Cairo University

AUTOMATED PERFORMANCE-BASED DESIGN
TECHNIQUE FOR AN EFFICIENT LTE PDSCH
IMPLEMENTATION USING SDSOC TOOL

By

Mohammed Ahmed Abd Elhamid Eladawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

AUTOMATED PERFORMANCE-BASED DESIGN
TECHNIQUE FOR AN EFFICIENT LTE PDSCH
IMPLEMENTATION USING SDSO€ TOOL

By

Mohammed Ahmed Abd Elhamid Eladawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Under the Supervision of

Prof. Ahmed Hussein Mohamed Dr. Hassan Mostafa Hassan
Professor of Electronics / Associate Professor of Electronics

I A [wéf

Department of Electronics Department of Electronics
Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT ,
2019

AUTOMATED PERFORMANCE-BASED DESIGN
TECHNIQUE FOR AN EFFICIENT LTE PDSCH
IMPLEMENTATION USING SDSOC TOOL

By

Mohammed Ahmed Abd Elhamid Eladawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Approved by the Examining Committee

A W el A
Prof. Ahmed Hussein Mohamed Thesis Main Advisor
Electronics Professor, Faculty of Engineering, Cairo University

7 s

Dr. Hassan/Mostafa Hassan Adyvisor
Electronics Professor, Faculty of Engineering, Cairo University

Y A

Prof. Amin Mohamed Nassar Internal Examiner

Electronics Professor, Faculty of Engineering, Cairo University
%/

Dr. Amr Talaat Abdel Hamid External Examiner

Associate Professor, Electronics/Networks Departments, German
University in Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

Engineer’s Name: Mohammed Ahmed Abd Elhamid Eladawy
Date of Birth: 21/09/1988

Nationality: Egyptian

E-mail: eladawy 1988@gmail.com

Phone: +201030701720

Address: Giza/Egypt

Registration Date: 01/10/2012

Awarding Date: oo 2019

Degree: Master of Science

Department: Electronics and Communications Engineering
Supervisors:

Prof. Ahmed Hussein Mohamed
Dr. Hassan Mostafa Hassan

Examiners: _ |
Prof. Ahmed Hussein Thesis main advisor 4 - k’/l‘//(vf
Electronics Professor, Faculty of Engineering, Cairo University

Dr. Hassan Mostafa Hassan advisor -

Electronics Professor, Faculty of Engineering, Cairo Universi

Prof. Amin Mohamed Nassar Internal examiner A —
Electronics Professor, Faculty of Engineering, Cairo University

Dr. Amr Talaat Abdel Hamid External examiner
Associate Professor, Electronics/Networks Departments, ///
German University in Cairo

Title of Thesis:

AUTOMATED PERFORMANCE-BASED DESIGN TECHNIQUE FOR AN
EFFICIENT LTE PDSCH IMPLEMENTATION USING SDSOC TOOL

Key Words:
SDSoC; Xilinx; SoC; LTE; PDSCH; FPGA

Summary: -

This thesis demonstrates the work of the typical SDSoC design flow. In addition, a
proposed algorithm design flow using SDSoC is developed to introduce new
automated design techniques to design SoC on a heterogeneous FPGA-CPU platform
based on performance metrics constraints such as area, power and latency. Design of
Physical Downlink Shared CHannel (PDSCH) in Long-Term Evolution (LTE) is
presented as a case study. The objective of this thesis is to realize the implementation
of the LTE PDSCH transmitter and LTE PDSCH receiver using SDSOC tool and to
select a platform that meets performance metrics constraints and to select the
platform that achieves the best performance.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has

been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and

have cited them in the references Section.

Name: Date:

Signature:

Acknowledgments

I would like to express my appreciation to my thesis advisor Dr. Hassan Mustafa
for his support and guidance. He has been a constant source of inspiration and
has provided consistent support and valuable suggestion throughout this project

without which this work would not have been possible.

I would like to express my heartfelt gratitude to my family for their

encouragement and support without which I would not have come so far.

Finally, I would like to thank all my friends for their invaluable support and

cooperation.

Dedication

“I'm not interested in how things were, or how we ended up where we are now.
What interests me 1s what we are now and what we will be.”

Dr. Ahmed Khaled Tawfik

Table of Contents

ACKNOWLEDGMENTS ..oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseessesss I
DEDICATIONcoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeessesses v
TABLE OF CONTENTS .. ttttttttteteteteeeieeeeeeeeteeeeeeessesesesssesssssesssssssssssssssssssssssssssssssses \%
LIST OF TABLES ... eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessssssssessses VII
LIST OF FIGURES ... tttetcccceeeeneennnneecceeceeseesssssescessessssssssssssssessssssssssssssssssssssssse VIII
NOMENCLATUREcceceeeeeeenneneccececseeeasssssesssesscsssssssssssssssssssssssssssssssesssssssssses X
LIST OF PUBLICATIONS ... i cttettteeeteeecccecesesessssssssssecssnse XII
ABSTRACT .aooeeeeeecceeeeeneeeeeeeecsecceesesssee XIII
CHAPTER 1 : INTRODUCTION ...cittiiiiiiieeeeeeeeeeeesesesesesesssesesssssesesssssesssssssssssssssssasanes 1
1.1. LONG TERM EVALUATION (LTE) .c.cettiiiieeieeeieeeieeeeeeeee et 2
1.2. FIELD PROGRAMMABLE GATE ARRAY (FPGA)....ccooviieiiieieeieeeee e, 3
1.3, SDISOC .ot e s 3
1.4. ORGANIZATION OF THE THESIS ... 4
CHAPTER 2 : FPGA STRUCTURE AND LTE ARCHITECTUREcccuueuuuue. 5
2.1, FPGA STRUCTURE ...ttt sssssssssnsnnnnns 5
2.1.1. Programmable input and output block Unit...........ccoeeeeviieciieiieiieieee e 6
2.1.2. Configurable 10ZIC DIOCKcocuiiiiiieiieee e 7
2.1.3. Digital clock management MOdule...........ccecvveriiriiiiiiiiiiieii et 8
2.1.4. Embedded BIOCK RAMooiiiiiiiieeeeeeeeeeeeee et e e 9
2.1.5. ROULING TESOUITE ..vvieeuriieeiieeiieesiieesteeetteesteeeseeessseesssaeessseessseessseeessseesssesasseesssessssees 9
2.1.6. Embedded functional UNitc...cooovuviiiiiiiiieieiie e e 10
2.2. LTEARCHITECTURE.......cootiee e 11
2.2.1. LTE fIrame SIUCTUIEevvviiiiiiieeieieeeee ettt e e e e e e e e e e e e e eennaaaeeeeeeeeeannns 12
2.2.2. LTE PDSCH transmitter and receiver model..........ccocuvvviiiiiiiiiiieiiiieiieiiieeeeeeeeeeas 13
2.2.2.1. CRC addition and CRC reMOVINGc.cccueruerieriiniieieteeienieetesieseeesteeseessesseeseeseessesseensesseensesseenss 13
2.2.2.2. Segmentation and de-SEZMENTATIONc.ueruiriieriiriirieierieete ettt ettt st sbe s 15
2.2.2.3. Channel coding and channel de-CoaINgcccoruirieiiiiiiirieee e 19
2.2.2.4. Interleaver and de-INtEIIEAVETcooiviiiiiiii e e e e eanes 24
2.2.2.5. Rate matching and rate de-matChingcccoceriiiiiiiniiiiiie e 24
2.2.2.6. Scrambler and de-SCrambIETcoviiiiiiiiiiii ettt ettt et e 27
2.2.2.77. Modulator and de-modUlatorcooiiiiiiiiiiiiie et anes 28
2.2.2.8. Resource element mapper and resource element de-mapperccoeeererieiereeirieseneneeeeeeeeee 32
CHAPTER 3 : SDSOCrrrrsrsss 34
3.1. SDSOC PRAGMA SPECIFICATION.....ccceeeiieeiiurrereeeeeeeeeeeitrreeeeeeeeeeeiisnreereeaeeeeeennneees 34
3.1.1. Function OPtIMIZATIONeeveerieeriieriiesiiesieeieeresesesseesseesseesseessaesssessseeseesseesseesssesnnes 35
3.1.2. LOOP OPUIMIZATIONS.vvieieiieeiieeirieeiieeeiteeeieeeeeveeereeestseessbeeessessssaeessseesnseeensseesnseeennns 35
3.1.3. AITAY OPUMIZALIONS. ..c.vieitiiieieiieereeteesteestreseesetessressseesseesseesseesssesssessseesseesseesssesssensnes 36
3.1.4. Interface ManageMEeNTccceceeruieriierientiesieeeeeteeeteeteerteesteesteeseaeebeebeesseesneesneeennes 37

3.2. TypricAL HW/SW CO-DESIGN DESIGN FLOW USING SDSOC DESIGN FLOW 38

3.3. PROPOSED AUTOMATED PERFORMANCE-BASED DESIGN TECHNIQUE..................... 41
CHAPTER 4 : IMPLEMENTION AND RESLULTS ccvesssssssssssssssssssssssssssssssssss 47
4.1. IMPLEMENTATION OF TURBO ENCODER USING SDSCOC TOOL......... 47
4.1.1. Turbo encoder block diagramcccceecvieiiiieeiiieriie e e 47
4.1.2. Turbo encoder iMPlemeNtationccceverierienieiereniene ettt 48
4.1.3. Configurable Embedded FPGA Platformc..ccccooiiieiinininiinincncecicnceece 49
4.1.4. Results and Comparative STUAIESccuvrvvirrieeriieriierieeiesie et sre e 50
4.1.4.1. Hardware Utilization for turbo encoder implementationccecerereereeienieneenieeeeee e 50
4.1.4.2. Dynamic power for turbo encoder implementationccceeeeirirerinereiei e 51
4.1.43. Hardware acceleration for turbo encoder implementation..............ccevereerieeienieneenieseeie e 52
4.1.4.4. Figure of Merit for turbo encoder implementationcceveeriirierienieneeiee e 53

4.2. IMPLEMENTATION OF THE LTE PDSCH TRANSMITTER AND
RECEIVER USING SDSOC TOOL.......oiiiiiieiiieeieeeieeeee et 54
4.2.1. LTE PDSCH transmitter implementationcceevveerivrenieeenieenreeeieeesveesene e 54
4.2.1.1. Configurable embedded FPGA platform for LTE PDSCH tranSmitterc.ceevevvreveeriereerrennnnnn. 55
4.2.2. LTE PDSCH receiver implementation............ccceeeeuireriierieenieeeiieesveeereeesivee e 56
4.2.2.1. Configurable embedded FPGA platform for LTE PDSCH receiver........c..ccccoeoivirenenenerieinennne 57
4.2.3. CONStraints SOIULION.cccviiiiuiiiiiieetie ettt ettt et e b e eetaeeereeebeeeseseeeaeeeens 59
4.2.4. Results and comparative StUAIESc.ceccveeeiuieerireriieeiieerireesreeeveesreeeeeeesereeseeeenes 60
4.2.4.1. LTE TX implementation TESUILScecirieriirieieriieieseeiesteeteste et e ste s sseessessessaenseesaesseeseesensnenns 60
4.24.1.1. Hardware utilization for the LTE TX implementationccccccceeveucieneioeaneneenennn 60

42412 Latency for the LTE TX implementationccoccoevueveieecieseeeenieeeeieseeeesseasenie e 61

4.2.4.1.3. Dynamic Power for the LTE TX implementation..................cccccocuevenceevieneneasenieeeneann 62

4.2.4.14. Hardware acceleration for the LTE TX implementation...............c.ccccoecevveveionncnceenennns 63

4.24.1.5. FoM for the LTE TX implementarion..................ccccuoveieaieneeeesie s 64

4.2.42. LTE RX implementation TESUILSccueruirieriertieienie ettt ettt ettt et nbe e te e eee e e 65
4.24.2.1. Hardware utilization for the LTE T RX implementation....................ccccccocooceeevaeinccnennn. 65

4.2.4.2.2. Latency for the LTE RX implementation.................ccccouceaueniiieseieeeeeeeee e 66

4.2.4.2.3. Dynamic Power for the LTE RX implementation................c.ccccoocuioeeveniencnieieeniiieeann 67

4.2.4.24. Hardware acceleration for the LTE RX implementationcccccoecevveecveneeeenennnnn 68

4.2.4.2.5. FoM for the LTE RX implementation...............c.cccoccueveieiieeiiieeseaieee e 69

4.2.43. Constraints solution eXamples TESUILS..........oeiiiiiiiriiieeie et 70
CONCLUSIONS . ..cciittiiitticnsnnicsstecsssnicssssssssssesssssessses 71
FUTURE WORK ...uiiiiiiiiinniinisnticnsnnicssnnicssssessssssssssssssssossssssssssssssssssssssssssssssssssssses 73
REFERENCESuutiiiiiiiiiinnniinnsnnicsssnisssstisssstssssssssssssssssssssssssossssssssssssssssssssssssssssssses 74
APPENDIX A: MODULATION LOOKUP TABLE........cccovvvtricicrnriccscsnercsssnsneces 74
APPENDIX B: IMPLEMENT SDSOC PROJECT MANUALLY STEPS............. 82
APPENDIX C: SDSOC SHELL SCRIPTccccoevierrnicssnicssanecsssnrsssssssssssssssssssssssssses 87

Vi

List of Tables

Table 2.1: LTE standard different bandwidths..........ccccccooeiiiniiininnnnn, 11
Table 2.2: Code block size for segmentationscccceeeevveeecveeeennneeennee, 16
Table 2.3: Turbo code interalver parameterccoccceeeecveeeriieeeencveeenne. 21
Table 2.4: Inter-column permutation matric for sub-block interleaver......25
Table 2.5: QBSK modulation lookup tableccccoeoiiiiniiiiiiiieee 29
Table 2.6: 16QAM modulation lookup table...........cccocvevirciieiriiieeeeee, 29
Table 2.7: Soft decision QPSK demodulation lookup table 31
Table 3.1: Mapping of C-code to RTL constructcccccvvveeevreeenennnee. 34
Table 3.2: Three function configuration scenario example........................ 43
Table 3.3: Estimated performance list for selected combination 44
Table 3.4: Estimated performance list for all combination 45
Table 4.1: Turbo encoder sub-function configuration scenarios................ 48

Table 4.2: LTE PDSCH transmitter sub-function configuration scenario .55
Table 4.3: LTE PDSCH receiver sub-function configuration scenario......58

Table 4.4: Constraints solution examples..........ccccveeeeiiieeciieeeciiee e, 59
Table 4.5: Constraints solution examples resultsccoccvveeriieeenneennne. 71
Table C.1: Supported SDSoC evaluation boardccceeveeiriieennnnnnne. 88
Table C.2: Supported SDSoC operating System..........ccceeeevveeerveeeerveeennn. 88
Table C.3: synthesis frequency supported by SDSoC tool......................... 88
Table C.4: Data motion operating freqUeNCYccceevvveeercieeeerreeeerreee e, 89

Vi

List of Figures

Figure 2.1: Internal structure of the FPGA chip.......cccccevvviiiiiiiiiiiieee 6
Figure 2.2: Internal structure of IOBcoooiiiiiiiiiiiieiececee e 7
Figure 2.3: Internal structure of SIICe......cueeviiiiiiiiiiiiiiiieece 8
Figure 2.4: Structure of the LTE frame in FDD modec.ccccoceenneenee. 12
Figure 2.5: LTE PDSCH transmitter and receiver modelc...c...... 13
Figure 2.6: Role of CRC block in transmitter and receiver........................ 14
Figure 2.7:Code block segmentation processcceevveeercereeervreeerveeeenne. 15
Figure 2.8: Code block De-segmentationcceceeevveenieenieenieenieeenee. 19
Figure 2.9: Turbo encoder block diagramccccoeviiiiiiiniiiniiinieee. 19
Figure 2.10: Turbo decoder block diagramcccocveiiviiiiinciiieeieeee, 23
Figure 2.11: Rate matching block diagramcccoccevivciieiniieeenieene, 24
Figure 2.12: Rate de-matching block diagramcccooeevviiiiiieennnnee, 26
Figure 2.13: Constellation diagrams of modulation schemes 29
Figure 2.14: LTE resource gridccccoevvveviieiiiieeiieenieeniee e 33
Figure 3.1: Memory interface management............ccceeeveerveenieeenieesneeennne. 37
Figure 3.2: FIFO Interface managementccoceerviiinieinieeniienneeene. 38
Figure 3.3: Typical HW/SW co-design flow using SDSoC...........c........... 38
Figure 3.4: SDS0C design flowccc.ooviiiiiiiiniiiiiiiiiieeeeeeeee e 39
Figure 3.5: Embedded FPGA platformcoccoeviiiiiiiiiiiieieeee, 40
Figure 3.6: Performance-based design technique flow chart 42
Figure 4.1: Turbo encoder block diagramc.cccoeviiiiiiiniiiniiinieee. 47
Figure 4.2: Configurable embedded FPGA platform for turbo encoder49
Figure 4.3: Hardware utilization for turbo encoder implementation.......... 50
Figure 4.4: Dynamic power for turbo encoder implementation.................. 51
Figure 4.5: Hardware acceleration for turbo encoder implementation....... 52
Figure 4.6: FoM for turbo encoder implementation............cccceeveeveennennne. 53
Figure 4.7: Configurable embedded FPGA platform for the LTE PDSCH

182111 101111 oSO P URRRPRR 56
Figure 4.8: Configurable embedded FPGA platform for the LTE PDSCH

TECETVET ..eeutieeuiteeiteeeitte et e ettt et e e e ateeeab e e e bt e sabeesabeeeabbe e bt eenabeesabeesabeesabeeennees 57
Figure 4.9: Hardware utilization for the LTE TX implementation 61
Figure 4.10: Latency for the LTE TX implementationcccccceeeueennnee. 62
Figure 4.11: Dynamic power for the LTE TX implementation 63
Figure 4.12: Hardware acceleration for the LTE TX implementation........ 64
Figure 4.13: FoM for the LTE TX implementationc.ccceeevvevueennee. 65
Figure 4.14: Hardware utilization for the LTE RX implementation.......... 66
Figure 4.15: latency for the LTE RX implementationccccceevueennnee. 67
Figure 4.16: Dynamic power for the LTE RX implementation 68

Figure 4.17: Hardware acceleration for the LTE T RX implementation ..69

viii

Figure 4.18: FoM for the LTE RX implementationccccccvvveennennnnee. 70

Figure B.1: Project naming and platform selection and OS selection........ 82
Figure B.2; Empty project Selectioncccceeeeiviieeiiieieiee e, 83
Figure B.3: project window in estimated performance mode 84
Figure B.4: Estimated performance resultsccccceevvvieniieniieccieenieenne, 84
Figure B.5: Window project in non-estimated performance mode............ 85
Figure B.6: SDOSC directory Structure...........ooceevveernieeenieenieenieenieeeee. 85

3GPP
AMC
ASIC
AWGN
B.W
BCIJR
CAM
CLB
CPLD
CPU
CRC
DCM
EEPROM
FDD
FFT
FoM
FPGA
GAL
HLS
I10B
IoT
LCA
LTE
LUT
MAP
MIMO
NB-IoT
OFDM
PAL
PBCH
PCFICH
PDCCH
PDR
PDSCH

Nomenclature

3rd Generation Partnership Project

Adaptive Modulation and Coding
Application-Specific Integrated Circuit

Additive White Gaussian Noise
Bandwith
Bahl-Cocke-Jelinek-Raviv
Content Address Memory
Configurable Logic Block

Complex Programmable Logic Device
Central Processor Unite

Cyclic Redundancy Check
Digital Clock Management

Electrically Erasable Programmable Read-Only Memory
Frequency Division Duplex

Fast Fourier Transform
Figure of Merit
Field Programmable Gate Array

Generic Array Logic
High Level Synthesis

Input-Output Block
Internet of Things

Logic Cell Array
Long-Term Evolution

Look-Up Table
Maximum A Posteriori

Multiple Input Multiple Output
Narrowband IoT

Orthogonal Frequency Multiplexing
Programmable Array Logic

Physical Broadcast Channel

Physical Control Format Indicator Channel
Physical Downlink Control Channel

Partial Dynamic Reconfiguration
Physical Downlink Shared CHannel

PDSCH
PHICH
PMC
PMCH
PROM
PSS
QAM
QPSK
RSC
RTL
SDK
SDSoC
SISO
SNR
SoC
SSS
TDD

Physical Downlink Shared CHannel
Physical Hybrid Indicator Channel

Performance Metrics Cost
Physical Multicast Channel
Programmable Read Only Memory
Primary synchronization signals
Quadrature Amplitude Modulation
Quadrature Phase Shift Keying
Recursive Systematic Convolution
Register Transfer Level

Software Development Kit
Software Defined System-on-Chip
Single Input Single Output

Signal to Noise Ratio

Systems on Chip

Secondary Synchronization Signals

Time Division Duplex

Xi

LIST OF PUBLICATIONS

1. Mohamed Eladawy, Ahmed Kamal, Hassan Mostafa, Sameh Said,
“Performance Evaluation of Turbo Encoder Implementation on a
Heterogeneous FPGA-CPU Platform Using SDSoC”, International
Conference on Advanced Control Circuits Systems (ACCS) Systems &
International Conference on New Paradigms in Electronics and Information
Technology (PEIT), 2017.

2. Mohamed Eladawy, Mahmoud Kishky, Hassan Mostafa, Sameh Said,
“Automated Performance Based Design Technique for an efficient LTE
PDSCH Implementation Using SDSoC Tool”. International Journal of
Communication Systems (IJCS), 2018.

Xii

Abstract

Systems on Chip (SoC) creates massive design challenges for the SoC-
based designers. The design challenges start from functional complexity,
architectural design, verification tests and finally meeting performance
constraints. Furthermore, the heterogeneity of components and tools introduce
long and large design cycles. In addition, the hardware-software co-design
includes complicated design process. The design complexity includes the
following: first, co-specification, where the roles of software and hardware in
implementing system functionality are specified and the implementation is
assigned to either software or hardware. Second, co-development, where the
software, hardware, and interfaces are developed. Third, co-verification where the
optimization and refining of the SW/HW components are performed to meet the
design constraints.

The Software Defined System on Chip (SDSoC) tool is developed by Xilinx to
create custom SoC on a heterogeneous FPGA-CPU platform. The SDSoC tool
offers a fast and short design cycle for heterogeneous FPGA-CPU platform
development. The SDSoC tool also integrates multiple tools to make the co-design
of the hardware-software more flexible.

In this thesis, the typical SDSoC design flow is presented. In addition, the thesis
provides a new automated SDSoc design technique to design SoC on a
heterogeneous FPGA-CPU platform based on performance metrics such as area,
power ...etc. The new design technique used to explore the performance metrics
for all possible combination between software implementation and hardware-
accelerated implementation for "n” functions. Moreover, the new design technique
used to determine platforms that achieve performance metrics and to select the
platform that achieves the best overall performance.

As a case study, design of Physical Downlink Shared CHannel (PDSCH) in Long-
Term Evolution (LTE) is employed. The architecture of transmitter and receiver
of the LTE PDSCH are studied and the LTE PDSCH transmitter/receiver software
functions are written using C programming language.

The objective of this thesis is to implement the LTE PDSCH transmitter functions
and the LTE PDSCH receiver functions using SDSoC tool, to select the platform
that meets performance metrics constraints, and to select the platform that
achieves the best overall performance.

Xiii

Chapter 1 : Introduction

Smart homes, automated vehicles, and Internet of Things (IoT) are examples
of electronic products that are almost involved in every aspect of our lives. The
rapid growth of the electronics industry encourages developers to find faster and
efficient design methods to decrease time-market requirements for design and
system development cycle [1].

During the last few years, the electronics industry shifted from the Application
Specific Integrated Circuit (ASIC) to SoC design production to pursue the large
production of electronic devices [2]. The SoCs designer should build a product
with an efficient architecture that is a key to ensure that system design meets its
performance requirements. Design an efficient architecture might consume a lot
of time, cost and a very long and complicated design cycle.

Besides that, hardware/software partitioning method was introduced by Edwards
and Forrest in reference [3]. The main objective of hardware/software codesign
method is to produce systems containing an optimum balance of hardware and
software components which work together to achieve a specified behavior and
fulfill specified design constraints. Hardware/software codesign examine the
parallel method to design hardware and software components of complex
electronic systems [4]. Hardware/software codesign method tries to achieve the
corporation of hardware and software with the goal to optimize constraints such
as power, area, ..., etc. and it targets to reduce the time-to-market frame
significantly.

Vista™ platform is a tool introduced by Mentor graphic company used in
hardware/software codesign [5]. Vista Virtual Prototyping provides an early
functional model of the hardware to software engineers even before the hardware
design is implemented in RTL. It can run software on embedded processor models
at speeds par with physical hardware boards, providing sufficiently fast simulation
models for OS and application software validation. The features included in the
tool are as follows: Vista tool provides architecture design and exploration, Vista
tool allows hardware/software tradeoffs analysis, Vista tool supports an early
assessment of and finally Vista tool includes a virtual platform for software
integration and validation.

Xilinx announces SDSoC tool target developing SoC on a heterogeneous FPGA -
CPU platform [6]. In this thesis, hardware-software co-design of LTE PDSCH
transmitter and receiver synthesized by SDSoC for heterogeneous FPGA-CPU
platform is proposed.

1.1. LONG TERM EVALUATION (LTE)

Connecting to the Internet wirelessly through a cell phone is one of the
greatest technological innovations of the last decade of years. Wireless
communication is an old idea that began with Morse signals down to the fourth-
generation technology. The fast growth of mobile phone markets promises the 3rd
Generation Partnership Project (3GPP) to develop the Long-Term Evolution
(LTE) standard for high-speed wireless communication for mobile devices [7].

LTE is a mobile communication standard is developed to improve the
mobile phone standard to follow up with future technology evolutions. The LTE
network supported by a number of key technologies including Orthogonal
Frequency Multiplexing (OFDM) [8], multi-carrier modulation technology,
Adaptive Modulation and Coding (AMC) technology, Multiple Input Multiple
Output (MIMO) and smart antenna technology [9]. The LTE standard supports
users and telecommunication companies’ requirements [10].

The requirements include reducing cost per bit use of current and new frequency
bands, simplification architecture, providing more services at lower cost and
reasonable power consumption. The objectives of the LTE standard are
increasing efficiency spectrum utilization, improving system capacity and
increasing data rate up to 100 Mbps.

The LTE mobile communication system has the following features:

. Faster transfer rate: the LTE supports data rate up to 2Mbps for large-
scale high-speed mobile users (250km/h), 20Mbps for medium-speed
mobile users (60km/h), and 100Mbps for low-speed mobile users (indoor
or pedestrian) [9].

. Efficient spectrum utilization: the LTE uses many powerful breakthrough
technologies in the development process. The use of wireless spectrum is
much more efficient than the second and third generation systems, and the
speed is quite fast.

Wider network spectrum: each LTE channel occupies 100MHz or more
bandwidth, while the bandwidth of the 3G network is between 5~20MH [10].

More flexibility: the LTE system adopts intelligent technology that used to
adapt allocation resources and adopt intelligent signal processing technology
to transmit and receive signals in various complex environments with
different channel conditions.

. Higher quality multimedia communication: the LTE network supports
multimedia communication services include voice, data, video, ...etc. A
large amount of information is transmitted through the broadband channel
allowing users to connect to the system at any time and any location.

. Smoother compatibility: the LTE systems have global roaming, open
interfaces, interconnection with multiple networks, diversification of
terminals and a smooth transition from the second generation.

1.2. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

FPGA is a product of further development based on programmable devices
such as Programmable Array Logic (PAL), Generic Array Logic (GAL) and
Complex Programmable Logic Device (CPLD) [11]. The FPGA has powerful
processing functions and complete design freedom so that its industry rival ASIC
designers use FPGAs to simulate the entire system at board level before they
manufacture wafers. FPGA proposes an effective electronic design by integrating
board design, programmable logic design, and software development.

Since the birth of FPGAs, electronic product design evolves into a programmable
logic design and embedded software design. At the same time, electronic design
shifted to be more of a "soft" design [12]. The design through the development of
language and tools and FPGA become this a "soft" design -carrier.

Availability of low-cost and large-scale programmable device in the form of an
FPGA makes it possible for designers to transfer all system core functions to a
soft design and take advantage of the soft design. These "soft" design advantages
include: easier to protect system functions from being copied or reverse
engineered, and easier to modify the functions architecture. For that reason, "soft"
design becoming the development direction of the electronic design.

1.3. SDSOC

The fast-growing of IoT devices promises electronic devices developers to
find a rapid solution for developing IoT products to the markets [13]. Xilinx
announces Software Defined System-on-Chip (SDSoC) tool target developing IoT

products and creates custom SoC on a heterogenecous FPGA-CPU platform.

The SDSoC tool provides a short design cycle to develop heterogeneous FPGA-
CPU platform with simple interface logic generated by the tool to handle the data
flow between hardware and software. In addition, SDSoC supports estimating
performance, hardware utilization and latency calculations that make developing

design short and fast [14].

1.4. ORGANIZATION OF THE THESIS

Section 2 divided into two topics. First, section 2.1 about the FPGA
structure and working principle. Second, section 2.2 about the LTE and illustrates
in details the architecture of the LTE PDSCH transmitter and receiver chain used
in this thesis.

Section 3 about SDSoC tool and explains the typical design flow using SDSoC
and the proposed automated performance-based adaptive design technique.

Section 4 shows the implementation and comparative studies results. The
implementation of turbo encoder is presented as a case study to test the SDSoC
tool and to explore the different performance metrics used for design. In addition,
the implementation of the LTE PDSCH transmitter and receiver using SDSoC tool
is presented as a case study for the new design technique developed in this work.

In conclusion, the main achievements are highlighted together with the future lines
of this work

Chapter 2 : FPGA STRUCTURE AND LTE
ARCHITECTURE

2.1. FPGA STRUCTURE

The first generation of programmable devices is familiar with
Programmable Read Only Memory (PROM), Erasable Programmable Read Only
Memory (EPROM) and Electrically Erasable Programmable Read-Only Memory
(EEPROM) [15]. The programmable principle of these programmable devices is
to change the carrier density inside the triode or MOS transistor by applying a high
voltage or ultraviolet light. These devices are called programmable, but it is
difficult to achieve single-programmable or programmable state.

FPGA is different because it adopts a new concept such as Logic Cell Array
(LCA), which includes Configurable Logic Block (CLB), Input-Output Block
(IOB) and Interconnect [16]. The programming of the FPGA changes the trigger
state of the CLB and IOB, so that multiple repeated programming is realized. Most
FPGAs use a Look-Up Table (LUT) structure based on SRAM technology, and
some military and aerospace-class FPGAs use Flash or fuse and anti-fuse process
look-up table structures. The repeated configuration of the FPGA is accomplished
by programming the file to change the contents of the lookup table.

The designer uses different programming methods according to different
configuration modes. The design of FPGAs are based on the SRAM process and
need to connect an off-chip memory to save the program. At power-on, the FPGA
reads the data in the external memory into the on-chip RAM. After the
configuration is completed, FPGA enters the working state. After turned off the
power of FPGA, the FPGA returns to the white chip, and the internal logic
disappears.

In this way, the FPGAs are programmed repeatedly without a dedicated FPGA
programmer. However, the design of some FPGAs are based on anti-fuse
technology FPGAs, which have the advantages of radiation resistance, high and
low-temperature resistance, low power consumption and high speed. They are
widely used in military and aerospace applications, but such FPGAs are not
repeatedly erased [17].

Figure 2.1 shows the main FPGA components which consist of the following
parts: programmable Input and Output Block (IOB) unit, Configurable Logic
Block (CLB), Digital Clock Management (DCM) module, embedded Block RAM
(BRAM), Switch Matrix (SW) for routing, and embedded functional unit [18].

5

Figure 2.1: Internal structure of the FPGA chip [18]

2.1.1. Programmable input and output block unit

The programmable Input/Output Block (IOB) unit is the interface part
between the chip and the external circuit. It performs the driving and matching
requirements of the input/output signals under different electrical characteristics.
The schematic structure of IOB is shown in Figure 2.2 [19].

The 10Bs are designed to have a flexible software configuration and different
electrical standards [19]. The IOBs driving current is adjusted and the upper and
lower pull-down resistors are changed according to software configuration

In order to facilitate management and adaption to various device standards, [OBs
within the FPGA are designed in groups, and each group supports different IOB
standard independently. The IOB of the FPGA is divided into several banks. The
interface standard of each bank is determined by its interface supported voltage
level. The voltage level is depending on the FPGA generation and is coming down
as new generations come. The different voltage level supported by different FPGA
generations includes 5V, 3.3V, 2.5V, 1.8V, 1.5V and 1.2.V [18].

6

Slew Rate | | Fassive !
Control Pull-Dhoren

T

Butiar | ._;_{E]

e
~J

Input i
Bufber

1l v"."\d]_r

Figure 2.2: Internal structure of IOB [19]

2.1.2. Configurable logic block

CLB is the basic logical unit within the FPGA. The actual number and
characteristics of CLBs vary from device to device. In Xilinx's FPGA devices, the
CLB consists of multiple identical slices and additional logic. The CLB modules
not only used to implement combinatorial logic, timing logic but also as
distributed RAM and distributed ROM. Slice is the basic logical unit defined by
Xilinx company. The internal structure of the slice is shown in Figure 2.3. A slice
consists of two 4-input functions LUT, carry logic, arithmetic logic, storage logic
and function multiplexer [19].

LUT is typically viewed a RAM. For example, 4 input LUTs are used in FPGAs
viewed as a RAM with a 4-bit address line. When the user describes a logic circuit
through the schematic or HDL language, the FPGA development software
automatically calculates all possible results of the logic circuit and writes the truth
table to the RAM in advance. So, performing a logical operation is equivalent to
inputting an address to look up the table, finding out the content corresponding to
the address, and then outputting it.

The LUT has the same function as the logic circuit. However, LUTs have faster
execution speeds and larger scales. FPGAs device densities of LUT range from
tens of thousands to tens of millions of gates, allowing extremely complex times
sequence and logic combine logic circuit functions, so it is suitable for high-speed,
high-density high-end digital logic circuit design.

7

couT

| LB
G4 RS |
3 Lunk-UE Carry 0
G2—e— Table 3
41 Control > FF
Lzgic EC
H
F5IM
BY ‘ i
ER @]
| 7B
F4 =
Akl | e D
F2—9 ‘P & b FF
F1 Control
Logic & —|EC R
|
CIM !
LK
CE

Figure 2.3: Internal structure of slice [19]

2.1.3. Digital clock management module

Digital clock management (DCM) is used on FPGAs for dealing with all
aspects of clock management [19]. Xilinx FPGAs have different DCM circuit
implementation includes a digital phase shifter, digital frequency synthesizer and
a delay-locked loop (DLL). DCM supports advanced clocking capabilities for
multiplying or dividing the incoming clock frequency to synthesize a new clock.
DCM also eliminates clock skew to improve the system performance and is able
to phase output clock shift to delay the incoming clock by a fraction of the clock
period.

2.1.4. Embedded block RAM

FPGAs have embedded block RAM (BRAM), which expands the range and
flexibility of FPGA applications hugely. BRAMs are used every time you need a
bunch of data to be stored on a chip. BRAMs are dedicated ram that does not use
any additional LUT in your design. The Block RAM is used as the following
configuration: A common storage structure such as single-port RAM, dual-port
RAM, Content Address memory (CAM), and FIFO. The amount of BRAM inside
the chip is also an important factor in selecting an FPGA chip [20].

2.1.5. Routing resource

The Switch Matrices (SM) routing resources (SM) is used to connect all the
cells inside the FPGA together. The length and process of the wires determine the
driving capability and transmission speed of the signals on the wires [21]. The
FPGA chip has a wealth of routing resources and is divided into four different
categories according to the process, length, width, and distribution.

. The first type is the global routing resource, which is used for the internal
global clock of the chip and the global reset/set wiring.

. The second type is the long-line resource, which is used to complete the
wiring of the high-speed signal between the chip Bank and the second
global clock signal.

. The third type is the short-term resources, which is used to complete the

logical interconnection and routing between basic logic cells.

. The fourth type is the distributed routing resources, which is used for
control signals such as proprietary clocks, resets ... etc.

The designer does not need to select the routing resources directly. The place and
route router select the routing resources to connect the various module units
according to the topology and constraints of the input logical network table
automatically.

2.1.6. Embedded functional unit

The FPGAs chip manufacturers have integrated specialized hard cores
inside the chip to improve the FPGA performance [22]. The hardcore has powerful
FPGA processing is equivalent to the ASIC circuit. For example, dedicated
multipliers are integrated into FPGAs to increase the multiplication speed of
FPGAs. Many high-end FPGAs integrate serial-to-parallel transceivers reach tens
of Gbps, which used to implement communication bus and interface standards.

In addition, the new Xilinx FPGA generations consist of built-in PCI Express and
a Tristate Ethernet MAC hardcore (TEMAC) [18]. The Xilinx Tri-Mode Ethernet
MAC core is a parameterize core that is ideal for use in network equipment such
as switches and routers. The customizable TEMAC core enables system designers
to implement a wide range of integrated Ethernet designs, from low-cost 10/100
Ethernet to higher-performance 1GB ports. The TEMAC core design is compliant
with the IEEE 802.3 specification and operate in 1000Mbps, 100 Mbps, and 10
Mbps modes. In addition, it supports half-duplex and full-duplex operation.

Xilinx has not only integrated specialized hard cores but also Power PC series
CPUs such ARM. Through the platforms such as ARM, it is possible to develop
standard DSP processors and related applications to achieve the development
goals of SOC.

The hard-core refers to the netlist with planning information in the FPGA design.
Hard-core views as a soft-core with layout planning. A mixture of RTL code and
corresponding specific process netlist provides hard-core. The RTL description is
combined with a specific standard cell library to form a gate-level netlist, then
gate-level netlist used by the place-and-route tool [23]. The advantages of hard-
core are high flexibility and portability. The disadvantage of hard-core is that the
predictability of the module is low, there is a possibility of error in the subsequent
design, and there is a certain design risk.

On the other hand, the soft-core refers to the pre-integration register transfer level
(RTL) model. In the FPGA design, the soft-core is the hardware language
description of the circuit, including logical descriptions, netlists, and help
documentation. The soft-core is only functionally simulated and needs to be
integrated and laid out to be used.

Comparing the hard-core with the soft-core, the design flexibility of the solid core
is slightly worse, but the reliability is greatly improved. Comparing the hardcore
with the soft-core implementation, the hardcore reduces the power consumption
by 5~10 times, saving nearly 90% of the logical resources [24].

10

2.2. LTE ARCHITECTURE

LTE is a mobile communication developed by 3GPP to improve the mobile
phone standard to follow up with future technology evolutions and needs. The
LTE standard supports users and telecommunication companies’ requirements.
The requirements include the following: use of current and new frequency bands,
simple architecture, increase service provisioning more services at lower cost,
reduce cost per bit and reasonable power consumption.

The LTE radio transmission and reception specifications are described in
reference [25] for the User Equipment (UE) and in reference [26] for the Base
Station (BS). Downlink and uplink transmission in LTE are based on the use of
multiple access technologies, Orthogonal Frequency Division Multiple Access
(OFDMA) is used for the downlink and single-carrier frequency division multiple
access

The bandwidths defined by the standard are 1.4 MHz, 3 MHz, 5 MHz, 10 MHz,
15 MHz, and 20 MHz [27]. Table 2.1 shows how many subcarriers and resource
blocks there are in each bandwidth.

Table 2.1: LTE standard different bandwidths [27]

Channel BW (MHz) | 14 3 5 10 15 20
Number of RB 6 15 25 50 75 100
Number of SC 72 180 30 600 900 1200

FFT/IFFT length 128 | 256 | 512 1024 1536 2048
Sample rate (MHz)s | 1.92 | 3.84 | 7.68 15.36 23.04 30.72

The LTE standard defines six downlink channels, three channels for controlling
information and three channels for carrying user data [28].

J The control channels are Physical Hybrid Indicator Channel (PHICH),
Physical Control Format Indicator Channel (PCFICH) and Physical
Downlink Control Channel (PDCCH).

. The data channels are Physical Broadcast Channel (PBCH), Physical
Multicast Channel (PMCH) and Physical Downlink Shared Channel
(PDSCH).

This thesis focuses only on the design of the PDSCH channel because this is the
LTE channel carrying user data and processing it.

11

2.2.1. LTE frame structure

The LTE physical frame structure defines two types of a frame structure in
the 3GPP standard [29], the Frequency Division Duplex (FDD) type and Time
Division Duplex (TDD) type. The FDD-LTE is one of the duplex technologies
used in the LTE mobile communication where the uplink and downlink are
distinguished by different frequency points.

The FDD-LTE mode is characterized by receiving and transmitting on two
separate symmetric frequency channels, and separating the receiving and
transmitting channels with a guaranteed frequency band. In the FDD-LTE system,
the uplink and downlink frequency intervals reach 190MHz. The FDD-LTE
uplink theoretical rate is up to 40Mbps, and the downlink theoretical rate is
150Mbps [10].

Figure 2.4 shows the structure of the LTE frame in the FDD Mode [30]. The frame
has 10 ms duration and each frame consists of 10 sub-frames has 1 ms duration.
Each sub-frame consists of two slots has 0.5 ms duration. Each slot consists of
OFDM symbols depending on the type of Cycle Prefix (CP) of each slot. Each
slot consists of either 7 symbols for normal CP or 6 symbols for extended CP.

Frame
e 10 msec »|
0 1 2 3 4 5] 7 8 9
v
6”’159(:%
+— — — — — — —10 Subframes— — — — — — — i
a 1 2 3 = 5 a8 r] 9 10 11 12 12 14 15 18 17 18 18
-qﬂa— —_— T — — —EDSIots—‘-—-— S .
|D|1| |3|4|-|=-| [”|1[]3|4|5|
7 OFDM symbol ¢ 5 OFDM symbols___
< (normaSIYCF'}G S_"I (extended CP)

Figure 2.4: Structure of the LTE frame in FDD mode [30]

12

2.2.2. LTE PDSCH transmitter and receiver model

The PDSCH is a physical channel that carries user data. The transmitter and
the receiver model of Single Input Single Output (SISO) PDSCH chain [31] is
shown in figure 2.5. The PDSCH chain model is tested over Additive White
Gaussian Noise (AWGN) channel for high Signal to Noise Ratio (SNR).

The data input to the LTE PDSCH transmitter chain is called a transport block.
The transport block flow goes into Cyclic Redundancy Check (CRC) calculation
and appending, segmentation, turbo encoding, interleaving, rate matching,
scrambling and modulation followed by the resource element mapper. The data
from the transmitter is passed to channel, and then it is fed to the LTE PDSCH
receiver.

The received input flow goes into the resource element de-mapper, demodulation,
de-scrambling, rate de-matching, de-interleaving, turbo decoding and de-
segmentation followed by CRC calculation and extraction.

Transmitter
L TR T LTI T T T RTTN
Datat Add . Tutbo Resource
| crc ™ Segmentation — — Interleaver i —# Scrambler —w modulator [Element
. Encoder Matching
: Mapper
Channel <
s GBIV ET i
il Rate Turbo R : Data
Element | Demodulator - Descrambler |- s Deinterleaver | Desegmentation [—pf “EMOVE | ;
Demapper dematching Decoder CRC U

--

Figure 2.5: LTE PDSCH transmitter and receiver model [31]

2.2.2.1. CRC addition and CRC removing

CRC is a sequence of redundant bits used for error detection on transport
blocks. CRC parity bits are calculated and appended to the transport block.
The CRC parity 24A is calculated using a CRC generator polynomial [32].

13

The equation for CRC24A polynomial generation is as follows:

Jcrczaa(D) =1+ D'+ D3+ D* + D5+ D®+ D7 + D' + D™ + D' + D'7 + D'8
+ D23 4 p2* (2.1)

Let assume input bits to the CRC addition are as follows: -

Input_crcyis = Ay ,a01,A3 ,A3 o e oae ay-1 (2.2)

Let assume the parity bits appended to the input bits are as follows: -
Paritypirs = Do D1,D2 /D3 e v v Pr-1 (2.3)

Where N is the size of the input sequence bits and L is the length of the parity bits.

The encoding is performed in a systematic form as follows: -

POlYequ: agD?*® + a;D?? + -+ + ay_1D** + poD?3 + p;D?? + -+ + p,, D?
+ D23 (2.4)

The CRC (Parityy;;s) are appended to the end of the data bits, so the length of
input bits after CRC appending is (N+24) because CRC24A is used.

On the receiver side, the CRC polynomial is generated using the same CRC
polynomial generator equation 2.1. As shown in Figure 2.6, The CRC is checked
for any error in the received bits, if no error, remove the CRC from the transport
block else if any error is found in a particular block, that transport block is
retransmitted [33].

r-—-frﬁsﬁit't_er———: :'___1&5‘-5___:
|

| Transmitted Data | | Transmitted Data |
| | | /'y |
I CRC I I CRC |
| Calculation | | Calculation |

and verify the

I	correctively of	
		the data
[AdcRCtomeedor]	! .	
transmitted data : » Becmvee Daty :		

Figure 2.6: Role of CRC block in transmitter and receiver

14

2.2.2.2. Segmentation and de-segmentation

Large amount of data bits from transport block should be transmitted at the
same time. The transport block is divided into smaller blocks called code blocks
as shown in figure 2.7. The LTE standard defines the minimum code block size is
40 bits and the maximum code block size is 6144 bits [32].

| CRC 24A added irom previous block |

Transport block CRC

H
. [
: H 1 40bits =CodeBlocklength= 614 4bits

CB#0 ce#t | . CB#n
—Code Block—3| ™, ""-,__ Tt .

CB#0 CRC CB#1 cRE | CB#n CRC
K Code Block+CRC Y

[CRC 24B added for each code block |

Figure 2.7: Code block segmentation process

If input bits to the code block segmentation are less than 40 bits, add filling bits.
If input bits to the code block segmentation are larger than 6144 bits, perform
segmentation of input bits and append other 24 bits CRC of type 24B to each of
the code blocks. Table 2.2 shows the code block sizes defined by the LTE 3GPP

standard.

To calculate the number of code blocks, let assume the input bits sequence are as
follows:

Input_segpits = by, b1 ,by , b3 bg_4 (2.5)

where B is the input block size.
Assume Z is the maximum code block size equal to 6144 and F is the number of
filler bits where filler bits are added to the beginning of the first block if necessary.

Also, assume L is the number of CRC bit equal to 24 and B,,,,, 1s the new size of
the input block after CRC addition.

15

Table 2.2: Code block size for segmentations [32]

40

48

56

64

72

80

88

96

104

112

120

128

136

144

152

160

168

176

184

192

200

208

216

224

232

240

248

256

264

272

280

288

296

304

312

320

328

336

344

352

360

368

376

384

392

400

408

416

424

432

440

448

456

464

472

480

488

496

504

512

528

544

560

576

592

608

624

640

656

672

688

704

720

736

752

768

784

800

816

832

848

864

880

896

912

928

944

960

976

992

1008

1024

1056

1088

1120

1152

1184

1216

1248

1280

1312

1344

1376

1408

1440

1472

1504

1536

1568

1600

1632

1664

1696

1728

1760

1792

1824

1856

1888

1920

1952

1984

2016

2048

2112

2176

2240

2304

2368

2432

2496

2560

2624

2688

2752

2816

2880

2944

3008

3072

3136

3200

3264

3328

3392

3456

3520

3584

3648

3712

3776

3840

3904

3968

4032

4096

4160

4224

4288

4352

4416

4480

4544

4608

4672

4736

4800

4864

4928

4992

5056

5120

5184

5248

5312

5376

5440

5504

5568

5632

5696

5760

5824

5888

5952

6016

6080

6144

16

The total number of code blocks C are defined by the following Pseudo-code:

List 2.1: Pseudo-code of segmentation to determine number of code block [32]

if (B<Z)
L=0
C=1
Bpew =B
else

L =24

o B
Z-1
Bnow =B+ CxL

endif

From pseudo-code shown in list 2.1, if the block sizes less than 6144 bits, there is
no need for segmentation process. On the other hand, if B is larger than 6144 bits,
segmentation is applied and a CRC sequence is appended to each code block
segment [34].

Let assume the output from code block segmentation are
Output_segpits = Co,C1,C2 ,C3 v erevnn Cr(k-1) (2.6)

Where r is the code block number and K is the number of bits for code block .

The number of bits in each code blocks (K) are defined (for C # 0 only) by the
following pseudo code:

List 2.2: Number of bits in each code blocks calculation Pseudo-code [34]

K, = the minmum value of k from table 2 suchthatC * K > B,
if (C=1)
C,=1C_=0K_=0,
elseif (C>1)
K_ = the maximu value f k from table 2 suchthatK < K,
A=K, —K_
* Ky — Brew

C
C_ = floor(A
k

)

C,=C—-C_
endif
F=K, xC,+K_*C_— By,

where K, is the first segmentation size, K_ is the second segmentation size, C, is
the number of code blocks with length K, , C_ is the number of code blocks with
length K_ and F is the number of filler bits.

As described in list 2.2, in case of data length larger than 6144bit, segmentation is
performed and CRC is appended at the end of each code block. The CRC type
used is CRC24B.

The CRC24B polynomial generation equation is as follows:
Jcrczan = 1+ 1+ D%+ D® + D? + D** (2.7)

Let assume the parity bits append to the input bits are as follows-:

Parity_segpits = Po,P1,P2 D3 «n een oen PL-1 (2.8)

The following pseudo-code shows how insertion processor and CRC appending
process:

List 2.3: Filler bits in each code blocks insertion pseudo-code [34]
forn=1toF—-1

Cox = Zero

end for

n=F

s=0

forr=0toC—1

if r< C)) K, =K_
else K, =K,
end if
while (k < K, — L)
Crk = bs
k=k+1
s=s+1
end while
ifc<1

The sequance cy, Crq, Crp, -+ Crk—1—1) LS used to calculate the
CRC parity bits, pyo, Pr1, Pr2s - Pr(k-1—1) A4S described in sec.
XXXXX,using the generator polynomial g,..,,, shown in eq.8
Assume that filler bits are present and have initial value 0

while k < K, — L
Crk = Pr(k+L-K;)

k=k+1
end while
end if
k=0
end for

18

On the receiver side, the de-segmentation block performs the inverse
operation of segmentation block. CRC is checked for any error in the received
code block bits, if any errors are found in a particular block, the transport block is
retransmitted else if no error, removes the CRC from the code block and
concatenates the multiple code blocks to form the transport block frame as shown
in figure 2.8.

‘ CB#0 |
‘ CcB# |
| CB#n ‘
CB&O cB#1 | ,,,,,, | CB#n

A

Transport Block:

A A

Figure 2.8: Code block De-segmentation

2.2.2.3. Channel coding and channel de-coding

The channel coding used in the PDSCH is turbo coding [35]. Turbo encoder
with constant coding rate 1/3 is used for input data coding as described in reference
[36]. The scheme of the turbo encoder is parallel of Recursive Systematic
Convolution (RSC). The scheme of the turbo encoder is shown in figure 2.9.

1" RSC encoder —
»(+) 0=
. b+ E E E Multiplexing
Information and
. . —F d?(
Bits ° Punctunng

Cx

2“RSC encoder

Turbo code X
interleaver

—dd

[
r
r
-+
o
A
{
hd
7
o
L

Figure 2.9: Turbo encoder block diagram [35]

19

The turbo encoder consists of a parallel of Recursive Systematic Convolution
(RSC) encoder separated by internal code interleaver. The input goes into the first
RSC encoder and after interleaving, it feeds a second RSC encoder.
The multiplexing and puncturing block accepts inputs and generates coded bits.
The turbo interleaver permutes the indices of the input bits, which improves the
turbo code performance. The transfer function of the RSC turbo encoder is defined
as follows:

66) = g5 (2.9)
where:
GO(z)=14+2z2%2+23 (2.9.1)
Gl(z)=14+2z2%2+23 (2.9.2)

The initial values of the shift register of the RSC encoder are all zeros when
starting to encode the input bits. Let assume the input bits to the turbo encoder
block are as follows:

Input_turboyits = Co,C1,C3,C3 v ver v Cx (2.10)

The outputs bits from the turbo encoder is as follows: -
Output_turboy;;s = d0y,d1,,d2,,d0,,d14,d2, dOy, d1y, d2y (2.11)

where: d0y bits are matched to the input bits ¢, , d1y bits are output from first
RSC encoder and d2y, bits are output from second RSC encoder after interleaving
input bits. Let assume the output bits from turbo code interlaver are as follows:

output_turbo_interalvery;;s = Xg , X1, X2 , X3 e cee en Xk (2.12)

The relation between the output and input bits of turbo code interleaver is as
follows:

Xi = X (i) ,wherei=0,1,..k—1 (2.12.1)
where the relation between the input 7 (i) index and the output index (i) is as
follows:

n(i) = (fii + fHi*)mod k (2.12.2)
where the values of f; and f, depends on the block size k as shown in table 2.3.

Table 2.3 shows the relation between output indexes (i) and values of f; and f,
depends on the block size k.

20

Table 2.3: Turbo code interalver parameter (partl of 2) [32]

i K | fi f; I Ki fi f, i K fi f, I Ki fi f,
1 40 3 10 | 48 | 416 | 25 | 52 | 95 [1120| 67 | 140 | 142 | 3200 | 111 | 240
2 48 7 12 | 49 | 424 | 51 | 106 | 96 [1152| 35 | 72 | 143 | 3264 | 443 | 204
3 56 | 19 | 42 | 50 | 432 | 47 | 72 | 97 (1184 19 | 74 | 144 [3328| 51 [104
4 64 7 16 | 51 [440 | 91 | 110 | 98 [1216| 39 | 76 | 145 | 3392 | 51 | 212
5 72 7 18 | 52 | 448 | 29 | 168 | 99 [1248| 19 | 78 | 146 | 3456 | 451 | 192
6 80 | 11 20 | 53 | 456 | 29 | 114 | 100 | 1280 | 199 | 240 | 147 | 3520 | 257 | 220
7 88 5 22 | 54 | 464 | 247 | 58 | 101 [1312 21 82 | 148 | 3584 | 57 | 336
8 9% | 11 24 | 55 | 472 | 29 | 118 | 102 | 1344 | 211 | 252 | 149 | 3648 | 313 | 228
9 104 | 7 26 | 56 | 480 | 89 [180 | 103 [1376| 21 86 | 150 |3712| 271 | 232
10 M2 41 84 | 57 | 488 | 91 [122 | 104 [1408 | 43 | 88 | 151 | 3776 | 179 | 236
11 120 [103 | 90 | 58 | 496 | 157 | 62 | 105 | 1440| 149 | 60 | 152 |3840| 331 | 120
12 128 | 15 | 32 | 59 | 504 | 55 | 84 | 106 |1472| 45 | 92 | 153 [3904 | 363 | 244
13 136 | 9 34 | 60 | 512 | 31 64 | 107 [1504 | 49 | 846 | 154 | 3968 | 375 | 248
14 144 | 17 | 108 | 61 | 528 | 17 | 66 | 108 | 1536 | 71 48 | 155 | 4032 | 127 | 168
15 152 9 38 | 62 | 544 | 35 | 68 | 109 (1568 | 13 | 28 | 156 [4096 | 31 64
16 160 [21 | 120 | 63 | 560 | 227 | 420 | 110 | 1600| 17 | 80 | 157 [4160| 33 [130
17 168 | 101 | 84 | 64 | 576 | 65 | 96 | 111 |1632| 25 | 102 | 158 |4224| 43 | 264
18 176 | 21 44 | 65 | 592 | 19 | 74 | 112 | 1664 | 183 | 104 | 159 | 4288 | 33 | 134
19 184 | 57 | 46 | 66 | 608 | 37 | 76 | 113 | 1696 | 55 | 954 | 160 |4352| 477 | 408
20 192 | 23 | 48 | 67 | 624 | 41 | 234 | 114 | 1728 | 127 | 96 | 161 [4416| 35 [138
21 200 13 | 50 | 68 | 640 | 39 | 80 | 115 |1760| 27 | 110 | 162 | 4480 | 233 | 280
22 208 | 27 | 52 | 69 | 656 | 185 | 82 | 116 | 1792 29 | 112 | 163 | 4544 | 357 | 142
23 216 | 11 36 | 70 | 672 | 43 | 252 | 117 [1824| 29 | 114 | 164 | 4608 | 337 | 480
24 224 | 27 | 56 | 71 | 688 | 21 86 | 118 (1856 | 57 | 116 | 165 [4672| 37 | 146
25 232 | 85 | 68 | 72 | 704 | 155 | 44 | 119 | 1888 | 45 | 354 | 166 | 4736 | 71 | 444
26 240 | 29 | 60 | 73 | 720 | 79 | 120 | 120 | 1920 31 | 120 | 167 | 4800| 71 | 120
27 248 | 33 | 62 | T4 | 736 | 139 | 92 | 121 | 1952 | 59 | 610 | 168 | 4864 | 37 | 152

21

Table 2.3: Turbo code interalver parameter (part2 of 2) [32]

i Ki fi f, I Ki fi f i Ki fi f, I Ki fi f,

28 256 | 15 | 32 | 75 | 752 | 23 | 94 | 122 | 1984 | 185 | 124 | 169 [4928 | 39 | 462

29 264 | 17 | 198 | 76 | 768 | 217 | 48 | 123 | 2016 | 113 | 420 | 170 | 4992 | 127 | 234

30 (272 | 33 | 68 | 77 | 784 | 25 | 98 | 124 | 2048 | 31 64 | 171 | 5056 | 39 | 158

31 280 | 103 | 210 | 78 | 800 [17 | 80 | 125 |2112| 17 | 66 | 172 | 5120| 39 | 80

32 (288 19 | 36 | 79 | 816 | 127 | 102 | 126 |2176| 171 | 136 | 173 [5184 | 31 96

33 206 | 19 | 74 | 80 | 832 | 25 | 52 | 127 | 2240 | 209 | 420 | 174 | 5248 | 113 | 902

34 304 | 37 | 76 | 81 | 848 | 239 | 106 | 128 | 2304 | 253 | 216 | 175 | 5312 | 41 | 166

35 312 19 | 78 | 82 | 864 | 17 | 48 | 129 | 2368 | 367 | 444 | 176 | 5376 | 251 | 336

36 320 21 | 120 | 83 | 880 | 137 | 110 | 130 | 2432 | 265 | 456 | 177 | 5440 43 | 170

37 328 | 21 82 | 84 | 896 | 215 | 112 | 131 | 2496 | 181 | 468 | 178 [5504 | 21 86

38 336 | 115 | 84 | 85 | 912 | 29 | 114 | 132 | 2560 | 39 | 80 | 179 | 5568 | 43 | 174

39 3441193 | 86 | 86 | 928 | 15 | 58 | 133 | 2624 | 27 | 164 | 180 | 5632 | 45 | 176

40 352 | 21 44 | 87 | 944 | 147 | 118 | 134 | 2688 | 127 | 504 | 181 | 5696 | 45 | 178

41 360 | 133 | 90 | 88 | 960 | 29 | 60 | 135 |2752| 143 | 172 | 182 | 5760 | 161 | 120

42 368 | 81 46 | 89 [976 | 59 | 122 | 136 [2816| 43 | 88 | 183 | 5824 | 89 | 182

43 376 | 45 | 94 | 90 | 992 | 65 | 124 | 137 | 2880 29 | 300 | 184 | 5888 | 323 | 184

44 384 | 23 | 48 | 91 | 1008 | 55 | 84 | 138 | 2944 | 45 | 92 | 185 | 5952 | 47 | 186

45 392 | 243 | 98 | 92 | 1024 | 31 64 | 139 [3008| 157 | 188 | 186 [6016 | 23 | 94

46 | 400 | 151 | 40 | 93 |1056| 17 | 66 | 140 | 3072| 47 | 96 | 187 | 6080 47 | 190

47 408 | 155 | 102 | 94 | 1088 | 171 | 204 | 141 | 3136| 13 | 28 | 188 | 6144 | 263 | 480

On the receiver side, Turbo decoder is used to reverse the operation of
channel coding. Turbo decoder block accepts input from the de-interleaver block,
then performs turbo decoding using a sub-log-MAP (Max-Log-MAP) algorithm
to decoded input bits to output bits.

Figure 2.10 shows the block diagram of the turbo decoder [37]. The turbo decoder
consists of the following blocks:

. Maximum A Posteriori (MAP) decoder block.
. De-multiplex block.
. Turbo interleaver block.

° Turbo de-interleaver block.

22

systemnatic bits

panty bits J Y

& Demultplee

-

Tnifa oufput bits ~~ oufput bt
Turbo code denterleaver >

extrinsic bits2

frnsicbifs]
extsic bit

r

MAP Decod: | Turbo code interleaver —

e

MAP Decod 2

systematic inferleavd bit F’

P Turbo code inferleaver

Figure 2.10: Turbo decoder block diagram [37]

The MAP decoder is a decoder designed using Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm. The BCJR algorithm is an algorithm for error correcting codes
defined on trellises.The BCIJR algorithm calculates forward probabilities,
backward probabilities and smoothed probabilities based on channel information.
The operation of turbo decoder is performed as the following steps:

l.

MAP decoder 1 accepts the systematic bits and the parity bits then
generates the extrinsic bitsl (extrinsic bit is soft estimate bits do not
contain any information).

The extrinsic_bits1 bits are interleaved and extrinsic_intrelavd bits1 are
generate, also the systematic bits are interleaved and the
systematic_intrelavd bits are generated.

The MAP_decoder 2 accepts extrinsic_intrelavd bits1, the parity bits, the
systematic_intrelavd bits and generates the initial output bit.

The initial output bit is passed to the de-interleaver and generates the
extrinsic_intrelavd_bits2.

The MAP_decoder 1 accepts the systematic_bits, the parity bits and the
extrinsic_intrelavd bits2 ~ then generates the extrinsic_bits].
The steps from 1 to 5 are repeated iteratively until the bit error rate is
reached to zero. At the end of the process, the output bits hard bits are
generated according to threshold operation.

23

2.2.2.4. Interleaver and de-interleaver

Interleaving is the process of reordering data so that successive bunch of
data 1s distributed over a larger sequence of data to reduce the effect of burst errors.
Using Interleaver increases the performance of the error protection decoder to
correct the burst error [32]. Error protection coding process cannot correct the
errors that occur in groups, so using of interleaver allows reducing such error.
At the receiver side, the de-interleaver block reverses the operation of interleaver.

2.2.2.5. Rate matching and rate de-matching

The LTE turbo encoder has a fixed coding rate of 1/3. The communication
standard added a feature for adapting the throughput based on the channel
conditions [36]. In degraded channels, smaller coding rates are used to increase
the number of error correction bits and vise verse. Rate matching is used to arrive
to at any desired rate by repeating or puncturing. In case of reducing the encoding
rate lower than 1/3 repeat the turbo coder output bit. In case of increasing rate
higher than 1/3 puncture (remover) some of the turbo coder output bits. Figure
2.11 shows the Rate matching block diagram [38]. The Rate matching block
consists of the following sub-blocks: Sub-block interleaver, Bit collection and
Bit selection.

| Rate Matching |
. Sub Block |
¢ int || Interleaver 1 |
¥ |
' |
| .
. Sub Block Bit . .)
e . .
n2——¥ Interleaver 2 “1 Collection turbo " Bit Selection p—:-Output bits—
|
| 'y :
o Sub Block
n3 | : Interleaver 3 :
I

Figure 2.11: Rate matching block diagram

The rate matching accepts three input streams from turbo encoder

dl, ,d2, and d3; . The bits of each of the three streams are written row-by-row
into a matrix with 32 columns. After a column permutation, bits are read out from
the matrix column-by-column.

24

Then information bit streams are passed to sub-block interleaver followed by
bit_collection block and bit_selection block. The sub-block interleaver is based
on the classic row-column interleaver with 32 columns and a length-32 intra-
column permutation. If input is not multiple of 32 bits, complete the matrix by
adding Dummy bits so the block able to interleave the given data.

e The bit stream d1, is interleaved and output sequence generated
asvly ,vl, ,vls, ..., Vkp_1-

e The bit stream d2, is interleaved and output sequence generated
as v2q , V2, , V23, ., Vkrr—1-

e The bit stream d3;, is interleaved and output sequence generated
as V31 ,v3; ,V3 , e, Vgpr—1-

The output bits sequence from the sub-block interleaver is generated as follows:
Let assume the number of columns of the matrix is Cgyppiock = 32.

Let assume the number of rows of the matrix is Ry, ppi0ck » by finding minimum
lnteger Rsubblock such that D < Rsubblock * Csubblock .

The relation between of D is determine by the column permutation of the sub-
block interleaver.

The output of the first sub-block interleaver is denoted
by v0, , v0,, V05, ..., V0, wWhere v; =y * m; where

L .
T = mod <(P (—) + Csubblock * mOd(l, Rsubblock) + 1) , km) (2 13)
subblock

Where km is the output length of the sub-block interleaver and given as follows:

km = Rgupbiock * Csubblock
The column permutation function (P) of the sub-block interleaver is given in

table 2.4:

Table 2.4: Inter-column permutation matric for sub-block interleaver [32]

Number of columns Inter-column permutation pattern

32 [0,16,8,24,4,20,12,28.2,18,10,26,6,22,14,30,1
,17,9,25,5,21,13,29,3,19,11,27,7,23,15,3]

Next, the bit_collection block accepts inputs from three sub-block interleaver and
generates output depending on coding type. The bit collection block is worked
based in circular buffer.

25

The circular buffer length K, for the r code block is generated for K, = 3 * kr
as follows:

o wip=v0, fork=0,.. kn—1 (2.14.1)
® Wigsar = V1 fork =0,.. knr—1 (2.14.2)
® Wigizks1 = V2 fork =0,.. kr—1 (2.14.3)

The soft buffer size for the r-th code block is denoted by N;,. The size N, for the
downlink is obtained as follows:

Ny = min (|22|, k,,) (2.15.1)

where Nz is equalto N;z = Nsoft) (2.15.2)

KMIMO*min(MDLyarD’ Mlimit)

where Ny, ¢, is the total number of soft channel bits, Ky, is constant dependent

in transmission mode and equal to 2 if the UE is configured to receive PDSCH
transmission, M;;,,;¢ 1s constant equal to 8 and Mp; yagp 1s the maximum number
of downlink processor. Finally, the bit selection receives inputs from
bit collection, skip dummy bits, and output the required output bits with the
proper size.

On the receiver side, the rate de-matching is used to reverse the operation
of rate matching block [39]. Figure 2.13 shows the block diagram of the rate de-
matching. The bit_de-selection block accepts input bits and divides it into three
outputs; each output has a length equal to the code block length. Three bit de-
interleaver blocks accept outputs from the bit de- selection block. Each one of the
bit de-interleaver blocks accepts input from bits de-deslection block with a length
equal to the code block length. The bit de-interleaver block inverse the operation
of sub-block interleaver.

Rate De-matching |
|
|

|

|

: I
| Sub Block

| de-Interleaver 1 Outl I
|

|

|

|

Sub Block
eo——Input bits=—» Bit de-selection de-Interleaver 2 |

|

|

| Sub Block
| de-Interleaver 3) Outd
|

|

Figure 2.12: Rate de-matching block diagram

26

2.2.2.6. Scrambler and de-scrambler

The scrambler is a block that pseudo-randomly changes the values of bits
into a data block, thus ensure that the interference is randomized for each different
cell or to introduce security as part of an encryption procedure. The data bits are
scrambled with a sequence that is unique to each cell by initializing the sequence
generators in the cell based on the physical cell identity.

Let assume the input bits to the turbo encoder block are as follows:

Input_scrambleryits = €y ,€1,€2,63 v v eu ey—1 (2.16)

where M is the number of bits transmitted on the physical channel in one sub-
frame. The output of the scrambler is determined according to the following
equation:

Output_scramblery;;s = (¢; + ¢;) mod2,i=0,1,2,.. M (2.17)
where c; are the pseudo-random sequences.

The pseudo-random sequences are defined by a length-31 Gold sequence [40].
The output sequence c(n) of length M bits, where n= 0, 1... M-1 is defined by the
following equations:

e c(n) = (x1(m+ NC),x1(n + NC)) mod2 (2.18.1)
e xl(n+31) = (xl(n + 3),x1(n)) mod?2 (2.18.2)
o x2(n+31) = (x2(n+3),x2(n + 2),x2(n + 1),x2(n)) mod2 (2.18.3)

where Nc = 1600

The scrambler block operation is divided into two steps as follows:

1. Calculating initial values for X2, X1 sequence generators for NC iterations.
2. Apply X1, X2 sequence generation output to the input after NC iterations.
where the initialization of sequence is performed as follows:

1. The first m-sequence shall be initialized with

x1(0) = 1,x1(n) = 0,n = 1,2, ...30 (2.19.1)
2. The initialization of the second m-sequence is denoted by
i=30
Conteiat =) 72(0) = 2! (2.19.2)
i=0

27

where value of Ci,itiq; 1S depending on the application of the sequence. For the
shared channel, the scrambler sequence generator should be initialized at the start
of each sub-frame with value of C;,,;;;,;for PDSCH channel

n
Cinitiat = Nanrr * 214 + q + 213 + 75 *2°8 + N;p (2.19.3)

where Niyr; 1s the Radio Network Temporary Identifier, g is the code word
index, ng is the slot index within frame, and N;, is the physical layer cell identify.

On the de-scrambler function, same Gold sequence generator illustrated is
used to invert the scrambling operation. Scrambler Sequence Generation in the
Receiver of LTE PDSCH is the same as that of the Transmitter. The de-scrambler
block operates on the LLR outputs of the demodulator, converting the Gold-
sequence bits into either 1 or -1. The de-scrambler block operation is divided into
three steps: -

1. Calculating initial values for X2, X1 sequence generators for NC iterations.

2. Calculating value of c(n)where c(n) = x1(n + NC)XOR x2 (n + NC) for
NC iterations.

3. Generates de-scrambler results, if (c(n) == 0) the de-scrambler output is
LLR (n) else, the de-scrambler output -LLR (n).

where NC=1600 and LLR (n) is a Log-Likelihood Ratio calculated values.

2.2.2.7. Modulator and de-modulator

The Modulator accepts groups of input bits and maps them to specific
constellation symbols, according to the modulation method that you specify. The
LTE standard supports QPSK 16QAM and 64QAM modulation schemes types for
the LTE PDSCH [41]. Figure 2.14 shows constellation diagrams of these three
modulation schemes.

Multiple modulation schemes allow adaptive modulation based on channel
conditions. When the Signal-to-Noise Ratio (SNR) is high, denser constellations
(ex: 64QAM) are used to increase the throughput. However, when the Signal-to-
Noise Ratio (SNR) is low, modulation schemes with more inter-symbol separation
should be used to reduce the throughput and decrease the bit error rate.

The modulation process generates complex symbols depending on the input bits.
Let assume the input sequence bits to the modulation block are as follows:

Input_modulationyirs = fo, f1,f2,f3 e e oo fu-1 (2.20)

where M is the total number of sequence bits.

28

Imaginary

F
A & & &lTH B 4 &
Imaginary A0 00000 ADICHCH DA | CoHOND COICHD OCEOHO)
L s & % #4154 @ & @
i s 13 . A0 000 010K DIED0 | CDIO0H CONoH o0 (o
Imaginary o M0 | oo oo
, P& & 434 8 4 &
i ATDIOH DM 90K 101 | COMOT O DN Cnn
4 14 i 4 4)
L] [4 4 41 4 [}]]
L o et | oo OO A0EHED HCOHD AOVHOHCIED | GO COFHO GOt B
R : : Rl —+—+—+—+——+—+—+—+ Rl
400 13-11*13 7 04 3 4 |1 3 5 7
1 l o -8 a & & & a+'n & o4 oa
1l1 T 011 KT T G A v o O MO0 AHHO 00 | CHA00 00HA0 CHORA0 NN
@ 8 % A 4 a4 @
- . o 13 . HOIOH M 140109 94001 | 900 CR4440 CHORA DACHCH
Hm 0 | oo 1111} 4 & & 58 8 8 @
AN 0004 490K 41000 | DHCH CHGH CI0DH OO
1808 4 6 & 4T h 4 8
D 000 11010 149000 | D C10M0 CHTHD BN
-

Figure 2.13: Constellation diagrams of modulation schemes [41]

For QPSK modulation scheme, every two bits of input bit sequence (f;and fi;1)
are modulated into a complex symbol g; = I + jQ where I and Q are generated
as shown in table 2.5.

Table 2.5: QBSK modulation lookup table [32]

fi fir1 I Q
00 1 1
V2 V2

01 1 -1
V2 V2

10 -1 1
V2 V2

11 -1 -1
V2 V2

For 16QAM modulation scheme, every four bits of input bit sequence
(fi, fi+1, fiz2 and f;,3) are modulated into a complex symbol g; =1 + jQ where
I and Q are generated as shown in table 2.6.

29

Table 2.6: 16QAM modulation lookup table [32]

=
— ||

=
o ||

=
— [

=
o ||

(e}
T[S

(e}
T[S

o
7S

=
— ||

=
o ||

=
— [

=
o ||

2

o
T[S

=

5
||

=
— ||

=
o™ [

=
o |

5
||

=
— ||

=
o™ [

=
o ||

o
s

o
=

o
7S

2

&

o
=

E

fir fi+1' fi+2' fi+3

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

30

For 64QAM modulation scheme, every six bits of input bit sequence

(fi, fis 1> fiv2r fiv fivar firs and fi,e) are modulated into a complex symbol g; =
I + jQ where I and Q are generated as shown in Appendix A.

On the receiver side, the de-modulator block de-maps QPSK symbol, 16-
QAM symbol and 64-QAM symbol to soft bits according to the modulation
method specified. The soft de-mapper outputs are the Log-Likelihood Ratio (LLR)
for a certain constellation-mode [42]. In soft bit demodulator, is a modulation
process that estimates from the received bit not only hard bits (hard bits are
typically binary), but also their confidence levels.

On the transmitter side, only hard bits are involved, and they take binary digit 0 or
1 but on the receiver side, the binary digit the confidence levels are the magnitudes
of the binary digit. In this case, the negative and positive polarities are expressed
as numeric values of -1 and +1[43].

The soft decision process returns an integer sequence is used for PDSCH
demodulation, as the turbo decoder requires a soft encoded input. For example,
integer values from 0 to 7 are used for QPSK demodulation. Value 0 indicates a
strongest possibility of value 0 in original bit sequence while value 3 indicates the
weakest possibility of value 0 in the original bit sequence. Similarly, value 4
indicates a week 1 while 7 indicates a strong 1. Let assume the soft input bits to
the de-modulation block are as follows:

Input_de_modulationg,sipirs = do,dq,dy,d3 ... dy-1 (2.21)
where M is the total number of sequence bits. The soft decision values are
calculated according to Table 2.7.

Table 2.7: Soft decision QPSK demodulation lookup table (partl1 of 2) [43]

Re(d;) b;

Re(d;) = 0.9 0

0.9 > Re(d;) = 0.9 1
0.6 > Re(d;) = 0.3 2
0.3 > Re(d;) =0 3
0> Re(d;) = —0.3 4
—0.3 > Re(d;) = —0.6 5
—0.6 > Re(d;) > —0.9 6
—0.9 > Re(d;) 7

31

Table 2.7: Soft decision QPSK demodulation lookup table (part2 of 2) [43]

Im(d;) b1

Im(d;) = 0.9 0

0.9 > Im(d;) = 0.9

0.6 > Im(d;) = 0.3

0.3 > Im(d;) > 0

0> Im(d;) > —0.3

—0.3 > Im(d) = —0.6

—0.6 > Im(d;) = —0.9

~N| N | B W N

—0.9 > Im(d;)

2.2.2.8. Resource element mapper and resource element de-mapper

The resource element mapper is a time-frequency representation of data

organized as the resource grid as shown in figure 2.15. The resource grid is a two-
dimensional map of symbol in the horizontal axis (time domain) and sub-carrier
on the vertical axis (frequency domain) [31].

The placement of data within the resource grid is important and Depending on
which sub-frame is in use. The type of data placed in a resource grid includes the
following [44]:

The Physical Downlink Shared Channel PDSCH signal, which carries user
data. This signal placed in all sub-frames

The Cell Specific Reference (CRS) signal, which used by the receiver for
estimation channel frequency response and cross-channel effects. This
signal placed in all sub-frames.

The Physical Downlink Control Channel (PDCCH) signal, which helps the
carries important information for processing (ex: modulation scheme
...etc.). These signals placed at the beginning of each sub-frame.

The Primary synchronization signals (PSS) data and Secondary
Synchronization Signals (SSS) data, which help determine the frame timing
and cell identification. These signals placed in sub-frames 0 and 5.

The broadcast channel (BCH) signal, which carries the Master Information
such as cell bandwidth. These signals placed in sub-frame 0 and repeated
every 10 sub-frames.

32

Shot 16 Slot 17 |

Slot1s | Slot19

On the receiver side, the resource element de-mapper inverts the operations
of resource grid mapping at the receiver side. The rule of a resource element de-
mapper is extracting PDSCH, CRS ...etc. from the resource grid and feed each
type of data to the corresponding next stage. The PDSCH receiver chain should
accept PDSCH input from the resource grid to complete the processing of data in

Figure 2.14: LTE resource grid [31]

the receiver chain.

33

Sloto Slat1 Sht2 Slot 3 Shat 10 Skt 11
Subfrmrme O Subfrarme 1 Subframe 5 i Subfrarme 6 Subframe 9
PDSCH . 888 BCH
CSR - PSS PDCCH

Chapter 3 : SDSoC

The SDSoC is a novel development tool used to create hardware-software
co-design on a heterogeneous FPGA-CPU platform. The SDSoC tool makes
simplest and shortest development cycles to implement heterogeneous FPGA-
CPU as well as generating required hardware interface logic to handle the data
flow between hardware and software automatically [45]. The SDSoC tool is
integrated with a High-level synthesis (HLS) which is used to implement hardware
in an FPGA synthesized from a C/C++ language description [46]. Transforming
C/C++ code to an RTL implementation process using HLS is provided in [47].
The Table 3.1 shows the constructs of mapping C/C++ to RTL.

Table 3.1: Mapping of C-code to RTL construct

C-function RTL
Function Modules
Arguments Input/output ports
Operators Functional Units
Scalars Wires or register
Arrays Memories
Control flows Control logics

In addition, the SDSoC tool includes system-level profiling and performance
analysis capability. The profiling and performance analysis tool includes hardware
utilization calculation, latency calculation and hardware acceleration improving
estimation. A detailed description of the features of the tool is provided in [48].

This chapter includes the following topics: SDSOC pragma specification, the
typical HW/SW co-design design flow using SDSoC design flow and the proposed
automated performance-based design technique developed to generate platform
using SDSOC tool to meet performance metrics constraints.

3.1. SDSoC pragma specification

This section describes pragmas for the SDSoC compilers used for system
optimization. The SDSoC pragmas are used in HLS to enhance the hardware
function performance. All pragmas specific to the SDSoC environment are
prefixed with #pragma [49]. The pragma should be inserted prior to a function
declaration or at a function call in C/C++ source code.

34

The pragmas should be placed within the boundaries of the required location in
the C/C++ source. The pragmas need to be written in the C-code depending in its
type. The pragma syntax has been defined to be consistent with standards like
OpenACC. The different Pragmas supported by the SDSOC tool include the
following: function optimization, loop optimization, array optimization and
Interface management.

3.1.1. Function optimization

The function optimization pragmas include inline function and function
pipelining.

1) Inline function

Inlining function pragma used to remove function hierarchy. Removing function
hierarchy leads to enhancing latency and throughput by removing of a cycle
overhead to enter and exit functions.The following Pragma example used to
prevent “func_top” function from being in-lined, the Pragma should be applied to
the top level function “func_top”.

#pragma AP inline off

2) Function pipelining

Pipelining pragma is a powerful method used to optimize the communication
between functions and improve throughput. The following pragma example used
to pipeline the function “func” with II as 4.

#pragma AP pipeline 11=4 enable_flush

3.1.2. Loop optimizations

The loop optimization pragmas include inline unrolling, merging and
flattening nested loop.

1) Unrolling

Unroll for loops pragma used to create multiple independent operations instead
of a single collection of operations. The following pragma example used to
unroll the loop L1 in function “func” with unrolling factor e 2.

#pragma AP unroll skip_exit_check factor=2

35

2) Merging

Merging pragma for loops used to combine multiple sequential loops to prevent
the creation of additional unnecessary clock cycles. The following pragma
example used to merge all consecutive loops into a single loop in the function
“fllnc”.

#pragma AP loop merge

3) Flattening nested loops

Flattening pragma used to grab nested loop to a single loop to improve latency.
This because hardware implementation requires one clock cycle to move from an
outer loop to an inner loop and from an inner loop to an outer loop. The following
pragma example used to flatten for loop L1 in function “func” where loop L1 is
the inner loop has the body and the “func” function.

#pragma AP loop_flatten

3.1.3. Array optimizations

The array optimization pragmas include horizontal mapping, vertical
mapping and array partitioning.

1) Horizontal mapping

Horizontal mapping pragma used to concatenate two arrays into one array. The
following pragma example used to concatenate arrrayl and array?2 into array3.

#pragma AP array map variable=arrayl instance=array3 horizontal
#pragma AP array_map variable=array2 instance=array3 horizontal

2) Vertical mapping

Horizontal mapping pragma used to concatenate two array vectors into one array
vector. The following pragma example used to concatenate arrrayl vector and
array2 vector into array3 vector.

#pragma AP array map variable=arrayl instance=array3 vertical
#pragma AP array_map variable=array2 instance=array3 vertical

36

3) Array partitioning

Array partitioning pragma used to divide array into smaller arrays to increases
throughput. The following pragma example partitions array Z(21) in function
“func” into five arrays. Because 5 is not an integer multiple of 21, four of the of
the arrays have 4 elements and one have 5 (containing elements Z(16:21)

#pragma AP array_partition variable=Z block factor=5

3.1.4. Interface management

The attitude of the interface has specified either behavior or explicitly
depending on the type of input source. This allows different IO protocol to be used
so the function interfaces with any hardware resource. The different interface
management pragmas include ap bus, ap memor, and ap _fifo.

1) ap_bus

An ap bus interface used to communicate with a bus bridge. The interface does
not adhere to any specific bus standard but is generic enough to be used with a bus
bridge. The bus bridge must be able to cache all burst writes.

2) ap_memory

The ap_memory port interface is used to communicate with memory elements
(RAMs, ROMs) as shown in figure 3.1. The ap memory used when the
implementation requires random accesses to the memory address locations. Array
arguments are typically implemented using the ap_memory interface.

READ

v
i1

Ut

Figure 3.1: Memory interface management

37

3) ap_fifo

The ap memory port interface is used to communicate with memory elements
(FIFO) as shown in figure 3.2. The ap_fifo interface is used if required access to
amemory element and this access is performed in a sequential manner (no random
access).

0 h: -
-_} | u outd
fifo | .
- ‘L

Figure 3.2: FIFO Interface management

READ

3.2. Typical HW/SW co-design design flow using SDSoC
design flow

The typical HW/SW co-design flow using SDSoC is shown in figure 3.3. First,
the developer should design the application coded in C/C++. Next, the user should
define the requirement of each C/C++ functions, so the user should select
manually which functions must be implemented as software functions or
hardware-accelerated functions synthesized by HLS [48].

[(C/C+ + Application)]

Figure 3.3: Typical HW/SW co-design flow using SDSoC [48]

After refining all C/C++ functions, the SDSoC design flow is executed. The
SDSoC design flow is shown in figure 3.4. First, all C/C++ functions are
compiled, next, the implementation of the C/C++ function had to be partitioned
into software implementation functions or hardware-accelerated functions
depending on user selection.

The Software Development Kit (SDK) tools and Vivado Tool (Xilinx Inc.) are the
elements of hardware and software system design. The Vivdo tool includes High-
Level Synthesis (HLS) is used for creating the hardware system component by
transforming the C/C++ code to an RTL implementation [45].

The SDK tool is a software design suite that includes driver support, C/C++
Compiler library supported for ARM and tools for debugging and profiling.
Finally, the integration, the necessary communication blocks between hardware,
and software and the SoC platform creation is done by SDSoC tool.

V(C/C++ App]jcation)‘ SDSOC pl‘OiECt

Main.c)
Appél.c SDSOC design flow
Func#1(); - Funct#1() {o...t——
Func#2(); >Func#2() {......}

App#2.c >{Func#3() Lo}

Func#3(); i —> Func#4() {....}—
Func#4(); > Func#n() {u...}—

. } v
App#n.c v . Y

Func#n(); HW W
' Implementation Implementation

(Vivado HLS for Hw functions] (Create SW using SDK tool)

Integration and
platform creation

Figure 3.4: SDSoC design flow

39

The SDSoC tool generates the embedded FPGA SoC platform as shown in figure
3.5. This platform allows executing part of the C/C++ code on the arm processor
as a software functions and the other parts of the codes on the FPGA as hardware-
accelerated functions. The embedded FPGA platform consists of:

1. Processing system includes dual-core ARM cortex-A9 processor hardcore
processor.

2. Interfacing logic includes ACP port interconnect, data movers and reset
blocks.

3. Hardware logics includes HLS generated block.

.....

Four reset ¢
blocks, one __i 5‘1 .MA._‘. "
for each clock
& i}
L D%D n
& o

H i HLS —

generated

11

M AL

—————

11

1 L
Ty
11
1
EREETESREES AR Ey
=

ACP Port !
interconnect

Four data 3
MOVErs =
—

processor

”]l-!

Figure 3.5: Embedded FPGA platform [48]

40

3.3. Proposed automated performance-based design
technique

This section illustrates in details the proposed automated performance-
based design technique using SDSoC tool. The objective of this technique is to
determine platforms that achieve performance metrics and select the platform that
achieves the best performance.

The performance metrics constraints to the technique are hardware utilization,
latency and dynamic power. Therefore, a designer defines the upper limit of this
performance metrics according to the implementation requirement.

On the other hand, the performance metrics output from the technique are
hardware utilization, latency, dynamic power, hardware acceleration and Figure
of Merit (FoM) [50]. Therefore, a designer able to explore this performance
metrics results for all possible implementations.

Figure 3.6 shows the proposed performance-based techniques flow diagram. First,
the developer should design the application code written in C/C++ and define
functions that should be implemented either as a software function or as a
hardware-accelerated function (Let for example define a number of functions

=(n)).

The introduced algorithm is fully automated and uses a set of shell scripts for
executing the SDSoC tool to generate required platforms. There are three flow
control files are defined in the technique used to drive the execution of the shell
scripts according to designer requirement.

The flow control files are divided as follows:

e First, the target function list file contains the modules functions names which
designed to be implemented either as software function or hardware-
accelerated function.

e Second, the implementation_configuration file which used to define the type
of FPGA device, operating system, the clock frequency, type of design
flow...etc.

e Third, the performance metrics constrain file which is the design constraints
and includes constraints on hard- ware utilization, dynamic power, and latency.

41

(C/C++ Application)
{#n target function}

*_l

(Design_flow_2:- constraints-selection scenarios flow |

_ Implementation all no,
ombinatio
Y
—Yyes: Select 2°x combination for HW
. implementation (x=1,2,... n)
Design_flow_1:- | All possible scenarios flow
T SR T e, (Select one of #n combination)4—
HW implementation or SW
implementation
[2°n combination is valid}
'solution_set oA =
Get performance metrics and add
them to “estimated_performace list”
Implementation of “solution_set”
Finish all #n function HW
implementation estimation
Select on of
“solution_set” yes
Calculate estimated performance
metrics for 2”n combination
3 4
(Select one combination J<—
Finish all “solution_set" €ombination meet:

constrain

Reject
combination

yes
Y

Read

Add combination to
valid “solution_set”

Get the performance metrics
of all “solution_set”

Design _flow_1
Calculate
performa.nce Coit #m combination is valid
of “solution_set “solution_set”
Print output Performance metrics ;’ r:?t OUEuE
results for the valid “solution_set” £ ormsi?cef
and the best performance cost for e e

« : .,
e kA all “solution_set’

Figure 3.6: Performance-based design technique flow chart

42

The developer should design the application code written in C/C++ and define
the (n) functions in the target function_list files which are the functions that
could be implemented either as a software function or as a hardware-accelerated
function (let for example the designer defines 3 functions which are funl, fun2
and fun3). Next, the shell scripts read all C/C++ files and compile all C/C++
files for any Syntax errors or semantic error. Then the shell scripts read the
implementation_configuration file. As shown in Figure 3.6 the technique is
divided into two design flows depending on the implementation_configuration.

e The first is design_flow 1 (all possible scenarios flow).

e The second is design flow 2 (constrained-selection scenarios flow).

The purpose of the design flow 1 is to implement all possible scenarios for (n)
function defined in the target function list file, thus (2™) combinations between
software implementation function or hardware-accelerated function are stated to
be a wvalid solution set. For example, the defined 3 functions in the
target function list generate (23 =8) combinations between software
implementation function or hardware-accelerated function as shown in table 3.2.

Table 3.2: Three function configuration scenario example:
(0) Software function and (1) Hardware-accelerated logic

platform name funl fun2 fun3
platform0 0 0 0
platform1 1 0 0
platform2 0 1 0
platform3 1 1 0
platform4 0 0 1
platform5 1 0 1
platformé6 0 1 1
platform?7 1 1 1

The number (1) in the table indicates that this function in current platform is a
hardware-accelerated logic and the number (0) indicates that this function in
current platform is a software function. Therefore, platformO is configuring that
all the functions (funl, fun2, and fun3) are implemented as software functions.

43

The platform1 is configuring that the functions (funl) is implemented as software
functions and other functions (fun2 and fun3) are implemented as a hardware
accelerated function and so on for all possible combinations between software
implementation or hardware-accelerated implementation. design flow 1 allows
exploring the performance metrics of every possible combination between
software implementation and hardware-accelerated implementation of (n)
function by taking into consideration the (2") combinations a valid solution_set.

Section 4.2 represent implementation of LTE PDSCH transmitter and receiver as
a case-study for the design flow 1

The purpose of the design flow 2 is to implement specific possible scenarios that
meet Performance constraints defined in the performance metrics constrain file.
The Performance constraints described in file are hardware utilization, dynamic
power, and latency. The steps of the design flow 2 are the following:

1) Select the (2*) combinations for hardware implementation where (x =
0,1,..n). For current example, select combinations from table 3.2 which
generate platforml, platform2 and platform4.

2) Select one of (2*) combinations from step-1 to be input to the SDSoC design
flow shown in Figure 3.4.

3) After finishing the execution of step-2, get the performance metrics from step-
2 and add the estimate performance list.

4) Repeat from stepl to step-3 until finish the implementation and performance
metrics estimation of all (2*) combinations defined in step-1. For example, the
estimate_performance list will be as shown in table 3.3 where
(h1,h2,h4,p1,p2, p4,11,12 and 14) numeric values generated in step3 are.

Table 3.3: Estimated performance list for selected combination

performance combination | combination | combination
metrics 1 2 4
hardware hl h2 h4
utilization
dynamic power pl p2 p4
latency 11 12 14

44

S)

6)

Calculate the estimated performance metrics for all (2") combinations using
the information from estimate performance list. The estimated performance
metrics for all (2™) combinations are summation of the performance metrics of
the (2™) combinations. For current example, the estimated performance
metrics for all (2™) combinations are shown in in table 3.4.

The combination0 is configuring that all the functions (funl, fun2, and fun3)
are implemented as software functions so it has zero latency and constant
hardware utilization and constant dynamic power which they are the area and
the power consumptions of the ARM processor.

The objective of this thesis is to study the performance of hardware-
accelerated functions synthesized by HLS therefore, combination0 is
considered an ideal case and removed from the estimate performance list.

Compare the Calculated (2™) combination performance metrics from step-5
against the performance metrics constraints defined in the
performance metrics constrain file, the designer sets the maximum limit of
hardware utilization, = dynamic power, and latency in the
performance metrics_constrain file.

Combinations which do not meet the designer’s constraints will be rejected,
only solutions that passed constraints will be considered in next steps as a valid
solution_set.

So, in this case, number of valid solution_set is less than or equal (2™) depending
on designer constraints. Section 4.3 represents implementation of the LTE
PDSCH transmitter and receiver as a case-study for the design flow 2.

Table 3.4: Estimated performance list for all combination:
(comb.) is abbreviation to combinations

performan | comb. | comb.l1 | comb.2 comb.3 | comb | comb.5 comb.6 comb.7

ce metrics 0 4

hardware 0 hl h2 h3=h1+h h4 h5=hl+h | h6=h2+h | h7=hl+h2

utilization 2 4 4 +h4
dynamic 0 pl p2 p3=pl+p p4 pS=pl+p | p6=p2+p | p7=pl+p2
power 2 4 4 +p4
Latency 0 11 12 13=11+12 14 15=11+14 | 16=12+14 | 17=11+12+

14

45

After defining the valid solution_set from a (2™) combination for design flow 1
or design flow 2, the implementation of solution_set is executed as the following
steps:

1) Select one of possible solution set generated from design flow 1 or
design flow 2 to be input to the SDSoC design flow shown in Figure 3.4.

2) Repeat step-1 until finish implementation of all solution_set defined in step-
1.

3) Get the performance metrics of all solution_set. If design flow 1 is applied,
print the output performance metrics results for all solution_set.

4) If design _flow 2 is applied, then read the performance metrics constrain file
and calculate the Performance Metrics Cost (PMC) of all solution set as
shown in 1.

5) Print the performance metric for the valid solution set and print the best
solution_set that achieve target performance which is the least cost value
calculated in step-4.

The Performance Metrics Cost (PMC) is calculated as the follows: -

|area — area_t| |power — power_t|
PMC = *area_w + * power_w
area_t power_t

|latency — latency_t|

lat 3.1
latency_t *alenty w 1)

where area_t is target area, area_w is area weight, power_t is target power and
power_w is power weight, latency_t is target latency and latency_w is latency
weight.

The Performance Metrics Cost of solution indicates how far the solution
performance is from the target performance. As shown in equation 3.1, the cost
equation sets target of area (hardware utilization), power (dynamic power) and
latency design constraints, so the SoC designer set the target required performance
metrics. Also, the cost equation set weigh of area (hardware utilization), power
(dynamic power) and latency design constraints.

Therefore, the SoC designer able to decide which parameter is more important and
increase its weight, unimportant parameters weight can be set to zero weight. For
example, if dynamic power is important metrics in system design, increase its
weight and implement only the solution_set which generate a heterogeneous
FPGA-CPU platform that consuming the minimum dynamic power

46

Chapter 4 : IMPLEMENTION AND RESLULTS

4.1. IMPLEMENTATION OF TURBO ENCODER USING
SDSCOC TOOL

This section explains the implementation of turbo encoder on a
heterogeneous FPGA-CPU platform using SDSoC tool. The turbo encoder
function is written using C programming language and integrated with other
functions to verify operation of it.

4.1.1. Turbo encoder block diagram

The design specs of the turbo encoder for LTE was introduced in reference
[51]. Figure 4.1 shows the block of the turbo encoder. The turbo encoder is the
parallel concatenation of Recursive Systematic Convolutional (RSC) encoder,
separated by an interleaver.

The information bits flow goes into the first RSC encoder, and after interleaving,
it feeds a second RSC encoder. The multiplexing and puncturing block accepts the
information bits and outputs from the RSC encoder to generate the coded bits.

— C1
: Multiplexing
I“f"g?“h;’“ IRSC and
its encoder Punctuning) C2
— interleaver —p RSC
encoder ’

Figure 4.1: Turbo encoder block diagram [51]

47

4.1.2. Turbo encoder implementation

The objective of this section is to implement multiple scenarios for turbo
encoder function. Each scenario generates an Embedded FPGA platform which
dependent on the implementation of turbo encoder sub-functions either software
function or hardware-accelerated function synthesized by HLS.

Table 4.1 shows all possible configuration scenarios to implement turbo encoder
sub-function. For example, in the turboll platform, the Two RSC encoder and
ineterleaver sub-functions are implemented as a hardware-accelerated function
and multiplexer-puncturing sub-function is implemented as a software function.

Table 4.1: Turbo encoder sub-function configuration scenarios:
(0) Software function and (1) Hardware-accelerated function

platform Interleaver Mux_punc RSC_Enc 2 IEIE_iie
name
turbo0 0 0 0 0
turbol 0 0 0 !
turbo2 0 0 I 0
turbo3 0 0 I !
turbo4 0 1 0 0
turbo5 0 1 0 1
turbo6 0 1 1 0
turbo7 0 1 1 1
turbo8 1 0 0 0
turbo9 1 0 0 1
turbo10 1 0 I 0
turbol1 1 0 I 1
turbo12 1 1 0 0
turbo13 1 1 0 1
turbo14 1 1 1 0
turbo15 1 1 1 1

48

4.1.3. Configurable Embedded FPGA Platform

The proposed configurable Embedded FPGA platform is shown in figure
4.2. The configurable embedded FPGA platform consists of a processing system
and a programming logic. The processing system side is consisting of fixed
implementation functions used for integration and verification of the operation of
the turbo encoder function. Example of fixed implementation functions, the
random_test function used to generate random information bits, the noise function
used to generate AWGN noise, and finally, the main function that integrates all
functions together. In addition, the processing system is consisting of the
turbo encoder function that is consist of the configurable implementation
functions. The term configurable means that each sub-function of the
turbo_encoder function is implemented as a software function or a hardware-
accelerated function synthesized by HLS according to the configuration in table
4.1.

The programming logic side is consisting of fixed implemented hardware logic
used to handle the data flow between the processing system and programming
logic. The fixed logics are generated by SDSoC tool and dependent on the number
of connection ports between software functions and hardware-accelerated
functions. In addition, the programming logic is consisting of a turbo_encoder
function implemented using HLS. As described in section 4.1.2, each sub-function
of a turbo_encoder function is implemented as a software function or hardware-
accelerated function synthesized by HLS according to the configuration in table
4.1.

Processing system Programming Logic

ARM function FPGA Logic
ma|n()ﬁ[r]iasr;t:)om_test() ’ Data_mover | reset_blocks,
Interconnect blocks

L”f??:??f?‘.j‘frﬁ. - HLS Block
. RSC_EHC”} : ARM [ressssasnnaas i
[. DIOCESS0! RAM 1 RSCEnct |
. llllllllllllll | lllllllllllllll
o0 Y 1 | | | esssssssssssss
] RSB !
.............. \
: mteﬂeaver() : 'u-l ----------- i
hesssssssnsssed v nterleaver |
:mux pun d): :‘.
hessseseananass ' mux_punc !

Figure 4.2: Configurable embedded FPGA platform for turbo encoder
49

4.1.4. Results and Comparative Studies

This section shows the implementation results of all possible configurations
scenarios shown in table 4.1. Sixteen projects are generated to cover all possible
scenarios between software implementation and hardware-accelerated
implementation generated using HLS. Xilinx ZYNC ZC702 device was used for
implementation [52]. It consists of dual ARM Cortex A9 core as the processing
system and XC7Z2020-CLG484 based FPGA as the programming logic.

4.1.4.1. Hardware Utilization for turbo encoder implementation

Figure 4.3 shows the hardware utilization of the generated platforms of the
synthesized hardware. The Hardware utilization is sum of number of Look-Up
Tables (LUT), number of flip-flops and number of Muxes. The turbo0 platform is

the software implementation of all turbo encoder sub-functions so it has zero
hardware utilization and not included in Figure 4.3.

Slice Logic (LUT)

W
8
- 40000
-
= 30000
20000
10000 I
0
1 2 3 4 5 & 7 & 9 10 11 12 13 14 1%

Turbo Encoder Platforms

Figure 4.3: Hardware utilization for turbo encoder implementation

The turbo2 platform has the minimum hardware utilization. The turbo2 platform
consist of RSC Enc?2 is implemented as a hardware-accelerated function and other
turbo encoder sub-functions are implemented as a software function. The turbo13

50

platform has the maximum hardware utilization. The turbo13 platform consist of
RSC _Encl, interleaver and mux_pun are implemented as a hardware-accelerated
functions and RSA_Enc2 is implemented as a software function.

4.1.4.2. Dynamic power for turbo encoder implementation

Power is an important metrics for any communication system. For FPGA
platform, power calculation includes the power consumption in the arm processor
and the static power calculation. We focus on the dynamic power only, so we
subtract the arm processor power and the static power from the total power
consumptions.

Dynamic Power (WATTS)

0.2
0.18
0.16
0.14

0.12

0.1
0.08
0.06
0.04
0.02

0

3 5 & 7 B 9% 10 11 17 13 14 15

Turbo Encoder Platforms

CvrnamicPower

ro I
+ I

Figure 4.4: Dynamic power for turbo encoder implementation

Figure 4.4 shows the dynamic power for the generated platforms of the
synthesized hardware. The dynamic power is measured in watts. The turboO
platform is the software implementation of all turbo encoder sub-functions so it
has zero dynamic power and not included in Figure 4.4.

The turbo2 platform has the minimum dynamic power. The turbo2 platform
consists of RSA Enc2 is implemented as a hardware-accelerated function and
51

other turbo encoder sub-functions are implemented as a software function.
The turbol3 platform has the maximum dynamic power. The turbol3 platform
consist of RSC Encl, interleaver and mux_pun are implemented as a hardware-
accelerated functions and RSA Enc2 is implemented as a software function.

4.1.4.3. Hardware acceleration for turbo encoder implementation

Hardware acceleration is metrics defined by the SDSoC tool [48].
Hardware acceleration is the number of clock cycles improvement in execution of
system if implementing the function as a hardware-accelerated function in the
programming logic.

Figure 4.5 shows the hardware acceleration for the generated platforms of the
synthesized hardware. The turboO platform is the software implementation of all
turbo encoder sub-functions so the hardware acceleration is not defined and not
included in figure 4.5. The turbo2 platform has the maximum hardware
acceleration. The turbo2 platform consists of RSA Encl, and RSA Enc2 are
implemented as hardware-accelerated functions, and other turbo encoder sub-
functions are implemented as a software function. The turbo4 platform has the
minimum hardware acceleration. The turbo4 platform consist of mux punc sub-
function is implemented as a hardware-accelerated function and other turbo
encoder sub-functions are implemented as software implementation.

HW Acceleration
(CLOCK CYCLE)

10000000
6000000
4000000
2000000 I I I I I
3 45 g 7 B o 10 11 12 13 14 15

1 2

HW acceleration
=]

Turbo Encoder Platforms

Figure 4.5: Hardware acceleration for turbo encoder implementation

52

4.1.4.4. Figure of Merit for turbo encoder implementation

The Figure of Merit (FoM) metrics is defined to know the platform that
achieves the best overall performance [50]. The FoM metric is defined as follows:

FoM = (acceleration) i1
om = (area) * (power) * (latency) 1)

Equation 4.1 shows that acceleration effect directly proportional with FoM
performance and shows that area, power and latency effect reversely proportional
with FoM performance.

Figure 4.6 shows the FoM calculations of the generated platforms of the
synthesized hardware. The turbo2 platform has the best FoM calculation. The
turbo2 consist of RSA Encl and RSA Enc2 are implemented as hardware-
accelerated functions, and other turbo encoder sub-functions are implemented as
software functions. The turbo7 platform has the worst FoM calculation. The
turbo7 platform consist of RSA Encl, RSA Enc2, and mux punc are
implemented as hardware-accelerated functions, and interleaver is implemented
as a software function.

Figure of merit
1/(LUT * watt)

0.002
: [
1 2 3 4 5 b [g 3 10 11 12 13 14 15

Turbo Encoder Platforms

Figure of merit
]
o]
m

Figure 4.6: FoM for turbo encoder implementation

53

4.2. IMPLEMENTATION OF THE LTE PDSCH
TRANSMITTER AND RECEIVER USING SDSOC TOOL

This section explains the implementation of the LTE PDSCH transmitter
and LTE PDSCH receiver on a heterogeneous FPGA- CPU platform applying
proposed performance-based design technique using SDSoC tool. The LTE
PDSCH transmitter and LTE PDSCH receiver are written using C programming
language and integrated into the main function including test- bench function to
verify them.

In section 4.2.1, The LTE PDSCH transmitter function implemented with all
possible solution scenarios. As LTE PDSCH transmitter consists of eight sub-
functions two hundred fifty-six (28 = 256) configuration scenarios are generated.
Similarity,

In section 4.2.2, The LTE PDSCH receiver function implemented with all
possible solution scenarios, as LTE PDSCH receiver consists of eight sub-
functions two hundred fifty-six (28 = 256) configuration scenarios are generated.
In section 4.2.3, constraints are applied to the implementation of the LTE PDSCH
transmitter and receiver, so in these cases configuration scenarios that meets
constraints are only generated.

4.2.1. LTE PDSCH transmitter implementation

The objective of this section is to implement all multiple scenarios for the
LTE PDSCH transmitter function. Each scenario generates an Embedded FPGA
platform which depends on the implementation of the LTE PDSCH transmitter
sub-functions either software function or hardware-accelerated function
synthesized by HLS.

As shown in figure 2.5 the LTE PDSCH transmitter consists of eight sub-functions
which are: CRC addition, segmentation, turbo encoder, interleaver,
rate_matching, scrambler, modulator and resource element mapper.
Having of eight sub-functions, two hundred and fifty-six projects are generated to
cover all possible scenarios between software implementation and hardware-
accelerated implementation generated using HLS. Table 4.2 shows all possible
configuration scenarios to implement the LTE PDSCH transmitter sub-functions.
The number (1) in the table indicates that this sub-function in the current platform
is a hardware-accelerated logic and the number (0) indicates that this sub-function
in the current platform is a software function. For example, in Tx6 platform the
segmentation sub-function and Turbo_encoder sub-function are implemented as a
hardware-accelerated logic and other LTE PDSCH transmitter sub-functions are
implemented as a software function.

54

Table 4.2: LTE PDSCH transmitter sub-function configuration scenario:
(0) software function and (1) hardware-accelerated logic

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1

4.2.1.1. Configurable embedded FPGA platform for LTE PDSCH
transmitter

The proposed configurable Embedded FPGA platform for the LTE PDSCH
transmitter is shown in figure 4.7. The configurable embedded FPGA platform
consists of the processing system and programming logic. The processing system
side consists of fixed implementation functions used for integrating and verifying
the operation of the LTE PDSCH transmitter function. Examples of fixed
implementation functions, the main function which integrates all functions
together, the random_test function used to generate random information bits, the
noise function used to generate AWGN noise, ...etc.

On the LTE PDSCH transmitter platform, all of the LTE PDSCH receiver

functions configured to be implemented as a fixed software function because they

are used in integrating and verifying the LTE PDSCH transmitter/receiver chain.

In addition, the processing system consists of the LTE PDSCH Transmitter
55

function that consists of the configurable implementation functions. The term
configurable means that each sub-functions of the LTE PDSCH Transmitter
function are implemented as a software function or hardware-accelerated function
synthesized by HLS according to the configuration in table 4.2.

The programming logic side consists of fixed implemented hardware logic used
to handle the data flow between the processing system and programming logic.
The fixed logics are generated by SDSoC tool are depends on the number of
connection ports between software functions and hardware-accelerated functions
synthesized by HLS. In addition, the programming logic consists of LTE PDSCH
Transmitter functions implemented using HLS. As described in section 4.2.1, each
sub-function of LTE PDSCH Transmitter function is implemented as a software
function or hardware-accelerated function synthesized by HLS according to the
configuration in table 4.2.

Processing system Programming Logie
ARM function FPGA Logic
main() parar;]n;tsegg, random_est(), Data_mover , reset_blocks,
interconnect_blocks
LTE_PDSCH_Transmitter()

|sesssscscacans 1 eecscacecsnans . HLS Block
+ CRC_addtion() } + segmention() ! jreereeanaanass .
LI Ly ¢ CRC_addfion() ,
+ Turbo_encoder()s + Interleaver() |} jessscacoecens
jsssesssssssese; ,essssesessssse] ' Turbo_encoder() !
:Rate_matching{): ! scrambler() ! jecesssssssssss
i iiiiitensse) ,eeessessessess) + Rate_matching() !
" modulator) + 1 Remepper) 1 || ARM oo honesene
"""""""""""""""" processor + modulator()
|"eesssssssssss [}
LTE_PDSCH_Receiver() }, .Segmention() |
— — || essssssssassss [
|CRC_fem0VIﬂQ{)| |De-segmenti0n(}| i' Interleaver() *
.............. p
|Turb0_dec0der{)| |De-interleaver{}| - E scrambler() 3

| Rate_De-matching() | | De-scrambler() | E RE-mapper()

| De-modulator() | |RE-De-mapper()|

Figure 4.7: Configurable embedded FPGA platform for the LTE PDSCH
transmitter

4.2.2. LTE PDSCH receiver implementation

The objective of this section is to implement multiple scenarios for the LTE
PDSCH receiver function. Each scenario generates an Embedded FPGA platform
which depends on the implementation of the LTE PDSCH receiver sub-functions
either software function or hardware-accelerated function synthesized by HLS.

56

As shown in figure 2.5 the LTE PDSCH receiver consists of eight sub-functions
which they are the following: CRC removing, de-segmentation, turbo_decoder,
de-interleaver, rate de-matching, de-scrambler, de- modulator and
resource element de-mapper. Having eight sub-functions, two hundred and fifty-
six projects are generated to cover all the possible scenarios between software
implementation and hardware-accelerated implementation generated using HLS.

Table 4.3 shows parts of all possible configuration scenarios to implement the
LTE PDSCH receiver sub-functions. The number (1) in the table indicates that
this sub-function in the current platform is a hardware-accelerated logic and the
number (0) indicates that this sub-function in the current platform is a software
function. For example, in Tx6 platform the de-Segmentation sub-function and
Turbo Decoder sub-function is implemented as a hardware-accelerated logic and
other LTE PDSCH receiver sub-functions are implemented as a software function.
Configurable embedded FPGA platform for LTE PDSCH receiver.

Figure 4.8 shows the proposed configurable Embedded FPGA platform for the
LTE PDSCH receiver. The configurable embedded FPGA platform consists of the
processing system and programming logic. The processing system side consists of
fixed implementation functions used for integrating and verifying the operation of
the LTE PDSCH transmitter function. Examples of fixed implementation
functions, the main function which is integrating all functions together, the
random _test function used to generate random information bits, the noise function
used to generate AWGN noise, ...etc.

Processing system Programming Logic
ARM function FPGA Logic

ma\n()ﬁgiasld(;lm_tesﬂ) , Data_mover , reset_blocks,
interconnect_blocks

LTE_PDSCH_Transmitter() - LS Block
oc
[CRC_addion() | [seamenion) [[If 1 | © T [e Teeenes ,

[Turbo_encoder()| | Interieaver)

|
|

|Rate_matcmng{)|| scrambler() | s
|

]
1+ Rate_De-matching() *
[moduton) | [REmapper) [:ciz'w m P EE et
p ' De-modulator() }
LTE_PDSCH Receiver() + De-segmention(}
jmseeiesTannny reevecens b :
{CRC_femaving) | : De segmention() | - | Denterleave) |
-Turbo_decoder()i E De-interleaver() ! -.D.e.sc.r.ambler():
PPt et . e
| Rt peranna) | | Descambler) | {RE De mapoer)

1 De-modulator() E ERE-De-mapper()i

Figure 4.8: Configurable embedded FPGA platform for the LTE PDSCH receiver

57

Table 4.3: LTE PDSCH receiver sub-unction configuration scenario:
(0) software function and (1) hardware-accelerated logic

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1

On the LTE PDSCH Receiver platform, all of the LTE PDSCH transmitter
functions configured to be implemented as a fixed software function because they
are used in integrating and verifying the LTE PDSCH transmitter/receiver chain.
In addition, the processing system consists of the LTE PDSCH receiver function
that consists of the configurable implementation functions.

The term configurable means that each sub-function of the LTE PDSCH receiver
function is implemented as a software function or hardware-accelerated function
synthesized by HLS according to the configuration in table 4.3.

58

The programming logic side consists of fixed implemented hardware logic used
to handle the data flow between the processing system and programming logic.
The fixed logics are generated by SDSoC tool and depends on the number of
connection ports between software functions and hardware-accelerated functions
synthesized by HLS. -

In addition, the programming logic consists of LTE PDSCH receiver functions
implemented using HLS. As described in section 4.2.2, each sub-function of LTE
PDSCH receiver function is implemented as a software function or hardware-
accelerated function synthesized by HLS according to the configuration in table
4.3.

4.2.3. Constraints solution

This section introduces examples for implementation of the LTE PDSCH
and LTE PDSCH under user constraints. The design flow applied is
design flow 2 described in section 3.3. The SDSOC.sh script described in
Appendix C is modified to add the constraint file and to execute the
design flow 2.

Table 4.4 shows an example of design constraints applied to implement. As shown
in the table the, sets of constraints are the following:

e Maximum limit of area, power, and latency. The combinations from table 4.2
or table 4.3 do not meet the designer’s maximum limit constraints are rejected;
only solutions that meet constraints will be added to the valid solution_sets.

e Target and weight of area, power, and latency. Both of them are used to
calculate PMC using equation 3.1.

Table 4.4: Constraints solution examples

Model example performance_constraints

area (LUT) power (WATSS) latency (CLOCK CYCLE)

Limit| target| weight| limit| target| weight limit target | weight

LTE PDSCH | 21700 2000 1 0.22 0.1 1 1019 10*1076 1
transmitter

LTE PDSCH | 35000 5200 0 0.249| 0.249 0 20*1076| 1.22*1076 1
receiver

59

4.2.4. Results and comparative studies

This section focuses on studying the performance of hardware-accelerated
functions synthesized by HLS. Therefore, the first solution on table 4.2 which is
Tx0 platform and the first solution on table 4.3 which is and Rx0 platform are
assumed an ideal case. Tx0 and Rx0 solutions are considered as an ideal case
because all of the LTE PDSCH transmitter/receiver sub-functions are
implemented as a software function. In this case, the hardware-accelerated logics
are not generated and the generated platform has a constant area which is the arm
processor area and has a constant power consumption which is the power
consumption of the arm processor.

The Xilinx ZYNC ZC702 device was used for the implementation. It consists of
a dual ARM Cortex A9 core as the processing system and XC7Z020-CLG484
based FPGA as the programming logic [52]. The hardware-accelerated functions
are synthesized and implemented at frequency equals 100 MHz.

This section shows the results implementation of all possible configuration
scenarios shown in table 4.2. Two hundred and fifty-six projects are generated for
the LTE PDSCH transmitter to cover all possible scenarios between software
implementation and hardware-accelerated implementation generated using HLS.

In addition, this section shows the implementation results of all possible
configuration scenarios shown in table 4.3. Two hundred and fifty-six projects are
generated for the LTE PDSCH receiver to cover all possible scenarios between
software implementation and hardware-accelerated implementation generated
using HLS.

4.2.4.1. LTE TX implementation results

This section shows the results implementation of all possible configuration
scenarios for LTE PDSCH transmitter chain.

4.2.4.1.1. Hardware utilization for the LTE TX implementation

Figure 4.9 shows the hardware utilization of the generated platforms of the
synthesized hardware. The Tx1 platform has the minimum hardware utilization.
The Tx1 platform is configuring such that CRC_addition block is implemented
as hardware- accelerated logic and other LTE PDSCH transmitter sub-functions
are implemented as software functions. The Tx255 platform has the maximum
hardware utilization. The Tx255 platform is configuring such that all the LTE
PDSCH transmitter sub-functions are implemented as hardware-accelerated
functions. The area results are changed non-linear irregular changes because the
different values of area are generated according to configuration in table 4.2.

60

x10° Slice Logic (LUT)

' Maximum =
3 | Slice Logic (255,308161
® Maximum
——® Minimum
2.5 |
N ‘
D
O
-
S15¢
’ ‘
| |
0.5 it
H!‘.im!l!,! . ||l
W
0 50 100 150 200 255
Implemention Index
Figure 4.9: Hardware utilization for the LTE TX implementation
4.2.4.1.2. Latency for the LTE TX implementation

Figure 4.10 shows the latency calculation of the generated platforms of the
synthesized hardware. The Tx1 platform is configuring such that CRC addition
block is implemented as hardware-accelerated logic and other LTE PDSCH
transmitter sub-functions are implemented as software functions. The Tx255
platform has the maximum latency calculation.

The Tx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated functions. The total latency
results are calculated for independent hardware-accelerated functions only, so the
processing time of the arm processor is not included in the latency calculation.

61

%107 latancy (CLOCK CYCLE)

! Maximum =
— latancy (258,21 528066
2:F ® Maximum "
—~® Minimum |
1T
] ‘
9)
c
&
| ‘
0.5¢
!M’!' '!"I!!l =
0 R ERER)
0 50 100 150 200 255
Implemention Index
Figure 4.10: Latency for the LTE TX implementation
4.2.4.1.3. Dynamic Power for the LTE TX implementation

Figure 4.11 shows the dynamic power consumption of the generated
platforms of the synthesized hardware. The Tx1 platform has the minimum
dynamic power consumption. The Tx1 platform is configuring such that
CRC addition block is implemented as hardware-accelerated logic and
other LTE PDSCH transmitter sub-functions are implemented as software
functions.

The Tx255 platform has the maximum dynamic power consumption. The
Tx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated functions.

62

Dynamic Power (WATTS)

Maximum =
|~ Dynamic Power (255,1.674000e+00)
1.6 :
——® Maximum
—~® Minimum
141 “
1.2
&1y
9
Eost
o
2 “
061 “
H'\”F Fi" F!T i |
TR
0 50 100 150 200 255

Implemention Index

Figure 4.11: Dynamic power for the LTE TX implementation

4.2.4.1.4. Hardware acceleration for the LTE TX implementation

Figure 4.12shows the hardware acceleration calculations of the generated
platforms of the synthesized hardware. The Tx1 platform has the minimum
hardware acceleration calculation. The Tx1 platform is configuring such that
CRC _addition block is implemented as hardware- accelerated logic and other LTE
PDSCH transmitter sub-functions are implemented as software functions.

The Tx255 platform has the maximum hardware acceleration calculation. The
Tx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated functions.

63

x108 HW Acceleration (CLOCK CYCLE)

35 " Maximum =
— HW Acceleration (255841281 7
® Maximum ”
3 =% Minimum |
25 ¢
C |
ke
®©
5 2
o)
5]
< ‘
1.5
: ‘
L
| |
0.5r
il |
0 i afd I‘4 H |!& i ‘I {
0 50 100 150 200 255

Implemention Index

Figure 4.12: Hardware acceleration for the LTE TX implementation

4.2.4.1.5. FoM for the LTE TX implementation

Figure 4.13shows the FoM calculations of the generated platforms of the
synthesized hardware. The Tx64 platform has the best FoM calculation. The Tx64
is configuring such that Segmentation block which is implemented as hardware-
accelerated logic and other LTE PDSCH transmitter sub-functions sub-functions
are implemented as software functions.

The Tx255 platform has the worst FoM calculation. The Tx255 platform is
configuring such that all the LTE PDSCH transmitter sub-functions are
implemented as hardware-accelerated functions.

64

x107 FOM (1/LUT*WATTS)

4+ Maximum = ‘]
64,3.901832e+03) — FOM
——@ Maximum
3.57 —--@ Minimum | 1
3r d
2.5 .
5
L ?)
1.5 R
1 _
0.5 .
Minimum =
0 ‘IIII |. 92'05
0 50 100 150 200 255

Implemention Index

Figure 4.13: FoM for the LTE TX implementation

4.2.4.2. LTE RX implementation results

This section shows the results implementation of all possible configuration
scenarios for LTE PDSCH receiver chain.

4.2.4.2.1. Hardware utilization for the LTE T RX implementation

Figure 4.14 shows the hardware utilization of the generated platforms of the
synthesized hardware. The Rx1 platform has the minimum hardware utilization.
The Rx1 platform is configuring such that CRC_removing block is implemented
as hardware-accelerated logic and other LTE PDSCH receiver sub-functions are
implemented as software functions. The Rx255 platform has the maximum
hardware utilization.

The Rx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated function. The area results are
changed non-linear irregular changes because the different values of area are
generated according to configuration in table 4.3.

65

%104 Slice Logic (LUT)

Maximum =
18 |— Slice Logic (255,182159)
® Maximum
16 + |~ ~® Minimum “
14 r “
12
)
|
S10+
: |
©
" |
| |
47
50 100 150 200 255

Implemention Index

Figure 4.14: Hardware utilization for the LTE RX implementation

4.2.4.2.2. Latency for the LTE RX implementation

Figure 4.15 shows the latency calculation of the generated platforms of the
synthesized hardware. The Rx1 platform has the minimum latency calculation.
The Rx1 platform is configured such that CRC removing block which is
implemented as hardware-accelerated logic and other LTE PDSCH receiver sub-
functions are implemented as software functions. The Rx255 platform has the
maximum latency calculation.

The Rx255 platform that is configured such that all the LTE PDSCH receiver sub-
functions are implemented as hardware-accelerated functions. The total latency
results are calculated for independent hardware-accelerated functions only, so the
processing time of the arm processor is not included in the latency calculation.

66

%x10° latancy (CLOCK CYCLE)

Maximum =
18+ |— latancy (#55,1.846897e+07])
® Maxumum ‘
16 Hl= =™ Minimum “
14 r “
12 |
> |
c 10 r
o
: |
| |
| Il
| 1
2 -
1 il || “
. gl ||J
0 150 200 255
Implemention Index
Figure 4.15: latency for the LTE RX implementation
4.2.4.2.3. Dynamic Power for the LTE RX implementation

Figure 4.16 shows the dynamic power consumption of the generated
platforms of the synthesized hardware. The Rx1 platform has the minimum
dynamic power consumption. The Rx1 platform is configuring such that
CRC _removing block is implemented as hardware-accelerated logic and other
LTE PDSCH receiver sub-functions are implemented as software functions.

The Rx255 platform has the maximum dynamic power consumption. The Rx255
platform is configuring such that all the LTE PDSCH receiver sub-functions are
implemented as hardware-accelerated functions.

67

Dynamic Power (WATTS)

Maximum =
— Dynamic Power (255,1.280000e+00)
1.2 |- -® Maximum '
——® Minimum “
1
3 "
2 08¢t
/o)
o
© Il
& 06}
&
=
04 li
0.2 iHM'!l!”l ”||: [|i “
(R
0 50 100 150 200 255

Implemention Index

Figure 4.16: Dynamic power for the LTE RX implementation

4.2.4.2.4. Hardware acceleration for the LTE RX implementation

Figure 4.17 shows the hardware acceleration calculations of the generated
platforms of the synthesized hardware. The Rx1 platform has the minimum
hardware acceleration calculation. The Rx1 platform is configuring such that
CRC _addition block is implemented as hardware-accelerated logic and other LTE
PDSCH receiver sub-functions are implemented as software functions.

The Rx255 platform has the maximum hardware acceleration calculation. The
Rx255 platform is configuring such that all the LTE PDSCH receiver sub-
functions are implemented as hardware-accelerated functions.

68

x107 HW Acceleration (CLOCK CYCLE)

! Maximum =
— HW Acceleration (255,1323962 -l
12l ® Maximum
—~—® Minimum \
10 +
e
T 8t
; }
o)
3
< 6
- I
2B
| l
2r
| il\”hlu I ‘
ok
0 50 100 150 200 255

Implemention Index

Figure 4.17: Hardware acceleration for the LTE T RX implementation

4.2.4.2.5. FoM for the LTE RX implementation

Figure 4.18 shows the FoM calculations of the generated platforms of the
synthesized hardware. The Rx1 platform has the best FoM calculation. The Rx1
platform is configuring such that CRC addition block is implemented as
hardware-accelerated logic and other LTE PDSCH receiver sub-functions are
implemented as software functions.

The Rx255 platform has the worst FoM calculation. The Rx255 platform is
configuring such that all the LTE PDSCH receiver sub-functions are implemented
as hardware-accelerated functions.

69

%1073 FOM (1/LUT*WATTS)

6 Maximum= ' 1
(1,5.838436e+03) — FOM
® Maximum
——® Minimum
5 L ul
4 4
3
T | i
2
1
" I
0 50 100 150 200 255

Implemention Index

Figure 4.18: FoM for the LTE RX implementation

4.2.4.3. Constraints solution examples results

This section shows the implementation results to get the best heterogeneous
FPGA-CPU SoC platform that meets constraints examples in section 4.2.3. The
design flow 2 illustrated in section 3.3 is applied. Performance Metrics Cost
(PMC) Equation 3.1 is used for calculating the cost and selecting the best
implementation that meets the design constraints.

Table 4.5 shows the implementation results after applying the target constraints
in table 4.4. The valid solution sets column in tables 4.5 shows the valid
solution_sets that meet the maximum limit design constraints in table 4.4. Next
calculation the performance metrics cost for each the valid solution sets using
Performance Metrics Cost (PMC) equation 3.1. Finally, select the solution with
the minimum calculated PMC value that meets the constraints.

70

Table 4.5: Constraints solution examples results

Model example performance_constraints_results
valid_solution_sets PMC best PMC
Tx1 9.0320
LTE PDSCH transmitter Tx2 13.9202 Tx1
Tx32 10.1172
Rx1 0.87540
Rx2 0.527322
Rx3 0.4027311
LTE PDSCH receiver Rx4 2.16794 Rx33
Rx16 1.141814
Rx32 0.119827
Rx33 0.00540819

For LTE PDSCH transmitter chain, there are three configuration scenarios are
met the required performance constraints in table 4.4. The Tx1, Tx2 and Tx32
configuration scenarios are added to the valid_solution_sets list, then the PMC
for each configuration scenarios are calculated and then Tx1 was selected as the
best configuration scenarios that meets the constraints because it generated the
minimum PMC calculation.

For LTE PDSCH receiver chain, there are seven configuration scenarios are met
the required performance constraints in table 4.4. The Rx1, Rx2, Rx3, Rx4,
Rx16, Rx32 and Tx33 configuration scenarios are added to the
valid_solution_sets list, then the PMC for each configuration scenarios are
calculated and then Rx33 was selected as the best configuration scenarios that
meets the constraints because it generated the minimum PMC calculation.

71

Conclusions

Designing using SDSoC tool helps SoCs designer by introducing a simple
design environment. In addition, SDSoC design environment makes integration
and verification of co-design heterogeneous FPGA-CPU faster and more efficient.
This thesis introduced a new automated design technique used to implement a
heterogeneous FPGA-CPU SoC platform.

In section 3, a new automated design technique is used to implement multiples of
heterogeneous FPGA-CPU SoC platforms using SDSoC tool. The automated
method is used in exploration of all possible scenarios between software
implementation and hardware-accelerated implementation generated using HLS.
In addition, the new design technique is used to design a heterogeneous FPGA-
CPU SoC platform that meets pre-defined performance metrics constraint such as
area and power.

The questions of what platform and what implementation, whether hardware or
software is best suited for the best efficient platform. In this thesis, these questions
are sought to be answered by introducing Figure of Merit (FoM) performance
metric [50]. In addition, Performance Metrics Cost (PMC) equation helps to
develop a platform that achieves specific performance metrics requirement.

This new design technique may lead to make quantum leap in the design of
heterogeneous FPGA-CPU SoC platform by integrating performance design
constraint requirement in the design cycle.

In section 4, as a case study, the LTE PDSCH transmitter/receiver software
functions are written using C programming language, and the design of the LTE
PDSCH transmitter/receiver are implemented on heterogeneous FPGA-CPU SoC
platforms using SDSoC tool. The automated method is used to explorer all
possible scenarios between software implementation and hardware-accelerated
implementation for the LTE PDSCH transmitter and the LTE PDSCH receiver.

In addition, the platform that meets pre-defined performance metrics constraint is
selected for the LTE PDSCH transmitter and the LTE PDSCH receiver. Moreover,
the platform that achieves the best overall performance is selected for the LTE
PDSCH transmitter and the LTE PDSCH receiver.

72

Future Work

Adaptive design implementation dependent on performance requirement
could be developed and used to re-implement the SoC platform during run time.
For example, the designer may develop SoC-based products depending on
environmental variables (ex: availability of sunlight). The designer may develop
SoC platform consuming high-power assuming availability of sunlight for
recharging batteries. Let assume for some reason, the developed SoC-based
product have to be work in new environment where sunlight is not available, the
SoC platform could be re-implemented during run time to re-build a new SoC
platform consuming less power.

Partial Dynamic Reconfiguration (PDR) techniques could be integrated and used
to reconfigure the FPGA according to design environment status [53]. For
example, platform with the best performance metrics is loaded initially to the
FPGA. In case of low power mode, platform with the minimum dynamic power
performance metrics is loaded to the FPGA using PDR [54].

In addition, the new design technique may lead to develop FPGA-CPU SoC
platform with partially upgrading capability. For example, part of the LTE
PDSCH chain has a fixed architecture in every LTE update release (ex: CRC
calculation), so this module may be implemented as a hardware-accelerated logic.
In the other hand, part of the LTE PDSCH chain has an adjustable architecture in
every LTE update release (ex: resource element mapper), so this module may be
implemented as a software function because software could be upgraded easily.

73

References

1. A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of Things
for Smart Cities," in IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22-32, Feb.
2014.

2. Kuon and J. Rose, "Measuring the Gap Between FPGAs and ASICs," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
26, no. 2, pp. 203-215, Feb. 2007.

3. M. D. Edwards and J. Forrest, "Hardware/software partitioning for performance
enhancement," IEE Colloquium on Partitioning in Hardware-Software Codesigns,
London, UK, pp. 2/1-2/5, 1995.

4. Peng Liua, Jigang Wu , Yongji Wang , “Hybrid algorithms for hardware/software
partitioning and scheduling on reconfigurable devices” ,Mathematical and
Computer Modelling Volume 58, Issues 1-2, Pages 409-420,2013.

5. Shabtay matalon, “VISTA VIRTUAL PROTOTYPING” , Mentor graphic company
white paper, 2015.

6. C. Sekar and Hemasunder, "Tutorial T7: Designing with Xilinx SDSoC," 2017 30th
International Conference on VLSI Design and 2017 16th International Conference
on Embedded Systems (VLSID), Hyderabad, pp. x1-xli, 2017.

7. Alexander Kukushkin, "Global System Mobile, GSM, 2G," in Introduction to
Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G, Wiley,
pp. 59-102, 2018.

8. K. Riyazuddin, A. K. Sharma and P. V. N. Reddy, "Analyzing the behaviour of
OFDM parameters in different LTE environment," 2017 IEEE International

Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI),
Chennai, pp. 2849-2853, 2017.

9. Y. Kim, O. Choi, Y. Kim and J. Park, "Performance analysis of LTE multi-antenna
technology in live network," 2016 URSI Asia-Pacific Radio Science Conference
(URSI AP-RASC), Seoul, pp. 1302-1305, 2016.

10. Alexander Kukushkin, "4G-Long Term Evolution (LTE) System," in Introduction
to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G,
Wiley, pp. 205-291, 2018.

11. LaMeres, Brock J., “Introduction to Logic Circuits & Logic Design with Verilog”,
Springer International Publishing, 2017.

12. Deming Chen; Jason Cong; Peichan Pan, "FPGA Design Automation: A Survey, in
FPGA Design Automation”, Vol. 1, No 3, pp. 195-330, 2006.

13. Dudhe, P.V. & Kadam, N.V. & M. Hushangabade, R & S. Deshmukh, M,"Internet
of Things (IOT): An overview and its applications", International Conference on

Energy, Communication, Data Analytics and Soft Computing (ICECDS), pp. 2650-
2653, 2017.

74

14.

15.

16.

17.

18.

19.

20.

21.

22.

S. Ahmad, V. Boppana, I. Ganusov, V. Kathail, V. Rajagopalan and R. Wittig, "A
16-nm Multiprocessing System-on-Chip Field-Programmable Gate Array
Platform," in IEEE Micro, vol. 36, no. 2, pp. 48-62, Mar.-Apr. 2016.

Veendrick H., “Memory Circuits and IP. In: Bits on Chips”, Springer, Cham, 2018.

Ian Kuon; Russell Tessier; Jonathan Rose, "FPGA Architecture: Survey and
Challenges," in FPGA Architecture: Survey and Challenges, 2008.

P.J. Kim, D. S. Ku, L. S. Jeong, J. H. Yun, S. Y. Choi and J. B. Kim, "Electrical
properties of PIP anti-fuse for the logic circuit configuration," SICE 2003 Annual
Conference (IEEE Cat. No.03TH8734), Fukui, Japan, pp. 2980-2983, 2003.

P. Alfke, "Xilinx Virtex-6 and Spartan-6 FPGA families," 2009 IEEE Hot Chips 21
Symposium (HCS), Stanford, CA, pp. 1-20, 2009.

Sarah L.Harris, David MoneyHarris, “Digital Design and Computer Architecture”,
Elsevier, Pages 238-293, 2013.

J. Lin and B. C. Lai, "BRAM efficient multi-ported memory on FPGA," VLSI
Design, Automation and Test (VLSI-DAT), Hsinchu, pp. 1-4, 2015.

U. Farooq, I. Baig and B. A. Alzahrani, "An Efficient Inter-FPGA Routing
Exploration Environment for Multi-FPGA Systems," in IEEE Access, vol. 6, pp.
56301-56310, 2018.

B. Ronak and S. A. Fahmy, "Multipumping Flexible DSP Blocks for Resource
Reduction on Xilinx FPGAs," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 9, pp. 1471-1482, Sept. 2017.

23. Clive MaxMaxfield, "FPGAs: Instant Access", Elsevier, 2008.

24.

25.

26.

27.

28.

29.

30.

P.S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis, B. Cremen and B. Troxel,
"A hybrid ASIC and FPGA architecture," IEEE/ACM International Conference on
Computer Aided Design, pp. 187-194, 2002.

3GPP, TS 36.101, “Evolved Universal Terrestrial Radio User Equipment (UE) radio
transmission and reception”, Release 14, 2017.

3GPP, TS 36.104, “Evolved Universal Terrestrial Radio Base Station (BS) radio
transmission and reception”, Release 14, 2017.

3GGP, “Technical Specification Group Radio Access Network; GSM/EDGE
Physical layer on the radio path”, Release 14, 2017.

S. Syed Ameer Abbas, K. S. Geethu. and S. J. Thiruvengadam, "Implementation of
physical downlink control channel (PDCCH) FOR LTE using FPGA," 2012
International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore,
pp- 335-339, 2012.

L. Kuchibhotla, R. Ghosh, A. Ratasuk, R. Classon, B. Blankenship, “Downlink
control channel design for 3GPP LTE”, Wireless Communications and Networking
Conference (WCNC), 813-818, 2008.

S. S. A. Abbas, P. A. J. Sheeba and S. J. Thiruvengadam, "Design of downlink
PDSCH architecture for LTE using FPGA," 2011 International Conference on
Recent Trends in Information Technology (ICRTIT), Chennai, Tamil Nadu, pp. 947-
952,2011.

75

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43

44

Zarrinkoub Houman, “UNDERSTANDING LTE WITH MATLAB” John Wiley &
Sons, 2014.

3GPP TS 36.211, “Evolved Universal Terrestrial Radio Access (EUTRA);
Multiplexing and Channel Coding” Release 15, 2017.

J. Cheng and H. Koorapaty, "Error Detection Reliability of LTE CRC Coding," 2008
IEEE 68th Vehicular Technology Conference, Calgary, BC, pp. 1-5, 2008.

K. G. Lenzi, J. A. B. Filho and F. A. P. Figueiredo, "Code block segmentation
hardware architecture for LTE-Advanced," IEEE Wireless Communications and
Networking Conference (WCNC), Shanghai, pp. 3312-3317, 2013.

R. Kaur, S. Chopra, “Iterative Decoding of Turbo Codes”, International Journal of
Scientific and Engineering Research (IJSER), 2013.

3GPP TS 36.211, “Evolved Universal Terrestrial Radio Access (EUTRA); Physical
Channels and Modulation”, Release 15, 2017.

Sah, Dhaneshwar, “Iterative Decoding of Turbo Codes”, Journal of Advanced
College of Engineering and Management, Vol.3, pp. 5-30, 2017.

Fu-Gang Wang, Yi Tang and Fan Yang, "The iterative decoding algorithm research
of Turbo Product Codes," The 2010 International Conference on Apperceiving
Computing and Intelligence Analysis Proceeding, Chengdu, pp. 97-100, 2010.

M. Bukris, 1. Gazit, “Rate Matching and De-Rate Matching for an LTE Transport
Channel”, U.S Patent, 2010.

ETR 289,” Support for use of scrambling and Conditional Access (CA) within
digital broadcast systems”, European Telecommunications Standards Institute
(ETSI), 1996.

K. G. Digish and R. Thilagavathy, "ASIC implementation of physical downlink
shared channel for LTE," 2014 International Conference on Control,
Instrumentation, Communication and Computational Technologies (ICCICCT),
Kanyakumari, pp. 370-376, 2014.

Jagdish, D. Kenea, Kishor, D. Kulatb, “Soft Output Decoding Algorithm for Turbo
Codes Implementation in Mobile Wi-Max Environment”, International Conference
on Communication, Computing and Security (ICCCS), Volume 6, PP. 666-673,
2012.

.D. Zhu, V. J. Mathews and D. H. Detienne, "A Likelihood-Based Algorithm for

Blind Identification of QAM and PSK Signals," in IEEE Transactions on Wireless
Communications, vol. 17, no. 5, pp. 3417-3430, May 2018.

.S. S. A. Abbas, S. J. Thiruvengadam and M. Punitha, "Realization of PDSCH

transmitter and receiver architecture for 3GPP-LTE advanced," 2016 International
Conference on Wireless Communications, Signal Processing and Networking
(WiSPNET), Chennai, pp. 1-6, 2016.

45. Valido, Manuel & Magdaleno, Eduardo & Perez, Fernando & Garcia, Cristhian.

“Automated Software Acceleration in Programmable Logic for an Efficient NFFT
Algorithm Implementation: A Case Study”. Sensors - Open Access Journal, 2017.

76

46.

47.
48.
49.

50.

51.

52.

53.

54.

K. Rupnow, Yun Liang, Yinan Li and Deming Chen, "A study of high-level
synthesis: Promises and challenges," 2011 9th IEEE International Conference on
ASIC, Xiamen, pp. 1102-1105, 2011.

Inc. Xilinx, “Vivado Design Suite, Tutorial High-Level Synthesis (UG871)”, 2014.
Inc. Xilinx, “SDSoC Environment User Guide (UG1028)”. 2016.

S. Roh, K. Cho and K. Chung, "Implementation of an LDPC decoder on a
heterogeneous FPGA-CPU platform using SDSoC," IEEE Region 10 Conference
(TENCON), Singapore, 2016, pp. 2555-2558, 2016.

M. E. Adawy, A. Kamaleldin, H. Mostafa and S. Said, "Performance evaluation of
turbo encoder implementation on a heterogeneous FPGA-CPU platform using
SDSoC," 2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems
& 2017 Intl Conf on New Paradigms in Electronics & Information Technology
(PEIT), Alexandria, pp. 286-290, 2017.

C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting
coding and decoding: Turbo-codes. 1," Proceedings of ICC '93 - IEEE International
Conference on Communications, Geneva, Switzerland, pp. 1064-1070 vol.2, 1993.

Inc. Xilinx, “ZC702 Evaluation Board for the Zyng-7000 XC7Z020 User Guide”,
2018.

T. Kalb and D. Gohringer, "Enabling dynamic and partial reconfiguration in Xilinx
SDSoC," 2016 International Conference on ReConFigurable Computing and
FPGAs (ReConFig), Cancun, pp. 1-7, 2016.

Sadek, A., H. Mostafa, A. Nassar, and Y. Ismail, "Towards the Implementation of
Multi-band Multi-standard Software Defined Radio using Dynamic Partial
Reconfiguration", International Journal of Communication Systems, pp. 1-12, 2017.

77

Appendix A: Modulation lookup table

Table A.1: 64QAM modulation lookup table

fi fiv1, fiv2 fivss fivar fiss

I Q

000000 1 1
N7 Va2

000001 1 3
Va2 Va2

000010 1 5
Va2 Va2

000011 1 7
Va2 Va2

000100 3 1
Va2 Va2

000101 3 3
Va2 Va2

000110 3 5
Va2 Va2

000111 3 7
Va2 Va2

001000 5 1
) Va2

001001 5 3
Va2 Vaz

001010 5 5
Va2 Va2

001011 5 7
) Va2

001100 7 1
Va2 Vaz

001101 7 3
Va2 Va2

78

N
o[

N
~ [

N
7|

N
7

N
T E

N
s

N
7|

N
7|

(@\]
7 E

(V]
s

N
7€

N
7

N
T E

(@\]
s

N
7E

N
7

N
7 E

[\
~[§

[\
~[g

[9\]
-[&

[\
-[&

[\
-[€

N
-[€

[\
~[g

[\
[

[\
~[§

9\
~ [

[\
- |

AN
- |§

[\
- &

9\
~|&

9\
~[&

[\
~[§

[\
~[€

001110

fi! fi+1! fi+2! fi+3! fi+4! fi+5

001111

010000

010001

-010010

010011

010100

010101

010110

010111

011000

011001

011010

011011

011100

011101

011110

79

N
TE

N
-[€

N
~[€

N
- [

N
~[&

N
-[&

N
~[€

N
- [

N
~[

N
-[&

N
~ [

N
o[

N
~[&

N
-

N
~[&

N
o[

N
~[&

[\
~[€

fi' fi+1' fi+2' fi+3' fi+4-' fi+5

011111

100000

100001

100010

100011

100100

100101

100110

100111

101000

101001

101010

101011

101100

101101

101110

101111

80

&

2

[

[

&

2

[

[

|

2

[

[

2

N
~[§

[

[

I

I

fi' fi+1' fi+2' fi+3' fi+4-' fi+5

110000

110001

110010

110011

110100

110101

110110

110111

111000

111001

111010

111011

111100

111101

111110

111111

81

Appendix B: Implement SDSOC project manually
steps

The required steps to implement the SDSOC project manually are illustrated as
follows:

1. Open SDSoC tool. The Workspace Launcher window will appear.

2. Select “File” = “New” = “SDSoc Project”. New Project GUI window will
appear as shown in figure B.1. Enter project name, for example “turboX”,

select “ZLC702” as a platform (depending on the evaluation kit used), select
“Standrad”, and click “Next”.

New Project o x |

SDSoC Project .

Create SDSoC project.

Project name:lturboS I

v Use default location

Target

Platform IZC702 i I Other...

Basic platform targeting the ZC702 board, which includes 1GB of
DDR3, 16MB Quad-SPI Flash and an SDIO card interface. More
information at http://www.xilinx.com/products/boards-and-kits/EK-
Z7-ZC702-G.htm

Platform Summary

0s I Standalone v I
®] Next > Cancel Finish

Figure B.1: Project naming and platform selection and OS selection

3. Select “Empty Application” to create a new empty project and then Click
“Finish” as shown in figure B.2.

82

New Project o x

Templates

Create one of the available templates to generate a fully-functioning SDSoC project.

Available Templates:
Creates a new Empty application
Color Space Conversion - RGB/HSV
Matrix Multiplication
Matrix Multiplication Data Size
Matrix Multiplication and Addition
Synthesizeable FIR Filter
Matrix Multiply (area reduced)
Matrix Multiply-Data Size (area reduced)
Pipelined Matrix Multiply (area reduced)

Matrix Multiply-Add (area reduced)

Figure B.2: Empty project Selection

4. A new directory is generated at the location of project path and Project window
will appear as shown in figure B.3. The new directory name is same as project
name typed in step 1. Copy the C/C++ source files into the following directory
inside project “<project path>" 2 “turboX” = “src”

The “Project Explorer” window located in the left side, under “turboX” project
directory, the “src” directory contains the source files which were copied from in
the previous steps.

In the right-side pane, in “Option” window select generate bitstream, generate SD
CARD image and estimate performance. In Hardware function, click in plus icon
and select the required functions to be implemented as a hardware acceleration
function. Also select the operating clock frequency for hardware functions.

Note that: -

a) Estimate performance mode is used to get the estimated cycles for hardware
acceleration and to get estimated values for resource utilization.

b) The hardware functions are selected depending on the selected function.
83

& turbo5 £3 subdir.mk = g

SDSoC Project Overview - SDDebug

General Options

Project Name |turboS Data Motion Network Clock Frequency (MHz) | 100.00 v
4

Platform 2¢702 ¥ Generate Bitstream
» Generate SD Card Image

0Ss:

I Insert AXI Performance Monitor
Root Function

» Estimate Performance I

Hardware Functions A+ X Build Configurations
Active Configuration SDDebug v %) | % B
encode_n2 IClockFrequency (MHz) | 100.00 ~ I
turbo_inter
Reports

%5 Data Motion Netwark Report = Performance Estimation Report

Figure B.3: project window in estimated performance mode

5. From “Project” - select “Build ALL”, the process of building project will
start.

6. After finish building project, the estimated performance results appear as
shown in figure B4. The output results of the estimated performance mode
generated by the SDSoC tool are the estimated hardware acceleration and the
resource utilization for hardware acceleration function.

¢ turbo5 5 subdir.mk 1l SDSoC Report Viewer £ |

Performance and resource estimation report for the 'turbo5' project

Click Here to get software-only application performance and speedup

Note: Performance estimation assumes worst-case latency of hardware accelerators, it also assumes worst-case data transfer size for arrays (if transfer size
cannot be determined at compile time). If the accelerator latency and data transfer size at run-time is smaller than such assumptions, the performance estimation
will be more pessimistic than the actual performance.

Details

Performance estimates for ‘turbo_inter' function

HW accelerated (Estimated cycles) 7805854

Details

Performance estimates for 'encode_n2' function

HW accelerated (Estimated cycles) 2825423

Resource utilization estimates for hardware accelerators

Resource Used | Total % Utilization
DSP 0 220 0
BRAM il 140 0.71
LUT 816 53200 153
FF 308 106400 0.29

Figure B.4: Estimated performance results

84

7. To get the complete performance metrics for SDSoC implementation, repeat
from step 1 to step 5, but in step 5, then de-select the “Estimated
Performance” checkpoint shown in figure B.5 then, from “Project” = select
“Build ALL”, the process of building project starts as shown in figure B.4.

% turbo5 2 | g subdir.mk = g

SDSoC Project Overview - SDDebug

General Options

Project Name Data Motion Network Clock Frequency (MHz) | 100.00 v

%4
Platform ™ Generate Bitstream

™ Generate SD Card Image
0os:
| Insert AXI Performance Monitor

Root Function Enable Event Tracing

| Estimate Performance I

Hardware Functions AE X Build Configurations

Active Configuration |SDDebug v | |=¢ | ¥ |®
encode_n2 ICLo(kFrsqusn(y (MHz) |100.00 I

turbo_inter

Reports

%5 Data Motion Network Report = Performance Estimation Report

Figure B.5: Window project in non-estimated performance mode

8. After finish building the project, “SDDebug” directory is created inside the
project path. The SDSoC directory structure inside the project path is as shown
in figurer B.6.

SDSOC
project
[|
SDDebug src
sd_card src _sds
swstubs iprepo vhis p0

Figure B.6: SDOSC directory structure

85

The content of each directory is the following:

* The “swstubs” directory contains source file to handle data motion and source
file used to communicate between different hardware acceleration block.

* The “iprepo” directory is generated by Vivado HLS and contain a sub-directory
for each hardware function.

* The “vhls” directory is generated by Vivado HLS and contains the complete
HLS implementation for each function.

* The “p0” directory consists of “ipi” sub-directory that contains The Vivado
project (synthesis and implementation and results) and the generated bit file.
The project file located inside the “ipi” directory and has an extension of xpr.

86

Appendix C: SDSOC shell script

The required steps to implement project using SDSoC shell script are shown as
follows: -

1) Create directory “Ite_tx” which is a top project path directory. Copy the “src¢”
directory, the “info.txt” and “SDSOC.sh” to the “Ite_tx” directory.

2) The “sre¢” directory contains all the C/C++ source files to implement the LTE
PDSCH transmitter/receiver using SDSoC tool. The “SDSOC.sh” is a
developed automated script file used to execute SDSOC tool multiple times to
generate all required solution sets.

The “info.txt” is file describes the block function names that implemented as a
hardware acceleration block. For example, the following list shows the
“info.txt” of LTE PDSCH transmitter.

RE_mapper_dl_siso:lte_RE_mapper_dl_siso.c
modulator:lte_modulator.c
scrambler:lte_scrambler.c
rate_matching:lte_ratematching.c
interleaver:lte_interleaver.c
tx_turbo:tx_turbo.c

tx_seg turboenc:lte_segment.c

tx_crc:tx_crc.c

3) Open a terminal window and execute the script using “./SDSOC.sh” command.
4) Select either C project of C++ project (the current LTE project is C project)

5) Select type of Xilinx evaluation board either a default ZC706 evaluation board
or one of the following evaluation board shown in table C.1.

87

Table C.1: Supported SDSoC evaluation board

ID Type of evaluation board

1 ZC702

2 ZC706

3 Zed

4 Zybo

5 ZCul02 esl

6 ZCul02 es2

6) Select the operating system of platform either the default standalone operating
system or one of the operating system supported by sdsoc tool shown in table

C.2.

Table C.2: Supported SDSoC operating system

ID Type operating system
1 Linux
2 Standalone

Select the clock frequency used for synthesis and implementation hardware
accelerated function. The table C.3 shows supported frequencies by the SDSOC

tool.

Table C.3: synthesis frequency supported by SDSoC tool

ID HLS synthesis frequency (MHz)
0 166.666672
1 142.857132
2 100.000000
3 200.000000

7) Select the data motion operating frequency, the frequency depend in selection

of evaluation kit as shown in table C.4.

88

Table C.4: Data motion operating frequency

Platform ID data motion operating
frequency

ZC702 0 166
142
2 100
3 200
ZC706 0 166
1 142
2 100
3 200
Zed 0 166
1 142
2 100
3 200

Zybo 0 25
1 100

2 125

3 50
ZCul02 el 0 100
1 150
2 200
3 300
ZCul02 e2 0 100
1 150
2 200
3 300

8) The script generates all solution sets. Also, the script generates
“design_space.rpt” file that contains the performance metrics results

89

List C.1: SDSoC.sh

#!/bin/bash

#Functions definition
create makefile() {

echo 'APPSOURCES = ' Sls*. Sext>Makefile

echo 'EXECUTABLE = out.elf'>>Makefile

echo 'CC = '"SCC' ' SSDSFLAGS>>Makefile

echo 'CFLAGS = -03 -c'>>Makefile

echo 'CFLAGS += -MMD -MP -ME"S$S (@:%.0=%.d)"'>>Makefile
echo '"LFLAGS = -03 —1lm'>>Makefile

echo 'OBJECTS := $ (APPSOURCES:.'Sext'=.0) '>>Makefile
echo 'DEPS := $(OBJECTS:.o=.d) ">>Makefile

echo '.PHONY: all clean ultraclean'>>Makefile

echo 'all: S{EXECUTABLE} '>>Makefile

echo 'S{EXECUTABLE}: S{OBJECTS}'>>Makefile

echo $'\tS{CC} S{LFLAGS} $” -o S@'>>Makefile

echo '-include S${DEPS}'>>Makefile

echo '%.0: %.'Sext>>Makefile

echo S$'\t${CC} S{CFLAGS} $" -o S$@'>>Makefile

echo 'clean: '>>Makefile

echo S$'\tS$S{RM} S{EXECUTABLE} S{OBJECTS} *.d'>>Makefile

echo 'ultraclean: clean'>>Makefile

echo $'\tS$S{RM} S{EXECUTABLE}.bit'>>Makefile

echo $'\tS${RM} -rf sds sd card'>>Makefile
return O

}

#Ask if C or C++ project
#Makefile format changes according project type
echo $'C or C++ project?\nl)C project\n2)C++ project?'
read choice
if [Schoice = 1]

then
ext="'c'
CC='sdscc'
elif [Schoice = 2]
then
ext="cpp'
CC="sds++'
fi

echo
"HefhhA A A A A A S

90

#Choose 0OS
echo $'Default operating system is standalonel\nchange 0S ? [y/n]'
read choice
if [Schoice = vy]
then
echo $'Available operating systems are:
linux, freertos, standalone\nchoosen 0S: '
read choice

0S=$choice
elif [Schoice = n]
then

OS='standalone'
fi

echo
ThH AR A A A A T

#choose HW synthesis clock frequency

echo $'Choose HW synthesis clock\navaliable CLK IDs are
0,1,2,3\nclock frequency values differ based on platform\nfor more
information check Xilinx documents'

echo 'Choosen CLK ID: '

read choice

CLK_ID=$choice

echo

THAH AR A AR AR

#choose data network clock frequency

echo $'Choose data network clock\navaliable CLK IDs are
0,1,2,3\ndata network clock frequency values differ based on
platform\nfor more information check Xilinx documents'

echo 'Choosen DMCCLK ID: '

read choice

DMCCLK_ID=Schoice

echo

AR R A R R R T

#Create different solutions

#list C/C++ functions which will be compiled in both modes (HW and
SW) in array

#get number of functions from number of lines in file
function_count=§{(catiinforExEliwel=T)

i=0

while [[$i -1t $function count]]

do
func[©1]=$(head -"§(echo "$i+1"|bc)" info.txt|tail -1 |cut
((i++))

done

91

#then compute the number of C/C++ funcions in current directory and
the number of HW/SW combinations and loop on combinations
combination num="S$ (echo 27Sfunction count |[bc)"
i=0
while [$i -1t $combination num]
do
#make directory for solution and create Makefile
mkdir ./solution $i
fconvert solution number to binary to determine how each
C/C++ is compiled (HW/SW)
tmp="$ (echo "obase=2;$1"|bc)"
function mode="$ (echo S (printf "%0"S (echo $function count)"d"
Stmp)) "
#loop on functions to generate HardWare options field
in the sdscc/sds++ command synopsis
j=0
HW options str=" "
while [§j -1t $function count]
do
#HW options are passed to sdscc/sds++ compiler in

if [[${function mode:$j:1} = 1 11;

then
tile name=§(cat info.txtlgEep w

HW options_ str=SHW options str' -sds-hw

' FECECISSNN ' POESNESRE) ' c1xid 'SCLK_ID' -sds-end
fi

the Makefile

(€ 3++))

done

#Two design flows will be followed, performance estimation
flow and traditional flow
#performance estimation flow is used for latency estimation
and speed up
#traditional flow is used to create SDCard files and get
area,power info.
if [$i -1t 10]
then
line="###########4###### solution 'Si'
FHAf AR
elif [$i -1t 100]
then
line="######### 444444444 solution 'Si'
FHHFH AR H AR SHSSE

else
line="############4#4### solution 'S1"
FHAfd A
fi

(=Yoo Vo N b i o i i i i i
echo $line
echo '"####HFHHFHHFHHFHHFSHFSHFSHFSHFSHFSHFSHFSHHSHFSHHS S

92

#***‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*‘k*‘k*

#2)Traditional flow

mkdir ./solution $i/reg flow

cp -r src/* ./solution $i/reg flow

cd ./solution Si/reg flow && touch Makefile

SDSFLAGS=' -sds-pf 'Splatform' 'SHW options str' -target-os
'$0S' -dmclkid 'SDMCCLK ID

create makefile

make -f Makefile

#Generate design space exploration report

touch design_space.rpt

echo 'This file is generated by SDSoC script'>design space.rpt
echo 'Author: Mahmoud M.Kishky'>>design space.rpt

echo "+-—--——- t-————————————————— t————————————— t-———————————— +-—-
—————————— +">>design_space.rpt

printf "| %5s %16s $12s $12s $11ls | \n" 'Sol#' 'Slice
Logic' 'DSPs' 'Latency' 'Power (W) " >>design space.rpt
echo "+--—————- e tmm——————————— Fm—m +-==

i=1
while [$i -1t $combination num]
do
#power Calculation
total power="S (cat
./solution $i/reg flow/ sds/p0O/ipi/*.runs/impl 1/* power routed.rpt
|grep Total\ On-Chip\ Power -w |cut -d'|' -f 3)"
pow[$i]="$ (echo " ($total power)"|bc)"

#Area Calculation

slice luts[$i]="$ (cat
./solution $i/reg flow/ sds/p0/ipi/*.runs/impl 1/* power routed.rpt
|grep Slice\ Logic -w |cut -d'|' -f 4)"

DSP[$1]="5 (cat
./solution $i/reg flow/ sds/p0/ipi/*.runs/impl 1/* utilization plac
ed.rpt|grep DSPs -w |cut -d'|' -£ 3)"

#write in perfromance report file
printf "| %5s | $16s | %12s | %12s | %$1ls | \n" $i

>>design space.rpt

#write in perfromance report file
printf "| %5s | $16s | %12s | %12s | %$1ls | \n" $i
${DSP[$i]} ${latency[$il}
>>design space.rpt
((i++))
done
echo "+--—————- F—— F——————— F——————— +-—=

93

List C.2: cost_calc.sh

#!/bin/bash
#Author: Mahmoud M.Kishky

touch cost.rpt

echo "+------- e +">>cost.rpt
printf "| %5s | %23s [\n" 'Sol#! 'cost'>>cost.rpt
echo "+------- Fom +">>cost.rpt

sol_count=$(cat valid_solution.rpt |we -1)

i=0
while [[$i -1t $sol count]]
do

power="5 (cat
./validSol/solution $sol num/ sds/p0/ipi/*.runs/impl 1/* power rout
ed.rpt|grep Total\ On-Chip\ Power -w |cut -d'|' -f 3)"

area="5 (cat
./validSol/solution $sol num/ sds/p0/ipi/*.runs/impl 1/* power rout
ed.rpt|grep Slice\ Logic -w |cut -d'|' -f 4)"

latency="5 (cat
./perfEst/solution $sol num/ sds/est/console out.log |grep
Estimated\ hardware\ latency -w |cut -d'=' -f 2)"

tl=
t2=
t3=
cost[5i]=
#write in perfromance report file
printf "| %5s | %23s |\n" $sol num SESSEISEN >>cost.rpt

((i++))

done

echo "+--—————- Fm—— = +">>cost.rpt

#sort according to cost
#print least cost solution/s

IFS=S'\n'

least cost="S (echo "S{cost[*]}" | sort -n |head -1)"
echo "least cost solution/s:">>cost.rpt

cat cost.rpt |grep $1east_cost -wleut -d'|" -f 2 |tr '"\n'

', '>>cost.rpt
echo $'\n'>>cost.rpt

94

uadlal)

Al sda i opyglaal cbiatll e EH 315 (SoC) 486, e i) delia
a0 didag e XEN dal e 2 DU dsgaall 5 asacaill 5 adasll adaill e bl 7y
s ol palal)elld) diLeaY L 28Ual) e olaY) Ganlie 358 e el

Lnl) Jaf e Baiee 5 Al 8y00 () 2 lasY)) 55 Lee ligKal

L) arecail dacadia ALalSie By A, (SDSOC) Blessall 1Y) (Xilink) ASHd iola
Cillsal) dghene g zllaall G AlalSie duaie e diise AelSia dais e (SoC) 436, e
Loise ALlSie duate o 86, o dadal) ol saas 00 61 sda aak LAyl AL
ol e Ll) ABLaYL daepll AL o) dbginn g llaall (g (oS5 daaia o

Aigye ST 5o sl anenaill Llee Jrag 38 5 5aea

el & @l) 28LaY L (SDS0C) Blacsall 813Y) Jae Ayl maiagi o, dngybY) sda 8
(SoC) &3l e alaill aveeatl 81 Jsdi Jal (e 5as & JA0Y dajite Jac dayyh
aled) g dalal)l Jie ola¥) Ganlie Ao daas 298 384

Ginh o jdlae 3ok (LTE) bl dead) 358 J Jliia) 5 Jll) ol ppess
Cunlie 358 Jumdl @iat Y Laid) sl) ALYl laea & Al suaad) Jeall
el

(gpoal) dsaallue deal dess " HEVEED

1988\09\21 : Dhaal) el

Gran tdadal)

2012\10\01 sl)l

. L, O rgeall gyl

Lyl cVLY) 5 by SN duaxia sl

polall yiuale :da)

1098l
Qi dase Cpua deaf Lo
has (s (hbaas G 2

10 giadiaall
(il Ciydia Uil dene Cpes deaf L]
W\ 5 ALl daals — Aunigh) 4S5 il g FEIY) audl & S0
e (shbuas (e gilaan (pas 03
A‘ﬁp 5l dadls — Auaigh ASH il g IV andl b dcLue Sl
(81 el b danse cpal ad
Wzgafmau\._;_umuﬂxsga@,)my\ ol 3
%/ sl (aladl saallye il gjes .o

5 Ul Al daaladl — AN 5 el g NI sy a0 lina Ui
Al Oleie
el plasiuly LTE PDSCH J Jlad Jiis Jal (e o131 Gaslie Cipaitia o ading (313 g3l pranad
SDSoC

adlall calalst)
SDSoC; Xilinx; SoC; LTE; PDSCH; FPGA

Halluyl) (adla

e (S0C) 4 e Aalai¥) mpacad] daradic AlalSie A2 4 5 (SDSOC) slassall 31351 (Xilinx) 4S s sl
s 01 5101 03 w25, Aava yull ALEN il) 4 s g gellaall (2 AlalSie A o Ayine ALilSie Aiaia
AL il gl 46 ghaaa 5 llaall o (ST Auale o Anise AlalSie daie o A8l Lo AakiY) sl

2y sk pyaas i dllh) ALY (SDSOC) lasedl) 8131 Jae i sho granin i g3 | 45 5 paY) 020 (b, Aol
oo e 358 385 (SOC) Al o 2Uail pparatl 815Y1 ol ol (o Bpan 45 JAsY da Bl Joo

oo Hila ki€) il 3Sas i) g Qs Y1 ol pacai o3 Aslunall g @3LLal) (Jio ¢laY) alio
1Y) e 398 Jumdl (3ia3) Aaid) sl) AilaYl Lpapenad i Al Sapaadl Jaall 4y)l

J Jlad Jiad Jal e s 10 ualia @iyt o dainy A g L aranal
SDSOC gt pliiiuls LTE PDSCH

Alac

PR C AL JETPEN [K¥ 2ea daaa

50 dadla - Luaaigh A0S) dadia Al
a0 Sle Jpaal) Cldlia (o ¢ 328
poiadl sfiuale
o
A Sl cNLaiY) g il g ST ddia

Ointiaall Aad (e ading
(st) A e Jld dana (paewn daal 1 gaSal Ay

(\f"/!?/\?\, i Al — Aunigh A8, il S 3 3
B uﬁbaaumulhmuua 1 osasal)

v 8 e
] 3}&1%&-&3@\@&&@3)351‘21M@mm3m\

Sl atiad i daaa (paal 1 giSAl Aia)
Ca)s Boall dads — Aangll ALK il IV aud A S

L“,,___)\A.“ Caieall Lallue Call g e 1 o9asal) Ay
(__{:_A/{’// - ¢ BJALQ}LI @Ld\j\ A.Q.A\A.“ — Q\S.hﬁ‘ E) Lbl:u_g‘):\sr?“ Gmié.a KL IV .J\:b.u?

BJ_A\.H\ Azl - Lu__\g_“ K__:\XS
Aol uandn) sean - B mal)
2019

J Jlad Jad Jal cra 1Y) Gualiia il pitia o daing (03 g3 Jlai pranal
SDSoC gl » pldiuly LTE PDSCH

Alac |

$992d) Laallae daal daaa

5l Aaala - duaigll A) daaie AL
a0 o Jyaadl Clillie e o 328
polad) iale
ol
A Sl LAY g il g S Aain

il) Caa

shhan Ga dhas a3 Jald dana s daa) o

il g SV anid 8 aeline iad Sl g SIY) and b il
L 5eSh YL A1 ,6SI LAY

5 Al Gaala - duiglh 4 5l dadls - duaigll 408

— A

B)_A\i“ Axala - Lumei\ i<
Al me A sgen -3 5l
2019

o read

J Jd Jiad Jal (e £ 10Y) (unlia @l e o Ading 13 g1 b avenal
SDSoC zti aladiuly LTE PDSCH

Alac |

¢ 94d) Laallae aaf dasa

3 Lal) daala - dudigh 0) denie Al
a2 o Jpanll Cldlaia (e 6 58
poiadl iesala
e
A sl aNLalY) g el g iKY Awaia

SHG” aala - Al 4K
A) e) sean - 3 5]l
2019

	p1
	p2
	Scanned Document1
	Scanned Document2
	Scanned Document3

	p3
	p4
	1
	2
	3

	p5

