
FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2019

AUTOMATED PERFORMANCE-BASED DESIGN
TECHNIQUE FOR AN EFFICIENT LTE PDSCH

IMPLEMENTATION USING SDSOC TOOL

By

Mohammed Ahmed Abd Elhamid Eladawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

ii

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has

been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and

have cited them in the references Section.

Name: Date:

Signature:

iii

Acknowledgments

I would like to express my appreciation to my thesis advisor Dr. Hassan Mustafa

for his support and guidance. He has been a constant source of inspiration and

has provided consistent support and valuable suggestion throughout this project

without which this work would not have been possible.

I would like to express my heartfelt gratitude to my family for their

encouragement and support without which I would not have come so far.

Finally, I would like to thank all my friends for their invaluable support and

cooperation.

iv

Dedication

“I'm not interested in how things were, or how we ended up where we are now.

What interests me is what we are now and what we will be.”

Dr. Ahmed Khaled Tawfik

v

Table of Contents

ACKNOWLEDGMENTS ... I

DEDICATION ..IV

TABLE OF CONTENTS .. V

LIST OF TABLES ... VII

LIST OF FIGURES ... VIII

NOMENCLATURE .. X

LIST OF PUBLICATIONS ... XII

ABSTRACT .. XIII

CHAPTER 1 : INTRODUCTION .. 1

1.1. LONG TERM EVALUATION (LTE) ... 2
1.2. FIELD PROGRAMMABLE GATE ARRAY (FPGA) .. 3
1.3. SDSOC .. 3
1.4. ORGANIZATION OF THE THESIS .. 4

CHAPTER 2 : FPGA STRUCTURE AND LTE ARCHITECTURE 5

2.1. FPGA STRUCTURE ... 5
2.1.1. Programmable input and output block unit .. 6
2.1.2. Configurable logic block .. 7
2.1.3. Digital clock management module ... 8
2.1.4. Embedded block RAM ... 9
2.1.5. Routing resource .. 9
2.1.6. Embedded functional unit .. 10

2.2. LTE ARCHITECTURE ... 11
2.2.1. LTE frame structure ... 12
2.2.2. LTE PDSCH transmitter and receiver model ... 13

2.2.2.1. CRC addition and CRC removing ... 13
2.2.2.2. Segmentation and de-segmentation ... 15
2.2.2.3. Channel coding and channel de-coding ... 19
2.2.2.4. Interleaver and de-interleaver .. 24
2.2.2.5. Rate matching and rate de-matching ... 24
2.2.2.6. Scrambler and de-scrambler .. 27
2.2.2.7. Modulator and de-modulator ... 28
2.2.2.8. Resource element mapper and resource element de-mapper ... 32

CHAPTER 3 : SDSOC ... 34

3.1. SDSOC PRAGMA SPECIFICATION ... 34
3.1.1. Function optimization .. 35
3.1.2. Loop optimizations ... 35
3.1.3. Array optimizations .. 36
3.1.4. Interface management .. 37

vi

3.2. TYPICAL HW/SW CO-DESIGN DESIGN FLOW USING SDSOC DESIGN FLOW 38
3.3. PROPOSED AUTOMATED PERFORMANCE-BASED DESIGN TECHNIQUE 41

CHAPTER 4 : IMPLEMENTION AND RESLULTS .. 47

4.1. IMPLEMENTATION OF TURBO ENCODER USING SDSCOC TOOL 47
4.1.1. Turbo encoder block diagram .. 47
4.1.2. Turbo encoder implementation .. 48
4.1.3. Configurable Embedded FPGA Platform .. 49
4.1.4. Results and Comparative Studies ... 50

4.1.4.1. Hardware Utilization for turbo encoder implementation ... 50
4.1.4.2. Dynamic power for turbo encoder implementation ... 51
4.1.4.3. Hardware acceleration for turbo encoder implementation ... 52
4.1.4.4. Figure of Merit for turbo encoder implementation .. 53

4.2. IMPLEMENTATION OF THE LTE PDSCH TRANSMITTER AND

RECEIVER USING SDSOC TOOL... 54
4.2.1. LTE PDSCH transmitter implementation .. 54

4.2.1.1. Configurable embedded FPGA platform for LTE PDSCH transmitter ... 55
4.2.2. LTE PDSCH receiver implementation ... 56

4.2.2.1. Configurable embedded FPGA platform for LTE PDSCH receiver .. 57
4.2.3. Constraints solution .. 59
4.2.4. Results and comparative studies ... 60

4.2.4.1. LTE TX implementation results .. 60
4.2.4.1.1. Hardware utilization for the LTE TX implementation ... 60
4.2.4.1.2. Latency for the LTE TX implementation .. 61
4.2.4.1.3. Dynamic Power for the LTE TX implementation ... 62
4.2.4.1.4. Hardware acceleration for the LTE TX implementation .. 63
4.2.4.1.5. FoM for the LTE TX implementation ... 64

4.2.4.2. LTE RX implementation results .. 65
4.2.4.2.1. Hardware utilization for the LTE T RX implementation .. 65
4.2.4.2.2. Latency for the LTE RX implementation .. 66
4.2.4.2.3. Dynamic Power for the LTE RX implementation ... 67
4.2.4.2.4. Hardware acceleration for the LTE RX implementation ... 68
4.2.4.2.5. FoM for the LTE RX implementation ... 69

4.2.4.3. Constraints solution examples results .. 70

CONCLUSIONS ... 71

FUTURE WORK ... 73

REFERENCES ... 74

APPENDIX A: MODULATION LOOKUP TABLE .. 74

APPENDIX B: IMPLEMENT SDSOC PROJECT MANUALLY STEPS 82

APPENDIX C: SDSOC SHELL SCRIPT .. 87

vii

List of Tables

Table 2.1: LTE standard different bandwidths ... 11
Table 2.2: Code block size for segmentations ... 16
Table 2.3: Turbo code interalver parameter .. 21
Table 2.4: Inter-column permutation matric for sub-block interleaver 25
Table 2.5: QBSK modulation lookup table .. 29
Table 2.6: 16QAM modulation lookup table .. 29
Table 2.7: Soft decision QPSK demodulation lookup table 31
Table 3.1: Mapping of C-code to RTL construct 34
Table 3.2: Three function configuration scenario example 43
Table 3.3: Estimated performance list for selected combination 44
Table 3.4: Estimated performance list for all combination 45
Table 4.1: Turbo encoder sub-function configuration scenarios 48
Table 4.2: LTE PDSCH transmitter sub-function configuration scenario . 55
Table 4.3: LTE PDSCH receiver sub-function configuration scenario 58
Table 4.4: Constraints solution examples ... 59
Table 4.5: Constraints solution examples results 71
Table C.1: Supported SDSoC evaluation board ... 88
Table C.2: Supported SDSoC operating system ... 88
Table C.3: synthesis frequency supported by SDSoC tool 88
Table C.4: Data motion operating frequency ... 89

viii

List of Figures

Figure 2.1: Internal structure of the FPGA chip ... 6
Figure 2.2: Internal structure of IOB .. 7
Figure 2.3: Internal structure of slice .. 8
Figure 2.4: Structure of the LTE frame in FDD mode 12
Figure 2.5: LTE PDSCH transmitter and receiver model 13
Figure 2.6: Role of CRC block in transmitter and receiver 14
Figure 2.7:Code block segmentation process ... 15
Figure 2.8: Code block De-segmentation ... 19
Figure 2.9: Turbo encoder block diagram .. 19
Figure 2.10: Turbo decoder block diagram .. 23
Figure 2.11: Rate matching block diagram ... 24
Figure 2.12: Rate de-matching block diagram ... 26
Figure 2.13: Constellation diagrams of modulation schemes 29
Figure 2.14: LTE resource grid ... 33
Figure 3.1: Memory interface management .. 37
Figure 3.2: FIFO Interface management .. 38
Figure 3.3: Typical HW/SW co-design flow using SDSoC 38
Figure 3.4: SDSoC design flow .. 39
Figure 3.5: Embedded FPGA platform .. 40
Figure 3.6: Performance-based design technique flow chart 42
Figure 4.1: Turbo encoder block diagram .. 47
Figure 4.2: Configurable embedded FPGA platform for turbo encoder 49
Figure 4.3: Hardware utilization for turbo encoder implementation 50
Figure 4.4: Dynamic power for turbo encoder implementation 51
Figure 4.5: Hardware acceleration for turbo encoder implementation 52
Figure 4.6: FoM for turbo encoder implementation 53
Figure 4.7: Configurable embedded FPGA platform for the LTE PDSCH
transmitter ... 56
Figure 4.8: Configurable embedded FPGA platform for the LTE PDSCH
receiver .. 57
Figure 4.9: Hardware utilization for the LTE TX implementation 61
Figure 4.10: Latency for the LTE TX implementation 62
Figure 4.11: Dynamic power for the LTE TX implementation 63
Figure 4.12: Hardware acceleration for the LTE TX implementation 64
Figure 4.13: FoM for the LTE TX implementation 65
Figure 4.14: Hardware utilization for the LTE RX implementation 66
Figure 4.15: latency for the LTE RX implementation 67
Figure 4.16: Dynamic power for the LTE RX implementation 68
Figure 4.17: Hardware acceleration for the LTE T RX implementation .. 69

ix

Figure 4.18: FoM for the LTE RX implementation 70
Figure B.1: Project naming and platform selection and OS selection 82
Figure B.2; Empty project Selection .. 83
Figure B.3: project window in estimated performance mode 84
Figure B.4: Estimated performance results .. 84
Figure B.5: Window project in non-estimated performance mode 85
Figure B.6: SDOSC directory structure .. 85

x

Nomenclature

3GPP 3rd Generation Partnership Project

AMC Adaptive Modulation and Coding

ASIC Application-Specific Integrated Circuit

AWGN Additive White Gaussian Noise

B.W Bandwith

BCJR Bahl-Cocke-Jelinek-Raviv

CAM Content Address Memory

CLB Configurable Logic Block

CPLD Complex Programmable Logic Device

CPU Central Processor Unite

CRC Cyclic Redundancy Check

DCM Digital Clock Management
EEPROM Electrically Erasable Programmable Read-Only Memory

FDD Frequency Division Duplex

FFT Fast Fourier Transform

FoM Figure of Merit

FPGA Field Programmable Gate Array

GAL Generic Array Logic

HLS High Level Synthesis

IOB Input-Output Block

IoT Internet of Things

LCA Logic Cell Array

LTE Long-Term Evolution

LUT Look-Up Table

MAP Maximum A Posteriori

MIMO Multiple Input Multiple Output

NB-IoT Narrowband IoT

OFDM Orthogonal Frequency Multiplexing

PAL Programmable Array Logic

PBCH Physical Broadcast Channel

PCFICH Physical Control Format Indicator Channel

PDCCH Physical Downlink Control Channel

PDR Partial Dynamic Reconfiguration

PDSCH Physical Downlink Shared CHannel

xi

PDSCH Physical Downlink Shared CHannel

PHICH Physical Hybrid Indicator Channel

PMC Performance Metrics Cost

PMCH Physical Multicast Channel

PROM Programmable Read Only Memory

PSS Primary synchronization signals

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RSC Recursive Systematic Convolution

RTL Register Transfer Level

SDK Software Development Kit

SDSoC Software Defined System-on-Chip

SISO Single Input Single Output

SNR Signal to Noise Ratio

SoC Systems on Chip

SSS Secondary Synchronization Signals

TDD Time Division Duplex

xii

LIST OF PUBLICATIONS

1. Mohamed Eladawy, Ahmed Kamal, Hassan Mostafa, Sameh Said,
“Performance Evaluation of Turbo Encoder Implementation on a
Heterogeneous FPGA-CPU Platform Using SDSoC”, International
Conference on Advanced Control Circuits Systems (ACCS) Systems &
International Conference on New Paradigms in Electronics and Information
Technology (PEIT), 2017.

2. Mohamed Eladawy, Mahmoud Kishky, Hassan Mostafa, Sameh Said,
“Automated Performance Based Design Technique for an efficient LTE
PDSCH Implementation Using SDSoC Tool”. International Journal of
Communication Systems (IJCS), 2018.

xiii

Abstract

Systems on Chip (SoC) creates massive design challenges for the SoC-
based designers. The design challenges start from functional complexity,
architectural design, verification tests and finally meeting performance
constraints. Furthermore, the heterogeneity of components and tools introduce
long and large design cycles. In addition, the hardware-software co-design
includes complicated design process. The design complexity includes the
following: first, co-specification, where the roles of software and hardware in
implementing system functionality are specified and the implementation is
assigned to either software or hardware. Second, co-development, where the
software, hardware, and interfaces are developed. Third, co-verification where the
optimization and refining of the SW/HW components are performed to meet the
design constraints.

The Software Defined System on Chip (SDSoC) tool is developed by Xilinx to
create custom SoC on a heterogeneous FPGA-CPU platform. The SDSoC tool
offers a fast and short design cycle for heterogeneous FPGA-CPU platform
development. The SDSoC tool also integrates multiple tools to make the co-design
of the hardware-software more flexible.

In this thesis, the typical SDSoC design flow is presented. In addition, the thesis
provides a new automated SDSoc design technique to design SoC on a
heterogeneous FPGA-CPU platform based on performance metrics such as area,
power ...etc. The new design technique used to explore the performance metrics
for all possible combination between software implementation and hardware-
accelerated implementation for "n” functions. Moreover, the new design technique
used to determine platforms that achieve performance metrics and to select the
platform that achieves the best overall performance.

As a case study, design of Physical Downlink Shared CHannel (PDSCH) in Long-
Term Evolution (LTE) is employed. The architecture of transmitter and receiver
of the LTE PDSCH are studied and the LTE PDSCH transmitter/receiver software
functions are written using C programming language.

The objective of this thesis is to implement the LTE PDSCH transmitter functions
and the LTE PDSCH receiver functions using SDSoC tool, to select the platform
that meets performance metrics constraints, and to select the platform that
achieves the best overall performance.

1

Chapter 1 : Introduction

Smart homes, automated vehicles, and Internet of Things (IoT) are examples
of electronic products that are almost involved in every aspect of our lives. The
rapid growth of the electronics industry encourages developers to find faster and
efficient design methods to decrease time-market requirements for design and
system development cycle [1].

During the last few years, the electronics industry shifted from the Application
Specific Integrated Circuit (ASIC) to SoC design production to pursue the large
production of electronic devices [2]. The SoCs designer should build a product
with an efficient architecture that is a key to ensure that system design meets its
performance requirements. Design an efficient architecture might consume a lot
of time, cost and a very long and complicated design cycle.

Besides that, hardware/software partitioning method was introduced by Edwards
and Forrest in reference [3]. The main objective of hardware/software codesign
method is to produce systems containing an optimum balance of hardware and
software components which work together to achieve a specified behavior and
fulfill specified design constraints. Hardware/software codesign examine the
parallel method to design hardware and software components of complex
electronic systems [4]. Hardware/software codesign method tries to achieve the
corporation of hardware and software with the goal to optimize constraints such
as power, area, ..., etc. and it targets to reduce the time-to-market frame
significantly.

Vista™ platform is a tool introduced by Mentor graphic company used in
hardware/software codesign [5]. Vista Virtual Prototyping provides an early
functional model of the hardware to software engineers even before the hardware
design is implemented in RTL. It can run software on embedded processor models
at speeds par with physical hardware boards, providing sufficiently fast simulation
models for OS and application software validation. The features included in the
tool are as follows: Vista tool provides architecture design and exploration, Vista
tool allows hardware/software tradeoffs analysis, Vista tool supports an early
assessment of and finally Vista tool includes a virtual platform for software
integration and validation.

Xilinx announces SDSoC tool target developing SoC on a heterogeneous FPGA-
CPU platform [6]. In this thesis, hardware-software co-design of LTE PDSCH
transmitter and receiver synthesized by SDSoC for heterogeneous FPGA-CPU
platform is proposed.

2

1.1. LONG TERM EVALUATION (LTE)

Connecting to the Internet wirelessly through a cell phone is one of the
greatest technological innovations of the last decade of years. Wireless
communication is an old idea that began with Morse signals down to the fourth-
generation technology. The fast growth of mobile phone markets promises the 3rd
Generation Partnership Project (3GPP) to develop the Long-Term Evolution
(LTE) standard for high-speed wireless communication for mobile devices [7].

LTE is a mobile communication standard is developed to improve the
mobile phone standard to follow up with future technology evolutions. The LTE
network supported by a number of key technologies including Orthogonal
Frequency Multiplexing (OFDM) [8], multi-carrier modulation technology,
Adaptive Modulation and Coding (AMC) technology, Multiple Input Multiple
Output (MIMO) and smart antenna technology [9]. The LTE standard supports
users and telecommunication companies’ requirements [10].

The requirements include reducing cost per bit use of current and new frequency
bands, simplification architecture, providing more services at lower cost and
reasonable power consumption. The objectives of the LTE standard are
increasing efficiency spectrum utilization, improving system capacity and
increasing data rate up to 100 Mbps.

The LTE mobile communication system has the following features:

 Faster transfer rate: the LTE supports data rate up to 2Mbps for large-
scale high-speed mobile users (250km/h), 20Mbps for medium-speed
mobile users (60km/h), and 100Mbps for low-speed mobile users (indoor
or pedestrian) [9].

 Efficient spectrum utilization: the LTE uses many powerful breakthrough
technologies in the development process. The use of wireless spectrum is
much more efficient than the second and third generation systems, and the
speed is quite fast.

 Wider network spectrum: each LTE channel occupies 100MHz or more
bandwidth, while the bandwidth of the 3G network is between 5~20MH [10].

 More flexibility: the LTE system adopts intelligent technology that used to
adapt allocation resources and adopt intelligent signal processing technology
to transmit and receive signals in various complex environments with
different channel conditions.

3

 Higher quality multimedia communication: the LTE network supports
multimedia communication services include voice, data, video, …etc. A
large amount of information is transmitted through the broadband channel
allowing users to connect to the system at any time and any location.

 Smoother compatibility: the LTE systems have global roaming, open
interfaces, interconnection with multiple networks, diversification of
terminals and a smooth transition from the second generation.

1.2. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

 FPGA is a product of further development based on programmable devices
such as Programmable Array Logic (PAL), Generic Array Logic (GAL) and
Complex Programmable Logic Device (CPLD) [11]. The FPGA has powerful
processing functions and complete design freedom so that its industry rival ASIC
designers use FPGAs to simulate the entire system at board level before they
manufacture wafers. FPGA proposes an effective electronic design by integrating
board design, programmable logic design, and software development.

Since the birth of FPGAs, electronic product design evolves into a programmable
logic design and embedded software design. At the same time, electronic design
shifted to be more of a "soft" design [12]. The design through the development of
language and tools and FPGA become this a "soft" design carrier.

Availability of low-cost and large-scale programmable device in the form of an
FPGA makes it possible for designers to transfer all system core functions to a
soft design and take advantage of the soft design. These "soft" design advantages
include: easier to protect system functions from being copied or reverse
engineered, and easier to modify the functions architecture. For that reason, "soft"
design becoming the development direction of the electronic design.

1.3. SDSOC

The fast-growing of IoT devices promises electronic devices developers to

find a rapid solution for developing IoT products to the markets [13]. Xilinx

announces Software Defined System-on-Chip (SDSoC) tool target developing IoT

products and creates custom SoC on a heterogeneous FPGA-CPU platform.

4

The SDSoC tool provides a short design cycle to develop heterogeneous FPGA-

CPU platform with simple interface logic generated by the tool to handle the data

flow between hardware and software. In addition, SDSoC supports estimating

performance, hardware utilization and latency calculations that make developing

design short and fast [14].

1.4. ORGANIZATION OF THE THESIS

Section 2 divided into two topics. First, section 2.1 about the FPGA
structure and working principle. Second, section 2.2 about the LTE and illustrates
in details the architecture of the LTE PDSCH transmitter and receiver chain used
in this thesis.

Section 3 about SDSoC tool and explains the typical design flow using SDSoC
and the proposed automated performance-based adaptive design technique.

Section 4 shows the implementation and comparative studies results. The
implementation of turbo encoder is presented as a case study to test the SDSoC
tool and to explore the different performance metrics used for design. In addition,
the implementation of the LTE PDSCH transmitter and receiver using SDSoC tool
is presented as a case study for the new design technique developed in this work.

In conclusion, the main achievements are highlighted together with the future lines
of this work

5

Chapter 2 : FPGA STRUCTURE AND LTE
ARCHITECTURE

2.1. FPGA STRUCTURE

The first generation of programmable devices is familiar with
Programmable Read Only Memory (PROM), Erasable Programmable Read Only
Memory (EPROM) and Electrically Erasable Programmable Read-Only Memory
(EEPROM) [15]. The programmable principle of these programmable devices is
to change the carrier density inside the triode or MOS transistor by applying a high
voltage or ultraviolet light. These devices are called programmable, but it is
difficult to achieve single-programmable or programmable state.

FPGA is different because it adopts a new concept such as Logic Cell Array
(LCA), which includes Configurable Logic Block (CLB), Input-Output Block
(IOB) and Interconnect [16]. The programming of the FPGA changes the trigger
state of the CLB and IOB, so that multiple repeated programming is realized. Most
FPGAs use a Look-Up Table (LUT) structure based on SRAM technology, and
some military and aerospace-class FPGAs use Flash or fuse and anti-fuse process
look-up table structures. The repeated configuration of the FPGA is accomplished
by programming the file to change the contents of the lookup table.

The designer uses different programming methods according to different
configuration modes. The design of FPGAs are based on the SRAM process and
need to connect an off-chip memory to save the program. At power-on, the FPGA
reads the data in the external memory into the on-chip RAM. After the
configuration is completed, FPGA enters the working state. After turned off the
power of FPGA, the FPGA returns to the white chip, and the internal logic
disappears.

In this way, the FPGAs are programmed repeatedly without a dedicated FPGA
programmer. However, the design of some FPGAs are based on anti-fuse
technology FPGAs, which have the advantages of radiation resistance, high and
low-temperature resistance, low power consumption and high speed. They are
widely used in military and aerospace applications, but such FPGAs are not
repeatedly erased [17].

Figure 2.1 shows the main FPGA components which consist of the following
parts: programmable Input and Output Block (IOB) unit, Configurable Logic
Block (CLB), Digital Clock Management (DCM) module, embedded Block RAM
(BRAM), Switch Matrix (SW) for routing, and embedded functional unit [18].

6

Figure 2.1: Internal structure of the FPGA chip [18]

2.1.1. Programmable input and output block unit

The programmable Input/Output Block (IOB) unit is the interface part
between the chip and the external circuit. It performs the driving and matching
requirements of the input/output signals under different electrical characteristics.
The schematic structure of IOB is shown in Figure 2.2 [19].

The IOBs are designed to have a flexible software configuration and different
electrical standards [19]. The IOBs driving current is adjusted and the upper and
lower pull-down resistors are changed according to software configuration

In order to facilitate management and adaption to various device standards, IOBs
within the FPGA are designed in groups, and each group supports different IOB
standard independently. The IOB of the FPGA is divided into several banks. The
interface standard of each bank is determined by its interface supported voltage
level. The voltage level is depending on the FPGA generation and is coming down
as new generations come. The different voltage level supported by different FPGA
generations includes 5V, 3.3V, 2.5V, 1.8V, 1.5V and 1.2.V [18].

7

Figure 2.2: Internal structure of IOB [19]

2.1.2. Configurable logic block

CLB is the basic logical unit within the FPGA. The actual number and
characteristics of CLBs vary from device to device. In Xilinx's FPGA devices, the
CLB consists of multiple identical slices and additional logic. The CLB modules
not only used to implement combinatorial logic, timing logic but also as
distributed RAM and distributed ROM. Slice is the basic logical unit defined by
Xilinx company. The internal structure of the slice is shown in Figure 2.3. A slice
consists of two 4-input functions LUT, carry logic, arithmetic logic, storage logic
and function multiplexer [19].

LUT is typically viewed a RAM. For example, 4 input LUTs are used in FPGAs
viewed as a RAM with a 4-bit address line. When the user describes a logic circuit
through the schematic or HDL language, the FPGA development software
automatically calculates all possible results of the logic circuit and writes the truth
table to the RAM in advance. So, performing a logical operation is equivalent to
inputting an address to look up the table, finding out the content corresponding to
the address, and then outputting it.

The LUT has the same function as the logic circuit. However, LUTs have faster
execution speeds and larger scales. FPGAs device densities of LUT range from
tens of thousands to tens of millions of gates, allowing extremely complex times
sequence and logic combine logic circuit functions, so it is suitable for high-speed,
high-density high-end digital logic circuit design.

8

Figure 2.3: Internal structure of slice [19]

2.1.3. Digital clock management module

Digital clock management (DCM) is used on FPGAs for dealing with all
aspects of clock management [19]. Xilinx FPGAs have different DCM circuit
implementation includes a digital phase shifter, digital frequency synthesizer and
a delay-locked loop (DLL). DCM supports advanced clocking capabilities for
multiplying or dividing the incoming clock frequency to synthesize a new clock.
DCM also eliminates clock skew to improve the system performance and is able
to phase output clock shift to delay the incoming clock by a fraction of the clock
period.

9

2.1.4. Embedded block RAM

FPGAs have embedded block RAM (BRAM), which expands the range and
flexibility of FPGA applications hugely. BRAMs are used every time you need a
bunch of data to be stored on a chip. BRAMs are dedicated ram that does not use
any additional LUT in your design. The Block RAM is used as the following
configuration: A common storage structure such as single-port RAM, dual-port
RAM, Content Address memory (CAM), and FIFO. The amount of BRAM inside
the chip is also an important factor in selecting an FPGA chip [20].

2.1.5. Routing resource

The Switch Matrices (SM) routing resources (SM) is used to connect all the

cells inside the FPGA together. The length and process of the wires determine the
driving capability and transmission speed of the signals on the wires [21]. The
FPGA chip has a wealth of routing resources and is divided into four different
categories according to the process, length, width, and distribution.

 The first type is the global routing resource, which is used for the internal
global clock of the chip and the global reset/set wiring.

 The second type is the long-line resource, which is used to complete the
wiring of the high-speed signal between the chip Bank and the second
global clock signal.

 The third type is the short-term resources, which is used to complete the
logical interconnection and routing between basic logic cells.

 The fourth type is the distributed routing resources, which is used for
control signals such as proprietary clocks, resets … etc.

The designer does not need to select the routing resources directly. The place and
route router select the routing resources to connect the various module units
according to the topology and constraints of the input logical network table
automatically.

10

2.1.6. Embedded functional unit

The FPGAs chip manufacturers have integrated specialized hard cores
inside the chip to improve the FPGA performance [22]. The hardcore has powerful
FPGA processing is equivalent to the ASIC circuit. For example, dedicated
multipliers are integrated into FPGAs to increase the multiplication speed of
FPGAs. Many high-end FPGAs integrate serial-to-parallel transceivers reach tens
of Gbps, which used to implement communication bus and interface standards.

In addition, the new Xilinx FPGA generations consist of built-in PCI Express and
a Tristate Ethernet MAC hardcore (TEMAC) [18]. The Xilinx Tri-Mode Ethernet
MAC core is a parameterize core that is ideal for use in network equipment such
as switches and routers. The customizable TEMAC core enables system designers
to implement a wide range of integrated Ethernet designs, from low-cost 10/100
Ethernet to higher-performance 1GB ports. The TEMAC core design is compliant
with the IEEE 802.3 specification and operate in 1000Mbps, 100 Mbps, and 10
Mbps modes. In addition, it supports half-duplex and full-duplex operation.

Xilinx has not only integrated specialized hard cores but also Power PC series
CPUs such ARM. Through the platforms such as ARM, it is possible to develop
standard DSP processors and related applications to achieve the development
goals of SOC.

The hard-core refers to the netlist with planning information in the FPGA design.
Hard-core views as a soft-core with layout planning. A mixture of RTL code and
corresponding specific process netlist provides hard-core. The RTL description is
combined with a specific standard cell library to form a gate-level netlist, then
gate-level netlist used by the place-and-route tool [23]. The advantages of hard-
core are high flexibility and portability. The disadvantage of hard-core is that the
predictability of the module is low, there is a possibility of error in the subsequent
design, and there is a certain design risk.

On the other hand, the soft-core refers to the pre-integration register transfer level
(RTL) model. In the FPGA design, the soft-core is the hardware language
description of the circuit, including logical descriptions, netlists, and help
documentation. The soft-core is only functionally simulated and needs to be
integrated and laid out to be used.

Comparing the hard-core with the soft-core, the design flexibility of the solid core
is slightly worse, but the reliability is greatly improved. Comparing the hardcore
with the soft-core implementation, the hardcore reduces the power consumption
by 5~10 times, saving nearly 90% of the logical resources [24].

11

2.2. LTE ARCHITECTURE

LTE is a mobile communication developed by 3GPP to improve the mobile
phone standard to follow up with future technology evolutions and needs. The
LTE standard supports users and telecommunication companies’ requirements.
The requirements include the following: use of current and new frequency bands,
simple architecture, increase service provisioning more services at lower cost,
reduce cost per bit and reasonable power consumption.

The LTE radio transmission and reception specifications are described in
reference [25] for the User Equipment (UE) and in reference [26] for the Base
Station (BS). Downlink and uplink transmission in LTE are based on the use of
multiple access technologies, Orthogonal Frequency Division Multiple Access
(OFDMA) is used for the downlink and single-carrier frequency division multiple
access

The bandwidths defined by the standard are 1.4 MHz, 3 MHz, 5 MHz, 10 MHz,
15 MHz, and 20 MHz [27]. Table 2.1 shows how many subcarriers and resource
blocks there are in each bandwidth.

Table 2.1: LTE standard different bandwidths [27]

Channel B.W (MHz) 1.4 3 5 10 15 20
Number of RB 6 15 25 50 75 100
Number of SC 72 180 30 600 900 1200

FFT/IFFT length 128 256 512 1024 1536 2048
Sample rate (MHz)s 1.92 3.84 7.68 15.36 23.04 30.72

The LTE standard defines six downlink channels, three channels for controlling
information and three channels for carrying user data [28].

 The control channels are Physical Hybrid Indicator Channel (PHICH),
Physical Control Format Indicator Channel (PCFICH) and Physical
Downlink Control Channel (PDCCH).

 The data channels are Physical Broadcast Channel (PBCH), Physical
Multicast Channel (PMCH) and Physical Downlink Shared Channel
(PDSCH).

This thesis focuses only on the design of the PDSCH channel because this is the
LTE channel carrying user data and processing it.

12

2.2.1. LTE frame structure

The LTE physical frame structure defines two types of a frame structure in
the 3GPP standard [29], the Frequency Division Duplex (FDD) type and Time
Division Duplex (TDD) type. The FDD-LTE is one of the duplex technologies
used in the LTE mobile communication where the uplink and downlink are
distinguished by different frequency points.

The FDD-LTE mode is characterized by receiving and transmitting on two
separate symmetric frequency channels, and separating the receiving and
transmitting channels with a guaranteed frequency band. In the FDD-LTE system,
the uplink and downlink frequency intervals reach 190MHz. The FDD-LTE
uplink theoretical rate is up to 40Mbps, and the downlink theoretical rate is
150Mbps [10].

Figure 2.4 shows the structure of the LTE frame in the FDD Mode [30]. The frame
has 10 ms duration and each frame consists of 10 sub-frames has 1 ms duration.
Each sub-frame consists of two slots has 0.5 ms duration. Each slot consists of
OFDM symbols depending on the type of Cycle Prefix (CP) of each slot. Each
slot consists of either 7 symbols for normal CP or 6 symbols for extended CP.

Figure 2.4: Structure of the LTE frame in FDD mode [30]

13

2.2.2. LTE PDSCH transmitter and receiver model

The PDSCH is a physical channel that carries user data. The transmitter and
the receiver model of Single Input Single Output (SISO) PDSCH chain [31] is
shown in figure 2.5. The PDSCH chain model is tested over Additive White
Gaussian Noise (AWGN) channel for high Signal to Noise Ratio (SNR).

The data input to the LTE PDSCH transmitter chain is called a transport block.
The transport block flow goes into Cyclic Redundancy Check (CRC) calculation
and appending, segmentation, turbo encoding, interleaving, rate matching,
scrambling and modulation followed by the resource element mapper. The data
from the transmitter is passed to channel, and then it is fed to the LTE PDSCH
receiver.

The received input flow goes into the resource element de-mapper, demodulation,
de-scrambling, rate de-matching, de-interleaving, turbo decoding and de-
segmentation followed by CRC calculation and extraction.

Figure 2.5: LTE PDSCH transmitter and receiver model [31]

2.2.2.1. CRC addition and CRC removing

 CRC is a sequence of redundant bits used for error detection on transport
blocks. CRC parity bits are calculated and appended to the transport block.
The CRC parity 24A is calculated using a CRC generator polynomial [32].

14

The equation for CRC24A polynomial generation is as follows:

Let assume input bits to the CRC addition are as follows: -

Let assume the parity bits appended to the input bits are as follows: -

Where N is the size of the input sequence bits and L is the length of the parity bits.

The encoding is performed in a systematic form as follows: -

The CRC are appended to the end of the data bits, so the length of
input bits after CRC appending is (N+24) because CRC24A is used.

 On the receiver side, the CRC polynomial is generated using the same CRC
polynomial generator equation 2.1. As shown in Figure 2.6, The CRC is checked
for any error in the received bits, if no error, remove the CRC from the transport
block else if any error is found in a particular block, that transport block is
retransmitted [33].

Figure 2.6: Role of CRC block in transmitter and receiver

15

2.2.2.2. Segmentation and de-segmentation

Large amount of data bits from transport block should be transmitted at the
same time. The transport block is divided into smaller blocks called code blocks
as shown in figure 2.7. The LTE standard defines the minimum code block size is
40 bits and the maximum code block size is 6144 bits [32].

Figure 2.7: Code block segmentation process

If input bits to the code block segmentation are less than 40 bits, add filling bits.
If input bits to the code block segmentation are larger than 6144 bits, perform
segmentation of input bits and append other 24 bits CRC of type 24B to each of
the code blocks. Table 2.2 shows the code block sizes defined by the LTE 3GPP
standard.

To calculate the number of code blocks, let assume the input bits sequence are as
follows:

where B is the input block size.

Assume Z is the maximum code block size equal to 6144 and F is the number of
filler bits where filler bits are added to the beginning of the first block if necessary.
Also, assume L is the number of CRC bit equal to 24 and is the new size of
the input block after CRC addition.

16

Table 2.2: Code block size for segmentations [32]

40

48

56

64

72

80

88

96

104

112

120

128

136

144

152

160

168

176

184

192

200

208

216

224

232

240

248

256

264

272

280

288

296

304

312

320

328

336

344

352

360

368

376

384

392

400

408

416

424

432

440

448

456

464

472

480

488

496

504

512

528

544

560

576

592

608

624

640

656

672

688

704

720

736

752

768

784

800

816

832

848

864

880

896

912

928

944

960

976

992

1008

1024

1056

1088

1120

1152

1184

1216

1248

1280

1312

1344

1376

1408

1440

1472

1504

1536

1568

1600

1632

1664

1696

1728

1760

1792

1824

1856

1888

1920

1952

1984

2016

2048

2112

2176

2240

2304

2368

2432

2496

2560

2624

2688

2752

2816

2880

2944

3008

3072

3136

3200

3264

3328

3392

3456

3520

3584

3648

3712

3776

3840

3904

3968

4032

4096

4160

4224

4288

4352

4416

4480

4544

4608

4672

4736

4800

4864

4928

4992

5056

5120

5184

5248

5312

5376

5440

5504

5568

5632

5696

5760

5824

5888

5952

6016

6080

6144

17

The total number of code blocks C are defined by the following Pseudo-code:

List 2.1: Pseudo-code of segmentation to determine number of code block [32]

From pseudo-code shown in list 2.1, if the block sizes less than 6144 bits, there is
no need for segmentation process. On the other hand, if B is larger than 6144 bits,
segmentation is applied and a CRC sequence is appended to each code block
segment [34].

Let assume the output from code block segmentation are

Where r is the code block number and K is the number of bits for code block .

The number of bits in each code blocks (K) are defined (for C ≠ 0 only) by the
following pseudo code:

List 2.2: Number of bits in each code blocks calculation Pseudo-code [34]

18

where is the first segmentation size, is the second segmentation size, is
the number of code blocks with length , is the number of code blocks with
length and is the number of filler bits.

As described in list 2.2, in case of data length larger than 6144bit, segmentation is
performed and CRC is appended at the end of each code block. The CRC type
used is CRC24B.

The CRC24B polynomial generation equation is as follows:

Let assume the parity bits append to the input bits are as follows :-

The following pseudo-code shows how insertion processor and CRC appending
process:

List 2.3: Filler bits in each code blocks insertion pseudo-code [34]

19

On the receiver side, the de-segmentation block performs the inverse
operation of segmentation block. CRC is checked for any error in the received
code block bits, if any errors are found in a particular block, the transport block is
retransmitted else if no error, removes the CRC from the code block and
concatenates the multiple code blocks to form the transport block frame as shown
in figure 2.8.

Figure 2.8: Code block De-segmentation

2.2.2.3. Channel coding and channel de-coding

The channel coding used in the PDSCH is turbo coding [35]. Turbo encoder
with constant coding rate 1/3 is used for input data coding as described in reference
[36]. The scheme of the turbo encoder is parallel of Recursive Systematic
Convolution (RSC). The scheme of the turbo encoder is shown in figure 2.9.

Figure 2.9: Turbo encoder block diagram [35]

20

The turbo encoder consists of a parallel of Recursive Systematic Convolution
(RSC) encoder separated by internal code interleaver. The input goes into the first
RSC encoder and after interleaving, it feeds a second RSC encoder.
The multiplexing and puncturing block accepts inputs and generates coded bits.
The turbo interleaver permutes the indices of the input bits, which improves the
turbo code performance. The transfer function of the RSC turbo encoder is defined
as follows:

where:

The initial values of the shift register of the RSC encoder are all zeros when
starting to encode the input bits. Let assume the input bits to the turbo encoder
block are as follows:

The outputs bits from the turbo encoder is as follows: -

where: bits are matched to the input bits , bits are output from first
RSC encoder and bits are output from second RSC encoder after interleaving
input bits. Let assume the output bits from turbo code interlaver are as follows:

The relation between the output and input bits of turbo code interleaver is as
follows:

where the relation between the input index and the output index is as
follows:

where the values of and depends on the block size k as shown in table 2.3.
Table 2.3 shows the relation between output indexes and values of and
depends on the block size k.

21

Table 2.3: Turbo code interalver parameter (part1 of 2) [32]

i Ki f1 f2 I Ki f1 f2 i Ki f1 f2 I Ki f1 f2

1 40 3 10 48 416 25 52 95 1120 67 140 142 3200 111 240

2 48 7 12 49 424 51 106 96 1152 35 72 143 3264 443 204

3 56 19 42 50 432 47 72 97 1184 19 74 144 3328 51 104

4 64 7 16 51 440 91 110 98 1216 39 76 145 3392 51 212

5 72 7 18 52 448 29 168 99 1248 19 78 146 3456 451 192

6 80 11 20 53 456 29 114 100 1280 199 240 147 3520 257 220

7 88 5 22 54 464 247 58 101 1312 21 82 148 3584 57 336

8 96 11 24 55 472 29 118 102 1344 211 252 149 3648 313 228

9 104 7 26 56 480 89 180 103 1376 21 86 150 3712 271 232

10 112 41 84 57 488 91 122 104 1408 43 88 151 3776 179 236

11 120 103 90 58 496 157 62 105 1440 149 60 152 3840 331 120

12 128 15 32 59 504 55 84 106 1472 45 92 153 3904 363 244

13 136 9 34 60 512 31 64 107 1504 49 846 154 3968 375 248

14 144 17 108 61 528 17 66 108 1536 71 48 155 4032 127 168

15 152 9 38 62 544 35 68 109 1568 13 28 156 4096 31 64

16 160 21 120 63 560 227 420 110 1600 17 80 157 4160 33 130

17 168 101 84 64 576 65 96 111 1632 25 102 158 4224 43 264

18 176 21 44 65 592 19 74 112 1664 183 104 159 4288 33 134

19 184 57 46 66 608 37 76 113 1696 55 954 160 4352 477 408

20 192 23 48 67 624 41 234 114 1728 127 96 161 4416 35 138

21 200 13 50 68 640 39 80 115 1760 27 110 162 4480 233 280

22 208 27 52 69 656 185 82 116 1792 29 112 163 4544 357 142

23 216 11 36 70 672 43 252 117 1824 29 114 164 4608 337 480

24 224 27 56 71 688 21 86 118 1856 57 116 165 4672 37 146

25 232 85 58 72 704 155 44 119 1888 45 354 166 4736 71 444

26 240 29 60 73 720 79 120 120 1920 31 120 167 4800 71 120

27 248 33 62 74 736 139 92 121 1952 59 610 168 4864 37 152

22

 Table 2.3: Turbo code interalver parameter (part2 of 2) [32]

i Ki f1 f2 I Ki f1 f2 i Ki f1 f2 I Ki f1 f2

28 256 15 32 75 752 23 94 122 1984 185 124 169 4928 39 462

29 264 17 198 76 768 217 48 123 2016 113 420 170 4992 127 234

30 272 33 68 77 784 25 98 124 2048 31 64 171 5056 39 158

31 280 103 210 78 800 17 80 125 2112 17 66 172 5120 39 80

32 288 19 36 79 816 127 102 126 2176 171 136 173 5184 31 96

33 296 19 74 80 832 25 52 127 2240 209 420 174 5248 113 902

34 304 37 76 81 848 239 106 128 2304 253 216 175 5312 41 166

35 312 19 78 82 864 17 48 129 2368 367 444 176 5376 251 336

36 320 21 120 83 880 137 110 130 2432 265 456 177 5440 43 170

37 328 21 82 84 896 215 112 131 2496 181 468 178 5504 21 86

38 336 115 84 85 912 29 114 132 2560 39 80 179 5568 43 174

39 344 193 86 86 928 15 58 133 2624 27 164 180 5632 45 176

40 352 21 44 87 944 147 118 134 2688 127 504 181 5696 45 178

41 360 133 90 88 960 29 60 135 2752 143 172 182 5760 161 120

42 368 81 46 89 976 59 122 136 2816 43 88 183 5824 89 182

43 376 45 94 90 992 65 124 137 2880 29 300 184 5888 323 184

44 384 23 48 91 1008 55 84 138 2944 45 92 185 5952 47 186

45 392 243 98 92 1024 31 64 139 3008 157 188 186 6016 23 94

46 400 151 40 93 1056 17 66 140 3072 47 96 187 6080 47 190

47 408 155 102 94 1088 171 204 141 3136 13 28 188 6144 263 480

On the receiver side, Turbo decoder is used to reverse the operation of
channel coding. Turbo decoder block accepts input from the de-interleaver block,
then performs turbo decoding using a sub-log-MAP (Max-Log-MAP) algorithm
to decoded input bits to output bits.

Figure 2.10 shows the block diagram of the turbo decoder [37]. The turbo decoder
consists of the following blocks:

 Maximum A Posteriori (MAP) decoder block.

 De-multiplex block.

 Turbo interleaver block.

 Turbo de-interleaver block.

23

Figure 2.10: Turbo decoder block diagram [37]

The MAP decoder is a decoder designed using Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm. The BCJR algorithm is an algorithm for error correcting codes
defined on trellises.The BCJR algorithm calculates forward probabilities,
backward probabilities and smoothed probabilities based on channel information.
The operation of turbo decoder is performed as the following steps:

1. MAP_decoder_1 accepts the systematic_bits and the parity_bits then
generates the extrinsic_bits1 (extrinsic bit is soft estimate bits do not
contain any information).

2. The extrinsic_bits1 bits are interleaved and extrinsic_intrelavd_bits1 are
generate, also the systematic bits are interleaved and the
systematic_intrelavd_bits are generated.

3. The MAP_decoder_2 accepts extrinsic_intrelavd_bits1, the parity_bits, the
systematic_intrelavd_bits and generates the initial_output_bit.

4. The initial_output_bit is passed to the de-interleaver and generates the
extrinsic_intrelavd_bits2.

5. The MAP_decoder_1 accepts the systematic_bits, the parity_bits and the
extrinsic_intrelavd_bits2 then generates the extrinsic_bits1.
The steps from 1 to 5 are repeated iteratively until the bit error rate is
reached to zero. At the end of the process, the output_bits hard bits are
generated according to threshold operation.

24

2.2.2.4. Interleaver and de-interleaver

 Interleaving is the process of reordering data so that successive bunch of
data is distributed over a larger sequence of data to reduce the effect of burst errors.
Using Interleaver increases the performance of the error protection decoder to
correct the burst error [32]. Error protection coding process cannot correct the
errors that occur in groups, so using of interleaver allows reducing such error.
At the receiver side, the de-interleaver block reverses the operation of interleaver.

2.2.2.5. Rate matching and rate de-matching

The LTE turbo encoder has a fixed coding rate of 1/3. The communication

standard added a feature for adapting the throughput based on the channel
conditions [36]. In degraded channels, smaller coding rates are used to increase
the number of error correction bits and vise verse. Rate matching is used to arrive
to at any desired rate by repeating or puncturing. In case of reducing the encoding
rate lower than 1/3 repeat the turbo coder output bit. In case of increasing rate
higher than 1/3 puncture (remover) some of the turbo coder output bits. Figure
2.11 shows the Rate matching block diagram [38]. The Rate matching block
consists of the following sub-blocks: Sub-block interleaver, Bit_collection and
Bit_selection.

Figure 2.11: Rate matching block diagram

The rate matching accepts three input streams from turbo encoder
. The bits of each of the three streams are written row-by-row

into a matrix with 32 columns. After a column permutation, bits are read out from
the matrix column-by-column.

25

Then information bit streams are passed to sub-block interleaver followed by
bit_collection block and bit_selection block. The sub-block_interleaver is based
on the classic row-column interleaver with 32 columns and a length-32 intra-
column permutation. If input is not multiple of 32 bits, complete the matrix by
adding Dummy bits so the block able to interleave the given data.

 The bit stream is interleaved and output sequence generated
as .

 The bit stream is interleaved and output sequence generated
as .

 The bit stream is interleaved and output sequence generated
as .

The output bits sequence from the sub-block_interleaver is generated as follows:

Let assume the number of columns of the matrix is .

Let assume the number of rows of the matrix is , by finding minimum
integer such that .

The relation between of is determine by the column permutation of the sub-
block_interleaver.

The output of the first sub-block interleaver is denoted
by where where

Where is the output length of the sub-block_interleaver and given as follows:

The column permutation function (of the sub-block_interleaver is given in
table 2.4:

Table 2.4: Inter-column permutation matric for sub-block interleaver [32]

Number of columns Inter-column permutation pattern

32 [0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30,1
,17,9,25,5,21,13,29,3,19,11,27,7,23,15,3]

Next, the bit_collection block accepts inputs from three sub-block_interleaver and
generates output depending on coding type. The bit_collection block is worked
based in circular buffer.

26

The circular buffer length for the r code block is generated for
as follows:

The soft buffer size for the r-th code block is denoted by . The size for the
downlink is obtained as follows:

where is equal to

where is the total number of soft channel bits, is constant dependent
in transmission mode and equal to 2 if the UE is configured to receive PDSCH
transmission, is constant equal to 8 and is the maximum number
of downlink processor. Finally, the bit_selection receives inputs from
bit_collection, skip dummy bits, and output the required output bits with the
proper size.
 On the receiver side, the rate de-matching is used to reverse the operation
of rate matching block [39]. Figure 2.13 shows the block diagram of the rate de-
matching. The bit_de-selection block accepts input bits and divides it into three
outputs; each output has a length equal to the code block length. Three bit_de-
interleaver blocks accept outputs from the bit_de- selection block. Each one of the
bit_de-interleaver blocks accepts input from bits de-deslection block with a length
equal to the code block length. The bit_de-interleaver block inverse the operation
of sub-block_interleaver.

Figure 2.12: Rate de-matching block diagram

27

2.2.2.6. Scrambler and de-scrambler

The scrambler is a block that pseudo-randomly changes the values of bits
into a data block, thus ensure that the interference is randomized for each different
cell or to introduce security as part of an encryption procedure. The data bits are
scrambled with a sequence that is unique to each cell by initializing the sequence
generators in the cell based on the physical cell identity.

 Let assume the input bits to the turbo encoder block are as follows:

where is the number of bits transmitted on the physical channel in one sub-
frame. The output of the scrambler is determined according to the following
equation:

where are the pseudo-random sequences.

The pseudo-random sequences are defined by a length-31 Gold sequence [40].
The output sequence of length M bits, where n= 0, 1... M-1 is defined by the
following equations:

The scrambler block operation is divided into two steps as follows:

1. Calculating initial values for X2, X1 sequence generators for NC iterations.

2. Apply X1, X2 sequence generation output to the input after NC iterations.

where the initialization of sequence is performed as follows:

1. The first m-sequence shall be initialized with

2. The initialization of the second m-sequence is denoted by

28

where value of is depending on the application of the sequence. For the
shared channel, the scrambler sequence generator should be initialized at the start
of each sub-frame with value of for PDSCH channel

where is the Radio Network Temporary Identifier, is the code word
index, is the slot index within frame, and is the physical layer cell identify.

On the de-scrambler function, same Gold sequence generator illustrated is
used to invert the scrambling operation. Scrambler Sequence Generation in the
Receiver of LTE PDSCH is the same as that of the Transmitter. The de-scrambler
block operates on the LLR outputs of the demodulator, converting the Gold-
sequence bits into either 1 or -1. The de-scrambler block operation is divided into
three steps: -

1. Calculating initial values for X2, X1 sequence generators for NC iterations.

2. Calculating value of where for
NC iterations.

3. Generates de-scrambler results, if the de-scrambler output is
LLR (n) else, the de-scrambler output -LLR (n).

where NC=1600 and LLR (n) is a Log-Likelihood Ratio calculated values.

2.2.2.7. Modulator and de-modulator

The Modulator accepts groups of input bits and maps them to specific
constellation symbols, according to the modulation method that you specify. The
LTE standard supports QPSK 16QAM and 64QAM modulation schemes types for
the LTE PDSCH [41]. Figure 2.14 shows constellation diagrams of these three
modulation schemes.

Multiple modulation schemes allow adaptive modulation based on channel
conditions. When the Signal-to-Noise Ratio (SNR) is high, denser constellations
(ex: 64QAM) are used to increase the throughput. However, when the Signal-to-
Noise Ratio (SNR) is low, modulation schemes with more inter-symbol separation
should be used to reduce the throughput and decrease the bit error rate.

The modulation process generates complex symbols depending on the input bits.
Let assume the input sequence bits to the modulation block are as follows:

where is the total number of sequence bits.

29

Figure 2.13: Constellation diagrams of modulation schemes [41]

For QPSK modulation scheme, every two bits of input bit sequence
are modulated into a complex symbol where are generated
as shown in table 2.5.

Table 2.5: QBSK modulation lookup table [32]

00

01

10

11

For 16QAM modulation scheme, every four bits of input bit sequence
 are modulated into a complex symbol where

 are generated as shown in table 2.6.

30

Table 2.6: 16QAM modulation lookup table [32]

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

31

For 64QAM modulation scheme, every six bits of input bit sequence
 are modulated into a complex symbol

 where are generated as shown in Appendix A.

On the receiver side, the de-modulator block de-maps QPSK symbol, 16-
QAM symbol and 64-QAM symbol to soft bits according to the modulation
method specified. The soft de-mapper outputs are the Log-Likelihood Ratio (LLR)
for a certain constellation-mode [42]. In soft bit demodulator, is a modulation
process that estimates from the received bit not only hard bits (hard bits are
typically binary), but also their confidence levels.

On the transmitter side, only hard bits are involved, and they take binary digit 0 or
1 but on the receiver side, the binary digit the confidence levels are the magnitudes
of the binary digit. In this case, the negative and positive polarities are expressed
as numeric values of -1 and +1[43].

The soft decision process returns an integer sequence is used for PDSCH
demodulation, as the turbo decoder requires a soft encoded input. For example,
integer values from 0 to 7 are used for QPSK demodulation. Value 0 indicates a
strongest possibility of value 0 in original bit sequence while value 3 indicates the
weakest possibility of value 0 in the original bit sequence. Similarly, value 4
indicates a week 1 while 7 indicates a strong 1. Let assume the soft input bits to
the de-modulation block are as follows:

where is the total number of sequence bits. The soft decision values are
calculated according to Table 2.7.

Table 2.7: Soft decision QPSK demodulation lookup table (part1 of 2) [43]

 0

 1

 2

 3

 4

 5

 6

 7

32

Table 2.7: Soft decision QPSK demodulation lookup table (part2 of 2) [43]

 0

 1

 2

 3

 4

 5

 6

 7

2.2.2.8. Resource element mapper and resource element de-mapper

 The resource element mapper is a time-frequency representation of data
organized as the resource grid as shown in figure 2.15. The resource grid is a two-
dimensional map of symbol in the horizontal axis (time domain) and sub-carrier
on the vertical axis (frequency domain) [31].

The placement of data within the resource grid is important and Depending on
which sub-frame is in use. The type of data placed in a resource grid includes the
following [44]:

 The Physical Downlink Shared Channel PDSCH signal, which carries user
data. This signal placed in all sub-frames

 The Cell Specific Reference (CRS) signal, which used by the receiver for
estimation channel frequency response and cross-channel effects. This
signal placed in all sub-frames.

 The Physical Downlink Control Channel (PDCCH) signal, which helps the
carries important information for processing (ex: modulation scheme
...etc.). These signals placed at the beginning of each sub-frame.

 The Primary synchronization signals (PSS) data and Secondary
Synchronization Signals (SSS) data, which help determine the frame timing
and cell identification. These signals placed in sub-frames 0 and 5.

 The broadcast channel (BCH) signal, which carries the Master Information
such as cell bandwidth. These signals placed in sub-frame 0 and repeated
every 10 sub-frames.

33

Figure 2.14: LTE resource grid [31]

On the receiver side, the resource element de-mapper inverts the operations
of resource grid mapping at the receiver side. The rule of a resource element de-
mapper is extracting PDSCH, CRS …etc. from the resource grid and feed each
type of data to the corresponding next stage. The PDSCH receiver chain should
accept PDSCH input from the resource grid to complete the processing of data in
the receiver chain.

34

Chapter 3 : SDSoC

The SDSoC is a novel development tool used to create hardware-software
co-design on a heterogeneous FPGA-CPU platform. The SDSoC tool makes
simplest and shortest development cycles to implement heterogeneous FPGA-
CPU as well as generating required hardware interface logic to handle the data
flow between hardware and software automatically [45]. The SDSoC tool is
integrated with a High-level synthesis (HLS) which is used to implement hardware
in an FPGA synthesized from a C/C++ language description [46]. Transforming
C/C++ code to an RTL implementation process using HLS is provided in [47].
The Table 3.1 shows the constructs of mapping C/C++ to RTL.

Table 3.1: Mapping of C-code to RTL construct

C-function RTL
Function Modules

Arguments Input/output ports
Operators Functional Units

Scalars Wires or register
Arrays Memories

Control flows Control logics

In addition, the SDSoC tool includes system-level profiling and performance
analysis capability. The profiling and performance analysis tool includes hardware
utilization calculation, latency calculation and hardware acceleration improving
estimation. A detailed description of the features of the tool is provided in [48].

This chapter includes the following topics: SDSOC pragma specification, the
typical HW/SW co-design design flow using SDSoC design flow and the proposed
automated performance-based design technique developed to generate platform
using SDSOC tool to meet performance metrics constraints.

3.1. SDSoC pragma specification

This section describes pragmas for the SDSoC compilers used for system
optimization. The SDSoC pragmas are used in HLS to enhance the hardware
function performance. All pragmas specific to the SDSoC environment are
prefixed with #pragma [49]. The pragma should be inserted prior to a function
declaration or at a function call in C/C++ source code.

35

The pragmas should be placed within the boundaries of the required location in
the C/C++ source. The pragmas need to be written in the C-code depending in its
type. The pragma syntax has been defined to be consistent with standards like
OpenACC. The different Pragmas supported by the SDSOC tool include the
following: function optimization, loop optimization, array optimization and
Interface management.

3.1.1. Function optimization

The function optimization pragmas include inline function and function
pipelining.

1) Inline function

Inlining function pragma used to remove function hierarchy. Removing function
hierarchy leads to enhancing latency and throughput by removing of a cycle
overhead to enter and exit functions.The following Pragma example used to
prevent “func_top” function from being in-lined, the Pragma should be applied to
the top level function “func_top”.

#pragma AP inline off

2) Function pipelining

Pipelining pragma is a powerful method used to optimize the communication
between functions and improve throughput. The following pragma example used
to pipeline the function “func” with II as 4.

#pragma AP pipeline II=4 enable_flush

3.1.2. Loop optimizations

The loop optimization pragmas include inline unrolling, merging and
flattening nested loop.

1) Unrolling

Unroll for loops pragma used to create multiple independent operations instead
of a single collection of operations. The following pragma example used to
unroll the loop L1 in function “func” with unrolling factor e 2.

#pragma AP unroll skip_exit_check factor=2

36

2) Merging

Merging pragma for loops used to combine multiple sequential loops to prevent
the creation of additional unnecessary clock cycles. The following pragma
example used to merge all consecutive loops into a single loop in the function
“func”.

#pragma AP loop_merge

3) Flattening nested loops

Flattening pragma used to grab nested loop to a single loop to improve latency.
This because hardware implementation requires one clock cycle to move from an
outer loop to an inner loop and from an inner loop to an outer loop. The following
pragma example used to flatten for loop L1 in function “func” where loop L1 is
the inner loop has the body and the “func” function.

#pragma AP loop_flatten

3.1.3. Array optimizations

The array optimization pragmas include horizontal mapping, vertical
mapping and array partitioning.

1) Horizontal mapping

Horizontal mapping pragma used to concatenate two arrays into one array. The
following pragma example used to concatenate arrray1 and array2 into array3.

#pragma AP array_map variable=array1 instance=array3 horizontal
#pragma AP array_map variable=array2 instance=array3 horizontal

2) Vertical mapping

Horizontal mapping pragma used to concatenate two array vectors into one array
vector. The following pragma example used to concatenate arrray1 vector and
array2 vector into array3 vector.

#pragma AP array_map variable=array1 instance=array3 vertical
#pragma AP array_map variable=array2 instance=array3 vertical

37

3) Array partitioning

Array partitioning pragma used to divide array into smaller arrays to increases
throughput. The following pragma example partitions array Z(21) in function
“func” into five arrays. Because 5 is not an integer multiple of 21, four of the of
the arrays have 4 elements and one have 5 (containing elements Z(16:21)

#pragma AP array_partition variable=Z block factor=5

3.1.4. Interface management

The attitude of the interface has specified either behavior or explicitly
depending on the type of input source. This allows different IO protocol to be used
so the function interfaces with any hardware resource. The different interface
management pragmas include ap_bus, ap_memor, and ap_fifo.

1) ap_bus

 An ap_bus interface used to communicate with a bus bridge. The interface does
not adhere to any specific bus standard but is generic enough to be used with a bus
bridge. The bus bridge must be able to cache all burst writes.

2) ap_memory

 The ap_memory port interface is used to communicate with memory elements
(RAMs, ROMs) as shown in figure 3.1. The ap_memory used when the
implementation requires random accesses to the memory address locations. Array
arguments are typically implemented using the ap_memory interface.

Figure 3.1: Memory interface management

38

3) ap_fifo

The ap_memory port interface is used to communicate with memory elements
(FIFO) as shown in figure 3.2. The ap_fifo interface is used if required access to
a memory element and this access is performed in a sequential manner (no random
access).

Figure 3.2: FIFO Interface management

3.2. Typical HW/SW co-design design flow using SDSoC
design flow

The typical HW/SW co-design flow using SDSoC is shown in figure 3.3. First,
the developer should design the application coded in C/C++. Next, the user should
define the requirement of each C/C++ functions, so the user should select
manually which functions must be implemented as software functions or
hardware-accelerated functions synthesized by HLS [48].

Figure 3.3: Typical HW/SW co-design flow using SDSoC [48]

39

After refining all C/C++ functions, the SDSoC design flow is executed. The
SDSoC design flow is shown in figure 3.4. First, all C/C++ functions are
compiled, next, the implementation of the C/C++ function had to be partitioned
into software implementation functions or hardware-accelerated functions
depending on user selection.

The Software Development Kit (SDK) tools and Vivado Tool (Xilinx Inc.) are the
elements of hardware and software system design. The Vivdo tool includes High-
Level Synthesis (HLS) is used for creating the hardware system component by
transforming the C/C++ code to an RTL implementation [45].

The SDK tool is a software design suite that includes driver support, C/C++
Compiler library supported for ARM and tools for debugging and profiling.
Finally, the integration, the necessary communication blocks between hardware,
and software and the SoC platform creation is done by SDSoC tool.

Figure 3.4: SDSoC design flow

40

The SDSoC tool generates the embedded FPGA SoC platform as shown in figure
3.5. This platform allows executing part of the C/C++ code on the arm processor
as a software functions and the other parts of the codes on the FPGA as hardware-
accelerated functions. The embedded FPGA platform consists of:

1. Processing system includes dual-core ARM cortex-A9 processor hardcore
processor.

2. Interfacing logic includes ACP port interconnect, data movers and reset
blocks.

3. Hardware logics includes HLS generated block.

Figure 3.5: Embedded FPGA platform [48]

41

3.3. Proposed automated performance-based design
technique

This section illustrates in details the proposed automated performance-
based design technique using SDSoC tool. The objective of this technique is to
determine platforms that achieve performance metrics and select the platform that
achieves the best performance.

The performance metrics constraints to the technique are hardware utilization,
latency and dynamic power. Therefore, a designer defines the upper limit of this
performance metrics according to the implementation requirement.

On the other hand, the performance metrics output from the technique are
hardware utilization, latency, dynamic power, hardware acceleration and Figure
of Merit (FoM) [50]. Therefore, a designer able to explore this performance
metrics results for all possible implementations.

Figure 3.6 shows the proposed performance-based techniques flow diagram. First,
the developer should design the application code written in C/C++ and define
functions that should be implemented either as a software function or as a
hardware-accelerated function (Let for example define a number of functions
=).

The introduced algorithm is fully automated and uses a set of shell scripts for
executing the SDSoC tool to generate required platforms. There are three flow
control files are defined in the technique used to drive the execution of the shell
scripts according to designer requirement.

The flow control files are divided as follows:

 First, the target_function_list file contains the modules functions names which
designed to be implemented either as software function or hardware-
accelerated function.

 Second, the implementation_configuration file which used to define the type
of FPGA device, operating system, the clock frequency, type of design
flow...etc.

 Third, the performance_metrics_constrain file which is the design constraints
and includes constraints on hard- ware utilization, dynamic power, and latency.

42

Figure 3.6: Performance-based design technique flow chart

43

The developer should design the application code written in C/C++ and define
the functions in the target_function_list files which are the functions that
could be implemented either as a software function or as a hardware-accelerated
function (let for example the designer defines 3 functions which are fun1, fun2
and fun3). Next, the shell scripts read all C/C++ files and compile all C/C++
files for any Syntax errors or semantic error. Then the shell scripts read the
implementation_configuration file. As shown in Figure 3.6 the technique is
divided into two design flows depending on the implementation_configuration.

 The first is design_flow_1 (all possible scenarios flow).

 The second is design_flow_2 (constrained-selection scenarios flow).

The purpose of the design_flow_1 is to implement all possible scenarios for (n)
function defined in the target_function_list file, thus combinations between
software implementation function or hardware-accelerated function are stated to
be a valid solution_set. For example, the defined 3 functions in the
target_function_list generate combinations between software
implementation function or hardware-accelerated function as shown in table 3.2.

Table 3.2: Three function configuration scenario example:
 (0) Software function and (1) Hardware-accelerated logic

The number (1) in the table indicates that this function in current platform is a
hardware-accelerated logic and the number (0) indicates that this function in
current platform is a software function. Therefore, platform0 is configuring that
all the functions (fun1, fun2, and fun3) are implemented as software functions.

platform name fun1 fun2 fun3

platform0 0 0 0

platform1 1 0 0

platform2 0 1 0

platform3 1 1 0

platform4 0 0 1

platform5 1 0 1

platform6 0 1 1

platform7 1 1 1

44

The platform1 is configuring that the functions (fun1) is implemented as software
functions and other functions (fun2 and fun3) are implemented as a hardware
accelerated function and so on for all possible combinations between software
implementation or hardware-accelerated implementation. design_flow_1 allows
exploring the performance metrics of every possible combination between
software implementation and hardware-accelerated implementation of
function by taking into consideration the combinations a valid solution_set.

Section 4.2 represent implementation of LTE PDSCH transmitter and receiver as
a case-study for the design_flow_1

The purpose of the design_flow_2 is to implement specific possible scenarios that
meet Performance constraints defined in the performance_metrics_constrain file.
The Performance constraints described in file are hardware utilization, dynamic
power, and latency. The steps of the design_flow_2 are the following:

1) Select the () combinations for hardware implementation where
. For current example, select combinations from table 3.2 which

generate platform1, platform2 and platform4.

2) Select one of () combinations from step-1 to be input to the SDSoC design
flow shown in Figure 3.4.

3) After finishing the execution of step-2, get the performance metrics from step-
2 and add the estimate_performance_list.

4) Repeat from step1 to step-3 until finish the implementation and performance
metrics estimation of all () combinations defined in step-1. For example, the
estimate_performance_list will be as shown in table 3.3 where

 numeric values generated in step3 are.

Table 3.3: Estimated performance list for selected combination

performance
metrics

combination
1

combination
2

combination
4

hardware
utilization

h1 h2 h4

dynamic power p1 p2 p4

latency l1 l2 l4

45

5) Calculate the estimated performance metrics for all () combinations using
the information from estimate_performance_list. The estimated performance
metrics for all () combinations are summation of the performance metrics of
the () combinations. For current example, the estimated performance
metrics for all () combinations are shown in in table 3.4.

The combination0 is configuring that all the functions (fun1, fun2, and fun3)
are implemented as software functions so it has zero latency and constant
hardware utilization and constant dynamic power which they are the area and
the power consumptions of the ARM processor.

 The objective of this thesis is to study the performance of hardware-
accelerated functions synthesized by HLS therefore, combination0 is
considered an ideal case and removed from the estimate_performance_list.

6) Compare the Calculated () combination performance metrics from step-5
against the performance metrics constraints defined in the
performance_metrics_constrain file, the designer sets the maximum limit of
hardware utilization, dynamic power, and latency in the
performance_metrics_constrain file.

Combinations which do not meet the designer’s constraints will be rejected,
only solutions that passed constraints will be considered in next steps as a valid
solution_set.

So, in this case, number of valid solution_set is less than or equal () depending
on designer constraints. Section 4.3 represents implementation of the LTE
PDSCH transmitter and receiver as a case-study for the design_flow_2.

Table 3.4: Estimated performance list for all combination:
(comb.) is abbreviation to combinations

performan
ce metrics

comb.
0

comb.1 comb.2 comb.3 comb
.4

comb.5 comb.6 comb.7

hardware
utilization

0 h1 h2 h3=h1+h
2

h4 h5=h1+h
4

h6=h2+h
4

h7=h1+h2
+h4

dynamic
power

0 p1 p2 p3=p1+p
2

p4 p5=p1+p
4

p6=p2+p
4

p7=p1+p2
+p4

Latency 0 l1 l2 l3=l1+l2 l4 l5=l1+l4 l6=l2+l4 l7=l1+l2+
l4

46

After defining the valid solution_set from a () combination for design_flow_1
or design_flow_2, the implementation of solution_set is executed as the following
steps:

1) Select one of possible solution_set generated from design_flow_1 or
design_flow_2 to be input to the SDSoC design flow shown in Figure 3.4.

2) Repeat step-1 until finish implementation of all solution_set defined in step-
1.

3) Get the performance metrics of all solution_set. If design_flow_1 is applied,
print the output performance metrics results for all solution_set.

4) If design_flow_2 is applied, then read the performance_metrics_constrain file
and calculate the Performance Metrics Cost (PMC) of all solution_set as
shown in 1.

5) Print the performance metric for the valid solution_set and print the best
solution_set that achieve target performance which is the least cost value
calculated in step-4.

The Performance Metrics Cost (PMC) is calculated as the follows: -

where is target area, is area weight, is target power and

 is power weight, is target latency and is latency
weight.

The Performance Metrics Cost of solution indicates how far the solution
performance is from the target performance. As shown in equation 3.1, the cost
equation sets target of area (hardware utilization), power (dynamic power) and
latency design constraints, so the SoC designer set the target required performance
metrics. Also, the cost equation set weigh of area (hardware utilization), power
(dynamic power) and latency design constraints.

Therefore, the SoC designer able to decide which parameter is more important and
increase its weight, unimportant parameters weight can be set to zero weight. For
example, if dynamic power is important metrics in system design, increase its
weight and implement only the solution_set which generate a heterogeneous
FPGA-CPU platform that consuming the minimum dynamic power

47

Chapter 4 : IMPLEMENTION AND RESLULTS

4.1. IMPLEMENTATION OF TURBO ENCODER USING
SDSCOC TOOL

This section explains the implementation of turbo encoder on a
heterogeneous FPGA-CPU platform using SDSoC tool. The turbo encoder
function is written using C programming language and integrated with other
functions to verify operation of it.

4.1.1. Turbo encoder block diagram

The design specs of the turbo encoder for LTE was introduced in reference
[51]. Figure 4.1 shows the block of the turbo encoder. The turbo encoder is the
parallel concatenation of Recursive Systematic Convolutional (RSC) encoder,
separated by an interleaver.

The information bits flow goes into the first RSC encoder, and after interleaving,
it feeds a second RSC encoder. The multiplexing and puncturing block accepts the
information bits and outputs from the RSC encoder to generate the coded bits.

Figure 4.1: Turbo encoder block diagram [51]

48

4.1.2. Turbo encoder implementation

 The objective of this section is to implement multiple scenarios for turbo
encoder function. Each scenario generates an Embedded FPGA platform which
dependent on the implementation of turbo encoder sub-functions either software
function or hardware-accelerated function synthesized by HLS.

Table 4.1 shows all possible configuration scenarios to implement turbo encoder
sub-function. For example, in the turbo11 platform, the Two RSC encoder and
ineterleaver sub-functions are implemented as a hardware-accelerated function
and multiplexer-puncturing sub-function is implemented as a software function.

Table 4.1: Turbo encoder sub-function configuration scenarios:
(0) Software function and (1) Hardware-accelerated function

platform
name

Interleaver Mux_punc RSC_Enc 2 RSC_Enc 1

turbo0 0 0 0 0

turbo1 0 0 0 1

turbo2 0 0 1 0

turbo3 0 0 1 1

turbo4 0 1 0 0

turbo5 0 1 0 1

turbo6 0 1 1 0

turbo7 0 1 1 1

turbo8 1 0 0 0

turbo9 1 0 0 1

turbo10 1 0 1 0

turbo11 1 0 1 1

turbo12 1 1 0 0

turbo13 1 1 0 1

turbo14 1 1 1 0

turbo15 1 1 1 1

49

4.1.3. Configurable Embedded FPGA Platform

The proposed configurable Embedded FPGA platform is shown in figure
4.2. The configurable embedded FPGA platform consists of a processing system
and a programming logic. The processing system side is consisting of fixed
implementation functions used for integration and verification of the operation of
the turbo encoder function. Example of fixed implementation functions, the
random_test function used to generate random information bits, the noise function
used to generate AWGN noise, and finally, the main function that integrates all
functions together. In addition, the processing system is consisting of the
turbo_encoder function that is consist of the configurable implementation
functions. The term configurable means that each sub-function of the
turbo_encoder function is implemented as a software function or a hardware-
accelerated function synthesized by HLS according to the configuration in table
4.1.

The programming logic side is consisting of fixed implemented hardware logic
used to handle the data flow between the processing system and programming
logic. The fixed logics are generated by SDSoC tool and dependent on the number
of connection ports between software functions and hardware-accelerated
functions. In addition, the programming logic is consisting of a turbo_encoder
function implemented using HLS. As described in section 4.1.2, each sub-function
of a turbo_encoder function is implemented as a software function or hardware-
accelerated function synthesized by HLS according to the configuration in table
4.1.

Figure 4.2: Configurable embedded FPGA platform for turbo encoder

50

4.1.4. Results and Comparative Studies

This section shows the implementation results of all possible configurations

scenarios shown in table 4.1. Sixteen projects are generated to cover all possible
scenarios between software implementation and hardware-accelerated
implementation generated using HLS. Xilinx ZYNC ZC702 device was used for
implementation [52]. It consists of dual ARM Cortex A9 core as the processing
system and XC7Z020-CLG484 based FPGA as the programming logic.

4.1.4.1. Hardware Utilization for turbo encoder implementation

Figure 4.3 shows the hardware utilization of the generated platforms of the

synthesized hardware. The Hardware utilization is sum of number of Look-Up
Tables (LUT), number of flip-flops and number of Muxes. The turbo0 platform is
the software implementation of all turbo encoder sub-functions so it has zero
hardware utilization and not included in Figure 4.3.

Figure 4.3: Hardware utilization for turbo encoder implementation

The turbo2 platform has the minimum hardware utilization. The turbo2 platform
consist of RSC_Enc2 is implemented as a hardware-accelerated function and other
turbo encoder sub-functions are implemented as a software function. The turbo13

51

platform has the maximum hardware utilization. The turbo13 platform consist of
RSC_Enc1, interleaver and mux_pun are implemented as a hardware-accelerated
functions and RSA_Enc2 is implemented as a software function.

4.1.4.2. Dynamic power for turbo encoder implementation

Power is an important metrics for any communication system. For FPGA
platform, power calculation includes the power consumption in the arm processor
and the static power calculation. We focus on the dynamic power only, so we
subtract the arm processor power and the static power from the total power
consumptions.

Figure 4.4: Dynamic power for turbo encoder implementation

Figure 4.4 shows the dynamic power for the generated platforms of the
synthesized hardware. The dynamic power is measured in watts. The turbo0
platform is the software implementation of all turbo encoder sub-functions so it
has zero dynamic power and not included in Figure 4.4.

The turbo2 platform has the minimum dynamic power. The turbo2 platform
consists of RSA_Enc2 is implemented as a hardware-accelerated function and

52

other turbo encoder sub-functions are implemented as a software function.
The turbo13 platform has the maximum dynamic power. The turbo13 platform
consist of RSC_Enc1, interleaver and mux_pun are implemented as a hardware-
accelerated functions and RSA_Enc2 is implemented as a software function.

4.1.4.3. Hardware acceleration for turbo encoder implementation

Hardware acceleration is metrics defined by the SDSoC tool [48].

Hardware acceleration is the number of clock cycles improvement in execution of
system if implementing the function as a hardware-accelerated function in the
programming logic.

Figure 4.5 shows the hardware acceleration for the generated platforms of the
synthesized hardware. The turbo0 platform is the software implementation of all
turbo encoder sub-functions so the hardware acceleration is not defined and not
included in figure 4.5. The turbo2 platform has the maximum hardware
acceleration. The turbo2 platform consists of RSA_Enc1, and RSA_Enc2 are
implemented as hardware-accelerated functions, and other turbo encoder sub-
functions are implemented as a software function. The turbo4 platform has the
minimum hardware acceleration. The turbo4 platform consist of mux_punc sub-
function is implemented as a hardware-accelerated function and other turbo
encoder sub-functions are implemented as software implementation.

Figure 4.5: Hardware acceleration for turbo encoder implementation

53

4.1.4.4. Figure of Merit for turbo encoder implementation

 The Figure of Merit (FoM) metrics is defined to know the platform that
achieves the best overall performance [50]. The FoM metric is defined as follows:

Equation 4.1 shows that acceleration effect directly proportional with FoM
performance and shows that area, power and latency effect reversely proportional
with FoM performance.

Figure 4.6 shows the FoM calculations of the generated platforms of the
synthesized hardware. The turbo2 platform has the best FoM calculation. The
turbo2 consist of RSA_Enc1 and RSA_Enc2 are implemented as hardware-
accelerated functions, and other turbo encoder sub-functions are implemented as
software functions. The turbo7 platform has the worst FoM calculation. The
turbo7 platform consist of RSA_Enc1, RSA_Enc2, and mux_punc are
implemented as hardware-accelerated functions, and interleaver is implemented
as a software function.

Figure 4.6: FoM for turbo encoder implementation

54

4.2. IMPLEMENTATION OF THE LTE PDSCH
TRANSMITTER AND RECEIVER USING SDSOC TOOL

 This section explains the implementation of the LTE PDSCH transmitter
and LTE PDSCH receiver on a heterogeneous FPGA- CPU platform applying
proposed performance-based design technique using SDSoC tool. The LTE
PDSCH transmitter and LTE PDSCH receiver are written using C programming
language and integrated into the main function including test- bench function to
verify them.

In section 4.2.1, The LTE PDSCH transmitter function implemented with all
possible solution scenarios. As LTE PDSCH transmitter consists of eight sub-
functions two hundred fifty-six (2^8 = 256) configuration scenarios are generated.
Similarity,

 In section 4.2.2, The LTE PDSCH receiver function implemented with all
possible solution scenarios, as LTE PDSCH receiver consists of eight sub-
functions two hundred fifty-six (2^8 = 256) configuration scenarios are generated.
In section 4.2.3, constraints are applied to the implementation of the LTE PDSCH
transmitter and receiver, so in these cases configuration scenarios that meets
constraints are only generated.

4.2.1. LTE PDSCH transmitter implementation

The objective of this section is to implement all multiple scenarios for the
LTE PDSCH transmitter function. Each scenario generates an Embedded FPGA
platform which depends on the implementation of the LTE PDSCH transmitter
sub-functions either software function or hardware-accelerated function
synthesized by HLS.

As shown in figure 2.5 the LTE PDSCH transmitter consists of eight sub-functions
which are: CRC_addition, segmentation, turbo_encoder, interleaver,
rate_matching, scrambler, modulator and resource_element_mapper.
Having of eight sub-functions, two hundred and fifty-six projects are generated to
cover all possible scenarios between software implementation and hardware-
accelerated implementation generated using HLS. Table 4.2 shows all possible
configuration scenarios to implement the LTE PDSCH transmitter sub-functions.
The number (1) in the table indicates that this sub-function in the current platform
is a hardware-accelerated logic and the number (0) indicates that this sub-function
in the current platform is a software function. For example, in Tx6 platform the
segmentation sub-function and Turbo_encoder sub-function are implemented as a
hardware-accelerated logic and other LTE PDSCH transmitter sub-functions are
implemented as a software function.

55

Table 4.2: LTE PDSCH transmitter sub-function configuration scenario:
(0) software function and (1) hardware-accelerated logic

platform

name

RE mapper

Modulator

Scrambler Rate

matching

Interleaver Turbo

encoder

Segmentation

CRC

addtion

Tx0

Tx1

Tx2

Tx3

Tx4

Tx5

Tx6

Tx7

.

.

.

.

Tx250

Tx251

Tx252

Tx253

Tx254

Tx255

4.2.1.1. Configurable embedded FPGA platform for LTE PDSCH
transmitter

The proposed configurable Embedded FPGA platform for the LTE PDSCH
transmitter is shown in figure 4.7. The configurable embedded FPGA platform
consists of the processing system and programming logic. The processing system
side consists of fixed implementation functions used for integrating and verifying
the operation of the LTE PDSCH transmitter function. Examples of fixed
implementation functions, the main function which integrates all functions
together, the random_test function used to generate random information bits, the
noise function used to generate AWGN noise, ...etc.

On the LTE PDSCH transmitter platform, all of the LTE PDSCH receiver
functions configured to be implemented as a fixed software function because they
are used in integrating and verifying the LTE PDSCH transmitter/receiver chain.
In addition, the processing system consists of the LTE PDSCH Transmitter

56

function that consists of the configurable implementation functions. The term
configurable means that each sub-functions of the LTE PDSCH Transmitter
function are implemented as a software function or hardware-accelerated function
synthesized by HLS according to the configuration in table 4.2.

The programming logic side consists of fixed implemented hardware logic used
to handle the data flow between the processing system and programming logic.
The fixed logics are generated by SDSoC tool are depends on the number of
connection ports between software functions and hardware-accelerated functions
synthesized by HLS. In addition, the programming logic consists of LTE PDSCH
Transmitter functions implemented using HLS. As described in section 4.2.1, each
sub-function of LTE PDSCH Transmitter function is implemented as a software
function or hardware-accelerated function synthesized by HLS according to the
configuration in table 4.2.

Figure 4.7: Configurable embedded FPGA platform for the LTE PDSCH
transmitter

4.2.2. LTE PDSCH receiver implementation

The objective of this section is to implement multiple scenarios for the LTE
PDSCH receiver function. Each scenario generates an Embedded FPGA platform
which depends on the implementation of the LTE PDSCH receiver sub-functions
either software function or hardware-accelerated function synthesized by HLS.

57

As shown in figure 2.5 the LTE PDSCH receiver consists of eight sub-functions
which they are the following: CRC_removing, de-segmentation, turbo_decoder,
de-interleaver, rate_de-matching, de-scrambler, de- modulator and
resource_element_de-mapper. Having eight sub-functions, two hundred and fifty-
six projects are generated to cover all the possible scenarios between software
implementation and hardware-accelerated implementation generated using HLS.

Table 4.3 shows parts of all possible configuration scenarios to implement the
LTE PDSCH receiver sub-functions. The number (1) in the table indicates that
this sub-function in the current platform is a hardware-accelerated logic and the
number (0) indicates that this sub-function in the current platform is a software
function. For example, in Tx6 platform the de-Segmentation sub-function and
Turbo_Decoder sub-function is implemented as a hardware-accelerated logic and
other LTE PDSCH receiver sub-functions are implemented as a software function.
Configurable embedded FPGA platform for LTE PDSCH receiver.

Figure 4.8 shows the proposed configurable Embedded FPGA platform for the
LTE PDSCH receiver. The configurable embedded FPGA platform consists of the
processing system and programming logic. The processing system side consists of
fixed implementation functions used for integrating and verifying the operation of
the LTE PDSCH transmitter function. Examples of fixed implementation
functions, the main function which is integrating all functions together, the
random_test function used to generate random information bits, the noise function
used to generate AWGN noise, ...etc.

Figure 4.8: Configurable embedded FPGA platform for the LTE PDSCH receiver

58

Table 4.3: LTE PDSCH receiver sub-unction configuration scenario:
(0) software function and (1) hardware-accelerated logic

platform

name

RE

de-mapper
De-

modulator
De-

scrambler
Rate

de-
matching

De-
interleaver

Turbo

decoder
De-

segmentation

CRC

removing

Rx0

Rx1

Rx2

Rx3

Rx4

Rx5

Rx6

Rx7

.

.

.

Rx250

Rx251

Rx252

Rx253

Rx254

Rx255

On the LTE PDSCH Receiver platform, all of the LTE PDSCH transmitter
functions configured to be implemented as a fixed software function because they
are used in integrating and verifying the LTE PDSCH transmitter/receiver chain.
In addition, the processing system consists of the LTE PDSCH receiver function
that consists of the configurable implementation functions.

The term configurable means that each sub-function of the LTE PDSCH receiver
function is implemented as a software function or hardware-accelerated function
synthesized by HLS according to the configuration in table 4.3.

59

The programming logic side consists of fixed implemented hardware logic used
to handle the data flow between the processing system and programming logic.
The fixed logics are generated by SDSoC tool and depends on the number of
connection ports between software functions and hardware-accelerated functions
synthesized by HLS. -

In addition, the programming logic consists of LTE PDSCH receiver functions
implemented using HLS. As described in section 4.2.2, each sub-function of LTE
PDSCH receiver function is implemented as a software function or hardware-
accelerated function synthesized by HLS according to the configuration in table
4.3.

4.2.3. Constraints solution

 This section introduces examples for implementation of the LTE PDSCH
and LTE PDSCH under user constraints. The design flow applied is
design_flow_2 described in section 3.3. The SDSOC.sh script described in
Appendix C is modified to add the constraint file and to execute the
design_flow_2.

Table 4.4 shows an example of design constraints applied to implement. As shown
in the table the, sets of constraints are the following:

 Maximum limit of area, power, and latency. The combinations from table 4.2
or table 4.3 do not meet the designer’s maximum limit constraints are rejected;
only solutions that meet constraints will be added to the valid solution_sets.

 Target and weight of area, power, and latency. Both of them are used to
calculate PMC using equation 3.1.

Table 4.4: Constraints solution examples

Model example performance_constraints

area (LUT) power (WATSS) latency (CLOCK CYCLE)

Limit target weight limit target weight limit target weight

LTE PDSCH
transmitter

LTE PDSCH
receiver

60

4.2.4. Results and comparative studies

This section focuses on studying the performance of hardware-accelerated
functions synthesized by HLS. Therefore, the first solution on table 4.2 which is
Tx0 platform and the first solution on table 4.3 which is and Rx0 platform are
assumed an ideal case. Tx0 and Rx0 solutions are considered as an ideal case
because all of the LTE PDSCH transmitter/receiver sub-functions are
implemented as a software function. In this case, the hardware-accelerated logics
are not generated and the generated platform has a constant area which is the arm
processor area and has a constant power consumption which is the power
consumption of the arm processor.

The Xilinx ZYNC ZC702 device was used for the implementation. It consists of
a dual ARM Cortex A9 core as the processing system and XC7Z020-CLG484
based FPGA as the programming logic [52]. The hardware-accelerated functions
are synthesized and implemented at frequency equals 100 MHz.

This section shows the results implementation of all possible configuration
scenarios shown in table 4.2. Two hundred and fifty-six projects are generated for
the LTE PDSCH transmitter to cover all possible scenarios between software
implementation and hardware-accelerated implementation generated using HLS.

In addition, this section shows the implementation results of all possible
configuration scenarios shown in table 4.3. Two hundred and fifty-six projects are
generated for the LTE PDSCH receiver to cover all possible scenarios between
software implementation and hardware-accelerated implementation generated
using HLS.

4.2.4.1. LTE TX implementation results

This section shows the results implementation of all possible configuration
scenarios for LTE PDSCH transmitter chain.

4.2.4.1.1. Hardware utilization for the LTE TX implementation

 Figure 4.9 shows the hardware utilization of the generated platforms of the
synthesized hardware. The Tx1 platform has the minimum hardware utilization.
The Tx1 platform is configuring such that CRC_addition block is implemented
as hardware- accelerated logic and other LTE PDSCH transmitter sub-functions
are implemented as software functions. The Tx255 platform has the maximum
hardware utilization. The Tx255 platform is configuring such that all the LTE
PDSCH transmitter sub-functions are implemented as hardware-accelerated
functions. The area results are changed non-linear irregular changes because the
different values of area are generated according to configuration in table 4.2.

61

Figure 4.9: Hardware utilization for the LTE TX implementation

4.2.4.1.2. Latency for the LTE TX implementation

Figure 4.10 shows the latency calculation of the generated platforms of the
synthesized hardware. The Tx1 platform is configuring such that CRC_addition
block is implemented as hardware-accelerated logic and other LTE PDSCH
transmitter sub-functions are implemented as software functions. The Tx255
platform has the maximum latency calculation.

 The Tx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated functions. The total latency
results are calculated for independent hardware-accelerated functions only, so the
processing time of the arm processor is not included in the latency calculation.

62

Figure 4.10: Latency for the LTE TX implementation

4.2.4.1.3. Dynamic Power for the LTE TX implementation

Figure 4.11 shows the dynamic power consumption of the generated
platforms of the synthesized hardware. The Tx1 platform has the minimum
dynamic power consumption. The Tx1 platform is configuring such that
CRC_addition block is implemented as hardware-accelerated logic and
other LTE PDSCH transmitter sub-functions are implemented as software
functions.

The Tx255 platform has the maximum dynamic power consumption. The
Tx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated functions.

63

Figure 4.11: Dynamic power for the LTE TX implementation

4.2.4.1.4. Hardware acceleration for the LTE TX implementation

Figure 4.12shows the hardware acceleration calculations of the generated
platforms of the synthesized hardware. The Tx1 platform has the minimum
hardware acceleration calculation. The Tx1 platform is configuring such that
CRC_addition block is implemented as hardware- accelerated logic and other LTE
PDSCH transmitter sub-functions are implemented as software functions.

The Tx255 platform has the maximum hardware acceleration calculation. The
Tx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated functions.

64

Figure 4.12: Hardware acceleration for the LTE TX implementation

4.2.4.1.5. FoM for the LTE TX implementation

Figure 4.13shows the FoM calculations of the generated platforms of the
synthesized hardware. The Tx64 platform has the best FoM calculation. The Tx64
is configuring such that Segmentation block which is implemented as hardware-
accelerated logic and other LTE PDSCH transmitter sub-functions sub-functions
are implemented as software functions.

The Tx255 platform has the worst FoM calculation. The Tx255 platform is
configuring such that all the LTE PDSCH transmitter sub-functions are
implemented as hardware-accelerated functions.

65

Figure 4.13: FoM for the LTE TX implementation

4.2.4.2. LTE RX implementation results

 This section shows the results implementation of all possible configuration
scenarios for LTE PDSCH receiver chain.

4.2.4.2.1. Hardware utilization for the LTE T RX implementation

Figure 4.14 shows the hardware utilization of the generated platforms of the
synthesized hardware. The Rx1 platform has the minimum hardware utilization.
The Rx1 platform is configuring such that CRC_removing block is implemented
as hardware-accelerated logic and other LTE PDSCH receiver sub-functions are
implemented as software functions. The Rx255 platform has the maximum
hardware utilization.

The Rx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated function. The area results are
changed non-linear irregular changes because the different values of area are
generated according to configuration in table 4.3.

66

Figure 4.14: Hardware utilization for the LTE RX implementation

4.2.4.2.2. Latency for the LTE RX implementation

Figure 4.15 shows the latency calculation of the generated platforms of the

synthesized hardware. The Rx1 platform has the minimum latency calculation.
The Rx1 platform is configured such that CRC_removing block which is
implemented as hardware-accelerated logic and other LTE PDSCH receiver sub-
functions are implemented as software functions. The Rx255 platform has the
maximum latency calculation.

The Rx255 platform that is configured such that all the LTE PDSCH receiver sub-
functions are implemented as hardware-accelerated functions. The total latency
results are calculated for independent hardware-accelerated functions only, so the
processing time of the arm processor is not included in the latency calculation.

67

Figure 4.15: latency for the LTE RX implementation

4.2.4.2.3. Dynamic Power for the LTE RX implementation

Figure 4.16 shows the dynamic power consumption of the generated
platforms of the synthesized hardware. The Rx1 platform has the minimum
dynamic power consumption. The Rx1 platform is configuring such that
CRC_removing block is implemented as hardware-accelerated logic and other
LTE PDSCH receiver sub-functions are implemented as software functions.

The Rx255 platform has the maximum dynamic power consumption. The Rx255
platform is configuring such that all the LTE PDSCH receiver sub-functions are
implemented as hardware-accelerated functions.

68

Figure 4.16: Dynamic power for the LTE RX implementation

4.2.4.2.4. Hardware acceleration for the LTE RX implementation

Figure 4.17 shows the hardware acceleration calculations of the generated
platforms of the synthesized hardware. The Rx1 platform has the minimum
hardware acceleration calculation. The Rx1 platform is configuring such that
CRC_addition block is implemented as hardware-accelerated logic and other LTE
PDSCH receiver sub-functions are implemented as software functions.

The Rx255 platform has the maximum hardware acceleration calculation. The
Rx255 platform is configuring such that all the LTE PDSCH receiver sub-
functions are implemented as hardware-accelerated functions.

69

Figure 4.17: Hardware acceleration for the LTE T RX implementation

4.2.4.2.5. FoM for the LTE RX implementation

Figure 4.18 shows the FoM calculations of the generated platforms of the
synthesized hardware. The Rx1 platform has the best FoM calculation. The Rx1
platform is configuring such that CRC_addition block is implemented as
hardware-accelerated logic and other LTE PDSCH receiver sub-functions are
implemented as software functions.

The Rx255 platform has the worst FoM calculation. The Rx255 platform is
configuring such that all the LTE PDSCH receiver sub-functions are implemented
as hardware-accelerated functions.

70

Figure 4.18: FoM for the LTE RX implementation

4.2.4.3. Constraints solution examples results

This section shows the implementation results to get the best heterogeneous

FPGA-CPU SoC platform that meets constraints examples in section 4.2.3. The
design_flow_2 illustrated in section 3.3 is applied. Performance Metrics Cost
(PMC) Equation 3.1 is used for calculating the cost and selecting the best
implementation that meets the design constraints.

 Table 4.5 shows the implementation results after applying the target constraints
in table 4.4. The valid_solution_sets column in tables 4.5 shows the valid
solution_sets that meet the maximum limit design constraints in table 4.4. Next
calculation the performance metrics cost for each the valid solution_sets using
Performance Metrics Cost (PMC) equation 3.1. Finally, select the solution with
the minimum calculated PMC value that meets the constraints.

71

Table 4.5: Constraints solution examples results

Model example performance_constraints_results

valid_solution_sets PMC best PMC

LTE PDSCH transmitter

LTE PDSCH receiver

For LTE PDSCH transmitter chain, there are three configuration scenarios are
met the required performance constraints in table 4.4. The Tx1, Tx2 and Tx32
configuration scenarios are added to the valid_solution_sets list, then the PMC
for each configuration scenarios are calculated and then Tx1 was selected as the
best configuration scenarios that meets the constraints because it generated the
minimum PMC calculation.

For LTE PDSCH receiver chain, there are seven configuration scenarios are met
the required performance constraints in table 4.4. The Rx1, Rx2, Rx3, Rx4,
Rx16, Rx32 and Tx33 configuration scenarios are added to the
valid_solution_sets list, then the PMC for each configuration scenarios are
calculated and then Rx33 was selected as the best configuration scenarios that
meets the constraints because it generated the minimum PMC calculation.

72

Conclusions

Designing using SDSoC tool helps SoCs designer by introducing a simple
design environment. In addition, SDSoC design environment makes integration
and verification of co-design heterogeneous FPGA-CPU faster and more efficient.
This thesis introduced a new automated design technique used to implement a
heterogeneous FPGA-CPU SoC platform.

In section 3, a new automated design technique is used to implement multiples of
heterogeneous FPGA-CPU SoC platforms using SDSoC tool. The automated
method is used in exploration of all possible scenarios between software
implementation and hardware-accelerated implementation generated using HLS.
In addition, the new design technique is used to design a heterogeneous FPGA-
CPU SoC platform that meets pre-defined performance metrics constraint such as
area and power.

The questions of what platform and what implementation, whether hardware or
software is best suited for the best efficient platform. In this thesis, these questions
are sought to be answered by introducing Figure of Merit (FoM) performance
metric [50]. In addition, Performance Metrics Cost (PMC) equation helps to
develop a platform that achieves specific performance metrics requirement.

This new design technique may lead to make quantum leap in the design of
heterogeneous FPGA-CPU SoC platform by integrating performance design
constraint requirement in the design cycle.

In section 4, as a case study, the LTE PDSCH transmitter/receiver software
functions are written using C programming language, and the design of the LTE
PDSCH transmitter/receiver are implemented on heterogeneous FPGA-CPU SoC
platforms using SDSoC tool. The automated method is used to explorer all
possible scenarios between software implementation and hardware-accelerated
implementation for the LTE PDSCH transmitter and the LTE PDSCH receiver.

In addition, the platform that meets pre-defined performance metrics constraint is
selected for the LTE PDSCH transmitter and the LTE PDSCH receiver. Moreover,
the platform that achieves the best overall performance is selected for the LTE
PDSCH transmitter and the LTE PDSCH receiver.

73

Future Work

Adaptive design implementation dependent on performance requirement
could be developed and used to re-implement the SoC platform during run time.
For example, the designer may develop SoC-based products depending on
environmental variables (ex: availability of sunlight). The designer may develop
SoC platform consuming high-power assuming availability of sunlight for
recharging batteries. Let assume for some reason, the developed SoC-based
product have to be work in new environment where sunlight is not available, the
SoC platform could be re-implemented during run time to re-build a new SoC
platform consuming less power.

Partial Dynamic Reconfiguration (PDR) techniques could be integrated and used
to reconfigure the FPGA according to design environment status [53]. For
example, platform with the best performance metrics is loaded initially to the
FPGA. In case of low power mode, platform with the minimum dynamic power
performance metrics is loaded to the FPGA using PDR [54].

In addition, the new design technique may lead to develop FPGA-CPU SoC
platform with partially upgrading capability. For example, part of the LTE
PDSCH chain has a fixed architecture in every LTE update release (ex: CRC
calculation), so this module may be implemented as a hardware-accelerated logic.
In the other hand, part of the LTE PDSCH chain has an adjustable architecture in
every LTE update release (ex: resource element mapper), so this module may be
implemented as a software function because software could be upgraded easily.

74

References

1. A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of Things
for Smart Cities," in IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22-32, Feb.
2014.

2. Kuon and J. Rose, "Measuring the Gap Between FPGAs and ASICs," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
26, no. 2, pp. 203-215, Feb. 2007.

3. M. D. Edwards and J. Forrest, "Hardware/software partitioning for performance
enhancement," IEE Colloquium on Partitioning in Hardware-Software Codesigns,
London, UK, pp. 2/1-2/5, 1995.

4. Peng Liua, Jigang Wu , Yongji Wang , “Hybrid algorithms for hardware/software
partitioning and scheduling on reconfigurable devices” ,Mathematical and
Computer Modelling Volume 58, Issues 1–2, Pages 409-420,2013.

5. Shabtay matalon, “VISTA VIRTUAL PROTOTYPING” , Mentor graphic company
white paper, 2015.

6. C. Sekar and Hemasunder, "Tutorial T7: Designing with Xilinx SDSoC," 2017 30th
International Conference on VLSI Design and 2017 16th International Conference
on Embedded Systems (VLSID), Hyderabad, pp. xl-xli, 2017.

7. Alexander Kukushkin, "Global System Mobile, GSM, 2G," in Introduction to
Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G, Wiley,
pp. 59-102, 2018.

8. K. Riyazuddin, A. K. Sharma and P. V. N. Reddy, "Analyzing the behaviour of
OFDM parameters in different LTE environment," 2017 IEEE International
Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI),
Chennai, pp. 2849-2853, 2017.

9. Y. Kim, O. Choi, Y. Kim and J. Park, "Performance analysis of LTE multi-antenna
technology in live network," 2016 URSI Asia-Pacific Radio Science Conference
(URSI AP-RASC), Seoul, pp. 1302-1305, 2016.

10. Alexander Kukushkin, "4G‐Long Term Evolution (LTE) System," in Introduction
to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G,
Wiley, pp. 205-291, 2018.

11. LaMeres, Brock J., “Introduction to Logic Circuits & Logic Design with Verilog”,
Springer International Publishing, 2017.

12. Deming Chen; Jason Cong; Peichan Pan, "FPGA Design Automation: A Survey, in
FPGA Design Automation”, Vol. 1, No 3, pp. 195–330, 2006.

13. Dudhe, P.V. & Kadam, N.V. & M. Hushangabade, R & S. Deshmukh, M,"Internet
of Things (IOT): An overview and its applications", International Conference on
Energy, Communication, Data Analytics and Soft Computing (ICECDS), pp. 2650-
2653, 2017.

75

14. S. Ahmad, V. Boppana, I. Ganusov, V. Kathail, V. Rajagopalan and R. Wittig, "A
16-nm Multiprocessing System-on-Chip Field-Programmable Gate Array
Platform," in IEEE Micro, vol. 36, no. 2, pp. 48-62, Mar.-Apr. 2016.

15. Veendrick H., “Memory Circuits and IP. In: Bits on Chips”, Springer, Cham, 2018.

16. Ian Kuon; Russell Tessier; Jonathan Rose, "FPGA Architecture: Survey and
Challenges," in FPGA Architecture: Survey and Challenges, 2008.

17. P. J. Kim, D. S. Ku, L. S. Jeong, J. H. Yun, S. Y. Choi and J. B. Kim, "Electrical
properties of PIP anti-fuse for the logic circuit configuration," SICE 2003 Annual
Conference (IEEE Cat. No.03TH8734), Fukui, Japan, pp. 2980-2983, 2003.

18. P. Alfke, "Xilinx Virtex-6 and Spartan-6 FPGA families," 2009 IEEE Hot Chips 21
Symposium (HCS), Stanford, CA, pp. 1-20, 2009.

19. Sarah L.Harris, David MoneyHarris, “Digital Design and Computer Architecture”,
Elsevier, Pages 238-293, 2013.

20. J. Lin and B. C. Lai, "BRAM efficient multi-ported memory on FPGA," VLSI
Design, Automation and Test (VLSI-DAT), Hsinchu, pp. 1-4, 2015.

21. U. Farooq, I. Baig and B. A. Alzahrani, "An Efficient Inter-FPGA Routing
Exploration Environment for Multi-FPGA Systems," in IEEE Access, vol. 6, pp.
56301-56310, 2018.

22. B. Ronak and S. A. Fahmy, "Multipumping Flexible DSP Blocks for Resource
Reduction on Xilinx FPGAs," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 9, pp. 1471-1482, Sept. 2017.

23. Clive MaxMaxfield, "FPGAs: Instant Access", Elsevier, 2008.

24. P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis, B. Cremen and B. Troxel,
"A hybrid ASIC and FPGA architecture," IEEE/ACM International Conference on
Computer Aided Design, pp. 187-194, 2002.

25. 3GPP, TS 36.101, “Evolved Universal Terrestrial Radio User Equipment (UE) radio
transmission and reception”, Release 14, 2017.

26. 3GPP, TS 36.104, “Evolved Universal Terrestrial Radio Base Station (BS) radio
transmission and reception”, Release 14, 2017.

27. 3GGP, “Technical Specification Group Radio Access Network; GSM/EDGE
Physical layer on the radio path”, Release 14, 2017.

28. S. Syed Ameer Abbas, K. S. Geethu. and S. J. Thiruvengadam, "Implementation of
physical downlink control channel (PDCCH) FOR LTE using FPGA," 2012
International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore,
pp. 335-339, 2012.

29. L. Kuchibhotla, R. Ghosh, A. Ratasuk, R. Classon, B. Blankenship, “Downlink
control channel design for 3GPP LTE”, Wireless Communications and Networking
Conference (WCNC), 813-818, 2008.

30. S. S. A. Abbas, P. A. J. Sheeba and S. J. Thiruvengadam, "Design of downlink
PDSCH architecture for LTE using FPGA," 2011 International Conference on
Recent Trends in Information Technology (ICRTIT), Chennai, Tamil Nadu, pp. 947-
952, 2011.

76

31. Zarrinkoub Houman, “UNDERSTANDING LTE WITH MATLAB” John Wiley &
Sons, 2014.

32. 3GPP TS 36.211, “Evolved Universal Terrestrial Radio Access (EUTRA);
Multiplexing and Channel Coding” Release 15, 2017.

33. J. Cheng and H. Koorapaty, "Error Detection Reliability of LTE CRC Coding," 2008
IEEE 68th Vehicular Technology Conference, Calgary, BC, pp. 1-5, 2008.

34. K. G. Lenzi, J. A. B. Filho and F. A. P. Figueiredo, "Code block segmentation
hardware architecture for LTE-Advanced," IEEE Wireless Communications and
Networking Conference (WCNC), Shanghai, pp. 3312-3317, 2013.

35. R. Kaur, S. Chopra, “Iterative Decoding of Turbo Codes”, International Journal of
Scientific and Engineering Research (IJSER), 2013.

36. 3GPP TS 36.211, “Evolved Universal Terrestrial Radio Access (EUTRA); Physical
Channels and Modulation”, Release 15, 2017.

37. Sah, Dhaneshwar, “Iterative Decoding of Turbo Codes”, Journal of Advanced
College of Engineering and Management, Vol.3, pp. 5-30, 2017.

38. Fu-Gang Wang, Yi Tang and Fan Yang, "The iterative decoding algorithm research
of Turbo Product Codes," The 2010 International Conference on Apperceiving
Computing and Intelligence Analysis Proceeding, Chengdu, pp. 97-100, 2010.

39. M. Bukris, I. Gazit, “Rate Matching and De-Rate Matching for an LTE Transport
Channel”, U.S Patent, 2010.

40. ETR 289,” Support for use of scrambling and Conditional Access (CA) within
digital broadcast systems”, European Telecommunications Standards Institute
(ETSI), 1996.

41. K. G. Digish and R. Thilagavathy, "ASIC implementation of physical downlink
shared channel for LTE," 2014 International Conference on Control,
Instrumentation, Communication and Computational Technologies (ICCICCT),
Kanyakumari, pp. 370-376, 2014.

42. Jagdish, D. Kenea, Kishor, D. Kulatb, “Soft Output Decoding Algorithm for Turbo
Codes Implementation in Mobile Wi-Max Environment”, International Conference
on Communication, Computing and Security (ICCCS), Volume 6, PP. 666-673,
2012.

43. D. Zhu, V. J. Mathews and D. H. Detienne, "A Likelihood-Based Algorithm for
Blind Identification of QAM and PSK Signals," in IEEE Transactions on Wireless
Communications, vol. 17, no. 5, pp. 3417-3430, May 2018.

44. S. S. A. Abbas, S. J. Thiruvengadam and M. Punitha, "Realization of PDSCH
transmitter and receiver architecture for 3GPP-LTE advanced," 2016 International
Conference on Wireless Communications, Signal Processing and Networking
(WiSPNET), Chennai, pp. 1-6, 2016.

45. Valido, Manuel & Magdaleno, Eduardo & Perez, Fernando & García, Cristhian.
“Automated Software Acceleration in Programmable Logic for an Efficient NFFT
Algorithm Implementation: A Case Study”. Sensors - Open Access Journal, 2017.

77

46. K. Rupnow, Yun Liang, Yinan Li and Deming Chen, "A study of high-level
synthesis: Promises and challenges," 2011 9th IEEE International Conference on
ASIC, Xiamen, pp. 1102-1105, 2011.

47. Inc. Xilinx, “Vivado Design Suite, Tutorial High-Level Synthesis (UG871)”, 2014.

48. Inc. Xilinx, “SDSoC Environment User Guide (UG1028)”. 2016.

49. S. Roh, K. Cho and K. Chung, "Implementation of an LDPC decoder on a
heterogeneous FPGA-CPU platform using SDSoC," IEEE Region 10 Conference
(TENCON), Singapore, 2016, pp. 2555-2558, 2016.

50. M. E. Adawy, A. Kamaleldin, H. Mostafa and S. Said, "Performance evaluation of
turbo encoder implementation on a heterogeneous FPGA-CPU platform using
SDSoC," 2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems
& 2017 Intl Conf on New Paradigms in Electronics & Information Technology
(PEIT), Alexandria, pp. 286-290, 2017.

51. C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting
coding and decoding: Turbo-codes. 1," Proceedings of ICC '93 - IEEE International
Conference on Communications, Geneva, Switzerland, pp. 1064-1070 vol.2, 1993.

52. Inc. Xilinx, “ZC702 Evaluation Board for the Zynq-7000 XC7Z020 User Guide”,
2018.

53. T. Kalb and D. Göhringer, "Enabling dynamic and partial reconfiguration in Xilinx
SDSoC," 2016 International Conference on ReConFigurable Computing and
FPGAs (ReConFig), Cancun, pp. 1-7, 2016.

54. Sadek, A., H. Mostafa, A. Nassar, and Y. Ismail, "Towards the Implementation of
Multi-band Multi-standard Software Defined Radio using Dynamic Partial
Reconfiguration", International Journal of Communication Systems, pp. 1-12, 2017.

78

Appendix A: Modulation lookup table

Table A.1: 64QAM modulation lookup table

000000

 000001

000010

000011

000100

000101

000110

000111

001000

001001

001010

001011

001100

001101

79

001110

001111

010000

010001

-010010

010011

010100

010101

010110

010111

011000

011001

011010

011011

011100

011101

011110

80

011111

100000

100001

100010

100011

100100

100101

100110

100111

101000

101001

101010

101011

101100

101101

101110

101111

81

110000

110001

110010

110011

110100

110101

110110

110111

111000

111001

111010

111011

111100

111101

111110

111111

82

Appendix B: Implement SDSOC project manually
steps

The required steps to implement the SDSOC project manually are illustrated as
follows:

1. Open SDSoC tool. The Workspace Launcher window will appear.

2. Select “File” “New” “SDSoc Project”. New Project GUI window will
appear as shown in figure B.1. Enter project name, for example “turboX”,
select “ZC702” as a platform (depending on the evaluation kit used), select
“Standrad”, and click “Next”.

Figure B.1: Project naming and platform selection and OS selection

3. Select “Empty Application” to create a new empty project and then Click
“Finish” as shown in figure B.2.

83

Figure B.2: Empty project Selection

4. A new directory is generated at the location of project path and Project window
will appear as shown in figure B.3. The new directory name is same as project
name typed in step 1. Copy the C/C++ source files into the following directory
inside project “<project path>” “turboX” “src”

The “Project Explorer” window located in the left side, under “turboX” project
directory, the “src” directory contains the source files which were copied from in
the previous steps.

In the right-side pane, in “Option” window select generate bitstream, generate SD
CARD image and estimate performance. In Hardware function, click in plus icon
and select the required functions to be implemented as a hardware acceleration
function. Also select the operating clock frequency for hardware functions.

Note that: -

a) Estimate performance mode is used to get the estimated cycles for hardware
acceleration and to get estimated values for resource utilization.

b) The hardware functions are selected depending on the selected function.

84

Figure B.3: project window in estimated performance mode

5. From “Project” select “Build ALL”, the process of building project will
start.

6. After finish building project, the estimated performance results appear as
shown in figure B4. The output results of the estimated performance mode
generated by the SDSoC tool are the estimated hardware acceleration and the
resource utilization for hardware acceleration function.

Figure B.4: Estimated performance results

85

7. To get the complete performance metrics for SDSoC implementation, repeat
from step 1 to step 5, but in step 5, then de-select the “Estimated
Performance” checkpoint shown in figure B.5 then, from “Project” select
“Build ALL”, the process of building project starts as shown in figure B.4.

Figure B.5: Window project in non-estimated performance mode

8. After finish building the project, “SDDebug” directory is created inside the
project path. The SDSoC directory structure inside the project path is as shown
in figurer B.6.

Figure B.6: SDOSC directory structure

86

The content of each directory is the following:

• The “swstubs” directory contains source file to handle data motion and source
file used to communicate between different hardware acceleration block.

• The “iprepo” directory is generated by Vivado HLS and contain a sub-directory
for each hardware function.

• The “vhls” directory is generated by Vivado HLS and contains the complete
HLS implementation for each function.

• The “p0” directory consists of “ipi” sub-directory that contains The Vivado
project (synthesis and implementation and results) and the generated bit file.
The project file located inside the “ipi” directory and has an extension of xpr.

87

Appendix C: SDSOC shell script

The required steps to implement project using SDSoC shell script are shown as
follows: -

1) Create directory “lte_tx” which is a top project path directory. Copy the “src”
directory, the “info.txt” and “SDSOC.sh” to the “lte_tx” directory.

2) The “src” directory contains all the C/C++ source files to implement the LTE
PDSCH transmitter/receiver using SDSoC tool. The “SDSOC.sh” is a
developed automated script file used to execute SDSOC tool multiple times to
generate all required solution sets.

The “info.txt” is file describes the block function names that implemented as a
hardware acceleration block. For example, the following list shows the
“info.txt” of LTE PDSCH transmitter.

3) Open a terminal window and execute the script using “./SDSOC.sh” command.

4) Select either C project of C++ project (the current LTE project is C project)

5) Select type of Xilinx evaluation board either a default ZC706 evaluation board
or one of the following evaluation board shown in table C.1.

RE_mapper_dl_siso:lte_RE_mapper_dl_siso.c

modulator:lte_modulator.c

scrambler:lte_scrambler.c

rate_matching:lte_ratematching.c

interleaver:lte_interleaver.c

tx_turbo:tx_turbo.c

tx_seg_turboenc:lte_segment.c

tx_crc:tx_crc.c

88

Table C.1: Supported SDSoC evaluation board

ID Type of evaluation board

1 ZC702

2 ZC706

3 Zed

4 Zybo

5 ZCu102_es1

6 ZCu102_es2

6) Select the operating system of platform either the default standalone operating
system or one of the operating system supported by sdsoc tool shown in table
C.2.

Table C.2: Supported SDSoC operating system

ID Type operating system

1 Linux

2 Standalone

Select the clock frequency used for synthesis and implementation hardware
accelerated function. The table C.3 shows supported frequencies by the SDSOC
tool.

Table C.3: synthesis frequency supported by SDSoC tool

ID HLS synthesis frequency (MHz)

0 166.666672

1 142.857132

2 100.000000

3 200.000000

7) Select the data motion operating frequency, the frequency depend in selection
of evaluation kit as shown in table C.4.

89

Table C.4: Data motion operating frequency

Platform ID data motion operating
frequency

ZC702 0 166

1 142

2 100

3 200

ZC706 0 166

1 142

2 100

3 200

Zed 0 166

1 142

2 100

3 200

Zybo 0 25

1 100

2 125

3 50

ZCu102_e1 0 100

1 150

2 200

3 300

ZCu102_e2 0 100

1 150

2 200

3 300

8) The script generates all solution sets. Also, the script generates
“design_space.rpt” file that contains the performance metrics results

90

List C.1: SDSoC.sh

#!/bin/bash

#Functions definition
create_makefile() {
 echo 'APPSOURCES = ' $ls*.$ext>Makefile
 echo 'EXECUTABLE = out.elf'>>Makefile
 echo 'CC = '$CC' ' $SDSFLAGS>>Makefile
 echo 'CFLAGS = -O3 -c'>>Makefile
 echo 'CFLAGS += -MMD -MP -MF"$(@:%.o=%.d)"'>>Makefile
 echo 'LFLAGS = -O3 -lm'>>Makefile
 echo 'OBJECTS := $(APPSOURCES:.'$ext'=.o)'>>Makefile
 echo 'DEPS := $(OBJECTS:.o=.d)'>>Makefile
 echo '.PHONY: all clean ultraclean'>>Makefile
 echo 'all: ${EXECUTABLE}'>>Makefile
 echo '${EXECUTABLE}: ${OBJECTS}'>>Makefile
 echo $'\t${CC} ${LFLAGS} $^ -o $@'>>Makefile
 echo '-include ${DEPS}'>>Makefile
 echo '%.o: %.'$ext>>Makefile
 echo $'\t${CC} ${CFLAGS} $^ -o $@'>>Makefile
 echo 'clean:'>>Makefile
 echo $'\t${RM} ${EXECUTABLE} ${OBJECTS} *.d'>>Makefile
 echo 'ultraclean: clean'>>Makefile
 echo $'\t${RM} ${EXECUTABLE}.bit'>>Makefile
 echo $'\t${RM} -rf _sds sd_card'>>Makefile
return 0
}

#Ask if C or C++ project
#Makefile format changes according project type
echo $'C or C++ project?\n1)C project\n2)C++ project?'
read choice
 if [$choice = 1]
 then
 ext='c'
 CC='sdscc'
 elif [$choice = 2]
 then
 ext='cpp'
 CC='sds++'
 fi
echo
"###"

91

#Choose OS
echo $'Default operating system is standalone\nchange OS ? [y/n]'
read choice
 if [$choice = y]
 then
 echo $'Available operating systems are:
linux,freertos,standalone\nchoosen OS: '
 read choice
 OS=$choice
 elif [$choice = n]
 then
 OS='standalone'
 fi
echo
"##"

#choose HW synthesis clock frequency
echo $'Choose HW synthesis clock\navaliable CLK_IDs are
0,1,2,3\nclock frequency values differ based on platform\nfor more
information check Xilinx documents'
echo 'Choosen CLK_ID: '
read choice
CLK_ID=$choice
echo
"###"

#choose data network clock frequency
echo $'Choose data network clock\navaliable CLK_IDs are
0,1,2,3\ndata network clock frequency values differ based on
platform\nfor more information check Xilinx documents'
echo 'Choosen DMCCLK_ID: '
read choice
DMCCLK_ID=$choice
echo
"###"

#Create different solutions
#list C/C++ functions which will be compiled in both modes (HW and
SW) in array
#get number of functions from number of lines in file
function_count=$(cat info.txt |wc -l)
i=0
while [[$i -lt $function_count]]
do
 func[$i]=$(head -"$(echo "$i+1"|bc)" info.txt|tail -1 |cut
-d ':' -f 1)
 ((i++))
done

92

#then compute the number of C/C++ funcions in current directory and
the number of HW/SW combinations and loop on combinations
combination_num="$(echo 2^$function_count |bc)"
i=0
while [$i -lt $combination_num]
do
 #make directory for solution and create Makefile
 mkdir ./solution_$i
 #convert solution number to binary to determine how each
C/C++ is compiled (HW/SW)
 tmp="$(echo "obase=2;$i"|bc)"
 function_mode="$(echo $(printf "%0"$(echo $function_count)"d"
$tmp))"
 #loop on functions to generate HardWare options field
in the sdscc/sds++ command synopsis
 j=0
 HW_options_str=" "
 while [$j -lt $function_count]
 do
 #HW_options are passed to sdscc/sds++ compiler in
the Makefile
 if [[${function_mode:$j:1} = 1]];
 then
 file_name=$(cat info.txt|grep -w
${func[$j]} |cut -d':' -f 2)
 HW_options_str=$HW_options_str' -sds-hw
'${func[$j]}' '${file_name}' -clkid '$CLK_ID' -sds-end '
 fi

 ((j++))
 done

 #Two design flows will be followed, performance estimation
flow and traditional flow
 #performance estimation flow is used for latency estimation
and speed up
 #traditional flow is used to create SDCard files and get
area,power info.
 if [$i -lt 10]
 then
 line='################## solution '$i'
######################'
 elif [$i -lt 100]
 then
 line='################## solution '$i'
#####################'
 else
 line='################## solution '$i'
####################'
 fi

 echo '##'
 echo $line
 echo '##'

93

 #***
 #2)Traditional flow
 mkdir ./solution_$i/reg_flow
 cp -r src/* ./solution_$i/reg_flow
 cd ./solution_$i/reg_flow && touch Makefile
 SDSFLAGS=' -sds-pf '$platform' '$HW_options_str' -target-os
'$OS' -dmclkid '$DMCCLK_ID
 create_makefile
 make -f Makefile

#Generate design space exploration report
touch design_space.rpt
echo 'This file is generated by SDSoC script'>design_space.rpt
echo 'Author: Mahmoud M.Kishky'>>design_space.rpt
echo "+-------+------------------+--------------+--------------+---
----------+">>design_space.rpt
printf "| %5s | %16s | %12s | %12s | %11s | \n" 'Sol#' 'Slice
Logic' 'DSPs' 'Latency' 'Power(W)' >>design_space.rpt
echo "+-------+------------------+--------------+--------------+---
----------+">>design_space.rpt

i=1
while [$i -lt $combination_num]
do
 #power Calculation
 total_power="$(cat
./solution_$i/reg_flow/_sds/p0/ipi/*.runs/impl_1/*_power_routed.rpt
|grep Total\ On-Chip\ Power -w |cut -d'|' -f 3)"
 pow[$i]="$(echo "($total_power)"|bc)"

 #Area Calculation
 slice_luts[$i]="$(cat
./solution_$i/reg_flow/_sds/p0/ipi/*.runs/impl_1/*_power_routed.rpt
|grep Slice\ Logic -w |cut -d'|' -f 4)"
 DSP[$i]="$(cat
./solution_$i/reg_flow/_sds/p0/ipi/*.runs/impl_1/*_utilization_plac
ed.rpt|grep DSPs -w |cut -d'|' -f 3)"

 #write in perfromance report file
 printf "| %5s | %16s | %12s | %12s | %11s | \n" $i
${slice_luts[$i]} ${DSP[$i]} ${latency[$i]}
${pow[$i]}>>design_space.rpt

 #write in perfromance report file
 printf "| %5s | %16s | %12s | %12s | %11s | \n" $i
${slice_luts[$i]} ${DSP[$i]} ${latency[$i]}
${pow[$i]}>>design_space.rpt
((i++))
done
echo "+-------+------------------+--------------+--------------+---
----------+">>design_space.rpt

94

List C.2: cost_calc.sh

#!/bin/bash
#Author: Mahmoud M.Kishky

touch cost.rpt
echo "+-------+-------------------------+">>cost.rpt
printf "| %5s | %23s |\n" 'Sol#' 'cost'>>cost.rpt
echo "+-------+-------------------------+">>cost.rpt
sol_count=$(cat valid_solution.rpt |wc -l)

area_tar=$(cat cons.txt|grep area_target|cut -d ':' -f 2)
pow_tar=$(cat cons.txt|grep power_target|cut -d ':' -f 2)
lat_tar=$(cat cons.txt|grep latency_target|cut -d ':' -f 2)
aw=$(cat cons.txt|grep area_weight|cut -d ':' -f 2)
pw=$(cat cons.txt|grep power_weight|cut -d ':' -f 2)
lw=$(cat cons.txt|grep latency_weight|cut -d ':' -f 2)

i=0
while [[$i -lt $sol_count]]
do

 sol_num=$(head -"$(echo "$i+1"|bc)" valid_solution.rpt|tail -
1 |cut -d ':' -f 1)
 power="$(cat
./validSol/solution_$sol_num/_sds/p0/ipi/*.runs/impl_1/*_power_rout
ed.rpt|grep Total\ On-Chip\ Power -w |cut -d'|' -f 3)"
 area="$(cat
./validSol/solution_$sol_num/_sds/p0/ipi/*.runs/impl_1/*_power_rout
ed.rpt|grep Slice\ Logic -w |cut -d'|' -f 4)"
 latency="$(cat
./perfEst/solution_$sol_num/_sds/est/console_out.log |grep
Estimated\ hardware\ latency -w |cut -d'=' -f 2)"

 t1=$(echo "($area-$area_tar)/$area_tar" | bc -l)
 t2=$(echo "($power-$pow_tar)/$pow_tar" | bc -l)
 t3=$(echo "($latency-$lat_tar)/$lat_tar" | bc -l)
 cost[$i]=$(echo "$aw*$t1+$pw*$t2+$lw*$t3" | bc -l)
 #write in perfromance report file
 printf "| %5s | %23s |\n" $sol_num ${cost[$i]} >>cost.rpt
((i++))
done
echo "+-------+-------------------------+">>cost.rpt

#sort according to cost
#print least cost solution/s

IFS=$'\n'
least_cost="$(echo "${cost[*]}" | sort -n |head -1)"
echo "least cost solution/s:">>cost.rpt
cat cost.rpt |grep $least_cost -w|cut -d'|' -f 2 |tr '\n'
','>>cost.rpt
echo $'\n'>>cost.rpt

 أ

 ʸلʝʳال

) تʵلȘ الʛʽʲؔ مʧ الǽʙʴʱات لʺʨʢرʧȄ مʲل هʚه الأنʤʺة.SoC(صʻاعة الأنʤʺة على رقاقة
 ʙʽعقʱال ʧات مǽʙʴʱرج الʙʱقاقةتʛفة الॽʣو ʧم ʙأكʱأجل ال ʧد اللازم مʨهʳʺو ال ʦॽʺʸʱفي و الॽʣʨال

. Ǽالإضافة إلى ذلʥ, الʳʱانʝ الʸعʖ بʧʽ الأدوات الʢاقة قʨʽد مقایʝॽ الأداء مʲل و الʦॽʺʸʱ على
 اج إلى دورة Ȅʨʡلة و معقʙة مʧ أجل الʻʱفॽ.ʚʽدȑ إلى الإحʕʱ و الʺʨȞنات مʺا ی

ة ʛؗرت شʨʡ)Xilinx (ʶʺة اʺالأداة ال)SDSoC(ة لʸʸʵʱؔاملة مʱة مʯʽوهي ب ,ʱ ʦॽʺʸ ةʺʤالأن

 اتبʧʽ الʺعالج و مʸفʨفة الʨʰاǼ مʱؔاملة ة على مʸʻةॽʻمʱؔاملة مʰمʸʻة على)SoC(ةقعلى رقا
ة ॽʻمʰآلॽة جʙیʙة لʻʰاء الأنʤʺة على رقاقة على مʸʻة مʱؔاملة الأداة تقʙم هʚه .القابلة للʛʰمʳة
Ǽالإضافة إلى أنها تʙمج أدوات القابلة للʛʰمʳةات الʺعالج و مʸفʨفة الʨʰاǼ مʧ تʨؔʱن على مʸʻة

 .مʱعʙدة و هʚا ʳǽعل عʺلॽة الʦॽʺʸʱ أسʛع و أكʛʲ مʛونة

Ǽالإضافة إلى ذلʥ تʦ تSDSoC (ʦॽʺʸ(ʺاةتʦ تʨضॽح Ȅʛʡقة عʺل الأداة الʺʶفي هʚه الأʛʡوحة ,
)ʦॽʺʸ)SoC الʤʻام على رقافةʱل تʷغʽل الأداة لإدخال تقॽʻة جʙیʙة مʧ أجل مقʛʱحة Ȅʛʡقة عʺل

 .و الʺʶاحة الʢاقة مقایʝॽ الأداء مʲلوفȘ قʨʽد مॼʶقة على
Ȅʛʡقة Șʽʰʢʱؗ مॼاشʛ على) LTE(الأرسال و الإسॼʁʱال ل شȞॼة الʽʳل الʛاǼع تʦ تʦॽʺʸ نʤام

قʨʽد مقایʝॽ خॽʱار الʺʸʻة الʱي تʴقȘ أفʹل االʱي تʦ تॽʺʸʺها Ǽالإضافة إلى العʺل الʙʳیʙة
 .الأداء

 القاھــرة جامعــة - الھندســة كلیــة
 العربیــة مصـر جمھوریـة - الجیـزة

2019

د على متغیرات مقاییس الأداء من أجل تمثیل فعال ل متصمیم سیناریو ذاتي یعت
LTE PDSCH باستخدام برنامجSDSoC

 اعداد

 عبدالحمید العدويمحمد أحمد

 القاھرة جامعة - الھندسة كلیة إلى مقدمة رسالة
 درجة على الحصول متطلبات من كجزء

 العلومماجستیر
 في

 و الاتصالات الكھربیة الإلكترونیات ھندسة

	p1
	p2
	Scanned Document1
	Scanned Document2
	Scanned Document3

	p3
	p4
	1
	2
	3

	p5

