
Faculty of Postgraduate Studies and Scientific Research

German University in Cairo

Design and Implementation of Lightweight

Hardware Security Platform For IoT

Applications

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Electronics Engineering

By

Mohammed Morhaf Abdulkarim Jaela

Supervised by

Mohamed Abd El-Ghany

Assoc. Prof. Dr.

Electronics Department

German University in Cairo

Amr T. Abdel-Hamid

Assoc. Prof. Dr.

Networks Department

German University in Cairo

2018

Chapter 0 – i

Examination Committee

Supervisors:

Name: Mohamed Abd El-Ghany

Position Title: Assistant Professor

Faculty: Information Engineering and Technology

University: German University in Cairo, Egypt

Name: Amr Talaat Abdel-Hamid

Position Title: Assistant Professor

Faculty: Information Engineering and Technology

University: German University in Cairo, Egypt

National Examiners:

Name: Hassan Mostafa

Position Title: Assistant Professor

Faculty: Electronics and Communications Engineering

University: Cairo University, Egypt

International Examiners:

Name: Diana Goehringer

Position Title: Professor

Faculty: Computer Science

University: Technical University of Dresden, Germany

Chapter 0 – ii

Declaration

I, Mohammed Morhaf Abdulkarim Jaela declare that this thesis and the

work presented in it are my own and has been generated by me as the result of

my own original research.

Thesis Title: Design and Implementation of Lightweight Hardware Security Plat-

form For IoT Applications.

Thesis type: M.Sc.

I confirm that:

– This work was done wholly or mainly while in candidature for a research

degree at the German University in Cairo;

– Where anywhere I have consulted the published work of others, this is always

clearly attributed;

– Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work;

– I have acknowledged all main sources of help;

– Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself;

– Either none of this work has been published before submission, or parts of

this work have been published as: (please list references below)

– Books, journals and other teaching materials made available to me by the

German University in Cairo are for my own studies, and copying or using

them for other purposes is an infringement of copyright;

Signature: Mohammed Morhaf Abdulkarim Jaela

Chapter 0 – iii

Acknowledgments

”And say, ”O My Lord! increase me in knowledge” ” − [Ta Ha: 114]

First and foremost, I am thankful to Almighty Allah for bestowing me health,

persistence, and knowledge to complete this work. I implore Him to make my

knowledge and skills useful to mankind.

I would like to thank the German Federal Foreign Office (AA), the German

Academic Exchange Service (DAAD), Ulm University, and German University in

Cairo(GUC), for giving me the opportunity to hold a scholarship to study a two-

year Master Program in the Electronics Engineering.

I cannot thank my family enough for the unending affection, encouragement,

respect and all the exciting and gloomy things I have shared with them. I express

my deepest gratitude to my parents, brothers, sisters, and my fiancée for their

emotional and moral support throughout my academic career and also for their

tolerance, inspiration, and prayers.

I am deeply indebted and grateful to my supervisors Assoc. Prof. Dr. Mo-

hamed Abd El-Ghany and Assoc. Prof. Dr. Amr T. Abdel-Hamid for providing

me the much needed motivation and guidance in achieving this milestone.

I am very grateful to Assoc. Prof. Dr. Hassan Mostafa, head of the Opto-

Nano-Electronics (ONE) lab, Cairo University, for helping me in all academic and

non-academic matters.

Special thanks to my colleagues from the ONE lab: Khaled Essam, Shady

Soliman, Ahmed Kamal, who I worked with them on many issues.

I would like to express my gratitude to all my Egyptian and Syrian friends

who I met in Egypt, especially Haitham Senior, Zaher Rahhal, Mostafa El-Soda,

Ahmed Alloush, Mohamed Belal, Ahmed Badr.

Chapter 0 – iv

Abstract

Internet of Things (IoT) is a promising technology that is continuously spread-

ing around the world leading to many challenges facing cryptographic designers

who are trying to fulfill the security standards of IoT constrained devices. In this

thesis, a new design is proposed that adds a new dimension of security by using

the concept of frequency hopping to generate a pseudo-random pattern for switch-

ing between 5 lightweight cryptographic ciphers: AEGIS, ASCON, COLM, Deoxys

and OCB that are participating in the Competition for Authenticated Encryption,

Security, Applicability, and Robustness (CAESAR). The proposed design exploits

the advantages of Dynamic Partial Reconfiguration (DPR) technology in Field

Programmable Gate Arrays (FPGAs) to switch between the 5 ciphers using Inter-

nal Configuration Access Port controller (AXI-HWICAP) providing a decrease of

58% and 80% in area utilization and power consumption respectively . The design

is synthesized using Xilinx Vivado 2015.2 and mounted on Zynq evaluation board

(XC7Z020LG484-1).

Contents

Abstract iv

List of Tables viii

List of Figures x

Acronyms xi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Aim . 2
1.3 Thesis Organization . 3

2 Fundamentals 5
2.1 The Internet of Things: Context and Overview 5

2.1.1 IEEE definition . 5
2.1.2 ITU definition . 6

2.2 IoT Architecture . 6
2.3 The applications of IoT . 9

2.3.1 Agriculture Sector . 9
2.3.2 Automotive . 9
2.3.3 Public Transportation . 9
2.3.4 Energy Management . 10
2.3.5 Health Care . 10
2.3.6 Smart Homes . 10
2.3.7 Smart Buildings . 11
2.3.8 Smart Cities . 11

2.4 Security Challenges in IoT Nodes 12
2.5 Development Board . 13

2.5.1 Overview . 13
2.5.2 ZC702 Board Features . 14

2.6 System-on-Chip with Zynq . 15
2.6.1 SoC Design Flow . 17
2.6.2 Processing System . 18
2.6.3 Application Processing Unit (APU) 19
2.6.4 Programmable Logic . 19
2.6.5 Processing System - Programmable Logic Interfaces 22

v

Chapter 0 – CONTENTS vi

3 Cryptography and Previous Work 25
3.1 Introduction to Cryptography . 25

3.1.1 Cryptographic Goals . 25
3.1.2 Secret-key cryptography Types 28

3.2 Authenticated Encryption . 29
3.2.1 Advantages of Authenticated Encryption 30
3.2.2 AE(AD) Constructions . 31

3.3 CAESAR Competition . 33
3.3.1 Introduction . 33
3.3.2 Functional Requirements of the CAESAR Contest 33
3.3.3 AEGIS . 34
3.3.4 ASCON . 35
3.3.5 COLM . 36
3.3.6 Deoxys . 37
3.3.7 OCB . 39
3.3.8 The GMU Hardware API for the CAESAR 39

3.4 Previous Work . 42
3.4.1 Limitations in the Previous work 43

4 Methodology and Proposed Design 44
4.1 Algorithm Hopping . 44
4.2 Dynamic Partial Reconfiguration 47

4.2.1 FPGA Configuration . 47
4.2.2 DPR Technology . 48
4.2.3 DPR Benefits . 49
4.2.4 DPR Terminology . 50
4.2.5 Reconfigurable Elements . 52
4.2.6 Managing Dynamic Device Reconfiguration 53
4.2.7 DPR controllers . 54
4.2.8 Xilinx AXI-HWICAP controller 55

4.3 Proposed design . 57
4.3.1 Design modules . 57
4.3.2 Design flow . 63

5 System Implementation and Results 65
5.1 Requirements . 65
5.2 DPR design flow . 66
5.3 System Block Design . 70
5.4 Implementation Results . 70

5.4.1 Resource Utilization . 70
5.4.2 Power consumption . 72
5.4.3 Reconfiguration time . 75

5.5 Testing and Verification . 75

6 Conclusion and Discussion 80
6.1 Conclusion . 80
6.2 Discussion from Utilization Perspective 80
6.3 Discussion from Power Perspective 81
6.4 Brute-Force Attack . 84

Chapter 0 – CONTENTS vii

6.5 Future Work . 85

Bibliography 86

List of Tables

3.1 Secret-key cryptography Types . 29

4.1 Configuration Speed for the Different Interfaces on Xilinx FPGAs [1]. 53
4.2 Patterns Which generated from LFSR. 60

5.1 Resources utilization of the dynamic configurations 72
5.2 Resource utilization of the static modules 73
5.3 Dynamic power consumption of the 5 configurations 73

6.1 Comparison between the proposed design and [2] 82
6.2 Comparison between the proposed design and [3] 83
6.3 Energy per bit for low-power wireless technologies 83
6.4 NO. OF ALTERNATION for Different Key Sizes 84

viii

List of Figures

1.1 Leading Industry Forecasts Anticipate Significant IoT Growth [4]. . 2
1.2 Internet of Things Devices and Sensors. 3

2.1 three-tier architecture of Internet of Things (IoT) 6
2.2 International Telecommunicaation Union (ITU) definition of IoT 7
2.3 Simplified Architecture of IoT [5] . 7
2.4 Relatively general architecture of IoT nodes with detailed sub-systems [5] 8
2.5 The Internet of Things application ranking [6] 12
2.6 Global spending on IoT security [7] 13
2.7 ZC702 Evaluation Kit [8]. 14
2.8 Feature Callout or the ZC702 Board [8] 15
2.9 comparison of the system-on-a-board (top) and the system-on-chip (bot-

tom) [9] . 16
2.10 A simplified model of the Zynq architecture [9] 17
2.11 A basic model of the design flow for Zynq SoC [9] 18
2.12 Locations of hard (ARM Cortex-A9) and soft (MicroBlaze) processors

on a Zynq device . 19
2.13 The Zynq Processing System [9] . 20
2.14 Block diagram of the application processing unit (simplified) [9] 20
2.15 The logic fabric and its constituent elements [9] 21
2.16 Composition of a Configurable Logic Block (CLB) [9] 22
2.17 The structure of Advanced eXtensible Interface (AXI) interconnects and

interfaces connecting the Processing System (PS) and Programming

Logic (PL) [10] . 24

3.1 Security requirements in IoT . 25
3.2 Block Diagram of a Confidentiality Process. 26
3.3 Block Diagram of a One-Way Hash Function. 27
3.4 Data Integrity Check. 27
3.5 Block Diagram for a Message Authentication Code (MAC) Function. . . 28
3.6 Block Diagram for Authenticated Encryption with Associated Data. . . 30
3.7 Encryption Flow for Authenticated Encryption with Associated Data

(AEAD) algorithm. 31
3.8 Decryption Flow for AEAD algorithm. 31
3.9 Encrypt-then-MAC(EtM). 32
3.10 MAC-then-Encrypt(MtE). 32
3.11 Encrypt-and-MAC (E&M). 33

ix

Chapter 0 – LIST OF FIGURES x

3.12 The state update function of AEGIS-128. R indicates the AES
encryption round function without XORing with the round key and
w is a temporary 16-byte word [34] 35

3.13 ASCON’s mode of operation [35] 36
3.14 COLM authenticated encryption for complete message block. EK .

denotes the block cipher AES-128 [37] 37
3.15 Handling of the associated data for the nonce-misuse resisting mode:

in the case where the associated data is a multiple of the block size,
no padding is needed [38]. 38

3.16 Message processing in the authentication part of the nonce-misuse
resisting mode: in the case where the message-length is a multiple
of the block size, no padding is needed [38]. 38

3.17 Message processing for the encryption part of the nonce-misuse re-
sisting mode [38]. 38

3.18 Illustration of OCB [39] . 40
3.19 Top-level block diagram of a lightweight architecture of AEAD [11] . . . 41

4.1 Proposed Algorithm Hopping technique 45
4.2 5-bit LSFR using XNOR gate . 46
4.3 Two Distinct Layers of FPGA [12] 47
4.4 Classification of FPGAs by their configuration capabilities [12] . . 48
4.5 Basic structure of partial reconfiguration design 48
4.6 Modifying Functionality and Reducing Size using Partial Reconfig-

uration [13] . 50
4.7 Two Methods of Delivering a Partial Bit File [13] 54
4.8 (a) Resource Utilization, (b) Avg. Reconfiguration Throughput

and (c) Power Consumption Comparisons between Different PR
Controllers [14]. 55

4.9 Xilinx ICAP Primitive. 56
4.10 Top Level Block Diagram for the AXI HWICAP Core [15] 56
4.11 Block Diagram of the Proposed Design (PL Side) 57
4.12 AEAD interface [11] . 58
4.13 Inputs and outputs of AEAD [11] 59
4.14 3 bits LFSR with XOR feedback path 59
4.15 Circuit for loading seed values . 61
4.16 Clock Domain Crossing [16] . 61
4.17 Full Block Diagram of the Proposed Design (PL + PS) 62
4.18 Hardware design of the encryption module 64

5.1 Design Check Point (DCP) files for all Reconfigurable Module (RM)s 67
5.2 DCP file for the static module . 67
5.3 Black box in the static design . 68
5.4 Load one RM for the RP . 68
5.5 Create floor-plan which defines the RP region (a) 69
5.6 Create floor-plan which defines the RP region (b) 70
5.7 Generated Bit Files . 71
5.8 DPR Design Flow . 71
5.9 System Block Design . 72
5.10 Encryption Module . 72

Chapter 0 – LIST OF FIGURES xi

5.11 The power consumption of the RMs 74
5.12 AEGIS IP in Block Design level 76
5.13 The output of the Encryption Process using AEGIS Algorithm . . 77
5.14 The output of the Encryption Module (1) 78
5.15 The output of the Encryption Module (2) 78
5.16 The output of the Decryption Module 79

6.1 Comparison between DPR and non-DPR implementation. The figure

shows scale drawings of the 5 algorithms utilization (LUT only) 81
6.2 Comparison between DPR and non-DPR implementation for the

proposed design from the point of view of all resources used. 81
6.3 Comparison between DPR and non-DPR implementation of the

proposed design from the point of view of power consumption . . . 82

Acronyms

AD Associated Data. 34

AE Authenticated Encryption. 27–29

AEAD Authenticated Encryption with Associated Data. vi, 2, 28, 29, 31, 33–35,
49, 58, 59, 68

AP SoC All Programmable System on a Chip. 12

API Application Program Interface. 34

APU Application Processing Unit. 17, 22

AXI Advanced eXtensible Interface. vi, 14, 21, 22, 48, 58, 59, 64

CAESAR Competition for Authenticated Encryption: Security, Applicability,
and Robustness. 31, 34, 58, 59, 68

CLB Configurable Logic Blocks. 19, 20

DCP Design Check Point. vii, 59

DO Data Outputs. 69

DPR Dynamic Partial Reconfiguration. 55, 59, 70, 73, 74

FIFO First-In, First-Out. 34, 35

FPGA Field Programmable Gate Array. 59–62, 64, 65, 68, 73

HWICAP Hardware ICAP. 47, 48

ICAP Internal Configuration Access Port. 46–48

IEEE Institute of Electrical and Electronics Engineers. 4

IoT Internet of Things. vi, 1–11, 23, 24, 48

IP Intellectual Property. 47

ITU International Telecommunicaation Union. vi, 5, 6

LFSR Linear Feedback Shift Register. 49, 51, 52, 54, 55, 58, 65

xii

Chapter 0 – Acronyms xiii

MAC Message Authentication Code. vi, 25, 26, 29, 30

PDI Puplic Data Inputs. 51, 68–70

PL Programming Logic. vi, 17, 19–22

PS Processing System. vi, 21, 22

RFID Radio Frequency Identification. 1

RM Reconfigurable Module. vii, 44, 59, 60, 62, 64, 67

RP Reconfigurable Partition. 44

SDI Secret Data Inputs. 51, 69, 70

SDK Software Development Kit. 69, 70

SoC System on Chip. 13–15

ZC702 Xilinx evaluation and development board. 12, 13, 70

Chapter 1

Introduction

1.1 Motivation

Internet of Things (IoT) is a network of devices connected to each other in a

wired or non-wired way where each device has a unique identity. These devices

process data and send it to each other without human intervention [17] .The term

IoT usually refers to resource-limited objects such as sensors, Radio Frequency

Identification (RFID) tags or any other contactable device that has the ability

to compute data while connected to the Internet [18]. Leading industry forecasts

of IoT growth demonstrate a consensus that the number of connected devices is

poised to grow rapidly, with a doubling or more between 2016 and 2020 as shown

in figure 1.1

However, concerns about privacy and security are increasing, especially given

that IoT takes considerable place in the contexts of governments and organizations,

as well as infrastructure of public institutions. To address this issue, lightweight

cryptography is becoming a considerable approach to make the connection and

transfer of data between constrained devices more secure [19].

Lightweight cryptography is a cryptographic algorithm or protocol tailored

for implementation in constrained environments such as RFID tags, sensors, con-

tactless smart cards, and health-care devices. One of the most effective ways of

exploiting lightweight cryptographic algorithms is by using authenticated encryp-

tion schemes. Authenticated encryption schemes are a class of symmetric key

cryptographic algorithms that ensure that both of confidentiality and authenticity

1

Chapter 1 – Introduction 2

Figure 1.1: Leading Industry Forecasts Anticipate Significant IoT Growth [4].

of data are provided at the same time [20]. Confidentiality includes protecting

data from being exposed without permission, while authenticity comprises ensur-

ing both integrity of data and verification of its source. Sometimes data such

as packet headers are required for handling by some applications, which requests

authentication without the need for encryption. Such schemes are usually defined

as Authenticated Encryption with Associated Data (AEAD) which is embraced in

this article.

1.2 Thesis Aim

AEAD scheme provides one level of data security which is the symmetric key.

However, nothing beyond this level has ever been added to tighten the security of

data against attacks due to limited resources used by IoT devices. In this thesis,

a new design is proposed to introduce a second dimension of security using the

concept of frequency hopping by switching between 5 lightweight cryptographic

algorithms that are currently under review in the ongoing CAESAR competition.

The switching is performed using dynamic partial reconfiguration (DPR) tech-

nology to maintain a reasonable power consumption and area utilization, taking

into consideration the limited resources of IoT devices while adding the second

Chapter 1 – Introduction 3

Figure 1.2: Internet of Things Devices and Sensors.

dimension of security based on the pseudo-random pattern for switching between

different algorithms.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

The second chapter discusses the fundamentals this project is based on which

covers the board used and the important building blocks of the Zynq device. Also

a general overview about the IoT in general as well as thes security challenges in

IoT nodes and the application of IoT.

The third chapter introduces the goals of the cryptography. It also discuss the

AEAD scheme and the types of the cryptography. Also a general overview about

the CAESAR competition. In addition, some related work is discussed.

In Chapter 4, we propose a lightweight hardware security platform for IoT

applications based on Algorithm hopping and DPR technique. The chapter starts

with presenting of the algorithm hopping technique, then the DPR technology and

the controller that is used. After that, the flow of the proposed design.

The fifth chapter discuss the requirements of this project, the design steps and

the full implementation of the proposed design. It presents also the implementa-

Chapter 1 – Introduction 4

tion results and how the system was being tested.

Finally, the whole work done in this project is concluded in the chapter 6 and

after that some discussions about the results that I reached after finishing the

project. In addition, suggests future work related to the project.

Chapter 2

Fundamentals

2.1 The Internet of Things: Context and Overview

The concept of the ”Internet of Things” appeared for the first time by Kevin

Ashton as the title of his presentation at Procter & Gamble (P&G) in 1999 [21].He

described the IoT as: ”The Internet Of Things IS About Empowering Computers,

So They Can See, Hear, And Smell The World For Themselves”.So far, there are

many definitions of IoT. In this thesis, however, the definition of the IoT was

considered from the IEEE and ITU.

2.1.1 IEEE definition

Institute of Electrical and Electronics Engineers (IEEE) is a global, professional

engineering organization whose interest is to encourage technological moderniza-

tion and greatness for the assistance of humanity. In its appropriate report on

Internet of Things expressed in Mar. 2014 [22], IEEE express the concept of ”In-

ternet of Things” as: ”A network of items - each embedded with sensors - which

are connected to the Internet.” [17]. This announcement is written as a depiction

of the ”Internet of Things,” not as an official definition of the concept. But we can

note that the description addresses just the physical aspect of IoT. One project

that straight relates to IoT is IEEE P2413. IEEE P2413 is currently considering

the architecture of IoT as three-tiered, with the layers explained in Fig. 2.1.

5

Chapter 2 – Fundamentals 6

Figure 2.1: three-tier architecture of IoT

2.1.2 ITU definition

The ITU is the United Nations specialized agency for information and communi-

cation technologies (ICTs).In its 2005 IoT report, ITU terms the IoT as a network

that is: ”Available anywhere, anytime, by anything and anyone.”

2.2 IoT Architecture

As shown in the simplified architecture in Fig. 2.3,the IoT is structured into three

tiers of devices [5]. At the bottom, IoT nodes perform sensing and interact with

the physical world. To assure scalability and ubiquitous network access, gateways

and concentrators gather, protect (under users control) and route data from sev-

eral and physically proximal IoT nodes, and route it to servers. The latter perform

data aggregation and knowledge extraction, and deliver physically enhanced cloud

services. Some additional intermediate levels of aggregation might be needed, ac-

cording to the extent of data produced, the zone covered by a sub-network, and

the density of IoT nodes, among the others.

An almost general architecture of IoT nodes is illustrate in Fig. 2.4, which specifics

its main sub-systems, including processing and security assurance , power conver-

sion and delivery, analog interfaces, radios, energy sources, system integration and

Chapter 2 – Fundamentals 7

Figure 2.2: ITU definition of IoT

Figure 2.3: Simplified Architecture of IoT [5]

assembly [5]. As in Fig. 2.4, sensors are connected to analog interfaces that in-

clude an amplifier with programmable gain (and sometimes analog filters), and

are multiplexed to share a single ADC for all analog channels. Analog voltages

are generated by a DAC for actuation. Energy interfaces include an energy stor-

age part (e.g., battery, super capacitor), and energy harvesters for energy refilling.

Relatively general architecture of IoT nodes with detailed sub-systems

To adapt the strategy of power management to the real energy availability, there

are circuits included to monitor the level of battery. In Fig. 2.4, memories are

a significant element of IoT node processing. RAM is needed to store the data

Chapter 2 – Fundamentals 8

Figure 2.4: Relatively general architecture of IoT nodes with detailed sub-systems [5]

in sleep mode, as well as for the microcontroller/microprocessor execution. The

Non-Volatile Memory (NVM) used to store the instructions, settings and also data

that needs to be holden for a long period, thus reduce the power consumption as-

sociated with retention.

The function of sensors is to collect data from their surrounding environment.

It can be classified in several ways [23], for example:

• Location: GPS, GLONASS, Galileo, Wi-Fi, Blue-tooth, Ultra-Wide-Band

(UWB).

• Biometric: Fingerprint, Iris, Face.

• Acoustic: Microphone.

• Environmental: Temperature, Humidity, Pressure.

• Motion: Accelerometer, Gyroscope.

Chapter 2 – Fundamentals 9

2.3 The applications of IoT

The IoT is a highly fragmented application scenario [24], and cover an extensive

variety of applications , some of which are brief in the following:

2.3.1 Agriculture Sector

In the agriculture sector, the IoT infrastructure can monitor the quality, the actual

usage and the availability of resources, for better and predictive management (e.g.,

irrigation) and storage (e.g., avoid waste of feed and fertilizing) [5]. Monitoring

the environmental conditions permits to support the growth of animals and plants

(e.g., aquaculture), optimally time the next course of action, and eventually ensure

quality (e.g., wine) and boost the efficiency in the production process.

2.3.2 Automotive

In automotive, the IoT enables the monitoring of the state of a vehicle down to

its critical components, from initial shipping to usage, to assess their correct uti-

lization (e.g., detecting bumps, vibration) and repair (e.g., opening of containers,

wearing parts) [5]. Depending on real usage, predictive repair can be executed to

lengthen the vehicle lifetime, and lower the upkeep. Such capabilities enabled by

the IoT are also very useful in fleet management and car sharing services. Also,

distributed sensing and global sense making enables traffic control through distin-

guish and personalized way pricing to foster virtuous behavior and prioritize tasks

for commercial (e.g., carpooling with various riders sharing cost) and personal

vehicles (e.g., rapid transmission for critical goods), through virtual/dynamic city

area borders.

2.3.3 Public Transportation

In public transportation, the occupancy and utilization can be monitored to assure

an adequate quality of service, detect potential danger (e.g., potential collision

between vehicles and pedestrians), and predict short term demand based on crowd

monitoring in strategic locations [5]. On the road side, excessive congestion and

pollution can be managed with real-time demand response schemes where the

road pricing is dynamically adjusted through real-time observations and utilization

Chapter 2 – Fundamentals 10

prediction, based on previous history and real-time data in strategic locations.

Also, the transportation of serious merchandise and the circulation of slow (or

frequently stationary) cars can be optimally coordinated with the normal traffic

to reduce their negative effect.

2.3.4 Energy Management

Energy management at different scales can be made more effective by the IoT [24].

At the city scale, the smart grid offers sundry chances to leverage the sensing and

sensemaking capabilities of the IoT to optimize the energy usage across many users,

a better coordinated usage and planning of alternative energy sources, ultimately

reducing the overall energy and the currently large gap between the peak and the

average consumption.

2.3.5 Health Care

Health care is other critical application field in which the IoT pledges to mainly

contribute to [24]. As few examples, the miniaturization and big lifetime of IoT

nodes provides an unobtrusive mean to permanently monitor vital marks and

other regarding parameters (e.g., behavioral) and improve deeper realization of

the patients health evolution. In addition, the availability of big data from a big

number of patients offers an unprecedented chance to explore linkages, build mod-

els and tools for predictive diagnosis, early medication and make drug discovery

more efficient and effective. Similar considerations hold for the elderly and the

handicapped as continual non-obtrusive observation allows for better and highly

responsive/predictive care, while preserving individuals independency and offload-

ing hospitals. Remote supervision also enhances the ability to share professionals

across a larger number of individuals and patients, thus driving the care cost down.

2.3.6 Smart Homes

Through the IoT, smart homes can manage utilities more efficiently by control-

ling individual appliances based on actual utilization and needs, and purchasing

electricity when expenditure is lowest during the day in demand-response energy

pricing schemes [5]. Unprecedented levels of security (e.g., environment access

control) are achievable thanks to the pervasiveness of IoT nodes and sense making

Chapter 2 – Fundamentals 11

capability. resident recognition permits to adjust lighting, sound, air condition-

ing/ heating based on individual preferences. This can be done in a predictive

way, so that inhabitants do not need to push any button, leveraging the fine-grain

knowing, of inhabitants traditions and the ability of the cloud to generalize and

extract trends and predictions.

2.3.7 Smart Buildings

Smart buildings can use the IoT to be more adaptive to the real requirement and

needs of the inhabitants, while guaranteeing the most astounding security and

comfort standards [5]. Indeed, air quality and thermal/acoustic/visual comfort

can be monitored and controlled for the first time with a granularity that goes

down to the single room, with clear features in terms of comfort assurance and

energy expenditure. Beyond normal building operation, the real-time capability of

the IoT enables the ability to respond to critical events (e.g., fire) quickly, reducing

the human and physical losses in case of emergencies.

2.3.8 Smart Cities

Through the IoT, in the smart cities, the resources management can be more ef-

ficient, be made much more flexible to temporary malfunctions and calamity, and

promote virtuous behavior [6]. intelligent and weather-altering lighting, water/gas

seep monitoring, intelligent parking with dynamic pricing and zone distribution,

no physical borders and automated parking tips are simply a few ideas of how to

handling the IoT to solve todays urban challenges. Ubiquitous vision can cement

an unmatched level of safety and protection, detecting probable risk and provide

critical information on crowd behavior and citizens needs (e.g., for adaptive and

predictive carriage administration,, real-time digital signboard guidance to deny

direct risk). Similarly, distributed audition permits to improve situational con-

sciousness, build real-time noise civil maps to relieve noise pollution at crucial

times, and localize noise events for security assurance. Intelligent irrigation of

green areas and gardens is another sub-area where the IoT has possibility to make

an effect,. Smart tourism promises to give tourists the ability to have an imme-

diate understanding of the city, such as availability, crowdedness or quietness of

different places to receive dynamic recommendations on tours that adapt to their

Chapter 2 – Fundamentals 12

disposition, other than already available factual information on places. Waste

management can be made more efficient and priced fairly as discussed before,

while detecting potentially dangerous and inappropriate waste that would need to

be disposed with different procedure (again, encouraging virtuous behavior).

Fig. 2.5 illustrates what people search for on Google, what people broadcast about

on Twitter, and what people write around on LinkedIn [6].

Figure 2.5: The Internet of Things application ranking [6]

2.4 Security Challenges in IoT Nodes

As shown in figure 2.6, global spending on IoT security is currently estimated at

$703M for 2017 and forecasted to grow at a CAGR of 44% over the six-year period

to become a $4.4B market opportunity by 2022 (Forecasts are based on the IoT

security related revenue of leading technology companies in the field, across 12

industries and 21 technology areas).

However, Security represents a very broad challenge in the IoT, due to several

factors [5] :

• Classic security algorithms such as publickey cryptography are not workable

in most of IoT nodes, due to their stringent power and cost requirements.

• The vast number of IoT entities and the resulting scale of the IoT network

make an unprecedented extremely large number of backdoors that can be

exploited by enemies to perform physical and network attacks.

Chapter 2 – Fundamentals 13

• The always-linked characteristic of IoT entities makes them rather vulnerable

to eavesdropping and software attacks, data theft and device cloning [25]

• In our view, the personal information saved in the cloud will be likely shared

across several service providers, which will deliver their service through cloud

apps that will run on a data center-scale software platform. The entity will

likely give access to the service providers as we do today when we install apps

on a smartphone. This data sharing with various service providers creates

new security challenges, which have to be solved mostly on the server side.

The above security challenges are clearly perceived to be critical by users, and

more details about cryptography will be in Chapter 3.

Figure 2.6: Global spending on IoT security [7]

2.5 Development Board

2.5.1 Overview

The board on which the proposed design was implemented is the Xilinx evalua-

tion and development board (ZC702) board Fig. 2.7. The ZC702 is an evaluation

Chapter 2 – Fundamentals 14

and development board depending on an XC7Z020-CLG484-1 Zynq-7000 All Pro-

grammable SoC (AP SoC) device. The Zynq-7000 All Programmable System on a

Chip (AP SoC) made up of two parts, the Programming Logic (PL) which consists

of 85,000 Series-7 cells, and the Processing System (PS) which is a dual Cortex-A9

Arm processor [8].

Figure 2.7: ZC702 Evaluation Kit [8].

2.5.2 ZC702 Board Features

The ZC702 board simplifies the design of embedded systems as it consist of numer-

ous of the needed building elements of an embedded system [8]. Fig. 2.8 illustrates

the important peripheral of the board. However, Some features of the board are

listed here:

• Zynq XC7Z020-1CLG484C device.

• 1 GB DDR3 component memory (four 256 Mb x 8 devices).

• 128 Mb Quad SPI flash memory

• USB 2.0 ULPI (UTMI+ low pin interface) transceiver

• USB JTAG interface using a Digilent module.

Chapter 2 – Fundamentals 15

• Clock sources

• Status LEDs

• User I/O

Figure 2.8: Feature Callout or the ZC702 Board [8]

2.6 System-on-Chip with Zynq

As is known, the term of ”SoC” has existed for some time, and its implicit mean-

ing is that one silicon chip can be used to perform all functions of the system,

rather than using several different physical chips.In the past, the term ”System on

Chip (SoC)” usually refers to an Application Specific Integrated Circuit (ASIC),

which can contain digital, analogue and radio frequency elements, together with

mixed signal blocks for implementing analogue-to-digital and digital-to-analogue

converters (ADCs and DACs).Let’s focus a little on the digital side, the SoC can

contain all aspects of the digital system: processing, high-speed logic, interfacing,

memory, and so on. All these functions are usually achieved using separate devices

Chapter 2 – Fundamentals 16

and then combined into a system at the Printed Circuit Board (PCB) level. The

SoC solution is lower cost, enables faster and more secure data transfers between

the various system elements, has higher overall system speed, lower power con-

sumption, smaller physical size, and better reliability [9]. Fig. 2.9 illustrates a

simple comparison of the system-on-a-board and the system-on-chip.

Figure 2.9: comparison of the system-on-a-board (top) and the system-on-chip (bottom)
[9]

Because of the limited specification of the ASIC SoCs, it is not compatible

with a large number of applications, especially when marketing, flexibility and

upgrade-ability are required. Therefore, there was an urgent need for a more

flexible solution, and therefore the SoC was encouraged to use FPGA.

Now, Zynq is the new generation of System-on-Chip (SoC) which was marketed

by the Xilinx as an All-Programmable SoC (APSoC) device. Fig. 2.10 introduces

a high level model of the architecture of Zynq. We also note that it consists of two

parts, the first is a processing unit with fixed physical properties is not changeable

Chapter 2 – Fundamentals 17

and is called a Processing System (PS) which consists of dual-core ARM Cortex-A9

processor, the second part is a Programmable Logic (PL) that is equivalent to an

FPGA [9]. An industry standard Advanced Extensible Interface (AXI) is used to

link between the two parts. Xilinx corporation produced many boards supporting

the Zynq such as : ZYBO, MicroZed, ZedBoard, ZC702, ZC706, Zynq MMP, Zynq

Mini-ITX. For more details visit Xilinx website https://www.xilinx.com/.

Figure 2.10: A simplified model of the Zynq architecture [9]

2.6.1 SoC Design Flow

Fig. 2.11 illustrates the simple design flow for SoC development. Normally, in any

project, the first step is to determine the behavior of the system and the functions

to be performed and this is the starting point of the design flow. And as we men-

tioned that the Zynq has two parts, ARM processor for software implementation

and PL for hardware implementation, therefore, we partition the requirements to

be implemented into two parts, a section to be executed using the PS and the

other using the PL, where the best performance is obtained. After achieving the

partition of the system, the process of developing hardware and software is done in

parallel. Finally, the software and hardware parts are integrated and the system

is fully tested [9].

https://www.xilinx.com/

Chapter 2 – Fundamentals 18

Figure 2.11: A basic model of the design flow for Zynq SoC [9]

2.6.2 Processing System

All Zynq devices have the same basic architecture, and all have a dual-core hard

processor, which is positioned as a dedicated and optimized silicon component on

the device.For comparison, the alternative to a hard processor is a soft processor

like MicroBlaze from Xilinx , which is implemented by integrating elements of the

PL [26]. In general, the advantage of soft processors is that the cloned number of

it is controllable on the same PL. On the other hand, hard processors have higher

performance as in Zynq. Fig. 2.12 shows the siting of the hard processor (ARM)

and soft processor (MicroBlaze) on the Zynq device; the ARM as a dedicated

resource, and the MicroBlaze located in the logic fabric.

Importantly, the Zynq processing system involve not solely the ARM proces-

sor, but a group of related processing resources forming an Application Processing

Unit (APU), and additional peripheral interfaces, cache memory, memory inter-

faces, interconnect, and clock source circuitry [27].

Fig. 2.13 shows a block diagram of the architecture of the PS, where the Applica-

tion Processing Unit (APU) is highlighted

Chapter 2 – Fundamentals 19

Figure 2.12: Locations of hard (ARM Cortex-A9) and soft (MicroBlaze) processors on
a Zynq device

2.6.3 Application Processing Unit (APU)

The Fig. 2.14 below shows a simplified block diagram of the APU. APU is mainly

consist of two ARM processing cores, each with related computational units: a

NEON Media Processing Engine (MPE) and Floating Point Unit (FPU); a Mem-

ory Management Unit (MMU); and a Level 1 cache memory (in two sections for

instructions and data). The APU also consist of a Level 2 cache memory, and a

further On Chip Memory (OCM). The Snoop Control Unit (SCU) is considered

as a bridge between the cores and the Level 2 cache and OCM memories [9].

From a programming perspective, backing for ARM instructions is achieved by

the Xilinx Software Development Kit (SDK) which contains all needed elements

to improve software for deployment on the ARM core.

2.6.4 Programmable Logic

The Fig. 2.15 shows the Programmable Logic which is the second essential part of

the Zynq architecture. The PL basically consist of general purpose FPGA logic

construction, which is constituted of slices and Configurable Logic Blocks (CLBs),

and for interfacing there are also Input/Output Blocks (IOBs) [9]. Each of the

labelled features in figure will be explained.

• Configurable Logic Block (CLB): Configurable Logic Block (CLB) CLBs

are tiny, uniform sets of logic elements which are placed out in a two-

dimensional array on the PL, and linked to other identical resources through

programmable interconnects. Each Configurable Logic Blocks (CLB) is po-

sitioned next to a switch matrix and contains two logic slices, as shown in

Chapter 2 – Fundamentals 20

Figure 2.13: The Zynq Processing System [9]

Figure 2.14: Block diagram of the application processing unit (simplified) [9]

Chapter 2 – Fundamentals 21

Figure 2.15: The logic fabric and its constituent elements [9]

Fig. 2.16.

• Slice: A sub-unit inside the CLB, which consists resources for implementing

combinatorial and sequential logic circuits. As indicated in Fig. 2.16, Zynq

slices are made up of 4 Lookup Tables, 8 Flip-Flops, and other logic.

• Lookup Table (LUT): A flexible resource capable of implementing (i) a

logic function of up to six inputs; (ii) a small Read Only Memory (ROM);

(iii) a small Random Access Memory (RAM); or (iv) a shift register. LUTs

can be joined together to achieve bigger logic functions, memories, or shift

registers, as wanted.

• Flip-flop (FF): A sequential circuit component fulfillment a 1-bit register,

with reset functionality. Unit of the FFs can optionally be hired to perform

a latch.

• Switch Matrix: A switch matrix take a seat after each CLB, and gives

a flexible routing means for making links (i) between component within a

CLB; and (ii) from one CLB to other resources on the PL.

• Carry logic: Arithmetic circuits require intermediate signals to be propa-

gated between adjacent slices, and this is achieved via carry logic. The carry

Chapter 2 – Fundamentals 22

logic comprises a chain of routes and multiplexers to link slices in a vertical

column.

• Input / Output Blocks (IOBs): IOBs are resources which achieve con-

necting between the PL logic resources, and the physical device pads used to

link to outer circuitry. Each IOB can handle a 1-bit input or output signal.

IOBs are normally placed around the perimeter of the device.

Figure 2.16: Composition of a Configurable Logic Block (CLB) [9]

2.6.5 Processing System - Programmable Logic Interfaces

The bridge between the two parts (PS,PL) is an Advanced eXtensible Interface

(AXI) protocol which is part of the ARM Advanced Microcontroller Bus Architec-

ture (AMBA) specification.The current version of AXI is AXI4. There are three

types of AXI4 [28] and they will be listed in the following:

• AXI4-full: for requirements of high-performance memory-mapped.

• AXI4-Lite: simple, memory-mapped and used only for low throughput of

data

• AXI4-Stream: for high-speed streaming data.

The term ”memory mapped” is used in the above descriptions, and it is useful to

briefly confirm its meaning. If a protocol is memory mapped, an address is specified

Chapter 2 – Fundamentals 23

within the transaction issued by the master (read or write), which corresponds to

an address in the system memory space.In the case of AXI4-Lite, which backs one

data transfer per transaction, data is then written to, or read from, the specified

address.

AXI Interconnects and Interfaces

The primary interface between the PS and PL is via a set of nine AXI interfaces,

each of which is composed of multiple channels. These make dedicated connections

between the PL, and interconnects within the PS [9], as indicated in Fig. 2.17. It

is useful to briefly define these two important terms:

• Interconnect: An interconnect is effectively a switch which manages and

points traffic between attached AXI interfaces. There are many interconnects

inside the PS, some which are imediately linked to the PL (as in Fig. 2.17.),

and others which are for internal hire only. The connections between these

interconnects are also created using AXI interfaces.

• Interface: A point-to-point link for crossing data, addresses, and hand-

shaking signals among initiator and slave clients inside the system.

Note from the Fig. 2.17 that all of the interfaces are specifically linked to AXI

interconnects existing inside the PS, with the exception of the ACP interface, that

is linked directly to the Snoop Control Unit within the APU. Internally to the

processing system, AXI interfaces are used within both the ARM APU (making

connections between the processing cores and SCU, cache memory and OCM),

and usually to link the different interconnects inside the PS. These connections

are in addition to those at the PS -PL borders.Furthermore, the three interconnects

illustrated in Fig. 2.17 (the Memory, Master and Slave Interconnects) are internally

linked to the Central Interconnect, which is not shown here. Full specifics of PS

internal connections, including a block diagram showing all AXI interconnects and

interfaces, are available in [10].

Chapter 2 – Fundamentals 24

Figure 2.17: The structure of AXI interconnects and interfaces connecting the PS and
PL [10]

Chapter 3

Cryptography and Previous Work

3.1 Introduction to Cryptography

Cryptography is the study and application of mechanisms that conceal the true

meaning of data by converting it into formats which are non-readable for human

and achieving the security goals [29].

3.1.1 Cryptographic Goals

Fig. 3.1 illustrates the security requirements of a simple IoT framework, in which

the essential security requirements are classified from many aspects [29]:

Figure 3.1: Security requirements in IoT .

25

Chapter 3 – Cryptography and Previous Work 26

• Confidentiality: ensures that, the exchanged data during a communication

are kept confidential. Confidentiality is generally ensured through encryp-

tion [29].The data to be send is encrypted using a secret key and therefore

encrypted text (cipher-text) is sent instead of the plain-text as shown in

Fig. 3.2.

Figure 3.2: Block Diagram of a Confidentiality Process.

Ensuring data confidentiality is critical for IoT applications. Indeed, any

failure would seriously threaten parties’s privacy. Therefore, a vast deploy-

ment of IoT applications might be blocked. To achieve data confidentiality,

cryptographic algorithms are commonly used to encrypt data. Doing so,

even if the transferred data is attacked, the adversary will not be able to

access its content.

• Integrity: integrity ensures that exchanged data between two entities dur-

ing a communication process has not been altered by unauthorized entities

[29]. Integrity is generally ensured by using cryptographic one-way hash

functions.The input of these functions is an arbitrary length message but

the output will be a fixed size message digest as shown in Fig. 3.3.

The sender will compute the hash for the message, after that he will send

the message and it’s hash. Then the receiver will compute the hash for the

message that he recieved, finally he will compare the computed hash with

the hash value that he received as shown in Fig. 3.4. If the computed hash

value matched with the hash value that received, that is mean the message

has arrived correctly without alteration.

• Authentication: authenticity validates the origin of the data. Authentica-

Chapter 3 – Cryptography and Previous Work 27

Figure 3.3: Block Diagram of a One-Way Hash Function.

Figure 3.4: Data Integrity Check.

tion algorithms are often called Message Authentication Codes (MAC),and

similar to hash functions generate a specific sized output called a message

tag [29].The tag would be the data a verifier could utilize to validate a mes-

sage. Unlike hash functions, the set of MAC functions needs a private key

to block anyone from Falsification of tags as shown in Fig. 3.5.

• Availability: guarantees that data are available when needed by authorized

entities.

• Nonrepudiation: guarantees the means to verify that an entity has really

participated in an exchange of data, such as sending/receiving information

or a digital signature [29].

However, cryptographic algorithms are classified into two essential groups [29].

• Symmetric protocols: in this class of algorithms, the same shared key

between the involved parties is used to cipher and decipher data. Sometimes

called as Secret-key cryptography.

Chapter 3 – Cryptography and Previous Work 28

Figure 3.5: Block Diagram for a MAC Function.

• Asymmetric protocols: in this class of algorithms, a couple of public/

private keys is applied in the encryption/decryption process. The encrypting

party uses the public key of the recipient to encrypt message. Public keys

are not kept secret. To decrypt the encrypted data, the recipient uses its

private key. Unlike public keys, private keys are kept confidential and only

obtainable from their owner. Sometimes called as Public-key cryptography.

However, we will focus only on the Symmetric Cryptography due to the proposed

design of this thesis based on Authenticated Encryption (AE).

3.1.2 Secret-key cryptography Types

• Block cipher: is a cipher algorithm that cipher a constant size of n-bits

of data - known as a block - at one time. The normal sizes of each block

are 64 bits, 128 bits, and 256 bits. So for instance, a 64-bit block cipher

will gather 64 bits of plaintext and cipher it into 64 bits of ciphertext. In

situations where bits of unencrypted-message (plaintext) is lower than the

block volume, padding algorithms are called into play.For example, AES is a

block cipher that encrypts a 128-bit (16-byte) block using a 128-bit, 192-bit,

or 256-bit key [30].

• Stream cipher: is an encryption algorithm that cipher 1 bit or byte of

unencrypted-message (plaintext) at a time. It utilizes an infinite stream of

Chapter 3 – Cryptography and Previous Work 29

pseudo random bits as the key. It encrypts a changeable-length message

by use a public nonce (a message number used only one single time) and a

privates key shared by the transmitter and receiver. For example RC4 [30].

• Message-authentication code: generates an authenticator of a changeable-

length message using a secret key shared by the transmitter and receiver;

some message-authentication codes also use nonces. Sending the authentica-

tor simultaneously with the message protects the message against corruption.

Message-authentication codes are usually structured from block ciphers or

from cryptographic hash functions like SHA-3 [30].

• Authenticated cipher: An authenticated cipher, also known as an authenticated-

encryption algorithm or Authenticated Encryption (AE) scheme, ciphers

and authenticates messages, by use a public nonce and a private key shared

by the transmitter and recipient. Authenticated ciphers are usually con-

structed as various combinations of block ciphers, stream ciphers, message-

authentication codes, and hash functions [30].

However, the proposed design for this thesis deals only with authenticated cipher.

Table 3.1 Simplifies the differences between the types of the Secret-key cryptog-

raphy.

Table 3.1: Secret-key cryptography Types

Message length Encrypts Authenticates
Block cipher Fixed Yes No
Stream cipher Variable Yes No
Message-authentication code Variable No Yes
Authenticated cipher Variable Yes Yes

3.2 Authenticated Encryption

Authenticated Encryption (AE) is a symmetric encryption algorithm which is

mainly a combination of authentication and encryption that guarantees both con-

fidentiality and authenticity of the data that is need to be send. Any scheme that

guarantees authenticated encryption takes the input plaintext (m), and key (K)

and gives ciphertext (C) and a tag (T) as output [31].The main purpose of the tag

Chapter 3 – Cryptography and Previous Work 30

is to check if the correct ciphertext is received, Considering that the tag consid-

ered as a checksum of the message. Another class of AE schemes is authenticated

encryption with associated data (AEAD) which supports both data that needs

encryption along with authentication and data that only needs authentication.

Fig. 3.6 illustrates the basic block diagram of an AEAD.

Figure 3.6: Block Diagram for Authenticated Encryption with Associated Data.

Encryption Flow for AEAD Algorithm (Alice)

To encrypt the plain-text, then the input for AEAD will be the plain-text,associated

data,nonce and key and the output will be the ciphertext,tag and the associated

data as shown in Fig. 3.7.

Decryption Flow for AEAD Algorithm (Bob)

To decrypt the cipher-text, then the input for AEAD will be the cipher-text,associated

data,nonce,tag and key and the output will be the associated data and the plain-

text as shown in Fig. 3.8.

3.2.1 Advantages of Authenticated Encryption

Combining authentication and encryption into a single hardware-level algorithm

can lead to the advantages listed below [31].

• When using one algorithm to achieve authentication and encryption, then

the required area will be less than if an encryption algorithm and another

one for authentication were used

Chapter 3 – Cryptography and Previous Work 31

Figure 3.7: Encryption Flow for AEAD algorithm.

Figure 3.8: Decryption Flow for AEAD algorithm.

• designs with smaller area consume less power and this is a good solution for

low-power applications.

• A combined algorithm needs only one key and so has a slight advantage in

the issues of key management and key storage.

3.2.2 AE(AD) Constructions

Any AE algorithm is mainly a integration of an encryption algorithm and an

authentication algorithm. There are three types of composition schemes for ob-

taining authenticated encryption and they vary in the way these two algorithms

are combined [32].

1. Encrypt-then-MAC(EtM): In this schema, the message is encrypted first

and the tag is calculated by taking the MAC over the acquired encrypted

text. On the receiving side, the tag is first checked, and if it matches decryp-

tion will take place to obtain the plain-text. Fig. 3.9 shows the operation of

Chapter 3 – Cryptography and Previous Work 32

EtM composition scheme [32].

Figure 3.9: Encrypt-then-MAC(EtM).

2. MAC-then-Encrypt(MtE): A MAC is generated depending on the unencrypted-

message (plaintext), then the unencrypted-message (plaintext) and MAC are

together ciphered to generate an encrypted-message (ciphertext) based on

both. After that, the sender will send the ciphertext (containing an en-

crypted MAC). And on the receivers side first decryption will takes place

to get plaintext and tag pair and then verifies the tag. Fig. 3.10 shows the

operation of MtE composition scheme [32].

Figure 3.10: MAC-then-Encrypt(MtE).

3. Encrypt-and-MAC (E&M): A MAC is generated depending on the unencrypted-

message (plaintext), and the plaintext is ciphered without the MAC. The

plaintext’s MAC and the encrypted-message are sent together. Fig. 3.11

shows the operation of E&M composition scheme [32].

Chapter 3 – Cryptography and Previous Work 33

Figure 3.11: Encrypt-and-MAC (E&M).

3.3 CAESAR Competition

3.3.1 Introduction

CAESAR stands for ” Competition for Authenticated Encryption: Security, Ap-

plicability, and Robustness (CAESAR) ”. The contest has called for submissions

of authenticated ciphers on 2/1/2014.The ciphers in this contest ensure the entity

that the data comes from the right person (authenticity), that only he can read

it (confidentiality) and that it has not been altered (integrity) [33]. The main

purpose of the contest is to find cryptography algorithm that has higher features

than the current AEAD schemes and is appropriate for a very wide range of ap-

plications. The contest has certain requirements that each cipher must comply

with.

3.3.2 Functional Requirements of the CAESAR Contest

The requirements of CAESAR competition are listed [33]:

• The cryptograpgy algorithm must gurantee both integrity and confidentiality

to Plaintext and Secret message number and also integrity to Associated

data and Public message number i.e., the cryptograpgy algorithm should be

Authenticated Encryption with Associated Data(AEAD), which is a special

situation of Authenticated Ciphers.

• The length of ciphertext should be specified by the length of plaintext ; i.e.,

it should not leak any data other than the plaintext length via the ciphertext

length, for example by having the ciphertext length be the plaintext length

Chapter 3 – Cryptography and Previous Work 34

plus a specified constant.

• the submission should contains a list of recommended parameters. The num-

ber of recommendations should not exceed 10.

However, The contest is at the fourth and final round at the time of creating

the design proposed in this thesis. 5 of the 7 finalists are chosen for the proposed

design: AEGIS, ASCON, COLM, Deoxys and OCB. The selection of these 5

algorithms is a case study to show the effectiveness of using the proposed algorithm

hopping technique and this technique is expendable to accommodate any other

security algorithms.

3.3.3 AEGIS

AEGIS is a dedicated authenticated encryption algorithm where a message is used

to update the state of the cipher, and message authentication is achieved almost for

free [34]. AEGIS is constructed from the Advanced Encryption Standard (AES)

round function. It has three variations: AEGIS-128L, AEGIS-128 and AEGIS-

256. The first one uses eight AES round functions to process a 32-byte message

block, the second one processes a 16-byte message block with five AES round

functions and the third one uses six AES round functions. AEGIS is very fast and

its computational cost is half that of AES [34]. AEGIS also offers high security

as long as the initialization vector is not reused, which makes it impossible to

recover the AEGIS state and key faster than exhaustive key search. AEGIS is

suitable for network communication since it can protect a packet while leaving

the packet header (associated data) unencrypted. The state update function of

AEGIS-128 updates the 80-byte state Si with a 16-byte message block mi. Si+1=

StateUpdate128(Si, mi) is given as follows:

Si+1,0 = AESRouund(Si,4, Si,0 ⊕mi) (3.1)

Si+1,1 = AESRouund(Si,0, Si,1) (3.2)

Si+1,2 = AESRouund(Si,1, Si,2) (3.3)

Chapter 3 – Cryptography and Previous Work 35

Si+1,3 = AESRouund(Si,2, Si,3) (3.4)

Si+1,4 = AESRouund(Si,3, Si,4) (3.5)

The state update function is shown in Fig. 3.12 :

Figure 3.12: The state update function of AEGIS-128. R indicates the AES en-
cryption round function without XORing with the round key and w is a temporary
16-byte word [34]

3.3.4 ASCON

ASCON presents a low hardware scheme with extremely low memory require-

ments. While the scheme provides full security of 128 bits, it offers no nonce

misuse resistance [35]. It is based on the Sponge wrap/Monkey Duplex mode

of operation and eliminating inverse operations [36]. ASCON is optimized for

minimal overhead (cipher text = plain text) and it is lightweight for constrained

devices making it fast in hardware and software implementations. ASCON has

several parameters used for encryption such as: secret key (K), associated data

(A), public message number that is denoted by nonce (N)), and Initialization Vec-

tor (IV), in order to encrypt a plaintext (P), according to the formula:

Ea,b,k,r(K,N,A, P) = (C, T) (3.6)

where a, b are the numbers of permutation rounds, r is the state size, and k

is the secret key size. The output of this process is the ciphertext C, and the

Chapter 3 – Cryptography and Previous Work 36

authentication tag T [35]

Fig. 3.13 illustrates ASCON modes of operations which are the encryption

mode and the decryption mode. P block is the main block in ASCON algorithm.

P block has two flavors: one for carrying out the initialization/finalization process

(Pa) and the other for performing the internal processes (Pb).

Figure 3.13: ASCON’s mode of operation [35]

3.3.5 COLM

COLM [37] is a block cipher based on Encrypt-Linear mix-Encrypt mode, designed

with the goal to achieve online misuse resistance, to be fully parallelizable, and to

be secure against blockwise adaptive adversaries.

The authenticated encryption for complete message block is shown in Fig. 3.14

. COLM consists of two-layer parallelizable encryption. COLM mixes the output

of the first encryption layer to generate the input to the second encryption layer,

using linear mixing function. The high-speed COLM implementation instantiates

two instances of AES to implement the two layers of encryption. In order to

optimize COLM for low area, only one instance of AES is used to perform the two

encryption layers. A Finite state machine and Multiplexers are added to control

the data flow to the AES. The optimized encryption operation is processed in twice

Chapter 3 – Cryptography and Previous Work 37

the clock cycles of the non-optimized one and the same applies for the decryption

operation.

Figure 3.14: COLM authenticated encryption for complete message block. EK .
denotes the block cipher AES-128 [37]

3.3.6 Deoxys

Deoxys presents a new authenticated encryption design based on custom made

tweakable block ciphers using the AES round function as a building block [38].

Deoxys is an authenticated encryption scheme that provides full 128-bit security

for both privacy and authenticity making it efficient in software. Moreover, Deoxys

performs particularly well for small messages (only m + 1 block cipher calls are

required for an m block message and no precomputation is required). In the nonce-

misuse resistant versions of Deoxys, in addition to a full 128-bit security for unique

nonces, birthday-bound security is obtained when the nonce is reused. Finally,

Deoxys can be lightweight and the key can be hardcoded for further smaller area

footprint. Deoxys uses a tweakable block cipher Deoxys-BC as internal primitive.

Deoxys has two main mode variants:

• Nonce-Respecting Mode: this variant is for where adversaries are assumed

to be nonce-respecting, meaning that the user must ensure that the value N

will never be used for encryption twice with the same key.

Chapter 3 – Cryptography and Previous Work 38

• Nonce-Misuse Resistant Mode: this variant is a new authenticated encryp-

tion mode named SCT , relaxes this constraint and allows the user to reuse

the same N with the same key.

In this work, the focus is only on the second mode. The encryption algorithm

is depicted in Fig. 3.15 and Fig. 3.16 for the authentication part and in Fig. 3.17

for the encryption part.

Figure 3.15: Handling of the associated data for the nonce-misuse resisting mode:
in the case where the associated data is a multiple of the block size, no padding
is needed [38].

Figure 3.16: Message processing in the authentication part of the nonce-misuse
resisting mode: in the case where the message-length is a multiple of the block
size, no padding is needed [38].

Figure 3.17: Message processing for the encryption part of the nonce-misuse re-
sisting mode [38].

Chapter 3 – Cryptography and Previous Work 39

3.3.7 OCB

OCB (short for Offset Codebook) is an AEAD scheme that depends on a block

cipher that must have a 128-bit block size [39]. OCB achieves both confidentiality

and authenticity. Confidentiality is defined such that an adversary is unable to

distinguish OCB-outputs from an equal number of random bits, while authenticity

means that an adversary is unable to produce any valid nonce-cipher text pair

that it has not already acquired. OCB is nearly as fast as Counter mode (CTR)

because each block encryption requires just a few xors on top of an AES call.

OCB is parallel as most of the computations are independent of one another which

allows both hardware and software accelerations. It is also designed for minimal

authentication overhead beyond what is required for provable security and simple

encryption using a block cipher. OCB is not designed to resist nonce reuse or

to enjoy beyond birthday bound security [39]. Fig. 3.18 is the illustration of

OCB[E, τ]. Here E: κ × {0,1}128→ {0,1}n is a blockcipher and τ ∈ [0 .. 128] is the

tag length. M,C ∈ {0, 1}∗. In the top section of the figure, Message M has a full

final block (|M4 = n|) (Checksum= M1⊕M2⊕M3⊕M4). In the middle section,

Message M has a short final block, 1 ≤ |M∗|< n (Checksum= M1 ⊕M2 ⊕M3 ⊕

M∗10∗). In the bottom side, An AD of three full blocks (left) or two full blocks

and one short one (right). Throughout: Offsets (the -values) are updated and

used top-to-bottom, then left-to-right. Offset initialization and update functions

(Init, Inci, Inc$, Inc∗) return n-bit strings. Each flavor of increment is an xor with

some precomputed, K-dependent value [39].

3.3.8 The GMU Hardware API for the CAESAR

The GMU Hardware Application Program Interface (API), is a hardware API

proposed to provide a common external interface for the hardware implementations

of the ciphers participating in the CAESAR competition. It makes the comparison

of different algorithms easier and fairer. This API named AEAD has the following

features:

• Wide range of data port widths ranging from 8-bits to 256-bits.

• Independent data and key inputs.

Chapter 3 – Cryptography and Previous Work 40

Figure 3.18: Illustration of OCB [39]

• Simple high-level communication protocol.

• Support for encryption and decryption within the same core.

• Ability to communicate with First-In, First-Out (FIFO)s.

The full specifications, features and the usage manual can be found in the API

paper [11].

Chapter 3 – Cryptography and Previous Work 41

Figure 3.19: Top-level block diagram of a lightweight architecture of AEAD [11]

The GMU Hardware API separates the development of the Core (which is

called CipherCore), containing the cipher specific part, and the external commu-

nication. One of the useful features is the support for a wide range of data port

widths (ranging from 8 to 256 bytes), which are functionally completely separated

from the CipherCore. Furthermore, it also supports an arbitrary length of the

input stream. There is support for encryption and decryption with the same core.

It is relative lightweight, and it can communicate with simple devices like FIFOs

to use as memory [11].

The API uses a PreProcessor and a PostProcessor. The PreProcessor provides

the key, public message number, secret message number, block data and tag to

the CipherCore, with information about the expected operation. This indicates

whether the data is Associated Data (AD) or plaintext, whether the core has to

encrypt or decrypt, if the current is the last block, and more. The PostProcessor

then takes care of the output, accepting the encrypted block from the CipherCore

and delivering it to the output port [11].

Because of the availability of the open source code for the PreProcessor, Post-

Chapter 3 – Cryptography and Previous Work 42

Processor, and CMD FIFO, the designers of lightweight implementations of au-

thenticated ciphers can focus exclusively on the development of the CipherCore

unit.

The interface has a common public data input (pdi) port for associated data,

nonce, plaintext, ciphertext and tag. An additional signal pdi type is used to

specify the type of data that is coming on the bus. The key and secret message

number come through the secret data input port. The data output port do data

carries the cipher text and tag.

The input decrypt in signal informs the core whether the current operation is

encryption or decryption.

The CipherCore must provide msg auth to indicate its result and set msg auth valid

to high until the PostProcessor is ready (msg auth ready is active) [11].

3.4 Previous Work

Ibrahim et al. [40] proposed a low cost FPGA based cryptosystem named as

Secure Cipher for high throughput to area ratio. A full loop unroll technique

have used to implement the proposed design. The iterations of every loop in the

algorithm are unrolled in such a way that the output of each iteration becomes

the input of the successive loop iteration. The proposed Secure Cipher is low

complexity encryption algorithm based on Feistal structure. It is a block cipher

that consists of 5 encryption rounds only. Each encryption round consists of five

logical and mathematical operations that operate on 8-bit data. The target device

for the proposed cryptosystem implementation was a low cost Altera Cyclone II

EP2C35F672C6N FPGA using Verilog HDL and the design was synthesized using

Quartus II 12.1 sp1 edition. The proposed system has a throughput of 4600Mbps

with 5.735Mbps/LE throughput to area ratio and the utilization was 802 LE.

HAFSA1 et al. [3] proposed an improved AES-ECC Cryptosystem using a

co-design approach where AES runs on NIOS II softcore and ECC’s scalar mul-

tiplication is implemented as a hardware accelerator. The proposed design pro-

vides advantages of both asymmetric-key and symmetric-key algorithms. The

symmetric-key algorithm is used to encrypt a data transmitted in an insecure

channel while the asymmetric-key is used to share the key with the other party so

Chapter 3 – Cryptography and Previous Work 43

that he can decrypt this data. The original AES-Key is generated by a Random

Number Generator (RNG) in C and running on NIOS II. The FPGA-based DE2-

115 development board featuring a Cyclone IV (Altera) was used for this work.

The implementation results show that the design uses 11% of total logic elements,

9% of total combinational function and 7% of total memory. It runs at a frequency

of 157.63 MHz and consumes 166.67 mW.

Soliman et al. [2] proposed 2 AES encryption designs based on the idea of

integrating between iterative looping and pipelining to optimize between area,

throughput and power to provide a competitive design ready to use in IoT low

power enabling technologies . These designs were implemented using VHDL and

synthesized using Xilinx ISE 14.2 on XC5VLX50-3 Virtex 5 FPGA device. The

results showed a competitive throughput of 34 Gbps, and efficiency of 65.42 and

50.58 Mbps/slice respectively. Both designs were also synthesized using Vivado

2014.4 design suite and mounted on Zynq-7000 XC7Z010clq225-3 FPGA device

to provide dynamic power consumption calculations. The results showed that the

total dynamic power consumption reached 455 mW.

3.4.1 Limitations in the Previous work

All previous works support one dimension of security which is the algorithm itself.

The cryptography scheme is constant all the work time of the design. Therefore,

the attacker needs only to try to know the key, after that he able to attack the

system.

However, In our proposed design, the algorithm itself is changeable as we will

explain in the following chapters.

Chapter 4

Methodology and Proposed

Design

4.1 Algorithm Hopping

Algorithm hopping is based on Frequency Hopping Spread Spectrum (FHSS)

which is an approach to send radio signals by rapid switching of carriers between

many frequency channels. The switching is based on a pseudo-random pattern

only known to the transmitter and the receiver [41]. It is widely used as a mul-

tiple access method in the Code Division Multiple Access Scheme (CDMA) in

communication systems.

The proposed design uses this idea by modeling the frequency channels as

the authenticated encryption (AE) algorithms while sending the block data to

be encrypted/decrypted as an equivalent to sending radio signals over different

frequency channels. Normally, any cryptography systems uses one algorithm all

the time and only the key is changeable during the run time. In our proposed

algorithm hopping, the algorithm will be change per session. Also the key can be

changed at any time. Therefore, if the attacker needs to hack our proposed design,

he needs to know how many algorithms we use and which is the algorithm that

used at each session. After that he needs to know the key of the used algorithm.

That’s mean our proposed design is more secure than the current designs. How the

proposed design increased the level of security is discussed in chapter 6 , section

6.4

44

Chapter 4 – Methodology and Proposed Design 45

Figure 4.1 shows our proposed algorithm hopping technique, the design jumps

between the 5 AEAD schemes that we chose from CAESAR competition. For

example, during the session 2, the algorithm is COLM and for the session 4 , the

AEAD scheme is OCB.

Figure 4.1: Proposed Algorithm Hopping technique

However, in the testing phase of the proposed design, we chose the session as

one message. Consequently, we sent 5 messages and each message with different

AEAD scheme. Alternatively, the session in the real life will be for example 1

[K] messages or 10 [K] messages, and who determines the number of messages is

the application itself. If the application needs to read the output of the sensor

each one hour, then the number of messages during a day will be less than the

application that needs to make acquisition for data each 1 [ms]. Then the number

of messages per session for the first application will be different from the second

application. The sequence of switching is random according to the output of the

pseudo random number generator which is Linear Feedback Shift Register (LFSR)

circuit in our proposed design. The output of the LFSR is based on seed value

Chapter 4 – Methodology and Proposed Design 46

which is able to be changed during the run time through the PS.

LFSR is performed as a chain of Flip- Flops, connected together as a shift

register [42]. Some taps of the shift register chain are used as inputs to either

an XOR or XNOR gate.The output of this gate is then used as a feedback to

the beginning of the shift register chain. There are some special properties of the

LSFR that can be listed as follows:

• LFSR patterns are pseudo-random.

• Output patterns are deterministic. The next state can be figured out by

knowing the position of the XOR gates as well as the current pattern.

• A pattern of all 0’s cannot appear when the taps use XOR gates.

• A pattern of all 1’s cannot appear when the taps use XNOR gates.

• The maximum possible number of iterations of any LFSR:

= 2bits − 1 (4.1)

An example design of a 5-bit LSFR using XNOR gate is shown in Fig. 4.2.

Figure 4.2: 5-bit LSFR using XNOR gate

Chapter 4 – Methodology and Proposed Design 47

4.2 Dynamic Partial Reconfiguration

4.2.1 FPGA Configuration

Just to recap, FPGAs contains a large amount of programmable logic and registers,

which can be connected together in different ways to realize different functions

[12]. it is sometimes useful to imagine that the FPGA is consist of two distinct

layers: the logic gates/registers and the programmable SRAM configuration cells

(configuration Memory (CM)) as shown in Fig. 4.3.

Figure 4.3: Two Distinct Layers of FPGA [12]

An FPGA is reconfigured by writing the bit-stream into the Configuration

Memory (CM) that controls function computed on logic layer. FPGA architectures

can be categorized according to the capability of the configuration, as illustrated

in Fig.4.4. At the top level, FPGAs can be divided into one-time configurable

devices that can only be applied as an ASIC substitute and configurable FPGAs.

Configurable FPGA devices can in turn be distinguished in partially and globally

reconfigurable devices [12].

When use of globally reconfiguration to configure the FPGA, the whole device

configuration is swapped. Consequently, all the states inside the FPGA get lost

and the device will have to restart its operation. However, focus will be put

on partially reconfigurable systems, which allow to update only a portion of the

resources of an FPGA. Partial reconfiguration can be achieved either passive by

reconfiguring a portion of the device (changing the functionality) when the device

is inactive without affecting other areas of the device or active where the operation

Chapter 4 – Methodology and Proposed Design 48

Figure 4.4: Classification of FPGAs by their configuration capabilities [12]

can seamlessly continue during the reconfiguration process.

4.2.2 DPR Technology

Because of the recent evolution of FPGA technology, during the system operation

time, the designer can update/reconfigure a certain part of the internal structure

of the FPGA without affecting the rest of the parts by using a mechanism known

as Dynamic Partial Reconfiguration (DPR). This requires the designer to divide

his design into 2 parts: Static part and dynamic part [1]. The dynamic part con-

sists of a set of Reconfigurable Modules (RMs) which are swapped during runtime

after being floor-planned onto a Reconfigurable Partition (RP). When it is desired

to switch to a certain RM, its corresponding partial bit file is loaded at runtime

without affecting the static part. A block diagram illustrating different parts of a

DPR dependent design is shown in Fig. 4.5.

Figure 4.5: Basic structure of partial reconfiguration design

As shown in Fig.4.5, the function performed in reconfig Block A is changed by

downloading one of many partial BIT files, A1.bit, A2.bit, A3.bit, or A4.bit.

Chapter 4 – Methodology and Proposed Design 49

The programmable logic(PL) in the FPGA design is splited into two indepen-

dent types, reconfigurable logic and static logic. The gray region of the FPGA

chunk represents static logic and the block part labeled Reconfig Block ”A” repre-

sents reconfigurable logic.The static part remains functioning and is unchanged by

the loading of a partial BIT file.The reconfigurable part is changed by the contents

of the partial BIT file.

4.2.3 DPR Benefits

As shown in Fig.4.6 DPR has many advantages over traditional full configuration

including [13]:

• Reduce cost and size: Partial reconfiguration allow the designers to reduce

the area of their designs by dynamically time-multiplexing portions of the

available hardware resources. The ability to load functions on an as-needed

basis also lessens the amount of idle logic, thereby saving additional space.

• System Flexibility: Traditionally, to change the function of the device,

the engineer have to make new placement and routing of the design, then

download full bitstream into the device. In contrast, when using DPR, the

designer needs only to place and route the modified function in context with

the already-verified remainder of the design, after that download the new

partial image to a device in the field. Furthermore, the designer can dynam-

ically adds new functions while the system is running, improving system

up-time. The new function can be plugged into the same area without need

to redesign the system or move to a bigger device. Also there will be flexi-

bility in choosing the protocols or algorithms available for an application.

• Reduce power consumption: One of the methods used to reduce static

power is to simply utilize a device that is less in size. With DPR,

basically time slice the FPGA and run portions of their design individually.

consequently,the system requires a much smaller device or fewer devices be-

cause not every portion of the design is needed 100% of the time. DPR also

has the potential to decrease operating power as well as static power. For

instance, many functions must be able to run at a very rapid speed, but that

Chapter 4 – Methodology and Proposed Design 50

maximum performance might only be needed a little percentage of the time.

To save power, engineers can utilize DPR to swap out a high performance

design with a low power version of the same designinstead of designing ex-

clusively for maximum performance. The engineer can then turn back to the

high-performance design when the system requires it.

• Provide Adaptive systems

• Improving fault tolerant/self-repairing systems

• Enabling new techniques in design security

Figure 4.6: Modifying Functionality and Reducing Size using Partial Reconfigu-
ration [13]

4.2.4 DPR Terminology

The following terminology is specific to the DPR technique [1] and is used through-

out this thesis.

Bottom-Up Synthesis

Bottom-Up Synthesis is synthesis of the design by modules, whether in one

project or multiple projects. Bottom-Up Synthesis requires that a separate netlist

is written for each Partition, and no optimizations are done across these bound-

aries, ensuring that each portion of the design is synthesized independently. Top-

level logic must be synthesized with black boxes for Partitions.

Configuration

A Configuration is a complete design that has one Reconfigurable Module for

each Reconfigurable Partition. There might be many Configurations in a Partial

Reconfiguration FPGA project. Each Configuration generates one full BIT file as

well as one partial BIT file for each Reconfigurable Module.

Chapter 4 – Methodology and Proposed Design 51

Configuration Frame

Configuration frames are the smallest addressable segments of the FPGA con-

figuration memory space. Reconfigurable frames are built from discrete numbers

of these lowest-level elements. In a 7 series device, the base reconfigurable frames

are one element (CLB, BRAM, DSP) wide by one clock region high.

Partial Reconfiguration (PR)

Partial Reconfiguration is modifying a subset of logic in an operating FPGA

design by downloading a partial bitstream.

Partition

A Partition is a logical section of the design, user-defined at a hierarchical

boundary, to be considered for design reuse. A Partition is either implemented as

new or preserved from a previous implementation. A Partition that is preserved

maintains not only identical functionality but also identical implementation.

Partition Pin

Partition pins are the logical and physical connection between static logic and

reconfigurable logic. Partition pins are automatically created for all Reconfigurable

Partition ports.

Reconfigurable Frame

Reconfigurable frames represent the smallest reconfigurable region within an

FPGA. Bitstream sizes of reconfigurable frames vary depending on the types of

logic contained within the frame.

Reconfigurable Logic

Reconfigurable Logic is any logical element that is part of a Reconfigurable

Module. These logical elements are modified when a partial BIT file is loaded.

Many types of logical components can be reconfigured such as LUTs, flip-flops,

BRAM, and DSP blocks.

Reconfigurable Module (RM)

A Reconfigurable Module (RM) is the netlist or HDL description that is imple-

mented within a Reconfigurable Partition. Multiple Reconfigurable Modules will

exist for a Reconfigurable Partition.

Chapter 4 – Methodology and Proposed Design 52

Reconfigurable Partition (RP)

Reconfigurable Partition (Reconfigurable Partition (RP)) is an attribute set on

an instantiation that defines the instance as reconfigurable. The Reconfigurable

Partition is the level of hierarchy within which different Reconfigurable Modules

are implemented. Tcl commands such as opt design, place design and route design

detect the HD.RECONFIGURABLE property on the instance and process it cor-

rectly.

Static Logic

Static logic is any logical element that is not part of a Reconfigurable Parti-

tion. The logical element is never partially reconfigured and is always active when

Reconfigurable Partitions are being reconfigured. Static logic is also known as

Top-level logic.

Static Design

The Static design is the part of the design that does not change during partial

reconfiguration. The static design includes the top level and all modules not

defined as reconfigurable. The static design is built with static logic and static

routing.

4.2.5 Reconfigurable Elements

Some component types can be reconfigured and some cannot [1]. For 7 series

devices, the component rules are as follows.

Reconfigurable resources include:

• Slice logic (LUTs, flip-flops, and carry logic, for example)

• Memories (block RAM, distributed RAM, shift register LUTs)

• and DSP component types as well as routing resources.

Logic that must remain in static logic includes:

• Clock-modifying blocks (MMCM, DCM, PLL, PMCD)

• Global clock buffers (BUFG)

• Device feature blocks (BSCAN, ICAP, STARTUP, or -PCIE, for example)

Chapter 4 – Methodology and Proposed Design 53

4.2.6 Managing Dynamic Device Reconfiguration

To configure the FPGA, engineers begin as normal by loading a full design bit-

stream upon power-up. After the chip is fully configured and operational, en-

gineers can utilize partial bit files at any time to adapt the pre-defined regions

while the rest of the FPGA remains completely active and uninterrupted [1]. The

engineers can select from the following configuration ports to load the partial bit

file:

Externally:

• Slave SelectMAP

• Slave Serial

• JTAG

Internally:

• Internal Configuration Access Port (ICAP) (ICAP, an internal representa-

tion of the SelectMAP interface)

Table 4.1 lists the recommended default reconfiguration speed of the different

configuration interfaces for Xilinx Virtex-4 and later FPGAs.

Table 4.1: Configuration Speed for the Different Interfaces on Xilinx FPGAs [1].

Configuration Mode Max Clock Rate Data Width Max Bandwidth
SelectMap / ICAP 100 MHz 32-bit 3.2 Gbps
Serial Mode 100 MHz 1-bit 100 Mbps
JTAG 66 MHz 1-bit 66 Mbps

The designers of system can control the initiation of reconfiguration and down-

load of the partial configuration image using a wide set of techniques, two of which

are shown in Fig.4.7 system of the self-reconfigurable FPGA on the left in Fig.4.7

hires a common application in which a small microprocessor is utilized to read the

partial bitfile out of the flash and forward the data to the internal configuration

port (ICAP). Design on the right in figure uses the external processor to read the

partial bitfile from the flash and send the data to the standard configuration port

Chapter 4 – Methodology and Proposed Design 54

of the FPGA and this method known as as an externally-reconfigurable FPGA

[13].

Partial bitstreams holds all the configuration commands and information needed

for partial reconfiguration. The task of download a partial bitstream into an

FPGA does not need knowledge of the physical position of the reconfigurable

module. Since configuration frame addressing information is involved in the par-

tial bitstream, it cannot be sent to the wrong portion of the FPGA. However, the

proposed design use the concept of the the left side of the Fig.4.7, which provide

a self-reconfigurable FPGA.

Figure 4.7: Two Methods of Delivering a Partial Bit File [13]

4.2.7 DPR controllers

Currently, there are several DPR controllers implemented as Intellectual Proper-

ties (IPs) and offered by Xilinx such as: HWICAP, PRC and PCAP [1]. However,

it is possible to implement custom IP controllers such as ZYCAP [43]. A compar-

ative study was done by [14] showing the performance of these controllers based

on area utilization, power consumption and maximum throughput for a software

defined radio encoder. As shown in Fig.4.8, it is clear that PRC consumed most

resources while providing the highest throughput in comparison with Hardware

ICAP (HWICAP) which consumed much less resources while providing the least

throughput.

Chapter 4 – Methodology and Proposed Design 55

Figure 4.8: (a) Resource Utilization, (b) Avg. Reconfiguration Throughput and
(c) Power Consumption Comparisons between Different PR Controllers [14].

4.2.8 Xilinx AXI-HWICAP controller

Xilinx provides many Intellectual Property (IP) cores to connect the ICAP mod-

ule with the user design. These IP cores corresponds to partial reconfiguration

controller that enables an embedded microprocessor such as ARM processors or

Microblaze to access the configuration memory. ICAP is a xilinx predefined macro

that has direct access to the configuration memory for both write and read modes

[1] as depicted in Fig.4.9. CSB is the active low interface select signal, RDWRB is

the read/write select signal. BUSY is valid only for read operations and remains

low for write operations. In Xilinx 7-series FPGAs, the ratio of the ICAP inter-

face data width to the configuration memory is 32 bit wide. The max theoretical

reconfiguration throughput of ICAP is equal to 400 MB/S at a frequency of 100

MHz [15] . In practice, it was found that the measured throughput is much less

than the theoretical one due to the addition of the reconfiguration overhead to the

DPR at the system level.

AXI-HWICAP [15] is an ICAP controller designed for AXI bus interfaces where

it is connected as a slave peripheral. During DPR, the partial bitstream data are

buffered from an external memory to a write/read FIFOs inside the core where

there is a finite state machine that monitors the status of the FIFOs and supplies

partial bitstream data to the ICAP and then to the configuration memory Fig.4.10.

Based on the study in [14], AXI-HWICAP is the optimum choice as a controller

in the proposed design despite the limitations on the maximum throughput which

Chapter 4 – Methodology and Proposed Design 56

Figure 4.9: Xilinx ICAP Primitive.

is not an issue for IoT constrained devices that requires low area and power re-

quirements. Another reason to choose the AXI-HWICAP controller is to make

the proposed design more generic, since the AXI-HWICAP is allocated in the PL

side whereas the PCAP is located in the PS side, then to use PCAP controller

that is means that we need a chip that has hard core (which is an ARM core

in our proposed design), in contrast using AXI-HWICAP provides the ability of

implement the proposed design in any FPGA without need of the hard-core.

Figure 4.10: Top Level Block Diagram for the AXI HWICAP Core [15]

Chapter 4 – Methodology and Proposed Design 57

4.3 Proposed design

4.3.1 Design modules

As shown in Fig.4.11, the design is divided into 2 parts: Encryption module and

decryption module. Each module is loaded onto an FPGA and accordingly, each

module has 2 parts: Static part and dynamic part. It is important to note that

both parts include the same hardware modules except for Linear Feedback Shift

Register (LFSR) which is only needed for the static part of the encryption module.

The static part for both modules consists of the following components:

• First In First Out (FIFOs) for inputs and outputs.

• AEAD top.

The dynamic part for both modules consists of one reconfigurable region for the

cipher modules and each cipher module consist of the following components:

• Pre processor.

• Cipher core.

• Post processor.

Figure 4.11: Block Diagram of the Proposed Design (PL Side)

The functionality of each component is explained as follows:

4.3.1.1 AEAD top

As shown in Fig.4.12, the AEAD interface consists of 3 main data buses:

• Public Data Inputs (PDI)

Chapter 4 – Methodology and Proposed Design 58

• Secret Data Inputs (SDI)

• Data Outputs (DO)

Figure 4.12: AEAD interface [11]

In addition, there are the corresponding control signals such as: valid and

ready. The valid signal indicates that the source is ready to send data while the

ready signal indicates that the destination is ready to receive them. The Generic

parameters for AEAD chosen as : Public data input width (W) = 256, Secret data

input width (SW) = 32, Output data width W = 256.

All possible inputs and outputs of the AEAD are illustrated in Fig.4.13. AD

denotes Associated Data, Npub denotes Public Message Number, such as Number

used once (Nonce) or Initialization Vector. Nsec denotes Secret Message Number,

which was recently introduced in some authenticated ciphers. Both Npub and

Nsec are expected to be unique for each message encrypted using a given key. The

difference is that Npub is directly buffered to the other side, while Nsec is sent in

the encrypted form. Secret Data Inputs (SDI) port is responsible for processing

the secret key while Puplic Data Inputs (PDI) port handles the rest of the inputs.

The API is also composed of several generic parameters such as: Key length,

data block size, SDI port width, PDI port width and type of data padding which

are modified based on the requirements of each cipher. The main idea of the

AEAD top is to modify the API by choosing the largest of the generic parameters

of the 5 ciphers and grouping them in 1 static port from which each dynamic

module’s parameters are modified.

Chapter 4 – Methodology and Proposed Design 59

Figure 4.13: Inputs and outputs of AEAD [11]

4.3.1.2 LFSR

The total number of flip flops used depends on the number of bits needed for the

design. Since there are 5 ciphers to switch between, only 3 bits are needed and

consequently, 3 flip flops are used in the LFSR. As shown in Fig.4.14 , the taps

are at bit 0 and bit 2. All of the register elements share a common clock input,

which is omitted from the symbol for reasons of clarity. The data input to the

LFSR is generated by XOR-ing the tap bits, while the remaining bits function as

a standard shift register. The pseudo-random pattern is generated based on a seed

input to the LFSR that is only known to the sender on the encryption side to start

the hopping sequence. The main reason for not using the LFSR in the decryption

side is that the next step in the hopping sequence is sent prior to decryption from

the encryption side.

Figure 4.14: 3 bits LFSR with XOR feedback path

The table 4.2 shows the generated values from the LFSR when the seed value

is ”001” and the corresponding algorithm for each.

Chapter 4 – Methodology and Proposed Design 60

Table 4.2: Patterns Which generated from LFSR.

Corresponding Algorithm Clock q0 q1 q2
Initial Value (seed) 0 0 1

AEGIS 1 1 0 0
ASCON 2 0 1 0
COLM 3 1 0 1
Deoxys 4 1 1 0
OCB 5 1 1 1
Skip 6 0 1 1
Skip 7 0 0 1

AEGIS 8 1 0 0
: : : : :

Seeding the LFSR:

One quirk with LFSRs that depending on XOR is that, if one happens to dis-

cover itself in the all-0s values, it will happily continue to shift all 0s indefinitely (

similarity for XNOR-based LFSRs and the all-1s value). This is of special concern

when power is first applied to the circuit. each register bit can randomly launch

containing either a logic 0 or a logic 1, and the LFSR can therefore ”wake up”

containing its ” forbidden” value . Therefore, it is necessary to launch an LFSR

with a seed value.

However, the proposed design includes a multiplexer at the input of the LFSR

for loading a seed value as shown in Fig.4.15 When the control signal is putted in

its active state, the LFSR will load with a hard-wired seed value. After loading

the seed value, the feedback path is chosen and the device returns to its LFSR

mode of operation. In addition, we can at any time to load a new seed by select

the seed-data path to change the sequence of patterns that generated from the

LFSR.

4.3.1.3 Crossing Clock Domains Using FIFOs

A clock domain crossing exists whenever information is transmitted from a com-

ponent driven by one clock to a component driven by different clock [16] as shown

in Fig. 4.16

In the proposed design there are two parts, PS and PL. The operating frequency

of PL is 10 MHz while the PS operates at a frequency of 667.66 MHz. The test

vectors (Secret input data/Public input data) which are initially stored in fixed

Chapter 4 – Methodology and Proposed Design 61

Figure 4.15: Circuit for loading seed values

Figure 4.16: Clock Domain Crossing [16]

arrays in the C code should transfer to PL side to process (encryption/decryption)

them and then the outcome (decrypted message/cipher-text) will be re-sent to the

PS to transmit it to the destination (another IoT node). This means that the data

will transfer from one clock domain to another one. consequently, some problems

will appear related to the different clocks between PS and PL. Therefore, 3 FIFOs

used to solve this issue (Data FIFO, Key FIFO, Cipher FIFO). The functionality

of the 3 FIFOs used in the encryption and decryption modules is to allow for

reading and storing inputs/outputs from external text files that contain the test

vectors for each cipher. These FIFOs have constant input/output port size based

on the generic parameters initialized in the AEAD top module. The width of

Data/Cipher FIFO is 256 bits, while the width of key FIFO is 32 bits as shown in

Fig.4.17.

However, the LFSR circuit controlled by the PS using ”Enable signal” and

the output of the LFSR ”cipher ID” will be sent to the PS side to make the

transformation of the bit file of the corresponding cipher. In addition, from the

ARM core we can change the value of the seed to change the sequence of patterns

Chapter 4 – Methodology and Proposed Design 62

at any time. Therefore, we added a FIFO ”ID-FIFO” to store the output of the

LFSR, then send it to the PS and when we want to change the sequence of the

patterns, we use the same FIFO to write in.

Figure 4.17: Full Block Diagram of the Proposed Design (PL + PS)

4.3.1.4 Pre processor

The first component in the dynamic part is the pre-processor which is responsible

for the following tasks common to the 5 ciphers:

• Loading and activating keys

• Serial-In-Parallel-Out loading of input blocks

• Padding input blocks

• Keeping track of the number of data bytes left to process

The preprocessor is implemented in the API as an interface for processing the

input data after modifying its input ports and parameters specific to each cipher

in order to provide the cipher core with the appropriate data.

4.3.1.5 Post processor

The second component in the dynamic part is the post processor which is respon-

sible for the following tasks common to the 5 ciphers:

• Clearing any portions of output blocks not belonging to cipher or plaintext

Chapter 4 – Methodology and Proposed Design 63

• Parallel-In-Serial-Out conversion of output blocks into words

• Formatting output words into segments

• Storing decrypted messages until the result of authentication is known

• Generating the status block with the result of authentication

The post processor included in the API is modified by adjusting the output ports

and parameters specific to each cipher to ensure correct data is stored in the

FIFOs.

4.3.2 Design flow

The Dynamic Partial Reconfiguration (DPR) flow is carried out using Xilinx Vi-

vado tool. A complete design for the encryption module is shown in Fig.4.18. A

similar design is tailored for the decryption module with the same components.

The system is controlled by the ARM Cortex A9 microprocessor on the Process-

ing System (PS) side. The processor communicates with the Programmable Logic

(PL) side through the AXI bus interface. The static part consists of: the AXI HW-

ICAP, the AXI connections, AEAD top, FIFOs in addition to the LFSR in the

encryption side. The dynamic part contains Reconfigurable Partition (RP) that

holds the 5 Reconfigurable Modules (RMs) corresponding to the 5 ciphers. The

partial bitstreams for these RMs are stored in the SD card to be loaded through a

software code that interfaces the PS with the Personal Computer (PC) via UART

connection. The operating frequency of PL is 10 MHz while the PS operates at a

frequency of 667.66 MHz.

A complete flow of a full encryption/decryption operation is described as fol-

lows:

i. The sender starts the encryption module by entering the seed into the LFSR

from the PS side.

ii. The LFSR generates the first ID that corresponds to a specific cipher.

iii. The processing system transfers the bitstream of the corresponding cipher

to the AXI-HWICAP which writes it into the configuration memory.

Chapter 4 – Methodology and Proposed Design 64

Figure 4.18: Hardware design of the encryption module

iv. The PS starts to send the PDI,SDI to the corresponding FIFOs, after that

the AEAD top starts to read the data from these FIFOs (PDI FIFO, SDI

FIFO).

v. The output data is stored into the output FIFO until the encryption is done.

vi. When done, the PS read the output FIFO.

vii. The PS sends the enable signal along with the ID of the cipher to the de-

cryption side.

viii. The decryption module switches to the corresponding cipher and starts re-

ceiving the data encrypted through the (UART 1) inside the PS.

ix. When the decryption is done, a status message is sent back to the encryption

module to mark the success of the full operation and allow for the next hop.

Chapter 5

System Implementation and

Results

5.1 Requirements

Software Tools:

• Vivado Design Suite 2015.2

The DPR feature needs a license, and since the available license for us is

only 2015.2, then we select the Vivado Design Suite 2015.2 to implement

our proposed design.

• Xilinx Software Development Kit 2015.2

• Terminal program (Teraterm)

Hardware Tools:

• ZC02 board (Zynq Evaluation and Development).

• SD Card (FAT32)

Licensing:

• Xilinx Partial Reconfiguration

65

Chapter 5 – System Implementation and Results 66

5.2 DPR design flow

Step 1: Partition the system into modules

The system has many modules: the AXI HWICAP, the AXI connections, AEAD

top, LFSR, FIFOs, CAESAR AEAD algorithms (AEGIS, ASCON, COLM, De-

oxys, OCB).

Step 2: Define static modules and reconfigurable modules

• Static: AXI HWICAP, the AXI connections, AEAD top, LFSR, FIFOs.

• Dynamic: CAESAR AEAD algorithms (AEGIS, ASCON, COLM, Deoxys,

OCB).

Step 3: Decide the number of PR regions (PRRs)

The system needs only one PRR.

Step 4: Generate Design Check Point (DCP) for Static and RM mod-

ules

Vivado tool is used to synthesize the static and all the RMs modes in all given

DPR design configurations. The RMs modes are given to the synthesis tool as a

set of HDL files to determine the numbers and types of resource requirements on

the Field Programmable Gate Array (FPGA) such as (LUTs, BRAM, and DSP

blocks). The output from the synthesis step is: DCP (Design Check Point file

contains the netlist of the design supported by Xilinx Vivado Design suit) file.

Fig.5.1 shows the DCP files for the RMs modules, whereas Fig.5.2 shows the DCP

file for the static module.

Step 5: Load Static and one RM for the RP The target of this step is

floorplanning, this step is done manually by the designer by arranging the set of

RRs with the static partition into rectangular shapes on the FPGA floorplan.

• Load the static design using the open checkpoint command (In the Tcl Shell

window of Vivado).

” open checkpoint Synth/Static/system wrapper.dcp ”. As shown in Fig.5.3

• Load one RM for the RP by using the read checkpoint command:

” read checkpoint -cell system i/CAESAR 0/U0/CAESAR v1 S AXI inst/

Chapter 5 – System Implementation and Results 67

Figure 5.1: DCP files for all RMs

Figure 5.2: DCP file for the static module

rp instance Synth/reconfig modules/rp AEGIS/rp AEGIS synth.dcp ”. As

shown in Fig. 5.4

• Define each of the loaded RMs (submodules) as partially reconfigurable

by setting the HD.RECONFIGURABLE property using the following com-

mands.

” set property HD.RECONFIGURABLE 1 [get cells system i/CAESAR 0/U0/

CAESAR v1 0 S00 AXI inst/rp instance] ”

• Save the assembled design state for this initial configuration using the fol-

lowing command.

” write checkpoint Checkpoint/initial config.dcp ”

• Create floor-plan which defines the RP region and sets the Pblock prop-

erty RESET AFTER RECONFIG=TRUE on the Pblock, and turns ON

the SNAPPING ON property. As shown in Fig.5.5, 5.6

Step 6: Create and Implement First Configuration

The target of this step is the implementation or (Place and Route), and this

Chapter 5 – System Implementation and Results 68

Figure 5.3: Black box in the static design

Figure 5.4: Load one RM for the RP

step is done automatically by the tool using the design netlists and the (area, time

and floorplanning) constraints generated from the above steps to map the design

on the FPGA device. This step includes optimize, place and route the design by

executing the following commands:

opt design, place design, route design ” in the TCL window ”

Then, Save the full design checkpoint, and finally, Save checkpoints for the recon-

figurable module (ASCON) .

Step 7: Create Other Configurations

In this step we had read the next set of RM DCPs, crate and implement the

rest of the configurations which are ” ASCON, COLM, Deoxys, OCB ” since we

were implemented the first RM ” ASCON ” in previous step.

Step 8: Run PR Verify

PR Verify is run to make sure that the design doesn’t have any errors.

Chapter 5 – System Implementation and Results 69

Figure 5.5: Create floor-plan which defines the RP region (a)

Step 9: Generate Bit Files

Finally, a full and partial bitstream sets are generated for different configurations

and partial blocks (RMs) in the design. The FPGA target is initially configured by

a full bitstream (A complete configuration image) and for runtime reconfiguration,

partial bitstreams of the required RMs are loaded from an external memory. The

full and partial bitstream is generated as shown in Fig.5.7.

Step 10: Generate Software Application

Run the SDK and write the code that controls the arm to test the design.

Step 11: Test the Design

Run the code and make sure that the design is correct.

Step 12: Generate Bit Files

In case of errors, correct the design and regenerate bitstreams.

Step 13: Generate Software Application

Edit the code and make sure that the design is correct.

Step 14: Test the Design

Run the code and make sure that the design is correct.

Fig.5.8 shows all steps of the DPR design flow.

Chapter 5 – System Implementation and Results 70

Figure 5.6: Create floor-plan which defines the RP region (b)

5.3 System Block Design

The full block design of the system is shown in Fig.5.9. Based on the study in

[14], AXI-HWICAP is the optimum choice as a controller in the proposed design

despite the limitations on the maximum throughput which is of second priority for

IoT constrained devices that require low area and power requirements. The PDR

triggers (signals that trigger the configuration of certain RMs) came from a pro-

gram that I built running on the ARM processor. CAESAR 0 is the basic design

instance and axi hwicap 0 is the HWICAP instance. They are both connected to

processing system7 0 which is the ARM processor through the AXI interconnect.

In Fig.5.10, a close up of CAESAR 0 (my design) within the block design is

shown.

5.4 Implementation Results

5.4.1 Resource Utilization

As shown in Table 5.1, the resource utilization of each configuration is calculated

for a Xilinx XC7Z020LG484-1 Zynq FPGA [44] after synthesis using Xilinx Vi-

vado 2015.2. The 5 configurations correspond to the 5 ciphers: AEGIS, ASCON,

COLM, Deoxys and OCB respectively. It is important to note that these results

are based on the original implementations by the designers of the ciphers. There

are no modifications applied to optimize for lower resources utilization. The main

Chapter 5 – System Implementation and Results 71

Figure 5.7: Generated Bit Files

Figure 5.8: DPR Design Flow

purpose is to prove the flexibility of the proposed design to embrace any configu-

ration.

Table 5.2 presents the resources utilized by the static components of the design

including the inputs/outputs FIFOs and the LFSR. PDI FIFOs exhibits the largest

area with 801 slice LUTs, 277 slice registers. This is because these FIFOs have

largest input/output port width of 256 bits and a depth of 32 registers.

By integrating the utilization results for the dynamic and static parts, it is

found that DPR helps in decreasing the utilization by 58% when compared to

using a traditional design with the 5 configurations physically mounted onto the

Chapter 5 – System Implementation and Results 72

Figure 5.9: System Block Design

Figure 5.10: Encryption Module

FPGA at the same time without switching. These results apply to both encryption

and decryption modules as they are using the same components except for the

LFSR which is amortized over the whole design area.

5.4.2 Power consumption

In Table 5.3, dynamic power consumption is calculated for each configuration for

both encryption and decryption modules at an operating frequency of 10 MHz

using Xilinx Vivado 2015.2.

Table 5.1: Resources utilization of the dynamic configurations

Configuration Slice LUTs Slice registers F7 MUXs F8 MUXs BRAM tiles
AEGIS 7250 2117 2052 1024 0
ASCON 1321 890 2 0 0
COLM 7547 2686 1137 376 4
Deoxys 2971 1593 641 256 0
OCB 4009 1612 593 200 4

Chapter 5 – System Implementation and Results 73

Table 5.2: Resource utilization of the static modules

Component Slice LUTs Slice registers F7 MUXs F8 MUXs BRAM tiles
LFSR 4 3 0 0 0
DO/PDI FIFOs 801 277 0 0 0
SDI FIFO 126 45 0 0 0

Table 5.3: Dynamic power consumption of the 5 configurations

Configuration Dynamic Power Consumption (mW)
AEGIS 9
ASCON 2
COLM 11
Deoxys 6
OCB 4

With an average consumption of 6.4 mW, the proposed design allows for 80%

reduction in power when compared with a conventional design using the 5 config-

urations in parallel without exploiting the capabilities of DPR. Figure 5.11 shows

the Dynamic power consumption of each RM.

Chapter 5 – System Implementation and Results 74

Figure 5.11: The power consumption of the RMs

Chapter 5 – System Implementation and Results 75

5.4.3 Reconfiguration time

The speed of configuration is directly related to the size of the partial bit file and

the bandwidth of the configuration port. In general, the reconfiguration time can

be calculated by dividing the size of the bitstream (in bits) by the throughput of

the ICAP [45]. The calculated configuration time is 1.67 ms for the 5 configura-

tions as they are using the same RP with fixed area on the FPGA. Although the

reconfiguration time is the main drawback of DPR, it is compensated by allowing

the ARM processor to do other tasks during this time which helps in increasing

the speed of any reconfigurable design.

5.5 Testing and Verification

The RTL codes and their test vectors folder for all algorithms have been down-

loaded from [33]. The AEAD top,LFSR, and FIFOs are written in VHDL .The test

vectors folder consist of 3 text files: PDI (Public data Input), SDI (Secret Data

Input) and DO (data output). PDI contains many messages, and each message

has its own ID. And each PDI message has some instructions and information

to help the pre-processor to know if the process is encryption or decryption, the

length of the plain text and associated data, the plain text and associated data.

SDI contains many messages, and each message related to the unique message

in the PDI file, and each message has instructions and information to help the

preprocessor.The PDI message and the related SDI message (I mean the two mes-

sages have the same ID) will be the input for the AEAD, and the output will be

the message that has the same ID inside the DO file.

However, The first challenge was to convert each CAESAR AEAD algorithm

from the VHDL code to the Block IP and add the required elements to achieve

the communication between the Block IP and the ARM processor.This is done by

”create and package custom IP” feature inside Vivado, and for more details about

how to create a custom block IP see [46].

We choose one of the 5 algorithms which is ”AEGIS” and converted it to block

IP. Consequently, In this step we have a block design system which mainly consist

of 2 components: ZYNQ7 processing System (PS) and AEGIS ZED REPO IP IP

(the AEGIS algorithm after converted to block level) as shown in Fig.5.12.

Chapter 5 – System Implementation and Results 76

Figure 5.12: AEGIS IP in Block Design level

The communication between these blocks is AXI4-Lite protocol. AXI4-Lite is

memory-mapped, therefore, we send the address of the register that we want to

write into, then the value that we need to write. We wrote a C code using Software

Development Kit (SDK) (Xilinx Eclipse) to write and read from the registers that

related to the block IP.

However, we chose one message from the PDI file, and the corresponding mes-

sage (has the same ID) from the SDI file, after that we write them into the

corresponding registers of the Block IP (AEGIS IP). Subsequently, we read the

registers that related to the Data Outputs (DO) of the AEAD, and check if the

output is the same of the corresponding message (message that has the same ID

of the input message) inside the DO file. Unfortunately, the data that we read

was not matched with the correct value inside the DO file.

We have spent a lot of time in this phase to read a correct value, after that we

found the problem was related to the timing issue. And this is what called ”clock

domain crossing”. After we made search for it and read some documents such as

[16] related to the clock domain issue, we found that the solution will be using the

FIFOs in the input and output as we mentioned it in the section 4.3.1.

Now, we added PDI FIFO to store the PDI data before process them from the

AEAD, SDI FIFO to store the SDI data before process them from the AEAD,

Chapter 5 – System Implementation and Results 77

DO FIFO to store the output of AEAD. And also we added a signal inside the

block IP which named as ”input Enable”, this signal is active high and we control

it from the C code, when we send all input data ” PDI and SDI ” to the FIFOs

registers, we make the ”input Enable” signal high level to till the AEAD to read

the input data from the FIFOs and start the processing. When the AEAD finish

the processing, it will send the ”output valid” to the DO FIFO and starts to send

the output data to the DO FIFO, and when the DO FIFO is filled, it will make

the ” FIFO output Valid” high.

In the C code, after we send all the input data ”PDI and SDI” we always

check the bit ”FIFO output Valid”, if it is high, then we will read the registers

of the DO FIFO. We have compared between the data of DO file (corresponding

message) and the data that we got from the DO FIFO after the processing, and

we found it is correct.

Fig.5.13 shows the output of the AEGIS IP after we send the PDI and SDI using

the ARM core, and we used the SDK terminal to display the output.

We repeated this step for all algorithms, and we ensured that the output data is

as expected.

Figure 5.13: The output of the Encryption Process using AEGIS Algorithm

In the Encryption side, the system consist of two parts, static part and dynamic

part. Static part consist of 3 IP blocks as shown in Fig. 5.9, AXI-HWICAP IP

block, PS block and our IP block ”CAESAR”. AXI-HWICAP IP block and PS

block are produced by Vivado tool, but the CAESAR block is our work and it

consist of: AEAD top, 3 FIFOs and LFSR. The dynamic part consist of one

reconfigurable region which is where the cipher module will be located. The DPR

design flow is as it illustrated in section 5.2. After we connected the ZC702 board

to the PC and define the port that it connected with, we program the FPGA and

we run the C code in ”Launch on Hardware (GDB)” mode in SDK tool, to show

the pattern that produced from the LFSR and the data output using the terminal

Chapter 5 – System Implementation and Results 78

inside the SDK. The output data of the AEAD will be send to another IoT node

using (UART 1) as shown in Fig. 4.17 .

Figures (5.14,5.15) are showing the output of the encryption module, there are

5 messages and each message encrypted using one of the CAESAR algorithms.

Generating cipher IDs is the task of the LFSR as we mentioned before.

Figure 5.14: The output of the Encryption Module (1)

Figure 5.15: The output of the Encryption Module (2)

The output message is divided into 5 lines: first line is a header to inform if

the output data is plain text or cipher text, the length of this data and if this

line is last line in the output message or not, as we shown that the first line is:

(0x52000001)and this means that the data is cipher text and will be one byte in

our case and this line is not the last line for the output message. The second line

will be the cipher text. The third line is a header related to the tag which define

Chapter 5 – System Implementation and Results 79

the length of the tag and then if this line is the last one, as we have shown that the

third line is (0x8300001) which means that the tag in our case is 16 byte. And the

fourth line is the tag value. And the last line of the output value corresponding

to the status of this message, if the encryption done correctly, then the value will

be ”0xE0000000” else the value will be ”0xF0000000”.

However, In the decryption side, the CAESAR IP block consist of: AEAD

and FIFOs. First, the decryption module will receive the cipher ID and the PS

will till the HWICAP to start transforming the bit file of this algorithm to the

configuration memory. After that, the decryption module will receive the cipher

text and decrypts it. Fig.5.16 shows the output of the decryption module.

Figure 5.16: The output of the Decryption Module

As we shown, the output message consist of 3 lines: the first one is to inform

if the output data is cipher text or plain text, and the length of this data. The

second one is the data and the last line is status of this message, ”0xE0000000”

means the status is success and ”0xF0000000”is Fail.

Chapter 6

Conclusion and Discussion

6.1 Conclusion

In this thesis, a new design that adds a new dimension of security for constrained

IoT devices using the concept of algorithm hopping , in analogy to the well known

frequency hopping technique, is introduced. DPR technology is used for switching

between 5 lightweight ciphers that are currently under review in the CAESAR

contest and provides a reduction of 57% and 80% in area utilization and power

consumption respectively. The design is mounted on a Xilinx XC7Z020LG484-1

Zynq FPGA and synthesized using Xilinx Vivado 2015.2.

6.2 Discussion from Utilization Perspective

Figure 6.1 shows a comparison between the static implementation and DPR-based

implementation of the proposed design. It shows that if the proposed design

implemented without DPR technique, then we have to reserve area for all the

algorithms. in contrast, in our case we have reserved space for the larger algorithm

and then during the run time we reconfigure the algorithm required.

However, figure 6.1 shows scale drawings of the 5 algorithms utilization (LUT

only), and to illustrate the comparison from perspective of all resources that used,

we make the figure 6.2

80

Chapter 6 – Conclusion and Discussion 81

Figure 6.1: Comparison between DPR and non-DPR implementation.
The figure shows scale drawings of the 5 algorithms utilization (LUT only)

Figure 6.2: Comparison between DPR and non-DPR implementation for the pro-
posed design from the point of view of all resources used.

6.3 Discussion from Power Perspective

Figure 6.3 shows that the using of DPR provides a reduction of 80% in power

consumption assuming all algorithms are used at the same time. However, on the

Chapter 6 – Conclusion and Discussion 82

assumption that a simple controller is used to switch between the algorithms, and

therefore one algorithm only works and the rest does not at the run time, the

power consumption will be the sum of : the average power of the 5 algorithms

plus the leakage power of each algorithm plus the consumed power of the simple

controller.

Figure 6.3: Comparison between DPR and non-DPR implementation of the pro-
posed design from the point of view of power consumption .

However, the table 6.1 shows the comparison between our work and [2] when

the two design work at 100 Mhz. Whereas, the table 6.2 the comparison between

our work and [3] when the two design work at 157.63 MHz.

Table 6.1: Comparison between the proposed design and [2]

Parameter Proposed Design [2]
device XC7Z020LG484-1 XC7Z010clq225-3
power [mw] 63.4 455
confidentiality yes yes
Integrity yes No
Authentication yes No
second dimension of security yes No

Energy per bit:

Energy per bit is the consumed energy for encrypting a single bit while energy

per block is the consumed energy to encrypt a complete block.

Table 6.3 shows the energy per bit values for the most commonly used low-power

wireless technologies.

Chapter 6 – Conclusion and Discussion 83

Table 6.2: Comparison between the proposed design and [3]

Parameter Proposed Design [3]
device XC7Z020LG484-1 Cyclone IV (Altera)
power [mw] 100.2 166.67
confidentiality yes yes
Integrity yes yes
Authentication yes yes
second dimension of security yes No

Table 6.3: Energy per bit for low-power wireless technologies

Technology Energy per Bit(µJ/bit)
ANT 0.71
BLE 0.153
Zigbee 185.9
Wi-Fi 0.00525

Since there are 5 algorithms in the proposed design, the Energy per bit is

calculated for each one, after that the average Energy per bit is calculated.

Energy per bit for COLM algortihm:

Power = 11 mW.

Time for complete encryption = 39 * 100 n = 3.9 µs as the frequency is 10MHZ.

Energy = 0.0429 µJ.

Energy per bit = 335 pJ/bit (as the PDI = 128 bits).

Energy per bit for AEGIS algortihm:

Power = 9 mW.

Time for complete encryption = 23 * 100 n = 2.3 µs as the frequency is 10MHZ.

Energy = 20.7 nJ.

Energy per bit = 161.7 pJ/bit (as the PDI = 128 bits).

Energy per bit for Deoxys algortihm:

Power = 6 mW.

Time for complete encryption = 19 * 100 n =1.9 µs as the frequency is 10MHZ.

Energy = 11.4 nJ.

Energy per bit = 89 pJ/bit (as the PDI = 128 bits).

Energy per bit for OCB algortihm:

Power = 4 mW.

Time for complete encryption = 17 * 100 n =1.7 µs as the frequency is 10MHZ.

Energy = 6.4 nJ.

Chapter 6 – Conclusion and Discussion 84

Energy per bit = 50 pJ/bit (as the PDI = 128 bits).

Energy per bit for ASCON algortihm:

Power = 2 mW.

Time for complete encryption = 16 * 100 n =1.6 µs as the frequency is 10MHZ.

Energy = 3.2 nJ.

Energy per bit = 25 pJ/bit (as the PDI = 128 bits).

The average Energy per bit

The average energy per bit for the proposed design is 130.34 pJ/bit. After the

comparison between the proposed system and the table 6.3, it can be seen that

the energy per bit for the proposed design is a lot lower than the energy per bit

for the communication modules that are being used today.

6.4 Brute-Force Attack

The attack which uses the method ”Trial and error” by guessing passwords is

called Brute force attack. An attacker first gathers the fundamental information

about the user. For example, user’s full name, room number, vehicle number,

children names etc.

The attacker continuously tries random passwords on the basis of the user’s

personal information. The attacker tries this until he/she gets success. This may

take hours, days, months and years also.

The table 6.4 shows the number of alteration for different key sizes.

Table 6.4: NO. OF ALTERNATION for Different Key Sizes

KEY SIZE NO. OF ALTERNATION
32-bit 232

56-bit 256

128-bit 2128

168-bit 2168

In the proposed design, there are 5 ciphers, the key size for each cipher is 128

bits. Therefore, the number of alternation for each cipher is: 2128 which equal to :

3.4028237e+ 38.However,the attacker needs (2numberOfBits multiplied by duration

of a single attack.) to attack the system. If one attack takes a millisecond, then

it’ll take (TimeToBreak128Bits = 1.076080142e + 28) years to go through 2128

values. The key is different for each cipher algorithm.

Chapter 6 – Conclusion and Discussion 85

Since we make hopping between the 5 algorithms, then the time that is need

to break the system is: (TimeToBreak5Algorithms = TimeToBreak128Bits5).

In addition, the sequence of patterns is random and it is changeable during the

run time and since we have 3-bits LFSR, then the time that is need to break the

system will be (TimeToBreak5Algorithms ∗ 7).

6.5 Future Work

The reconfiguration time is the main drawback of DPR and we suggest the fol-

lowing recommendations for future research investigations to reduce the time of

reconfiguration :

• Reduce the reconfiguration time overhead by reduce the bitstream size of

the RMs by applying compression /decompression techniques.

• Optimize the way the bitstreams are transferred by improve the ICAP in-

terface speed.

• Another approach to reduce the reconfiguration overheads is to apply schedul-

ing techniques that attempt to hide the reconfiguration latency by fetching

the configurations in advance and storing them in idle reconfigurable regions.

Bibliography

[1] Xilinx Inc., “Vivado design suite partial reconfiguration user guide UG909 ,”

Apr. 2017.

[2] S. M. Soliman, B. Magdy, and M. A. A. El-Ghany, “Efficient Implementation

of the AES Algorithm for Security Applications,” 29th IEEE International

System-on-Chip Conference (SOCC), Seattle, WA, 2016.

[3] A. HAFSA, N. ALIMI, A. SGHAIER, M. ZEGHID, and M. MACHHOUT,

“A Hardware-Software Co-designed AES-ECC Cryptosystem,” International

Conference on Advanced Systems and Electric Technologies (IC ASET), 2017.

[4] C. Lane, “Book: The Long View: Mobile 2025 - Part II - What is the outlook

for machine-based demand?,” Bernstein Research, 2017.

[5] A. Massimo, “Enabling the internet of things from integrated circuits to in-

tegrated systems,” Springer, 2017.

[6] C. Thangavel and P. Sudhaman, “Book: Connected Environments for the

Internet of Things,” Springer, 2017.

[7] “ IoT security market Report.” Available:: https://iot-analytics.com/

new-iot-security-report/, 2017.

[8] ”ZC702 Evaluation Kit Getting Started Guide”, UG926 (v6.0), December 17,

2013, found under http://www.xilinx.com/.

[9] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, “The Zynq

Book,” July 2014.

[10] Xilinx Inc., “Zynq-7000 Technical Reference Manua UG585 v1.7,” 2014.

86

https://iot-analytics.com/new-iot-security-report/
https://iot-analytics.com/new-iot-security-report/
http://www.xilinx.com/.

87

[11] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M. U. Sharif, and

K. Gaj, “GMU Hardware API for Authenticated Ciphers,” International Con-

ference on Reconfigurable Computing and FPGAs, pp. 1–8, Dec. 2015.

[12] C. Maxfield, “Book: The design warrior’s guide to fpgas,” Newnes, 2004.

[13] D. Dye, “Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite,”

Xilinx, 2012.

[14] A. Kamaleldin, A. Mohamed, A. Nagy, Y. Gamal, A. Shalash, and

H. Mostafa, “Design Guidelines for the High-Speed Dynamic Partial Recon-

figuration Based Software Defined Radio Implementations on Xilinx Zynq

FPGA,” IEEE International Symposium on Circuits and Systems, May 2017.

[15] Xilinx Inc., “AXI HWICAP PG134,” Oct. 2016.

[16] S. Kilts, “Book: Advanced FPGA Design Architecture, Implementation, and

Optimization,” Wiley-Interscience, 2007.

[17] R. Minerva, A. Biru, and D. Rotondi, “Towards a definition of the Internet

of Things (IoT),” IEEE, May 2015.

[18] C. Bekara, “Security Issues and Challenges for the IoT-based Smart Grid,”

Procedia Computer Science Journal, vol. 34, pp. 532–537, 2014.

[19] M. Katagi and S. Moriai, “Lightweight Cryptography for the Internet of

Things,” Sony Corporation, pp. 7–10, 2008.

[20] S. Koteshwara and A. Das, “Comparative study of Authenticated Encryp-

tion targeting lightweight IoT applications,” IEEE Design and Test, vol. 34,

pp. 26–33, 2017.

[21] K. Ashton, “That ” internet of things”thing,” RFiD Journal, vol. 22, pp. 97

– 114, 2009.

[22] IEEE, “ Special Report: The Internet of Things,” 2014.

[23] S. C. Mukhopadhyay and N. K. Suryadevara, “Book: Internet of Things:

Challenges and Opportunities,” Springer, 2014.

88

[24] O. Vermesan and P. Friess, “ Book: Internet of Things-From Research and

Innovation to Market Deployment,” River, 2014.

[25] N. Mahalle and P. Railkar, “Book: Identity Management for Internet of

Things,” River, 2015.

[26] Xilinx Inc., “LogiCORE IP MicroBlaze Micro Controller System,

Product Specification.” Available:: http://www.xilinx.com/support/

documentation/sw_manuals/xilinx14_1ds865_microblaze_mcs.pdf,

2012.

[27] ARM, “Cortex-A9 MPCore Technical Reference Manual.” Available::

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0407g/

DDI0407G_cortex_a9_mpcore_r3p0_trm.pdf, 2011.

[28] ”AXI Reference Guide”, UG761 (v13.1), March 7, 2011, found under http:

//www.xilinx.com/.

[29] S. Li and L. D. Xu, “Book: Securing the internet of things,” Syngress, 2017.

[30] C. Paarr and J. Pelzl, “ Book: Understanding Cryptography,” Springer, 2010.

[31] P. Rogaway, “Authenticated-encryption with associated-data,” ACM Confer-

ence on Computer and Communications Security, ACM Press, 2002.

[32] H. Krawczyk, “ The order of encryption and authentication for protecting

communications (or: How secure is SSL?,” Springer, 2001.

[33] C. Competition, “https://competitions.cr.yp.to/caesar-call.html,”

2014.

[34] H. Wu and B. Preneel, “AEGIS: A Fast Authenticated Encryption Algo-

rithm,” in Selected Areas in Cryptography – SAC 2013. Lecture Notes in

Computer Science (T. Lange, K. Lauter, and P. Lisonek, eds.), vol. 8282,

Berlin,Heidelberg, (2014): Springer.

[35] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.2.”

Submission to the CAESAR competition: http://competitions.cr.yp.to/

round3/asconv12.pdf, 2016.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1 ds865_microblaze_mcs.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1 ds865_microblaze_mcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0407g/DDI0407G_cortex_a9_mpcore_r3p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0407g/DDI0407G_cortex_a9_mpcore_r3p0_trm.pdf
http://www.xilinx.com/.
http://www.xilinx.com/.
https://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/round3/asconv12.pdf
http://competitions.cr.yp.to/round3/asconv12.pdf

89

[36] J. Daemen, “Permutation-based Encryption, Authentication and Authenti-

cated Encryption,” DIAC- Directions in Authenticated Ciphers, July 2012.

[37] E. Andreeva, A. Bogdanov, N. Datta, A. Luykx, B. Mennink, M. Nandi,

E. Tischhauser, and K. Yasuda, “COLM v1.” Submission to CAESAR com-

petition., 2015.

[38] C. Cid, T. Huang, T. Peyrin, Y. Sasaki, and L. Song, “A Security Analysis

of Deoxys and its Internal Tweakable Block Ciphers,” IACR Transactions on

Symmetric Cryptology, vol. 3, pp. 73–107, 2017.

[39] T. Krovetz and P. Rogaway, “The OCB Authenticated-Encryption Algo-

rithm,” RFC 7253, DOI 10.17487/RFC7253, (May 2014), May 2014.

[40] M. S. Ibrahim, I. Ahmed, M. I. Aslam, M. Ghazaal, M. Usman, K. Raza, and

S. Khan, “A Low Cost FPGA based Cryptosystem Design for High Through-

put Area Ratio,” International Journal of Advanced Computer Science and

Applications (IJACSA), vol. 8, 2017.

[41] N. H. Motlagh, “Frequency Hopping Spread Spectrum : An Effective Way to

Improve Wireless Communication Performance,” Advanced Trends in Wire-

less Communications, 2011.

[42] Xilinx Inc., “ Efficient Shift Registers, LFSR Counters, and Long Pseudo-

Random Sequence Generators,” Jul. 1996.

[43] K. Vipin and S. A. Fahmy, “ZyCAP : Efficient Partial Reconfiguration Man-

agement on the Xilinx Zynq,” IEEE Embedded Systems Letters, vol. 6, no. 3,

pp. 41–44, 2014.

[44] Xilinx Inc., “ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Pro-

grammable SoC UG850 ,” Sep. 2015.

[45] R. L. Roux, G. V. Schoory, and P. V. Vuuren, “Block RAM-based architecture

for real-time reconfiguration using Xilinx FPGAs,” SACJ, Research Article,

2015.

90

[46] Xilinx Inc., “Creating and Packaging Custom IP UG1118 .” Avail-

able:: https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2017_2/ug1118-vivado-creating-packaging-custom-ip.pdf,

2017.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug1118-vivado-creating-packaging-custom-ip.pdf

	Abstract
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Thesis Aim
	Thesis Organization

	Fundamentals
	The Internet of Things: Context and Overview
	IEEE definition
	ITU definition

	IoT Architecture
	The applications of IoT
	Agriculture Sector
	Automotive
	Public Transportation
	Energy Management
	Health Care
	Smart Homes
	Smart Buildings
	Smart Cities

	Security Challenges in IoT Nodes
	Development Board
	Overview
	ZC702 Board Features

	System-on-Chip with Zynq
	SoC Design Flow
	Processing System
	Application Processing Unit (APU)
	Programmable Logic
	Processing System - Programmable Logic Interfaces

	Cryptography and Previous Work
	Introduction to Cryptography
	Cryptographic Goals
	Secret-key cryptography Types

	Authenticated Encryption
	Advantages of Authenticated Encryption
	AE(AD) Constructions

	CAESAR Competition
	Introduction
	Functional Requirements of the CAESAR Contest
	AEGIS
	ASCON
	COLM
	Deoxys
	OCB
	The GMU Hardware API for the CAESAR

	Previous Work
	Limitations in the Previous work

	Methodology and Proposed Design
	Algorithm Hopping
	Dynamic Partial Reconfiguration
	FPGA Configuration
	DPR Technology
	DPR Benefits
	DPR Terminology
	Reconfigurable Elements
	Managing Dynamic Device Reconfiguration
	DPR controllers
	Xilinx AXI-HWICAP controller

	Proposed design
	Design modules
	Design flow

	System Implementation and Results
	Requirements
	DPR design flow
	System Block Design
	Implementation Results
	 Resource Utilization
	Power consumption
	Reconfiguration time

	Testing and Verification

	Conclusion and Discussion
	Conclusion
	Discussion from Utilization Perspective
	Discussion from Power Perspective
	Brute-Force Attack
	Future Work

	Bibliography

