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A B S T R A C T

Nowadays, brain scientific research progress depends on signal compression at the implantable site to conform
with the low-rate transmission through wireless connection to the outside world despite of high spatial and
temporal resolution of neural data. Without data compression, these data rates conflict the neurophysiologic
restrictions in terms of energy consumption and silicon area. The main goal of any implantable compression
device is to get the smallest data size to be transmitted to the outside world with lowest distortion and data loss at
receiver side. In this work, the neural compression algorithm is adapted according to the available harvested
power budget. Therefore, the maximum signal to noise and distortion ratio (SNDR) is achieved based on the
available harvested power budget without any data loss.
1. Introduction

Neural implantable measurement systems are widely utilized to treat
neural disorders as Epilepsy and Parkinson diseases. These neural brain
disorders need to be diagnosed and detected, by extracting the complete
waveform and history of every electrode instead of extracting some
signal features [3]. Besides the need for large number of recording
channels, that reaches up to 1024 channels and even more to cover finer
spatial resolution of the recordings [12]. These results in large neural
data sizes should be transmitted to the outside world.

Thus, a low-power and efficient neural data compression algorithm at
the implantable site is very important to be able to transmit these huge
neural data to conform with the implantable subsystem requirements
such as limited wireless transmission bandwidth with the outside world
and low transmitted power.

In neural recording systems, the wireless transmission node is the
functional bottleneck in terms of a very limited data rate of a couple of
MBit/s [8]. For the transmission of high resolution neural raw data for
1024 electrodes, and electrode resolution of 8-bit with high sampling
rate (20 KSample/s/channel), wireless data rates are in order of 160
MBit/s [1]. Correspondingly, powerful and efficient compression algo-
rithm at the implantable site to comply with this huge increase in neural
data size is required.

Most of the compression techniques which have been proposed for
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multichannel neural data are based on the similarity between neural data
compression and image compression [2–4,16,18].

Image compression algorithms utilize the spatial correlation between
adjacent electrodes only like JPEG and JPEG2000 [9,13,14]. It is obvious
that these algorithms are not recommended to be used directly because
they are very complex and could not achieve the low-power and the real
time restrictions. However, these algorithms should be modified to be
suitable for the implantable devices requirements.

In this work, the focus is not on powerful compression algorithms and
higher compression ratios only, but also this work considers the hard-
ware efficient (Low-Power and Area-Efficient) algorithms, because
power consumption is the main parameter in the implantable devices. In
addition, the high sampling rate places a hard restriction on the hardware
latency of the target compression algorithm not to violate the real-time
processing. Correspondingly, all these restrictions should be combined
as design guidelines to select the most suitable compression algorithm.

Therefore, in our previous work [11], the full comparison between
main compression algorithms was applied as shown in Fig. 1 and
Adaptive 2D-DWT was considered as a most suitable compression algo-
rithm for Low-Power Area-Efficient design due to its hardware simplicity.
Despite of that 2D-DCT 8*8 compression algorithm is selected to be used
in PANDCA due to its linearity characteristic in the target region as
shown in Fig. 1. This characteristic is very important in PANDCA to be
able to divide it to equal steps, as described later.
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Fig. 1. Performance comparison of the compression algorithms.

Fig. 2. Neural measurement system full architecture.
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Fig. 2 shows the full implantable neural measurement system architec-
ture. This neural system consists of multielectrode array, analog frontend
(amplifiers), analog to digital converter, data compression unit, signal
processingunit, power supply, and lowpowerwireless transceiver. All these
implantable blocksmust be low-power, small area, safe on the human body.
Neural signals have been recorded from the implantable multielectrode
array are amplified in the analog front-end (AFE) and converted to digital
neural data using analog to digital (ADC) block. Subsequently, the digital
data runs into the main digital module where data compression and signal
processing takeplace.Hence, the low-ratewireless transceiver transmits the
compressed neural data to the outside world (reconstruction base station),
where signal reconstruction and decompression are performed. Since the
system is fully implantable, energy has to be available from implantable
power supply (rechargeable battery or harvesting system).

Implantable devices need an efficient power source to supply them
with enough energy to power the electrodes, analog interfacing and
digital classification as will be described later. Implantable devices are
usually powered by a rechargeable battery that is charged by using a
micro-scale energy harvesting system. These implantable rechargeable
batteries provide the energy for implantable biomedical devices. Devices
powered by harvested energy have longer lifetime and provide more
comfort and safety than conventional devices. Energies that may be
scavenged include infrared radiant energy, thermal energy, vibration
energy, body motion energy, wireless transfer energy, and Inductive link
energy. Energy harvesting devices generate electric energy from their
surroundings through direct energy conversion [5].

In this work, Inductive link harvesting is proposed as the main har-
vesting source and piezoelectric energy harvesting is proposed as the
secondary source.
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Inductive link energy harvesting uses wireless transmission of data
and power is essentially an air-core transformer which works on the
principle of mutual coupling. Primary circuit tuned in series resonance
and secondary tuned in parallel resonance.

Piezoelectric energy harvesting uses a direct energy conversion from
vibrations and mechanical deformation to electrical energy. This is a
promising technique to supply power sources in implantable biomedical
devices, since it has higher energy conversion efficiency and a simple
structure.

Recently, various technologies, such as advanced materials, micro-
and macro-mechanics, and electric circuit design, have been investigated
and emerged to improve the performance and the conversion efficiency
of the piezoelectric energy harvesters. In this work, the focus is on recent
progress of piezoelectric energy harvesting technologies based on PbZrTi
(PZT) materials.

Ordinary implantable biomedical devices have 3 scenarios to utilize
the available harvested power budget to transmit the compressed neural
data to the outside world:

- First scenario is to transmit the neural compressed data with fixed low
compression ratio continuously with low rate to guarantee that the
minimum available power is enough to transmit the compressed data
over all the time.

- Second scenario is to transmit a defined period of neural data when a
predefined triggering event occurs such as seizure spikes if there is
enough available harvested power budget to transmit this period to
the outside world. Otherwise, this triggering event is discarded if
there is not enough harvested power budget to transmit this period.

- Third scenario is to send neural data continuously without depen-
dence on any special event with suitable rate as long as there is
enough harvested power budget to send it continuously. Otherwise, if
there is not enough harvested power budget to continue the trans-
mission, it stops the transmission till producing enough power from
harvesting power source then starts the transmission again.

However, all these scenarios are not efficient enough for the current
biomedical implantable devices constrains. Current treatment devices
need the complete waveform and history for every electrode to be
extracted instead of extracting the special signal features only to be able
to detect and diagnose neural brain disorders. Accordingly, it should be
guaranteed that the detected neural data can be transmitted continuously
without any pauses or data loss. In addition, the compressed data can be
decompressed at the other side with high quality without significant
distortion.

In this work, PANDCA is proposed to use the available harvested
power budget to adapt the compression algorithm ratio. Therefore, the
proposed technique allows transmitting the compressed neural data
continuously. Hence, it achieves maximum signal noise and distortion
ratio (SNDR) according to available harvested power budget without any
data loss.

The rest of the paper is organized as follows. Section 2 presents the
signal characteristics and correlation. Section 3 and Section 4 provide the
description and hardware implementation of the proposed compression
algorithm and the proposed harvested power adaptive neural data
compression algorithm (PANDCA), respectively. Results and a compari-
son among these different algorithms are discussed in Section 5. Finally
the conclusions are drawn in Section 6.

2. Signal characteristics and correlation

To evaluate the performance of the compression algorithms for high
resolution neural data, recorded data is used with the same signals
characteristics (spatial correlation) of real data, because there is no
available high-resolution recorded data with these large sizes and high
sampling rates yet. In order to measure the correlation between two
signals X1 and X2 the Pearson Product-Moment Coefficient is used [19],
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as shown in (1).

rx1x2 ¼
E
��
x1 � μx1

��
x2 � μx2

��
σx1σx2

(1)

The correlation coefficient rx1x2 between two random variables X1 and
X2 with Mean values μx1 ; μx2 and standard deviations σx1 ; σx2 .

The degree of correlation is classified in to [3]:

� 0 < jrj < 0.2: weak correlation
� 0.2 < jrj < 0.5: medium correlation
� 0.5 < jrj < 1: strong correlation

The proposed algorithm is applied to the following three sets:

- 64 channels organized in 8� 8 grid.
- 32 channels organized in 8� 4 grid.
- 16 channels organized in 4� 4 grid.

These sets have a strong average spatial correlation between adjacent
channels of 0.6130 and maximum of 0.996, and it goes lower when
channels are more spatially apart.

In all the transmission rates and power calculations the TI chip
CC3100MOD is used as a reference in this work [8]. This chip is a
low-power Wi-Fi for Internet of Things (IoT) applications and operates in
two modes:

- Standby mode: with current up to 140 μA and average power up to
504 μW.

- Low Power Tx mode: with current up to 223 mA and average power
up to 802.8 mW.

User Datagram Protocol (UDP) transmission mode is used in this work.
This protocol is a simpler message-based connectionless protocol. Con-
nectionless protocols do not set up a dedicated end-to-end connection.
Communication is achieved by transmitting information in one direction
from source to destination without waiting to acknowledge from the
receiver. The UDP mode is preferred to be used in independent packets
transmission such as sound packets and neural data packets. The proposed
reference chip achieves a UDP actual throughput up to 16Mbps.

In this work, a feedback from the power harvesting device is needed
to be able to know the input current level (power level), because
PANDCA utilizes it as an input, as will be described later. Hence, a cur-
rent sensor is adopted to detect the input current level. This input is
quantized to suitable number of levels according to the power harvesting
device. Then, used as an indicator for the available power level to the
compression block.

3. Compression algorithm description and hardware
implementation

The proposed compression algorithm is 2D-DCT8x8 Based Compres-
sion Method. The neural time instant frame of channels is divided into
8� 8 blocks, working from left to right, top to bottom. The 2D-DCT is
applied on each block to be converted to frequency representation.
Fig. 3. 2D-DCT8x8 based c
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The DCT is one of the most popular compression methods whether in
image coding standards such as JPEG or in video coding standards such
as MPEG and H.264. Block size 8� 8 has high hardware complexity but it

has high compression ratio. The DCT equation that computes the ði; jÞth
entry of the DCT of an image is given by:

Dði; jÞ ¼ 1ffiffiffiffiffiffi
2N

p cðiÞ cðjÞ
XN�1

x;y¼0

Pðx; yÞcos
�
πðm þ 1Þ

2N

�
cos
�
πðn þ 1Þ

2N

�
(2)

With m, n¼ 0, 1, 2, …,N�1 and c(k)¼ 1 if k 6¼ {0,N} and 1/
ffiffiffi
2

p
other-

wise.
The two-dimensional Discrete Cosine Transform is performed by co-

efficients matrix multiplication [6].

D ¼ T P T 0 (3)

In (3) matrix P is left multiplied by the DCT coefficients matrix T8x8, as
given in Fig. 4, this transforms the rows then multiplied by the transpose
of DCT coefficients matrix to transform the columns.266666666664

:3536 :3536 :3536 :3536 :3536 :3536 :3536 :3536
:4904 :4157 :2778 :0975 �:0975 �:2778 �:4157 :4904
:4619 :1913 �:1913 �:4619 �:4619 �:1913 :1913 :4619
:4157 �:0975 :4904 �:2778 :2778 :4904 :0975 �:4157
:3536 �:3536 �:3536 :3536 :3536 �:3536 �:3536 :3536
:2778 �:4904 :0975 :4157 �:4157 �:0975 :4904 �:2778
:1913 �:4619 :4619 �:1913 �:1913 :4619 �:4619 :1913
:0975 �:2778 :4157 �:4904 :4904 �:4157 :2778 �:0975

377777777775
Then the 8� 8 block of DCT frequency components is ready for

quantization, as illustrated in Fig. 3. This stage is the main stage to
control the compression ratio and quality level. Quantization is the only
lossy stage due to the rounding process, as shown in (4).

A ¼ round
�

D * QL
Q matrix

�
(4)

In (4), a scalar constant Quality Level (QL) is used as a quality controller
which changes from 1 to 10. Selecting the QL¼ 10 provides the highest
compression quality, correspondingly the lowest compression ratio and
largest transmitted power. On the other side, selecting the QL¼ 1 provides
the lowest compression quality, correspondingly the highest compression
ratio and smallest transmitted power. Q_matrix is displayed in Fig. 5.266666666664

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 36 55 64 81 194 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

377777777775
Quantizer output should have a lot of zeros components in the right

bottom corner and they decrease gradually to be minimum at the left top
side, so that JPEG standard block (ZIGZAG Reorder) is proposed to be
used to reorder the components from lower p(0), the probability of
having a zero in the matrix field, to higher p(0) to get higher compression
ompression procedure.



Fig. 4. T8x8 Coefficients matrix.

Fig. 5. Q matrix8x8.

Fig. 6. Zigzag order.

M. Ashraf et al. Microelectronics Journal 88 (2019) 154–163
ratio in the Entropy stage, as shown in Fig. 6. The requiredmemory size is
64B to reorder the 8� 8 quantized block.

The Entropy stage is a lossless stage that replaces the nonzero com-
ponents to a stream of binary bits. Huffman coding is a common method
to encode the DCT components with variable length codes according to
Fig. 7. Inductive
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common tables that are assigned according to statistical probabilities. A
frequently used symbol will be encoded with a short code, while symbols
that are rarely used are represented by a long code.

JPEG standard uses up to 4 tables divided into two sets luminance (DC
and AC) and chrominance (DC and AC). In the proposed algorithm, the
luminance tables are used because Neural signals DCT components have
a similar behavior of luminance DCT components [11].

In order to evaluate the proposed compression algorithm, two per-
formance metrics are used:

� Compression ratio (R): is used to measure the ratio between com-
pressed data size and original data size, as shown in (5).

R ¼ Compressed data size
Original data size

(5)

� Signal to Noise and Distortion Ratio (SNDR): is used to measure the

quality of reconstruction data bD after compression and decompres-
sion compared to the original data D [3], as shown in (6).

SNDR ¼ 10dB :log 

 
kDk22		D� bD		2

2

!
(6)

� Structural Similarity: is used to measure the similarity between
original frame and reconstructed frame [20].

4. Harvested power adaptive algorithm (PANDCA)

4.1. Neural system power source

Rechargeable batteries which used in implantable medical devices
should be continuously charged. PANDCA implantable system harvests its
power using two sources: main source (inductive link) fixed on the same
place of battery and secondary source (piezoelectric) fixed on the heart.

Inductive link for wireless transmission of data and power is essen-
tially an air-core transformer which works on the principle of mutual
coupling. Primary circuit tuned in series resonance and secondary tuned
in parallel resonance as shown in Fig. 7. Inductive powering for
implanted medical devices is a safe and effective technique that allows
power to be delivered to implants wirelessly. Wireless powering is very
sensitive to a number of link parameters, including coil distance, align-
ment, shape, and load conditions. The optimum drive frequency of an
inductive link varies depending on the coil spacing and load. Efficient
model provides practical results 100mW output power at 2.5MHz [21].
Inductive link is the main power provider to our implantable system.

Piezoelectric energy harvesting technologies based on PbZrTi (PZT)
materials which have the most outstanding piezoelectric properties, and
powered by mechanical energy from a patient's own heart beats. Volture
product is used as a reference in this work [22]. Piezoelectric material
produces mechanical strain under the influence of an externally applied
link topology.



Fig. 8. Piezoelectric performance [22].
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electrical field, and conversely produces electrical potential in response
to applied mechanical strain. Products such as the Volture piezo energy
harvester are typically used in a cantilevered-beam configuration, in
which the piezoelectric beam is clamped at one end and the other end
allowed to oscillate freely in response to vibration normal to the flat
surface of the beam, converting these vibrations to in-plane material
strain. The beam dimensions and tip mass determine the resonant fre-
quency of the beam, which is tuned to match the dominant vibrational
frequency of its environment, mechanically amplifying this typically
small vibration. The vibration frequency being generated by the shaker
was then matched to the frequency of the Volture product to provide
resonant and therefore optimized energy harvesting. Fig. 8 shows the
power against operating voltage at four different amplitudes (0.25,
0.375, 0.5, and 1.00 g) and frequency 40 HZ.
4.2. Neural system power tree

The main power hungry blocks in neural implantable devices are the
wireless transmitters [10] and the data compressors [11]. Thus, the large
percentage of the harvested power budget is dedicated to the wireless
transmitter and compression block as shown in Fig. 9.

4.2.1. Compression block power
If the number of channels (electrodes) is constant, compression block
Fig. 9. Neural system power tree.
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consumes constant power regardless of the compression ratio. After RTL
Hardware Implementation on 130 nm technology for ASIC implementa-
tion, PANDCA consumes 32.06mW. This power consumption is drawn
from the power budget as a constant value and the remaining power
budget is used by the wireless transmitter.

4.2.2. Miscellaneous power consumers
Neural Implantable devices have a lot of blocks which consume

power such as electrodes, analog interfacing, and digital controllers.
However, the main characteristic which combines them is that they
consume fixed power regardless any change in quality factor. So this
power consumption is drawn from the power budget too as a constant
value and the remaining power budget is used by the wireless
transmitter.

4.2.3. Wireless transmission power
Low power WIFI chips support data rates up to 16Mbps. The TI chip

CC3100MOD in transmission only mode is always sleep except when
there is available data to be transmitted. In sleep mode, the absorbing
current consumption is very small compared to transmission mode so
that it can be negligible.

Therefore, the power consumption duration is in the TX mode dura-
tion only. Hence, the size of data to be transmitted is the main parameter
in power consumption. When this data size increases, the duration of Tx
mode increases, so is the current (power) consumption. On the other
hand, when this data size decreases, the duration of the Tx mode de-
creases so is the current (power) consumption as shown in Fig. 10.

As shown in (7), absorbing current (power) is linearly proportional
with time.

P ¼ VI ¼ V
�
V
R
:t
�

¼
�
V2

R

�
:t (7)

In this work, data size is assumed to be linearly proportional to the
duration of transmission (absorbed Power), assuming that the traffic is
idle, especially because TI WIFI chip is used in UDP mode [8]. Hence,
absorbing power can be controlled according to compressed data size.
4.3. Quality Factor Effect

In the proposed compression algorithm, the quality of compressed
data (SNDR) is controlled according to quality factor which varies from 1
to 10. This range is selected because SNDR is approximately linearly
proportional with quality factor in this range only, as shown in Fig. 11
and this characteristic is important in the proposed PANDCA as will be
analyzed. Hence, there are 10 quality levels and according to this quality
factor change, the compressed data size changes.

As shown in Fig. 11, when the quality factor increases, the
compression ratio (compressed data size divided by original data size)
increases and vice versa. On the other hand, when the quality factor
increases, the SNDR increases and vice versa. Hence, the output com-
pressed data size can be controlled and its quality (SNDR) according to
quality factor level.

Fig. 12 shows the structure similarity between original frame and
reconstructed frame at smallest quality factor (quality factor 1) and
largest quality factor (quality factor 10).
4.4. PANDCA architecture

As shown in Fig. 13, this is the proposed algorithm to control the
compression algorithm quality factor (compressed data size) according to
available harvested power budget:

1. Subtract the needed power for the compression block and other needs
from the total available harvested power budget to get the available
power budget to transmit the compressed data.



Fig. 10. Transmission timing scheduling [8].
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2. Select the size of compressed data which can be transmitted with this
available power (according to WIFI chip specifications).

3. Calculate the needed compression ratio (needed size of compressed
data/size of original data).

4. Select the initial quality factor from the saved data in Table 1, this
data is obtained from the previous results with the same correlation,
resolution and number of electrodes (channels). This table should be
recalculated if any parameter is changed.

5. If the actual compressed data size is equal to, or less than, the sug-
gested compressed size with a specific limit, the compression algo-
rithm should continue with the same quality factor in the next frames.

6. If it is larger than the calculated size or less with a specific limit, the
compression algorithmwill increment or decrement the quality factor
level with quantized steps according to the error step size.

7. The selected quality factor will be in use until the power harvested
budget is changed. Once the available harvested power budget is
changed repeat again from step 1.
4.5. PANDCA HW implementation

Fig. 14 shows the HW implementation of PANDCA algorithm. In order
to get hardware area and hardware power, the following steps are
conducted:

� Synthesis analysis is made by design compiler (Synopsys tool). A syn-
thesis tool takes the RTL hardware description and a standard cell
(130 nm) library as input andproduces a gate-level netlist as output. The
Fig. 11. Quality factor effect.
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resulting gate-level netlist is a completely structural description with
only standard cells at the leaves of the design. Internally, a synthesis tool
performs many steps including high-level RTL optimizations, RTL to
unoptimized boolean logic, technology independent optimizations, and
finally technology mapping to the available standard cells.
Fig. 12. Structural similarity.



Fig. 13. Harvested power adaptive design.

Table 1
64-Channel results.

Q_F
Index

Sp
(Byte)

Frame rate (KBps)
ch. rate¼ 20 Ksps

Tx. Duration per (1s)
with rate 16Mbps (ms)

Tx. Power
(mW)

1 4 80 40 32.11
2 7 140 70 56.2
3 9 180 90 72.25
4 10 200 100 80.28
5 11 220 110 88.31
6 12 240 120 96.34
7 13 260 130 104.36
8 14 280 140 112.39
9 15 300 150 120.42
10 16 320 160 128.45

M. Ashraf et al. Microelectronics Journal 88 (2019) 154–163
� The area of the hardware design is measured on 130 nm technology
for ASIC implementation. Hence, the needed SRAMmemory for every
compression algorithm is calculated and multiplied by 6-transistor
SRAM area for the same technology.

PANDCA
Area (μm)
 728633

Power (mw)
 96.94

Latency Per Frame (clock cycle)
 3280
160
5. Results and discussion

The (64-channel) results are discussed and explained in details. Then,
the other channel resolutions results are provided and compared to (64-
channel) results.

Table 1 shows the suggested initial saved values to start with at step 4
according to available power budget to transmit. Then, go up and down in
thenext framesaccording toerror step, this table is for (64-channels) results:

Column 1 divides the quality factors to 10 levels from 1 to 10, when
the quality factor increases, the SNDR increases and the compressed data
size increases.

Column 2 is the compressed frame sizes according to quality factor
level. It is calculated after hundreds of trials on the brain neural data.

Column 3 is the frame (64-channel) sampling rate if the channel
(electrode) rate is 20 Ksps.

Column 4 is the needed transmission duration per one second with
transmission rate 16Mbps.

Column 5 is the needed transmission power if the sleep duration is
ignored according to the reference TI WIFI chip CC3100MOD trans-
mission current and voltage.

All these values should be changed if any parameter from electrodes
resolution, electrodes correlation, electrode sampling rate, number of
channels, transmission rate or WIFI chip is changed.

Fig. 15 shows four cases of available harvested power budget profile
and the performance of the proposed PANDCA based on the harvested
power scenario.



Fig. 14. PANDCA HW implementation.
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Constant harvesting power profile (Fig. 15a):
In this case, the available harvested power budget to transmit is

90mW and it is fixed on this value over all the duration.
The proposed PANDCA searches on the nearest power entry on the

saved table (Table 1), and selects entry number 6 as an initial value,
because it is the lower nearest entry from available power.

To achieve this target power of 88.3mW, the proposed compression
algorithm needs to be adapted initially to quality factor level 5, to get
compressed frame size around (11 B), frame rate around (220 Kbps) and
transmission duration around .11 s to get the target power of 88.3mW.
Fig. 15. a: Constant Power Adaptive Performance. b: Increasing Power Adaptiv
Adaptive Performance.
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After starting with quality factor level 5, a compressed size (11 B), and
this value is lower than the suggested size acceptable range, then it in-
creases the quality factor to level 6 at the next frame trying to enter this
acceptable range.

In the second frame, a compressed size (12 B), and this value is more
than suggested size acceptable range, then it decreases the quality
factor to level 6 again at the next frame trying to enter this acceptable
range. This continues till entering the acceptable range and settles the
quality factor level or continues in trying mode around the acceptable
range.
e Performance. c: Decreasing Power Adaptive Performance. d: Real Power



Fig. 16. Power performance comparison.

Table 2
32-Channel results.

Q_F
Index

Sp
(Byte)

Frame rate (KBps)
ch. rate¼ 20 Ksps

Tx. Duration per (1s)
with rate 16Mbps (ms)

Tx. Power
(mW)

1 2 40 20 16.06
2 4 80 40 32.11
3 4.5 90 45 36.12
4 5 100 50 40.14
5 5.5 110 55 44.15
6 5.6 112 56 44.96
7 5.7 114 57 45.76
8 6 120 60 48.17
9 6.5 130 65 52.18
10 7.5 150 75 60.21

Table 3
16-Channel results.

Q_F
Index

Sp
(Byte)

Frame rate (KBps)
ch. rate¼ 20 Ksps

Tx. Duration per (1s)
with rate 16Mbps (ms)

Tx. Power
(mW)

1 1 20 10 8.03
2 1.25 25 12.5 10.04
3 2 40 20 16.06
4 2.1 42 21 16.86
5 2.25 45 22.5 18.06
6 2.5 50 25 20.07
7 2.75 55 27.5 22.08
8 3 60 30 24.08
9 3.25 65 32.5 26.1
10 3.5 70 35 28.1

M. Ashraf et al. Microelectronics Journal 88 (2019) 154–163
Increasing harvesting power profile (Fig. 15b):
In this case, the available harvested power budget to transmit at the

first frame is 60mW and it is increasing linearly over all the duration.
The proposed PANDCA searches on the nearest power entry on the

saved table (Table 1), and selects entry number 2 as an initial value,
because it is the lower nearest entry from available power.

To achieve this target power of 56.2mW, the proposed compression
algorithm needs to be adapted initially to quality factor level 2, to get
compressed frame size in around (7 B), frame rate around (140 Kbps) and
transmission duration around .07 s to get the target power of 56.2mW.
Table 4
Performance comparison.

Constant Power (case a) Increasing Power (case

Avg.
SNDR

Number of Tx Bytes
per 60 Frame

Avg.
SNDR

Number of
per 60 Fram

Conventional Compression
Algorithms

Alg-1

40 660 34 240

Power Adaptive Algorithm 41 690 38 520
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After starting with quality factor level 2, a compressed size (7 B), and
this value is more than suggested size acceptable range, then the quality
factor is decreased to level 1 at the next frame trying to enter this
acceptable range.

In the second frame, the proposed compression algorithm faces increase
in the available harvesting power level, then the new comparison will be
against larger suggested power due to this increase, but this increase can be
handled by increasing the quality factor level trying to enter this acceptable
range. This continues till entering the acceptable range and settles the
quality factor levelor continues in tryingmodearound theacceptable range.

Decreasing harvesting power profile (Fig. 15c):
This case has a similar behavior like Fig. 15 b behavior, but on

opposite direction.
Real harvesting power profile (Fig. 15d):
In this case, the available harvested power budget to transmit at the

first frame is 90mW and it varies continuously over all the duration.
Correspondingly, the proposed PANDCA tries to adapt the quality factor
level to overcome these rapid changes on the available harvested power
budget as shown in Fig. 15 d.

As shown on these four case studies, the proposed (PANDCA) achieves
the highest possible SNDR based on the available harvested power budget.

In Table 4 and Fig. 16, the comparison between conventional al-
gorithm (Alg-1) which compresses the neural data with fixed
compression ratio to be able to produce a suitable compressed data size
to be transmitted to the outside world without any discontinuity when
power level decreases to the lowest level against the proposed
PANDCA. On the other side, despite of conventional algorithm (Alg-2)
uses the intermediate quality factor to achieve accepted SNDR all over
the time, it faces a suddenly discontinuity once the available power
budget decreases than the enough amount to transmit the compressed
data. It is obvious that there is a significant enhanced performance of
the proposed algorithm compared to the conventional algorithm espe-
cially in cases (b, c and d) because the harvested power is variable with
time and conventional algorithms are not adaptive to these cases.
Knowing that normally in the implantable devices for neural data
compression, the harvested energy exhibits different profiles based on
the environmental conditions.
b) Decreasing Power (case c) Real Power (case d)

Tx Bytes
e

Avg.
SNDR

Number of Tx Bytes
per 60 Frame

Avg.
SNDR

Number of Tx Bytes
per 60 Frame

34 240 34 360

36 492 38 451
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Tables 2 and 3 show the results for two other model sizes (32-chan-
nels) and (8-channels) respectively with high resolution grid too, these
small model sizes are compressed with 2D-DCT as well but with 4� 4
block size.

Finally, the harvested power adaptive high-resolution neural data
compression algorithm (PANDCA) is the most suitable compression al-
gorithm for low-power implantable devices for neural data compressing.
To reconstruct the data without performance degradation, higher
possible SNDR over all the time should be achieved and the only obstacle
to achieve that is the available harvested power.

Correspondingly, the best method to achieve the highest possible
SNDR based on available harvested power budget is to control the
compression algorithm based on the available harvested power.

6. Conclusion

Neural data research has a wide application today and it heavily
depends on data compression to be able to extract all signal waveforms
with finer resolution for further processing. This work proposes a har-
vested power adaptive high-resolution neural data compression
(PANDCA) as the most suitable compression algorithm candidate to
achieve the highest possible SNDR based on available harvested power
budget without any data loss or discontinuity in the transmission to the
outside world.
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