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Data security, privacy and authenticity are crucial in wireless data transmission. Low power

consumption is the main requirement for any chip design targeting the Internet of Things (IoT)

applications. In this research paper, a comparative study of eight authenticated encryption and

decryption algorithms, selected from the \Competition for Authenticated Encryption: Security,
Applicability and Robustness" (CAESAR), namely, ACORN, ASCON, CLOC, JOLTIK,

MORUS, PRIMATEs, SCREAM and SILC, is presented. The FPGA and ASIC implementa-

tions of these eight algorithms are synthesized, placed and routed. Power, area, latency and

throughput are measured for all algorithms. All results are analyzed to determine the most
suitable algorithm for IoT applications. These results show that ACORN algorithm exhibits the

lowest power consumption of the eight studied at the expense of lower throughput and higher
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latency. MORUS algorithm gives the highest throughput among the eight selected algorithms at

the expense of large area utilization.

Keywords: Internet of Things (IoT); hardware security; authentication encryption with

associated data (AEAD); Competition for Authenticated Encryption: Security, Applicability
and Robustness (CASEAR); Advanced Encryption Standard (AES).

1. Introduction

In the last few decades, network ¯rewall has been the best solution to overcome the

insecurity attacks. However, the emergence of Internet of Things (IoT) applications

has made the security issue more critical and complicated.1 IoT makes use of data

collected from IoT devices to optimize the observation and control of the world in

domains such as logistics, retail, military and healthcare.2 This huge and continu-

ously increasing number of devices is leading to more attack vectors by hackers.3 As a

result, the security becomes one of the main challenges required by IoT stakeholders

to deploy the IoT applications in the market.

One of the most important questions that is arising in the IoT ¯eld is that how to

achieve the IoT security. Two main data security models exist, software security and

hardware security. The most popular and cost-e®ective model is software security.

Software security is achieved by a cryptography program which is responsible for

securing all the data of the organization network. Software security provides good

levels of security, however, it has a clear disadvantage. The security of operating

system (OS) compromises the security of the cryptography software. Moreover,

continuous updates are needed for the OS and the cryptography program, especially

the current versions of the OS are well known for the hackers. This disadvantage of

the software security leads to the rising demand for the hardware security. Hardware

security is achieved by connecting a hardware security module (HSM) to the orga-

nization network. HSM is a physical device that provides extra security for sensitive

data. The HSM is responsible for achieving all the cryptography aspects (i.e., data

encryption and decryption in addition to data authentication).4 Correspondingly,

the security question is rephrased from how to achieve the IoT security to how to

implement the HSM module.

The objective of this work is to provide a quantitative answer to the above

question by carrying out a comprehensive comparison among di®erent cryptography

algorithms that are used to implement the HSM module, taking into consideration

the power consumption of the HSM-implemented modules to match the power

constraints imposed by the low-power IoT applications.5 The main contribution of

this work is to provide a quantitative comparison among di®erent HSM modules and

to recommend the HSM algorithm that is suitable for IoT applications.

The paper presents a quantitative comparison among eight di®erent

algorithms that have participated in the \Competition for Authenticated Encryp-

tion: Security, Applicability and Robustness" (CAESAR).6 The selected algorithms
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are Side-Channel Resistant Authenticated Encryption with Masking (SCREAM),

JOLTIK, ASCON, MORUS, CLOC, Simple Lightweight CFB (SILC), PRIMATEs

and ACORN. The eight algorithms are implemented using the application-speci¯c

integrated circuit (ASIC) °ow with CMOS UMC 130-nm technology. The synthesis

step is performed by using Synopsys Design Compiler (DC) tool and the place and

route step is conducted by using Cadence System-on-Chip (SoC) Encounter tool.

Moreover, all the eight algorithms are implemented using the ¯eld-programmable

gate array (FPGA) °ow with ZC702 evaluation board for the Zynq-7000 XC7Z020.

The synthesis and the place and route steps are carried out by using Xilinx Vivado

2016.4 tool. The maximum frequency of all algorithms is set to 10MHz that suits the

low-power IoT applications and also to provide a fair comparison among the di®erent

HSM modules.

In the presented quantitative comparison, several aspects are studied such as

throughput, latency, power consumption and area, for both the ASIC and the FPGA

design °ows. Moreover, other aspects are investigated in this comparison such as: the

nature of the algorithm (i.e., iterative or serialized), the type of key scheduling (i.e.,

tweakable or not), algorithm capabilities (i.e., whether it includes decryption unit in

addition to the encryption unit or not), number of rounds, data block size, size of the

public message number (PMN) and the size and design of the substitution box.

The paper is organized as follows. Section 2 discusses the low-power IoT appli-

cations and the security challenges. Section 3 explains the CAESAR competition

background and the hardware application programming interfaces (APIs) of the

di®erent algorithms used in this paper. Section 4 introduces the di®erent features

associated with the selected algorithms in this paper. Section 5 provides brief

descriptions of the eight selected algorithms. Section 6 presents the hardware

implementations of the eight selected algorithms in FPGA and ASIC °ows. Section 7

provides the results and discussion of the quantitative comparison. Section 8 holds a

comparison between existing cryptographic schemes and the selected lightweight

algorithms from CASESAR competition. Section 9 concludes the work of this paper.

2. Internet of Things

With the growth of IoT arises several security issues. These security issues are cat-

egorized into two main classes: (i) the variety in information and (ii) secure com-

munication among objects. These issues cause various challenges in the IoT

applications security such as: authentication, privacy and power consumption.7

These challenges are described as follows.

2.1. Authentication

Due to the large increase in the number of objects, authentication with traditional

methods such as secret keys and public keys becomes a complex task. However,
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authentication is a hard challenge in IoT to avoid the third-party manipulation of

data. Therefore, other methods are presented to achieve strong-based authentication

between main parties.7

2.2. Privacy

Privacy is one of the main challenges in IoT security. This is because all the IoT

objects are connected to the Internet and their information are vulnerable to hackers.

Accordingly, the objects information should be protected and their privacy should be

maintained.

2.3. Power consumption

Power is a signi¯cant challenge in IoT applications. This is because most of the IoT

modules harvest energy from photovoltaic, piezoelectric and thermal energies. Ac-

cordingly, low power consumption is a must to lengthen the battery lifetime and to

push the IoT industry into the market.

3. CASEAR Competition

3.1. Cryptographic competitions

Many cryptographic competitions are held to gather the cryptanalysts and cipher

designers from all over the world to share their knowledge and designs. Following

each competition, a ¯nal portfolio is announced. These competitions provide a

great boost to the cryptographic research community's understanding of block

ciphers, and a tremendous increase in con¯dence in the security of block ciphers.

The ¯rst competition was held in 1997 when the United States National Institute of

Standards and Technology (NIST) announced an open competition for a new

Advanced Encryption Standard (AES). Eventually, NIST selected Rijndael as the

standard AES.8

During the Early Symmetric Crypto workshop in Mondorf-les-Bains in 2013, the

CAESAR was announced.9 The objective of the CAESAR competition is to an-

nounce a ¯nal portfolio that includes the hardware implementation of an authen-

ticated cipher that is much robust to several hacking attacks and compatible with

di®erent communication protocols. The competition had attracted 55 block cipher

submissions and was performed over three rounds. Each round contained a sub-

mission of software version of each algorithm, C or Python, and then, a submission

of hardware version of the algorithm.6 Only 15 block ciphers reached the ¯nal

round. The 15 block ciphers are ACORN, AEGIS, AESOTR, AEZ, ASCON,

CLOC–SILC, COLM, Deoxys, JUMBO, Katje, Keyak, MORUS, NORX, OCB and

Tiaoxin.6
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3.2. Hardware API for authentication ciphers

The hardware API for authenticated ciphers has been developed to meet all the

requirements of all algorithms that have been submitted to the CAESAR competi-

tion. The top level of the API is the authenticated encryption with associated data

(AEAD) core. The architecture of the AEAD core consists of three main blocks: pre-

processor, cipher core and post-processor, as shown in Fig. 1. The main di®erence

between the di®erent algorithms is in the cipher core implementation, as it contains

the hardware blocks that perform either encryption or decryption and authentication

algorithm steps.10 The George Mason University Application Programming Inter-

face (GMU-API) blocks are described as follows.

3.2.1. Pre-processor

Pre-processor is the ¯rst block of the AEAD core which receives public and secret

data and starts processing them. It is responsible for doing various processing

functions, such as:

. parsing segment headers loading and activating keys,

. serial-in-parallel-out loading of input blocks,

. padding input blocks in case the input block size is not equal to the algorithm

block size,

. keeping track of the number of data bytes left to process.

3.2.2. Cipher core

The cipher core is divided into two blocks: core data path and core controller.

The core data path contains the hardware which is responsible for encryption or

Fig. 1. CAESAR hardware API.10
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decryption and processing the associative data to perform data (tag) generation, in

addition to the hardware which is responsible for the key scheduling and the gen-

eration of round keys. The cipher core controller is an algorithmic state machine that

takes some information signals from the pre-processor and generates control signals

to the core data path.

3.2.3. Post-processor

The post-processor is the output stage of the API. It is responsible for:

. clearing any portions of the output blocks that are not belonging to the ciphertext

or plaintext,

. parallel-in-serial-out conversion of output blocks into words,

. formatting output words into segments,

. generating the status block with the result of authentication. If the message is

authenticated, it outputs its block through the DO port, else it discards it.

3.2.4. Bypass ¯rst-in-¯rst-out

Small 4� 24 ¯rst-word-fall-through (FWFT) ¯rst-in-¯rst-out (FIFO) bypasses the

tags, header, associated data (AD) and any data blocks that are used in the au-

thentication process and will not be encrypted. It also bypasses any required data

that the post-processor needs to operate with the maximum e±ciency. For example,

post-processor should know whether the last block needs to be unpadded or not. In

addition, the post-processor should know whether the incoming data is ciphertext or

plaintext, because if it is a ciphertext, then there is no need to temporarily store it as

there is no tag veri¯cation needed in the encryption.10

3.2.5. Auxiliary FIFO

The memory used by the post-processor to temporarily store the decrypted message

till the result of authentication is ready.10

4. Common Features for CASEAR Candidates

The selected CAESAR candidates support authentication, by using AEAD. The

objective of the CAESAR competition is to submit algorithms that are supporting

con¯dential and authenticated communication. Authentication operation happens

at transmitter and receiver sides. At the transmitter side, the data is encrypted and

the tag is generated using the message and associated data. At the receiver side, the

message is decrypted and then the tag is generated by applying the same operations

performed at the transmitter side. Original tag from transmitter side is compared

with the tag from receiver side. If they are the same, then the message is authenti-

cated, otherwise the receiver discards the message.
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Some of the selected candidates are block ciphers, meaning that input data is

processed in terms of data block. Data blocks are processed using various modes. In

this section, the following operation modes are presented:

. Electronic code block (ECB): Encryption and decryption operations are conducted

independently on each data block of plaintext and ciphertext, respectively. The

advantage of ECB mode is the ability to accomplish the operation in parallel.

However, ECB mode su®ers from small bit di®usion which means that the order of

the plaintext is su®ering from few scattered positions in the ciphertext.

. Cipher feedback (CFB): The ¯rst message is XORed with encrypted initialization

vector (IV) to produce ciphertext. Then the subsequent messages are processed by

Fig. 2. The AES algorithm.12
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considering the previous ciphertext as the current IV. CFB mode is unable to

recover the whole message if a ciphertext is lost.

. Cipher block chaining (CBC): In order to produce the ciphertext, the same

operations of CFB mode are carried out again. However the messages are XORed

with IV, not encrypted IV.

The following selected algorithms: SILC, JOLTIK and CLOC are based on AES to

perform the encryption and the decryption processes. AES is a symmetric block

cipher that uses several key sizes. AES has various standard versions: AES-128, AES-

192 and AES-256.11 Number of rounds for each version depends on the key size. It

uses 10, 12 and 14 rounds for key sizes of 128, 192 and 256, respectively. Data to be

encrypted is represented in 4� 4 matrix of bytes denoted by state. The block cipher

applies four permutation functions in each round which are: add round key, sub

bytes, shift rows (SR) and mix columns (MC). Figure 2 shows a °owchart for AES

encryption algorithm.12

Add round key function XORed the current state with the round key. The round

keys are generated using a key scheduling algorithm which takes the original 128-bit

or 192-bit or 256-bit key and generates the 10, 12 or 14 128-bit round keys. Sub bytes

function replaces each byte in the current state using the substitution box (S-box).

The shift rows function rotates the state rows right with di®erent numbers of posi-

tions. First row is left unrotated, second row is rotated with one position, third row is

rotated with two positions and fourth row is rotated with three positions. Mix col-

umns function that is denoted by the bit di®usion layer considers the columns of

the state as polynomials over Galois ¯eld (GF) and multiplied them with a ¯xed

polynomial.13

5. The Selected Algorithms

5.1. ACORN algorithm

ACORN is a symmetric and authenticated encryption (AE) algorithm based on

stream cipher. Stream cipher di®ers from block cipher in that the key (KÞ and input

data are applied bit-wise. ACORN provides parallel operation for encryption and

decryption processes. This parallelism is achieved through independent processing

for each bit of either plaintext or ciphertext. This parallelism bene¯ts lightweight

hardware implementation as the control circuit for the hardware implementation is

greatly simpli¯ed.14 Number of bits that are being padded to the message is ¯xed

which reduces the hardware implementation cost.15 ACORN is an inverse-free au-

thenticated encryption scheme. This type of schemes require low memory and area

because they utilize one block to perform either encryption or decryption operations

instead of separate blocks for each operation.16

ACORN has various standards that are the same in tag, key and initialization

vector sizes, which is 128 bits, but di®er in the number of steps. ACORN v2 provides

N. Samir et al.

1930009-8



more protection than ACORN v1 by increasing the number of steps.16 In this paper

results of ACORN are carried out from ACORN v2 implementation with eight states

processed in parallel. The hardware used to accomplish encryption and decryption

processes are gathered in a single block with a control signal to select between

encryption and decryption. Input of this block is multiplexed among plaintext or

ciphertext or associated data, or even zero. Figure 3 represents the data path for

cipher core of ACORN v2 for bit-wise case (not 8 bits).15 It depends mainly on two

blocks. First block is the state update function, which updates the internal state and

then a®ects the output ciphertext and tag. Second block is the key stream generator

(KSG) with current state as the input. It is used to generate a key stream that is used

later to generate the tag and the ciphertext.

5.2. ASCON algorithm

ASCON is an AEAD algorithm. ASCON depends on duplex sponge mode, which

produces a string that is based on the whole input string.16 Sponge mode is a

Fig. 3. ACORN v2 cipher core data path.15
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permutation mode that produces an output evaluated from a state value which is

updated using key, plaintext and associated data. The ASCON encryption process is

carried out by using permutation blocks that perform iterations on prede¯ned

operations.17 ASCON has several parameters used for encryption such as: secret key

(KÞ, associated data (AÞ, public message number that is denoted by nonce (NÞ and
IV, in order to encrypt a plaintext (P Þ, according to the formula

Ea;b;k;rðK;N ;A;P Þ ¼ ðCT Þ ; ð1Þ
where a, b are the numbers of permutation rounds, r is the state size and k is the

secret key size. The outputs of this process are the ciphertext C and the authenti-

cation tag T .18

Figure 4 illustrates ASCON modes of operation which are the encryption mode

and the decryption mode. P block is the main block in ASCON algorithm. P block

has two °avors: one for carrying out the initialization/¯nalization process (PaÞ and
the other for performing the internal processes (PbÞ.17

5.3. CLOC algorithm

Compact Low-Overhead Cipher Feedback (CLOC CFB) is a block cipher mode of

operation. CLOC ensures authentication and secure encryption through dealing with

associated data. CLOC design aims to optimize some factors such as complexity,

(a) Eneryption

(b) Decryption

Fig. 4. ASCON's modes of operation.18
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overhead and memory requirement. These factors are the drawbacks of previously

implemented algorithms such as: Counter with Cipher Block Chaining Message

Authentication Code (CCM), Encryption-then-Authentication-then-Translate

(EAX) and Encryption-then-Authentication-then-Translate-Prime (EAX-prime).

CLOC is designed to deal with small input data width such as 16 bytes which is

suitable for small microprocessors with word size of 8 bits or 16 bits. CLOC uses two

block cipher modes: CFB for encryption part and Cipher Block Chaining Message

Authentication Code (CBC-MAC) for the authentication part. These modes are

responsible for providing data in a con¯dential and authenticated manner as dis-

cussed in Refs. 19 and 20.

CLOC implementation consists of four main blocks which represent the cipher

core as portrayed in Fig. 5. These blocks are HASH, pseudo-random function (PRF),

encryption engine (ENC) and decryption engine (DEC). HASH block uses hash

functions to generate the IV. PRF block generates tag which is used in authenti-

cation. ENC converts plaintext to ciphertext. DEC converts ciphertext back to

plaintext as presented in Refs. 19 and 20. CLOC uses AES-128 to perform the

encryption process.

5.4. JOLTIK algorithm

JOLTIK is a symmetric and authenticated encryption algorithm. JOLTIK utilizes

AES-based permutation layers. JOLTIK parameters such as message and associated

data are represented in blocks of size 64 bits. Each block is organized as 4� 4 matrix

of nibbles.21 JOLTIK-BC supports two modes of operation: encryption mode and

decryption mode. ECB is the used mode to accomplish encryption and decryption

Fig. 5. Block diagram of CLOC.19
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processes. JOLTIK modes of operation require the implementation of a RAM to

store all round keys because they are used in reversed order for decryption. This

RAM implementation increases decryption latency overhead and consumes extra

area.13 For encryption process, the message is split into 64-bit blocks, each block is

processed independently as shown in Fig. 6. For authentication, the associated data

is processed to generate the authentication signal, which is XORed with the message

blocks to generate the tag.21

JOLTIK uses tweakable block cipher (TBC) that uses an extra input denoted by

tweak. The internal structure of the tweakable block cipher is similar to the AES

block cipher. The TWEAKEY is de¯ned as the concatenation of the key and the

tweak. JOLTIK has more than one standard version that uses variety of key and

tweak sizes, as given in detail in Ref. 21. JOLTIK-192 is the conducted version in this

paper, where it has 128-bit key size and 64 bits for tweak. JOLTIK-192 gives a higher

performance against brute force attack (BFA) as the number of attack iterations gets

larger.13 For processing a single block, JOLTIK-192 needs 32 rounds21 and each

round consists of four permutation layers: add round key, substitution layer, shift

rows and di®usion layer.

5.5. MORUS algorithm

MORUS algorithm achieves encryption and authentication simultaneously.22

MORUS is designed to target high-speed hardware implementation as it uses only

shift, AND and XOR in its operation. MORUS has two internal state sizes: 640 bits

and 1,280 bits, where the state is the unit of data that is initialized with the key.

MORUS supports two key sizes of 128 bits and 256 bits.23

State update function is the main block in MORUS algorithm. It updates the

state in each phase of operation and is denoted by State Update (S;MÞ, where S is

the state and M is the message block. This function has ¯ve rounds where two state

Fig. 6. JOLTIK block diagram of processing the message.22
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elements are modi¯ed in each round: one with left rotation and the other with ROTL

function. ROTL function is denoted as ROTL XY ðA;BÞ where A is the block with

X-bit size and block A is divided into four Y -bit words and rotates each word left by

B bits.24

MORUS performs data processing in four phases: initialization, processing the

associated data, encryption and ¯nalization, as depicted in Fig. 7. Initialization is

the ¯rst phase where the key and IV are loaded into state, then the state update

function is run for 16 times and ¯nally the key is XORed with the output. Ini-

tialization phase is designed to run 80 rounds so that it makes sure the IV and the

key are kept secret by mixing them inside the state. In addition, each key and IV

are used only once in the protection of any message. Therefore, the IV is not used

for the same key to avoid any attacks on recovering the state. Second phase is

processing the AD where the associated data is processed using the state update

function which is run u times where u is AD length divided by 256. Encryption is

the third phase where the plaintext is encrypted into blocks of size 256 bits and the

state is updated for v times where v is the message length divided by 256. The last

phase is ¯nalization where authentication tag is generated by running state update

function eight times.24

5.6. PRIMATEs algorithm

PRIMATEs family of authenticated ciphers is a sponge-based AE scheme that

operates in a low resource environment and provides resistance to forgery attacks

and di®erential power analysis (DPA) side-channel attacks (SCAs). There are three

modes of operation in PRIMATEs: APE, HANUMAN and GIBBON. GIBBON has

two security levels: 120 bits and 80 bits, where the size of the key is equal to the

security level. This paper used GIBBON-80 as it is intended for lightweight appli-

cations25 because of supporting low memory feature by storing only one intermediate

state without revealing the key to the attacker.26 GIBBON consumes less area than

the other AEAD algorithms that are based on a block cipher, because it does not

Fig. 7. Block diagram illustrates MORUS implementation.24
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contain a key schedule, uses smaller S-box (5 bits instead of 8 bits) and uses a more

compact, recursive maximum distance separable (MDS) matrix implementation.

PRIMATEs-80 operates on a 5� 8 state matrix of 5-bit elements: the ¯rst row of

the state is the rate of the state (40 bits), whereas the rest of the state is the capacity

(160 bits). PRIMATEs family consists of four permutations: P1, P2, P3 and P4

which are de¯ned by di®erent numbers of rounds and di®erent initial round con-

stants (RCs), generated by a 5-bit linear-feedback shift register (LFSR). GIBBON

uses six-round permutations P2 and P3 to process the associated data and the

message, respectively, and 12-round permutation P1 for initialization and ¯naliza-

tion. Each round of the four permutations contains four transformations that update

the state matrix. The ¯rst transformation is sub-elements (SE) transformation,

which substitutes every (5-bit) element in the state matrix with an element from

S-box. The second transformation is SR, which shifts each row in the state matrix

with a di®erent value. The third transformation, MC, which follows a wide trail

strategy, is a left multiplication by a 5� 5 matrix in GF as shown in Fig. 8. The

fourth transformation is constant addition (CA) transformation, which XORed the

second element of the second row with a prede¯ned round constant. This round

constant is generated using a Fibonacci linear-feedback shift register with an initial

value that di®ers for each permutation. GIBBON runs P2 if at least one block of AD

is present, or when it does not execute any permutations for the AD segment. The

state matrix is 200 bits, which leaves a small memory footprint during execution and

minimizes processor usage.25 However, most of the power is consumed in this matrix

as it is updated continuously after each round.

5.7. SCREAM algorithm

SCREAM is an iterative algorithm which includes masking scheme in order to be

robust against the SCA in addition to BFA. Masking is a scheme of performing

operations on random bits of an input vector such that the individual bits of the

vector are not analyzed subsequently to recover the encrypted data.

The con¯dentiality mode for SCREAM is ECB which helps parallel computation

of multiple blocks.27 Moreover, it is a TBC with 128-bit key and 128-bit tweak.

Fig. 8. Mix columns transformation for PRIMATEs-80. The state matrix is multiplied column by column
with the 5� 5 matrix.25
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In TBC, the encryption algorithm uses the key as an input in addition to a new one

called the tweak (T Þ. Changing T is cheaper and easier than changing the key and

makes the algorithm more secure.28 T is updated in each step of the block cipher as a

function of several variables including secret key, block number (jÞ, mode of oper-

ation (i.e., message, associated data or tag) and PMN.28 The PMN is an 88-bit

number which acts as the IV to the tweak update block.

Figure 9 shows the cipher core of SCREAM algorithm where the main block of it

is the encryption step (EkÞ, where k ¼ 0; 1; 2; . . ., [Number of Steps (NS)�1], and NS

varies from 8 steps to 12 steps. Each round is an LS cipher (L for L-box and S for

S-box), which consists of linear di®usion box, bit slice substitution box and round

constant table. The round constant and the L-box are represented by look-up tables.

This LS cipher is employed in order to retain linearity for e±cient masking and

reduce the computational load (i.e., reduce the clock cycle needed for a step).29

5.8. SILC algorithm

SILC is an authenticated cipher. SILC uses CFB and CBC-MAC modes of operation.

CBC-MAC is used for processing associated data and ciphertext, and CFB is used for

Fig. 9. SCREAM algorithm cipher core.28
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generating ciphertext, as discussed in Ref. 30. SILC uses AES-128 block cipher which

improves latency and memory utilization more than LED and PRESENT block

ciphers.22 SILC provides provable security against birthday attack (i.e., type of

cryptographic attack that employs the mathematics of the birthday paradox) be-

cause of the pseudo-randomness of the block cipher (i.e., S-box in AES allows this

pseudo-randomness).30,31 The encryption and decryption operations are done using

only the encryption function. Both encryption and decryption are online operations

which means that every output block depends on all the previous input blocks. The

only pre-computation in SILC is the round keys for key scheduling of the block

cipher.

For this reason, no extra hardware register is needed for storing the pre-computed

result. SILC avoids using a GF multiplier except in AES encryption function which

reduces the area as GF multiplier requires large number of gates.32 The SILC power

consumption is dominated by the S-box block due to its large size ð16� 16� 8Þ in
look-up table implementation.13,33

SILC implementation is based on four subroutines: HASH, encryption (ENC),

PRF and decryption (DEC). These subroutines process the data sequentially,

however, ENC and PRF perform their function in parallel.32 The order of these

subroutines is based on whether the operation is encryption or decryption as shown

in Fig. 10. HASH generates an intermediate tag that is used in the other subroutines.

Fig. 10. SILC encryption and decryption block diagrams.30
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PRF generates two di®erent tags that are used in encryption and decryption

operations. In decryption mode, these two tags are compared in order to determine

the authentication result. In case of a mismatch, the output message is discarded.

Each subroutine has di®erent inputs to send to the AES encryption block as dis-

cussed in Ref. 30.

6. FPGA/ASIC Implementations

The di±culty of comparing the hardware performances of the di®erent candidates of

CAESAR competition arises due to the existence of various hardware platforms. As a

result of this complexity, uni¯ed methods are used to give more accurate results for

fair comparison. Very-high-speed integrated circuit Hardware Description Language

(VHDL) is the used hardware description language (HDL) to implement algorithms

in register transfer level (RTL). For low-power IoT applications, the operating fre-

quency is chosen to be 10MHz for all algorithms. Algorithms are veri¯ed using

ModelSim functional simulator.

6.1. Implementation on FPGA

FPGA implementation of the candidates is performed using Xilinx Vivado 2016.4

design suite. The algorithms are synthesized using Zynq-7000 XC7Z020 FPGA

device. Vivado tool is used to perform the logic synthesis, mapping, placing and

routing. Vivado results report the areas and power consumptions of the algorithms.

For power consumption measurements using FPGA, three parameters are de¯ned

namely the e®ective load capacitance of resources, the switching activity of resources

and the thermal information. A method is proposed to adopt all parameters with

di®erent cases. The selected cases are chosen to provide fair comparison and analysis

for low-power IoT applications.

6.2. Implementation on ASIC

Synthesis step is done using Synopsys DC B-2008.09 for Linux. CMOS UMC

130-nm technology with eight metal layers is the used technology for synthesis and

place and route steps. DC takes RTL codes, technology libraries and constraints ¯le

as an input and produces the gate-level netlist as an output. The switching activity

¯le generated from Vivado is included for accurate power consumption results.

After the synthesis step is completed, auto place and route (APR) is carried out

such that the standard cells are placed and routed and connected to input/output

(I/O) pins, and the clock tree synthesis is performed.34 APR is achieved using

Cadence SoC Encounter 8.1 tool. SoC Encounter converts the gate-level netlist into

layout. Figure 11 shows the SoC Encounter chip layouts of the eight cryptographic

algorithms.
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7. Results and Discussion

Various parameters are compared in order to ¯nd out the most suitable algorithm for

low-power IoT applications. These parameters are: FPGA power, slice LUTs utili-

zation, throughput, ASIC power, ASIC area and latency.

7.1. FPGA and ASIC powers

Figure 12 shows the power consumptions of the FPGA and ASIC implementations

for the eight algorithms as well as the FPGA/ASIC power gap. FPGA/ASIC power

gap is de¯ned as the ratio between FPGA power and the ASIC power. It is found

that CLOC algorithm has the smallest power gap, while the SCREAM algorithm has

the largest power gap. FPGA and ASIC powers should be theoretically linear with

each other. However, the reason behind this di®erence is ASIC power takes into

consideration the interconnection and other physical e®ects that re°ect on the dy-

namic power. Moreover, the technology used for ASIC °ow di®ers from the one used

for Zynq FPGA board. It should be noted that a design that is implemented using

ROMs consumes much larger power for FPGA, such as the SCREAM algorithm.

Figure 12 shows that SILC consumes the largest power for FPGA, and CLOC

consumes the largest power for ASIC. Also, it shows that ACORN algorithm con-

sumes the minimum power for both ASIC and FPGA implementations, as it is the

only candidate that is based on stream ciphers.

Fig. 11. SoC Encounter chip layouts of the eight cryptographic algorithms.

N. Samir et al.

1930009-18



7.2. Area and slice LUTs

Figure 13 shows the FPGA utilizations, ASIC areas and FPGA/ASIC area gaps.

Several parameters a®ect area estimation such as block size, key size, tag size,

number of rounds and bus width. MORUS algorithm has the largest LUTs utiliza-

tion because of large block size, while the CLOC algorithm consumes the largest area

in the ASIC implementation. ACORN algorithm has the smallest area in both FPGA

and ASIC implementations because of the small bus width. There is an area gap

between FPGA and ASIC implementations because of the di®erent hardware

implementations of LUTs and the standard cells in the FPGA and ASIC °ows,

respectively. Figure 13 illustrates that the CLOC algorithm has the smallest area

gap, while the SCREAM algorithm has the largest area gap.

Fig. 12. FPGA and ASIC power estimation results.

Fig. 13. FPGA utilization and ASIC area results.
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7.3. Throughput

Figure 14 shows the throughput results for the candidates in Mbits/s. The formula

that is used to calculate the throughput is given by35

Throughput ¼ Block size

Number of roundsþ C
� Frequency ; ð2Þ

where C takes two values, either 0 or 1, and it represents the additional clock cycle

used for initialization at the beginning of each round. Block size, number of rounds

and frequency are the parameters which determine the throughput and these para-

meters are constant for each of the selected algorithm. MORUS algorithm gives the

highest throughput among the selected algorithms because of the large block size.

However, ACORN has the smallest throughput.

7.4. Latency

In order to provide fair comparison among the selected algorithms which have var-

ious message and associated data lengths, a formula is developed to calculate the

latency. The latency is calculated starting from the beginning of applying the mes-

sage till the ¯rst output data appears. The pipeline of pre-processor and post-

processor blocks makes the latency and the throughput not proportional to each

other, and then the throughput cannot be evaluated using the developed formula.

Figure 15 illustrates the average latency between encryption and decryption pro-

cesses. The formulas used to calculate latency of encryption and decryption processes

are given by

LatencyENC ¼ TENC=TClk

ðM þ AÞ � Block bytes
; ð3Þ

Fig. 14. Throughput results.
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LatencyDEC ¼ TDEC=TClk

ðC þ AÞ � Block bytes
; ð4Þ

where TENC and TDEC are the required intervals to accomplish encryption and

decryption processes, respectively, block bytes are the number of bytes per block

and A, M and C are calculated using the ceil function for number of bytes of

associated data, plaintext, ciphertext divided by block bytes, respectively. Pre-

synthesis and post-synthesis results of latency for FPGA and ASIC °ows are the

same, which is because the timing constraints are satis¯ed in addition to the used

clock cycle of 100 ns providing enough time to process data even with external

LUTs or standard cells delays. Figure 15 shows that ACORN algorithm gives the

largest latency because of small block size, while the ASCON algorithm provides

the smallest latency.

8. Comparison

Among all AES-based candidates, the algorithm that uses large S-box consumes

relatively large power. For the case of JOLTIK and SILC algorithms, both of them

are AES-based permutation layers that include the substitution layer. The S-box size

for SILC is the same as the case in AES, which is 256� 8,13 and for JOLTIK the size

is 16� 4.21 This large S-box makes SILC to consume larger power and area than

JOLTIK. ACORN, which is the only stream cipher among the selected algorithms,

consumes the minimum power and area, while giving a small throughput in the range

of Kbits/s. For low-power IoT applications, ACORN algorithm is suggested to keep

the data secure in case when the used protocols in the system do not require high

data rates.

In order to evaluate the submissions of CAESAR competition, comparisons are

carried out among existing encryption algorithms, and the presented algorithms in

this paper. Table 1 holds the comparison in ASIC °ow, in terms of frequency, area,

Fig. 15. Latency results.

ASIC and FPGA Comparative Study for IoT Lightweight Hardware Security Algorithms

1930009-21



dynamic power and technology used. The ASIC implementation of RSA algorithm

introduced in Ref. 36 consumes the largest area and power, while the ACORN

algorithm is the lowest in power and area.

Table 2 compares the same aspects in FPGA °ow among the selected algorithms

and previous cryptography algorithms. This comparison is based on frequency,

LUTs, power and type of FPGA used. The implementation of 3DES presented in

Ref. 36 consumes large power compared to the selected ACORN algorithm which has

the smallest power results. The Two¯sh algorithm introduced in Ref. 36 has the

largest LUT utilization, while the presented ACORN algorithm consumes the

smallest number of LUTs. Both tables highlights that ACORN has the lowest in

power, area and resources utilization, compared to the other existing algorithms at

the expense of low speed and high latency.

Table 1. Comparison between the studied designs and previous designs in ASIC °ow.

Design Frequency (MHz) Area (mm2Þ Power (mW) Technology (nm)

AES-12836 10 0.148 0.724 UMC 130

AES-19236 10 0.149 0.729 UMC 130
AES-25636 10 0.149 0.727 UMC 130

RSA36 10 1.236 9.38 UMC 130

3DES36 10 0.217 0.968 UMC 130

Two¯sh36 10 0.101 0.675 UMC 130
ACORN 10 0.035 0.163 UMC 130

JOLTIK 10 0.178 0.96 UMC 130

ASCON 10 0.083 0.655 UMC 130
PRIMATEs 10 0.106 1.064 UMC 130

CLOC 10 0.544 2.858 UMC 130

SCREAM 10 0.114 0.842 UMC 130

MORUS 10 0.27 2.83 UMC 130
SILC 10 0.187 2.345 UMC 130

Table 2. Comparison between the studied designs and previous designs in FPGA °ow.

Design Frequency (MHz) LUTs Power (mW) FPGA

AES36 10 961 246 Zynq-7000 XC7Z020

RSA36 10 1,178 255 Zynq-7000 XC7Z020
3DES36 10 1,191 125 Zynq-7000 XC7Z020

Two¯sh36 10 556 121 Zynq-7000 XC7Z020

ACORN 10 476 0.582 Zynq-7000 XC7Z020
JOLTIK 10 1,325 1.38 Zynq-7000 XC7Z020

ASCON 10 1,312 2.16 Zynq-7000 XC7Z020

PRIMATEs 10 1,187 3.547 Zynq-7000 XC7Z020

CLOC 10 2,767 3.766 Zynq-7000 XC7Z020
SCREAM 10 2,235 4.106 Zynq-7000 XC7Z020

MORUS 10 4,286 4.899 Zynq-7000 XC7Z020

SILC 10 3,004 5.980 Zynq-7000 XC7Z020
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9. Conclusion

This paper presents the comparative study of FPGA and ASIC implementations of

security algorithms selected from CAESAR competition that are served for IoT

applications. The chosen algorithms are ACORN, MORUS, JOLTIK, PRIMATEs,

SILC, CLOC, SCREAM and ASCON. The FPGA implementation is conducted

using ZC702 evaluation board for the Zynq-7000 XC7Z020. The synthesis and the

place and route steps are performed using Xilinx Vivado 2016.4 tool, while the ASIC

approach is done using CMOS UMC 130-nm technology. The synthesis step is per-

formed using Synopsys Design Compiler tool. Cadence SoC Encounter tool is utilized

for place and route step. The comparative study analyzes several issues that are

critical for low-power IoT applications such as power consumption, area, throughput

and latency. Also, a comprehensive investigation about CAESAR competition and

the GMU-API is conducted.

ACORN algorithm is recommended for low-power IoT applications because it con-

sumes the minimum power among the eight selected algorithms. The AES-based algo-

rithms SILC, CLOC and JOLTIK consume extra power according to the size of S-box.

Furthermore, ACORN utilizes the smallest LUTs/area in the FPGA/ASIC imple-

mentations. In terms of throughput, ACORNgives theminimum throughput in range of

Kbits/s which makes ACORN not preferred for high data rate applications. While the

MORUSalgorithm gives the highest throughput because of the large block size.MORUS

algorithm is recommended for high data rate applications. ASCON algorithm gives the

smallest latency, however, ACORN algorithm gives the largest latency because of small

block size. This work concludes that ACORN algorithm is the most suitable algorithm

for low-power IoT application because the power consumption is the main concern.
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