
Remote FPGA Lab For ZYNQ and Virtex-7 Kits

Abd El-Rahman Mohsen
x
, Mohamed Youssef GadAlrab

xi
, Zeina elhaya Mahmoud

xii
, Gameel Alshaer

x
, Mahmoud Asy

x

and Hassan Mostafa
x xi

x
Electronics and Communications Engineering Department, Cairo University, Giza 12613, Egypt.

xi
Nanotechnology Department at Zewail City for Science and Technology, Cairo, Egypt.

xii
Department of Communication and information technology engineering , Zewail City of Science and Technology, Egypt

xiii
Faculty of Engineering, Alexandria University, Alexandria, Egypt

Abstract—This paper proposes a remotely programmable and
interactive ZYNQ and Virtex-7 FPGA (Field Programmable Gate
Array) Lab for testing and implementing arbitrary hardware
circuit designs on real hardware. The online virtual lab facilitates
the use of FPGA Boards in simple steps and provides graphical
and command line interface to control and monitor FPGA signals
in real time. The remote lab provides a scheduling system and
allows multiple concurrent remote users. The remote interaction
method doesn’t depend on the type of the device; so it can be
scaled to include different devices. The required hardware and
software of the remote laboratory is developed, implemented and
tested by the undergraduate and graduate students at Cairo
University in Egypt.

Index Terms—FPGA, ZYNQ, Virtex-7, Interactive Learning,
Virtual Lab.

I. INTRODUCTION

In the recent decades a new revolution known as Industry
4.0 took place. It takes benefit of the internet of things (IoT)
and Cyber-physical systems to connect physical devices with
digital world. It is a manufacturing revolution that requires
smart means of device prototyping which can be accomplished
using FPGAs. FPGAs, also, play a significant role in image
processing; which is an essential part of any machine vision
system. Most industrial processes require robot arms directed
by machine vision systems. So, equipping engineers with
FPGA design flow experience becomes a necessity. Universi-
ties often provide their students access to hardware laboratories
related to their courses; to enhance the learning process, but
this is not always applicable, due to the high price of FPGA
boards, the capacity of the laboratory, and the time limit of
the lab working hours. One of the proposed solutions for this
problem is computer simulation. Although, this solution is
easy, simulation has some limitations and gets slower as the
designs get bigger. Also, simulations do not offer the same
experience as the real hardware lab.

FPGA is a type of re-configurable device that is used to test
and implement arbitrary hardware circuits. It is, also, used in
digital signal processing and in prototyping hardware designs.
This paper proposes a remote laboratory; which offers full
interaction with real FPGA boards for teaching and testing
FPGA system designs. Correspondingly, hardware such as
Zynq-7000 SoC ZC702 Evaluation Kit [1] and Virtex-7 FPGA
VC709[2] Connectivity Kit are efficiently utilized, moreover,

lab users such as undergraduate and graduate students interact
with FPGAs in a more efficient and interactive way than ordi-
nary laboratories. The proposed lab allows multiple concurrent
users at the same time as long as they use different devices.
Each user selects a certain device at a certain time slot from a
reservation system and a webserver grants permission over the
device to the user at the reserved time slot as seen in Fig.1.

Fig. 1. Architecture of the webserver.

II. RELATED WORK

There are many remote FPGA labs that work with the
same concept, but with lower FPGA specifications and dif-
ferent implementations[3]. The Online Lab Environment of
CoderLabs[4] use physical logic analyzer and Labview[5] to
monitor the behavior of the FPGA. Alternatively, the proposed
remote Lab takes benefit of VIO (Virtual Input/Output) and
ILA (Integrated Logic Analyzer) debug cores[6] to drive and
monitor the internal signals in the FPGA design. One advan-
tage of using the ILA Debug core is that it is implemented
internally on the FPGA; so, it can monitor very high speed
signals without getting delays from external connections or
wires. There are other labs that use WINDOWS platform as
the server operating system and use remote desktop protocol to
forward the display[7][8][9] or build the GUI on the website.
Installation of a certain package, or software client is often



required in order to perform an experiment. For example,
the work in [10] introduces a remote FPGA lab that is
built with a cloud-based Xilinx ISE tool chain and allows
uploading Verilog/VHDL codes. Then, a Linux based server
connected to the FPGA compiles the code, runs the complete
Xilinx design flow, and programs the FPGA. Afterwards, it
provides a summary report of the design process. Another
paper has proposed a different system that allows users to
interact with the FPGAs switches and LEDs (Light Emitting
Diodes) through a GUI (graphical user interface), so they can
manipulate inputs and test their designs [11].

The proposed remote lab in this paper has used linux as the
server operating system, offers full interaction with multiple
FPGAs at the same time and implements three different meth-
ods of remote interaction. This is done by creating an account
for each user locally on the system after registration on a web
server, giving permission to the user over the reserved USB
(Universal Serial Port) device connected with the FPGA board
whether ZYNQ or Virtex-7, running hardware instance of the
reserved FPGA device and forwarding the graphical interface
of the remote machine. Different GUI forwarding protocols
were tested such as VNC (Virtual Network Computing), RDP
(Remote Desktop Protocol) and X11. Forwarding the GUI
directly to the browser without installing a certain software
on the user’s side; results in a better experience. Therefore,
the user can open and interact with the program GUI on
the web browser without installing any clients while the
program is running on the server that is connected to the
device. At first, XPRA[12] client was used based on X11
protocol for forwarding the display, but it consumed most of
the internet bandwidth and resulted in lots of lags and delays.
Secondly, Apache Guacamole[13] was used and it showed a
better performance as it supports the three protocols mentioned
earlier and consumes less internet bandwidth.

III. LAB SETUP

The proposed remote virtual lab is composed of one server
with Intel(R) Xeon(R) E5-2620 v2 @2.10GHz (24 CPUs) and
32 GB RAM, one Zynq FPGA board, one Virtex-7 FPGA
board, and a webcam for each board. The server runs a web-
page that allows the user to reserve a time slot to use the lab
and interact with the FPGA through it. The server is connected
to the FPGA board and runs Vivado software to interface and
program the FPGA. Then, the server forwards Vivado GUI
session through a webpage or allows the user to SSH (Secure
Shell) and run a script that programs and debugs the FPGA.
The server, also, runs hardware server provided by Vivado on
a certain port and allows remote usage of the FPGA, provided
that, the user has the same Vivado version as the one installed
on the server.

A. Remote Lab Server Setup

The server runs Django Web framework[14] on Debian
jessie[15] operating system and controls the user’s access by
creating a Linux user credentials for every account on the
portal. Then, it locks all accounts to prevent any unauthorized

access through SSH. When a time slot starts, the backend
server calls a script that assigns the USB (Universal Serial
Port) related to the reserved FPGA and unlocks the user
account to allow SSH to the server. Another script, also, runs to
create a connection for the user in Apache Guacamole[13] that
forwards Vivado GUI and passes a certain address to a web-
page. Thus, the user interacts with the GUI on that web-page.
At the end of the time slot, a custom script runs to terminate
all user’s opened processes and the account gets locked again.

B. Remote Lab Webpage Setup

The webpage is developed using Django which is a high-
level python framework for web development. It is character-
ized by its security and scalability[14]. The authorized users
are only allowed to access the site after validating the date and
time entered during reservation. This is performed in multiple
steps. Authentication is performed using a bash script that
schedules two other scripts to be run on behalf of the user.
The first one is issued at the beginning of the session to grant
access to the user and the other one is issued at the end of
the session to terminate it on the server. At the time the user
have access to the server, she/he is able to monitor the FPGA
through web streaming camera. The user can also interact with
the FPGA through an online terminal.

C. Remote Lab Hardware Setup

Both Zynq-7000 and Virtex-7 FPGAs are connected to
the server with the onboard USB JTAG (Joint Test Action
Group) interface in boundary scan mode and UART (Univer-
sal Asynchronous Receiver Transmitter). This connection not
only allows the programming of the FPGA, but also, allows
hardware debugging over JTAG. All users are given access
to any USB connected FPGA device using Vivado. Limiting
user access to the reserved FPGA - not all FPGAs - is done by
changing the ownership permission of that USB device at the
reserved time slot. In this case, UDEV (Linux dynamic device
management)[16] has been used to link each FPGA with a
fixed USB device. Input manipulation and output monitoring
are facilitated for the user using Hardware debugging with
VIO or ILA debug cores provided by Vivado IP catalogue[6].
This makes the remote lab more realistic and closer to real
labs. Fig.2 displays the architecture of the proposed remote
lab.

Fig. 2. Client server architecture of the proposed remote lab.



D. Multiuser Experience

The system allows multiple FPGA’s to be programmed
and used at the same time in three different ways. This is
performed in the following manner. Each FPGA has a unique
USB device name assigned by Udev rules. At the time of the
experiment, the server unlocks the user account and changes
the ownership permission of the USB device related to the
reserved device at the reserved time slot. Therefore, the user
connects to a specific USB device. The user, then, can connect
to the FPGA using Vivado hardware server. Vivado hardware
server allows connection to the FPGA remotely or from the
same machine. Vivado by default runs a single hardware server
that connects all FPGAs; allowing any user to connect to that
hardware server and all FPGAs. In order to allow users to
connect to a specific USB device, the server runs an instance
of Vivado hardware server for each user on a different port
after reservation; as seen in Fig3.

As for the Graphical interface; the server automatically
creates a connection for each user in Apache Guacamole
configuration file after signing up. The server, also, creates
a display manager for each user on the system along with the
local account. One of the advantages of the Linux server is
that different users can view different displays at the same
time. The proposed architecture uses xfce4 display manager
and Xrdp as remote desktop forwarding protocol. Then, the
user chooses the method of interaction whether using ssh,
Apache Guacamole or Vivado hardware server.

The backbone of the website is the backend service devel-
oped which takes advantage of a certain scripts that automates
the entire process of accounts creation, reservation, FPGA
programming and debugging.

Fig. 3. Multiple Vivado hardware servers for different users.

IV. USER WORK FLOW

The FPGA usage is summarized in the following steps:
bit-stream generation, FPGA programming and hardware de-
bugging. The first step is assumed to be performed locally

on the user local computer. The importance of the remote
laboratory comes in the second and third steps. As the user
does not have to purchase the expensive FPGA boards, the
hardware can be programmed remotely at any time. The first
step could also be performed remotely on the server, but it
has some hardware and internet bandwidth limitations. For
instance, the user cannot perform the first step on the Virtex-7
FPGA board[2] but can perform it on the ZYNQ board[1]. This
is because Vivado webpack edition does not support Virtex-
7 FPGAs[2] but supports ZYNQ FPGA[1]. There are some
considerations to be taken by the user before programming
the FPGA remotely. The proper addition of the debug core
should be checked by The user. The device constraints such
as the clock source and LED pins should also be checked.
Fig. 5 shows the command line interface with the camera.
This method offers more flexibility as the user can write
the code, do the design flow, program the FPGA, debug and
manipulate inputs using Virtual Input/Output core (VIO). The
typical usage includes:(1) Bit-stream generation; which is done
locally on the user computer targeting a certain FPGA. In
this step, users must specify the monitored outputs and driven
inputs and map these signal to a preferred debug core such as
VIO and ILA, (2) Timeslot reservation; at which the server
schedules a script that runs the necessary services for the user
to program the FPGA at the start time, (3) User interaction;
it is done with the server using the online terminal, SSH,
Vivado hardware server or XPRA. According to the selected
method of interaction, the user uploads FPGA programming
files or uses the remote hardware server provided by Vivado,
and programs the FPGA, (4) Time slot termination at which
the server schedules another script to revoke all user grants and
privileges, lock user account and terminate user processes at
the end time specified during reservation. The user can emulate
behavior of the board’s push buttons by adding a VIO debug
core then assigning the inputs of his design to this VIO core.

V. EXPERIMENTAL RESULTS

A set of sample experiments and tutorials are provided to
a sample of 50 undergraduate and graduate students at Cairo
University in video and PDF (Portable Document Format) to
facilitate the interaction with the developed remote lab and
to get better understanding of its functionality and usage. For
example, the first experiment introduced to the user, is a simple
AND gate where the user sends the inputs using command line
and views the output of the AND gate on the FPGA board
LEDs through the mounted camera. In the second experiment,
the user remotely controls four LEDs with 2 switches. The
third experiment is a 128-bit implementation of the AES (Ad-
vanced Encryption System) encryption algorithm. Each of the
previous experiments is provided by a user friendly TCL script
that programs the FPGA with the experiment corresponding
bit-stream and probes file, scans the implementation to get
any assigned signals for debugging, checks on the signal type.
Based on the signal type, the script whether directs the user
to enter the value of the signal if it is an input signal or prints
the value of the signal if it is an output signal. The script



Fig. 4. ZC702 Evaluation board connected to a server with webcam mounted
on top of it.

Fig. 5. ALU testing on remote FPGA Lab with results signals being altered
on leds.

also checks on the existence of an ILA debug core and if the
design contains this debug core then the script asks the user
to select the results format (i.e., either VCD (Virtual Circuit
Descriptor) or CSV (Comma Separated Value)).

VI. CONCLUSION AND FUTURE WORK

In this paper, the architecture and implementation of a
remote Virtex-7 and ZYNQ FPGA based Lab have been
presented. The proposed architecture of the remote FPGA Lab
mainly focuses on organizing the FPGA usage and provides
the user with complete control over the FPGA. The proposed

future work is to add different hardware types such as GPUs
(Graphical Processing Units) TPUs (Tensor Processing Units)
and generalize the way of remote interaction.

ACKNOWLEDGMENT

This work was partially funded by ONE Lab at Zewail City
of Science and Technology and Cairo University and NTRA.

REFERENCES

1 “Xilinx zynq-7000 soc zc702 evaluation kit.” [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html

2 “Xilinx virtex-7 fpga vc709 connectivity kit.” [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html

3 Morgan, F., Cawley, S., Callaly, F., Agnew, S., Rocke, P., O’Halloran, M.,
Drozd, N., Kepa, K., and Mc Ginley, B., “Remote fpga lab with interactive
control and visualisation interface,” 09 2011, pp. 496–499.

4 Touhafi, A., Braeken, A., Tahiri, A., and Zbakh, M., “Coderlabs: A cloud
based platform for real time online labs with user collaboration,” in
2016 2nd International Conference on Cloud Computing Technologies
and Applications (CloudTech), May 2016, pp. 317–324.

5 “Labview national instruments.” [Online]. Available: http://www.ni.com/
6 “Ug908 vivado design suite user guide programming and debugging,” May

2014. [Online]. Available: https://www.xilinx.com/support/documentation/
sw manuals/xilinx2014 1/ug908-vivado-programming-debugging.pdf

7 Soares, J. and Lobo, J., “A remote fpga laboratory for digital design
students,” 01 2011.

8 Rajasekhar, Y., Kritikos, W. V., Schmidt, A. G., and Sass, R., “Teaching
fpga system design via a remote laboratory facility,” in 2008 International
Conference on Field Programmable Logic and Applications, Sep. 2008,
pp. 687–690.

9 Ravanasa, K. and Hashemian, R., “vlab, a high speed multi-accesses
parallel processing remote laboratory access for fpga design technology,”
in IEEE International Conference on Electro/Information Technology,
June 2014, pp. 377–381.

10 Doshi, J., Patil, P., Dave, Z., Gore, G., Joshi, J., Sonkusare, R., and
Rathod, S., “Implementing a cloud based xilinx ise fpga design platform
for integrated remote labs,” in 2015 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), Aug 2015, pp.
533–537.

11 Soares, J. and Lobo, J., “A remote fpga laboratory for digital design
students,” 2011.

12 “multi-platform screen and application forwarding system screen for
x11.” [Online]. Available: http://xpra.org/

13 “clientless remote desktop gateway.” [Online]. Available: https://
guacamole.apache.org/

14 “Django the web framework for perfectionists with deadlines.” [Online].
Available: https://www.djangoproject.com/

15 “Debian 8.” [Online]. Available: https://www.debian.org/releases/jessie/
16 “udev dynamic device management.” [Online]. Available: https://linux.

die.net/man/7/udev


