpr_mode != 1) {
 print FHD <<EOL ;
 input wire [1 : 0] mode ;
EOL
 }
 print FHD <<EOL ;
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 if ($dpr_mode != 1) {
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHD " (* keep_hierarchy = \"yes\" *) mux4_mod # (DATA_WIDTH)
mux4_mod_inst$i (mode , in" , 4*$i-3 , " , in" , 4*$i-2 , " , in" , 4*$i-1 , " , in" , 4*$i ,
" , out$i) " , " ;\n" ;
 }
 } else {
 print FHDPR1 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR1 " assign out$i = ~in" , 4*$i-3 , " ;\n" ;
 }
 print FHDPR1 <<EOL ;
endmodule
EOL
 print FHDPR2 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR2 " assign out$i = ~in" , 4*$i-2 , " ;\n" ;
 }
 print FHDPR2 <<EOL ;

110

endmodule
EOL
 print FHDPR3 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR3 " assign out$i = ~in" , 4*$i-1 , " ;\n" ;
 }
 print FHDPR3 <<EOL ;
endmodule
EOL
 print FHDPR4 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR4 " assign out$i = ~in" , 4*$i , " ;\n" ;
 }
 print FHDPR4 <<EOL ;
endmodule
EOL
 }
 print FHD <<EOL ;
endmodule
EOL
 if ($dpr_mode != 1) {
 print FHD <<EOL ;
module mux4_mod (mode , in1 , in2 , in3 , in4 , out1 , out2) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [1 : 0] mode ;
 input [DATA_WIDTH - 1 : 0] in1 , in2 , in3 , in4 ;
 output reg [DATA_WIDTH - 1 : 0] out1 , out2 ;
 // Logic
 always @ (in1 , in2 , in3 , in4 , mode) begin
 case (mode)
 2'b00 : out1 <= in1 ;
 2'b01 : out1 <= in2 ;
 2'b10 : out1 <= in3 ;

111

 default : out1 <= in4 ;
 endcase
 end
endmodule
EOL
 }
} elsif ($mux_mode == 8) {
 my @ila_mux_out_ports ;
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 push (@ila_mux_out_ports , "out$i") ;
 }
 my @ila_mux_in_ports ;
 for (my $i=1 ; $i <= $num_sigs_observed ; $i++) {
 push (@ila_mux_in_ports , "in$i") ;
 }
 my $ila_mux_out_ports_str = join (" , " , @ila_mux_out_ports) ;
 my $ila_mux_in_ports_str = join (" , " , @ila_mux_in_ports) ;
 if ($dpr_mode != 1) {
 print FHD <<EOL ;
module ila_mux (mode , $ila_mux_in_ports_str , $ila_mux_out_ports_str) ; EOL
 } else {
 print FHD <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ; EOL
 }
 print FHD <<EOL ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
EOL
 if ($dpr_mode != 1) {
 print FHD <<EOL ;
 input wire [2:0] mode ;
EOL
 }
 print FHD <<EOL ;
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 if ($dpr_mode != 1) {
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHD " (* keep_hierarchy = \"yes\" *) mux8_mod # (DATA_WIDTH)
mux8_mod_inst$i (mode , in" , 8*$i-7 , " , in" , 8*$i-6 , " , in" , 8*$i-5 , " , in" , 8*$i-4
, " , in" , 8*$i-3 , " , in" , 8*$i-2 , " , in" , 8*$i-1 , " , in" , 8*$i , " , out$i) " , " ;\n" ;
 }
 } else {
 print FHDPR1 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports

112

 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR1 " assign out$i = ~in" , 8*$i-7 , " ;\n" ;
 }
 print FHDPR1 <<EOL ;
endmodule
EOL
 print FHDPR2 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR2 " assign out$i = ~in" , 8*$i-6 , " ;\n" ;
 }
 print FHDPR2 <<EOL ;
endmodule
EOL
 print FHDPR3 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR3 " assign out$i = ~in" , 8*$i-5 , " ;\n" ;
 }
 print FHDPR3 <<EOL ;
endmodule
EOL
 print FHDPR4 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR4 " assign out$i = ~in" , 8*$i-4 , " ;\n" ;

113

 }
 print FHDPR4 <<EOL ;
endmodule
EOL
 print FHDPR5 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR5 " assign out$i = ~in" , 8*$i-3 , " ;\n" ;
 }
 print FHDPR5 <<EOL ;
endmodule
EOL
 print FHDPR6 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR6 " assign out$i = ~in" , 8*$i-2 , " ;\n" ;
 }
 print FHDPR6 <<EOL ;
endmodule
EOL
 print FHDPR7 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR7 " assign out$i = ~in" , 8*$i-1 , " ;\n" ;
 }
 print FHDPR7 <<EOL ;
endmodule
EOL
 print FHDPR8 <<EOL ;
module ila_mux ($ila_mux_in_ports_str , $ila_mux_out_ports_str) ;

114

 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [DATA_WIDTH - 1 : 0] $ila_mux_in_ports_str ;
 output wire [DATA_WIDTH - 1 : 0] $ila_mux_out_ports_str ;
 // Logic
EOL
 for (my $i=1 ; $i <= $num_of_ila_ports ; $i++) {
 print FHDPR8 " assign out$i = ~in" , 8*$i , " ;\n" ;
 }
 print FHDPR8 <<EOL ;
endmodule
EOL
 }
 print FHD <<EOL ;
endmodule
EOL

 if ($dpr_mode != 1) {
 print FHD <<EOL ;
module mux8_mod (mode , in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , out1 , out2) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [2:0] mode ;
 input [DATA_WIDTH - 1 : 0] in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 ;
 output reg [DATA_WIDTH - 1 : 0] out1 , out2 ;
 // Logic
 always @ (in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , mode) begin
 case (mode)
 3'b000 : out1 <= in1 ;
 3'b001 : out1 <= in2 ;
 3'b010 : out1 <= in3 ;
 3'b011 : out1 <= in4 ;
 3'b100 : out1 <= in5 ;
 3'b101 : out1 <= in6 ;
 3'b110 : out1 <= in7 ;
 default : out1 <= in8 ;
 endcase
 end
endmodule
EOL
 }
}
print FHD <<EOL ;
module mid_mod (in1 , in2 , in3 , clk1 , out1) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/Os
 input wire [DATA_WIDTH - 1 : 0] in1 , in2 , in3 ;
 input wire clk1 ;

115

 output wire [DATA_WIDTH - 1 : 0] out1 ;
 // Logic
 genvar i ;
 for (i=0 ; i<DATA_WIDTH ; i=i+1) begin: LEAF_GEN
 leaf_mod leaf_inst (in1[i] , in2[i] , in3[i] , out1[i]) ;
 end
endmodule

module leaf_mod (in1 , in2 , clk1 , out1) ;
 // I/Os
 input wire in1 , in2 , clk1 ;
 output reg out1 ;
 // Internal signals
 (* keep = " true " *) reg r1 , r2 , r3 ;
 // Logic
 always @ (posedge clk1) begin
 r1 <= in1 ;
 r2 <= in2 ;
 r3 <= r1 | r2 ;
 out1 <= r3 ;
 end
endmodule
EOL

print FHV <<EOL ;
project details
set DATA_WIDTH $DATA_WIDTH
set num_of_ila_ports 3
set project_name \"$project_name\"
set project_path \"$project_path\"

clean project (if exists) , and create a new one set to_be_removed [glob -
nocomplain $project_path/debug_*] if { \$to_be_removed != \"\"} {
 file delete -force {*}[glob -nocomplain $project_path/debug_*] } set to_be_removed
[glob -nocomplain $project_path/debug_*] if { \$to_be_removed != \"\" } {
 file delete -force {*}[glob -nocomplain $project_path/vivado*] } create_project
\${project_name} \${project_path} -part xc7z020clg484-1 set_property board_part
xilinx.com:zc702:part0:1.2 [current_project]

file mkdir \"\${project_path}/\${project_name}.srcs/sources_1/new\"

create the dut file
file copy $dut_file \${project_path}/\${project_name}.srcs/sources_1/new/dut.v

add files and update file lists
add_files \"\${project_path}/\${project_name}.srcs/sources_1/new/dut.v\"
update_compile_order -fileset sources_1
update_compile_order -fileset sim_1
set_property generic \"DATA_WIDTH=$DATA_WIDTH\" [current_fileset]

create ip

116

create_ip -name ila -vendor xilinx.com -library ip -version 5.1 -module_name ila_0 EOL

my $ila_cmd ;
for (my $i=$num_of_ila_ports-1 ; $i >= 0 ; $i--) {
 $ila_cmd .= "CONFIG.C_PROBE${i}_WIDTH $DATA_WIDTH " ; } print $ila_cmd , "\n" ;

print FHV <<EOL ;
set_property -dict [list $ila_cmd CONFIG.C_NUM_OF_PROBES $num_of_ila_ports]
[get_ips ila_0] generate_target {instantiation_template} [get_files
\"\${project_path}/\${project_name}.srcs/sources_1/ip/ila_0/ila_0.xci\"]
update_compile_order -fileset sources_1

generate_target all [get_files
\"\${project_path}/\${project_name}.srcs/sources_1/ip/ila_0/ila_0.xci\"]

set_property generate_synth_checkpoint false [get_files
\${project_path}/\${project_name}.srcs/sources_1/ip/ila_0/ila_0.xci]
generate_target all [get_files
\${project_path}/\${project_name}.srcs/sources_1/ip/ila_0/ila_0.xci]
launch_runs synth_1 -jobs 4
wait_on_run synth_1

open_run synth_1 -name synth_1
report_utilization -file \${project_path}/utilization.rpt -hierarchical EOL

close (FHV) ;
close (FHD) ;
}
}
}

if ($dpr_mode == 1 && $mux_mode == 2) {
 close (FHDPR1) ;
 close (FHDPR2) ;
} elsif ($dpr_mode == 1 && $mux_mode == 4) {
 close (FHDPR1) ;
 close (FHDPR2) ;
 close (FHDPR3) ;
 close (FHDPR4) ;
} elsif ($dpr_mode == 1 && $mux_mode == 8) {
 close (FHDPR1) ;
 close (FHDPR2) ;
 close (FHDPR3) ;
 close (FHDPR4) ;
 close (FHDPR5) ;
 close (FHDPR6) ;
 close (FHDPR7) ;
 close (FHDPR8) ;
}

117

B.3. Verilog test case to use for debugging on FPGA using

MUX’es and compare it with the behavior of the proposed

debugging flow using DPR

`timescale 1ns / 1ps

module dut (debug_mode , in1 , in2 , in3 , in4 , in5 , in6 , clk1 , out1 , out2) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input wire debug_mode ;
 input wire [DATA_WIDTH - 1 : 0] in1 , in2 , in3 , in4 , in5 , in6 ;
 input wire clk1 ;
 output wire [DATA_WIDTH - 1 : 0] out1 , out2 ;
 // Internal registers (to be observed)
 // 256 registers
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg1 , reg2 , reg3 , reg5 , reg6 , reg7
, reg9 , reg10 , reg11 , reg13 , reg14 , reg15 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg17 , reg18 , reg19 , reg21 , reg22 ,
reg23 , reg25 , reg26 , reg27 , reg29 , reg30 , reg31 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg33 , reg34 , reg35 , reg37 , reg38 ,
reg39 , reg41 , reg42 , reg43 , reg45 , reg46 , reg47 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg49 , reg50 , reg51 , reg53 , reg54 ,
reg55 , reg57 , reg58 , reg59 , reg61 , reg62 , reg63 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg65 , reg66 , reg67 , reg69 , reg70 ,
reg71 , reg73 , reg74 , reg75 , reg77 , reg78 , reg79 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg81 , reg82 , reg83 , reg85 , reg86 ,
reg87 , reg89 , reg90 , reg91 , reg93 , reg94 , reg95 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg97 , reg98 , reg99 , reg101 , reg102 ,
reg103 , reg105 , reg106 , reg107 , reg109 , reg110 , reg111 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg113 , reg114 , reg115 , reg117 , reg118 ,
reg119 , reg121 , reg122 , reg123 , reg125 , reg126 , reg127 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg129 , reg130 , reg131 , reg133 , reg134 ,
reg135 , reg137 , reg138 , reg139 , reg141 , reg142 , reg143 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg145 , reg146 , reg147 , reg149 , reg150 ,
reg151 , reg153 , reg154 , reg155 , reg157 , reg158 , reg159 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg161 , reg162 , reg163 , reg165 , reg166 ,
reg167 , reg169 , reg170 , reg171 , reg173 , reg174 , reg175 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg177 , reg178 , reg179 , reg181 , reg182 ,
reg183 , reg185 , reg186 , reg187 , reg189 , reg190 , reg191 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg193 , reg194 , reg195 , reg197 , reg198 ,
reg199 , reg201 , reg202 , reg203 , reg205 , reg206 , reg207 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg209 , reg210 , reg211 , reg213 , reg214 ,
reg215 , reg217 , reg218 , reg219 , reg221 , reg222 , reg223 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg225 , reg226 , reg227 , reg229 , reg230 ,
reg231 , reg233 , reg234 , reg235 , reg237 , reg238 , reg239 ;
 (* keep = " true " *) reg [DATA_WIDTH - 1 : 0] reg241 , reg242 , reg243 , reg245 , reg246 ,
reg247 , reg249 , reg250 , reg251 , reg253 , reg254 , reg255 ;

 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg4 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg8 ;

118

 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg12 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg16 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg20 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg24 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg28 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg32 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg36 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg40 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg44 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg48 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg52 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg56 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg60 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg64 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg68 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg72 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg76 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg80 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg84 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg88 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg92 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg96 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg100 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg104 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg108 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg112 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg116 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg120 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg124 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg128 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg132 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg136 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg140 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg144 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg148 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg152 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg156 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg160 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg164 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg168 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg172 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg176 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg180 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg184 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg188 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg192 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg196 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg200 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg204 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg208 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg212 ;

119

 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg216 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg220 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg224 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg228 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg232 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg236 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg240 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg244 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg248 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg252 ;
 (* keep = " true " *) wire [DATA_WIDTH - 1 : 0] reg256 ;

 // Logic of the registers to be observed
 always @ (posedge clk1) begin
 reg1 <= in1 | in2 ;
 reg2 <= in1 & in2 ;
 reg3 <= in1 ^ in2 ;
 reg5 <= in1 & in3 ;
 reg6 <= in1 ^ in3 ;
 reg7 <= in1 | in4 ;
 reg9 <= in1 ^ in4 ;
 reg10 <= in1 | in6 ;
 reg11 <= in1 & in6 ;
 reg13 <= in1 | in2 ;
 reg14 <= in1 & in6 ;
 reg15 <= in3 ^ in2 ;

 reg17 <= in5 | in2 ;
 reg18 <= in5 | in2 ;
 reg19 <= in5 | in2 ;
 reg21 <= in5 & in2 ;
 reg22 <= in5 | in2 ;
 reg23 <= in5 | in2 ;
 reg25 <= in5 & in2 ;
 reg26 <= in5 & in2 ;
 reg27 <= in5 | in2 ;
 reg29 <= in5 & in2 ;
 reg30 <= in5 & in2 ;
 reg31 <= in5 & in2 ;

 reg33 <= in6 | in2 ;
 reg34 <= in6 | in2 ;
 reg35 <= in6 | in2 ;
 reg37 <= in6 & in2 ;
 reg38 <= in6 | in2 ;
 reg39 <= in6 | in2 ;
 reg41 <= in6 & in2 ;
 reg42 <= in6 & in2 ;
 reg43 <= in6 | in2 ;
 reg45 <= in6 & in2 ;
 reg46 <= in6 & in2 ;
 reg47 <= in6 & in2 ;

120

 reg49 <= in1 ^ in2 ;
 reg50 <= in1 ^ in2 ;
 reg51 <= in1 ^ in2 ;
 reg53 <= in4 ^ in2 ;
 reg54 <= in4 ^ in2 ;
 reg55 <= in4 & in2 ;
 reg57 <= in4 & in2 ;
 reg58 <= in4 & in2 ;
 reg59 <= in4 | in2 ;
 reg61 <= in4 | in2 ;
 reg62 <= in4 | in2 ;
 reg63 <= in4 | in2 ;

 reg65 <= in4 | in3 ;
 reg66 <= in4 | in3 ;
 reg67 <= in4 | in3 ;

 reg69 <= in3 | in2 ;
 reg70 <= in3 | in2 ;
 reg71 <= in3 | in2 ;

 reg73 <= in3 & in4 ;
 reg74 <= in3 & in4 ;
 reg75 <= in3 & in4 ;

 reg77 <= in3 | in5 ;
 reg78 <= in3 | in5 ;
 reg79 <= in3 | in5 ;

 reg81 <= in3 | in6 ;
 reg82 <= in3 | in6 ;
 reg83 <= in3 | in6 ;

 reg85 <= in4 | in5 ;
 reg86 <= in4 | in5 ;
 reg87 <= in4 | in5 ;

 reg89 <= in4 & in5 ;
 reg90 <= in4 & in5 ;
 reg91 <= in4 & in5 ;

 reg93 <= in4 ^ in5 ;
 reg94 <= in4 ^ in5 ;
 reg95 <= in4 ^ in5 ;

 reg97 <= in4 | in5 ;
 reg98 <= in4 & in5 ;
 reg99 <= in4 ^ in5 ;

 reg101 <= in4 & in2 ;
 reg102 <= in4 & in1 ;

121

 reg103 <= in4 ^ in3 ;

 reg105 <= in5 ^ in6 ;
 reg106 <= in5 & in6 ;
 reg107 <= in5 & in6 ;

 reg109 <= in5 | in6 ;
 reg110 <= in5 & in6 ;
 reg111 <= in5 ^ in6 ;

 reg113 <= in5 ^ in2 ;
 reg114 <= in5 ^ in2 ;
 reg115 <= in5 ^ in2 ;

 reg117 <= in1 & in2 ;
 reg118 <= in1 & in2 ;
 reg119 <= in1 ^ in2 ;

 reg121 <= in3 | in2 ;
 reg122 <= in1 | in4 ;
 reg123 <= in1 | in5 ;

 reg125 <= in1 ^ in3 ;
 reg126 <= in1 ^ in4 ;
 reg127 <= in1 ^ in5 ;

 reg129 <= in1 | in4 ;
 reg130 <= in1 | in5 ;
 reg131 <= in1 | in6 ;

 reg133 <= in4 | in5 ;
 reg134 <= in2 | in6 ;
 reg135 <= in3 | in5 ;

 reg137 <= in1 & in5 ;
 reg138 <= in2 ^ in6 ;
 reg139 <= in4 | in4 ;

 reg141 <= in1 ^ in4 ;
 reg142 <= in2 & in5 ;
 reg143 <= in4 | in6 ;

 reg145 <= in1 | in2 ;
 reg146 <= in6 & in2 ;
 reg147 <= in4 ^ in2 ;

 reg149 <= in1 & in2 ;
 reg150 <= in2 ^ in5 ;
 reg151 <= in1 | in6 ;

 reg153 <= in1 ;
 reg154 <= in2 ;

122

 reg155 <= in3 ;

 reg157 <= in4 ;
 reg158 <= in5 ;
 reg159 <= in6 ;

 reg161 <= in1 ;
 reg162 <= in2 ;
 reg163 <= in4 ;

 reg165 <= in1 ;
 reg166 <= in2 ;
 reg167 <= in5 ;

 reg169 <= in1 ;
 reg170 <= in2 ;
 reg171 <= in6 ;

 reg173 <= in1 ;
 reg174 <= in3 ;
 reg175 <= in4 ;

 reg177 <= in1 ;
 reg178 <= in3 | in2 ;
 reg179 <= in5 | in2 ;

 reg181 <= in1 ;
 reg182 <= in3 ;
 reg183 <= in5 ;

 reg185 <= in1 & in2 ;
 reg186 <= in3 ;
 reg187 <= in6 ;

 reg189 <= in1 ;
 reg190 <= in3 ;
 reg191 <= in6 ;

 reg193 <= in1 | in2 ;
 reg194 <= in4 & in2 ;
 reg195 <= in6 ^ in2 ;

 reg197 <= in1 ;
 reg198 <= in4 ;
 reg199 <= in6 ;

 reg201 <= in1 ;
 reg202 <= in5 ^ in2 ;
 reg203 <= in6 & in3 ;

 reg205 <= in1 ;
 reg206 <= in5 ;

123

 reg207 <= in6 ;

 reg209 <= in2 ;
 reg210 <= in3 ;
 reg211 <= in4 ;

 reg213 <= in2 ;
 reg214 <= in3 ;
 reg215 <= in5 ;

 reg217 <= in2 ;
 reg218 <= in3 ;
 reg219 <= in6 ;

 reg221 <= in3 ;
 reg222 <= in4 ;
 reg223 <= in5 ;

 reg225 <= in3 ;
 reg226 <= in4 ;
 reg227 <= in6 ;

 reg229 <= in3 | in2 ;
 reg230 <= in4 | in2 ;
 reg231 <= in6 | in2 ;

 reg233 <= in3 & in2 ;
 reg234 <= in4 & in2 ;
 reg235 <= in6 & in2 ;

 reg237 <= in3 ^ in2 ;
 reg238 <= in4 ^ in2 ;
 reg239 <= in6 ^ in2 ;

 reg241 <= in3 & in2 ;
 reg242 <= in4 & in2 ;
 reg243 <= in5 & in2 ;

 reg245 <= in3 | in1 ;
 reg246 <= in4 | in1 ;
 reg247 <= in5 | in1 ;

 reg249 <= in3 | in2 ;
 reg250 <= in4 | in1 ;
 reg251 <= in5 | in6 ;

 reg253 <= in3 & in2 ;
 reg254 <= in4 & in6 ;
 reg255 <= in5 & in2 ;
 end

 // Logic

124

 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid1_inst (reg1 , reg2 , reg3 ,
clk1 , reg4) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid2_inst (reg5 , reg6 , reg7 ,
clk1 , reg8) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid3_inst (reg9 , reg10 , reg11
, clk1 , reg12) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid4_inst (reg13 , reg14 ,
reg15 , clk1 , reg16) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid5_inst (reg17 , reg18 ,
reg19 , clk1 , reg20) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid6_inst (reg21 , reg22 ,
reg23 , clk1 , reg24) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid7_inst (reg25 , reg26 ,
reg27 , clk1 , reg28) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid8_inst (reg29 , reg30 ,
reg31 , clk1 , reg32) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid9_inst (reg33 , reg34 ,
reg35 , clk1 , reg36) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid10_inst (reg37 , reg38 ,
reg39 , clk1 , reg40) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid11_inst (reg41 , reg42 ,
reg43 , clk1 , reg44) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid12_inst (reg45 , reg46 ,
reg47 , clk1 , reg48) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid13_inst (reg49 , reg50 ,
reg51 , clk1 , reg52) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid14_inst (reg53 , reg54 ,
reg55 , clk1 , reg56) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid15_inst (reg57 , reg58 ,
reg59 , clk1 , reg60) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid16_inst (reg61 , reg62 ,
reg63 , clk1 , reg64) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid17_inst (reg65 , reg66 ,
reg67 , clk1 , reg68) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid18_inst (reg69 , reg70 ,
reg71 , clk1 , reg72) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid19_inst (reg73 , reg74 ,
reg75 , clk1 , reg76) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid20_inst (reg77 , reg78 ,
reg79 , clk1 , reg80) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid21_inst (reg81 , reg82 ,
reg83 , clk1 , reg84) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid22_inst (reg85 , reg86 ,
reg87 , clk1 , reg88) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid23_inst (reg89 , reg90 ,
reg91 , clk1 , reg92) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid24_inst (reg93 , reg94 ,
reg95 , clk1 , reg96) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid25_inst (reg97 , reg98 ,
reg99 , clk1 , reg100) ;

125

 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid26_inst (reg101 , reg102 ,
reg103 , clk1 , reg104) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid27_inst (reg105 , reg106 ,
reg107 , clk1 , reg108) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid28_inst (reg109 , reg110 ,
reg111 , clk1 , reg112) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid29_inst (reg113 , reg114 ,
reg115 , clk1 , reg116) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid30_inst (reg117 , reg118 ,
reg119 , clk1 , reg120) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid31_inst (reg121 , reg122 ,
reg123 , clk1 , reg124) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid32_inst (reg125 , reg126 ,
reg127 , clk1 , reg128) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid33_inst (reg129 , reg130 ,
reg131 , clk1 , reg132) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid34_inst (reg133 , reg134 ,
reg135 , clk1 , reg136) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid35_inst (reg137 , reg138 ,
reg139 , clk1 , reg140) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid36_inst (reg141 , reg142 ,
reg143 , clk1 , reg144) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid37_inst (reg145 , reg146 ,
reg147 , clk1 , reg148) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid38_inst (reg149 , reg150 ,
reg151 , clk1 , reg152) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid39_inst (reg153 , reg154 ,
reg155 , clk1 , reg156) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid40_inst (reg157 , reg158 ,
reg159 , clk1 , reg160) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid41_inst (reg161 , reg162 ,
reg163 , clk1 , reg164) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid42_inst (reg165 , reg166 ,
reg167 , clk1 , reg168) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid43_inst (reg169 , reg170 ,
reg171 , clk1 , reg172) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid44_inst (reg173 , reg174 ,
reg175 , clk1 , reg176) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid45_inst (reg177 , reg178 ,
reg179 , clk1 , reg180) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid46_inst (reg181 , reg182 ,
reg183 , clk1 , reg184) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid47_inst (reg185 , reg186 ,
reg187 , clk1 , reg188) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid48_inst (reg189 , reg190 ,
reg191 , clk1 , reg192) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid49_inst (reg193 , reg194 ,
reg195 , clk1 , reg196) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid50_inst (reg197 , reg198 ,
reg199 , clk1 , reg200) ;

126

 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid51_inst (reg201 , reg202 ,
reg203 , clk1 , reg204) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid52_inst (reg205 , reg206 ,
reg207 , clk1 , reg208) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid53_inst (reg209 , reg210 ,
reg211 , clk1 , reg212) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid54_inst (reg213 , reg214 ,
reg215 , clk1 , reg216) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid55_inst (reg217 , reg218 ,
reg219 , clk1 , reg220) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid56_inst (reg221 , reg222 ,
reg223 , clk1 , reg224) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid57_inst (reg225 , reg226 ,
reg227 , clk1 , reg228) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid58_inst (reg229 , reg230 ,
reg231 , clk1 , reg232) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid59_inst (reg233 , reg234 ,
reg235 , clk1 , reg236) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid60_inst (reg237 , reg238 ,
reg239 , clk1 , reg240) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid61_inst (reg241 , reg242 ,
reg243 , clk1 , reg244) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid62_inst (reg245 , reg246 ,
reg247 , clk1 , reg248) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid63_inst (reg249 , reg250 ,
reg251 , clk1 , reg252) ;
 (* keep_hierarchy = " yes " *) mid_mod # (DATA_WIDTH) mid64_inst (reg253 , reg254 ,
reg255 , clk1 , reg256) ;

 assign out1 = (reg4 | reg8 | reg12 | reg16) & (reg20 | reg24 | reg28 | reg32) & (reg36 |
reg40 | reg44 | reg48) & (reg52 | reg56 | reg60 | reg64) & (reg68 | reg72 | reg76 | reg80
) & (reg84 | reg88 | reg92 | reg96) & (reg100 | reg104 | reg108 | reg112) & (reg116 |
reg120 | reg124 | reg128) ;
 assign out2 = (reg132 | reg136 | reg140 | reg144) & (reg148 | reg152 | reg156 | reg160)
& (reg164 | reg168 | reg172 | reg176) & (reg180 | reg184 | reg188 | reg192) & (reg196
| reg200 | reg204 | reg208) & (reg212 | reg216 | reg220 | reg224) & (reg228 | reg232 |
reg236 | reg240) & (reg244 | reg248 | reg252 | reg256) ;

 // MUXes for the ILA
 wire [DATA_WIDTH - 1 : 0] ila_mux_out1 , ila_mux_out2 , ila_mux_out3 , ila_mux_out4 ,
ila_mux_out5 , ila_mux_out6 , ila_mux_out7 , ila_mux_out8 , ila_mux_out9 , ila_mux_out10 ,
ila_mux_out11 , ila_mux_out12 , ila_mux_out13 , ila_mux_out14 , ila_mux_out15 ,
ila_mux_out16 ;
 (* keep_hierarchy = " yes " *) ila_mux # (DATA_WIDTH) ila_mux_inst (debug_mode , reg1
, reg2 , reg3 , reg4 , reg5 , reg6 , reg7 , reg8 , reg9 , reg10 , reg11 , reg12 , reg13 , reg14 , reg15
, reg16 , reg17 , reg18 , reg19 , reg20 , reg21 , reg22 , reg23 , reg24 , reg25 , reg26 , reg27 ,
reg28 , reg29 , reg30 , reg31 , reg32 , reg33 , reg34 , reg35 , reg36 , reg37 , reg38 , reg39 ,
reg40 , reg41 , reg42 , reg43 , reg44 , reg45 , reg46 , reg47 , reg48 , reg49 , reg50 , reg51 ,
reg52 , reg53 , reg54 , reg55 , reg56 , reg57 , reg58 , reg59 , reg60 , reg61 , reg62 , reg63 ,
reg64 , reg65 , reg66 , reg67 , reg68 , reg69 , reg70 , reg71 , reg72 , reg73 , reg74 , reg75 ,
reg76 , reg77 , reg78 , reg79 , reg80 , reg81 , reg82 , reg83 , reg84 , reg85 , reg86 , reg87 ,
reg88 , reg89 , reg90 , reg91 , reg92 , reg93 , reg94 , reg95 , reg96 , reg97 , reg98 , reg99 ,

127

reg100 , reg101 , reg102 , reg103 , reg104 , reg105 , reg106 , reg107 , reg108 , reg109 , reg110
, reg111 , reg112 , reg113 , reg114 , reg115 , reg116 , reg117 , reg118 , reg119 , reg120 ,
reg121 , reg122 , reg123 , reg124 , reg125 , reg126 , reg127 , reg128 , ila_mux_out1 ,
ila_mux_out2 , ila_mux_out3 , ila_mux_out4 , ila_mux_out5 , ila_mux_out6 , ila_mux_out7 ,
ila_mux_out8 , ila_mux_out9 , ila_mux_out10 , ila_mux_out11 , ila_mux_out12 ,
ila_mux_out13 , ila_mux_out14 , ila_mux_out15 , ila_mux_out16) ;
 // ILA instance
 ila_0 ila_inst_0 (
 .clk (clk1) , // input wire clk
 .probe0 (ila_mux_out1) ,
 .probe1 (ila_mux_out2) ,
 .probe2 (ila_mux_out3) ,
 .probe3 (ila_mux_out4) ,
 .probe4 (ila_mux_out5) ,
 .probe5 (ila_mux_out6) ,
 .probe6 (ila_mux_out7) ,
 .probe7 (ila_mux_out8) ,
 .probe8 (ila_mux_out9) ,
 .probe9 (ila_mux_out10) ,
 .probe10 (ila_mux_out11) ,
 .probe11 (ila_mux_out12) ,
 .probe12 (ila_mux_out13) ,
 .probe13 (ila_mux_out14) ,
 .probe14 (ila_mux_out15) ,
 .probe15 (ila_mux_out16)
) ;
endmodule
module ila_mux (mode , in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , in9 , in10 , in11 , in12 , in13 ,
in14 , in15 , in16 , in17 , in18 , in19 , in20 , in21 , in22 , in23 , in24 , in25 , in26 , in27 , in28 ,
in29 , in30 , in31 , in32 , in33 , in34 , in35 , in36 , in37 , in38 , in39 , in40 , in41 , in42 , in43 ,
in44 , in45 , in46 , in47 , in48 , in49 , in50 , in51 , in52 , in53 , in54 , in55 , in56 , in57 , in58 ,
in59 , in60 , in61 , in62 , in63 , in64 , in65 , in66 , in67 , in68 , in69 , in70 , in71 , in72 , in73 ,
in74 , in75 , in76 , in77 , in78 , in79 , in80 , in81 , in82 , in83 , in84 , in85 , in86 , in87 , in88 ,
in89 , in90 , in91 , in92 , in93 , in94 , in95 , in96 , in97 , in98 , in99 , in100 , in101 , in102 , in103
, in104 , in105 , in106 , in107 , in108 , in109 , in110 , in111 , in112 , in113 , in114 , in115 ,
in116 , in117 , in118 , in119 , in120 , in121 , in122 , in123 , in124 , in125 , in126 , in127 , in128
, out1 , out2 , out3 , out4 , out5 , out6 , out7 , out8 , out9 , out10 , out11 , out12 , out13 ,
out14 , out15 , out16) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input wire [2:0] mode ;
 input [DATA_WIDTH - 1 : 0] in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , in9 , in10 , in11 , in12 ,
in13 , in14 , in15 , in16 , in17 , in18 , in19 , in20 , in21 , in22 , in23 , in24 , in25 , in26 , in27 ,
in28 , in29 , in30 , in31 , in32 , in33 , in34 , in35 , in36 , in37 , in38 , in39 , in40 , in41 , in42 ,
in43 , in44 , in45 , in46 , in47 , in48 , in49 , in50 , in51 , in52 , in53 , in54 , in55 , in56 , in57 ,
in58 , in59 , in60 , in61 , in62 , in63 , in64 , in65 , in66 , in67 , in68 , in69 , in70 , in71 , in72 ,
in73 , in74 , in75 , in76 , in77 , in78 , in79 , in80 , in81 , in82 , in83 , in84 , in85 , in86 , in87 ,
in88 , in89 , in90 , in91 , in92 , in93 , in94 , in95 , in96 , in97 , in98 , in99 , in100 , in101 , in102 ,
in103 , in104 , in105 , in106 , in107 , in108 , in109 , in110 , in111 , in112 , in113 , in114 , in115

128

, in116 , in117 , in118 , in119 , in120 , in121 , in122 , in123 , in124 , in125 , in126 , in127 ,
in128 ;
 output wire [DATA_WIDTH - 1 : 0] out1 , out2 , out3 , out4 , out5 , out6 , out7 , out8 , out9 ,
out10 , out11 , out12 , out13 , out14 , out15 , out16 ;
 // Logic
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst1 (mode , in1 ,
in2 , in3 , in4 , in5 , in6 , in7 , in8 , out1) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst2 (mode , in9 ,
in10 , in11 , in12 , in13 , in14 , in15 , in16 , out2) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst3 (mode , in17
, in18 , in19 , in20 , in21 , in22 , in23 , in24 , out3) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst4 (mode , in25
, in26 , in27 , in28 , in29 , in30 , in31 , in32 , out4) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst5 (mode , in33
, in34 , in35 , in36 , in37 , in38 , in39 , in40 , out5) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst6 (mode , in41
, in42 , in43 , in44 , in45 , in46 , in47 , in48 , out6) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst7 (mode , in49
, in50 , in51 , in52 , in53 , in54 , in55 , in56 , out7) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst8 (mode , in57
, in58 , in59 , in60 , in61 , in62 , in63 , in64 , out8) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst9 (mode , in65
, in66 , in67 , in68 , in69 , in70 , in71 , in72 , out9) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst10 (mode ,
in73 , in74 , in75 , in76 , in77 , in78 , in79 , in80 , out10) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst11 (mode ,
in81 , in82 , in83 , in84 , in85 , in86 , in87 , in88 , out11) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst12 (mode ,
in89 , in90 , in91 , in92 , in93 , in94 , in95 , in96 , out12) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst13 (mode ,
in97 , in98 , in99 , in100 , in101 , in102 , in103 , in104 , out13) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst14 (mode ,
in105 , in106 , in107 , in108 , in109 , in110 , in111 , in112 , out14) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst15 (mode ,
in113 , in114 , in115 , in116 , in117 , in118 , in119 , in120 , out15) ;
 (* keep_hierarchy = " yes " *) mux8_mod # (DATA_WIDTH) mux8_mod_inst16 (mode ,
in121 , in122 , in123 , in124 , in125 , in126 , in127 , in128 , out16) ; endmodule
module mux8_mod (mode , in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , out1 , out2) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/O ports
 input [2:0] mode ;
 input [DATA_WIDTH - 1 : 0] in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 ;
 output reg [DATA_WIDTH - 1 : 0] out1 , out2 ;
 // Logic
 always @ (in1 , in2 , in3 , in4 , in5 , in6 , in7 , in8 , mode) begin
 case (mode)
 3'b000 : out1 <= in1 ;
 3'b001 : out1 <= in2 ;
 3'b010 : out1 <= in3 ;
 3'b011 : out1 <= in4 ;

129

 3'b100 : out1 <= in5 ;
 3'b101 : out1 <= in6 ;
 3'b110 : out1 <= in7 ;
 default : out1 <= in8 ;
 endcase
 end
endmodule
module mid_mod (in1 , in2 , in3 , clk1 , out1) ;
 // Parameters
 parameter DATA_WIDTH = 1 ;
 // I/Os
 input wire [DATA_WIDTH - 1 : 0] in1 , in2 , in3 ;
 input wire clk1 ;
 output wire [DATA_WIDTH - 1 : 0] out1 ;
 // Logic
 genvar i ;
 for (i=0 ; i<DATA_WIDTH ; i=i+1) begin: LEAF_GEN
 leaf_mod leaf_inst (in1[i] , in2[i] , in3[i] , out1[i]) ;
 end
endmodule

module leaf_mod (in1 , in2 , clk1 , out1) ;
 // I/Os
 input wire in1 , in2 , clk1 ;
 output reg out1 ;
 // Internal signals
 (* keep = " true " *) reg r1 , r2 , r3 ;
 // Logic
 always @ (posedge clk1) begin
 r1 <= in1 ;
 r2 <= in2 ;
 r3 <= r1 | r2 ;
 out1 <= r3 ;
 end
endmodule

 أ

 ملخصال

تشكيل عادة (بإFPGA) مصفوفات البوابات المنطقية القابلة للبرمجة(على DPR) التشكيل الجزئى الديناميكىيسمح إعادة

م القابلة بعض التصميم في وقت التشغيل بينما يستمر باقي التصميم في العمل. هذه الفئة من التصاميم تسمى التصامي
(في SDR)ٍ (. هذه الميزة تسمح للمصممين لبناء أنظمة معقدة مثل نظام الراديو المعرف برمجيا DRS) لاعادة التكوين

ت جديدة (، هناك تحدياDPR) التشكيل الجزئى الديناميكىتي توفرها إعادة مساحة مناسبة. على الرغم من المرونة ال

 ثابتة.(مقارنة مع الانظمة الDPR) التشكيل الجزئى الديناميكىلتصميم والتحقق من التصاميم التي تستخدم أسلوب

جية الجديدة مع (. تتعامل المنهDPR) التشكيل الجزئى الديناميكى، يتم تقديم منهجية تحقق جديدة لاعادة في هذه الرسالة

وحدات مثل ضمان التوصيلات الصحيحة لمنافذ ال حالات(و DPR) التشكيل الجزئى الديناميكىالمنطق المحدد لاعادة

لبوابات (على مصفوفات اRR(التي تشترك في نفس المنطقة القابلة لاعادة البرمجة)RMsالقابلة لإعادة التهيئة)

 عزل الوحدات (، انتظار إجراء العمليات الحسابية على وحدة نمطية قبل إعادة تشكيلها،FPGAلبرمجة)المنطقية القابلة ل

ة التشكيل. يتم عملية إعاد القابلة لإعادة التكوين أثناء عملية إعادة التكوين، وتهيئة الوحدة القابلة لإعادة التكوين بعد اتمام
ديد وظائفه (من خلال تحABVباستخدام التحقق القائم على التوكيد) (DPR) التشكيل الجزئى الديناميكىالتحقق من منطق

 (، ثم صك التصميم مع هذه الخصائص ، ثم يمكن التحقق من هذه الخصائص باستخدامSVAباستخدام خصائص تأكيد)

ا البحث . كما يقدم هذ(DPR) التشكيل الجزئى الديناميكى منطق عدم صحةالمحاكاة أو الطرق الرسمية لإثبات صحة أو

 .(DRS) القابلة لاعادة التشكيل تصاميملل (CDC)احتياز مجال الساعات تقديراً آليا يقترن بالتحقق من سجلات

يقات التي تؤدي لتقليل تكلفة تصميم التطب (DPR) التشكيل الجزئى الديناميكى توضح هذه الرسالة أيضًا قوة استخدام تقنية

. يعد (FPGAمصفوفات البوابات المنطقية القابلة للبرمجة) على مثل تصحيح أخطاء على مدا الوقت منطق الرقميغير الت

إلى (مهمة صعبة بسبب الوصول المحدودFPGAمصفوفات البوابات المنطقية القابلة للبرمجة)على خطاءالأ تصحيح

ت المنطقية مصفوفات البواباعلى الإشارات الداخلية للتصميم. يقوم محلل المنطق المدمج بتحسين إمكانية رصد إشارات
 ، (FPGAمجة)مصفوفات البوابات المنطقية القابلة للبرعلى . يتم تنفيذ هذه المحلل على موارد (FPGAالقابلة للبرمجة)

محلل بسبب تخدم كتل الذاكرة المضمنة كمخازن تتبع ، لذلك يمكن ملاحظة عدد محدود من الإشارات باستخدام هذه الوتس
ي هذه فإعادة تركيب كل التصميم وتصميمه وتوجيهه. نقترح تبعةالموارد. يتطلب تغيير مجموعة الإشارات المت لةق
ة الإشارات لتغيير مجموع (FPGAات المنطقية القابلة للبرمجة)مصفوفات البواب خطاءالأمنهجية جديدة لتصحيح رسالةال

رحة نهجية المقتالتي يجب مراعاتها في وقت التشغيل بشكل ديناميكي ، وبالتالي تقليل الوقت اللازم للتصحيح. تستخدم الم
التشكيل إعادة شئ (للتبديل ديناميكياً بين مجموعات مختلفة من الإشارات. ينDPR) التشكيل الجزئى الديناميكىتقنية إعادة

ي (لتوجيه كل مجموعة من الإشارات إلى محلل منطقRMوحدة قابلة لإعادة التكوين) (DPR) الجزئى الديناميكى

شارات المراد ، حيث وجد أن تغيير مجموعة الإ Xilinx FPGAمضمن. تم توضيح النهج المقترح باستخدام أدوات

ة أقل هجية المقترح. إن المساحة الزائدة للمنالمنطقة القابلة لإعادة التكوينمراقبتها يتطلب بضع ثوان فقط لإعادة برمجة
ن متسمح لوحدة التوجيه أن تستخدم فقط المخازن المؤقتة لتوصيل مجموعة DPRمن الطرق التقليدية الأخرى لأن

 مج.الإشارات إلى محلل المنطق المد

 ب

3

 اسلام اسامة احمد منير مصطفى :دسـمهن
 1990\3\10 تاريخ الميلاد:

 مصرى الجنسية:
 2013\10\1 تاريخ التسجيل:

 تاريخ المنح:
 هندسة الإلكترونيات والإتصالات الكهربية القسم:
 العلوم ماجستير الدرجة:

 المشرفون:
 نادر محي الدينا.د. أحمد
 د. حسن مصطفى حسن

 الممتحنون:
)الممتحن الخارجي(أ.د.
)الممتحن الداخلي(أ.د
)المشرف الرئيسي(أ.د.
)عضو(أ.د.

 عنوان الرسالة:
منطقية مصفوفات البوابات الى لصحيح عتو تنفيذه لل إعادة التشكيل الجزئي الديناميكى التحقق من

 القابلة للبرمجة

 الكلمات الدالة:
نظام الراديو المعرف برمجيا، مصفوفات التحقق، التصحيح،إعادة التشكيل الجزئي الديناميكى،

 البوابات المنطقية القابلة للبرمجة، النظم متغيرة التشًكل.

 7) :رسالةملخـص ال
 اسطر(

..

..

..
..

..

..
..

 ورتك هنا ضع ص

4

5

فوفات مص التحقق من إعادة التشكيل الجزئي الديناميكى و تنفيذه للتصحيح على

 البوابات المنطقية القابلة للبرمجة

 اعداد

 اسلام اسامة احمد منير مصطفى

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 هندسة الإلكترونيات والإتصالات الكهربية

 :يعتمد من لجنة الممتحنين

 الخارجيالاستاذ الدكتور: الممتحن

 الاستاذ الدكتور: الممتحن الداخلي

 الاستاذ الدكتور: المشرف الرئيسى

 الاستاذ الدكتور: عضو

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

2018

6

7

فوفات مص التحقق من إعادة التشكيل الجزئي الديناميكى و تنفيذه للتصحيح على

 البوابات المنطقية القابلة للبرمجة

 اعداد

 اسلام اسامة احمد منير مصطفى

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 هندسة الالكترونيات والاتصالات الكهربية

 تحت اشراف

 نادر محي الدينأحمد حسن مصطفى حسن

 مدرس دكتور بقسم

 الإلكترونيات والإتصالات الكهربية

 كلية الهندسة ـــ جامعة القاهرة

 دكتور بقسم مساعد أستاذ

 والإتصالات الكهربية الإلكترونيات

 كلية الهندسة ـــ جامعة القاهرة

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

2018

8

9

فوفات مص التحقق من إعادة التشكيل الجزئي الديناميكى و تنفيذه للتصحيح على

 للبرمجةالبوابات المنطقية القابلة

 اعداد

 اسلام اسامة احمد منير مصطفى

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 ماجستير العلوم درجة على الحصول متطلبات من كجزء

 في

 هندسة الالكترونيات والاتصالات الكهربية

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

2018

