
1324 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, DECEMBER 2019

Low-Power Hardware Implementation of a Support
Vector Machine Training and Classification for

Neural Seizure Detection
Heba Elhosary, Michael H. Zakhari, Mohamed A. Elgammal, Mohamed A. Abd El Ghany,

Khaled N. Salama, Senior Member, IEEE, and Hassan Mostafa , Senior Member, IEEE

Abstract—In this paper, a low power support vector machine
(SVM) training, feature extraction, and classification algorithm are
hardware implemented in a neural seizure detection application.
The training algorithm used is the sequential minimal optimiza-
tion (SMO) algorithm. The system is implemented on different
platforms: such as field programmable gate array (FPGA), Xilinx
Virtex-7 and application specific integrated circuit (ASIC) using
hardware-calibrated UMC 65 nm CMOS technology. The imple-
mented training hardware is introduced as an accelerator intellec-
tual property (IP), especially in the case of large number of train-
ing sets, such as neural seizure detection. Feature extraction and
classification blocks are implemented to achieve the best trade-off
between sensitivity and power consumption. The proposed seizure
detection system achieves a sensitivity around 96.77% when tested
with the implemented linear kernel classifier. A power consumption
evaluation is performed on both the ASIC and FPGA platforms
showing that the ASIC power consumption is improved by a factor
of 2X when compared with the FPGA counterpart.

Index Terms—Accelerator IP, ASIC, classification, feature
extraction, FPGA, low power, sequential minimal optimization
(SMO), support vector machine (SVM).

Manuscript received July 11, 2019; revised September 2, 2019 and October
2, 2019; accepted October 5, 2019. Date of publication October 14, 2019; date
of current version December 31, 2019. This work was supported in part by
ONE Lab at Zewail City of Science and Technology and at Cairo University,
NTRA, ITIDA, and ASRT. This paper was recommended by Associate Editor
H. Jiang. (Heba Elhosary and Michael H. Zakhari contributed equally to this
work.) (Corresponding author: Hassan Mostafa.)

H. Elhosary is with the Department of Electronics, German University in
Cairo, New Cairo 11511, Egypt (e-mail: heba.diaa.elhosary@gmail.com).

M. H. Zakhari and M. A. Elgammal are with the Department of Electronics
and Communications Engineering, Cairo University, Giza 11114, Egypt (e-mail:
michael.hany.mofeed@gmail.com; mohamed.adel567@gmail.com).

M. A. Abd El Ghany is with the Department of Electronics, German University
in Cairo, New Cairo 11511, Egypt, and also with the Integrated Electronic
Systems Lab, Technische Universität Darmstadt, Darmstadt 64289, Germany
(e-mail: moh_salim@hotmail.com).

K. N. Salama is with King Abdullah University of Science and Technology,
Thuwal 23955, Saudi Arabia (e-mail: khaled.salama@kaust.edu.sa).

H. Mostafa is with the Department of Electronics and Communications
Engineering, Cairo University, Giza 11114, Egypt, and also with the Univer-
sity of Science and technology, Nanotechnology and Nanoelectronics Pro-
gram, Zewail City of Science and Technology, Giza 12578, Egypt (e-mail:
hmostafa@uwaterloo.ca).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBCAS.2019.2947044

I. INTRODUCTION

E PILEPSY is a neurological disorder characterized by re-
current seizures as a result of abnormal electrical dis-

charges in the brain. The condition affects approximately 1–2%
of the world’ s population [1]. The sudden and unpredictable
nature of seizures is one of the most disabling aspects of epilepsy
disease [2]. Anti-epileptic drugs (AEDs) are used to affect the
brain’s chemistry to reduce epilepsy. AEDs’ main disadvantage
is that they are utterly experimental; AED type and concentration
are adopted for each case individually [3]. Electrical stimulation
is used to overcome this problem by reducing the effects of
epilepsy. The stimulation is applied only when a seizure takes
place. Accordingly, seizure detection and prediction become
very important. In this paper, a hardware implemented system
that uses EEG signals to aid seizure detection is proposed.

EEG signal processing is widely used for assessing disorders
of brain function and; especially for epilepsy diagnosis. The
traditional method used to identify seizures is heavily dependent
on visual analysis of EEG recordings by trained professionals. It
is a very costly and tedious task to review 24 hours of continuous
EEG recordings, particularly as the number of EEG channels
increases [4]. Therefore, automatic seizure detection systems
using machine learning (ML) have evolved.

Recently, ML and artificial intelligence (AI) have become
very hot topics for all software and hardware researchers. ML
is the science of teaching computers how to deal with different
situations and to perform some tasks without being programmed.
It plays a significant role in many fields. SVM is gaining much
attention among researchers for statistical classification and
regression analysis problems. SVM performs well on various
problems such as pattern recognition, face detection, handwrit-
ten recognition, and bio-informatics [6]. Consequently, SVM
is chosen in binary classification problems as the proposed
automatic seizure detection with proven excellent accuracy
as stated in [4], [7], [8]. In [9], testing of different machine
learning algorithms has been conducted and the performance
metrics -RMSEs, average accuracy rates, and average training
time- have been evaluated. In this work, by following the said
testing method, the algorithm with the best performance has
been determined to be SVM. Linear SVM is chosen for clas-
sification as higher degrees of kernel function SVMs are more
accurate on the expense of higher computational complexity,

1932-4545 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0043-5007
mailto:heba.diaa.elhosary@gmail.com
mailto:michael.hany.mofeed@gmail.com
mailto:mohamed.adel567@gmail.com
mailto:moh_salim@hotmail.com
mailto:khaled.salama@kaust.edu.sa
mailto:hmostafa@uwaterloo.ca
http://ieeexplore.ieee.org

ELHOSARY et al.: LOW-POWER HARDWARE IMPLEMENTATION OF A SUPPORT VECTOR MACHINE 1325

Fig. 1. Block Diagram of the Seizure Detection System [5].

and accordingly higher power consumption [10]. In the pro-
posed system, Low power consumption and area utilization are
the main objectives and correspondingly, high computational
complexity is avoided. Automatic seizure detection methods
consist of five main phases as shown in Figure 1. First, EEG
signals are measured through electrodes, and several studies in
the literature have been investigating techniques to improve the
EEG measurement efficiency [11]. Then, a preprocessing phase
is conducted in which the removal of unwanted aspects, such
as artifacts and high-frequency content, and a normalization
of the EEG data is carried out. After that, many features are
extracted from the EEG signal’ s time domain [12], frequency
domain, and time-frequency (Wavelet) domain [4]. Selecting
discriminating features that best represent the characteristics of
the EEG signals is key to the overall performance of the seizure
detection system [13], [14].

A training Phase is then executed with these extracted features
to create a hyper-plane that separates two labeled sets of training
examples. Following that, a classifier is used with the extracted
features to detect seizures and to classify unlabeled testing
examples into one of the two classes [15].

In the training phase, SVM searches for the hyper-plane
that gives the largest margin between the two sets. Finding
the hyper-plane requires solving a quadratic programming (QP)
problem subject to constraints [16]. The size of the QP problem
is directly related to the number of training data points. For
example, if a data set has a huge number of training samples,
the QP problem becomes very complex and energy consuming.
Correspondingly, having dedicated hardware for SVM training
results in reducing the training time and accelerating the system.
Besides, having a very low-power training accelerator chip is
useful to tune the system parameters as seizure pattern differs
from one patient to the other [17]. Moreover, having a low power
detection system gives the implemented system longer battery
lifetime.

Much research has been done on implementing hardware
accelerators for SVM training [18]. Keerthiet et al. [19] propose
a parallel implementation of multiple CPUs for processing par-
titioned data sets. The use of multiple CPUs leads to an increase
in overall performance, but on the other hand, the power con-
sumption is significantly increased. Caoet et al. [20] developed
a hardware implementation of an SVM training circuit using
MATLAB HDL coder. Performance degrades due to lack of
optimizations. Chih-Hsiang et al. [21] propose a reconfigurable
chip with SMO-based SVM training. The proposed architecture
decreases the routing overhead, accelerates the kernel func-
tion update and uses pipelining. However, multiple hardware
resource utilization and training speed problems are reported.
Lazaro et al. [22] propose a hardware-software architecture to
speed up SVM training using sequential minimal optimization
(SMO). As the dot product takes up most of the calculation time

in SMO, it was chosen to be implemented on the hardware.
Jhing-Fa et al. [23] propose a hardware-software co-design
solution for multiclass SMO training. A hardware-software
co-design system for accelerating the SVM learning phase is
presented based on another decomposition algorithm instead of
the common SMO algorithm [25]. Rabieah et al. [26] propose
a complete FPGA-based system for nonlinear SVM learning
using ensemble learning. Wang et al. [27] propose an FPGA-
based reconfiguration framework to speed up the online least
square support vector machine (LS-SVM) training. However,
the block RAM utilization and the reconfiguration efficiency
are the main challenges. In this paper, more work is done in
the area of implementing SVM training accelerators to produce
better results without the need for complex transformations or
complex kernel functions such as those proposed in [28], [29],
and [30]. In addition, the proposed work performs the hardware
implementation of the SVM using FPGA implementation and
ASIC implementation to show the energy gap between both
technologies. Moreover, experimental results are reported for
the FPGA implementation conducted in this work.

The rest of the paper is organized as follows. Section II
articulates the feature extraction strategies. Section III provides
background on the SVM learning and the SMO algorithm.
Section IV provides a detailed description of the proposed hard-
ware implementation of SMO training accelerator. Section V
discusses the SVM classifier hardware implementation and basic
operation. Section VI articulates the optimizations implemented
in the system to achieve lower power consumption and less area
utilization along with the associated performance degradation.
Section VII arrays the software simulation results, the FPGA
and ASIC implementation results and provides analysis and
comparison of the results. Finally, the conclusion is drawn in
Section VIII.

II. FEATURE EXTRACTION

In this section, a combination of linear and nonlinear features,
namely, Fractal dimension [34], Hurst exponent [35], and Coast-
line [36] chosen for implementation is discussed in details. The
selection of features is based on the best performing features
acquired by [37]. Twenty linear and non-linear features are im-
plemented, and a total of 1140 combination of features are tested
along with linear SVM and the best performing combination is
obtained.

A. Fractal Dimension

It measures the complexity of the input EEG signal over
multiple scales. In other words, it is a measure of how many
times a pattern can be found in a signal. Higuchi’ s algorithm
with k= 5 is used to calculate the fractal dimension.

Lm(k) =

∑N−m
k

i=1
|x(m+ik)−x(m+(i−1)∗k)|

N−1

D −m
(1)

FD =

k∑

m=1

ln(Lm(k))

ln(1k)
(2)

1326 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, DECEMBER 2019

Where x is a time series that consists of D data points, and m is
a constant that ranges from 1 to k. The input is first fed to one
of five accumulators depending on its index. The output of each
accumulator is divided byD −m resulting Lm. The final value
of the FD is the summation of the five values resulting from
dividing the natural logarithms of Lm by the natural logarithm
of 1/k.

B. Hurst Exponent

It is a technique that quantifies the meaningfulness of the
input signal. If the output value is in the range from 0.5 to 1,
then the input EEG signal contains meaningful patterns, on the
other hand, if the output value equals 0.5, it is identified as noise.

R = ||MAX(X − MAV)| − |MIN(X − MAV)||
S = STD(X)

H =
Ln(RS)

Ln(T)
(3)

Where x is a time series that consists of D data points, MAV
is the mean absolute value, R is the range of the cumulative
deviation from the mean, S is the standard deviation, and T is a
constant = 1

256 .

C. Coastline

It quantifies the number of fluctuations in the given epoch. A
seizure is recurrent discharges in brain neurons, which means a
higher frequency of fluctuations than the normal case.

CL =

D∑

i=1

|x
i+1

− xi| (4)

where Xi is the ith data point in a designated window, D is the
number of data points in the designated window.

III. SVM LEARNING

This section presents more details on the SVM algorithms
and techniques. SVM is a widely used classification technique
as it finds the hyper-plane with the largest margin. SVM was
first introduced by Vladimir N. Vapnik et al. in 1963 [31].

SVM learns from a training set of N-dimensional vectors xi
where N is the number of features extracted and their associated
classes (labels) yi∈{1,−1}. It deals with linearly separable
data points directly. The non-linearly separable data points are
mapped into a higher dimensional domain, in which the mapped
data points become linearly separable. Thus, SVM finds the
maximal margin hyper-plane in the new domain. The hyper-
plane is defined by the following equation:

w.Φ(x) + b = 0 (5)

where w is the normal to the hyper-plane, Φ(x) is the mapping
function used to map each input vector to the feature space, and
b is the bias.

The distance from the nearest points to the hyper-plane from
each side equal 2

||w|| . Therefore, the optimization problem is

Fig. 2. Soft-margin SVM [32].

formulated as follows:

min
w,b

||w||2
2

(6)

subject to yi(w.Φ(x) + b) ≥ 1.

This is denoted by a hard margin SVM, where the hyper-plane
perfectly separates the two sets according to (5). A modified
version of SVM introduces a trade-off between the size of the
margin and the number of errors in the classification process, as
in (7). This is performed by defining a penalty parameterC. The
optimization problem is formulated as:

min
w,b

||w||2
2

+ C.Σξi (7)

subject to yi(w.Φ(x) + b) ≥ 1− ξi, ξi ≥ 0.

where ξi is the slack for the ith training point as shown in
Figure 2. The penalty parameter C should be selected carefully
for each data set. If C is selected large, the weight of any
wrongly classified point is considerable, so the convergence
of the problem requires a high number of iterations. If C is
selected small, some errors are allowed to maximize the margin
and obtain the solution in fewer iterations than in the large C
scenario.

The modeled problem is solved using Lagrange multiplier as
follows:

min
α
ψ (α) =

1

2

N∑

i=1

N∑

j=1

yiyjK (xi, xj)αiαj −
N∑

i=1

αi (8)

subject to
∑N

i=1 yiαi = 0, 0 ≤ αi ≤ C, and i = 1, . . ., n
where α is a Lagrange multiplier, and kernel functions K as
stated in [10] may be linear, polynomial, exponential as follows:

Linear kernel:

K(xi, xj) = xi.xj (9)

Polynomial kernel:

K(xi, xj) = (xi.xj + 1)d (10)

where d is the polynomial degree.
Exponential kernel:

K(xi, xj) = exp(−γ||xi − .xj ||2) (11)

ELHOSARY et al.: LOW-POWER HARDWARE IMPLEMENTATION OF A SUPPORT VECTOR MACHINE 1327

TABLE I
PSUEDO CODE OF SEQUENTIAL MINIMAL OPTIMIZATION ALGORITHM

All the training points are classified into three classes:
1) αi = 0 represents the correctly classified points outside

the margin
2) 0 < αi < C represents the points that define the margin
3) αi = C represents the wrongly classified points
The optimum hyper-parameters are trained using MATLAB

and then evaluated in two stages coarse and fine trainings. In the
coarse training stage, the starting point is a rough estimate of
the parameters and then the performance is evaluated. In the fine
training stage, continuing from the initial estimate, the parame-
ters are tuned finely and the performance is measured for each
small change until the best combination of hyper-parameters are
achieved. This is done by evaluating the performance sensitivity
to each hyper-parameter change.

SMO Algorithm

The SMO algorithm was introduced and explained by John
Platt in [16]. The main idea of the SMO technique is to break
any large QP problem into multiple smaller ones. It solves the
constrained quadratic programming problem efficiently as it
iteratively narrows the optimization problem to just two La-
grange multipliers in each iteration. The selection of the two
Lagrange multipliers to be optimized in each iteration is per-
formed heuristically. However, depending on the application, the
SMO algorithm scales somewhere between linear and quadratic
with the number of the data training set.

The SMO algorithm optimizes the objective function by
jointly optimizing two Lagrange multipliers. The fact that op-
timizing two Lagrange multipliers is performed analytically
makes the SMO algorithm advantageous. The algorithm is sum-
marized in Table I.

The SMO algorithm starts by selecting two Lagrange mul-
tipliers to optimize the objective function and calculates their
bounding values. The bounding values of only two Lagrange
multipliers are depicted in a 2-D square as in Figure 3. The
square sides represent the maximum and the minimum values
of the Lagrange multipliers while the diagonal line represents
the values the multipliers are allowed to take.

Denoting the two Lagrange multipliers by: α1 and α2,
it is required to obtain new values for the multipliers,
αnew
1 , αnew

2 , from the old set of all Lagrange multipliers
{αold

1 , αold
2 , α3, α4., αN}, where αold

1 , αold
2 have the initial

Fig. 3. The bounding values of two Lagrange Multipliers. On the left, the
Bounding Square when y1 �= y2 hence, α1 − α2 = constant. On the Right, the
Bounding Square when y1 = y2 hence, α1 + α2 = constant.

value zero. Given the constraint equation
∑N

i=1 αi.yi = 0, the
following condition is derived:

y1.α
new
1 + y2.α

new
2 = y1.α

old
1 + y2.α

old
2 (12)

Following the derivations in [16], αnew
j is obtained by:

αnew
j = αold

j +
yj(E

old
j − Enew

j)

η
(13)

where kii = xTi .xi, kjj = xTj .xj , kij = xTi .xj , η = 2.kij −
kii − kjj , and Ei = wTxi − b− yi.

Referring to the constraints depicted in Figure 3, αnew
j is

clipped to be in the feasible range. Therefore, αnew, clipped
j is

obtained by:

αnew, clipped
j =

⎧
⎪⎨

⎪⎩

H, α ≥ H

αnew
j , L < αnew

j < H

L, αnew
j ≤ L

(14)

And therefore αnew
i is calculated as follows:

αnew
i = αold

i + t
(
αold
j − αold, clipped

j

)
(15)

where t = yi.yj .

IV. HARDWARE IMPLEMENTATION OF THE SMO TRAINING

ACCELERATOR

In this section, the full hardware implementations of the
proposed SVM training and the SMO algorithm are described
in detail. Different approximate computing techniques are used
in implementing the proposed SMO accelerator to reduce power
consumption. First of all, a fixed point implementation is used
instead of the computationally expensive floating-point. Using
software simulation results, it is found that a 16-bit word length
is enough to achieve acceptable performance for both techniques
(i.e., accuracy and sensitivity). Reducing the word length to
less than 16 bits achieves more power saving at the cost of
performance degradation. At a certain word length, the full
dynamic range of the bits should be used to achieve the highest
accuracy for this configuration, which requires a smart selection
of the integer and fraction portions of the fixed point word length.
Second, computation skipping is used in different steps in the
two algorithms (i.e., multiplying by zero is skipped).

Finally, inaccurate arithmetic techniques are adopted in the
implementation. Using inaccurate arithmetic operations intro-
duces some errors which are acceptable in a specific range, but

1328 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, DECEMBER 2019

Fig. 4. SMO Algorithm Training Architecture.

Fig. 5. SMO Processing Unit.

using them reduces the system power and energy consumption
significantly. As multipliers are one of the most power-hungry
blocks, the signed truncated multiplier proposed in [33] is uti-
lized. The signed truncated multiplier consumes less power than
accurate multipliers by summing an optimized partial products
matrix (PPM). A truncated accumulation is used rather than
an accumulation of the whole output of the multiplier (i.e., the
output of the multiplier is truncated to the specified word length,
and then the accumulation operation is performed). This also
reduces the size/power of the required accumulator and has a
small impact on accuracy.

SMO Training Architecture: To keep the architecture general-
ized for any heuristic model of selecting a Lagrange multiplier,
the SMO training architecture is divided into three main blocks:
the SMO processing unit, the SMO controller and the main
memory, as shown in Figure 4.

A. The SMO Processing Unit

The SMO processing unit is responsible for calculating the
new values of the two previously selected Lagrange multipliers.
Figure 5 shows the building blocks of the SMO processing unit.

Fig. 6. Linear Kernel Function.

TABLE II
LEARNED FUNCTION PSEUDO CODE

Register file: In order to speed up processing and avoid
repeated memory access, some variables are cached in a reg-
ister file to be processed later by the other SMO processing
units. The variables chosen to be cached in the register file are
αi, αj , yi, yj , B, α

new
i , αnew

j , Ei, andEj .
Kernel function: The calculation of η requires the calculation

of the two Lagrange multipliers’ self and cross kernel. Hence,
the kernel function unit calculates the value of kii, kjj , and kij
simultaneously. After receiving the index of current Lagrange
multipliers, the kernel function unit reads from the memory
the value of the two Lagrange multipliers and passes them to
three multiply-add units, as shown in Figure 6. In the case of
a polynomial kernel instead of a linear one, the design also
has an adder to add 1 to each K and then uses a multiplier to
raise the value to the polynomial degree in multiple clocks. The
kernel function unit includes an internal controller to manage the
iterative process of reading the Lagrange multiplier and updating
the kernel function value.

Learned function: The learned function is used to calculate
wTx or

∑N
i=1 αi.yi.K(xi,, xj),which is used in calculating the

error E. By expanding the equation
∑N

i=1 αi.yi.K(xi,, xj), the
pseudo code in Table II is obtained.

The implementation requires two multiply-add units: one to
calculate the kernel and the other to update the learned func-
tion. However, since the two calculations are dependent, one
multiply-add unit is shared to calculate both values.

The FSM of the learned function is shown clearly in Figure 7.
In the first state, αi is read. If αi �= 0, the FSM is moved to the
kernel calculation state. Then, yj is read to update the learned
function value.

ELHOSARY et al.: LOW-POWER HARDWARE IMPLEMENTATION OF A SUPPORT VECTOR MACHINE 1329

Fig. 7. Learned Function FSM.

Fig. 8. Bias Calculator FSM.

Bias calculator: The change in the threshold is computed by
forcing Enew

i to be zero if 0 < αnew
i < C and then

b1 = Ei + yi.�αi.kii + yj .�αj .kij + b (16)

where �αi = (αnew
i − αi), and �αj = (αnew

j − αj).
Otherwise, the threshold is computed by forcing Enew

j to be
zero if 0 < αnew

j < C. Therefore,

b2 = Ej + yi.�αi.kij + yj .�αj .kjj + b. (17)

Finally, the new bias is calculated as follows:

b =

⎧
⎪⎨

⎪⎩

b1, 0 < αnew
i < C

b2, 0 < αnew
j < C

(b1 + b2)/2, otherwise

(18)

Figure 8 shows clearly the FSM of the bias calculator which
consists of different states: calculating b1, calculating b2, and
then choosing between them or their average.

Figure 9 illustrates the implementation of the bias calculator
unit. The unit is implemented using only two multipliers, four
adders, and three intermediate registers A, B, and b1. To exploit
the similarities between (16) and (17), they are rewritten as:

b1 = E1 + T1 + T2 + b (19)

b2 = E2 + T3 + T4 + b (20)

where T1 = yi.�αi.kii, T2 = yj .�αj .kij , T3 = yi.�αi.kij ,
and T4 = yj .�αj .kjj .

Noticing the similarity between T1 and T3, only one multi-
plier is used to calculate �αi.kii and �αi.kij , and therefore the

Fig. 9. Bias Calculator.

Fig. 10. Limits Calculator.

values of T1 and T3. Based on the condition 0 < αnew
i < C and

the condition 0 < αnew
j < C, either kii or kij is selected to be

an input to the multiplier. If both conditions are satisfied, both
b1 and b2 gives the same value. In the proposed hardware imple-
mentation, priority is given to b1 to reduce hardware complexity.
Therefore, the value of register A is calculated. The fact that y has
a unity value, with a positive or negative sign, and the adoption
of sign and magnitude representation results in reducing the
multiplication of y to a single XOR gate between the y sign and
the multiplicand sign. Similarly, T2 and T4 calculations require
only one multiplier and then the value of the B register is obtained
in parallel with the calculation of register A. If both conditions
are not satisfied, the calculation is carried out to determine the
value of b1, and then the process is repeated to determine the
value of b2, and finally the values of b1 and b2 are averaged.

Limits calculator: The values of the lower band L and the
upper band H depend on the slope in Figure 10. Therefore, the
value of the limits is obtained as follows:

if yi �= yj → L = max(0, αj − αi),

H = min(C,C + αj − αi) (21)

if yi = yj → L = max(0, αj + αi − C),

H = min(C,αj + αi) (22)

Again, comparing yi and yj is done using a single XOR gate.
From (21) and (22), L and H take on the values 0,C, αj ± αi, or
αj ± αi ± C. Therefore, only two adders are required to calcu-
late L and H, while the signs are determined using XOR gates.
To further understand the implementation, the limits calculation
process is described using the pseudo code in Table III.

1330 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, DECEMBER 2019

TABLE III
LIMITS CALCULATOR PSEUDO CODE

In the first part, the first adder is adjusted to add αj − αi and
the second adder is adjusted to add C to the output of the first
adder, (i.e., C + αj − αi). Then a multiplexer is used to select
between the values 0 and αj − αi for L, and the values C and
C + αj − αi for H.

In the second part, the first adder is adjusted to add αj + αi

and the second adder is adjusted to add −C to the output of
the first adder, (i.e., αj + αi − C). Then a multiplexer is used
to select between the values 0 and αj + αi − C for L, and the
values C and αj + αi for H. The sign adjustment of αi and C
is controlled by first examining if yi �= yj . This examination is
performed using an XOR gate. Accordingly, the signs of αi and
C are altered by two more XOR gates. Notice that the cases
when αi is required to be negative are the same cases whenC is
required to be positive. That is why a NOT gate is added to the
sign of C.

Memory interface: The memory interface is responsible for
receiving requests for the memory read and write operations
and handling the memory access separately by different blocks,
which increases the memory access parallelism.

Controller: This unit controls the other units by initiating a
triggering signal for each unit and manages the data flow be-
tween them. Figure 11 summarizes the controlling state machine
of the control unit.

B. The SMO Controller

The SMO controller is responsible for selecting the two
Lagrange multipliers and controls the SMO processing unit.
The SMO controller keeps iterating over Lagrange multipliers
till conversion happens or the maximum number of iterations
is exceeded. Compared to the SMO processing unit, the SMO
controller hardware occupies a smaller area and consumes less
power.

SMO Results: The SMO implemented in this work utilizes
an on-chip memory as shown in Figure 4. The use of on-chip
memory results in a significant reduction in power consump-
tion and performance enhancement than the off-chip mem-
ory [17]. For example, this work, achieves a high throughput of

Fig. 11. SMO Processing Controller.

Fig. 12. SVM Classifier.

0.46 Gbit/sec which is almost 100X higher compared to [17]
which reports a throughput of 5.07 Mbits/sec.

V. CLASSIFIER

In this section, the implementation of the low power classifier
is presented, and several techniques are used to reduce the power
consumption of the SVM classifier.

A. Algorithm

After the completion of the training phase, the classification
phase starts. For any input vector xtest by substituting in the
following formula using the final value of α′s and b, the corre-
sponding class ytest is calculated as follows:

ytest =
∑

αjyjxtestxj + b

The training of SVM is done offline or using the hardware
accelerator proposed in Section IV which is the SMO. Figure 12
shows the architecture of the top-level design of the SVM
classifier, which consists of 6 main blocks: three ROM blocks,
classifier block, and inner product block. The first ROM block

ELHOSARY et al.: LOW-POWER HARDWARE IMPLEMENTATION OF A SUPPORT VECTOR MACHINE 1331

is used to save the input vectors of the support vector points.
The width of this ROM is the same as the data width, while the
depth equals to the number of support vectors multiplied by the
number of the classification problem dimensions. The second
ROM block is used to save the values of non-zero ’s. The width
of this ROM is the same as the data width, while the depth equals
the number of support vectors. The third ROM block is used to
save the values of the true labels of the support vector points.
The width of this ROM is one bit, while the depth is the number
of support vectors. The finite state machine (FSM) is responsible
for generating the addresses of the three ROMs and the enable
signal of the classifier block.

The classifier block is the main block of the architecture.
First, each α is multiplied by its corresponding label y. As the
implementation used for negative numbers is sign-magnitude
implementation, the multiplication is performed using an XOR
gate instead of a multiplier. The values of αi and yi are stored
in a register. An inner product block of size equal to the number
of dimensions is used to multiply the input test vector by the
input vector of the ith support vector point. The output of the
classifier block is fed to the inner product block to calculate the
class. The inner product block is a multiplier-add block with
only one adder, and one multiplier that multiplies two vectors
of size equal to the number of non-zero α′s, The output of this
block is the class and a valid out signal.

In the hardware implementation of the SVM classifier, fixed-
point representation is used. Using software simulation results,
it is found that a 16-bit word length is enough for achieving
the same performance (i.e., accuracy). Same as that used in the
training accelerators, computation skipping is adopted to save
more power/ area.

VI. OPTIMIZATION AND HARDWARE IMPLEMENTATION OF

SELECTED FEATURES

A. Simulation Setup

The Seizure detection system implemented in this paper is
tested and simulated on neural seizure detection as a case study.
At first patients’ EEG signals are processed. Then, the SVM
algorithm is applied to the features’ vectors to find the optimal
decision between seizure and normal activities. The CHB-MIT
scalp data-set from the Physio-Net library is adopted to test the
implemented system. The data-set was collected at the Chil-
dren’ s Hospital Boston from subjects with intractable seizures.
Recordings were collected from 22 subjects (5 males and 17
females). The age of the subjects ranged from 3 to 22 years old
in males and from 1.5 to 19 in females. The signals were sampled
at 256 samples per second with a 16-bit resolution. For each sub-
ject, 23 channels were recorded from different electrodes. The
data-set came with labeling on the epileptic sessions for different
patients [38], [39]. The software for extracting features from the
EEG, testing algorithm efficiency and collecting performance
results are implemented using MATLAB 2017a.

The performance is evaluated through three different metrics
commonly used in seizure detection, namely sensitivity, speci-
ficity, and accuracy. Sensitivity is the algorithm’s ability to detect
seizures correctly, whereas specificity is the algorithm’s ability

TABLE IV
LENGTH OF INPUT VECTOR OPTIMIZATION

to avoid false alarms. There is always a trade-off between sensi-
tivity and specificity. Accuracy is a combining matrix between
the two of them.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + TP + FP + FN

Where TP denotes true positives, FN denotes false negatives,
TN denotes true negatives and FP denotes false positives. These
values are averaged by the number of iterations in the testing
data to measure the performance of the implemented system.

B. Optimization Steps

In this section, design specifications and all possible opti-
mizations before moving to actual hardware implementation
are discussed. Moving to the Hardware implementation requires
deciding certain design specifications such as the length of the
input vector that represents each sample of the EEG signal, the
size of the intermediate signals from one block to the other, and
finally the length of output vector of the whole module.

1) Length of Input Vector Optimization: Originally, When
fractal dimension, Hurst exponent, and coastline are used to
extract the features, the sensitivity is 98.38%, the specificity is
92.14%, and the accuracy is 92.16%. To decide the optimum
length of the input vector that represents each EEG signal
sample, several values are tested. Table IV shows the sensitivity,
specificity, and accuracy acquired in response to representing
each EEG sample with I bits for the integer part, and F bits for
the fraction part.

It is clear that the fractional part makes no significant con-
tribution to the sensitivity, specificity, and accuracy, thus it is
neglected. When the total number of bits is the same as the
number of bits in the integer part equals 8, the sensitivity remains
the same, and the specificity slightly decreases by 0.5%. In both
Hurst exponent and fractal dimension, the input is directly fed
to accumulate modules, where every new data input is added to
the sum of all the previous data inputs. For this reason, choosing
the least possible number of bits for each EEG input sample
is mandatory. Consequently, 8 bits are chosen for representing
each EEG sample.

2) Linear and Nonlinear Scaling: Division by a constant
can be considered as linearly scaling all values by the same
amount. In this case, the existence of a division does not affect
the classification, because whether there is a division or not, this

1332 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, DECEMBER 2019

Fig. 13. Linear Scaling.

Fig. 14. Non-linear Scaling.

TABLE V
FINAL OPTIMIZATION RESULTS

merely determines whether the hyper-plane drawn by the linear
SVM classifier is shifted by the scaling value or not. Figure 13
shows the linear scaling of x

c value when the division by the
constant c is removed.

The same principle applies to taking the natural logarithm
of certain values, it can be considered as non-linearly scaling
values with a specific manner which is in this case Ln. If another
mathematical functions can behave in an approximately similar
manner to the Ln, the Ln can be, in this case, replaced by
the other mathematical function. Reviewing all curves of the
mathematical functions compared to the Ln curve, the square
root curve is the best approximation to the Ln. Figure 14 shows
the analogy between Ln and square root.

To verify the proposed concept, the division by a constant is
removed from the final stages of the selected features. The divi-
sion in mean absolute value is not, however, removed because the
existence of a division can be in some cases advantageous to the
hardware design when it is located after accumulate modules.
In those cases, division minimizes the input that is to be fed

TABLE VI
PROPOSED OPTIMIZED EQUATIONS FOR CALCULATING FEATURES

to the following stages resulting in smaller and faster design.
To avoid the complexities of designing a divider, a custom
division through shifting is exploited, then every Ln is replaced
by a square root. When the division is removed, the sensitivity
remains as originally obtained 98.38%, and when the every Ln
is replaced by a square root function, the sensitivity drops to
96.77% (a drop by 1.61%), and the specificity is dropped to
91.62 (a drop by 0.52%).

In a similar manner to obtaining the optimum length of
the input EEG samples, the optimum length for each of the
intermediate signals is obtained. As discussed, the input EEG
sample is represented by only 8 bits in the integer part, thus
the output of each accumulate module is an integer. However,
limiting accumulate modules output to the least possible number
of bits ensures faster and smaller design. First of all, the output of
the five accumulate modules in the fractal dimension is limited
to 8 bit, second the output of the mean absolute value utilized in
the Hurst exponent feature is limited to 10 bits, then the output of
the accumulator within the standard deviation module utilized
in the Hurst exponent feature is bounded to 20 bits, followed
by bounding the output of the whole Hurst exponent feature
to 30 integer bits. Finally, the output of the coastline feature is
bounded to 20 integer bits. The previous optimizations does not
affect any of the sensitivity, specificity, or accuracy.

A final approximation is done in the Hurst exponent feature
by removing the division by the standard deviation. Removing
this division affects the obtained sensitivity, specificity, and
accuracy since it is not constant, but rather dependent on the
values of the EEG samples of each window. The motive behind
removing the division by the standard deviation, even if it causes
slight performance degradation, is that it is fraction division
(dividing 8 bits by 20 bits) which would make the hardware
design more complex. Table V shows that while removing the
Ln function has dominant effect on the sensitivity, removing
the standard deviation has the dominant effect on the specificity.
Consequently, the specificity drops to 90.34% after removing the
division by the standard deviation, while the sensitivity achieved
remains 96.77%.

ELHOSARY et al.: LOW-POWER HARDWARE IMPLEMENTATION OF A SUPPORT VECTOR MACHINE 1333

Fig. 15. Block Diagram of the Optimized Features.

C. Hardware Implementation of Optimized Features

The proposed modified feature extraction strategies are shown
in Table VI, while their detailed architecture showing the actual
length of I/O vector lengths, along with the vector lengths of the
intermediate signals, is depicted in Figure 15.

VII. RESULTS AND COMPARISON

In this section, the results obtained are shown and compared
to prior work. Xilinx ISE 14.2 and Vivado 2016.4 are utilized
to design and develop the VLSI architecture of the algorithms.
The design is synthesized on Xilinx Virtex-7 FPGA. For the
implementation on ASIC, Synopsis Design Compiler (DC) B-
2008.09 with hardware-calibrated UMC 65 nm CMOS technol-
ogy is adopted. The final layout is conducted using Cadence
SoC-Encounter.

Results are reported in two main phases. The first phase
objective is to evaluate the performance, simulation results using
MATLAB 2017a as shown in Tables IV and V. The second phase
objective is to calculate the hardware implementation perfor-
mance metrics such as area utilization and power consumption
for both ASIC and FPGA implementations.

A. FPGA Implementation Results

The results shown in Figure 16 are obtained from the inte-
grated logic analyzer (ILA) after the implementation step on
the FPGA. The Figure shows two epochs of EEG signals that
are supplied to the proposed system; one epoch contains an
inter-ictal signal seizure, and the other contains ictal signal. The
whole epoch is processed by the feature extraction module sup-
plying the feature vector to the classifier module. The classifier

1334 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, DECEMBER 2019

Fig. 16. The Waveform of the Implemented Design on FPGA.

TABLE VII
FPGA IMPLEMENTATION RESULTS

TABLE VIII
ASIC UMC 65 nm IMPLEMENTATION RESULTS

output named seizure is also shown in both cases giving (logic-1)
when an epoch has a seizure and (logic-0) when the epoch is
seizure-free. The classifier output is generated after 16 clock
cycles after receiving the input feature vector.

Table VII lists the resources utilized in Xilinx Virtex-7 FPGA,
such as LUTs and register slices as well as the dynamic power
consumption. The proposed SMO was chosen to save power
consumption and area utilization as much as possible, the ac-
celerator utilizes 3078 LUTs compared to 6040 utilized LUTs
in the SMO implementation proposed in [23], and 3644 logic
elements compared to 6836 logic elements in MSMO [24].

B. ASIC Implementation Results

The hardware implementations of the SVM learning and
testing circuits are presented on both FPGA and ASIC plat-
forms. Table VIII shows the ASIC implementation results using
UMC 65 nm CMOS technology, with a clock frequency of
100 MHz.The table also shows the total number of the system’s
gates and cells, occupied area, and power consumption, while
Figure 17 shows the full layout of the system.

Power analysis is conducted for both FPGA and ASIC
implementations. Its is found that the FPGA implementation
consumes 2X the power that the ASIC implementation con-
sumes; the FPGA implementation of the proposed system con-
sumes 30 mW, while the ASIC implementation consumes only
14.91 mW.

Fig. 17. The Layout of the Proposed System.

TABLE IX
PERFORMANCE COMPARISON TO PRIOR WORK

C. Comparison to Prior Work

In the proposed design, optimizing the power consumption
and area utilization while keeping a high sensitivity are the
main concern. The proposed system achieved sensitivity up
to 96.77% which exceeds the maximum sensitivity achieved

ELHOSARY et al.: LOW-POWER HARDWARE IMPLEMENTATION OF A SUPPORT VECTOR MACHINE 1335

TABLE X
FPGA SYSTEM-LEVEL COMPARISON

by the software-implemented systems proposed in [4], [40],
[44], and almost equals the one achieved in [41], as shown in
Table IX. This performance is achieved without exploiting a
pre-processing stage, and using a linear kernel instead of the
computationally expensive radial basis function (RBF) kernel
used in prior work and also exceeds that achieved by other classi-
fiers as the Gradient boosted trees [42]. Although Table IX shows
a relatively low specificity compared to previous work which
can cause excess stimulation than needed resulting in inducing
seizures in the normal brain [43] or drainage of the battery. In the
proposed design, the focus is on the power consumption and the
area utilization at the expense of some acceptable degradation in
the other performance metrics such as sensitivity and specificity.
However, the table shows that the proposed design exploits linear
kernel (i.e., less area and power) while other designs exploit RBF
kernel (i..e, higher power and larger area). In addition, the usage
of linear kernel and the approximations introduced to the feature
extractor module, such as removing the natural logarithm and
divider blocks, significantly reduce the power consumed by the
proposed system at the expense of only 0.2 false alarms in every
10 seizures (drop by less than 2% in the obtained specificity).

[17] implemented the whole system in hardware, achieving
higher sensitivity by 0.03%, but at the expense of higher power
consumption than the proposed system by a factor of 1.5X.

System-level comparison with previous work in Table X
shows that the proposed system has significantly less area uti-
lization. Also, it has achieved the highest sensitivity.

VIII. CONCLUSION

Many algorithms are used to train the SVM. In this work,
accelerators such as SMO training algorithm are hardware-
implemented on both FPGA and ASIC platforms. The im-
plemented accelerator has been tested with a hardware-
implemented feature extractor and classifier in a neural seizure
detection application.

Multiple optimization techniques are introduced to the sys-
tem to achieve the most optimum design in terms of resource

utilization, and power consumption; for instance, replacing the
computationally expensive functions such as division and nat-
ural logarithm by other analogous less computationally expen-
sive functions. The proposed system achieved a sensitivity up
to 96.77% using a linear kernel function, which exceeds the
sensitivity obtained in prior work using an RBF kernel by a
1.4%. In addition, the system consumes 1.5X less power than
prior work’s implementation.

REFERENCES

[1] K. Devarajan, S. Bagyaraj, V. Balasampath, E. Jyostna, and K. Jayasri,
“EEG-based epilepsy detection and prediction,” Int. J. Eng. Technol.,
vol. 6, no. 3, pp. 212–216, 2014.

[2] F. Mormann, R. G. Andrzejak, C. E. Elger, and K. Lehnertz, “Seizure
prediction: The long and winding road,” Brain, vol. 130, no. 2, pp. 314–
333, 2006.

[3] A. Varsavsky, I. Mareels, and M. Cook, Epileptic Seizures and the EEG:
Measurement, Models, Detection and Prediction. Boca Raton, FL, USA:
CRC Press, 2016.

[4] Y. Liu, W. Zhou, Q. Yuan, and S. Chen, “Automatic seizure detec-
tion using wavelet transform and SVM in long-term intracranial EEG,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 6, pp. 749–755,
Nov. 2012.

[5] T. N. Alotaiby, F. E. A. El-Samie, S. A. Alshebeili, K. H. Aljibreen, and
E. Alkhanen, “Seizure detection with common spatial pattern and support
vector machines,” in Proc. IEEE Int. Conf. Inf. Commun. Technol., 2015,
pp. 152–155.

[6] P. Bhuvaneswari and J. S. Kumar, “Support vector machine technique for
EEG signals,” Int. J. Comput. Appl., vol. 63, no. 13, pp. 1–5, 2013.

[7] A. Temko, E. Thomas, W. Marnane, G. Lightbody, and G. Boylan, “EEG-
based neonatal seizure detection with support vector machines,” Clin.
Neurophysiol., vol. 122, no. 3, 464–473, 2011.

[8] A. Temko, E. Thomas, G. Boylan, W. Marnane, and G. Lightbody, “An
SVM-based system and its performance for detection of seizures in
neonates,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2009,
pp. 2643-2646.

[9] T. Maeda, “How to rationally compare the performances of different ma-
chine learning models?” PeerJ Preprints, vol. 6, 2018, Art. no. e26714v1.

[10] M. A. Bin Altaf and J. Yoo, “A 1.83 μ J/classification, 8-channel, patient-
specific epileptic seizure classification SoC using a non-linear support
vector machine,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 1, pp. 49–
60, Feb. 2016.

[11] J. N. Aziz et al., “256-channel neural recording and delta compression
microsystem with 3D electrodes,” IEEE J. Solid-State Circuits, vol. 44,
no. 3, pp. 995–1005, Mar. 2009.

1336 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, DECEMBER 2019

[12] B. Boashash, M. Mesbah, and P. Coldtiz, “Time-frequency detection of
EEG abnormalities,” in Time-Frequency Signal Analysis and Processing: A
Comprehensive Reference. Amsterdam, The Netherlands: Elsevier, 2003,
ch. 15, pp. 663–670.

[13] A. Subasi and M. I. Gursoy, “EEG signal classification using PCA, ICA,
LDA and support vector machines,” Expert Syst. Appl., vol. 37, no. 12,
pp. 8659–8666, 2010.

[14] K. Helal et al., “Low-power high-accuracy seizure detection algorithms
for neural implantable platforms,” in Proc. IEEE Int. Conf. Microelectron.,
2017, pp. 231–234.

[15] M. S. Mercy, “Performance analysis of epileptic seizure detection using
DWT & ICA with neural networks,” Int. J. Comput. Eng. Res., vol. 2, no. 4,
pp. 1109–1113, 2012.

[16] J. Platt, “Sequential minimal optimization: A fast algorithm for training
support vector machines,” Microsoft Res., Redmond, WA, USA, Tech.
Rep. MSR-TR-98-14, Apr. 1998.

[17] L. Feng, Z. Li, and Y. Wang, “VLSI design of SVM-based seizure detection
system with on-chip learning capability,” IEEE Trans. Biomed. Circuits
Syst., vol. 12, no. 1, pp. 171–181, Feb. 2018.

[18] S. M. Afifi, H. GholamHosseini, and S. Poopak, “Hardware implementa-
tions of SVM on FPGA: A state-of-the-art review of current practice,” Int.
J. Innovative Sci. Eng. Technol., vol. 2, pp. 733–752, 2015.

[19] L. J. Cao et al., “Parallel sequential minimal optimization for the training
of support vector machines,” IEEE Trans. Neural Netw., vol. 17, no. 4,
pp. 1039–1049, Jul. 2006.

[20] K.-K. Cao, H.-B. Shen, and H.-F. Chen, “A parallel and scalable digital
architecture for training support vector machines,” J. Zhejiang Univ. Sci.
C, vol. 11, no. 8, pp. 620–628, 2010.

[21] C.-H. Peng, B.-W. Chen, T.-W. Kuan, P.-C. Lin, J.-F. Wang, and N.-S. Shih,
“REC-STA: Reconfigurable and efficient chip design with SMO-based
training accelerator,” IEEE Trans. Very Large Scale Integr. Syst., vol. 22,
no. 8, pp. 1791–1802, Aug. 2014.

[22] L. Bustio-Martínez, R. Cumplido, J. Hernández-Palancar, and C.
Feregrino-Uribe, “On the design of a hardware-software architecture for
acceleration of SVM’ s training phase,” in Proc. Mex. Conf. Pattern
Recognit., 2010, pp. 281–290.

[23] J.-F. Wang, J.-S. Peng, J.-C. Wang, P.-C. Lin, and T.-W. Kuan, “Hard-
ware/software co-design for fast-trainable speaker identification system
based on SMO,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2011,
pp. 1621–1625.

[24] L. Feng, Z. Li, Y. Wang, C. Zheng, and Y. Guan, “VLSI design of modified
sequential minimal optimization algorithm for fast SVM training,” in Proc.
13th IEEE Int. Conf. Solid-State Integr. Circuit Technol., Hangzhou, China,
2016, pp. 627–629.

[25] S. Venkateshan, A. Patel, and K. Varghese, “Hybrid working set algorithm
for SVM learning with a kernel coprocessor on FPGA,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 23, no. 10, pp. 2221–2232, Oct. 2015.

[26] M. B. Rabieah and C.-S. Bouganis, “FPGA based nonlinear support vector
machine training using an ensemble learning,” in Proc. 25th Int. Conf. Field
Programmable Logic Appl., 2015, pp. 1–4.

[27] S. Wang, Y. Peng, G. Zhao, and X. Peng, “Accelerating on-line training
of LS-SVM with run-time reconfiguration,” in Proc. Int. Conf. Field-
Programmable Technol., 2011, pp. 1–6.

[28] A. Bhattacharyya and R. B. Pachori, “A multivariate approach for
patient-specific EEG seizure detection using empirical wavelet trans-
form,” IEEE Trans. Biomed. Eng., vol. 64, no. 9, pp. 2003–2015,
Sep. 2017.

[29] M. Sharma, R. B. Pachori, and U. R. Acharya, “A new approach to char-
acterize epileptic seizures using analytic time-frequency flexible wavelet
transform and fractal dimension,” Pattern Recognit. Lett., vol. 94, pp. 172–
179, 2017.

[30] R. R. Sharma and R. B. Pachori, “Time–frequency representation using
IEVDHM–HT with application to classification of epileptic EEG signals,”
IET Sci., Meas. Technol., vol. 12, no. 1, pp. 72–82, 2018.

[31] A. Gammerman and V. Vovk, “Alexey Chervonenkis’s bibliography: Intro-
ductory comments,” J. Mach. Learn. Res., vol. 16, pp. 2051–2066, 2015.

[32] Q. Wang, P. Li, and Y. Kim, “A parallel digital VLSI architecture
for integrated support vector machine training and classification,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 23, no. 8, pp. 1471–1484,
Aug. 2015.

[33] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. G. Strollo, “Truncated
binary multipliers with variable correction and minimum mean square
error,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 6, pp. 1312–
1325, Jun. 2010.

[34] T. Higuchi, “Approach to an irregular time series on the basis of the fractal
theory,” Phys. D, Nonlinear Phenomena, vol. 31, no. 2, pp. 277–283, 1988.

[35] V. Vijith, J. E. Jacob, T. Iype, K. Gopakumar, and D. G. Yohannan,
“Epileptic seizure detection using non linear analysis of EEG,” in Proc.
Int. Conf. Inventive Comput. Technol., 2016, vol. 3, pp. 1–6.

[36] S. Raghunathan, A. Jaitli, and P. P. Irazoqui, “Multistage seizure detec-
tion techniques optimized for low-power hardware platforms,” Epilepsy
Behav., vol. 22, pp. S61–S68, 2011.

[37] M. A. Elgammal et al., “Linear and nonlinear feature extraction for neural
seizure detection,” in Proc. IEEE 61st Int. Midwest Symp. Circuits Syst.,
2018, pp. 795–798.

[38] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physiologic signals,”
Circulation, vol. 101, no. 23, pp. 215–220, 2000.

[39] A. H. Shoeb, “Application of machine learning to epileptic seizure
onset detection and treatment,” Ph.D. dissertation, MIT Div. Health
Sci. Technol., Massachusetts Inst. Technol., Cambridge, MA, USA,
2009.

[40] Q. Yuan, W. Zhou, S. Li, and D. Cai, “Epileptic EEG classification based on
extreme learning machine and nonlinear features,” Epilepsy Res., vol. 96,
no. 1/2, pp. 29–38, 2011.

[41] S. Li, W. Zhou, Q. Yuan, S. Geng, and D. Cai, “Feature extraction and
recognition of ictal EEG using EMD and SVM,” Comput. Biol. Med.,
vol. 43, no. 7, pp. 807–816, 2013.

[42] M. Shoaran, B. A. Haghi, M. Taghavi, M. Farivar, and A. Emami-
Neyestanak, “Energy-efficient classification for resource-constrained
biomedical applications,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8,
no. 4, pp. 693–707, Dec. 2018.

[43] J. Nissinen, T. Halonen, E. Koivisto, and A. Pitkänen, “A new model of
chronic temporal lobe epilepsy induced by electrical stimulation of the
amygdala in rat,” Epilepsy Res., vol. 38, no. 2/3, pp. 177–205, 2000.

[44] C. Zhang, M. A. Bin Altaf, and J. Yoo, “Design and implementation of an
on-chip patient-specific closed-loop seizure onset and termination detec-
tion system,” IEEE J. Biomed. Health Inform., vol. 20, no. 4, pp. 996–1007,
Jul. 2016.

[45] A. Mohammed and A. Demosthenous, “Complementary detection for
hardware efficient on-site monitoring of Parkinsonian progress,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 8, no. 3, pp. 603–615, Sep. 2018.

[46] D. Serasinghe, D. Piyasena, and A. Pasqual, “A novel low-complexity
VLSI architecture for an EEG feature extraction platform,” in Proc. 21st
Euromicro Conf. Digit. Syst. Des., Prague, Czech Republic, 2018, pp. 472–
478.

[47] H. Wang, W. Shi, and C. Choy, “Hardware design of real time epilep-
tic seizure detection based on STFT and SVM,” IEEE Access, vol. 6,
pp. 67277–67290, 2018.

[48] L. Marni, M. Hosseini, J. Hopp, P. Mohseni, and T. Mohsenin, “A real-time
wearable FPGA-based seizure detection processor using MCMC,” in Proc.
IEEE Int. Symp. Circuits Syst., Florence, Italy, 2018, pp. 1–4.

Heba Elhosary received the B.Sc. degree in elec-
tronic engineering from the Faculty of Information
Engineering and Technology, German University in
Cairo, New Cairo, Egypt, in 2018. She did her
bachelor project/thesis at Ruhr-University Bochum,
Bochum, Germany, in 2017. She is currently a TA
with the Department of Electronics, Faculty of Infor-
mation Engineering and Technology, German Univer-
sity in Cairo. Her research interests include system
on chips, computer arithmetic, computer architec-
ture, FPGAs, VLSI, and hardware implementation of
biomedical systems.

ELHOSARY et al.: LOW-POWER HARDWARE IMPLEMENTATION OF A SUPPORT VECTOR MACHINE 1337

Michael H. Zakhari received the B.Sc. degree (with
Hons.) in electronic and communication engineering
from the Faculty of Engineering, Ain Shams Univer-
sity, Cairo, Egypt, in 2018. He is currently preparing
for his M.Sc. degree in electronic and communication
engineering from the Faculty of Engineering, Cairo
University. His research interests include digital elec-
tronics, VLSI, FPGA, and ASIC platforms.

Mohamed A. Elgammal received the B.Sc. and
M.A.Sc degrees (with Hons.) in electronics engineer-
ing from Cairo University, Cairo, Egypt, in 2016 and
2018, respectively. He is currently working toward
the Ph.D. degree at the ECE Department, University
of Toronto, Toronto, ON, Canada. He was a Teaching
and Research Assistant with Cairo University. He was
also a QA FPGA Prototyping Engineer with Mentor
Graphics Egypt. His research interests include FPGA,
digital electronics, machine learning, and hardware
implementation.

Mohamed A. Abd El Ghany received the B.S. de-
gree in electronics and communications engineering
(with Hons.) and master’s degree in electronics engi-
neering from Cairo University, Cairo, Egypt, in 2000
and 2006, respectively, and the Ph.D. degree in the
area of high-performance VLSI/IC design from Ger-
man University in Cairo (GUC), New Cairo, Egypt, in
2010. From 2003 to 2006, he was with the National
Space Agency of Ukraine’s EGYPTSAT-1 project.
From 2008 to 2010, he was an International Scholar
with the Electrical Engineering Department, Ohio

State University, Columbus, OH, USA. From 2012 to 2014, he was awarded
the Alexander von Humboldt Foundation Postdoctoral Fellowship at Technische
Universität (TU) Darmstadt, Darmstadt, Germany. He is currently an Associate
Professor with GUC. He is a Project Manager for four international projects
between TU Darmstadt, Ruhr-University Bochum, and GUC. He is the author
of about 55 papers, two book chapters, and two books in the fields of high
throughput and low-power VLSI/IC design and NoC/SoC. His research interests
include low-power design, embedded system design, network on chip design and
related circuit level issues in high-performance VLSI circuits, clock distribution
network design, digital ASIC design, and SoC/NoC design and verification. He
is a Reviewer and Program Committee Member of many IEEE international
journals and conferences.

Khaled N. Salama (S’97–M’05–SM’10) received
the B.S. degree from the Department of Electronics
and Communications, Cairo University, Cairo, Egypt,
in 1997, and the M.S. and Ph.D. degrees from the
Department of Electrical Engineering, Stanford Uni-
versity, Stanford, CA, USA, in 2000 and 2005, respec-
tively. He was an Assistant Professor with the Rensse-
laer Polytechnic Institute, Troy, NY, USA, from 2005
to 2009. In 2009, he joined King Abdullah University
of Science and Technology (KAUST), Thuwal, Saudi
Arabia, where he is currently a Professor, and was

the Founding Program Chair until 2011. He is the Director of the sensors
initiative, a consortium of nine universities (KAUST, MIT, UCLA, GATECH,
MIT, UCLA, Brown University, Georgia Tech, TU Delft, Swansea University,
the University of Regensburg, and the Australian Institute of Marine Science). He
has authored 250 papers and 20 issued U.S. patents on low-power mixed-signal
circuits for intelligent fully integrated sensors and neuromorphic circuits using
memristor devices. His work on CMOS sensors for molecular detection has been
funded by the National Institutes of Health and the Defense Advanced Research
Projects Agency, awarded the Stanford-Berkeley Innovators Challenge Award
in biological sciences, and was acquired by Lumina, Inc.

Hassan Mostafa (S’01–M’11–SM’15) received the
B.Sc. and M.Sc. degrees (with Hons.) in electronics
engineering from Cairo University, Cairo, Egypt, in
2001 and 2005, respectively, and the Ph.D. degree
in electrical and computer engineering from the De-
partment of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON, Canada, in
2011. He is currently an Associate Professor with
the Nanotechnology and Nanoelectronics Program
at Zewail City of Science and Technology, Giza,
Egypt—on leave from the Department of Electronics

and Electrical Communications, Cairo University. He was an NSERC Post-
doctoral Fellow with the Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ON, Canada. His postdoctoral work includes the
design of the next generation FPGA in collaboration with Fujitsu Research Labs
in Japan/USA. He has authored/coauthored more than 170 papers in international
journals and conferences and is the author/co-author of five published books.
His research interests include neuromorphic computing, IoT hardware security,
software-defined radio, reconfigurable low power systems, analog-to-digital
converters, low-power circuits, subthreshold logic, variation-tolerant design, soft
error tolerant design, statistical design methodologies, next generation FPGA,
spintronics, memristors, energy harvesting, MEMS/NEMS, power management,
and optoelectronics. He has been a member of the IEEE Technical Committee
of VLSI Systems and Applications since 2017. He was the recipient of the
University of Toronto Research Associate Scholarship in 2012, the Natural
Sciences and Engineering Research Council of Canada Prestigious Postdoctoral
Fellowship in 2011, the Waterloo Institute of Nano-Technology Nanofellowship
Research Excellence Award in 2010, the Ontario Graduate Scholarship in 2009,
and the University of Waterloo SandFord Fleming TA Excellence Award in 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

