
Integration, the VLSI Journal 68 (2019) 108–121

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

FPGA implementation of dynamically reconfigurable IoT security module
using algorithm hopping

Shady Soliman a, Mohammed A. Jaela a, Abdelrhman M. Abotaleb d, Youssef Hassan d,
Mohamed A. Abdelghany a,b, Amr T. Abdel-Hamid a, Khaled N. Salama c,
Hassan Mostafa d,e,∗

a Electronics Department, German University in Cairo, Cairo 11835, Egypt
b Integrated Electronic Systems Lab, GTU Darmstadt, Germany
c Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal
23955-6900, Saudi Arabia
d Electronics and Communications Engineering Department, Cairo University, Giza 12613, Egypt
e University of Science and Technology, Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology, October Gardens, 6th of
October, Giza 12578, Egypt

A R T I C L E I N F O

Keywords:
CAESAR
FPGA
DPR
Cryptography
Hopping
AEAD
IoT

A B S T R A C T

Internet of Things (IoT) is a promising technology that is continuously spreading around the world leading to
many challenges facing cryptographic designers who are trying to fulfill the security standards of IoT constrained
devices. In this work, a new design is proposed that adds a new dimension of security by using the concept of
frequency hopping to generate a pseudo-random pattern for switching between 5 lightweight cryptographic
ciphers: AEGIS, ASCON, COLM, Deoxys and OCB that are participating in the Competition for Authenticated
Encryption, Security, Applicability, and Robustness (CAESAR). The proposed design exploits the advantages
of Dynamic Partial Reconfiguration (DPR) technology in Field Programmable Gate Arrays (FPGAs) to switch
between the 5 ciphers using Internal Configuration Access Port controller (AXI-HWICAP) providing a decrease
of 58% and 80% in area utilization and power consumption respectively. The design is synthesized using Xilinx
Vivado 2015.2 and mounted on Zynq evaluation board (XC7Z020LG484-1).

1. Introduction

Internet of Things (IoT) is a network of devices connected to each
other in a wired or non-wired way where each device has a unique
identity. These devices process data and send it to each other with-
out human intervention [1]. The term (IoT) usually refers to resource-
limited objects such as sensors, RFID tags or any other contactable
device that has the ability to compute data while connected to the inter-
net [2]. IoT is spreading rapidly and the number of connected devices is
expected to reach 18 Billion by 2022 [2]. However, concerns about pri-
vacy and security are increasing, especially given that IoT takes consid-
erable place in the contexts of governments and organizations, as well
as infrastructure of public institutions. To address this issue, lightweight

∗ Corresponding author. University of Science and technology, Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology, October
Gardens, 6th of October, Giza 12578, Egypt.

E-mail addresses: shady_soliman2002@yahoo.com (S. Soliman), morhaf.jaela@gmail.com (M.A. Jaela), aabotaleb@nu.edu.eg (A.M. Abotaleb), youssef_hassan_
gamal@hotmail.com (Y. Hassan), mohamed.abdel-ghany@guc.edu.eg (M.A. Abdelghany), amr.talaat@guc.edu.eg (A.T. Abdel-Hamid), khaled.salama@kaust.edu.
sa (K.N. Salama), hmostafa@uwaterloo.ca (H. Mostafa).

cryptography is becoming a considerable approach to make the con-
nection and transfer of data between constrained devices more secure
[3].

Lightweight cryptography is a cryptographic algorithm or proto-
col tailored for implementation in constrained environments such as
RFID tags, sensors, contactless smart cards, and health-care devices [4].
One of the most effective ways of exploiting lightweight cryptographic
algorithms is by using authenticated encryption schemes. Authenti-
cated encryption schemes are a class of symmetric key cryptographic
algorithms that ensure that both of confidentiality and authenticity of
data are provided at the same time [5]. Confidentiality includes pro-
tecting data from being exposed without permission, while authentic-
ity comprises ensuring both integrity of data and verification of its

https://doi.org/10.1016/j.vlsi.2019.06.004
Received 19 January 2019; Received in revised form 2 May 2019; Accepted 16 June 2019
Available online 26 June 2019
0167-9260/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.vlsi.2019.06.004
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2019.06.004&domain=pdf
mailto:shady_soliman2002@yahoo.com
mailto:morhaf.jaela@gmail.com
mailto:aabotaleb@nu.edu.eg
mailto:youssef_hassan_gamal@hotmail.com
mailto:youssef_hassan_gamal@hotmail.com
mailto:mohamed.abdel-ghany@guc.edu.eg
mailto:amr.talaat@guc.edu.eg
mailto:khaled.salama@kaust.edu.sa
mailto:khaled.salama@kaust.edu.sa
mailto:hmostafa@uwaterloo.ca
https://doi.org/10.1016/j.vlsi.2019.06.004

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

source. Sometimes data such as packet headers are required for han-
dling by some applications, which requests authentication without the
need for encryption. Such schemes are usually defined as Authenti-
cated Encryption with Associated Data (AEAD) which is embraced in
this work. AEAD scheme provides one level of data security which
is the symmetric key. However, nothing beyond this level has ever
been added to tighten the security of data against attacks due to lim-
ited resources used by IoT devices. In this work, a new design is
proposed to introduce a second dimension of security using the con-
cept of algorithm hopping by switching among five lightweight cryp-
tographic algorithms that are currently under review in the ongoing
CAESAR competition. The switching is performed using dynamic par-
tial reconfiguration (DPR) technology to maintain a reasonable power
consumption and area utilization, taking into consideration the limited
resources of IoT devices while adding the second dimension of secu-
rity based on the pseudo-random pattern for switching among different
algorithms.

2. CAESAR

CAESAR is an ongoing contest for Authenticated Encryption, Secu-
rity, Applicability and Robustness. The main target of the contest is
to find new and improved versions of the AEAD schemes [6]. CAE-
SAR started in 2014 with 54 initial submissions in the first round.
The contest is at the fourth and final round at the time of creat-
ing the design proposed in this work. Five out of seven finalists are
chosen for the proposed design: AEGIS, ASCON, COLM, Deoxys and
OCB. The selection of these 5 algorithms is a case study to show the
effectiveness of using the proposed algorithm hopping technique and
this technique is expendable to accommodate any other security algo-
rithms.

2.1. AEGIS

AEGIS is a dedicated authenticated encryption algorithm where a
message is used to update the state of the cipher, and message authen-
tication is achieved almost for free [7]. AEGIS is constructed from the
Advanced Encryption Standard (AES) round function. It has three varia-
tions: AEGIS-128L, AEGIS-128 and AEGIS-256. The first one uses eight
AES round functions to process a 32-byte message block, the second
one processes a 16-byte message block with five AES round functions
and the third one uses six AES round functions. AEGIS is very fast and
its computational cost is half that of AES [7]. AEGIS also offers high
security as long as the initialization vector is not reused, which makes
it impossible to recover the AEGIS state and key faster than exhaus-
tive key search. AEGIS is suitable for network communication since it
can protect a packet while leaving the packet header (associated data)
unencrypted. The state update function of AEGIS-128 updates the 80-
byte state Si with a 16-byte message block mi. Si+1 = StateUpdate128
(Si, mi) is given as follows:

Si+1,0 = AESRouund(Si,4, Si,0 ⊕ mi) (1)

Si+1,1 = AESRouund(Si,0, Si,1) (2)

Si+1,2 = AESRouund(Si,1, Si,2) (3)

Si+1,3 = AESRouund(Si,2, Si,3) (4)

Si+1,4 = AESRouund(Si,3, Si,4) (5)

The state update function is shown in Fig. 1:

2.2. ASCON

ASCON presents a low hardware scheme with extremely low mem-
ory requirements. While the scheme provides full security of 128 bits,
it offers no nonce misuse resistance [8]. It is based on the Sponge
wrap/Monkey Duplex mode of operation and eliminating inverse
operations [9]. ASCON is optimized for minimal overhead (cipher
text = plain text) and it is lightweight for constrained devices making
it fast in hardware and software implementations. ASCON has several
parameters used for encryption such as: secret key (K), associated data
(A), public message number that is denoted by nonce (N), and Initial-
ization Vector (IV), in order to encrypt a plaintext (P), according to the
formula:

Ea,b,k,r (K,N,A,P) = (C,T) (6)

where a, b are the numbers of permutation rounds, r is the state size,
and k is the secret key size. The output of this process is the ciphertext
C, and the authentication tag T [8].

Fig. 2 illustrates ASCON modes of operations which are the encryp-
tion mode and the decryption mode. P block is the main block in ASCON
algorithm. P block has two flavors: one for carrying out the initializa-
tion/finalization process (Pa) and the other for performing the internal
processes (Pb).

2.3. COLM

COLM [10] is a block cipher based on Encrypt-Linear mix-Encrypt
mode, designed with the goal to achieve online misuse resistance, to be
fully parallelizable, and to be secure against blockwise adaptive adver-
saries.

The authenticated encryption for complete message block is shown
in Fig. 3. COLM consists of two-layer parallelizable encryption. COLM
mixes the output of the first encryption layer to generate the input to the
second encryption layer, using linear mixing function. The high-speed
COLM implementation instantiates two instances of AES to implement
the two layers of encryption. In order to optimize COLM for low area,
only one instance of AES is used to perform the two encryption layers.

Fig. 1. The state update function of AEGIS-128. R indicates the AES encryption round function without XORing with the round key and w is a temporary 16-byte
word [7].

109

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 2. ASCON’s mode of operation [8].

Fig. 3. COLM authenticated encryption for complete message block. EK . denotes the block cipher AES-128 [10].

A Finite state machine and Multiplexers are added to control the data
flow to the AES. The optimized encryption operation is processed in
twice the clock cycles of the non-optimized one and the same applies
for the decryption operation.

2.4. Deoxys

Deoxys presents a new authenticated encryption design based on
custom made tweakable block ciphers using the AES round function as
a building block [11]. Deoxys is an authenticated encryption scheme
that provides full 128-bit security for both privacy and authenticity
making it efficient in software. Moreover, Deoxys performs particularly
well for small messages (only m + 1 block cipher calls are required
for an m block message and no precomputation is required). In the
nonce-misuse resistant versions of Deoxys, in addition to a full 128-bit
security for unique nonces, birthday-bound security is obtained when
the nonce is reused. Finally, Deoxys can be lightweight and the key can
be hardcoded for further smaller area footprint. Deoxys uses a tweak-
able block cipher Deoxys-BC as internal primitive. Deoxys has two main
mode variants:

• Nonce-Respecting Mode: this variant is for where adversaries are
assumed to be nonce-respecting, meaning that the user must ensure
that the value N will never be used for encryption twice with the
same key.

• Nonce-Misuse Resistant Mode: this variant is a new authenticated
encryption mode named SCT, relaxes this constraint and allows the
user to reuse the same N with the same key.

In this work, the focus is only on the second mode. The encryption
algorithm is depicted in Figs. 4 and 5 for the authentication part and in
Fig. 6 for the encryption part.

2.5. OCB

OCB (short for Offset Codebook) is an AEAD scheme that depends on
a block cipher that must have a 128-bit block size [12]. OCB achieves
both confidentiality and authenticity. Confidentiality is defined such
that an adversary is unable to distinguish OCB-outputs from an equal
number of random bits, while authenticity means that an adversary

110

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 4. Handling of the associated data for the nonce-misuse resisting mode: in the case where the associated data is a multiple of the block size, no padding is
needed [11].

Fig. 5. Message processing in the authentication part of the nonce-misuse resisting mode: in the case where the message-length is a multiple of the block size, no
padding is needed [11].

Fig. 6. Message processing for the encryption part of the nonce-misuse resisting mode [11].

is unable to produce any valid nonce-cipher text pair that it has
not already acquired. OCB is nearly as fast as Counter mode (CTR)
because each block encryption requires just a few xors on top of
an AES call. OCB is parallel as most of the computations are inde-
pendent of one another which allows both hardware and software
accelerations. It is also designed for minimal authentication overhead
beyond what is required for provable security and simple encryption
using a block cipher. OCB is not designed to resist nonce reuse or
to enjoy beyond birthday bound security [12]. Fig. 7 is the illustra-
tion of OCB[E, 𝜏]. Here E: 𝜅 × {0,1}128 → {0,1}n is a blockcipher
and 𝜏 ∈ [0 ... 128] is the tag length. M,C ∈ {0, 1}∗. In the top
section of the figure, Message M has a full final block (|M4 = n|)
(Checksum = M1 ⊕ M2 ⊕ M3 ⊕ M4). In the middle section, Message M
has a short final block, 1 ≤ |M∗ | < n (Checksum = M1 ⊕ M2 ⊕ M3 ⊕

M∗10∗). In the bottom side, An AD of three full blocks (left) or two full
blocks and one short one (right). Throughout: Offsets (the Δ-values) are
updated and used top-to-bottom, then left-to-right. Offset initialization
and update functions (Init, Inci, Inc$, Inc∗) return n-bit strings. Each fla-
vor of increment is a xor with some precomputed, K-dependent value
[12].

3. Algorithm hopping

Algorithm hopping is analogous to the Frequency Hopping Spread
Spectrum (FHSS) which is an approach to send radio signals by rapid
switching of carriers between many frequency channels. The switching

is based on a pseudo-random pattern only known to the transmitter
and the receiver [13]. It is widely used as a multiple access method in
the Code Division Multiple Access Scheme (CDMA) in communication
systems. The proposed design uses this idea by modeling the frequency
channels as the encryption algorithms while sending the block data to
be encrypted/decrypted as an equivalent to sending radio signals over
different frequency channels. Normally, any cryptography systems uses
one algorithm all the time and only the key is changeable during the run
time. In the proposed algorithm hopping, the algorithm will be change
per session. Also the key can be changed at any time. Therefore, if the
attacker needs to hack the proposed design, the number of algorithms
used in addition to the ID of the each algorithm for each session are
required for hacking. After that the attacker needs to know the key
to the used algorithm. This means that the proposed design is more
secure than the current designs. Fig. 8 shows the proposed algorithm
hopping technique, the design hops among the five AEAD schemes that
are selected from the CAESAR competition. For example, during session
2, the algorithm that is used is COLM and for session 4, the AEAD
scheme is OCB.

The sequence of switching is generated using the Linear Feedback
Shift Register (LFSR). LFSR is implemented as a series of Flip-Flops,
wired together as a shift register [14]. Some taps of the shift register
chain are used as inputs to either an XOR or XNOR gate. The output of
this gate is then used as a feedback to the beginning of the shift register
chain. There are some special properties of the LSFR that can be listed
as follows:

111

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 7. Illustration of OCB [12].

Fig. 8. Proposed Algorithm Hopping technique.

• LFSR patterns are pseudo-random.
• Output patterns are deterministic. The next state can be figured out

by knowing the position of the XOR gates as well as the current
pattern.

• A pattern of all 0’s cannot appear when the taps use XOR gates.

Fig. 9. 5-bit LSFR using XNOR gate.

• A pattern of all 1’s cannot appear when the taps use XNOR gates.
• The maximum possible number of iterations of any LFSR:

= 2m − 1 (7)

m: number of bits which is the number of Flip-Flops

An example design of a 5-bit LSFR using XNOR gate is shown in Fig. 9.

112

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 10. Two distinct layers of FPGA [15].

Fig. 11. Classification of FPGAs by their configuration capabilities [15].

4. Dynamic partial reconfiguration

4.1. FPGA configuration

FPGAs contain a large amount of programmable logic and regis-
ters, which are connected together in different ways to realize differ-
ent functions. It is sometimes useful to imagine that the FPGA consists
of two distinct layers: the logic gates/registers and the programmable
SRAM configuration cells (Configuration Memory (CM)) [15] as shown
in Fig. 10.

An FPGA is reconfigured by writing bitstream into Configuration
Memory (CM) that controls function computed on logic layer. FPGA
architectures can be categorized according to the capability of the con-
figuration, as illustrated in Fig. 11. At the top level, FPGAs are divided
into one-time configurable devices that can only be applied as an ASIC
substitute and configurable FPGAs [16]. Configurable FPGA devices
are categorized partially and globally reconfigurable devices [15]. In
the globally reconfiguration category, the whole chip configuration is
swapped. Consequently, all the states inside the FPGA are overwritten.
However, in partially reconfigurable systems, some states of the FPGA
chip are updated. Partial reconfiguration is achieved either passive by
reconfiguring a portion of the device (changing the functionality) when
the device is inactive without affecting other areas of the device or
active where the operation can seamlessly continue during the recon-
figuration process [17].

4.2. Technology

The original idea of FPGAs is to provide on-site programming and
reprogramming without the need to re-fabricate the modified logic
by loading several bit files corresponding to different designs. DPR
improves the original idea by allowing for the modification of an oper-
ating FPGA design by loading partial bit files after configuring the
device with an initial full bit file [18]. This requires the designer
to divide his design into 2 parts: Static part and dynamic part. The

Fig. 12. Basic structure of partial reconfiguration design.

Fig. 13. Xilinx ICAP primitive [21].

dynamic part consists of a set of Reconfigurable Modules (RMs) which
are swapped during runtime after being floor-planned onto a Recon-
figurable Partition (RP). When it is desired to switch to a certain RM,
its corresponding partial bit file is loaded at runtime without affecting
the static part. A block diagram illustrating different parts of a DPR
dependent design is shown in Fig. 12.

4.3. DPR controllers

Currently, there are several DPR controllers implemented as Intel-
lectual Properties (IPs) and offered by Xilinx such as: HWICAP, PRC
and PCAP [18]. However, it is possible to implement custom IP con-
trollers such as ZYCAP [19]. A comparative study was done in Ref. [20]
showing the performance of these controllers based on area utilization,
power consumption and maximum throughput for a software defined
radio encoder. From Ref. [20], it is stated that PRC consumed most
resources while providing the highest throughput in comparison with
HWICAP which consumed much less resources while providing the least
throughput.

113

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 14. Top level block diagram for the AXI HWICAP core [21].

4.4. Xilinx AXI-HWICAP controller

Xilinx provides many IP cores to connect the ICAP module with the
user design. These IP cores corresponds to partial reconfiguration con-
troller that enables an embedded microprocessor such as ARM proces-
sors or Microblaze to access the configuration memory. ICAP is a xilinx
predefined macro that has direct access to the configuration memory
for both write and read modes [18] as depicted in Fig. 13. CSB is the
active low interface select signal, RDWRB is the read/write select sig-
nal. BUSY is valid only for read operations and remains low for write
operations. In Xilinx 7-series FPGAs, the ratio of the ICAP interface data
width to the configuration memory is 32 bit wide. The max theoretical
reconfiguration throughput of ICAP is equal to 400 MB/s at a frequency
of 100 MHz [21]. In practice, it was found that the measured through-
put is much less than the theoretical one due to the addition of the
reconfiguration overhead to the DPR at the system level [22].

AXI-ICAP [21] is an ICAP controller designed for AXI bus interfaces
where it is connected as a slave peripheral. During DPR, the partial
bitstream data are buffered from an external memory to a write/read
FIFOs inside the core where there is a finite state machine that monitors
the status of the FIFOs and supplies partial bitstream data to the ICAP
and then to the configuration memory as displayed in Fig. 14. Based

on the study in Ref. [20], AXI-ICAP is the optimum choice as a con-
troller in the proposed design despite the limitations on the maximum
throughput which is not an issue for IoT power-constrained devices that
requires low area and power requirements.

5. Proposed design

5.1. Design modules

As shown in Fig. 15, the design is divided into 2 parts: Encryption
module and decryption module. Each module is loaded to an FPGA and
accordingly, each module has 2 parts: Static part and dynamic part. It is
important to note that both parts include the same hardware modules,
LFSR is used at both the encryption and decryption sides to make both
sides working on the same ciphering algorithm while hopping.

The static part for both modules consists of the following compo-
nents:

• Universal Asynchronous Receiver Transmitter (UART).
• First Word Fall Through First In First Out (FWFT-FIFOs) for inputs

and outputs.
• AEAD top.

The dynamic part for both modules consists of the following com-
ponents:

• Pre processor.
• Cipher core.
• Post processor.

The functionality of each component is explained as follows:

5.1.1. AEAD top
During CAESAR contest, a universal Application Programming Inter-

face (API) is created to reduce any potential biases in benchmarking of
participating authenticated ciphers in hardware [23]. This API named
AEAD has the following features:

• Wide range of data port widths ranging from 8-bits to 256-bits.
• Independent data and key inputs.
• Simple high-level communication protocol.
• Support for encryption and decryption within the same core.
• Ability to communicate with FIFOs.

As shown in Fig. 16, the AEAD interface consists of 3 main data
buses:

• Public Data Inputs (PDI)
• Secret Data Inputs (SDI)
• Data Outputs (DO)

In addition, there are several control signals such as: valid and
ready. The valid signal indicates that the source is ready to send data

Fig. 15. Proposed design.

114

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 16. AEAD interface [23].

while the ready signal indicates that the destination is ready to receive
them. All possible inputs and outputs of the AEAD are illustrated in
Fig. 17. AD denotes Associated Data, Npub denotes Public Message
Number, such as Number used once (Nonce) or Initialization Vector.
Nsec denotes Secret Message Number, which was recently introduced
in some authenticated ciphers. Both Npub and Nsec are expected to be
unique for each message encrypted using a given key. The difference
is that Npub is directly buffered to the other side, while Nsec is sent in
the encrypted form. SDI port is responsible for processing the secret key
while PDI port handles the rest of the inputs.

The API is also composed of several generic parameters such as:
Key length, data block size, SDI port width, PDI port width and type
of data padding which are modified based on the requirements of each
cipher. The main idea of the AEAD top is to modify the API by choosing
the largest of the generic parameters of the 5 ciphers and grouping
them in 1 static port from which each dynamic module’s parameters
are modified.

5.1.2. LFSR
The main purpose of the LFSR is to generate a pseudo-random pat-

tern based on an input seed by the user at run-time that controls the
start of the sequence of IDs assigned to each algorithm. Since DPR
allows using any number of algorithms, it is also possible to expand the
size of the LFSR to generate a longer pattern with more IDs to accom-
modate for the increasing number of algorithms used. A Fibonacci LFSR
of size = 5-bit with feedback polynomial 1 + x3 + x5 is selected to
generate 25 − 1 pseudo-random numbers. The IDs of the algorithms to
be used in the hopping sequence are extracted from the LFSR’s least
three significant bits. For our system to operate, few assumptions and
considerations are made.

1. Assumptions

(a) LFSRs at both ends are synchronized to run over the same hop-
ping sequence.

(b) If least 3-bits of LFSR ≥4 then the selected algorithm to be used
by DPR will be the AEGIS.

2. Considerations

(a) LFSR size will affect the randomization pool and repetition of
the random hopping sequence, so it is mainly controlling the
hopping pattern rate.

(b) Initialization of the LFSR is the critical word, once known the
random hopping sequence can be tracked easily, so it must be
exchanged securely same as the symmetric key.

5.1.3. FWFT FIFO
The first word fall through FIFOs is used for data buffering with

ability of customizing the data size and depth to accommodate for dif-
ferent data block sizes for the different algorithms used in the proposed
algorithm hopping technique. First word fall through allows for read-
ing data written without the need to assert a strobe for reading request,
which results in better performance.

5.1.4. UART
As shown in Fig. 15, a complete UART is implemented in both

encryption/decryption sides. It is responsible for sending and receiving
encryption/decryption data between the 2 modules. Moreover, it sends
feedback signals to the encryption module to initiate the next hop in
sequence.

The proposed security module considers the UART as a separate
block for communications with the embedded processor, which is typi-
cal for IoT security.

5.1.5. Pre-processor and post-processor
The pre-processor is responsible for the execution of the following

tasks common for all used algorithms:

• Parsing segment headers
• Loading and activating keys
• Serial-In-Parallel-Out loading of input blocks
• Padding input blocks
• Keeping track of the number of data bytes left to process

The post-processor is responsible for the following tasks:

• Clearing any portions of output blocks not belonging to cipher or
plaintext

• Parallel-In-Serial-Out conversion of output blocks into words
• Formatting output words into segments
• Storing decrypted messages until the result of authentication is

known
• Generating the status block with the result of authentication

The pre-processor and post-processor cores are highly configurable
using generics. These generics can be used to determine:

Fig. 17. Inputs and outputs of AEAD [23].

115

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 18. Load key instruction.

Fig. 19. Load key instruction.

• The widths of the pdi, sdi, and do ports
• The size of the message/ciphertext block, key, nonce, and tag
• Padding for the associated data and the message
• Types and order of segments expected by a particular cipher

For the first message and the subsequent key change, a new key
must be loaded into the pre-processor via the SDI port first. This can
be done by providing the Load Key instruction. A typical key loading
sequence of words is shown in Fig. 18. In this example, the first word
specifies the Load Key instruction. The second word specifies that the
subsequent data segment is of the key type, with the size of 16 bytes
(128 bits). This segment is also the end-of-type and the end-of-input
segment. The next two words consist of the data representing the key.

Before the new key becomes active, it must be activated via the
PDI port first. This mechanism facilitates the synchronization between
the two input ports. It also allows loading a new key without inter-
fering with the key that is being used. A typical key activation pro-
cess is shown in Fig. 19. This word must be applied before any other
instruction word. Loading of round keys precomputed in software can
be performed in a similar way, with the instruction Load Key replaced
by Load Round Key, followed by a segment composed of a sequence of
round keys.

This word must be applied before any other instruction word. Load-
ing of round keys precomputed in software can be performed in a sim-
ilar way, with the instruction Load Key replaced by Load Round Key,
followed by a segment composed of a sequence of round keys.

5.1.6. Cipher core
The development of the Cipher core is left to individual design-

ers and can be performed using their own preferred design method-
ology. Typically, when using a traditional RTL (Register Transfer Level)
methodology, the Cipher core data path is first modeled using a block
diagram, and then translated to a hardware description language (VHDL
or Verilog HDL). The Cipher core Controller is then described using an
algorithmic state machine (ASM) chart or a state diagram, further trans-
lated to HDL.

The algorithmic state machine (ASM) of the Cipher core Controller
is typically characterized by the following groups of states:

1. Load and/or activate the key
2. Process the associated data
3. Process the message/ciphertext
4. Generate/verify an authentication tag

In the first group of states, load and activate the key, the cipher
core should monitor the key_needs_update and key_ready inputs, and
provide key_updated output at the appropriate time. The circuit should
operate as follows:

After reset, key_needs_update and key_ready are low and a new key
can be loaded into the pre-processor at any time. After the new key is
loaded using the SDI port, key_ready goes high. After the instruction
ACTIVATE_KEY is received at the PDI port, the key_needs_update goes

Fig. 20. A part of the Algorithmic State Machine (ASM) chart describing a way
in which the cipher core controller may handle key loading and key activation.

high. Please note that the above two events can occur in an arbitrary
order. After key_ready and key_needs_update are both high, and the
cipher core is either in the period between reset and the first input, or
in the period between two consecutive inputs, the cipher core should
read the new key. After the key is read, key_updated signal should be
set to high. The key_updated signal should be deactivated at the end
of processing of the current input. If a user wants to use the same
key for the subsequent input data, ACTIVATE_KEY instruction can be
omitted from the PDI input port. In this case, the processing of new
data will start as soon as an instruction describing the way of pro-
cessing a new input is decoded (which is indicated by bdi_proc set to
high).

In summary, the cipher core should monitor the key_needs_update
port prior to processing any new input. If key_needs_update is high,
the cipher core should wait for key_ready=1, and then read the new
key, and acknowledge its receipt using the key_updated output. If
key_needs_update is low and the first instruction describing the way of
processing a new input is decoded (bdi_proc=1), then the cipher core
should move directly to processing a new input using a previous key. If
none of these two events is detected, the cipher core should remain in
the same state. The described behavior is shown in Fig. 20.

The key initialization and process data are two separate states that
operate depending on the requirements of a specific cipher. In the sec-
ond group of states, Process associated data, the core continuously
waits for the next AD block until the bdi_eot signal becomes active.
This signal indicates that the current block is the last block of asso-
ciated data. The state machine needs then to process this last block,
and proceed to the next group of states, responsible for encryption and
decryption of data. If the first block read by the cipher core is not of
type AD (bdi_ad=0), then associated data is assumed to be empty. If
the last block of AD (bdi_ad=1 and bdi_eot=1) is also the last block
of input (bdi_eoi=1), then the message/ciphertext is assumed to be
empty.

The third group of states, process message/ciphertext, should oper-
ate in the similar way as the second group, and should similarly
progress to the next group of states when the last block of message
or ciphertext is processed. In this group of states, bdi_ad should remain
inactive for each input block to indicate that the current block is not
an associated data block. A corresponding output data block should
be passed to the post-processor using the bdo port with an accompa-
nied active bdo_write control signal. After each block of associated data,
message, or ciphertext is read by cipher core, the bdi_read output must
be activated for one full clock cycle. This action clears control inputs,
such as bdi_eot and bdi_eoi that may need to be checked at a later time.

116

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 21. High-level block diagram of the AEAD core.

At the same time, this action cannot be delayed because doing so would
stall the pre-processor and prevent it from loading any subsequent data
block using the PDI input. As a result, bdi_eot and bdi_eoi must be reg-
istered at the latest in the clock cycle when the acknowledgment signal
bdi_read is generated. Only registered values of these inputs should be
checked at a later time.

In the last group of states, Generate/verify an authentication tag,
during the authenticated encryption, the core should generate a new tag
and pass it to the post-processor, using ports tag and tag_write. During
the authenticated decryption, msg_auth_done should be activated, and
the msg_auth_valid port should be used to output the result of authenti-
cation.

A block diagram illustrating all the necessary signals for the AEAD
core consisting of: cipher core, pre-processor and post-processor is
shown in Fig. 21.

5.2. Design flow

The DPR flow is carried out using Xilinx Vivado tool. A complete
design for the encryption module is shown in Fig. 22. A similar design
is tailored for the decryption module with the same components. The
system is controlled by the ARM Cortex A9 microprocessor on the Pro-
cessing System (PS) side. The processor communicates with the Pro-
grammable Logic (PL) side through the AXI bus interface. The static part
consists of: the PR controller, the ICAP primitive, the AXI connections,
AEAD top, FIFOs, UART in addition to the LFSR in the encryption side.
The dynamic part contains Reconfigurable Partition (RP) that holds
the 5 Reconfigurable Modules (RMs) corresponding to the 5 ciphers.
The partial bitstreams for these RMs are stored in the SD card to be
loaded through a software code that interfaces the PS with the Personal
Computer (PC) via UART connection. The operating frequency of PL is
10 MHz while the PS operates at a frequency of 667.66 MHz.

A complete flow of a full encryption/decryption operation is
described as follows:

i. The sender starts the encryption module by entering the seed into
the LFSR.

ii. The LFSR generates a pseudo-random sequence, the sequence’s least
three significant bits are used as the ID to specify the cipher to be
used.

iii. The AEAD top switches to the desired cipher and loads the test vec-
tors into the FIFOs from the text files.

iv. The output data is stored into the output FIFO until the encryption
is done.

v. When done, the UART transmitter sends the enable signal along with
the ID of the cipher to the decryption side.

vi. The decryption module switches to the corresponding cipher and
starts receiving the data encrypted through the UART.

vii. When the decryption is done, a status message is sent back to the
encryption module through the UART to mark the success of the full
operation and allow for the next hop.

6. Cryptanalysis and security vulnerabilities

In this section, detailed crypt-analysis of the security algorithms
FPGA implementations and specific hardware solutions to reduce
the danger of some attacks for each individual algorithm are dis-
cussed.

6.1. ASCON

Pure ASCON is vulnerable to side channel attacks as shown in Ref.
[24] and on average, only 500 power traces can reveal the correct
key.

117

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 22. Hardware design of the encryption module.

This is due to the weakness of using 5-bit S-Boxes. While it is the
non linear part of the algorithm, its input can be easily guessed by
generating the power traces of all possible input combinations (25 pos-
sibilities) and then correlate each of them with the true power trace
obtained from the system under attack. Such procedure is done at
either the first or last round of the S-Box to be near known input
(plain-text) or output (cipher-text) respectively. By repeating this pro-
cedure against all vulnerable S-Boxes the whole secret key can be
revealed.

Deployed solution here is inspired from KASUMI side channel attack
countermeasure proposed in Ref. [25] by masking the power consump-
tion information in the S-Box with another random S-Box denoted by
S∗, As shown in Fig. 23. While the original S-Box is accepting the 5-bit
input Xi, the masking S∗-Box is accepting another random 5-bit input
X∗i and the result is then swapped twice, This design is evaluated in
Ref. [25] and totally masks the power traces and correlation trace of
the correct key doesn’t produce a correlation peak at the time instant
corresponding to key processing.

The ASCON 5 × 5 S-Box is implemented as bit-slicing logic functions
not as look-up tables as shown in Fig. 24 to overcome cache timing
attacks.

6.2. AEGIS

The most obvious weakness is the chosen plain-text attacks, to
ensure its avoidance, the same initialization vector mustn’t be reused
with the same key, this is ensured in our design through the use of
128-bit LFSR to generate random IVs agreed upon on both sides.

Fig. 23. The Masking S∗-Box to countermeasure the SCA.

118

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 24. The Bit-Slicing implementation of the ASCON 5 × 5 S-Box [8].

The used LFSR is tapped at the following locations: 128, 126, 101,99
which according to Ref. [26] generates the maximum length possible
for 128-bit LFSR.

Differential attack against the initialization is more time-wise expen-
sive than the brute force as there are 50-AES round functions in the
initialization.

Weak states are of equal 16-bytes in the AEGIS state, these
weak states count = 2128, noting that only 5 states are related to
the input key out of the AEGIS eight states, so the total num-
ber of states = 25∗128 = 2640 states, so these weak states probabil-
ity = 2128−640 = 2−512 which is very tiny probability but even this
tiny possibility is avoided in the hardware through by discarding IVs
resulted from the 128-bit LFSR responsible for controlling the IV values
generation that participates in all-equal states.

6.3. COLM version 1

Reusable re-forgery attacks on both COLM and OCB were described
in Ref. [27]. Reforge-ability describes the complexity to find subsequent
forgeries if a forgery is found.

6.4. Deoxys version 1.3

It is resistant against single-key differential attacks, which is
achieved simply through the diffusion layer of S-Box used inside AES

deployed by the deoxy algorithm. Also resistant against the related-
key differential attacks which needs impractical complexity to reveal
the key as shown in Ref. [28] the attack needs a time complexity
of 2173.1, 10-round encryptions and a data complexity of 2135 plain-
texts.

6.5. OCB

The OCB algorithm is timing-attack resistant and therefore is slow
comparing to other algorithms, the proof showing mathematically how
OCB is timing attack resistant is shown in Ref. [29].

Hopping between the five algorithms using dynamic partial recon-
figuration saves the utilization area and combines the different security
advantages over the discussed vulnerabilities efficiently.

7. Implementation results

7.1. Resources utilization

As shown in Table 1, the resource utilization of each configuration is
calculated for a Xilinx XC7Z020LG484-1 Zynq FPGA [30] after synthe-
sis using Xilinx Vivado 2015.2. The five configurations correspond to
the five ciphers: AEGIS, ASCON, COLM, Deoxys and OCB respectively.
It is important to note that these results are based on the original imple-
mentations by the designers of the ciphers. There are no modifications
applied to optimize for lower resources utilization. The main purpose is
to prove the flexibility of the proposed design to embrace any configu-
ration.

Table 2 presents the resources utilized by the static components
of the design including the inputs/outputs FIFOs, UART transmit-
ter/receiver and the LFSR. PDI FIFOs exhibits the largest area with
801 slice LUTs, 277 slice registers and no F7 or F8 MUXs (Fx MUX
is equivalent to a LUT that can implement an x input function). This is
because these FIFOs have largest input/output port width of 256 bits
and a depth of 32 registers. UART Rx consumes a significant amount of
slice LUTs compared to UART Tx as it handles potential metastability
resulting from different clock domains by double registering the input
data.

By integrating the utilization results for the dynamic and static parts
as shown in Fig. 25, it is found that DPR helps in decreasing the utiliza-
tion by 57% when compared to the traditional design with the five con-
figurations physically mounted onto the FPGA at the same time without
switching. These results apply to both encryption and decryption mod-
ules as they are using the same components except for the LFSR which
is amortized over the whole design area.

Table 1
Resources utilization of the dynamic configurations.

Configuration Slice LUTs Slice registers F7 MUXs F8 MUXs BRAM tiles

AEGIS 7250 2117 2052 1024 0
ASCON 1321 890 2 0 0
COLM 7547 2686 1137 376 4
Deoxys 2971 1593 641 256 0
OCB 4009 1612 593 200 4

Table 2
Resource utilization of the static modules.

Component Slice LUTs Slice registers F7 MUXs F8 MUXs BRAM tiles

LFSR 4 3 0 0 0
DO/PDI FIFOs 801 277 0 0 0
SDI FIFO 126 45 0 0 0

119

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

Fig. 25. Comparison between Non-DPR and using DPR implementation.

Table 3
Dynamic power consumption.

Configuration Dynamic Power Consumption (mW)

AEGIS 9.26
ASCON 2
COLM 10.74
Deoxys 6.3
OCB 4.14
DPR controller 9.2

7.2. Power consumption

In Table 3, dynamic power consumption is calculated for each con-
figuration for both encryption and decryption modules at an operat-
ing frequency of 10 MHz using Xilinx Vivado 2015.2 power analy-
sis tool in addition to the power consumed by the AXI-HWICAP DPR
controller. Power calculations are based on 3 input parameters to the
analysis tool: design source clock frequency, I/O data ports and inter-
nal control signals nodes switching activity. Source clock frequency is
predetermined though a user constraint file while switching activity
of all internal nodes is provided through a SAIF extension file that is
generated through timing simulation of the design at worst case sce-
narios. It is important to note that the power consumed by the DPR
controller is independent of that of used clock frequency for the PL,
as it is dependent on the bandwidth of internal configuration access
port which is configured at a maximum value of 667 MHz. With an
average consumption of 6.48 mW, the proposed design reduces power
consumption by 80% when compared to a conventional design using
the five configurations in parallel without exploiting the capabilities of
DPR, taken into consideration that no optimizations were performed on
the used encryption algorithm cores as the purpose was to prove the
ability of the proposed design to embrace as many configurations as
needed.

7.3. Reconfiguration time

The speed of configuration is directly related to the size of the par-
tial bit file and the bandwidth of the configuration port. The recon-
figuration time can be calculated by dividing the size of the bitstream
(in bits) by the throughput of the ICAP [31]. The calculated config-
uration time is 1.67 ms for the five configurations as they are using

Table 4
Throughput of the five configurations.

Configuration Throughput (Mbps)

AEGIS 51.2
ASCON 30.5
COLM 45.7
Deoxys 27.2
OCB 49.2

Table 5
Comparison between the proposed design and [32].

Parameter Proposed Design [32]

device XC7Z010clq225-3 XC7Z010clq225-3
power [mW] 72.6 170
Throughput [Mbps] 510 1280
Efficiency [Mbps/slice] 0.54 2.45
confidentiality yes yes
Integrity yes No
Authentication yes No
second dimension of security yes No

the same RP with fixed area on the FPGA. Although the reconfigura-
tion time is the main drawback of DPR, it is compensated by allowing
the ARM processor to do other tasks during this time which helps in
increasing the speed of any reconfigurable design. Moreover, the effect
of the reconfiguration time on the total time required for data trans-
mission is highly dependent on the frequency at which the PL operates
as it directly affects the latency of the encryption/decryption modules,
hence, the time it takes to transfer each bit per encryption/decryption
message. It is also important to take into consideration the technology
that could be used to transfer the encryption/decryption data between
the 2 modules as it controls the maximum distance covered by the data
to travel across 2 nodes and accordingly the time taken through trans-
mission.

7.4. Throughput

Table 4 presents the throughput of each cipher used in the design
at a frequency of 10 MHz. The average throughput of the design is
estimated under the assumption that each cipher is used to send one
encryption/decryption message and was found to be 40.8 Mbps. More-
over, the maximum achievable throughput is limited by the minimum
of either the bandwidth of ICAP or the maximum frequency of one of
the used configurable ciphers.

8. Comparison

Table 5 shows comparison between the proposed design and [32]
which is using AES as an encryption algorithm for an IoT security sys-
tem, when the two designs run at 100 MHz. It shows that the average
power consumption for the proposed design is only 72.6 mW and it
supports three aspects of the cryptography goals which are: confiden-
tiality, integrity and authentication in addition to the second dimension
of security whereas the study [32] supports only confidentiality and the
power consumption for it is 170 mW. Although other parameters are in
favor of [32], it is notable to mention that it is possible to enhance the
proposed design results by either optimizing the used algorithms area
or by using algorithms which utilize less resources as area utilization is
of much higher priority than throughput calculations when it comes to
the field of IoT.

120

S. Soliman et al. Integration, the VLSI Journal 68 (2019) 108–121

9. Conclusion

In this paper, a new design that adds a new dimension of security
for constrained IoT devices using the concept of algorithm hopping, in
analogy to the well known frequency hopping technique, is introduced.
DPR technology is used for switching between five lightweight ciphers
that are currently under review in the CAESAR contest and provides a
reduction of 58% and 80% in area utilization and power consumption
respectively. The design is mounted on a Xilinx XC7Z020LG484-1 Zynq
FPGA and synthesized using Xilinx Vivado 2015.2.

Acknowledgement

This work was supported by the Egyptian Information Tech-
nology Industry Development Agency (ITIDA) under ITAC Program
PRP2018.R25.23.

References

[1] R. Minerva, A. Biru, D. Rotondi, Towards a Definition of the Internet of Things
(IoT), IEEE, May 2015 (May 2015).

[2] C. Bekara, Security issues and challenges for the IoT-based smart grid, Procedia
Comput. Sci. 34 (2014) 532–537.

[3] M. Katagi, S. Moriai, Lightweight Cryptography for the Internet of Things, Sony
Corporation, 2008, pp. 7–10.

[4] N. Samir, Y. Gamal, A.N. El-Zeiny, O. Mahmoud, A. Shawky, A. Saeed, H. Mostafa,
Energy-adaptive lightweight hardware security module using partial dynamic
reconfiguration for energy limited internet of things applications, in: IEEE
International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan,
2019https://doi.org/10.1109/ISCAS.2019.8702315.

[5] S. Koteshwara, A. Das, Comparative study of Authenticated Encryption targeting
lightweight IoT applications, IEEE Des. Test 34 (2017) 26–33, https://doi.org/10.
1109/MDAT.2017.2682234.

[6] Cryptographic Competition, 2014 (2014), https://competitions.cr.yp.to/caesar-
call.html.

[7] H. Wu, B. Preneel, AEGIS: a fast authenticated encryption algorithm, in: T. Lange,
K. Lauter, P. Lisonek (Eds.), Selected Areas in Cryptography SAC 2013. Lecture
Notes in Computer Science, vol. 8282, Springer, Berlin,Heidelberg, 2014.

[8] C. Dobraunig, M. Eichlseder, F. Mendel, M. Schlffer, Ascon v1.2, Submission to the
CAESAR Competition, 2016, http://competitions.cr.yp.to/round3/asconv12.pdf,
http://ascon.iaik.tugraz.at.

[9] J. Daemen, Permutation-based Encryption, Authentication and Authenticated
Encryption, DIAC- Directions in Authenticated Ciphers, July 2012 (July 2012).

[10] E. Andreeva, A. Bogdanov, N. Datta, A. Luykx, B. Mennink, M. Nandi, E.
Tischhauser, K. Yasuda, COLM V1, Submission to CAESAR Competition, 2015.

[11] C. Cid, T. Huang, T. Peyrin, Y. Sasaki, L. Song, A security analysis of deoxys and its
internal tweakable block ciphers, IACR Trans. Symmetric Cryptol. 3 (2017)
73–107.

[12] T. Krovetz, P. Rogaway, The OCB Authenticated-Encryption Algorithm, RFC 7253,
May 2014https://doi.org/10.17487/RFC7253 (May 2014).

[13] N.H. Motlagh, Frequency hopping Spread Spectrum: an effective way to improve
wireless communication performance, Adv. Trends Wireless Commun. 2011
(2011).

[14] Xilinx Inc, Efficient Shift Registers, LFSR Counters, and Long PseudoRandom
Sequence Generators (Jul. 1996), Jul. 1996.

[15] C. Maxfield, Book: the Design Warrior’s Guide to Fpgas, Newnes, 2004 (2004).
[16] M.A. Bahnasawi, K. Ibrahim, A. Mohamed, M.K. Mohamed, A. Moustafa, K.

Abdelmonem, Y. Ismail, H. Mostafa, ASIC-oriented comparative review of
hardware security algorithms for internet of Things applications, in: IEEE
International Conference on Microelectronics (ICM 2016), 2016, pp. 285–288,
https://doi.org/10.1109/ICM.2016.7847871.

[17] A. Hassan, R. Ahmed, H. Mostafa, H.A.H. Fahmy, A. Hussien, Performance
evaluation of dynamic partial reconfiguration techniques for software defined
radio implementation on FPGA, in: IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), 2015https://doi.org/10.1109/ICECS.2015.
7440279.

[18] Xilinx Inc, Vivado Design Suite Partial Reconfiguration User Guide UG909 (Apr.
2017), Apr. 2017.

[19] K. Vipin, S.A. Fahmy, ZyCAP: efficient partial reconfiguration management on the
xilinx Zynq, IEEE Embed. Syst. Lett. 6 (3) (2014) 41–44.

[20] A. Kamaleldin, A. Mohamed, A. Nagy, Y. Gamal, A. Shalash, H. Mostafa, Design
guidelines for the high-speed dynamic partial reconfiguration based software
defined radio implementations on xilinx Zynq FPGA, in: IEEE International
Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1–4, https://doi.org/
10.1109/ISCAS.2017.8050456.

[21] Xilinx Inc, AXI HWICAP PG134 (Oct. 2016), Oct. 2016.
[22] K. Khatib, M. Ahmed, A. Kamaleldin, M. Abdelghany, H. Mostafa, Dynamically

reconfigurable power efficient security for internet of Things devices, in: 7th
International Conference on Modern Circuits and Systems Technologies
(MOCAST), 2018https://doi.org/10.1109/MOCAST.2018.8376645.

[23] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M.U. Sharif, K. Gaj, GMU
hardware API for authenticated ciphers, in: International Conference on
Reconfigurable Computing and FPGAs, Dec. 2015, pp. 1–8.

[24] C.D.C.E. Hannes Gross, Erich Wenger, Ascon hardware implementations and
side-channel evaluation, in: International Conference on Security, Privacy, and
Applied Cryptography Engineering (SPACE) (2018), 2016https://doi.org/10.1016/
j.micpro.2016.10.006.

[25] S.T. Devansh Gupta, B. Mazumdar, Correlation power analysis on KASUMI: attack
and countermeasure, in: Microprocessors and Microsystems (MICROPROCESS
MICROSY), Elsevier, 2018, pp. 142–156, https://doi.org/10.1007/978-3-030-
05072-6_9(2016).

[26] xilinx.com (Linear Feedback Shift Register Taps) , https://www.xilinx.com/
support/documentation/application_notes/xapp052.pdf.

[27] S.L. Christian Forler, Eik List, J. Wenzel, Reforgeability of Authenticated
Encryption Schemes, 2017.

[28] X.D. Rui Zong, X. Wang, Related-tweakey Impossible Differential Attack on
Reduced-Round Deoxys-Bc-256, 2019.

[29] T. Krovetz, P. Rogaway, The Software Performance of Authenticated-Encryption
Modes, International Association for Cryptologic Research, 2011.

[30] Xilinx Inc, ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable
SoC UG850 (Sep. 2015), Sep. 2015.

[31] R.L. Roux, G.V. Schoory, P.V. Vuuren, Block RAM-based architecture for real-time
reconfiguration using Xilinx FPGAs, S. Afr. Comput. J. 2015 (2015).

[32] S.M. Soliman, B. Magdy, M.A.A. El-Ghany, Efficient implementation of the AES
algorithm for security applications, in: 29th IEEE International System-On-Chip
Conference (SOCC), Seattle, WA, 2016, pp. 206–210, https://doi.org/10.1109/
SOCC.2016.7905466.

121

http://refhub.elsevier.com/S0167-9260(19)30053-7/sref1
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref2
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref3
https://doi.org/10.1109/ISCAS.2019.8702315
https://doi.org/10.1109/MDAT.2017.2682234
https://doi.org/10.1109/MDAT.2017.2682234
https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/caesar-call.html
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref7
http://competitions.cr.yp.to/round3/asconv12.pdf
http://ascon.iaik.tugraz.at
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref9
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref10
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref11
https://doi.org/10.17487/RFC7253
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref13
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref14
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref15
https://doi.org/10.1109/ICM.2016.7847871
https://doi.org/10.1109/ICECS.2015.7440279
https://doi.org/10.1109/ICECS.2015.7440279
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref18
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref19
https://doi.org/10.1109/ISCAS.2017.8050456
https://doi.org/10.1109/ISCAS.2017.8050456
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref21
https://doi.org/10.1109/MOCAST.2018.8376645
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref23
https://doi.org/10.1016/j.micpro.2016.10.006
https://doi.org/10.1016/j.micpro.2016.10.006
https://doi.org/10.1007/978-3-030-05072-6_9
https://doi.org/10.1007/978-3-030-05072-6_9
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref27
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref28
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref29
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref30
http://refhub.elsevier.com/S0167-9260(19)30053-7/sref31
https://doi.org/10.1109/SOCC.2016.7905466
https://doi.org/10.1109/SOCC.2016.7905466

	FPGA implementation of dynamically reconfigurable IoT security module using algorithm hopping
	1. Introduction
	2. CAESAR
	2.1. AEGIS
	2.2. ASCON
	2.3. COLM
	2.4. Deoxys
	2.5. OCB

	3. Algorithm hopping
	4. Dynamic partial reconfiguration
	4.1. FPGA configuration
	4.2. Technology
	4.3. DPR controllers
	4.4. Xilinx AXI-HWICAP controller

	5. Proposed design
	5.1. Design modules
	5.1.1. AEAD top
	5.1.2. LFSR
	5.1.3. FWFT FIFO
	5.1.4. UART
	5.1.5. Pre-processor and post-processor
	5.1.6. Cipher core

	5.2. Design flow

	6. Cryptanalysis and security vulnerabilities
	6.1. ASCON
	6.2. AEGIS
	6.3. COLM version 1
	6.4. Deoxys version 1.3
	6.5. OCB

	7. Implementation results
	7.1. Resources utilization
	7.2. Power consumption
	7.3. Reconfiguration time
	7.4. Throughput

	8. Comparison
	9. Conclusion
	Acknowledgement
	References

