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Abstract 

Systems on Chip (SoC) creates massive design challenges for the SoC-
based designers. The design challenges start from functional complexity, 
architectural design, verification tests and finally meeting performance 
constraints. Furthermore, the heterogeneity of components and tools introduce 
long and large design cycles. In addition, the hardware-software co-design 
includes complicated design process. The design complexity includes the 
following: first, co-specification, where the roles of software and hardware in 
implementing system functionality are specified and the implementation is 
assigned to either software or hardware.  Second, co-development, where the 
software, hardware, and interfaces are developed. Third, co-verification where the 
optimization and refining of the SW/HW components are performed to meet the 
design constraints. 

The Software Defined System on Chip (SDSoC) tool is developed by Xilinx to 
create custom SoC on a heterogeneous FPGA-CPU platform. The SDSoC tool 
offers a fast and short design cycle for heterogeneous FPGA-CPU platform 
development. The SDSoC tool also integrates multiple tools to make the co-design 
of the hardware-software more flexible. 

In this thesis, the typical SDSoC design flow is presented. In addition, the thesis 
provides a new automated SDSoc design technique to design SoC on a 
heterogeneous FPGA-CPU platform based on performance metrics such as area, 
power ...etc. The new design technique used to explore the performance metrics 
for all possible combination between software implementation and hardware-
accelerated implementation for "n” functions. Moreover, the new design technique 
used to determine platforms that achieve performance metrics and to select the 
platform that achieves the best overall performance. 

As a case study, design of Physical Downlink Shared CHannel (PDSCH) in Long-
Term Evolution (LTE) is employed. The architecture of transmitter and receiver 
of the LTE PDSCH are studied and the LTE PDSCH transmitter/receiver software 
functions are written using C programming language. 

The objective of this thesis is to implement the LTE PDSCH transmitter functions 
and the LTE PDSCH receiver functions using SDSoC tool, to select the platform 
that meets performance metrics constraints, and to select the platform that 
achieves the best overall performance.
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Chapter 1 : Introduction 

Smart homes, automated vehicles, and Internet of Things (IoT) are examples 
of electronic products that are almost involved in every aspect of our lives. The 
rapid growth of the electronics industry encourages developers to find faster and 
efficient design methods to decrease time-market requirements for design and 
system development cycle [1]. 

During the last few years, the electronics industry shifted from the Application 
Specific Integrated Circuit (ASIC) to SoC design production to pursue the large 
production of electronic devices [2]. The SoCs designer should build a product 
with an efficient architecture that is a key to ensure that system design meets its 
performance requirements. Design an efficient architecture might consume a lot 
of time, cost and a very long and complicated design cycle.  

 
Besides that, hardware/software partitioning method was introduced by Edwards 
and Forrest in reference [3].  The main objective of hardware/software codesign 
method is to produce systems containing an optimum balance of hardware and 
software components which work together to achieve a specified behavior and 
fulfill specified design constraints. Hardware/software codesign examine the 
parallel method to design hardware and software components of complex 
electronic systems [4]. Hardware/software codesign method tries to achieve the 
corporation of hardware and software with the goal to optimize constraints such 
as power, area, ..., etc. and it targets to reduce the time-to-market frame 
significantly. 

Vista™ platform is a tool introduced by Mentor graphic company used in 
hardware/software codesign [5]. Vista Virtual Prototyping provides an early 
functional model of the hardware to software engineers even before the hardware 
design is implemented in RTL. It can run software on embedded processor models 
at speeds par with physical hardware boards, providing sufficiently fast simulation 
models for OS and application software validation. The features included in the 
tool are as follows: Vista tool provides architecture design and exploration, Vista 
tool allows hardware/software tradeoffs analysis, Vista tool supports an early 
assessment of and finally Vista tool includes a virtual platform for software 
integration and validation. 

Xilinx announces SDSoC tool target developing SoC on a heterogeneous FPGA-
CPU platform [6]. In this thesis, hardware-software co-design of LTE PDSCH 
transmitter and receiver synthesized by SDSoC for heterogeneous FPGA-CPU 
platform is proposed. 
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1.1. LONG TERM EVALUATION (LTE) 

 

Connecting to the Internet wirelessly through a cell phone is one of the 
greatest technological innovations of the last decade of years. Wireless 
communication is an old idea that began with Morse signals down to the fourth-
generation technology. The fast growth of mobile phone markets promises the 3rd 
Generation Partnership Project (3GPP) to develop the Long-Term Evolution 
(LTE) standard for high-speed wireless communication for mobile devices [7].  

LTE is a mobile communication standard is developed to improve the 
mobile phone standard to follow up with future technology evolutions. The LTE 
network supported by a number of key technologies including Orthogonal 
Frequency Multiplexing (OFDM) [8], multi-carrier modulation technology, 
Adaptive Modulation and Coding (AMC) technology, Multiple Input Multiple 
Output (MIMO) and smart antenna technology [9]. The LTE standard supports 
users and telecommunication companies’ requirements [10].  

The requirements include reducing cost per bit use of current and new frequency 
bands, simplification architecture, providing more services at lower cost and 
reasonable power consumption. The objectives of the LTE standard are 
increasing efficiency spectrum utilization, improving system capacity and 
increasing data rate up to 100 Mbps. 
 
The LTE mobile communication system has the following features: 

 Faster transfer rate: the LTE supports data rate up to 2Mbps for large-
scale high-speed mobile users (250km/h), 20Mbps for medium-speed 
mobile users (60km/h), and 100Mbps for low-speed mobile users (indoor 
or pedestrian) [9]. 

 Efficient spectrum utilization: the LTE uses many powerful breakthrough 
technologies in the development process. The use of wireless spectrum is 
much more efficient than the second and third generation systems, and the 
speed is quite fast. 

 Wider network spectrum: each LTE channel occupies 100MHz or more 
bandwidth, while the bandwidth of the 3G network is between 5~20MH [10]. 

 More flexibility: the LTE system adopts intelligent technology that used to 
adapt allocation resources and adopt intelligent signal processing technology 
to transmit and receive signals in various complex environments with 
different channel conditions. 
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 Higher quality multimedia communication: the LTE network supports 
multimedia communication services include voice, data, video, …etc. A 
large amount of information is transmitted through the broadband channel 
allowing users to connect to the system at any time and any location. 
 

 Smoother compatibility: the LTE systems have global roaming, open 
interfaces, interconnection with multiple networks, diversification of 
terminals and a smooth transition from the second generation. 

1.2. FIELD PROGRAMMABLE GATE ARRAY (FPGA) 

 
     FPGA is a product of further development based on programmable devices 
such as Programmable Array Logic (PAL), Generic Array Logic (GAL) and 
Complex Programmable Logic Device (CPLD) [11]. The FPGA has powerful 
processing functions and complete design freedom so that its industry rival ASIC 
designers use FPGAs to simulate the entire system at board level before they 
manufacture wafers. FPGA proposes an effective electronic design by integrating 
board design, programmable logic design, and software development. 
 

Since the birth of FPGAs, electronic product design evolves into a programmable 
logic design and embedded software design.  At the same time, electronic design 
shifted to be more of a "soft" design [12]. The design through the development of 
language and tools and FPGA become this a "soft" design carrier. 
 
Availability of low-cost and large-scale programmable device in the form of an 
FPGA makes it possible for designers to transfer all system core functions to a 
soft design and take advantage of the soft design. These "soft" design advantages 
include: easier to protect system functions from being copied or reverse 
engineered, and easier to modify the functions architecture. For that reason, "soft" 
design becoming the development direction of the electronic design. 

1.3. SDSOC 
 

The fast-growing of IoT devices promises electronic devices developers to 

find a rapid solution for developing IoT products to the markets [13]. Xilinx 

announces Software Defined System-on-Chip (SDSoC) tool target developing IoT 

products and creates custom SoC on a heterogeneous FPGA-CPU platform.  
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The SDSoC tool provides a short design cycle to develop heterogeneous FPGA-

CPU platform with simple interface logic generated by the tool to handle the data 

flow between hardware and software. In addition, SDSoC supports estimating 

performance, hardware utilization and latency calculations that make developing 

design short and fast [14]. 

1.4. ORGANIZATION OF THE THESIS 

 

Section 2 divided into two topics. First, section 2.1 about the FPGA 
structure and working principle. Second, section 2.2 about the LTE and illustrates 
in details the architecture of the LTE PDSCH transmitter and receiver chain used 
in this thesis.  

 

Section 3 about SDSoC tool and explains the typical design flow using SDSoC 
and the proposed automated performance-based adaptive design technique.  

 
Section 4 shows the implementation and comparative studies results. The 
implementation of turbo encoder is presented as a case study to test the SDSoC 
tool and to explore the different performance metrics used for design. In addition, 
the implementation of the LTE PDSCH transmitter and receiver using SDSoC tool 
is presented as a case study for the new design technique developed in this work.  

 
In conclusion, the main achievements are highlighted together with the future lines 
of this work  
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Chapter 2 : FPGA STRUCTURE AND LTE 
ARCHITECTURE 

2.1. FPGA STRUCTURE 

 
 

The first generation of programmable devices is familiar with 
Programmable Read Only Memory (PROM), Erasable Programmable Read Only 
Memory (EPROM) and Electrically Erasable Programmable Read-Only Memory 
(EEPROM) [15]. The programmable principle of these programmable devices is 
to change the carrier density inside the triode or MOS transistor by applying a high 
voltage or ultraviolet light. These devices are called programmable, but it is 
difficult to achieve single-programmable or programmable state. 

FPGA is different because it adopts a new concept such as Logic Cell Array 
(LCA), which includes Configurable Logic Block (CLB), Input-Output Block 
(IOB) and Interconnect [16]. The programming of the FPGA changes the trigger 
state of the CLB and IOB, so that multiple repeated programming is realized. Most 
FPGAs use a Look-Up Table (LUT) structure based on SRAM technology, and 
some military and aerospace-class FPGAs use Flash or fuse and anti-fuse process 
look-up table structures.  The repeated configuration of the FPGA is accomplished 
by programming the file to change the contents of the lookup table.  

 
The designer uses different programming methods according to different 
configuration modes. The design of FPGAs are based on the SRAM process and 
need to connect an off-chip memory to save the program. At power-on, the FPGA 
reads the data in the external memory into the on-chip RAM. After the 
configuration is completed, FPGA enters the working state. After turned off the 
power of FPGA, the FPGA returns to the white chip, and the internal logic 
disappears.  

In this way, the FPGAs are programmed repeatedly without a dedicated FPGA 
programmer. However, the design of some FPGAs are based on anti-fuse 
technology FPGAs, which have the advantages of radiation resistance, high and 
low-temperature resistance, low power consumption and high speed. They are 
widely used in military and aerospace applications, but such FPGAs are not 
repeatedly erased [17]. 

Figure 2.1 shows the main FPGA components which consist of the following 
parts: programmable Input and Output Block (IOB) unit, Configurable Logic 
Block (CLB), Digital Clock Management (DCM) module, embedded Block RAM 
(BRAM), Switch Matrix (SW) for routing, and embedded functional unit [18]. 
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Figure 2.1: Internal structure of the FPGA chip [18] 

2.1.1. Programmable input and output block unit  
 

The programmable Input/Output Block (IOB) unit is the interface part 
between the chip and the external circuit. It performs the driving and matching 
requirements of the input/output signals under different electrical characteristics. 
The schematic structure of IOB is shown in Figure 2.2 [19].  

The IOBs are designed to have a flexible software configuration and different 
electrical standards [19]. The IOBs driving current is adjusted and the upper and 
lower pull-down resistors are changed according to software configuration 

In order to facilitate management and adaption to various device standards, IOBs 
within the FPGA are designed in groups, and each group supports different IOB 
standard independently. The IOB of the FPGA is divided into several banks.  The 
interface standard of each bank is determined by its interface supported voltage 
level.  The voltage level is depending on the FPGA generation and is coming down 
as new generations come. The different voltage level supported by different FPGA 
generations includes 5V, 3.3V, 2.5V, 1.8V, 1.5V and 1.2.V [18]. 
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Figure 2.2: Internal structure of IOB [19] 

2.1.2. Configurable logic block 

 

CLB is the basic logical unit within the FPGA. The actual number and 
characteristics of CLBs vary from device to device. In Xilinx's FPGA devices, the 
CLB consists of multiple identical slices and additional logic. The CLB modules 
not only used to implement combinatorial logic, timing logic but also as 
distributed RAM and distributed ROM. Slice is the basic logical unit defined by 
Xilinx company. The internal structure of the slice is shown in Figure 2.3. A slice 
consists of two 4-input functions LUT, carry logic, arithmetic logic, storage logic 
and function multiplexer [19]. 

LUT is typically viewed a RAM. For example, 4 input LUTs are used in FPGAs 
viewed as a RAM with a 4-bit address line. When the user describes a logic circuit 
through the schematic or HDL language, the FPGA development software 
automatically calculates all possible results of the logic circuit and writes the truth 
table to the RAM in advance. So, performing a logical operation is equivalent to 
inputting an address to look up the table, finding out the content corresponding to 
the address, and then outputting it.  

 
The LUT has the same function as the logic circuit. However, LUTs have faster 
execution speeds and larger scales. FPGAs device densities of LUT range from 
tens of thousands to tens of millions of gates, allowing extremely complex times 
sequence and logic combine logic circuit functions, so it is suitable for high-speed, 
high-density high-end digital logic circuit design. 
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Figure 2.3: Internal structure of slice [19] 

 

2.1.3. Digital clock management module 

 

Digital clock management (DCM) is used on FPGAs for dealing with all 
aspects of clock management [19]. Xilinx FPGAs have different DCM circuit 
implementation includes a digital phase shifter, digital frequency synthesizer and 
a delay-locked loop (DLL).  DCM supports advanced clocking capabilities for 
multiplying or dividing the incoming clock frequency to synthesize a new clock. 
DCM also eliminates clock skew to improve the system performance and is able 
to phase output clock shift to delay the incoming clock by a fraction of the clock 
period.  
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2.1.4. Embedded block RAM  

 

FPGAs have embedded block RAM (BRAM), which expands the range and 
flexibility of FPGA applications hugely. BRAMs are used every time you need a 
bunch of data to be stored on a chip. BRAMs are dedicated ram that does not use 
any additional LUT in your design. The Block RAM is used as the following 
configuration: A common storage structure such as single-port RAM, dual-port 
RAM, Content Address memory (CAM), and FIFO. The amount of BRAM inside 
the chip is also an important factor in selecting an FPGA chip [20].  

2.1.5.  Routing resource 

 
The Switch Matrices (SM) routing resources (SM) is used to connect all the 

cells inside the FPGA together. The length and process of the wires determine the 
driving capability and transmission speed of the signals on the wires [21]. The 
FPGA chip has a wealth of routing resources and is divided into four different 
categories according to the process, length, width, and distribution. 

 

 The first type is the global routing resource, which is used for the internal 
global clock of the chip and the global reset/set wiring. 

 The second type is the long-line resource, which is used to complete the 
wiring of the high-speed signal between the chip Bank and the second 
global clock signal. 

 The third type is the short-term resources, which is used to complete the 
logical interconnection and routing between basic logic cells.  

 The fourth type is the distributed routing resources, which is used for 
control signals such as proprietary clocks, resets … etc. 

 

The designer does not need to select the routing resources directly. The place and 
route router select the routing resources to connect the various module units 
according to the topology and constraints of the input logical network table 
automatically. 
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2.1.6. Embedded functional unit 

 

The FPGAs chip manufacturers have integrated specialized hard cores 
inside the chip to improve the FPGA performance [22]. The hardcore has powerful 
FPGA processing is equivalent to the ASIC circuit. For example, dedicated 
multipliers are integrated into FPGAs to increase the multiplication speed of 
FPGAs. Many high-end FPGAs integrate serial-to-parallel transceivers reach tens 
of Gbps, which used to implement communication bus and interface standards. 

In addition, the new Xilinx FPGA generations consist of built-in PCI Express and 
a Tristate Ethernet MAC hardcore (TEMAC) [18].  The Xilinx Tri-Mode Ethernet 
MAC core is a parameterize core that is ideal for use in network equipment such 
as switches and routers. The customizable TEMAC core enables system designers 
to implement a wide range of integrated Ethernet designs, from low-cost 10/100 
Ethernet to higher-performance 1GB ports.  The TEMAC core design is compliant 
with the IEEE 802.3 specification and operate in 1000Mbps, 100 Mbps, and 10 
Mbps modes. In addition, it supports half-duplex and full-duplex operation. 

Xilinx has not only integrated specialized hard cores but also Power PC series 
CPUs such ARM. Through the platforms such as ARM, it is possible to develop 
standard DSP processors and related applications to achieve the development 
goals of SOC. 

 

The hard-core refers to the netlist with planning information in the FPGA design. 
Hard-core views as a soft-core with layout planning. A mixture of RTL code and 
corresponding specific process netlist provides hard-core. The RTL description is 
combined with a specific standard cell library to form a gate-level netlist, then 
gate-level netlist used by the place-and-route tool [23]. The advantages of hard-
core are high flexibility and portability. The disadvantage of hard-core is that the 
predictability of the module is low, there is a possibility of error in the subsequent 
design, and there is a certain design risk. 

On the other hand, the soft-core refers to the pre-integration register transfer level 
(RTL) model. In the FPGA design, the soft-core is the hardware language 
description of the circuit, including logical descriptions, netlists, and help 
documentation. The soft-core is only functionally simulated and needs to be 
integrated and laid out to be used.  

Comparing the hard-core with the soft-core, the design flexibility of the solid core 
is slightly worse, but the reliability is greatly improved. Comparing the hardcore 
with the soft-core implementation, the hardcore reduces the power consumption 
by 5~10 times, saving nearly 90% of the logical resources [24]. 
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2.2. LTE ARCHITECTURE 

 

LTE is a mobile communication developed by 3GPP to improve the mobile 
phone standard to follow up with future technology evolutions and needs. The 
LTE standard supports users and telecommunication companies’ requirements. 
The requirements include the following: use of current and new frequency bands, 
simple architecture, increase service provisioning more services at lower cost, 
reduce cost per bit and reasonable power consumption.  

The LTE radio transmission and reception specifications are described in 
reference [25] for the User Equipment (UE) and in reference [26] for the Base 
Station (BS). Downlink and uplink transmission in LTE are based on the use of 
multiple access technologies, Orthogonal Frequency Division Multiple Access 
(OFDMA) is used for the downlink and single-carrier frequency division multiple 
access  

The bandwidths defined by the standard are 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 
15 MHz, and 20 MHz [27]. Table 2.1 shows how many subcarriers and resource 
blocks there are in each bandwidth. 

Table 2.1: LTE standard different bandwidths [27] 

Channel B.W (MHz) 1.4 3 5 10 15 20 
Number of RB 6 15 25 50 75 100 
Number of SC 72 180 30 600 900 1200 

FFT/IFFT length 128 256 512 1024 1536 2048 
Sample rate (MHz)s 1.92 3.84 7.68 15.36 23.04 30.72 

 
 

The LTE standard defines six downlink channels, three channels for controlling 
information and three channels for carrying user data [28]. 

 The control channels are Physical Hybrid Indicator Channel (PHICH), 
Physical Control Format Indicator Channel (PCFICH) and Physical 
Downlink Control Channel (PDCCH).  

 The data channels are Physical Broadcast Channel (PBCH), Physical 
Multicast Channel (PMCH) and Physical Downlink Shared Channel 
(PDSCH). 

This thesis focuses only on the design of the PDSCH channel because this is the 
LTE channel carrying user data and processing it. 
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2.2.1. LTE frame structure 

The LTE physical frame structure defines two types of a frame structure in 
the 3GPP standard [29], the Frequency Division Duplex (FDD) type and Time 
Division Duplex (TDD) type. The FDD-LTE is one of the duplex technologies 
used in the LTE mobile communication where the uplink and downlink are 
distinguished by different frequency points.  

The FDD-LTE mode is characterized by receiving and transmitting on two 
separate symmetric frequency channels, and separating the receiving and 
transmitting channels with a guaranteed frequency band. In the FDD-LTE system, 
the uplink and downlink frequency intervals reach 190MHz. The FDD-LTE 
uplink theoretical rate is up to 40Mbps, and the downlink theoretical rate is 
150Mbps [10]. 

Figure 2.4 shows the structure of the LTE frame in the FDD Mode [30]. The frame 
has 10 ms duration and each frame consists of 10 sub-frames has 1 ms duration. 
Each sub-frame consists of two slots has 0.5 ms duration. Each slot consists of 
OFDM symbols depending on the type of Cycle Prefix (CP) of each slot. Each 
slot consists of either 7 symbols for normal CP or 6 symbols for extended CP. 

 
 

 

Figure 2.4: Structure of the LTE frame in FDD mode [30] 
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2.2.2. LTE PDSCH transmitter and receiver model  

 

The PDSCH is a physical channel that carries user data. The transmitter and 
the receiver model of Single Input Single Output (SISO) PDSCH chain [31] is 
shown in figure 2.5. The PDSCH chain model is tested over Additive White 
Gaussian Noise (AWGN) channel for high Signal to Noise Ratio (SNR). 

The data input to the LTE PDSCH transmitter chain is called a transport block. 
The transport block flow goes into Cyclic Redundancy Check (CRC) calculation 
and appending, segmentation, turbo encoding, interleaving, rate matching, 
scrambling and modulation followed by the resource element mapper. The data 
from the transmitter is passed to channel, and then it is fed to the LTE PDSCH 
receiver.  

The received input flow goes into the resource element de-mapper, demodulation, 
de-scrambling, rate de-matching, de-interleaving, turbo decoding and de-
segmentation followed by CRC calculation and extraction. 

 

 

Figure 2.5: LTE PDSCH transmitter and receiver model [31] 

 

2.2.2.1. CRC addition and CRC removing 

 
  CRC is a sequence of redundant bits used for error detection on transport 
blocks. CRC parity bits are calculated and appended to the transport block.  
The CRC parity 24A is calculated using a CRC generator polynomial [32]. 
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The equation for CRC24A polynomial generation is as follows: 

 

 

Let assume input bits to the CRC addition are as follows: - 

         
 

 
Let assume the parity bits appended to the input bits are as follows: - 

 
 
Where N is the size of the input sequence bits and L is the length of the parity bits. 

 
The encoding is performed in a systematic form as follows: - 

 
 
The CRC  are appended to the end of the data bits, so the length of 
input bits after CRC appending is (N+24) because CRC24A is used. 

   On the receiver side, the CRC polynomial is generated using the same CRC 
polynomial generator  equation 2.1. As shown in Figure 2.6, The CRC is checked 
for any error in the received bits, if no error, remove the CRC from the transport 
block else if any error is found in a particular block, that transport block is 
retransmitted [33]. 

 
 

 

Figure 2.6: Role of CRC block in transmitter and receiver 
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2.2.2.2. Segmentation and de-segmentation 
 

Large amount of data bits from transport block should be transmitted at the 
same time. The transport block is divided into smaller blocks called code blocks 
as shown in figure 2.7. The LTE standard defines the minimum code block size is 
40 bits and the maximum code block size is 6144 bits [32].  

 

 

 

Figure 2.7: Code block segmentation process 

If input bits to the code block segmentation are less than 40 bits, add filling bits. 
If input bits to the code block segmentation are larger than 6144 bits, perform 
segmentation of input bits and append other 24 bits CRC of type 24B to each of 
the code blocks. Table 2.2 shows the code block sizes defined by the LTE 3GPP 
standard. 

To calculate the number of code blocks, let assume the input bits sequence are as 
follows: 

 
 
where B is the input block size.  
 

Assume Z is the maximum code block size equal to 6144 and F is the number of 
filler bits where filler bits are added to the beginning of the first block if necessary. 
Also, assume L is the number of CRC bit equal to 24 and  is the new size of 
the input block after CRC addition.  
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Table 2.2: Code block size for segmentations [32] 

 
40 

 
48 

 
56 

 
64 

 
72 

 
80 

 
88 

 
96 

 
104 

 
112 

 
120 

 
128 

 
136 

 
144 

 
152 

 
160 

 
168 

 
176 

 
184 

 
192 

 
200 

 
208 

 
216 

 
224 

 
232 

 
240 

 
248 

 
256 

 
264 

 
272 

 
280 

 
288 

 
296 

 
304 

 
312 

 
320 

 
328 

 
336 

 
344 

 
352 

 
360 

 
368 

 
376 

 
384 

 
392 

 
400 

 
408 

 
416 

 
424 

 
432 

 
440 

 
448 

 
456 

 
464 

 
472 

 
480 

 
488 

 
496 

 
504 

 
512 

 
528 

 
544 

 
560 

 
576 

 
592 

 
608 

 
624 

 
640 

 
656 

 
672 

 
688 

 
704 

 
720 

 
736 

 
752 

 
768 

 
784 

 
800 

 
816 

 
832 

 
848 

 
864 

 
880 

 
896 

 
912 

 
928 

 
944 

 
960 

 
976 

 
992 

 
1008 

 
1024 

 
1056 

 
1088 

 
1120 

 
1152 

 
1184 

 
1216 

 
1248 

 
1280 

 
1312 

 
1344 

 
1376 

 
1408 

 
1440 

 
1472 

 
1504 

 
1536 

 
1568 

 
1600 

 
1632 

 
1664 

 
1696 

 
1728 

 
1760 

 
1792 

 
1824 

 
1856 

 
1888 

 
1920 

 
1952 

 
1984 

 
2016 

 
2048 

 
2112 

 
2176 

 
2240 

 
2304 

 
2368 

 
2432 

 
2496 

 
2560 

 
2624 

 
2688 

 
2752 

 
2816 

 
2880 

 
2944 

 
3008 

 
3072 

 
3136 

 
3200 

 
3264 

 
3328 

 
3392 

 
3456 

 
3520 

 
3584 

 
3648 

 
3712 

 
3776 

 
3840 

 
3904 

 
3968 

 
4032 

 
4096 

 
4160 

 
4224 

 
4288 

 
4352 

 
4416 

 
4480 

 
4544 

 
4608 

 
4672 

 
4736 

 
4800 

 
4864 

 
4928 

 
4992 

 
5056 

 
5120 

 
5184 

 
5248 

 
5312 

 
5376 

 
5440 

 
5504 

 
5568 

 
5632 

 
5696 

 
5760 

 
5824 

 
5888 

 
5952 

 
6016 

 
6080 

 
6144   
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The total number of code blocks C are defined by the following Pseudo-code: 

List 2.1: Pseudo-code of segmentation to determine number of code block [32] 

 

 

 

 

 

 

 

 

 

 
From pseudo-code shown in list 2.1, if the block sizes less than 6144 bits, there is 
no need for segmentation process. On the other hand, if B is larger than 6144 bits, 
segmentation is applied and a CRC sequence is appended to each code block 
segment [34]. 

Let assume the output from code block segmentation are 
 

Where r is the code block number and K is the number of bits for code block . 

The number of bits in each code blocks (K) are defined (for C ≠ 0 only) by the 
following pseudo code: 

List 2.2: Number of bits in each code blocks calculation Pseudo-code [34] 
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where  is the first segmentation size,  is the second segmentation size,  is 
the number of code blocks with length  ,  is the number of code blocks with 
length  and  is the number of filler bits. 

As described in list 2.2, in case of data length larger than 6144bit, segmentation is 
performed and CRC is appended at the end of each code block. The CRC type 
used is CRC24B.  

The CRC24B polynomial generation equation is as follows: 

 

Let assume the parity bits append to the input bits are as follows :-  
 

 
 

The following pseudo-code shows how insertion processor and CRC appending 
process: 

List 2.3: Filler bits in each code blocks insertion pseudo-code [34] 
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On the receiver side, the de-segmentation block performs the inverse 
operation of segmentation block. CRC is checked for any error in the received 
code block bits, if any errors are found in a particular block, the transport block is 
retransmitted else if no error, removes the CRC from the code block and 
concatenates the multiple code blocks to form the transport block frame as shown 
in figure 2.8. 

 

 

Figure 2.8: Code block De-segmentation 

2.2.2.3. Channel coding and channel de-coding 
 

The channel coding used in the PDSCH is turbo coding [35]. Turbo encoder 
with constant coding rate 1/3 is used for input data coding as described in reference 
[36]. The scheme of the turbo encoder is parallel of Recursive Systematic 
Convolution (RSC). The scheme of the turbo encoder is shown in figure 2.9.  

 

 

Figure 2.9: Turbo encoder block diagram [35] 
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The turbo encoder consists of a parallel of Recursive Systematic Convolution 
(RSC) encoder separated by internal code interleaver. The input goes into the first 
RSC encoder and after interleaving, it feeds a second RSC encoder.  
The multiplexing and puncturing block accepts inputs and generates coded bits. 
The turbo interleaver permutes the indices of the input bits, which improves the 
turbo code performance. The transfer function of the RSC turbo encoder is defined 
as follows: 

 

where: 

 

 
 
 

The initial values of the shift register of the RSC encoder are all zeros when 
starting to encode the input bits. Let assume the input bits to the turbo encoder 
block are as follows: 

 
 

 
The outputs bits from the turbo encoder is as follows: - 

 

where:  bits are matched to the input bits  ,  bits are output from first 
RSC encoder and  bits are output from second RSC encoder after interleaving 
input bits. Let assume the output bits from turbo code interlaver are as follows: 

 

 
The relation between the output and input bits of turbo code interleaver is as 
follows: 

 

where the relation between the input  index and the output index  is as 
follows: 

  
where the values of  and  depends on the block size k as shown in table 2.3. 
Table 2.3 shows the relation between output indexes  and values of  and  
depends on the block size k. 
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Table 2.3: Turbo code interalver parameter (part1 of 2) [32] 

i Ki f1 f2 I Ki f1 f2 i Ki f1 f2 I Ki f1 f2 

1 40 3 10 48 416 25 52 95 1120 67 140 142 3200 111 240 

2 48 7 12 49 424 51 106 96 1152 35 72 143 3264 443 204 

3 56 19 42 50 432 47 72 97 1184 19 74 144 3328 51 104 

4 64 7 16 51 440 91 110 98 1216 39 76 145 3392 51 212 

5 72 7 18 52 448 29 168 99 1248 19 78 146 3456 451 192 

6 80 11 20 53 456 29 114 100 1280 199 240 147 3520 257 220 

7 88 5 22 54 464 247 58 101 1312 21 82 148 3584 57 336 

8 96 11 24 55 472 29 118 102 1344 211 252 149 3648 313 228 

9 104 7 26 56 480 89 180 103 1376 21 86 150 3712 271 232 

10 112 41 84 57 488 91 122 104 1408 43 88 151 3776 179 236 

11 120 103 90 58 496 157 62 105 1440 149 60 152 3840 331 120 

12 128 15 32 59 504 55 84 106 1472 45 92 153 3904 363 244 

13 136 9 34 60 512 31 64 107 1504 49 846 154 3968 375 248 

14 144 17 108 61 528 17 66 108 1536 71 48 155 4032 127 168 

15 152 9 38 62 544 35 68 109 1568 13 28 156 4096 31 64 

16 160 21 120 63 560 227 420 110 1600 17 80 157 4160 33 130 

17 168 101 84 64 576 65 96 111 1632 25 102 158 4224 43 264 

18 176 21 44 65 592 19 74 112 1664 183 104 159 4288 33 134 

19 184 57 46 66 608 37 76 113 1696 55 954 160 4352 477 408 

20 192 23 48 67 624 41 234 114 1728 127 96 161 4416 35 138 

21 200 13 50 68 640 39 80 115 1760 27 110 162 4480 233 280 

22 208 27 52 69 656 185 82 116 1792 29 112 163 4544 357 142 

23 216 11 36 70 672 43 252 117 1824 29 114 164 4608 337 480 

24 224 27 56 71 688 21 86 118 1856 57 116 165 4672 37 146 

25 232 85 58 72 704 155 44 119 1888 45 354 166 4736 71 444 

26 240 29 60 73 720 79 120 120 1920 31 120 167 4800 71 120 

27 248 33 62 74 736 139 92  121 1952 59 610 168 4864 37 152 
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  Table 2.3: Turbo code interalver parameter (part2 of 2) [32] 

i Ki f1 f2 I Ki f1 f2 i Ki f1 f2 I Ki f1 f2 

28 256 15 32 75 752 23 94 122 1984 185 124 169 4928 39 462 

29 264 17 198 76 768 217 48 123 2016 113 420 170 4992 127 234 

30 272 33 68 77 784 25 98 124 2048 31 64 171 5056 39 158 

31 280 103 210 78 800 17 80 125 2112 17 66 172 5120 39 80 

32 288 19 36 79 816 127 102 126 2176 171 136 173 5184 31 96 

33 296 19 74 80 832 25 52 127 2240 209 420 174 5248 113 902 

34 304 37 76 81 848 239 106 128 2304 253 216 175 5312 41 166 

35 312 19 78 82 864 17 48 129 2368 367 444 176 5376 251 336 

36 320 21 120 83 880 137 110 130 2432 265 456 177 5440 43 170 

37 328 21 82 84 896 215 112 131 2496 181 468 178 5504 21 86 

38 336 115 84 85 912 29 114 132 2560 39 80 179 5568 43 174 

39 344 193 86 86 928 15 58 133 2624 27 164 180 5632 45 176 

40 352 21 44 87 944 147 118 134 2688 127 504 181 5696 45 178 

41 360 133 90 88 960 29 60 135 2752 143 172 182 5760 161 120 

42 368 81 46 89 976 59 122 136 2816 43 88 183 5824 89 182 

43 376 45 94 90 992 65 124 137 2880 29 300 184 5888 323 184 

44 384 23 48 91 1008 55 84 138 2944 45 92 185 5952 47 186 

45 392 243 98 92 1024 31 64 139 3008 157 188 186 6016 23 94 

46 400 151 40 93 1056 17 66 140 3072 47 96 187 6080 47 190 

47 408 155 102 94 1088 171 204 141 3136 13 28 188 6144 263 480 

 
 

On the receiver side, Turbo decoder is used to reverse the operation of 
channel coding. Turbo decoder block accepts input from the de-interleaver block, 
then performs turbo decoding using a sub-log-MAP (Max-Log-MAP) algorithm 
to decoded input bits to output bits. 

Figure 2.10 shows the block diagram of the turbo decoder [37]. The turbo decoder 
consists of the following blocks: 

 Maximum A Posteriori (MAP) decoder block. 

 De-multiplex block. 

 Turbo interleaver block. 

 Turbo de-interleaver block. 
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Figure 2.10: Turbo decoder block diagram [37] 

The MAP decoder is a decoder designed using Bahl-Cocke-Jelinek-Raviv 
(BCJR) algorithm. The BCJR algorithm is an algorithm for error correcting codes 
defined on trellises.The BCJR algorithm calculates forward probabilities, 
backward probabilities and smoothed probabilities based on channel information. 
The operation of turbo decoder is performed as the following steps: 

1. MAP_decoder_1 accepts the systematic_bits and the parity_bits then 
generates the extrinsic_bits1 (extrinsic bit is soft estimate bits do not 
contain any information). 

2. The extrinsic_bits1 bits are interleaved and extrinsic_intrelavd_bits1 are 
generate, also the systematic bits are interleaved and the 
systematic_intrelavd_bits are generated. 

3. The MAP_decoder_2 accepts extrinsic_intrelavd_bits1, the parity_bits, the 
systematic_intrelavd_bits and generates the initial_output_bit. 

4. The initial_output_bit is passed to the de-interleaver and generates the 
extrinsic_intrelavd_bits2. 

5. The MAP_decoder_1 accepts the systematic_bits, the parity_bits and the 
extrinsic_intrelavd_bits2 then generates the extrinsic_bits1. 
The steps from 1 to 5 are repeated iteratively until the bit error rate is 
reached to zero. At the end of the process, the output_bits hard bits are 
generated according to threshold operation. 
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2.2.2.4. Interleaver and de-interleaver 

 

   Interleaving is the process of reordering data so that successive bunch of 
data is distributed over a larger sequence of data to reduce the effect of burst errors. 
Using Interleaver increases the performance of the error protection decoder to 
correct the burst error [32]. Error protection coding process cannot correct the 
errors that occur in groups, so using of interleaver allows reducing such error.  
At the receiver side, the de-interleaver block reverses the operation of interleaver. 
 

2.2.2.5. Rate matching and rate de-matching 

 
The LTE turbo encoder has a fixed coding rate of 1/3. The communication 

standard added a feature for adapting the throughput based on the channel 
conditions [36]. In degraded channels, smaller coding rates are used to increase 
the number of error correction bits and vise verse. Rate matching is used to arrive 
to at any desired rate by repeating or puncturing. In case of reducing the encoding 
rate lower than 1/3 repeat the turbo coder output bit. In case of increasing rate 
higher than 1/3 puncture (remover) some of the turbo coder output bits.  Figure 
2.11 shows the Rate matching block diagram [38]. The Rate matching block 
consists of the following sub-blocks: Sub-block interleaver, Bit_collection and 
Bit_selection. 
 

 

Figure 2.11: Rate matching block diagram 

The rate matching accepts three input streams from turbo encoder 
. The bits of each of the three streams are written row-by-row 

into a matrix with 32 columns. After a column permutation, bits are read out from 
the matrix column-by-column.  
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Then information bit streams are passed to sub-block interleaver followed by 
bit_collection block and bit_selection block. The sub-block_interleaver is based 
on the classic row-column interleaver with 32 columns and a length-32 intra- 
column permutation. If input is not multiple of 32 bits, complete the matrix by 
adding Dummy bits so the block able to interleave the given data.  

 The bit stream is interleaved and output sequence generated 
as . 

 The bit stream is interleaved and output sequence generated 
as . 

 The bit stream is interleaved and output sequence generated 
as . 

The output bits sequence from the sub-block_interleaver is generated as follows: 

Let assume the number of columns of the matrix is . 

Let assume the number of rows of the matrix is , by finding minimum 
integer such that . 

The relation between of   is determine by the column permutation of the sub-
block_interleaver. 

The output of the first sub-block interleaver is denoted 
by  where where  

 

Where   is the output length of the sub-block_interleaver and given as follows: 
 

The column permutation function (  of the sub-block_interleaver is given in 
table 2.4: 

Table 2.4: Inter-column permutation matric for sub-block interleaver [32] 

Number of columns Inter-column permutation pattern 

32 [0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30,1
,17,9,25,5,21,13,29,3,19,11,27,7,23,15,3] 

 

Next, the bit_collection block accepts inputs from three sub-block_interleaver and 
generates output depending on coding type. The bit_collection block is worked 
based in circular buffer.  
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The circular buffer length  for the r code block is generated for  
as follows: 

  

  

  

The soft buffer size for the r-th code block is denoted by . The size  for the 
downlink is obtained as follows: 

  

where  is equal to   

 
where  is the total number of soft channel bits,  is constant dependent 
in transmission mode and equal to 2 if the UE is configured to receive PDSCH 
transmission, is constant equal to 8 and  is the maximum number 
of downlink processor. Finally, the bit_selection receives inputs from 
bit_collection, skip dummy bits, and output the required output bits with the 
proper size. 
   On the receiver side, the rate de-matching is used to reverse the operation 
of rate matching block [39]. Figure 2.13 shows the block diagram of the rate de-
matching. The bit_de-selection block accepts input bits and divides it into three 
outputs; each output has a length equal to the code block length. Three bit_de-
interleaver blocks accept outputs from the bit_de- selection block. Each one of the 
bit_de-interleaver blocks accepts input from bits de-deslection block with a length 
equal to the code block length. The bit_de-interleaver block inverse the operation 
of sub-block_interleaver. 

 

Figure 2.12: Rate de-matching block diagram 
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2.2.2.6. Scrambler and de-scrambler 
 

The scrambler is a block that pseudo-randomly changes the values of bits 
into a data block, thus ensure that the interference is randomized for each different 
cell or to introduce security as part of an encryption procedure. The data bits are 
scrambled with a sequence that is unique to each cell by initializing the sequence 
generators in the cell based on the physical cell identity. 

 Let assume the input bits to the turbo encoder block are as follows: 

where  is the number of bits transmitted on the physical channel in one sub-
frame. The output of the scrambler is determined according to the following 
equation: 

 

where  are the pseudo-random sequences. 

The pseudo-random sequences are defined by a length-31 Gold sequence [40]. 
The output sequence of length M bits, where n= 0, 1... M-1 is defined by the 
following equations: 

  

  

  

  

The scrambler block operation is divided into two steps as follows: 

1. Calculating initial values for X2, X1 sequence generators for NC iterations. 

2. Apply X1, X2 sequence generation output to the input after NC iterations. 

where the initialization of sequence is performed as follows: 

1. The first m-sequence shall be initialized with 
  

2. The initialization of the second m-sequence is denoted by 
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where value of   is depending on the application of the sequence. For the 
shared channel, the scrambler sequence generator should be initialized at the start 
of each sub-frame with value of for PDSCH channel 

 

where  is the Radio Network Temporary Identifier,  is the code word 
index,   is the slot index within frame, and  is the physical layer cell identify. 

On the de-scrambler function, same Gold sequence generator illustrated is 
used to invert the scrambling operation. Scrambler Sequence Generation in the 
Receiver of LTE PDSCH is the same as that of the Transmitter. The de-scrambler 
block operates on the LLR outputs of the demodulator, converting the Gold-
sequence bits into either 1 or -1. The de-scrambler block operation is divided into 
three steps: - 

1. Calculating initial values for X2, X1 sequence generators for NC iterations. 

2. Calculating value of where for 
NC iterations. 

3. Generates de-scrambler results, if  the de-scrambler output is 
LLR (n) else, the de-scrambler output -LLR (n).  

where NC=1600 and LLR (n) is a Log-Likelihood Ratio calculated values. 

2.2.2.7. Modulator and de-modulator 
 

The Modulator accepts groups of input bits and maps them to specific 
constellation symbols, according to the modulation method that you specify. The 
LTE standard supports QPSK 16QAM and 64QAM modulation schemes types for 
the LTE PDSCH [41]. Figure 2.14 shows constellation diagrams of these three 
modulation schemes.  

Multiple modulation schemes allow adaptive modulation based on channel 
conditions. When the Signal-to-Noise Ratio (SNR) is high, denser constellations 
(ex: 64QAM) are used to increase the throughput. However, when the Signal-to-
Noise Ratio (SNR) is low, modulation schemes with more inter-symbol separation 
should be used to reduce the throughput and decrease the bit error rate.  

The modulation process generates complex symbols depending on the input bits. 
Let assume the input sequence bits to the modulation block are as follows: 

 
 
where  is the total number of sequence bits. 
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Figure 2.13: Constellation diagrams of modulation schemes [41] 

For QPSK modulation scheme, every two bits of input bit sequence   
are modulated into a complex symbol   where  are generated 
as shown in table 2.5. 

Table 2.5: QBSK modulation lookup table [32] 

   

00   

01   

10   

11   

 

For 16QAM modulation scheme, every four bits of input bit sequence  
 are modulated into a complex symbol   where 

 are generated as shown in table 2.6.  
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Table 2.6: 16QAM modulation lookup table [32] 

   

0000   

0001   

0010   

0011   

0100   

0101   

0110   

0111   

1000   

1001   

1010   

1011   

1100   

1101   

1110   

1111   
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For 64QAM modulation scheme, every six bits of input bit sequence  
 are modulated into a complex symbol 

 where  are generated as shown in Appendix A. 

On the receiver side, the de-modulator block de-maps QPSK symbol, 16-
QAM symbol and 64-QAM symbol to soft bits according to the modulation 
method specified. The soft de-mapper outputs are the Log-Likelihood Ratio (LLR) 
for a certain constellation-mode [42]. In soft bit demodulator, is a modulation 
process that estimates from the received bit not only hard bits (hard bits are 
typically binary), but also their confidence levels.  

On the transmitter side, only hard bits are involved, and they take binary digit 0 or 
1 but on the receiver side, the binary digit the confidence levels are the magnitudes 
of the binary digit. In this case, the negative and positive polarities are expressed 
as numeric values of -1 and +1[43].  

The soft decision process returns an integer sequence is used for PDSCH 
demodulation, as the turbo decoder requires a soft encoded input. For example, 
integer values from 0 to 7 are used for QPSK demodulation. Value 0 indicates a 
strongest possibility of value 0 in original bit sequence while value 3 indicates the 
weakest possibility of value 0 in the original bit sequence. Similarly, value 4 
indicates a week 1 while 7 indicates a strong 1. Let assume the soft input bits to 
the de-modulation block are as follows: 

 
where  is the total number of sequence bits. The soft decision values are 
calculated according to Table 2.7. 

Table 2.7: Soft decision QPSK demodulation lookup table (part1 of 2) [43] 

  

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 
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Table 2.7: Soft decision QPSK demodulation lookup table (part2 of 2) [43] 
 

 
  

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 

2.2.2.8. Resource element mapper and resource element de-mapper 

 
    The resource element mapper is a time-frequency representation of data 
organized as the resource grid as shown in figure 2.15. The resource grid is a two-
dimensional map of symbol in the horizontal axis (time domain) and sub-carrier 
on the vertical axis (frequency domain) [31].  

The placement of data within the resource grid is important and Depending on 
which sub-frame is in use. The type of data placed in a resource grid includes the 
following [44]: 

 The Physical Downlink Shared Channel PDSCH signal, which carries user 
data. This signal placed in all sub-frames 

 The Cell Specific Reference (CRS) signal, which used by the receiver for 
estimation channel frequency response and cross-channel effects. This 
signal placed in all sub-frames. 

 The Physical Downlink Control Channel (PDCCH) signal, which helps the 
carries important information for processing (ex: modulation scheme 
...etc.). These signals placed at the beginning of each sub-frame. 

 The Primary synchronization signals (PSS) data and Secondary 
Synchronization Signals (SSS) data, which help determine the frame timing 
and cell identification. These signals placed in sub-frames 0 and 5. 

 The broadcast channel (BCH) signal, which carries the Master Information 
such as cell bandwidth. These signals placed in sub-frame 0 and repeated 
every 10 sub-frames. 
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Figure 2.14: LTE resource grid [31] 

On the receiver side, the resource element de-mapper inverts the operations 
of resource grid mapping at the receiver side. The rule of a resource element de-
mapper is extracting PDSCH, CRS …etc. from the resource grid and feed each 
type of data to the corresponding next stage. The PDSCH receiver chain should 
accept PDSCH input from the resource grid to complete the processing of data in 
the receiver chain. 
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Chapter 3 : SDSoC 

The SDSoC is a novel development tool used to create hardware-software 
co-design on a heterogeneous FPGA-CPU platform. The SDSoC tool makes 
simplest and shortest development cycles to implement heterogeneous FPGA-
CPU as well as generating required hardware interface logic to handle the data 
flow between hardware and software automatically [45]. The SDSoC tool is 
integrated with a High-level synthesis (HLS) which is used to implement hardware 
in an FPGA synthesized from a C/C++ language description [46]. Transforming 
C/C++ code to an RTL implementation process using HLS is provided in [47]. 
The Table 3.1 shows the constructs of mapping C/C++ to RTL. 

Table 3.1: Mapping of C-code to RTL construct 

C-function RTL 
Function Modules 

Arguments Input/output ports 
Operators Functional Units 

Scalars Wires or register 
Arrays Memories 

Control flows Control logics 
 

In addition, the SDSoC tool includes system-level profiling and performance 
analysis capability. The profiling and performance analysis tool includes hardware 
utilization calculation, latency calculation and hardware acceleration improving 
estimation. A detailed description of the features of the tool is provided in [48].  

This chapter includes the following topics: SDSOC pragma specification, the 
typical HW/SW co-design design flow using SDSoC design flow and the proposed 
automated performance-based design technique developed to generate platform 
using SDSOC tool to meet performance metrics constraints. 

3.1. SDSoC pragma specification 

 

This section describes pragmas for the SDSoC compilers used for system 
optimization. The SDSoC pragmas are used in HLS to enhance the hardware 
function performance.  All pragmas specific to the SDSoC environment are 
prefixed with #pragma [49]. The pragma should be inserted prior to a function 
declaration or at a function call in C/C++ source code.  
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The pragmas should be placed within the boundaries of the required location in 
the C/C++ source. The pragmas need to be written in the C-code depending in its 
type. The pragma syntax has been defined to be consistent with standards like 
OpenACC. The different Pragmas supported by the SDSOC tool include the 
following: function optimization, loop optimization, array optimization and 
Interface management.  

3.1.1. Function optimization 

The function optimization pragmas include inline function and function 
pipelining. 

 

1) Inline function  

Inlining function pragma used to remove function hierarchy. Removing function 
hierarchy leads to enhancing latency and throughput by removing of a cycle 
overhead to enter and exit functions.The following Pragma example used to 
prevent “func_top” function from being in-lined, the Pragma should be applied to 
the top level function “func_top”. 

#pragma AP inline off 
 

2) Function pipelining  

Pipelining pragma is a powerful method used to optimize the communication 
between functions and improve throughput. The following pragma example used 
to pipeline the function “func” with II as 4.  

#pragma AP pipeline II=4 enable_flush 
 

3.1.2. Loop optimizations 

The loop optimization pragmas include inline unrolling, merging and 
flattening nested loop. 

 

1) Unrolling 
 
Unroll for loops pragma used to create multiple independent operations instead 
of a single collection of operations. The following pragma example used to 
unroll the loop L1 in function “func” with unrolling factor e 2. 
 
#pragma AP unroll skip_exit_check factor=2 
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2) Merging 
 

Merging pragma for loops used to combine multiple sequential loops to prevent 
the creation of additional unnecessary clock cycles. The following pragma 
example used to merge all consecutive loops into a single loop in the function 
“func”. 

#pragma AP loop_merge 
 
 

3) Flattening nested loops 
 

Flattening pragma used to grab nested loop to a single loop to improve latency. 
This because hardware implementation requires one clock cycle to move from an 
outer loop to an inner loop and from an inner loop to an outer loop. The following 
pragma example used to flatten for loop L1 in function “func” where loop L1 is 
the inner loop has the body and the “func” function. 

#pragma AP loop_flatten 
 

3.1.3. Array optimizations 

The array optimization pragmas include horizontal mapping, vertical 
mapping and array partitioning. 
 

1) Horizontal mapping 
 

Horizontal mapping pragma used to concatenate two arrays into one array. The 
following pragma example used to concatenate arrray1 and array2 into array3. 

#pragma AP array_map variable=array1 instance=array3 horizontal 
#pragma AP array_map variable=array2 instance=array3 horizontal  
 
 
2) Vertical mapping 

  

Horizontal mapping pragma used to concatenate two array vectors into one array 
vector. The following pragma example used to concatenate arrray1 vector and 
array2 vector into array3 vector. 

#pragma AP array_map variable=array1 instance=array3 vertical 
#pragma AP array_map variable=array2 instance=array3 vertical 
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3) Array partitioning 
 

Array partitioning pragma used to divide array into smaller arrays to increases 
throughput. The following pragma example partitions array Z(21) in function 
“func” into five arrays. Because 5 is not an integer multiple of 21, four of the of 
the arrays have 4 elements and one have 5 (containing elements Z(16:21) 

#pragma AP array_partition variable=Z block factor=5 
 

3.1.4. Interface management 

The attitude of the interface has specified either behavior or explicitly 
depending on the type of input source. This allows different IO protocol to be used 
so the function interfaces with any hardware resource. The different interface 
management pragmas include ap_bus, ap_memor, and ap_fifo. 

1) ap_bus  

 An ap_bus interface used to communicate with a bus bridge. The interface does 
not adhere to any specific bus standard but is generic enough to be used with a bus 
bridge. The bus bridge must be able to cache all burst writes. 

 

2) ap_memory 

 The ap_memory port interface is used to communicate with memory elements 
(RAMs, ROMs) as shown in figure 3.1. The ap_memory used when the 
implementation requires random accesses to the memory address locations. Array 
arguments are typically implemented using the ap_memory interface. 

 

 

Figure 3.1: Memory interface management 
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3) ap_fifo 

The ap_memory port interface is used to communicate with memory elements 
(FIFO) as shown in figure 3.2. The ap_fifo interface is used if required access to 
a memory element and this access is performed in a sequential manner (no random 
access). 

 

Figure 3.2: FIFO Interface management 

3.2. Typical HW/SW co-design design flow using SDSoC 
design flow 

The typical HW/SW co-design flow using SDSoC is shown in figure 3.3. First, 
the developer should design the application coded in C/C++. Next, the user should 
define the requirement of each C/C++ functions, so the user should select 
manually which functions must be implemented as software functions or 
hardware-accelerated functions synthesized by HLS [48]. 

 

Figure 3.3: Typical HW/SW co-design flow using SDSoC [48] 
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After refining all C/C++ functions, the SDSoC design flow is executed. The 
SDSoC design flow is shown in figure 3.4. First, all C/C++ functions are 
compiled, next, the implementation of the C/C++ function had to be partitioned 
into software implementation functions or hardware-accelerated functions 
depending on user selection.  

The Software Development Kit (SDK) tools and Vivado Tool (Xilinx Inc.) are the 
elements of hardware and software system design. The Vivdo tool includes High-
Level Synthesis (HLS) is used for creating the hardware system component by 
transforming the C/C++ code to an RTL implementation [45].  

The SDK tool is a software design suite that includes driver support, C/C++ 
Compiler library supported for ARM and tools for debugging and profiling. 
Finally, the integration, the necessary communication blocks between hardware, 
and software and the SoC platform creation is done by SDSoC tool. 
 

 

Figure 3.4: SDSoC design flow 
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The SDSoC tool generates the embedded FPGA SoC platform as shown in figure 
3.5. This platform allows executing part of the C/C++ code on the arm processor 
as a software functions and the other parts of the codes on the FPGA as hardware-
accelerated functions. The embedded FPGA platform consists of: 

1. Processing system includes dual-core ARM cortex-A9 processor hardcore 
processor. 

2. Interfacing logic includes ACP port interconnect, data movers and reset 
blocks. 

3. Hardware logics includes HLS generated block. 
 

 

Figure 3.5: Embedded FPGA platform [48] 
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3.3. Proposed automated performance-based design 
technique 

 

This section illustrates in details the proposed automated performance-
based design technique using SDSoC tool. The objective of this technique is to 
determine platforms that achieve performance metrics and select the platform that 
achieves the best performance.  

The performance metrics constraints to the technique are hardware utilization, 
latency and dynamic power. Therefore, a designer defines the upper limit of this 
performance metrics according to the implementation requirement.  

 
On the other hand, the performance metrics output from the technique are 
hardware utilization, latency, dynamic power, hardware acceleration and Figure 
of Merit (FoM) [50]. Therefore, a designer able to explore this performance 
metrics results for all possible implementations.  

 
Figure 3.6 shows the proposed performance-based techniques flow diagram. First, 
the developer should design the application code written in C/C++ and define 
functions that should be implemented either as a software function or as a 
hardware-accelerated function (Let for example define a number of functions 
= ). 

 
The introduced algorithm is fully automated and uses a set of shell scripts for 
executing the SDSoC tool to generate required platforms. There are three flow 
control files are defined in the technique used to drive the execution of the shell 
scripts according to designer requirement. 

 

The flow control files are divided as follows: 

 First, the target_function_list file contains the modules functions names which 
designed to be implemented either as software function or hardware-
accelerated function.  

 Second, the implementation_configuration file which used to define the type 
of FPGA device, operating system, the clock frequency, type of design 
flow...etc.  

 Third, the performance_metrics_constrain file which is the design constraints 
and includes constraints on hard- ware utilization, dynamic power, and latency.  
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Figure 3.6: Performance-based design technique flow chart 
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The developer should design the application code written in C/C++ and define 
the  functions in the target_function_list files which are the functions that 
could be implemented either as a software function or as a hardware-accelerated 
function (let for example the designer defines 3 functions which are fun1, fun2 
and fun3). Next, the shell scripts read all C/C++ files and compile all C/C++ 
files for any Syntax errors or semantic error. Then the shell scripts read the 
implementation_configuration file. As shown in Figure 3.6 the technique is 
divided into two design flows depending on the implementation_configuration. 

 The first is design_flow_1 (all possible scenarios flow). 

 The second is design_flow_2 (constrained-selection scenarios flow). 

 
The purpose of the design_flow_1 is to implement all possible scenarios for (n) 
function defined in the target_function_list file, thus   combinations between 
software implementation function or hardware-accelerated function are stated to 
be a valid solution_set. For example, the defined 3 functions in the 
target_function_list generate combinations between software 
implementation function or hardware-accelerated function as shown in table 3.2.  

Table 3.2: Three function configuration scenario example: 
 (0) Software function and (1) Hardware-accelerated logic 

 

 

 

 

 

 

 

  

The number (1) in the table indicates that this function in current platform is a 
hardware-accelerated logic and the number (0) indicates that this function in 
current platform is a software function. Therefore, platform0 is configuring that 
all the functions (fun1, fun2, and fun3) are implemented as software functions.  

platform name fun1 fun2 fun3 

platform0 0 0 0 

platform1 1 0 0 

platform2 0 1 0 

platform3 1 1 0 

platform4 0 0 1 

platform5 1 0 1 

platform6 0 1 1 

platform7 1 1 1 
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The platform1 is configuring that the functions (fun1) is implemented as software 
functions and other functions (fun2 and fun3) are implemented as a hardware 
accelerated function and so on for all possible combinations between software 
implementation or hardware-accelerated implementation. design_flow_1 allows 
exploring the performance metrics of every possible combination between 
software implementation and hardware-accelerated implementation of    
function by taking into consideration the   combinations a valid solution_set.  
 
Section 4.2 represent implementation of LTE PDSCH transmitter and receiver as 
a case-study for the design_flow_1 

The purpose of the design_flow_2 is to implement specific possible scenarios that 
meet Performance constraints defined in the performance_metrics_constrain file. 
The Performance constraints described in file are hardware utilization, dynamic 
power, and latency. The steps of the design_flow_2 are the following:  

1) Select the ( ) combinations for hardware implementation where
.  For current example, select combinations from table 3.2 which 

generate platform1, platform2 and platform4. 

2) Select one of ( ) combinations from step-1 to be input to the SDSoC design 
flow shown in Figure 3.4.  

3) After finishing the execution of step-2, get the performance metrics from step-
2 and add the estimate_performance_list.  

4) Repeat from step1 to step-3 until finish the implementation and performance 
metrics estimation of all ( ) combinations defined in step-1. For example, the 
estimate_performance_list will be as shown in table 3.3 where 

 numeric values generated in step3 are. 

 

Table 3.3: Estimated performance list for selected combination 

performance 
metrics 

combination
1 

combination
2 

combination
4 

hardware 
utilization 

h1 h2 h4 

dynamic power p1 p2 p4 

latency l1 l2 l4 
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5) Calculate the estimated performance metrics for all ( ) combinations using 
the information from estimate_performance_list. The estimated performance 
metrics for all ( ) combinations are summation of the performance metrics of 
the ( ) combinations. For current example, the estimated performance 
metrics for all ( ) combinations are shown in in table 3.4.  

The combination0 is configuring that all the functions (fun1, fun2, and fun3) 
are implemented as software functions so it has zero latency and constant 
hardware utilization and constant dynamic power which they are the area and 
the power consumptions of the ARM processor. 

 The objective of this thesis is to study the performance of hardware-
accelerated functions synthesized by HLS therefore, combination0 is 
considered an ideal case and removed from the estimate_performance_list. 

6) Compare the Calculated ( ) combination performance metrics from step-5 
against the performance metrics constraints defined in the 
performance_metrics_constrain file, the designer sets the maximum limit of 
hardware utilization, dynamic power, and latency in the 
performance_metrics_constrain file.  

Combinations which do not meet the designer’s constraints will be rejected, 
only solutions that passed constraints will be considered in next steps as a valid 
solution_set.  

So, in this case, number of valid solution_set is less than or equal ( ) depending 
on designer constraints. Section 4.3 represents implementation of the LTE 
PDSCH transmitter and receiver as a case-study for the design_flow_2. 

Table 3.4: Estimated performance list for all combination:  
(comb.) is abbreviation to combinations 

performan
ce metrics 

comb.
0 

comb.1 comb.2 comb.3 comb
.4 

comb.5 comb.6 comb.7 

hardware 
utilization 

0 h1 h2 h3=h1+h
2 

h4 h5=h1+h
4 

h6=h2+h
4 

h7=h1+h2
+h4 

dynamic 
power 

0 p1 p2 p3=p1+p
2 

p4 p5=p1+p
4 

p6=p2+p
4 

p7=p1+p2
+p4 

Latency 0 l1 l2 l3=l1+l2 l4 l5=l1+l4 l6=l2+l4 l7=l1+l2+ 
l4 
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After defining the valid solution_set from a ( ) combination for design_flow_1 
or design_flow_2, the implementation of solution_set is executed as the following 
steps:  

1) Select one of possible solution_set generated from design_flow_1 or 
design_flow_2 to be input to the SDSoC design flow shown in Figure 3.4.  

2)  Repeat step-1 until finish implementation of all solution_set defined in step-
1.  

3) Get the performance metrics of all solution_set. If design_flow_1 is applied, 
print the output performance metrics results for all solution_set.  

4) If design_flow_2 is applied, then read the performance_metrics_constrain file 
and calculate the Performance Metrics Cost (PMC) of all solution_set as 
shown in 1. 

5) Print the performance metric for the valid solution_set and print the best 
solution_set that achieve target performance which is the least cost value 
calculated in step-4. 

The Performance Metrics Cost (PMC) is calculated as the follows: - 

 

 
where  is target area,   is area weight,  is target power and  

 is power weight,  is target latency and  is latency 
weight. 
 
The Performance Metrics Cost of solution indicates how far the solution 
performance is from the target performance. As shown in equation 3.1, the cost 
equation sets target of area (hardware utilization), power (dynamic power) and 
latency design constraints, so the SoC designer set the target required performance 
metrics. Also, the cost equation set weigh of area (hardware utilization), power 
(dynamic power) and latency design constraints.  

 
Therefore, the SoC designer able to decide which parameter is more important and 
increase its weight, unimportant parameters weight can be set to zero weight. For 
example, if dynamic power is important metrics in system design, increase its 
weight and implement only the solution_set which generate a heterogeneous 
FPGA-CPU platform that consuming the minimum dynamic power 
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Chapter 4 : IMPLEMENTION AND RESLULTS 

4.1. IMPLEMENTATION OF TURBO ENCODER USING 
SDSCOC TOOL 
  

This section explains the implementation of turbo encoder on a 
heterogeneous FPGA-CPU platform using SDSoC tool. The turbo encoder 
function is written using C programming language and integrated with other 
functions to verify operation of it.  

4.1.1. Turbo encoder block diagram 

 

The design specs of the turbo encoder for LTE was introduced in reference 
[51]. Figure 4.1 shows the block of the turbo encoder. The turbo encoder is the 
parallel concatenation of Recursive Systematic Convolutional (RSC) encoder, 
separated by an interleaver.  

The information bits flow goes into the first RSC encoder, and after interleaving, 
it feeds a second RSC encoder. The multiplexing and puncturing block accepts the 
information bits and outputs from the RSC encoder to generate the coded bits.  

 

 

Figure 4.1: Turbo encoder block diagram [51] 
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4.1.2. Turbo encoder implementation 

 
   The objective of this section is to implement multiple scenarios for turbo 
encoder function. Each scenario generates an Embedded FPGA platform which 
dependent on the implementation of turbo encoder sub-functions either software 
function or hardware-accelerated function synthesized by HLS. 

Table 4.1 shows all possible configuration scenarios to implement turbo encoder 
sub-function. For example, in the turbo11 platform, the Two RSC encoder and 
ineterleaver sub-functions are implemented as a hardware-accelerated function 
and multiplexer-puncturing sub-function is implemented as a software function. 
 

Table 4.1: Turbo encoder sub-function configuration scenarios:  
(0) Software function and (1) Hardware-accelerated function 

platform 
name 

Interleaver Mux_punc RSC_Enc  2 RSC_Enc 1 

turbo0 0 0 0 0 

turbo1 0 0 0 1 

turbo2 0 0 1 0 

turbo3 0 0 1 1 

turbo4 0 1 0 0 

turbo5 0 1 0 1 

turbo6 0 1 1 0 

turbo7 0 1 1 1 

turbo8 1 0 0 0 

turbo9 1 0 0 1 

turbo10 1 0 1 0 

turbo11 1 0 1 1 

turbo12 1 1 0 0 

turbo13 1 1 0 1 

turbo14 1 1 1 0 

turbo15 1 1 1 1 
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4.1.3. Configurable Embedded FPGA Platform 

The proposed configurable Embedded FPGA platform is shown in figure 
4.2. The configurable embedded FPGA platform consists of a processing system 
and a programming logic. The processing system side is consisting of fixed 
implementation functions used for integration and verification of the operation of 
the turbo encoder function. Example of fixed implementation functions, the 
random_test function used to generate random information bits, the noise function 
used to generate AWGN noise, and finally, the main function that integrates all 
functions together. In addition, the processing system is consisting of the 
turbo_encoder function that is consist of the configurable implementation 
functions. The term configurable means that each sub-function of the 
turbo_encoder function is implemented as a software function or a hardware-
accelerated function synthesized by HLS according to the configuration in table 
4.1. 

The programming logic side is consisting of fixed implemented hardware logic 
used to handle the data flow between the processing system and programming 
logic. The fixed logics are generated by SDSoC tool and dependent on the number 
of connection ports between software functions and hardware-accelerated 
functions. In addition, the programming logic is consisting of a turbo_encoder 
function implemented using HLS. As described in section 4.1.2, each sub-function 
of a turbo_encoder function is implemented as a software function or hardware-
accelerated function synthesized by HLS according to the configuration in table 
4.1. 

 

 

Figure 4.2: Configurable embedded FPGA platform for turbo encoder 
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4.1.4. Results and Comparative Studies 

 
This section shows the implementation results of all possible configurations 

scenarios shown in table 4.1. Sixteen projects are generated to cover all possible 
scenarios between software implementation and hardware-accelerated 
implementation generated using HLS. Xilinx ZYNC ZC702 device was used for 
implementation [52]. It consists of dual ARM Cortex A9 core as the processing 
system and XC7Z020-CLG484 based FPGA as the programming logic. 

4.1.4.1. Hardware Utilization for turbo encoder implementation 

 
Figure 4.3 shows the hardware utilization of the generated platforms of the 

synthesized hardware. The Hardware utilization is sum of number of Look-Up 
Tables (LUT), number of flip-flops and number of Muxes. The turbo0 platform is 
the software implementation of all turbo encoder sub-functions so it has zero 
hardware utilization and not included in Figure 4.3.  

 

 

Figure 4.3: Hardware utilization for turbo encoder implementation 

The turbo2 platform has the minimum hardware utilization. The turbo2 platform 
consist of RSC_Enc2 is implemented as a hardware-accelerated function and other 
turbo encoder sub-functions are implemented as a software function. The turbo13 
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platform has the maximum hardware utilization. The turbo13 platform consist of 
RSC_Enc1, interleaver and mux_pun are implemented as a hardware-accelerated 
functions and RSA_Enc2 is implemented as a software function.  

 

4.1.4.2. Dynamic power for turbo encoder implementation 

 

Power is an important metrics for any communication system. For FPGA 
platform, power calculation includes the power consumption in the arm processor 
and the static power calculation. We focus on the dynamic power only, so we 
subtract the arm processor power and the static power from the total power 
consumptions.  

 

 

Figure 4.4: Dynamic power for turbo encoder implementation 

 
Figure 4.4 shows the dynamic power for the generated platforms of the 
synthesized hardware. The dynamic power is measured in watts. The turbo0 
platform is the software implementation of all turbo encoder sub-functions so it 
has zero dynamic power and not included in Figure 4.4.  

The turbo2 platform has the minimum dynamic power. The turbo2 platform 
consists of RSA_Enc2 is implemented as a hardware-accelerated function and 
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other turbo encoder sub-functions are implemented as a software function.  
The turbo13 platform has the maximum dynamic power. The turbo13 platform 
consist of RSC_Enc1, interleaver and mux_pun are implemented as a hardware-
accelerated functions and RSA_Enc2 is implemented as a software function.  
 

4.1.4.3. Hardware acceleration for turbo encoder implementation 

 
Hardware acceleration is metrics defined by the SDSoC tool [48]. 

Hardware acceleration is the number of clock cycles improvement in execution of 
system if implementing the function as a hardware-accelerated function in the 
programming logic.  

Figure 4.5 shows the hardware acceleration for the generated platforms of the 
synthesized hardware. The turbo0 platform is the software implementation of all 
turbo encoder sub-functions so the hardware acceleration is not defined and not 
included in figure 4.5. The turbo2 platform has the maximum hardware 
acceleration. The turbo2 platform consists of RSA_Enc1, and RSA_Enc2 are 
implemented as hardware-accelerated functions, and other turbo encoder sub-
functions are implemented as a software function. The turbo4 platform has the 
minimum hardware acceleration. The turbo4 platform consist of mux_punc sub-
function is implemented as a hardware-accelerated function and other turbo 
encoder sub-functions are implemented as software implementation. 

 
 

 

Figure 4.5: Hardware acceleration for turbo encoder implementation 
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4.1.4.4. Figure of Merit for turbo encoder implementation 

 
  The Figure of Merit (FoM) metrics is defined to know the platform that 
achieves the best overall performance [50]. The FoM metric is defined as follows:  

 

Equation 4.1 shows that acceleration effect directly proportional with FoM 
performance and shows that area, power and latency effect reversely proportional 
with FoM performance.  

Figure 4.6 shows the FoM calculations of the generated platforms of the 
synthesized hardware. The turbo2 platform has the best FoM calculation. The 
turbo2 consist of RSA_Enc1 and RSA_Enc2 are implemented as hardware-
accelerated functions, and other turbo encoder sub-functions are implemented as 
software functions. The turbo7 platform has the worst FoM calculation. The 
turbo7 platform consist of RSA_Enc1, RSA_Enc2, and mux_punc are 
implemented as hardware-accelerated functions, and interleaver is implemented 
as a software function. 

 

 

Figure 4.6: FoM for turbo encoder implementation 
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4.2. IMPLEMENTATION OF THE LTE PDSCH 
TRANSMITTER AND RECEIVER USING SDSOC TOOL 

 
  This section explains the implementation of the LTE PDSCH transmitter 
and LTE PDSCH receiver on a heterogeneous FPGA- CPU platform applying 
proposed performance-based design technique using SDSoC tool. The LTE 
PDSCH transmitter and LTE PDSCH receiver are written using C programming 
language and integrated into the main function including test- bench function to 
verify them. 

In section 4.2.1, The LTE PDSCH transmitter function implemented with all 
possible solution scenarios. As LTE PDSCH transmitter consists of eight sub-
functions two hundred fifty-six (2^8 = 256) configuration scenarios are generated. 
Similarity, 
 

 In section 4.2.2, The LTE PDSCH receiver function implemented with all 
possible solution scenarios, as LTE PDSCH receiver consists of eight sub-
functions two hundred fifty-six (2^8 = 256) configuration scenarios are generated.  
In section 4.2.3, constraints are applied to the implementation of the LTE PDSCH 
transmitter and receiver, so in these cases configuration scenarios that meets 
constraints are only generated. 

4.2.1. LTE PDSCH transmitter implementation 

The objective of this section is to implement all multiple scenarios for the 
LTE PDSCH transmitter function. Each scenario generates an Embedded FPGA 
platform which depends on the implementation of the LTE PDSCH transmitter 
sub-functions either software function or hardware-accelerated function 
synthesized by HLS. 

As shown in figure 2.5 the LTE PDSCH transmitter consists of eight sub-functions 
which are: CRC_addition, segmentation, turbo_encoder, interleaver, 
rate_matching, scrambler, modulator and resource_element_mapper.  
Having of eight sub-functions, two hundred and fifty-six projects are generated to 
cover all possible scenarios between software implementation and hardware-
accelerated implementation generated using HLS. Table 4.2 shows all possible 
configuration scenarios to implement the LTE PDSCH transmitter sub-functions.  
The number (1) in the table indicates that this sub-function in the current platform 
is a hardware-accelerated logic and the number (0) indicates that this sub-function 
in the current platform is a software function. For example, in Tx6 platform the 
segmentation sub-function and Turbo_encoder sub-function are implemented as a 
hardware-accelerated logic and other LTE PDSCH transmitter sub-functions are 
implemented as a software function. 
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Table 4.2: LTE PDSCH transmitter sub-function configuration scenario:  
(0) software function and (1) hardware-accelerated logic 

platform 

name 

 
RE mapper 

 
Modulator 

 
Scrambler Rate 

matching 

 
Interleaver Turbo 

encoder 

 
Segmentation 

CRC 

addtion 

Tx0 

Tx1 

Tx2 

Tx3 

Tx4 

Tx5 

Tx6 

Tx7 

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

Tx250 

Tx251 

Tx252 

Tx253 

Tx254 

Tx255 

 

4.2.1.1. Configurable embedded FPGA platform for LTE PDSCH 
transmitter 

The proposed configurable Embedded FPGA platform for the LTE PDSCH 
transmitter is shown in figure 4.7. The configurable embedded FPGA platform 
consists of the processing system and programming logic. The processing system 
side consists of fixed implementation functions used for integrating and verifying 
the operation of the LTE PDSCH transmitter function. Examples of fixed 
implementation functions, the main function which integrates all functions 
together, the random_test function used to generate random information bits, the 
noise function used to generate AWGN noise, ...etc. 

On the LTE PDSCH transmitter platform, all of the LTE PDSCH receiver 
functions configured to be implemented as a fixed software function because they 
are used in integrating and verifying the LTE PDSCH transmitter/receiver chain. 
In addition, the processing system consists of the LTE PDSCH Transmitter 
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function that consists of the configurable implementation functions. The term 
configurable means that each sub-functions of the LTE PDSCH Transmitter 
function are implemented as a software function or hardware-accelerated function 
synthesized by HLS according to the configuration in table 4.2. 

The programming logic side consists of fixed implemented hardware logic used 
to handle the data flow between the processing system and programming logic. 
The fixed logics are generated by SDSoC tool are depends on the number of 
connection ports between software functions and hardware-accelerated functions 
synthesized by HLS. In addition, the programming logic consists of LTE PDSCH 
Transmitter functions implemented using HLS. As described in section 4.2.1, each 
sub-function of LTE PDSCH Transmitter function is implemented as a software 
function or hardware-accelerated function synthesized by HLS according to the 
configuration in table 4.2. 

 

Figure 4.7: Configurable embedded FPGA platform for the LTE PDSCH 
transmitter 

4.2.2. LTE PDSCH receiver implementation 

The objective of this section is to implement multiple scenarios for the LTE 
PDSCH receiver function. Each scenario generates an Embedded FPGA platform 
which depends on the implementation of the LTE PDSCH receiver sub-functions 
either software function or hardware-accelerated function synthesized by HLS.  
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As shown in figure 2.5 the LTE PDSCH receiver consists of eight sub-functions 
which they are the following: CRC_removing, de-segmentation, turbo_decoder, 
de-interleaver, rate_de-matching, de-scrambler, de- modulator and 
resource_element_de-mapper. Having eight sub-functions, two hundred and fifty-
six projects are generated to cover all the possible scenarios between software 
implementation and hardware-accelerated implementation generated using HLS. 

Table 4.3 shows parts of all possible configuration scenarios to implement the 
LTE PDSCH receiver sub-functions. The number (1) in the table indicates that 
this sub-function in the current platform is a hardware-accelerated logic and the 
number (0) indicates that this sub-function in the current platform is a software 
function. For example, in Tx6 platform the de-Segmentation sub-function and 
Turbo_Decoder sub-function is implemented as a hardware-accelerated logic and 
other LTE PDSCH receiver sub-functions are implemented as a software function. 
Configurable embedded FPGA platform for LTE PDSCH receiver. 

Figure 4.8 shows the proposed configurable Embedded FPGA platform for the 
LTE PDSCH receiver. The configurable embedded FPGA platform consists of the 
processing system and programming logic. The processing system side consists of 
fixed implementation functions used for integrating and verifying the operation of 
the LTE PDSCH transmitter function. Examples of fixed implementation 
functions, the main function which is integrating all functions together, the 
random_test function used to generate random information bits, the noise function 
used to generate AWGN noise, ...etc. 

 

Figure 4.8: Configurable embedded FPGA platform for the LTE PDSCH receiver 



 
 

58 
 
 

Table 4.3: LTE PDSCH receiver sub-unction configuration scenario: 
(0) software function and (1) hardware-accelerated logic 

platform 

name 

RE 

de-mapper 
De- 

modulator 
De- 

scrambler 
Rate 

de-
matching 

De- 
interleaver 

Turbo 

decoder 
De- 

segmentation 

CRC 

removing 

Rx0 

Rx1 

Rx2 

Rx3 

Rx4 

Rx5 

Rx6 

Rx7 

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

Rx250 

Rx251 

Rx252 

Rx253 

Rx254 

Rx255 

 

On the LTE PDSCH Receiver platform, all of the LTE PDSCH transmitter 
functions configured to be implemented as a fixed software function because they 
are used in integrating and verifying the LTE PDSCH transmitter/receiver chain. 
In addition, the processing system consists of the LTE PDSCH receiver function 
that consists of the configurable implementation functions.  

The term configurable means that each sub-function of the LTE PDSCH receiver 
function is implemented as a software function or hardware-accelerated function 
synthesized by HLS according to the configuration in table 4.3.  
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The programming logic side consists of fixed implemented hardware logic used 
to handle the data flow between the processing system and programming logic. 
The fixed logics are generated by SDSoC tool and depends on the number of 
connection ports between software functions and hardware-accelerated functions 
synthesized by HLS. - 

 
In addition, the programming logic consists of LTE PDSCH receiver functions 
implemented using HLS. As described in section 4.2.2, each sub-function of LTE 
PDSCH receiver function is implemented as a software function or hardware-
accelerated function synthesized by HLS according to the configuration in table 
4.3. 

4.2.3. Constraints solution 

 

   This section introduces examples for implementation of the LTE PDSCH 
and LTE PDSCH under user constraints. The design flow applied is 
design_flow_2 described in section 3.3. The SDSOC.sh script described in 
Appendix C is modified to add the constraint file and to execute the 
design_flow_2. 
 
Table 4.4 shows an example of design constraints applied to implement. As shown 
in the table the, sets of constraints are the following: 

 Maximum limit of area, power, and latency. The combinations from table 4.2 
or table 4.3 do not meet the designer’s maximum limit constraints are rejected; 
only solutions that meet constraints will be added to the valid solution_sets. 

 Target and weight of area, power, and latency. Both of them are used to 
calculate PMC using equation 3.1. 
 

Table 4.4: Constraints solution examples 

Model example performance_constraints 

area (LUT) power (WATSS) latency (CLOCK CYCLE) 

Limit target weight limit target weight limit target weight 

LTE PDSCH 
transmitter 

LTE PDSCH 
receiver 
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4.2.4. Results and comparative studies   

This section focuses on studying the performance of hardware-accelerated 
functions synthesized by HLS. Therefore, the first solution on table 4.2 which is 
Tx0 platform and the first solution on table 4.3 which is and Rx0 platform are 
assumed an ideal case. Tx0 and Rx0 solutions are considered as an ideal case 
because all of the LTE PDSCH transmitter/receiver sub-functions are 
implemented as a software function. In this case, the hardware-accelerated logics 
are not generated and the generated platform has a constant area which is the arm 
processor area and has a constant power consumption which is the power 
consumption of the arm processor.  

The Xilinx ZYNC ZC702 device was used for the implementation. It consists of 
a dual ARM Cortex A9 core as the processing system and XC7Z020-CLG484 
based FPGA as the programming logic [52]. The hardware-accelerated functions 
are synthesized and implemented at frequency equals 100 MHz. 

 
This section shows the results implementation of all possible configuration 
scenarios shown in table 4.2. Two hundred and fifty-six projects are generated for 
the LTE PDSCH transmitter to cover all possible scenarios between software 
implementation and hardware-accelerated implementation generated using HLS. 

In addition, this section shows the implementation results of all possible 
configuration scenarios shown in table 4.3. Two hundred and fifty-six projects are 
generated for the LTE PDSCH receiver to cover all possible scenarios between 
software implementation and hardware-accelerated implementation generated 
using HLS. 

4.2.4.1. LTE TX implementation results 

This section shows the results implementation of all possible configuration 
scenarios for LTE PDSCH transmitter chain. 
 

4.2.4.1.1. Hardware utilization for the LTE TX implementation  
 

  Figure 4.9 shows the hardware utilization of the generated platforms of the 
synthesized hardware. The Tx1 platform has the minimum hardware utilization. 
The Tx1 platform is configuring such that CRC_addition block is implemented 
as hardware- accelerated logic and other LTE PDSCH transmitter sub-functions 
are implemented as software functions. The Tx255 platform has the maximum 
hardware utilization. The Tx255 platform is configuring such that all the LTE 
PDSCH transmitter sub-functions are implemented as hardware-accelerated 
functions. The area results are changed non-linear irregular changes because the 
different values of area are generated according to configuration in table 4.2.       
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Figure 4.9: Hardware utilization for the LTE TX implementation 

 

4.2.4.1.2. Latency for the LTE TX implementation 
 

Figure 4.10 shows the latency calculation of the generated platforms of the 
synthesized hardware. The Tx1 platform is configuring such that CRC_addition 
block is implemented as hardware-accelerated logic and other LTE PDSCH 
transmitter sub-functions are implemented as software functions. The Tx255 
platform has the maximum latency calculation. 

 The Tx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated functions. The total latency 
results are calculated for independent hardware-accelerated functions only, so the 
processing time of the arm processor is   not included in the latency calculation.  
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Figure 4.10: Latency for the LTE TX implementation 

 

4.2.4.1.3. Dynamic Power for the LTE TX implementation 
 

Figure 4.11 shows the dynamic power consumption of the generated 
platforms of the synthesized hardware. The Tx1 platform has the minimum 
dynamic power consumption. The Tx1 platform is configuring such that 
CRC_addition block is implemented as hardware-accelerated logic and 
other LTE PDSCH transmitter sub-functions are implemented as software 
functions.  

The Tx255 platform has the maximum dynamic power consumption. The 
Tx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated functions. 
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Figure 4.11: Dynamic power for the LTE TX implementation 

4.2.4.1.4. Hardware acceleration for the LTE TX implementation 
 

Figure 4.12shows the hardware acceleration calculations of the generated 
platforms of the synthesized hardware. The Tx1 platform has the minimum 
hardware acceleration calculation. The Tx1 platform is configuring such that 
CRC_addition block is implemented as hardware- accelerated logic and other LTE 
PDSCH transmitter sub-functions are implemented as software functions.  

The Tx255 platform has the maximum hardware acceleration calculation. The 
Tx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated functions. 
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Figure 4.12: Hardware acceleration for the LTE TX implementation 

 

4.2.4.1.5.  FoM for the LTE TX implementation 
 

Figure 4.13shows the FoM calculations of the generated platforms of the 
synthesized hardware. The Tx64 platform has the best FoM calculation. The Tx64 
is configuring such that Segmentation block which is implemented as hardware-
accelerated logic and other LTE PDSCH transmitter sub-functions sub-functions 
are implemented as software functions.  

The Tx255 platform has the worst FoM calculation. The Tx255 platform is 
configuring such that all the LTE PDSCH transmitter sub-functions are 
implemented as hardware-accelerated functions. 
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Figure 4.13:  FoM for the LTE TX implementation 

4.2.4.2. LTE RX implementation results 
 

 This section shows the results implementation of all possible configuration 
scenarios for LTE PDSCH receiver chain. 

4.2.4.2.1. Hardware utilization for the LTE T RX implementation  
 

Figure 4.14 shows the hardware utilization of the generated platforms of the 
synthesized hardware. The Rx1 platform has the minimum hardware utilization. 
The Rx1 platform is configuring such that CRC_removing block is implemented 
as hardware-accelerated logic and other LTE PDSCH receiver sub-functions are 
implemented as software functions. The Rx255 platform has the maximum 
hardware utilization.  

The Rx255 platform is configuring such that all the LTE PDSCH transmitter sub-
functions are implemented as hardware-accelerated function. The area results are 
changed non-linear irregular changes because the different values of area are 
generated according to configuration in table 4.3.    
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Figure 4.14: Hardware utilization for the LTE RX implementation 

 

4.2.4.2.2. Latency for the LTE RX implementation 
 
Figure 4.15 shows the latency calculation of the generated platforms of the 

synthesized hardware. The Rx1 platform has the minimum latency calculation. 
The Rx1 platform is configured such that CRC_removing block which is 
implemented as hardware-accelerated logic and other LTE PDSCH receiver sub-
functions are implemented as software functions. The Rx255 platform has the 
maximum latency calculation.  

The Rx255 platform that is configured such that all the LTE PDSCH receiver sub-
functions are implemented as hardware-accelerated functions. The total latency 
results are calculated for independent hardware-accelerated functions only, so the 
processing time of the arm processor is   not included in the latency calculation. 
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Figure 4.15: latency for the LTE RX implementation 
 

4.2.4.2.3. Dynamic Power for the LTE RX implementation 
 

Figure 4.16 shows the dynamic power consumption of the generated 
platforms of the synthesized hardware. The Rx1 platform has the minimum 
dynamic power consumption. The Rx1 platform is configuring such that 
CRC_removing block is implemented as hardware-accelerated logic and other 
LTE PDSCH receiver sub-functions are implemented as software functions.  

The Rx255 platform has the maximum dynamic power consumption. The Rx255 
platform is configuring such that all the LTE PDSCH receiver sub-functions are 
implemented as hardware-accelerated functions. 
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Figure 4.16: Dynamic power for the LTE RX implementation 

 

4.2.4.2.4. Hardware acceleration for the LTE RX implementation  
 

Figure 4.17 shows the hardware acceleration calculations of the generated 
platforms of the synthesized hardware. The Rx1 platform has the minimum 
hardware acceleration calculation. The Rx1 platform is configuring such that 
CRC_addition block is implemented as hardware-accelerated logic and other LTE 
PDSCH receiver sub-functions are implemented as software functions.  

The Rx255 platform has the maximum hardware acceleration calculation. The 
Rx255 platform is configuring such that all the LTE PDSCH receiver sub-
functions are implemented as hardware-accelerated functions. 
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Figure 4.17: Hardware acceleration for the LTE T RX implementation 

4.2.4.2.5. FoM for the LTE RX implementation  
 

Figure 4.18 shows the FoM calculations of the generated platforms of the 
synthesized hardware. The Rx1 platform has the best FoM calculation. The Rx1 
platform is configuring such that CRC_addition block is implemented as 
hardware-accelerated logic and other LTE PDSCH receiver sub-functions are 
implemented as software functions.  

The Rx255 platform has the worst FoM calculation. The Rx255 platform is 
configuring such that all the LTE PDSCH receiver sub-functions are implemented 
as hardware-accelerated functions. 
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Figure 4.18: FoM for the LTE RX implementation 

 

4.2.4.3. Constraints solution examples results 

 
This section shows the implementation results to get the best heterogeneous 

FPGA-CPU SoC platform that meets constraints examples in section 4.2.3. The 
design_flow_2 illustrated in section 3.3 is applied. Performance Metrics Cost 
(PMC) Equation 3.1 is used for calculating the cost and selecting the best 
implementation that meets the design constraints. 

 Table 4.5 shows the implementation results after applying the target constraints 
in table 4.4. The valid_solution_sets column in tables 4.5 shows the valid 
solution_sets that meet the maximum limit design constraints in table 4.4. Next 
calculation the performance metrics cost for each the valid solution_sets using 
Performance Metrics Cost (PMC) equation 3.1. Finally, select the solution with 
the minimum calculated PMC value that meets the constraints. 
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Table 4.5: Constraints solution examples results 

Model example performance_constraints_results 

valid_solution_sets PMC best PMC 

 

 
 

LTE PDSCH transmitter 
 

 

 
 

 
 
 
 
 
 
 
 

LTE PDSCH receiver 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

For LTE PDSCH transmitter chain, there are three configuration scenarios are 
met the required performance constraints in table 4.4. The Tx1, Tx2 and Tx32 
configuration scenarios are added to the valid_solution_sets list, then the PMC 
for each configuration scenarios are calculated and then Tx1 was selected as the 
best configuration scenarios that meets the constraints because it generated the 
minimum PMC calculation. 

For LTE PDSCH receiver chain, there are seven configuration scenarios are met 
the required performance constraints in table 4.4. The Rx1, Rx2, Rx3, Rx4, 
Rx16, Rx32 and Tx33 configuration scenarios are added to the 
valid_solution_sets list, then the PMC for each configuration scenarios are 
calculated and then Rx33 was selected as the best configuration scenarios that 
meets the constraints because it generated the minimum PMC calculation. 
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Conclusions 

Designing using SDSoC tool helps SoCs designer by introducing a simple 
design environment. In addition, SDSoC design environment makes integration 
and verification of co-design heterogeneous FPGA-CPU faster and more efficient. 
This thesis introduced a new automated design technique used to implement a 
heterogeneous FPGA-CPU SoC platform. 

In section 3, a new automated design technique is used to implement multiples of 
heterogeneous FPGA-CPU SoC platforms using SDSoC tool. The automated 
method is used in exploration of all possible scenarios between software 
implementation and hardware-accelerated implementation generated using HLS. 
In addition, the new design technique is used to design a heterogeneous FPGA-
CPU SoC platform that meets pre-defined performance metrics constraint such as 
area and power. 

 
The questions of what platform and what implementation, whether hardware or 
software is best suited for the best efficient platform. In this thesis, these questions 
are sought to be answered by introducing Figure of Merit (FoM) performance 
metric [50]. In addition, Performance Metrics Cost (PMC) equation helps to 
develop a platform that achieves specific performance metrics requirement. 
 
This new design technique may lead to make quantum leap in the design of 
heterogeneous FPGA-CPU SoC platform by integrating performance design 
constraint requirement in the design cycle. 

 

In section 4, as a case study, the LTE PDSCH transmitter/receiver software 
functions are written using C programming language, and the design of the LTE 
PDSCH transmitter/receiver are implemented on heterogeneous FPGA-CPU SoC 
platforms using SDSoC tool. The automated method is used to explorer all 
possible scenarios between software implementation and hardware-accelerated 
implementation for the LTE PDSCH transmitter and the LTE PDSCH receiver.  

 
In addition, the platform that meets pre-defined performance metrics constraint is 
selected for the LTE PDSCH transmitter and the LTE PDSCH receiver. Moreover, 
the platform that achieves the best overall performance is selected for the LTE 
PDSCH transmitter and the LTE PDSCH receiver. 
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Future Work 

Adaptive design implementation dependent on performance requirement 
could be developed and used to re-implement the SoC platform during run time.  
For example, the designer may develop SoC-based products depending on 
environmental variables (ex: availability of sunlight). The designer may develop 
SoC platform consuming high-power assuming availability of sunlight for 
recharging batteries. Let assume for some reason, the developed SoC-based 
product have to be work in new environment where sunlight is not available, the 
SoC platform could be re-implemented during run time to re-build a new SoC 
platform consuming less power. 

 
Partial Dynamic Reconfiguration (PDR) techniques could be integrated and used 
to reconfigure the FPGA according to design environment status [53]. For 
example, platform with the best performance metrics is loaded initially to the 
FPGA. In case of low power mode, platform with the minimum dynamic power 
performance metrics is loaded to the FPGA using PDR [54].  

 
In addition, the new design technique may lead to develop FPGA-CPU SoC 
platform with partially upgrading capability. For example, part of the LTE 
PDSCH chain has a fixed architecture in every LTE update release (ex: CRC 
calculation), so this module may be implemented as a hardware-accelerated logic. 
In the other hand, part of the LTE PDSCH chain has an adjustable architecture in 
every LTE update release (ex: resource element mapper), so this module may be 
implemented as a software function because software could be upgraded easily. 
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Appendix A: Modulation lookup table 

Table A.1: 64QAM modulation lookup table 

   

000000 
  

  000001 
  

000010 
  

000011 
  

000100 
  

000101 
  

000110 
  

000111 
  

001000 
  

001001 
  

001010 
  

001011 
  

001100 
  

001101 
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001110 
  

   

001111 
  

010000 
  

010001 
  

-010010 
  

010011 
  

010100 
  

010101 
  

010110 
  

010111 
  

011000 
  

011001 
  

011010 
  

011011 
  

011100 
  

011101 
  

011110 
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011111 
  

100000 
  

100001 
  

100010 
  

100011 
  

100100 
  

100101 
  

100110 
  

100111 
  

101000 
  

101001 
  

101010 
  

101011 
  

101100 
  

101101 
  

101110 
  

101111 
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110000 
  

110001 
  

110010 
  

110011 
  

110100 
  

110101 
  

110110 
  

110111 
  

111000 
  

111001 
  

111010 
  

111011 
  

111100 
  

111101 
  

111110 
  

111111 
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Appendix B: Implement SDSOC project manually 
steps 

The required steps to implement the SDSOC project manually are illustrated as 
follows: 

1. Open SDSoC tool.  The Workspace Launcher window will appear. 

2. Select “File”  “New”  “SDSoc Project”. New Project GUI window will 
appear as shown in figure B.1.  Enter project name, for example “turboX”, 
select “ZC702” as a platform (depending on the evaluation kit used), select 
“Standrad”, and click “Next”. 

 

 

Figure B.1: Project naming and platform selection and OS selection 

3. Select “Empty Application” to create a new empty project and then Click 
“Finish” as shown in figure B.2. 
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Figure B.2: Empty project Selection 

4. A new directory is generated at the location of project path and Project window 
will appear as shown in figure B.3. The new directory name is same as project 
name typed in step 1.  Copy the C/C++ source files into the following directory 
inside project “<project path>”  “turboX”  “src” 

 
The “Project Explorer” window located in the left side, under “turboX” project 
directory, the “src” directory contains the source files which were copied from in 
the previous steps. 

In the right-side pane, in “Option” window select generate bitstream, generate SD 
CARD image and estimate performance. In Hardware function, click in plus icon 
and select the required functions to be implemented as a hardware acceleration 
function. Also select the operating clock frequency for hardware functions.  

 

Note that: - 

a) Estimate performance mode is used to get the estimated cycles for hardware 
acceleration and to get estimated values for resource utilization. 

b) The hardware functions are selected depending on the selected function. 
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Figure B.3: project window in estimated performance mode 

5. From “Project”  select “Build ALL”, the process of building project will 
start. 

6. After finish building project, the estimated performance results appear as 
shown in figure B4. The output results of the estimated performance mode 
generated by the SDSoC tool are the estimated hardware acceleration and the 
resource utilization for hardware acceleration function. 

 

Figure B.4: Estimated performance results 
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7. To get the complete performance metrics for SDSoC implementation, repeat 
from step 1 to step 5, but in step 5, then de-select the “Estimated 
Performance” checkpoint shown in figure B.5 then, from “Project”  select 
“Build ALL”, the process of building project starts as shown in figure B.4. 

 

 

Figure B.5: Window project in non-estimated performance mode 

8. After finish building the project, “SDDebug” directory is created inside the 
project path. The SDSoC directory structure inside the project path is as shown 
in figurer B.6. 

 

Figure B.6: SDOSC directory structure 
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The content of each directory is the following:   

• The “swstubs” directory contains source file to handle data motion and source 
file used to communicate between different hardware acceleration block. 

• The “iprepo” directory is generated by Vivado HLS and contain a sub-directory 
for each hardware function. 

• The “vhls” directory is generated by Vivado HLS and contains the complete 
HLS implementation for each function. 

• The “p0” directory consists of “ipi” sub-directory that contains The Vivado 
project (synthesis and implementation and results) and the generated bit file. 
The project file located inside the “ipi” directory and has an extension of xpr. 
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Appendix C: SDSOC shell script 

The required steps to implement project using SDSoC shell script are shown as 
follows: - 

1) Create directory “lte_tx” which is a top project path directory. Copy the “src” 
directory, the “info.txt” and “SDSOC.sh” to the “lte_tx” directory. 

2) The “src” directory contains all the C/C++ source files to implement the LTE 
PDSCH transmitter/receiver using SDSoC tool. The “SDSOC.sh” is a 
developed automated script file used to execute SDSOC tool multiple times to 
generate all required solution sets.  

The “info.txt” is file describes the block function names that implemented as a 
hardware acceleration block. For example, the following list shows the 
“info.txt” of LTE PDSCH transmitter.  

 

 

 

 

 

 

 

 

 

 

 

3) Open a terminal window and execute the script using “./SDSOC.sh” command. 

4) Select either C project of C++ project (the current LTE project is C project) 

5) Select type of Xilinx evaluation board either a default ZC706 evaluation board 
or one of the following evaluation board shown in table C.1. 

 

RE_mapper_dl_siso:lte_RE_mapper_dl_siso.c 

modulator:lte_modulator.c 

scrambler:lte_scrambler.c 

rate_matching:lte_ratematching.c 

interleaver:lte_interleaver.c 

tx_turbo:tx_turbo.c 

tx_seg_turboenc:lte_segment.c 

tx_crc:tx_crc.c 
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Table C.1: Supported SDSoC evaluation board 

ID Type of evaluation board 

1 ZC702 

2 ZC706 

3 Zed 

4 Zybo 

5 ZCu102_es1 

6 ZCu102_es2 

 

6) Select the operating system of platform either the default standalone operating 
system or one of the operating system supported by sdsoc tool shown in table 
C.2. 

Table C.2: Supported SDSoC operating system 

ID Type operating system 

1 Linux 

2 Standalone 

 

Select the clock frequency used for synthesis and implementation hardware 
accelerated function. The table C.3 shows supported frequencies by the SDSOC 
tool. 

Table C.3: synthesis frequency supported by SDSoC tool 

ID HLS synthesis frequency (MHz) 

0 166.666672 

1 142.857132 

2 100.000000 

3 200.000000 

 

7) Select the data motion operating frequency, the frequency depend in selection 
of evaluation kit as shown in table C.4.  
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Table C.4: Data motion operating frequency 

Platform ID data motion operating 
frequency 

ZC702 0 166 

1 142 

2 100 

3 200 

ZC706 0 166 

1 142 

2 100 

3 200 

Zed 0 166 

1 142 

2 100 

3 200 

Zybo 0 25 

1 100 

2 125 

3 50 

ZCu102_e1 0 100 

1 150 

2 200 

3 300 

ZCu102_e2 0 100 

1 150 

2 200 

3 300 

 

8) The script generates all solution sets. Also, the script generates 
“design_space.rpt” file that contains the performance metrics results 
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List C.1: SDSoC.sh 

 

  

#!/bin/bash 
 
#Functions definition 
create_makefile() { 
 echo 'APPSOURCES = ' $ls*.$ext>Makefile 
 echo 'EXECUTABLE = out.elf'>>Makefile 
 echo 'CC = '$CC' ' $SDSFLAGS>>Makefile 
 echo 'CFLAGS = -O3 -c'>>Makefile 
 echo 'CFLAGS += -MMD -MP -MF"$(@:%.o=%.d)"'>>Makefile 
 echo 'LFLAGS = -O3 -lm'>>Makefile 
 echo 'OBJECTS := $(APPSOURCES:.'$ext'=.o)'>>Makefile 
 echo 'DEPS := $(OBJECTS:.o=.d)'>>Makefile 
 echo '.PHONY: all clean ultraclean'>>Makefile 
 echo 'all: ${EXECUTABLE}'>>Makefile 
 echo '${EXECUTABLE}: ${OBJECTS}'>>Makefile 
 echo $'\t${CC} ${LFLAGS} $^ -o $@'>>Makefile 
 echo '-include ${DEPS}'>>Makefile 
 echo '%.o: %.'$ext>>Makefile 
 echo $'\t${CC} ${CFLAGS} $^ -o $@'>>Makefile 
 echo 'clean:'>>Makefile 
 echo $'\t${RM} ${EXECUTABLE} ${OBJECTS} *.d'>>Makefile 
 echo 'ultraclean: clean'>>Makefile 
 echo $'\t${RM} ${EXECUTABLE}.bit'>>Makefile 
 echo $'\t${RM} -rf _sds sd_card'>>Makefile 
return  0 
} 
 
#Ask if C or C++ project 
#Makefile format changes according project type 
echo $'C or C++ project?\n1)C project\n2)C++ project?' 
read choice 
 if [ $choice = 1 ] 
 then 
  ext='c' 
  CC='sdscc' 
 elif [ $choice = 2 ] 
 then 
  ext='cpp' 
  CC='sds++' 
 fi 
echo 
"#################################################################" 
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#Choose OS 
echo $'Default operating system is standalone\nchange OS ? [y/n]' 
read choice 
 if [ $choice = y ] 
 then 
  echo $'Available operating systems are: 
linux,freertos,standalone\nchoosen OS: ' 
  read choice 
  OS=$choice 
 elif [ $choice = n ] 
 then 
  OS='standalone' 
 fi 
echo 
"################################################################" 
 
 
#choose HW synthesis clock frequency 
echo $'Choose HW synthesis clock\navaliable CLK_IDs are 
0,1,2,3\nclock frequency values differ based on platform\nfor more 
information check Xilinx documents' 
echo 'Choosen CLK_ID: ' 
read choice 
CLK_ID=$choice 
echo 
"#################################################################" 
 
#choose data network clock frequency 
echo $'Choose data network clock\navaliable CLK_IDs are 
0,1,2,3\ndata network clock frequency values differ based on 
platform\nfor more information check Xilinx documents' 
echo 'Choosen DMCCLK_ID: ' 
read choice 
DMCCLK_ID=$choice 
echo 
"#################################################################" 

#Create different solutions 
#list C/C++ functions which will be compiled in both modes (HW and 
SW) in array 
#get number of functions from number of lines in file 
function_count=$(cat info.txt |wc -l) 
i=0 
while [[ $i -lt $function_count ]] 
do 
 func[ $i ]=$(head -"$(echo "$i+1"|bc)" info.txt|tail -1 |cut 
-d ':' -f 1) 
 ((i++)) 
done 
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#then compute the number of C/C++ funcions in current directory and 
the number of HW/SW combinations and loop on combinations 
combination_num="$(echo  2^$function_count |bc)" 
i=0 
while [ $i -lt $combination_num ] 
do 
 #make directory for solution and create Makefile 
 mkdir ./solution_$i 
 #convert solution number to binary to determine how each 
C/C++ is compiled (HW/SW) 
 tmp="$(echo "obase=2;$i"|bc)" 
 function_mode="$(echo $(printf "%0"$(echo $function_count)"d" 
$tmp))"  
  #loop on functions to generate HardWare options field 
in the sdscc/sds++ command synopsis 
  j=0 
  HW_options_str=" " 
  while [ $j -lt $function_count ] 
  do 
   #HW_options are passed to sdscc/sds++ compiler in 
the Makefile 
   if [[ ${function_mode:$j:1} = 1 ]]; 
   then 
    file_name=$(cat info.txt|grep -w 
${func[$j]} |cut -d':' -f 2) 
    HW_options_str=$HW_options_str' -sds-hw 
'${func[$j]}' '${file_name}' -clkid '$CLK_ID' -sds-end ' 
   fi  
   
  (( j++ )) 
  done 
 
 #Two design flows will be followed, performance estimation 
flow and traditional flow 
 #performance estimation flow is used for latency estimation 
and speed up 
 #traditional flow is used to create SDCard files and get 
area,power info.  
 if [ $i -lt 10 ] 
 then 
  line='################## solution '$i' 
######################' 
 elif [ $i -lt 100 ] 
 then 
  line='################## solution '$i' 
#####################' 
 else 
  line='################## solution '$i' 
####################' 
 fi  
 
 echo '####################################################' 
 echo $line 
 echo '####################################################' 
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 #*********************************************************** 
 #2)Traditional flow 
 mkdir ./solution_$i/reg_flow 
 cp -r src/* ./solution_$i/reg_flow 
 cd ./solution_$i/reg_flow && touch Makefile 
 SDSFLAGS=' -sds-pf '$platform' '$HW_options_str' -target-os 
'$OS' -dmclkid '$DMCCLK_ID 
 create_makefile 
 make -f Makefile   
 
#Generate design space exploration report 
touch design_space.rpt 
echo 'This file is generated by SDSoC script'>design_space.rpt 
echo 'Author: Mahmoud M.Kishky'>>design_space.rpt 
echo "+-------+------------------+--------------+--------------+---
----------+">>design_space.rpt 
printf "| %5s | %16s | %12s | %12s | %11s | \n"   'Sol#'    'Slice 
Logic'     'DSPs'     'Latency'     'Power(W)' >>design_space.rpt 
echo "+-------+------------------+--------------+--------------+---
----------+">>design_space.rpt 
 
 
i=1 
while [ $i -lt $combination_num ] 
do 
 #power Calculation 
 total_power="$(cat 
./solution_$i/reg_flow/_sds/p0/ipi/*.runs/impl_1/*_power_routed.rpt
|grep Total\ On-Chip\ Power -w |cut -d'|' -f 3  )" 
 pow[$i]="$(echo "($total_power)"|bc)" 
 
 #Area Calculation 
 slice_luts[$i]="$(cat 
./solution_$i/reg_flow/_sds/p0/ipi/*.runs/impl_1/*_power_routed.rpt
|grep Slice\ Logic -w |cut -d'|' -f 4  )" 
 DSP[$i]="$(cat 
./solution_$i/reg_flow/_sds/p0/ipi/*.runs/impl_1/*_utilization_plac
ed.rpt|grep DSPs -w |cut -d'|' -f 3  )" 
   
 #write in perfromance report file 
 printf "| %5s | %16s | %12s | %12s | %11s | \n" $i 
${slice_luts[$i]}  ${DSP[$i]}   ${latency[$i]}  
${pow[$i]}>>design_space.rpt 
  
 #write in perfromance report file 
 printf "| %5s | %16s | %12s | %12s | %11s | \n" $i 
${slice_luts[$i]}  ${DSP[$i]}   ${latency[$i]}  
${pow[$i]}>>design_space.rpt 
((i++)) 
done 
echo "+-------+------------------+--------------+--------------+---
----------+">>design_space.rpt 
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List C.2: cost_calc.sh 

#!/bin/bash 
#Author: Mahmoud M.Kishky 
 
touch cost.rpt 
echo "+-------+-------------------------+">>cost.rpt 
printf "| %5s | %23s |\n"   'Sol#'    'cost'>>cost.rpt 
echo "+-------+-------------------------+">>cost.rpt 
sol_count=$(cat valid_solution.rpt |wc -l) 
 
area_tar=$(cat cons.txt|grep area_target|cut -d ':' -f 2) 
pow_tar=$(cat cons.txt|grep power_target|cut -d ':' -f 2) 
lat_tar=$(cat cons.txt|grep latency_target|cut -d ':' -f 2) 
aw=$(cat cons.txt|grep area_weight|cut -d ':' -f 2) 
pw=$(cat cons.txt|grep power_weight|cut -d ':' -f 2) 
lw=$(cat cons.txt|grep latency_weight|cut -d ':' -f 2) 
 
i=0 
while [[ $i -lt $sol_count ]] 
do 
  
 sol_num=$(head -"$(echo "$i+1"|bc)" valid_solution.rpt|tail -
1 |cut -d ':' -f 1) 
 power="$(cat 
./validSol/solution_$sol_num/_sds/p0/ipi/*.runs/impl_1/*_power_rout
ed.rpt|grep Total\ On-Chip\ Power -w |cut -d'|' -f 3  )" 
 area="$(cat 
./validSol/solution_$sol_num/_sds/p0/ipi/*.runs/impl_1/*_power_rout
ed.rpt|grep Slice\ Logic -w |cut -d'|' -f 4  )" 
 latency="$(cat 
./perfEst/solution_$sol_num/_sds/est/console_out.log |grep 
Estimated\ hardware\ latency -w |cut -d'=' -f 2  )" 
 
 t1=$(echo "($area-$area_tar)/$area_tar" | bc -l) 
 t2=$(echo "($power-$pow_tar)/$pow_tar" | bc -l) 
 t3=$(echo "($latency-$lat_tar)/$lat_tar" | bc -l) 
 cost[$i]=$(echo "$aw*$t1+$pw*$t2+$lw*$t3" | bc -l) 
 #write in perfromance report file 
 printf "| %5s | %23s |\n" $sol_num ${cost[$i]} >>cost.rpt 
((i++)) 
done 
echo "+-------+-------------------------+">>cost.rpt 
 
#sort according to cost 
#print least cost solution/s 
 
IFS=$'\n' 
least_cost="$(echo "${cost[*]}" | sort -n |head -1)" 
echo "least cost solution/s:">>cost.rpt 
cat cost.rpt |grep $least_cost -w|cut -d'|' -f 2 |tr '\n' 
','>>cost.rpt 
echo $'\n'>>cost.rpt 
 



 

  أ
 

 ʸلʝʳال
 

 ) تʵلȘ الʛʽʲؔ مʧ الǽʙʴʱات  لʺʨʢرʧȄ مʲل هʚه الأنʤʺة.SoC( صʻاعة الأنʤʺة على رقاقة
 ʙʽعقʱال ʧات مǽʙʴʱرج الʙʱقاقةتʛفة الॽʣو ʧم ʙأكʱأجل ال ʧد اللازم مʨهʳʺو ال ʦॽʺʸʱفي و الॽʣʨال 

. Ǽالإضافة إلى ذلʥ, الʳʱانʝ الʸعʖ بʧʽ الأدوات الʢاقة قʨʽد مقایʝॽ الأداء مʲل و الʦॽʺʸʱ على
 اج إلى دورة Ȅʨʡلة و معقʙة مʧ أجل الʻʱفॽ.ʚʽدȑ إلى الإحʕʱ و الʺʨȞنات مʺا ی

 

 
ة  ʛؗرت شʨʡ)Xilinx (ʶʺة اʺالأداة ال)SDSoC( ة لʸʸʵʱؔاملة مʱة مʯʽوهي ب ,ʱ ʦॽʺʸ ةʺʤالأن

 اتبʧʽ الʺعالج و مʸفʨفة الʨʰاǼ مʱؔاملة ة على مʸʻةॽʻمʱؔاملة مʰمʸʻة على  )SoC( ةقعلى رقا
ة ॽʻمʰآلॽة جʙیʙة لʻʰاء الأنʤʺة على رقاقة على مʸʻة مʱؔاملة  الأداة تقʙم هʚه  .القابلة للʛʰمʳة
Ǽالإضافة إلى أنها تʙمج أدوات   القابلة للʛʰمʳةات الʺعالج و مʸفʨفة الʨʰاǼ مʧ تʨؔʱن   على مʸʻة

 .مʱعʙدة و هʚا ʳǽعل عʺلॽة الʦॽʺʸʱ أسʛع و أكʛʲ مʛونة

 
 

Ǽالإضافة إلى ذلʥ تʦ تSDSoC ( ʦॽʺʸ( ʺاةتʦ تʨضॽح Ȅʛʡقة عʺل الأداة الʺʶفي هʚه الأʛʡوحة , 
  )ʦॽʺʸ )SoC الʤʻام على رقافةʱل تʷغʽل الأداة لإدخال تقॽʻة جʙیʙة مʧ أجل مقʛʱحة  Ȅʛʡقة عʺل 

 .و الʺʶاحة الʢاقة مقایʝॽ الأداء مʲلوفȘ قʨʽد مॼʶقة على 
Ȅʛʡقة Șʽʰʢʱؗ مॼاشʛ على ) LTE(الأرسال و الإسॼʁʱال ل  شȞॼة الʽʳل الʛاǼع  تʦ تʦॽʺʸ  نʤام 

قʨʽد مقایʝॽ خॽʱار الʺʸʻة الʱي تʴقȘ أفʹل االʱي تʦ تॽʺʸʺها Ǽالإضافة إلى  العʺل الʙʳیʙة
 .الأداء
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د على متغیرات مقاییس الأداء من أجل تمثیل فعال ل متصمیم سیناریو ذاتي یعت
LTE PDSCH   باستخدام برنامجSDSoC 

 
 اعداد 
 

 عبدالحمید العدويمحمد أحمد 
 
 

 القاھرة جامعة - الھندسة كلیة إلى مقدمة رسالة
  درجة على الحصول متطلبات من كجزء

 العلومماجستیر 
 في

 و الاتصالات الكھربیة الإلكترونیات ھندسة
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