
Accepted manuscript to appear in JCSC

Accepted Manuscript
Journal of Circuits, Systems, and Computers

Article Title: ASIC and FPGA Comparative Study for IoT Lightweight Hardware Secu-
rity Algorithms

Author(s): Nagham Samir, Abdelrahman Sobeih Hussein, Mohaned Khaled, Ahmed
N. El-Zeiny, Mahetab Osama, Heba Yassin, Ali Abdelbaky, Omar Mah-
moud, Ahmed Shawky, Hassan Mostafa

DOI: 10.1142/S0218126619300095

Received: 14 September 2018

Accepted: 08 November 2018

To be cited as: Nagham Samir et al., ASIC and FPGA Comparative Study for IoT
Lightweight Hardware Security Algorithms, Journal of Circuits, Systems,
and Computers, doi: 10.1142/S0218126619300095

Link to final version: https://doi.org/10.1142/S0218126619300095

This is an unedited version of the accepted manuscript scheduled for publication. It has been uploaded
in advance for the benefit of our customers. The manuscript will be copyedited, typeset and proofread
before it is released in the final form. As a result, the published copy may differ from the unedited
version. Readers should obtain the final version from the above link when it is published. The authors
are responsible for the content of this Accepted Article.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

https://doi.org/10.1142/S0218126619300095

ASIC and FPGA Comparative Study for IoT
Lightweight Hardware Security Algorithms

Nagham Samir1, Abdelrahman Sobeih Hussein2, Mohaned Khaled1, Ahmed N. El-Zeiny1, Mahetab Osama1, Heba
Yassin1, Ali Abdelbaky1, Omar Mahmoud1, Ahmed Shwaky1,

and Hassan Mostafa1,3
1Electronics and Communications Engineering Department, Cairo University, Giza 12613, Egypt.

2Computers and Systems Engineering Department, Faculty of Engineering, Mansoura University, Egypt.
3Center for Nano-electronics and Devices, American University in Cairo and Zewail City for Science and

Technology, Cairo, Egypt.
naghamsamir2014@gmail.com, abdelrahman.sobeih@gmail.com, MohanedEECE@gmail.com,

ahmed.nagy.elzeiny@gmail.com, mahetabo17@gmail.com, heba.m.yassin@gmail.com, alibaky92@gmail.com,
omar.mahmoud.yahya@gmail.com, ahmed.shawky.awwad@gmail.com, hmostafa@uwaterloo.ca

Abstract—Data security, privacy and authenticity are crucial in
wireless data transmission. Low power consumption is the main
requirement for any chip design targeting the Internet of Things
(IoT) applications. In this research paper, a comparative study
of Eight authenticated encryption and decryption algorithms, se-
lected from the Competition for Authenticated Encryption: Secu-
rity, Applicability and Robustness (CAESAR), namely: ACORN,
ASCON, CLOC, JOLTIK, MORUS, PRIMATEs, SCREAM and
SILC, is presented. The FPGA and ASIC implementations of
these Eight algorithms are synthesized, placed and routed. Power,
area, latency, and throughput are measured for all algorithms.
All results are analyzed to determine the most suitable algorithm
for IoT applications. These results show that ACORN algorithm
exhibits the lowest power consumption of the Eight studied
algorithms at the expense of lower throughput and higher latency.
MORUS algorithm gives the highest throughput among the Eight
selected algorithms at the expense of large area utilization.

Keywords—Internet of Things (IoT), Hardware Security, Authen-
ticated Encryption with Associated Data (AEAD), Competition for
Authenticated Encryption: Security, Applicability and Robustness
(CAESAR), Advanced Encryption Standard (AES).

I. INTRODUCTION

In the last few decades, network firewall has been the
best solution to overcome the insecurity attacks. However,
the emergence of Internet of Things (IoT) applications has
made the security issue more critical and complicated [1].
IoT makes use of data collected from IoT devices to optimize
the observation and control of the world in domains such as
logistics, retail, military, and healthcare [2]. This huge and
continuously increasing number of devices is leading to more
attack vectors by hackers [3]. As a result, the security becomes
one of the main challenges required by IoT stakeholders to
deploy the IoT applications in the market.

One of the most important questions that is arising in
the IoT field is that how to achieve the IoT security. Two
main data security models exist, software security and

hardware security. The most popular and cost effective model
is software security. Software security is achieved by a
cryptography program which is responsible of securing all the
data of the organization network. Software security provides
good levels of security, however, it has a clear disadvantage.
The security of Operating System (OS) compromises the
security of the cryptography software. Moreover, continuous
updates are needed for the OS and the cryptography program,
especially the current versions of the OS are well known for
the hackers. This disadvantage of the software security leads
to the rising demand for the hardware security. Hardware
security is achieved by connecting a Hardware Security
Module (HSM) to the organization network. HSM is a
physical device that provides extra security for sensitive data.
The HSM is responsible for achieving all the cryptography
aspects (i.e., data encryption and decryption in addition to data
authentication) [4]. Correspondingly, the security question is
rephrased from how to achieve the IoT security to how to
implement the HSM module.

The objective of this work is to provide a quantitative
answer to the above question by carrying out a comprehensive
comparison among different cryptography algorithms that are
used to implement the HSM module, taking into consideration
the power consumption of the HSM implemented modules
to match the power constraints imposed by the low power
IoT applications [5]. The main contribution of this work
is to provide a quantitative comparison among different
HSM modules and to recommend the HSM algorithm that is
suitable for IoT applications.

The paper presents a quantitative comparison among Eight
different algorithms that have participated in the Competition
for Authenticated Encryption: Security, Applicability, and
Robustness (CAESAR) [6]. The selected algorithms are
SCREAM, JOLTIK, ASCON, MORUS, CLOC, SILC,
PRIMATEs, and ACORN. The Eight algorithms are

Click here to download Manuscript (pdf) ASIC_PAPER_Sept
11.pdf

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

implemented using the Application Specific Integrated
Circuits (ASIC) flow with CMOS UMC 130nm technology.
The synthesis step is performed by using Synopsys Design
Compiler tool and the place and route step is conducted
by using Cadence System on Chip (SoC) Encounter tool.
Moreover, all the Eight algorithms are implemented using the
Field Programmable Gate Array (FPGA) flow with ZC702
evaluation board for the Zynq-7000 XC7Z020. The synthesis
and the place and route steps are carried out by using Xilinix
Vivado 2016.4 tool. The maximum frequency of all algorithms
is set to 10MHz that suits the low power IoT applications and
also to provide a fair comparison among the different HSM
modules.

In the presented quantitative comparison, several aspects are
studied such as throughput, latency, power consumption, and
area, for both the ASIC and the FPGA design flows. Moreover,
other aspects are investigated in this comparison such as: the
nature of the algorithm (i.e., iterative or serialized), the type of
key scheduling (i.e., tweakable or not), algorithm capabilities
(i.e., whether it includes decryption unit in addition to the
encryption unit or not), the number of rounds, the data block
size, the size of the public message number, and the size and
design of the substitution box.

The paper is organized as follows. Section II discusses
the low power IoT applications and the security challenges.
Section III explains the CAESAR competition background
and the hardware Application Programming Interface (API)
of the different algorithms used in this paper. Section IV
introduces the different features associated with the selected
algorithms in this paper. Section V provides brief descriptions
of the Eight selected algorithms. Section VI presents the
hardware implementations of the Eight selected algorithms in
FPGA and ASIC flows. Section VII provides the results and
discussions of the quantitative comparison. Section VIII holds
a comparison between existing cryptographic schemes, and the
selected lightweight algorithms from CASESAR competition.
Section IX concludes the work of this paper.

II. INTERNET OF THINGS (IOT)

The growth of the Internet of Things (IoT) arises several
security issues. These security issues are categorized into two
main classes: (1) the variety in information, and (2) secure
communication among objects. These issues cause various
challenges in the IoT applications security such as: authenti-
cation, privacy, and power consumption [7]. These challenges
are described as follows:

A. Authentication

Due to the large increase in the number of objects, authenti-
cation with traditional methods such as secret keys and public
keys becomes a complex task. However, authentication is a
hard challenge in IoT to avoid the third party manipulation of
data. Therefore, other methods are presented to achieve strong-
based authentication between main parties [7].

B. Privacy
Privacy is one of the main challenges in IoT security. This

is because all the IoT objects are connected to the internet
and their information are vulnerable to hackers. Accordingly,
the objects information should be protected and their privacy
should be maintained.

C. Power Consumption
The power is a significant challenge in IoT applications.

This is because most of the IoT modules are using energy
harvesting such as photovoltaic, piezoelectric, and thermal
energy. Accordingly, low power consumption is a must to
lengthen the battery lifetime and to push the IoT industry into
the market.

III. CAESAR COMPETITION

A. Cryptographic Competitions
Many cryptographic competitions are held to gather

the cryptanalysts and cipher designers from all over the
world to share their knowledge and designs. Following
each competition, a final portfolio is announced. These
competitions provide a great boost to the cryptographic
research community understanding of block ciphers, and a
tremendous increase in confidence in the security of block
ciphers. The first competition was held in 1997 when the
United States National Institute of Standards and Technology
(NIST) announced an open competition for a new Advanced
Encryption Standard (AES). Eventually NIST selected
Rijndael as the standard AES [8].

During the Early Symmetric Crypto workshop in Mondorf-
les-Bains in 2013, Competition for Authenticated Encryp-
tion: Security, Applicability, and Robustness (CAESAR) was
announced [9]. The objective of the CAESAR competition
is to announce a final portfolio that includes the hardware
implementation of an authenticated cipher that is much robust
against several hacking attacks and compatible with different
communications protocols. The competition has attracted 55
block cipher submissions and is performed over three rounds.
Each round contains a submission of software version of each
algorithm, C or Python, and then, a submission of hardware
version of the algorithm [6]. Only 15 block ciphers reach the
final round. The 15 block ciphers are ACORN, AEGIS, AES-
OTR, AEZ, ASCON, CLOC-SILC, COLM, Deoxys, JUMBO,
Katje, Keyak, MORUS, NORX, OCB, and Tiaoxin [6].

B. Hardware Application Programming Interface (API) for
Authenticated Ciphers

The Hardware Application Programming Interface (API)
for authenticated ciphers has been developed to meet all
the requirements of all algorithms that have been submitted
to the CAESAR competition. The top level of the API is
the Authenticated Encryption with Associated Data (AEAD)
core. The architecture of the AEAD core consists of three
main blocks: pre-processor, cipher core, and post-processor,

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

as shown in Fig.1. The main difference between the different
algorithms is in the cipher core implementation, as it
contains the hardware blocks that perform either encryption
or decryption and authentication algorithm steps [10]. The
George Mason University Application Programming Interface
(GMU-API) blocks is described as follows:

Fig. 1. CAESAR hardware Application Programming Interface (API)

1) Pre-Processor: Pre-processor is the first block of the
AEAD core which receives public and secret data and start
processing them. It is responsible for doing various processing
functions, such as:

• Parsing segment headers loading and activating keys.
• Serial-in-parallel-out loading of input blocks.
• Padding input blocks in case of the input block size does

not equal the algorithm block size.
• Keeping track of the number of data bytes left to process.

2) Cipher Core: The cipher core is divided into two
blocks: core data path and core controller. The core data path
contains the hardware which is responsible for encryption or
decryption and processing the associative data to perform data
authentication (tag generation), in addition to the hardware
which is responsible for the key scheduling and the generation
of round keys. The cipher core controller is an algorithmic
state machine that takes some information signals from the
pre-processor and generates control signals to the core data
path.

3) Post-Processor: The post-processor is the output stage
of the API. It is responsible for:

• Clearing any portions of the output blocks that are not
belonging to the ciphertext or plaintext.

• Parallel-in-serial-out conversion of output blocks into
words.

• Formatting output words into segments.
• Generating the status block with the result of

authentication. If the message is authenticated, it
outputs its block through the DO port, else it discards
it.

4) Bypass First-In-First-Out (FIFO) : Small 4x24 First-
Word-Fall-Through (FWFT) FIFO which bypasses the tags,
header, associated data and any data blocks that are used
in the authentication process and will not be encrypted.
It also bypasses any required data that the post-processor
needs to operate with the maximum efficiency. For example,
post-processor should know whether the last block needs to be
unpadded or not. In addition, the post-processor should know
whether the incoming data is ciphertext or plaintext, because
if it is a ciphertext, then there is no need to temporarily store
it as there is no tag verification needed in the encryption [10].

5) Auxiliary FIFO: The memory used by the post-processor
to temporarily store the decrypted message till the result of
authentication is ready [10].

IV. COMMON FEATURES FOR CAESAR CANDIDATES

The selected CAESAR candidates support authentication,
by using Authenticated Encryption with Associated Data
(AEAD). The objective of the CAESAR competition is
to submit algorithms that are supporting confidential and
authenticated communication. Authentication operation
happens at transmitter and receiver sides. At the transmitter
side, the data is encrypted and the tag is generated using the
message and associated data. At the receiver side, the message
is decrypted and then the tag is generated by applying the
same operations performed at the transmitter side. Original tag
from transmitter side is compared with the tag from receiver
side. If they are the same, then the message is authenticated,
otherwise the receiver discards the message.

Some of the selected candidates are block ciphers. Meaning
that input data is processed in terms of data block. Data
blocks are processed using various modes. In this section, the
following operation modes are presented.

1) Electronics Code Book (ECB): Encryption and
decryption operations are conducted independently on
each data block of plaintext and ciphertext respectively. The
advantage of ECB mode is the ability to accomplish the
operation in parallel. However, ECB mode suffers from small
bit diffusion which means that the order of the plaintext is
suffering from few scattered positions in the ciphertext.

2) Cipher Feed Back (CFB): The first message is XORed
with encrypted Initialization Vector (IV) to produce ciphertext.
Then the subsequent messages are processed by considering
the previous ciphertext is the current IV. CFB mode is unable
to recover the whole message, if a ciphertext is lost.

3) Cipher Block Chaining (CBC): In order to produce the
ciphertext, the same operations of CFB mode are carried out
again. However, message are XORed with IV not encrypted IV.

The following selected algorithms: SILC, JOLTIK, and
CLOC are based on Advanced Encryption Standard (AES) to
perform the encryption and the decryption processes. AES is

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

a symmetric block cipher that uses several key sizes. AES has
various standard versions: AES-128, AES-192, and AES-256
[11]. Number of rounds for each version depends on the key
size. It uses 10, 12, and 14 rounds for key size of 128, 192,
and 256 respectively. Data to be encrypted is represented in
4x4 matrix of bytes denoted by state. The block cipher applies
four permutation functions in each round which are: add round
key, sub bytes, shift rows, and mix columns. Fig. 2 shows a
flow chart for AES encryption algorithm [12].

Fig. 2. AES algorithm [12]

Add round key function XORed the current state with
the round key. The round keys are generated using a key
scheduling algorithm which takes the original 128-bit, or 192-
bit, or 256-bit key and generates the 10, 12, or 14 128-bit round
keys. Sub bytes function replaces each byte in the current state
using the substitution box (S-box). The shift rows function
rotates the state rows right with different number of positions.
First row is left un-rotated, second row is rotated with one
position, third row is rotated with two positions, and fourth
row is rotated with three positions. Mix columns function that
is denoted by the bit diffusion layer consider the columns of
the state as polynomials over Galois Filed and multiplied it
with a fixed polynomial [13].

V. THE SELECTED ALGORITHMS

A. ACORN Algorithm
ACORN is a symmetric and authenticated encryption

algorithm based on stream cipher. Stream cipher differs from
block cipher in that the key (K) and input data are applied bit
wise. ACORN provides parallel operation for encryption and
decryption processes. This parallelism is achieved through
independant processing for each bit of either plaintext or
ciphertext. This parallelism benefits lightweight hardware
implementation as the control circuit for the hardware
implementation is greatly simplified [14]. Number of bits that
are being padded to the message is fixed which reduces the
hardware implementation cost [15]. ACORN is an inverse
free authenticated encryption scheme. This type of schemes
require low memory and area because it utilizes one block to
perform either encryption or decryption operations instead of
separate blocks for each operation [16].

Fig. 3. ACORN v2 cipher core data path

ACORN has various standard that are the same in tag, key
and initialization vector sizes which is 128 bits but differ in
the number of steps. ACRON v2 provides more protection
than ACRON v1 by increasing the number of steps [17]. In
this paper results of ACORN are carried out from ACORN v2
implementation with 8 states processed in parallel. The hard-

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

ware used to accomplish encryption and decryption processes
is gathered in a single block with a control signal to select
between encryption and decryption. Input of this block is
multiplexed among plaintext, or ciphertext, or associated data,
or even zero. Fig. 3 represents the data path for cipher core
of ACORN v2 for bit wise case (not 8 bits) [15]. It depends
mainly on two blocks. First block is the state update function,
which updates the internal state and then affects the output
ciphertext and tag. Second block is the key stream generator
(KSG) with current state as input. It is used to generate a key
stream that is used later to generate the tag and the ciphertext.

B. ASCON Algorithm

ASCON is an Authenticated Encryption with Associated
Data (AEAD) algorithm. ASCON depends on duplex sponge
mode, which produces a string that is based on the whole
input string [18]. Sponge mode is a permutation mode that
produces an output evaluated from a state value which is
updated using key, plaintext, and associated data. The ASCON
encryption process is carried out by using permutation blocks
that perform iterations on pre-defined operations [19]. ASCON
has several parameters used for encryption such as: secret
key (K), associated data (A), public message number that is
denoted by nonce (N)), and Initialization Vector (IV), in order
to encrypt a plaintext (P), according to the formula:

Ea,b,k,r (K,N,A, P) = (C, T) (1)

where a, b are the numbers of permutation rounds, r is the
state size, and k is the secret key size. The output of this
process is the ciphertext C, and the authentication tag T [20].

Fig. 4. ASCON’s mode of operations [20]

Fig. 4 illustrates ASCON modes of operations which are the
encryption mode and the decryption mode. P block is the main
block in ASCON algorithm. P block has two flavors: one for
carrying out the initialization/finalization process (Pa) and the
other for performing the internal processes (Pb) [19].

C. CLOC Algorithm
Compact Low-Overhead Cipher FeedBack (CLOC CFB)

is a block cipher mode of operation. CLOC ensures
authentication and secure encryption through dealing with
associated data. CLOC design aims to optimize some factors
such as complexity, overhead and memory requirement.
These factors are the drawbacks of previous implemented
algorithms such as: Counter with Cipher Block Chaining
Message Authentication Code (CCM), Encryption-then-
Authentication-then-Translate (EAX), and Encryption-then-
Authentication-then-Translate-prime (EAX-prime). CLOC is
designed to deal with small input data width such as 16
bytes which is suitable for small microprocessors with word
size 8 bits or 16 bits. CLOC uses two block cipher modes:
Cipher FeedBack (CFB) for encryption part and Cipher
Block Chaining Message Authentication Code (CBC-MAC)
for authentication part. These modes are responsible for
providing data with confidential and authenticated manner as
discussed in [21], [22].

Fig. 5. Block diagram of CLOC

CLOC implementation consists of four main blocks which
represents the cipher core as portrayed in Fig. 5. These blocks
are HASH, Pseudo-Random Function (PRF), Encryption en-
gine (ENC), and Decryption engine (DEC). HASH block uses
hash functions to generate the Initialization Vector (IV). PRF
block generates tag which is used in authentication. ENC
converts plaintext to ciphertext. DEC converts ciphertext back
to plaintext as presented in [21], [22]. CLOC uses AES-128
to perform encryption process.

D. JOLTIK Algorithm
JOLTIK is a symmetric and authenticated encryption

algorithm. JOLTIK utilizes AES-based permutation layers.
JOLTIK parameters such as: message, and associated data
are represented in blocks of size 64-bit. Each block is
organized as 4x4 matrix of nibbles [23]. JOLTIK-BC supports
two modes of operation: encryption mode, and decryption

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

mode. ECB is the used mode to accomplish encryption and
decryption processes. JOLTIK modes of operation require
the implementation of a RAM to store all round keys
because it is used in reversed order for decryption. This
RAM implementation increases decryption latency overhead
and consumes extra area [13]. For encryption process, the
message is split into 64-bit blocks, each block is processed
independently as shown in Fig. 6. For authentication, the
associated data is processed to generate the authentication
signal, which is XORed with the message blocks to generate
the tag [23].

Fig. 6. JOLTIK block diagram of processing the message [24]

JOLTIK uses tweakable block cipher (TBC) that uses an
extra input denoted by tweak. The internal structure of the
tweakable block cipher is similar to the AES block cipher.
The tweakey is defined as the concatenation of the key and
the tweak. JOLTIK has more than one standard version that
uses variety of key and tweak sizes, as given in details in [23].
JOLTIK-192 is the conducted version in this paper, where it
has 128 bit key size and 64 bit for tweak. JOLTIK-192 gives a
higher performance against brute force attack as the number of
attack iterations get larger [13]. For processing a single block,
JOLTIK-192 needs 32 rounds [23] and each round consists of
four permutation layers: add round key, substitution layer, shift
rows, and diffusion layer.

E. MORUS Algorithm
MORUS algorithm achieves encryption and authentication

simultaneously [24]. MORUS is designed to target high speed
hardware implementation as it uses only shift, AND, and
XOR in its operation. MORUS has two internal states sizes:
640 bits and 1280 bits where the state is the unit of data that
is initialized with the key. MORUS supports two key sizes
128 bits and 256 bits [25].

State update function is the main block in MORUS
algorithm. It updates the state in each phase of operation and
denoted by State Update(S,M), where (S) is the state and (M)
is the message block. This function has five rounds where
two state elements are modified in each round: one with left
rotation and the other with ROTL function. ROTL function is
denoted as ROTL X Y(A,B) where (A) is the block with (X)
bit size and block (A) is divided into four (Y) bit words and

rotate each word left by (B) bits [26].

Fig. 7. Block diagram illustrates MORUS implementation

MORUS performs data processing in four phases: initial-
ization, processing the associated data, encryption, and final-
ization, as depicted in Fig. 7. Initialization is the first phase
where the key and initialization vector (IV) are loaded into
state and run state update function for 16 times then the key is
XORed with the output. Initialization phase is designed to run
80 rounds so that it makes sure that the initialization vector
(IV) and the key is kept secret by mixing them inside the
state. In addition, each key and initialization vector (IV) are
used only once in the protection of any message. Therefore,
the initialization vector (IV) is not used for the same key to
avoid any attacks on recovering the state. Second phase is
processing the associated data (AD) where the associated data
is processed using the state update function which is run ”u”
times where ”u” is AD length divided by 256. Encryption is
the third phase where the plaintext is encrypted into blocks
of size 256 bits and the state is updated for ”v” times where
”v” is the message length divided by 256. The last phase is
finalization where authentication tag is generated by running
state update function 8 times [26].

F. PRIMATEs Algorithm
PRIMATEs family of authenticated ciphers is a sponge

based authenticated encryption (AE) scheme that operates in
a low resource environment and provides resistance to forgery
attacks and differential power analysis (DPA) side channel
attacks. There are three modes of operation in PRIMATEs:
APE, HANUMAN, and GIBBON. GIBBON has two security
levels: 120 bits and 80 bits, where the size of the key is equal
to the security level. This paper is used GIBBON-80 as it
is intended for lightweight applications [27] because of sup-
porting low memory feature by storing only one intermediate
state without revealing the key to the attacker [28]. GIBBON
consumes less area than the other AEAD algorithms that are
based on a block cipher, because it does not contain a key
schedule, uses smaller S-box (5 bits instead of 8 bits), and
uses a more compact, recursive maximum distance separable
(MDS) matrix implementation.

PRIMATE-80 operates on a 5x8 state matrix of 5 bit
elements: the first row of the state is the rate of the state
(40 bits), whereas the rest of the state is the capacity (160

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

Fig. 8. Mix Columns transformation for PRIMATEs-80. The state matrix is
multiplied column by column with the 5x5 matrix [27]

bits). PRIMATEs family consists of four permutations: P1,
P2, P3, and P4 which are defined by different number of
rounds and different initial round constants, generated by a
5 bit Linear Feedback Shift Register (LFSR). GIBBON uses
6 round permutations P2 and P3 to process the associated
data and the message respectively and 12 round permutation
P1 for initialization and finalization. Each round of the four
permutations contains four transformations that update the
state matrix. The first transformation is sub elements (SE)
transformation, which substitutes every element (5 bit) in
the state matrix with an element from S-box. The second
transformation is shift rows (SR), which shifts each row in the
state matrix with a different value. The third transformation,
mix columns (MC), which follows a wide trail strategy, is
a left multiplication by a 5x5 matrix in Galois Field (GF) as
shown in Fig. 8. The fourth transformation is constant addition
(CA) transformation, which XORed the second element of the
second row with a predefined round constant (rc). This round
constant is generated using a Fibonacci Linear Feedback Shift
Register with an initial value that differs for each permutation.
GIBBON runs P2 if at least one block of AD is present, or
when it does not execute any permutations for the AD segment.
The state matrix is 200 bits, which leaves a small memory
footprint during execution and minimizes processor usage [27].
However, most of the power is consumed in this matrix as it
is updated continuously after each round.

G. SCREAM Algorithm
Side-Channel Resistant Authenticated Encryption with

Masking (SCREAM) is an iterative algorithm which includes
masking scheme in order to be robust against the Side
Channel Attack (SCA) in addition to the Brute Force Attack
(BFA). Masking is a scheme of performing operations on
random bits of an input vector such that the individual bits
of the vector are not analyzed subsequently to recover the
encrypted data.

The confidentiality mode for SCREAM is Electronic Code
Book (ECB) which helps parallel computation of multiple
blocks [29]. Moreover, it is a tweakable block cipher (TBC)
with 128 bits key and 128 bits tweak. In TBC, the encryption
algorithm uses the key as an input in addition to a new one
called the tweak (T). Changing T is cheaper and easier than
changing the key and makes the algorithm more secure [30].
T is updated in each step of the block cipher as a function
of several variables including secret key, block number (j),

mode of operation (i.e., message, associated data or tag), and
public message number (PMN) [31]. The PMN is 88 bits
number which acts as the initialization vector (IV) to the
tweak update block.

Fig. 9. SCREAM algorithm cipher core [31]

Fig. 9 shows the cipher core of SCREAM algorithm where
the main block of it is the encryption step (Ek) where k =
0, 1, 2,...., (Number of Steps (NS)-1) and NS varies from 8
to 12 steps. Each round is a LS cipher (L for l-box and S
for S-box), which consists of linear diffusion box, bit slice
substitution box, and round constant table. The round constant
and the l-box are represented by look-up tables. This LS cipher
is employed in order to retain linearity for efficient masking
and reduce the computational load (i.e., reduce the clock cycle
needed for a step) [32].

H. SILC Algorithm
SImple Lightweight CFB (SILC) is an authenticated ci-

pher. SILC uses CFB and CBC-Message Authentication Code
(MAC) modes of operation. CBC-MAC is used for processing
associated data and ciphertext, and CFB is used for generating
ciphertext, as discussed in [33]. SILC uses AES-128 block
cipher which improves latency and memory utilization more
than LED and PRESENT block ciphers [24]. SILC provides
provable security against birthday attack (i.e., type of crypto-
graphic attack that employs the mathematics of the birthday
paradox) because the pseudo randomness of the block cipher
(i.e., S-box in AES allows this pseudo randomness) [33], [34].
The encryption and decryption operations are done using only
the encryption function. Both encryption and decryption are
online operations which means that every output block depends
on all the previous input blocks. The only pre-computation in
SILC is the round keys for key scheduling of the block cipher.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

For this reason, no extra hardware register is needed for storing
the pre-computed result. SILC avoids using a Galois Field (GF)
multiplier except in AES encryption function which reduces
the area as GF multiplier requires large number of gates [35].
The SILC power consumption is dominated by the S-box block
due to its large size (16*16*8) in look-up table implementation
[36], [13].

Fig. 10. SILC encryption and decryption block diagrams

SILC implementation is based on four subroutines: HASH,
Encryption (ENC), Pseudo Random Function (PRF), and De-
cryption (DEC). These subroutines process the data sequen-
tially, however, ENC and PRF perform their function in parallel
[35]. The order of these subroutines is based on whether
the operation is encryption or decryption as shown in Fig.
10. HASH generates an intermediate tag that is used in the
other subroutines. PRF generates two different tags that are
used in encryption and decryption operations. In decryption
mode, these two tags are compared in order to determine the
authentication result. In case of unmatched, the output message
is discarded. Each subroutine has different inputs to send to
the AES encryption block as discussed in [33].

VI. FPGA/ASIC IMPLEMENTATIONS

The difficulty of comparing the hardware performance of the
different candidates of CAESAR competition arises due to the
existence of various hardware platforms. As a result of this
complexity, unified methods are used to give more accurate
results for fair comparison. Very high speed integrated circuit
Hardware Description Language (VHDL) is the used hardware
description language (HDL) to implement algorithms in regis-
ter transfer level (RTL). For low power IoT applications, the
operating frequency is chosen to be 10 MHz for all algorithms.
Algorithms are verified using Modelsim functional simulator.

A. Implementation on Field Programmable Gate Array
(FPGA)

FPGA implementation of the candidates is performed using
Xilinx Vivado 2016.4 design suite. The algorithms are synthe-
sized using Zynq-7000 XC7Z020 FPGA device. Vivado tool
is used to perform the logic synthesis, mapping, placing, and
routing. Vivado results report the area and power consump-
tion of the algorithms. For power consumption measurements
using FPGA, three parameters are defined the effective load
capacitance of resources, the switching activity of resources,
and the thermal information. A method is proposed to adopt all
parameters with different cases. The selected cases are chosen
to provide fair comparison and analysis for low power IoT
applications.

Fig. 11. SoC encounter chip layouts of the Eight cryptographic algorithms

B. Implementation on Application Specific Integrated Circuit
(ASIC)

Synthesis step is done using Synopsys Design Compiler
(DC) B-2008.09 for Linux. CMOS UMC 130nm technology
with eight metal layers, is the used technology for synthesis
and place and route steps. DC takes RTL codes, technology
libraries, and constraints file as an input and produced the gate
level netlist as an output. The switching activity file generated
from Vivado is included for accurate power consumption
results. After the synthesis step is completed, auto place
and route (APR) is carried out such that the standard cells
are placed and routed and connected to input/output (I/O)
pins, and the clock tree synthesis is performed [37]. APR is
achieved using Cadence System on Chip (SoC) encounter8.1
tool. SoC encounter converts the gate level netlist into layout.
Fig. 11 shows the SoC encounter chips layouts of the Eight
cryptographic algorithms.

VII. RESULTS AND DISCUSSION
Various parameters are compared in order to find out the

most suitable algorithm for low power IoT applications. These

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

parameters are: FPGA power, slice LUTs utilization, through-
put, ASIC power, ASIC area, and latency.

A. FPGA and ASIC Power

Fig. 12 shows the power consumption of the FPGA and
ASIC implementations for the Eight algorithms as well as the
FPGA/ASIC power gap. FPGA/ASIC power gap is defined as
the ration between FPGA power to ASIC power. It is found
that CLOC algorithm has the smallest power gap, while the
SCREAM algorithm has the largest power gap. FPGA and
ASIC power should be theoretically linear with each other.
However, the reason behind this difference is ASIC power
takes into consideration the interconnection and other physical
effects that reflects on the dynamic power. Moreover, the
technology used for ASIC flow differs from the one used for
ZYNQ FPGA board. It should be noted that a design that
is implemented using ROMs consumes much larger power
for FPGA, such as the SCREAM algorithm. Fig. 12 shows
that SILC consumes the largest power for FPGA, and CLOC
consumes the largest power for ASIC. Also, it shows that
ACORN algorithm consumes the minimum power for both
ASIC and FPGA implementations, as it is the only candidate
that is based on stream ciphers.

Fig. 12. FPGA and ASIC power estimation results

B. Area and Slice LUTs

Fig. 13 shows the FPGA utilization, ASIC area, and
FPGA/ASIC area gap. Several parameters affect area esti-
mation such as: block size, key size, tag size, number of
rounds, and bus width. MORUS algorithm has the largest LUT
utilization because of large block size. While the CLOC algo-
rithm consumes the largest area in the ASIC implementation.
ACORN algorithm has the smallest area in both FPGA and
ASIC implementations because of the small bus width. There
is an area gap between FPGA and ASIC implementations
because of the different hardware implementation of LUTs and
the standard cells in the FPGA and ASIC flows respectively.
Fig. 13 illustrates that the CLOC algorithm has the smallest
area gap, while the SCREAM algorithm has the largest area
gap.

Fig. 13. FPGA utilization and ASIC area results

C. Throughput
Fig. 14 shows the throughput results for the candidates in

Mbits/s. The formula that is used to calculate the throughput
is given by [38]:

Throughput =
Block Size

Number of Rounds+ C
∗Frequency (2)

where C takes two values either 0 or 1 and it represents the
additional clock cycle used for initialization at the beginning
of each round. Block size, number of rounds, and frequency
are the parameters which determine the throughput and these
parameters are constant for each of the selected algorithm.
MORUS algorithm gives the highest throughput among the
selected algorithms because of the large block size. However,
ACORN has the smallest throughput.

Fig. 14. Throughput results

D. Latency
In order to provide fair comparison among the selected

algorithms which have various message and associated data
lengths, a formula is developed to calculate the latency. The
latency is calculated starting from the beginning of applying
the message till the first output data appears. The pipeline of
pre-processor and post-processor blocks makes the latency and

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

the throughput not proportional to each other, and then the
throughput can not be evaluated using the developed formula.
Fig. 15 illustrates the average latency between encryption and
decryption processes. The formulas used to calculate latency
of encryption and decryption processes are given by:

Latency ENC =
T ENC/Tclk

(M +A) ∗Block Bytes
(3)

Latency DEC =
T DEC/Tclk

(C +A) ∗Block Bytes
(4)

where T ENC and T DEC are the required intervals to
accomplish encryption and decryption processes respectively,
block bytes are number of bytes per block, A, M, and C
are calculated using the ceil function for number of bytes of
associated data, plaintext, ciphertext divided by block bytes
respectively. Pre-synthesis and post-synthesis results of latency
for FPGA and ASIC flows are the same, that is because the
timing constraints are satisfied in addition to the used clock
cycle of 100ns provides enough time to process data even with
external LUTs or standard cells delays. Fig. 15 shows that
ACORN algorithm gives the largest latency because of small
block size, while the ASCON algorithm provides the smallest
latency.

Fig. 15. Latency results

VIII. COMPARISON
Among all AES-based candidates, the algorithm that

uses large S-box consumes relatively large power. For the
case of JOLTIK and SILC algorithms, both of them is
AES-based permutation layers that includes the substitution
layer. The S-box size for SILC is the same as the case
in AES, which is 256x8 [13], and for JOLTIK the size is
16x4 [23]. This large S-box makes SILC consuming larger
power and area than JOLTIK. ACORN, which is the only
stream cipher among the selected algorithms, consumes the
minimum power and area, while gives a small throughput
in the range of Kbits/s. For low power IoT applications,
ACORN algorithm is suggested to keep data secure in case of
the used protocols in the system do not require high data rates.

In order to evaluate the submissions of CAESAR compe-
tition, comparisons are carried out among existing encryption
algorithms, and the presented algorithms in this paper. Table
I holds comparison in ASIC flow, in terms of frequency, area,
dynamic power, and technology used. The ASIC implementa-
tion of RSA algorithm introduced in [39] consumes the largest
area and power, while the ACORN algorithm is the lowest in
power and area.

TABLE I. COMPARISON BETWEEN OUR DESIGNS AND
PREVIOUS DESIGNS IN ASIC FLOW

Design Frequency Area Power Technology
(Mhz) (mm2) (mWatt)

AES-128 [39] 10 0.148 0.724 UMC 130nm
AES-192 [39] 10 0.149 0.729 UMC 130nm
AES-256 [39] 10 0.149 0.727 UMC 130nm

RSA [39] 10 1.236 9.38 UMC 130nm
3DES [39] 10 0.217 0.968 UMC 130nm

Twofish [39] 10 0.101 0.675 UMC 130nm
ACORN 10 0.035 0.163 UMC 130nm
JOTLIK 10 0.178 0.96 UMC 130nm
ASCON 10 0.083 0.655 UMC 130nm

PRIMATE 10 0.106 1.064 UMC 130nm
CLOC 10 0.544 2.858 UMC 130nm

SCREAM 10 0.114 0.842 UMC 130nm
MORUS 10 0.27 2.83 UMC 130nm

SILC 10 0.187 2.345 UMC 130nm

Table II compares same aspects in FPGA flow among
the selected algorithms and previous cryptography algorithms.
This comparison is based on frequency, LUT, power, and type
of FPGA used. The implementation of 3DES presented in
[39] consumes large power compared to the selected ACORN
algorithm which has the smallest power results. The Twofish
algorithm introduced in [39] has the largest LUT utilization,
while the presented ACORN algorithm consumes the smallest
number of LUTs. Both tables highlights that ACORN as the
lowest in power, area, resources utilization, compared to the
other existing algorithms at the expense of low speed and high
latency.

TABLE II. COMPARISON BETWEEN OUR DESIGNS AND
PREVIOUS DESIGNS IN FPGA FLOW

Design Frequency LUT Power FPGA
(Mhz) (mWatt)

AES[39] 10 961 246 Zynq-7000 XC7Z020
3DES[39] 10 1178 255 Zynq-7000 XC7Z020

Twofish[39] 10 1191 125 Zynq-7000 XC7Z020
RSA[39] 10 556 121 Zynq-7000 XC7Z020
ACORN 10 476 0.582 Zynq-7000 XC7Z020
JOTLIK 10 1325 1.38 Zynq-7000 XC7Z020
ASCON 10 1312 2.16 Zynq-7000 XC7Z020

PRIMATE 10 1187 3.547 Zynq-7000 XC7Z020
CLOC 10 2767 3.766 Zynq-7000 XC7Z020

SCREAM 10 2235 4.106 Zynq-7000 XC7Z020
MORUS 10 4286 4.899 Zynq-7000 XC7Z020

SILC 10 3004 5.980 Zynq-7000 XC7Z020

IX. CONCLUSION
This paper presents comparative study for FPGA and

ASIC implementations of security algorithms selected from
CAESAR competition that are served IoT applications.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

The chosen algorithms are ACORN, MORUS, JOLTIK,
PRIMATEs, SILC, CLOC, SCREAM, and ASCON. The
FPGA implementation is conducted using ZC702 evaluation
board for the Zynq-7000 XC7Z020. The synthesis and
the place and route steps are performed using Xilinix
Vivado 2016.4 tool. While the ASIC approach is done
using CMOS UMC 130nm technology. The synthesis step is
performed using Synopsys Design Compiler tool. Cadence
SoC Encounter tool is utilized for place and route step. The
comparative study analyzes several issues that are critical for
low power IoT applications such as: power consumption, area,
throughput, and latency. Also, a comprehensive investigation
about CAESAR competition, and the API of George Mason
University (GMU) are conducted.

ACORN algorithm is recommended for low power IoT
applications because it consumes the minimum power among
the Eight selected algorithms. The AES-based algorithms
SILC, CLOC, and JOLTIK consume extra power according to
the size of S-box. Furthermore, ACORN utilizes the smallest
LUT/area in the FPGA/ASIC implementations. In terms of
throughput, ACORN gives the minimum throughput in range
of Kbit/s which makes ACORN not preferred for high data
rates applications. While the MORUS algorithm gives the
highest throughput because of the large block size. MORUS
algorithm is recommended for high data rate applications. AS-
CON algorithm gives the smallest latency, however, ACORN
algorithm gives the largest latency because of small block
size. This work concludes that ACORN algorithm is the most
suitable algorithm for low power IoT application because the
power consumption is the main concern.

REFERENCES

[1] R. Roman, P. Najera, and J. Lopez, ”Securing The Internet of Things,”
Computer, vol. 44, pp. 51-58, 2011.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ”Internet of Things
(IoT): A Vision, Architectural Elements, and Future Directions,” Future
generation computer systems, vol. 29, pp. 1645-1660, 2013.

[3] K. Sha, R. Errabelly, W. Wei, T. A. Yang, and Z. Wang, ”EdgeSec: Design
of an Edge Layer Security Service to Enhance IoT Security,” in Fog and
Edge Computing (ICFEC), 2017 IEEE 1st International Conference on,
pp. 81-88, 2017.

[4] A. Asaduzzaman, M. F. Mridh, and M. N. Uddin, ”An Inexpensive
Plug-and-Play Hardware Security Module to Restore Systems From
Malware Attacks,” in Informatics, Electronics & Vision (ICIEV), 2013
International Conference on, pp. 1-5, 2013.

[5] D. Minoli, K. Sohraby, and B. Occhiogrosso, ”IoT Security (IoTSec)
Mechanisms for E-Health and Ambient Assisted Living Applications,” in
Connected Health: Applications, Systems and Engineering Technologies
(CHASE), 2017 IEEE/ACM International Conference on, pp. 13-18,
2017.

[6] CAESAR Submissions. Available: https://competitions.cr.yp.to/
caesar-submissions.html, 2017.

[7] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and S.
Shieh, ”IoT Security: Ongoing Challenges and Research Opportunities,”
in Service-Oriented Computing and Applications (SOCA), 2014 IEEE
7th International Conference on, pp. 230-234, 2014.

[8] Introduction to Cryptographic Competitions, retrieved from https://
competitions.cr.yp.to/index.html.

[9] CAESAR Timeline. Retrieved from https://competitions.cr.yp.to/caesar.
html.

[10] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M. U. Sharif,
and K. Gaj, ”GMU Hardware API for Authenticated Ciphers,” IACR
Cryptology ePrint Archive, vol. 2015, p. 669, 2015.

[11] F. P. NIST, ”197,” Advanced Encryption Standard (AES),” November
2001,” ed.

[12] S. M. Soliman, B. Magdy, and M. A. A. El Ghany, ”Efficient Implemen-
tation of the AES Algorithm for Security Applications,” in System-on-
Chip Conference (SOCC), 2016 29th IEEE International, pp. 206-210,
2016.

[13] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for
Students and Practitioners: Springer Science & Business Media, 2009.

[14] Hongjun Wu, ”Acorn V2” CAESAR Round, vol. 9, 2016.
[15] U. Mamidi, ”Lightweight Authenticated Encryption for FPGAs,” 2016.
[16] Hongjun Wu, ”Acorn V3” CAESAR Round, vol. 9, 2016.
[17] H. Wu, ”ACORN: A Lightweight Authenticated Cipher (v3),” Candidate

for the CAESAR Competition. See also https://competitions.cr.yp.to/
round3/acornv3.pdf, 2016.

[18] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, ”Cryptographic
Sponge Functions,” Submission to NIST (Round 3), 2011.

[19] M. Fivez, ”Energy Efficient Hardware Implementations of CAESAR
Submissions”.

[20] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schlffer, ”Ascon V1.
2,” Submission to the CAESAR Competition, 2016.

[21] T. Iwata, K. Minematsu, J. Guo, and S. Morioka, ”CLOC: Authenticated
Encryption for Short Input, in International Workshop on Fast Software
Encryption, pp. 149-167, 2014.

[22] K. Minematsu and J. Guo, ”CLOC: Compact Low-Overhead CFB”,
2014.

[23] J. Jean, I. Nikoli, and T. Peyrin, ”Joltik v1. 3,” CAESAR Round, vol.
2, 2015.

[24] U. Mamidi, ”Lightweight Authenticated Encryption for FPGAs,” 2016.
[25] H. Wu and T. Huang, ”The Authenticated Cipher MORUS (v1),”

CAESAR submission, 2014.
[26] A. Mileva, V. Dimitrova, and V. Velichkov, ”Analysis of the Authenti-

cated Cipher MORUS (v1),” in International Conference on Cryptogra-
phy and Information Security in The Balkans, pp. 45-59, 2015.

[27] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, F. Mendel, B.
Mennink, et al., ”PRIMATEs v1,” Submission to CAESAR, 2014.

[28] M. Agrawal, D. Chang, and S. K. Sanadhya, ”A New Authenticated
Encryption Technique for Handling Long Ciphertexts in Memory Con-
strained Devices,”International Journal of Applied Cryptography, vol. 3,
pp. 236-261, 2017.

[29] M. Vaidehi and B. J. Rabi, ”Design and Analysis of AES-CBC Mode
for High Security Applications,” in Current Trends in Engineering and
Technology (ICCTET), 2014 2nd International Conference on, pp. 499-
502, 2014.

[30] J. Jean, I. Nikoli, and T. Peyrin, ”Tweaks and Keys for Block Ciphers:
The TWEAKEY Framework,” in International Conference on the Theory
and Application of Cryptology and Information Security, pp. 274-288,
2014.

[31] W. Diehl and K. Gaj, ”RTL Implementations and FPGA Benchmarking
of Three Authenticated Ciphers Competing in CAESAR Round Two,”
in Digital System Design (DSD), 2016 Euromicro Conference on, pp.
91-98, 2016.

[32] V. Grosso, G. Leurent, F.-X. Standaert, and K. Varc, ”LS-designs:
Bitslice Encryption for Efficient Masked Software Implementations,” in
International Workshop on Fast Software Encryption, pp. 18-37, 2014.

[33] K. Minematsu, J. Guo, and E. Kobayashi, ”SILC: SImple Lightweight
CFB,” 2014.

[34] P. S. Barreto, H. Y. Kim, and V. Rijmen, ”Toward Secure Public-
Key Blockwise Fragile Authentication Watermarking,” IEE Proceedings-
Vision, Image and Signal Processing, vol. 149, pp. 57-62, 2002.

[35] K. Minematsu, J. Guo, and E. Kobayashi, ”CLOC and SILC,” 2016.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

[36] S. Morioka and A. Satoh, ”An Optimized S-Box Circuit Architecture for
Low Power AES Design,” in International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 172-186, 2002.

[37] H. B. Kommuru and H. Mahmoodi, ”ASIC Design Flow Tutorial Using
Synopsys Tools,” Nano-Electronics & Computing Research Lab, School
of Engineering, San Francisco State University San Francisco, CA,
Spring, 2009.

[38] E. Homsirikamol, W. Diehl, F. Farahmand, A. Ferozpuri, and K.
Gaj, ”C vs. VHDL: benchmarking CAESAR candidates using high-
level synthesis and register-transfer level methodologies,” Directions in
Authenticated Ciphers (DIAC), 2015.

[39] Bahnasawi, M. A., K. Ibrahim, A. Mohamed, M. Khalifa, A. Moustafa,
K. Abelmonim, Y. ismail, and H. Mostafa, ”ASIC-Oriented Comparative
Review of Hardware Security Algorithms for Internet of Things Applica-
tions”, IEEE International Conference on Microelectronics (ICM 2016),
Cairo, Egypt, IEEE, pp. 285-288, 2016.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
N

E
W

 E
N

G
L

A
N

D
 o

n
11

/2
6/

18
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

