g

Cairo University

HARDWARE IMPLEMENTATION OF SOFTWARE
DEFINED RADIO BASED ON DYNAMIC PARTIAL
RECONFIGURATION

By

Sherif Mohamed Hosny Afifi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

HARDWARE IMPLEMENTATION OF SOFTWARE
DEFINED RADIO BASED ON DYNAMIC PARTIAL
RECONFIGURATION

By
Sherif Mohamed Hosny Afifi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Ahmed H. Khalil Dr. Hassan Mostafa Hassan
Professor Assistant Professor
Electronics and Electrical Communications Electronics and Electrical Communications
Engineering Department Engineering Department
Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

HARDWARE IMPLEMENTATION OF SOFTWARE
DEFINED RADIO BASED ON DYNAMIC PARTIAL
RECONFIGURATION

By
Sherif Mohamed Hosny Afifi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Approved by the
Examining Committee

Prof. Dr. Ahmed H. Khalil Thesis Main Advisor
Prof. Dr. Mohamed F. Abu-ElYazeed Internal Examiner
Dr. Magdy A. EI-Moursy External Examiner

(Electronics Research Institute)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer’s Name: Sherif Mohamed Hosny Afifi

Date of Birth: 15/2/1993

Nationality: Egyptian

E-mail: Sherif1521993@gmail.com

Phone: 01005264022

Address: 39 El-Maraghi street, EI-Agouza
Registration Date: 1/3/2015

Awarding Date: 2018

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:
Prof. Dr. Ahmed H. Khalil
Dr. Hassan Mostafa Hassan

Examiners:
Prof. Dr. Ahmed H. Khalil (Thesis Main Advisor)
Prof. Dr. Mohamed F. Abu-El'Yazeed (Internal Examiner)
Dr. Magdy A. EI-Moursy (External Examiner)

(Electronics Research Institute)
Title of Thesis:

HARDWARE IMPLEMENTATION OF SOFTWARE DEFINED RADIO BASED
ON DYNAMIC PARTIAL RECONFIGURATION

Key Words:
Software Defined Radio; Dynamic Partial Reconfiguration; Field Programmable Gate
Array

Summary:

This work implements SDR transceiver system for five wireless communication
standards: Bluetooth, Wi-Fi, 2G, 3G, and LTE on Zyng-7000 evaluation kit. The
new DPR technique is used to switch between different multi-standard
communication systems on the same FPGA partition. Implementing SDR using
DPR combines the advantage of hardware performance and software flexibility.
A test environment is established to measure the effectiveness of the new
technique.

mailto:Sherif1521993@gmail.com

Abstract

Dynamic Partial Reconfiguration (DPR) has been used extensively over the past few
years allowing reconfiguration of Field Programmable Gate Arrays (FPGAs) during the
run time. FPGA is considered one of the best solutions for implementing reconfigurable
hardware. The concept of hardware reconfiguration exists for several decades and passed
through many evolution phases. With the aid of DPR, multi-standard Software Defined
Radio (SDR) system can be implemented in order to save power and area extensively.
Over the past few years, wireless communication standards witnessed great and rapid
evolution. The market is always acquiring higher data rates and more special services.
This leads to increasing the design complexity, area, and power consumption. Deploying
DPR technology on FPGAs made it feasible to design and manufacture all wireless
communications standards on the same hardware. Loading each standard on demand
reduces area utilization and power consumption.

SDR is a communication system whose physical layer is used to do all the computations
using the software. The communication blocks in ordinary radio transceivers are designed
in a fixed environment to process a certain waveform. SDR is able to process many
waveforms since it can be easily configured using software. It is becoming achievable,
as the flexibility in the digital front-end reconfiguration increases. One of the advantages
of implementing the SDR is increasing the flexiblity that aids in performing dynamic
and real-time reconfiguration. Another advantage of using SDR is the efficient use of
resources under varying conditions. Bottom line is, the hardware flexibility allows the
SDR dynamic system to implement different standards within real-time without the need
to switch off the system. The fundamental challenge facing the deployment of SDR is how
to achieve sufficient computational capacity, in particular for processing wide-band high
bit rate waveforms, within acceptable size and weight factors, within acceptable unit costs,
and reduced power consumption compared to the communication standards implemented
in current mobile phones.

This work implements SDR transceiver system for five wireless communication stan-
dards: Bluetooth, Wi-Fi, 2G, 3G, and LTE on Zyng-7000 evaluation kit. The new DPR
technique is used to switch between different multi-standard communication systems on
the same FPGA partition. Implementing SDR using DPR combines the advantage of hard-
ware performance and software flexibility. A test environment is established to measure
the effectiveness of the new technique. Two approaches are deployed to implement the five
transceivers using DPR. The first technique uses a single reconfigurable partition for the
transmitter and the receiver. The second technique recommends splitting the design into
multi-partitions in order to achieve the best performance for all transceivers. A compari-
son is performed for the system total area and power consumption between the two DPR
approaches and the case of no DPR. The single partition approach achieves reduction of
area and power by 10.19% and 76.71% respectively with a reasonable switching time. The
multi-partition approach is able to reduce the allocated area and power consumption for
all chains. Power reduction for 2G and Bluetooth is 95.43%, for 3G and Wi-Fi is 79.69%,
for LTE is 59.09% compared with the case of no DPR.

Acknowledgements

First I would like to devote this work to my family. For my departed father who
believed in me and always been supportive ever since I began this long way, thanks for
everything you’ve done. To my beloved mother and sister who were always been holding
my back every single predicament.

I would like also to thank my closest friends: Said Hazem, Mahmoud Abd-El-Hameed,
Mazen Taha, Mahmoud Fawzy, Karim Gooda, and Ahmed Magdy for being there for me
every time I needed your support.

Of course a heartfelt thanks for my best friends: Hagar Hasanain and Aya Alaa for
their inspiration and devotion.

I would like to express my thanks to my work managers and colleges: Mohamed
Korany, Carole Richard, Amr Baher, Islam El Nader, Mostafa Gamal, Abdulrahman
Hussein, Mohamed Nafea, Yahia Khalid, and Mohamed Adel for all their aid and support
along this tough road.

Last but of course not least, my deep thanks goes to my master thesis supervisors
Dr. Hassan Mostafa and Prof. Ahmed Hussein for their guidance during the master
preparation.

11

Disclaimer

I herby declare that this thesis is my own original work, and that no part of it has been
submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately ackowleged al sources used have cited them
in the refernces section.

Name:

Signature:

111

Table of Contents

[Abstract i
[Acknowledgements| ii
[Disclaimer] iii
"Table of Conten iv
[List of Tables| viii
[List of Figures| ix
[Nomenclatures xi
1__INTRODUCTION 1
[LI_Problem Domainl, 1

1.2 Thesi Imef 2

2 LITERATURE SURVEY 3
2.1 ~Background and Related Workl, ... 3
[2.2 Communication System in Details| 3
2.3 SDR System Overview| 4
oard (ZC/02)[.o 5

2.4.1 FPGA Evolution History| 5

2.4.2 Introduction to The Board 6

43 CLBOverview| 7

2.5 FPGA Configuration|, 9
[2.5.1 Configuration Definition| 9

[2.5.2 Types of Configuration| 9

253 DPRmMFPGAS 11

2.5.4 Typesof BitFiles| 11

2.6 DPRTechniques|. o 12
2.6.1 External Mode Using JTAG| 12

12

13

13

14

17

17

18

[3.2.1 Segmentation| Lo 18

[3.2.2 HEC Generator, CRC, and Whitening| 19

[3.2.3 Repetition and Hamming Encoders|. 19

v

[3.4.5 Differential Coding|
4 bain Utilization|

3.6.1 CRCH. . . oo
[3.6.2 Segmentation|
B.63 TurboEncoded

[3.6.4 Rate Matching|

@.2.1 Demapper
@4.2.2 Repetition and Hamming Decoders|.

{4.6.6 Desegmentation|
4.6°7 De-CRCI.
“.6.8 Cham Utilizationl
@7 Summary| e e e e e

> FPGA PROTOTYPING

[5.2 Block Design Implementation]
5.3 DPRFlow Steps|.
[5.4 DPR Proposed Approaches|
[5.4.1 Single Partition Approach|
[5.4.2 Multu-Partition Approach|{ 0oL

6 CONCLUSION AND PROPOSED FUTURE WORK]
6.1 Conclusionl e

[6.2 Proposed Future Workl L.

[Appendix A Partioning Algorithm|

vi

(Appendix B FPGA Prototyping Code|

[Appendix C Reconfiguration Algorithm|

vil

93

98

List of Tables

R xi
2.1 FPGA Resources [23l] 8
2.2 Configuration Tools Bandwidth [23]] 13
3.1 Wi-F1 Vartous MCS [36]| e 17
3.2 DQPSK Mapping Relationship [353]} 20
Bl h Transmitter Chain Ar iization| 21

B. 4 BPSK Modulation Scheme [36]]. 25
3.5 QPSK Modulation Scheme [36] 25
3.6 Wi-Fi Transmitter Chain Area Utilizatonl 25
3.7 2G Transmutter Chain Area Utilizationl 28
[3.8 3G CRC Polynomial Equations [46] 31
(3.9 Number of Segments [46] L. 33
3.10 3G Transmitter Chain Area Utilizationl 35
[3.11 LTE Transmission Schemes [48]]| 40
B3.12 LIE Transmitter Chain Area Utilizationl 40
“.1 _Bluetooth Receiver Chain Area Utilizationl 44
.2 Hamming Distance 1n case of coding rate 1/2 [36)] 51
#.3 Hamming Distance 1n case of coding rate 1/3[36] 51
4 1-F1 Receiver Chain Ar ihization| L 52
KS 2G Receiver Chain Area Utilizationl 54
Kh.6 3G Receiver Chain Area Utilizationl 57
U7 LTE Receiver Chain Area Utilizationl 60
0.1 Transmitter Chains Area Utilizationl 78
5.2 Receiver Chains Area Utilizationl 79
[3.3 Switching Time| 80
[>.4 Area and Power Comparison| 81

viil

List of Figures

2.1 Ideal communication system|
[2.2 Basic software controlled radio [22]
2.3 Softcore and hardcore processors [26]|
2.4 Zyngboard [23l]f
2.5 Zynq board internal structure [23]] L.
[2.6 Arrangement of slices within the CLB [28].
[2.7 _CLB column and row connections [28]|
2.8 FPGA Layers|
2.9 DPR configuration criteria [29]
P10 DPR controllers [30]] - - « « « « v v v eoee e

RIT AXTHWICAP core [B3] o oo
2.12 PRCimn DPR system [34)

2.13 PRC virtual socket [34ff
RI4PRCletchpath 34,

[3.1 Block signalsineachcham|
3.2 Bluetooth transmitter block diagram [35]
[3.3 Segmentation controller algorithm|
[3.4 Bluetooth hamming encoder [35]
[3.5 Wi-Fi1 transmitter chain block diagram [36]f.
[3.6 Wi-Fi convolutional encoder [36]f
[3.7 Wi-Fi puncture algonithm [36]
3.8 Wi-Fi1 [FFT block diagram|
[3.9 2G transmitter chain block diagram [42]
[3.10 2G interleaver matrix [42].o oo oL
[(3.11 Burstdata formation [42]
[3.12 Burst formation block diagram| 00000
[3.13 Burst formation controller algorithm|
[3.14 3G transmitter chain block diagram [45]
[3.15 3G segmentation FSM| 0 o000
[3.16 3G convolutional encoder [46]|
[3.17 3G interleaver block diagram [46]
3.18 3G first interleaver [46]
[3.19 CDM block diagram [47]
[3.20 LTE transmaitter chain block diagram [48]]]
[3.21 4G segmentation EFSM| oL oL L
3.22 4G turboencoder [48ff
[3.23 4G Rate matching block diagram [49]
[3.24 OFDM section block diagram|.

@.1 Bluetooth receiver block diagram|
4.2 Dewhitening polynomial [35]f
B3 De-HEC polynomial [35]

X

B4 De-CRCpolynomial [35] 43

4.5 Wi-Fireceiver chain block diagram|.00 L. 44
4.6 Wi-Fi1 FFT and demapper block diagram| 45
.7 Wi-Fi depuncturing algorithm [36] 46
@.8 Viterbi block diagram [S0] oo oL 47
4.9 Viterbr decoder algorithm flow chartf 48
.10 Convolutional encoder terellis example|. 49
@.11 Trellis diagram for error decoding| 49
.12 BMU block diagram|. 50
@.13 Distance calculator for codingrate 1/2) 50
@.14 Distance calculator for codingrate 1/3[. 50
4.15 Wi-Fidescrambler [36l] 51
#.16 2G recerver chain block diagram|o 000 52
A 17 2Gde-CRC o o o 54
#.18 3G recetver chain block diagram| 55
@.19 3G demterleaver block diagram|.o o000 56
4.20 3G de-CRC 56
#.21 LTE receiver chain block diagram| 58
@4.22 OFDM section block diagram|. 58
.23 Turbo decoder block diagram [S11 59
E2ATTEde-CRA. .« . . o oo e e e e e e e e e e 59
.1 Zyng-7000 SoC ZC702 evaluation kit peripherals [27] 62
5.2 TestenvironmentonthePl.side], 63
0.3 C-codeflowchartl 63
[5.4 Hardware initialization steps| 64
[5.5 Block design connections|o 66
[5.6 PRCconfiguration|., 67
[5.7 Connection automationoptions| 67
[5.8 HDL wrapper creation| 68
0.9 Pblockselectionl 69
[5.10 Pblock properties| o 70
[5.11 Exporting Hardware|. 71
[5.12 SDK projectcreation| o 71
[5.13 Software program execution| 72
[5.14 DPR overall system| 72
[5.15 Single partition approach block diagram| 73
[5.16 Single partition approach floorplanf. 73
[5.17 Virtex-7 RP physical constraints| 75
[5.18 Partitioning algorithm flowchart| 76
[5.19 Multi-partition approach block diagram| 76
[5.20 Multi-partition approach floorplan| 77
[5.21 Wi-F1 16-QAM fraction part fixation| 78
[5.22 Area utilization (LUTs) 79
[5.23 Swithcingtime (ms)| 80
[5.24 Average power (mW)| L L 81

List of Nomenclature

Abbreviation Description

2G Second Mobile Generation.

3G Third Mobile Generation.

3GPP 3rd Generation Partnership Project.
ADC Analog to Digital Converter.

ASIC Application Specific Integrated Circuit.
AXI Advanced Extensible Interface.

BPSK Binary Phase Shift Keying.

BRAM Block Read Access Memory.

CDMA Code Division Multiple Access.

CRC Cyclic Redundancy Check.

DAC Digital to Analog Converter.

DDR Double Data Rate.

DPR Dynamic Partial Reconfiguration.

DSP Digital Signal Processing.

FEC Forward Error Correction.

FIFO First Input First Output.

FPGA Field Programming Gate Array.

FSM Finite State Machine.

GPP General Purpose Processor.

HDL Hardware Description Language.
GSM Global System for Mobile communications.
ICAP Internal Configuration Access Port.
IFFT Inverse Fast Fourier Transform.

IEEE Institute of Electrical and Electronic Engineers.
ILA Interactive Logic Analyzer.

JTAG Joint Test Action Group.

LTE Long Term Evolution.

LUT Look Up Table.

OFDM Orthogonal Frequency Division Multiplexing.
PL Programmable Logic.

PRC Partial Reconfiguration Controller.

PS Processing System.

PLB Programmable Logic Block.

RM Reconfigurable Module.

RP Reconfigurable Partition.

xi

QAM Quadrature Amplitude Modulation.

QPSK Quadrature Shift Keying.

SCFDMA Single Carrier Frequency Division Multiple Access.
SDK Software Development Kit.

SDR Software Defined Radio.

SoC System on Chip.

TTI Transmission Time Interval.

SRAM Static Random Access Memory.

UMTS Universal Mobile Telecommunications System.

xii

Chapter 1: Introduction

Modern wireless communication systems are witnessing a new era of high data rates,
and consequently higher power consumption of mobile batteries due to the powerful
baseband signal processing. Researchers try to minimize the area and power consumed
by the signal processing in various wireless communication standards, with the aid of
different algorithms and software techniques.

Wireless communication standards are continuously changing and upgrading to achieve
better performance, new features, higher throughput, and new technologies. IC fabrication
is becoming more difficult and costly impractical. This is due to the increase of number of
standards and technologies (such as GSM, UMTS, LTE, Wi-Fi, and Bluetooth) required
to be implemented in different handset devices. The large number of analog and digital
blocks in each standard consume large amount of power, which is a scarce resource for
the handset [[1]]. In order to solve this issue, both user terminal and base station need to
adopt dynamic switching between multiple communication standards. This is denoted by
Software Defined Radio (SDR) [2, [3]].

Various technologies can be used to implement SDR such as DSPs and Field Pro-
grammable Gate Arrays (FPGAs). The FPGA provides the best balance between perfor-
mance, low power consumption, and short design cycle [4]. Improvements in FPGAs make
the realization of SDR possible [S]. FPGAs are the usual targeted technology for many
development efforts. This is due to their low cost and their ability to support Dynamic
Partial Reconfiguration (DPR) technology [6]. SDR is expected to be the most appropriate
answer to multi-standards handset design challenges. By applying the concept of DPR in
SDR with the required capabilities, all standards are allowed to be upgraded by software
without the need of hardware upgrading [/, 18]].

1.1 Problem Domain

DPR provides the modification of a certain part in the device, while the rest remains
unchanged and active. The main target is switching between different communication
standards and different modulation schemes in each standard rapidly with the aid of DPR
such that, all systems seem to be working together at the same time [9, [10]. DPR is a
promising technology which offers the reconfiguration of a specified partition in the FPGA
during the run time, which helps in implementing a multi-standard SDR [11} [12].

SDR addresses the switching between different standards on the same FPGA partition,
to perform the baseband signal processing without affecting the overall performance of
any of the standards [13]].

The implementation of a high-speed reconfiguration time dynamic cognitive radios
using the Zynq FPGA is presented [/]]. Deployment of SDR using DPR technology,
made it possible to use of the same specified hardware resource on FPGA for different
wireless communication standards found in the mobile phone. This implies that only the
specified partition on the FPGA 1is used for the baseband signal processing of different
communication standards. This will result in saving vast amount of power and area
(14 [15]].

1.2 Thesis Outline

The thesis contains six chapters including this one. Chapter 2 starts by providing a
sufficient background on the history of FPGAs and specifications of the used Xilinx board.
The chapter then lists the types of FPGA configuration, describing the reason behind
choosing the DPR approach. A comparison is performed between all DPR techniques
showing the advantages of the chosen technique. A full list of DPR controllers is provided
as well.

A full description of the physical layer of the five transceiver chains: Bluetooth, Wi-Fi,
2G, 3G, and 4G and their implementation, are listed in Chapter 3 and Chapter 4. Chapter
3 includes the implemented blocks in the five transmitter chains. The illustration includes
the functional specs of each block, the way of implementation, and the utilization on the
FPGA. The implemented blocks in the five receiver chains are listed in Chapter 4.

Chapter 5 gives a brief description about the proposed test environment showing the
used board peripherals. The C program used to run the DPR flow is illustrated as well.
Another comparison is performed between the two proposed approaches in deploying
SDR system using DPR showing the pros and cons of each approach. The calculated
simulation results showing the effectiveness of the proposed approaches are listed in this
chapter. Ultimately, the conclusion and future work are listed in Chapter 6.

Chapter 2: Literature Survey
2.1 Background and Related Work

DPR technique is used to switch between different configurations of LTE OFDM
modulators in [|16]]. Variations are based on the size of the IFFT, number of subcarriers,
cyclic prefix and window length. The implemented design on Virtex-7 is divided on four
reconfigurable partitions and a single static partition for the FFT. Similar design for LTE
FFT is proposed in [17], where configuration is dependent on the FFT size. Same criteria
is used to switch between modulators and demodulators in [[18, [19]].

The proposed dynamic cognitive radios in [14]] implement the physical layer on the
FPGA Programmable Logic (PL) and the Medium Access Control (MAC) layer on the
ARM processor. Switching between different baseband modules is performed using
custom partial reconfiguration controller to achieve high reconfiguration speed. Virtex-7
is used host the physical layer blocks.

The SDR physical layer implemented on Virtex-4 using DPR technique in [6] uses
internal and external configuration modes. The reconfiguration time overhead is taken in
consideration.

The contribution of this work in deploying SDR, is implementing the physical layer of
five transceiver chains: Bluetooth V2.0, IEEE 802.11a, GSM, UMTS, and LTE on the same
reconfigurable hardware using the DPR technology. The proposed approach is proving
itself in overcoming most of the challenges by saving area and power consumption.

2.2 Communication System in Details

Figure 2.1 shows the main blocks in a modern communication system. It is composed
of a DSP unit, digital and analog converters (DAC, ADC), RF section, and wide band
antenna. This work concentrates on the DSP block. Shown below a brief description for
each block in the system:

1. Digital Signal Processing Block:
At the transmitter side, this block is responsible for signal adaptation to be sent
over the channel. Signal adaptation includes encryption, error correction coding
schemes, modulation, and further more. Meanwhile, in the receiver this block is
responsible for extracting the original information by reconstructing the signal using
demodulation, decoding, and decryption. This block increases the flexibility of
radio development.

2. DAC/ADC Blocks:
Analog digital converters are used to transfer the signal between the analog and
digital domains. Using ADC, the received signal is digitized to be processed digitally
using the DSP block. The digital representation depends on the sampling rate that
leads to some information loss. The DAC is used to reconstruct the signal to its
original image.

3. RF Front End Block:
This block contains Low Noise Amplifier (LNA), filters, and Power Amplifiers (PA).

3

4. Antenna:
The antenna is a passive device used to capture the electromagnetic waves from
the surrounding media and converts it to an electrical signal. The antenna design
complexity varies from a single antenna to multiple antenna arrays. Smart antenna
is established using an antenna array that uses the signal processing algorithms
to locate the direction of signal arrival. Reconfigurable antennas are capable of
changing their frequency for adaptable systems.

TX Direction X Y7

Digital Signal DAC
. — e — — RF Front End
Processing ADC
RX Direction

Figure 2.1: Ideal communication system

2.3 SDR System Overview

A software-defined radio is a radio in which some or all of the physical layer functions
are software defined [20} 21]. Implication of the term software defined is that different
waveforms are supported by modifying the software or firmware without changing the
hardware. The basic idea of software controlled radio is illustrated in Figure 2.2] The
advantages of deploying the SDR are:

1. Efficient use of resources under varying conditions. For example, a low-power
waveform can be selected if the radio is running on a low battery. A high-throughput
waveform can be selected to quickly download a file.

2. Opportunistic frequency reuse (cognitive radio). An SDR can take advantage of
underutilized spectrum. If the owner of the spectrum is not using it, an SDR can
borrow the spectrum until the owner comes back.

Despite the advantages of SDR, there are some challenges facing its deployment in mobile
phones:

1. The SDR should not be constrained by the carrier frequency. Meanwhile, since
most of antennas are mechanical structures, they are not easily tuned dynamically.

2. A fundamental challenge with SDR is how to achieve sufficient computational
capacity, in particular for processing wide-band high bit rate waveforms, within
acceptable size and weight factors, within acceptable unit costs, and with acceptable
power consumption.

[

| Radio for

[C waveform # 1 O |
[

control

Radio for
CI waveform #2 . C .
Micro -
° Processor
@
[

Radio for

Q'> waveform #N _>O

Figure 2.2: Basic software controlled radio [22]

The digital signal processing part in the communication system can be carried on
different hardware platforms such as GPP, DSP, and FPGA. GPP is a microprocessor that
is optimized for powerful computations, but consumes more power. It can be used in
laboratories for research purpose. DSP is a microprocessor that consumes less power than
GPP, but its development is more difficult than the GPP. It is used in most of the cellular
terminals and base stations. FPGA is a microchip that can be configured by the user for a
certain purpose, which makes it the best solution for implementing hardware blocks.

24 ZYNQ Board (ZC702)

2.4.1 FPGA Evolution History

The FPGA is an IC that is electrically programmed to execute a certain application.
Initially it has no functionality to operate before it is programmed. FPGA is formed
from a combination of transistors that are connected together in a specific way. Applying
an external voltage on these transistors leads to operating a certain functionality. The
combination of transistors is called Look Up Tables (LUTs) [23]].

Each group of LUTSs forms a Programmable Logic Block (PLB). Recent FPGAs have
different types of PLBs that can operate as memory blocks to store data for internal opera-
tions. PLBs can also operate as multipliers to serve complex arithmetic operations. The
FPGA internal routing consists of wires and programmable switches that allow connec-
tions among the PLBs, memory blocks, multipliers, and I/O ports. These connections are
developed to achieve best data routing and latency. Also, there is a dedicated connection
network that takes care of clock distribution and reset signals in order to achieve low skew.

The LUT size is measured by its number of inputs. The number of LUTs in the PLB
can be equally sized or mixture of different sizes. There are three different techniques used
to program the FPGA LUTs: Anti-Fuse, Flash, and SRAM programming technologies
[24]]. The advantage of the Anti-Fuse and Flash over the SRAM is being non-volatile and
being able to occupy small area. However, SRAMs are easily re-programmed. They use
the standard CMOS process technology which made them the first candidate to become

the dominant approach to program FPGA LUTs.

Current FPGAs have IP blocks; these IPs are standard libraries which are optimized
and developed to facilitate the development of the FPGA. Microprocessors are considered
one of the important FPGA IP cores. There are two types of microprocessors, softcore and
hardcore. Softcore processors such as Xilinx Micro Blaze are implemented using FPGA
logic gates [25]. Hardcore processors such as IBM PowerPC are fabricated in the core of
FPGA chip and connected to the fabric as shown in Figure[2.3]

Memory Multiplier Memory Multiplier
PLB || Mm || PLB Ml PLB | |PLB || PLB || PLB PLB | | Mm || PLB Ml PLB || PLB | | PLB | | PLB
PLB || Mm || PLB Ml PLB | |PLB || PLB || PLB PLB | | Mm || PLB Ml PLB || PLB | | PLB | | PLB
PLB || Mm | | PLB Ml PLB | | PLB | [PLB | | PLB PLB | | Mm | | PLB Ml PLB | |PLB | | PLB | | PLB

PLB PUB/ | PLB | | PLB PLB || Mm ||PLB || Ml ||PLB || PLB || PLB | | PLB

PLB PLB | | PLB PLB | | Mm | | PLB Ml PLB || PLB | | PLB | | PLB

PLB

PLB | | PLB PLB | | Mm | | PLB Ml PLB | |PLB | | PLB | | PLB

PLB || Mm | | PLB Ml PLB | | PLB | [PLB | | PLB PLB | |PLB | | PLB | | PLB

Hardcore Processor
PLB Mm PLB Ml PLB | | PLB | | PLB PLB PLB || PLB | | PLB | | PLB

Figure 2.3: Softcore and hardcore processors [26]]

Although softcore processors suffer from speed limitations (around 200 MHz), it is
easy to customize their instructions. On the other hand, using hardcore processor helps in
achieving higher processing speeds more than 1GHz. Zynq series offered by Xilinx is a
perfect example of the current SoC chips, since it combines ARM dual-core or quad-core
microprocessor placed in the Processing System (PS) part with Xilinx FPGA fabric that
represents the Programmable Logic (PL) part [23]].

2.4.2 Introduction to The Board

The ZC702 evaluation board for the XC7Z020 SoC as shown in Figure[2.4] provides a
hardware environment for developing and evaluating designs targeting the Zynq device
[27]]. The ZC702 board provides common features to many embedded processing systems,
including DDR3 memory component (used in this project to save the partial bit stream
files and input test files for the communication systems), a tri-mode Ethernet PHY, a
general purpose I/O, and two UART interfaces. The UART interfaces are not only used to
signal the PS but also to display the options, data, and signals on the terminal. The PS
integrates two ARM Cortex-A9 MP Core application processors, AMBA interconnect,
internal memories, external memory interfaces, and peripherals including: USB, Ethernet,
SPI, SD/SDIO, 12C, CAN, UART, and GPIO [27]. The PS runs independently of the PL
and boots at power-up or reset. Figure [2.5]illustrates the Zynq ps7 internal structure.

12C Program-user User Push-butions,
Clock 3.3V VDS Active High

FMC1 LPC connector Xilink XADC Header FMC2 LPC Connector

Quad SPI Flash Memory(1Gb) Eight-user LEDs

SD Card Interface Connect
ard Interface Connector User 2-pole DIP Switch

Configuration Mode Select Switch
2ynq All Programmable SoC

System Clock, 200 MHz, 2.5V LVDS

Power Management System
(bottom and top of board)

Power On/Off Slide Switch

FPGA PROG Push-button
12C Bus Switch

12C Real-Time Clack (RTC)
CAN Bus Transceiver

DDR3 Component Memory (1 GB)

USB ITAG Module with integrated
USB Mini-B Connector

RGMIl Ethernet PHY Oscillator,
25,000 MHz

10/100/1000 MHz USB 2.0 ULPI Transcaiver, 246 and 1%6
Ethemet PHY, USB Mini-B Connector PMOD 110 Header
RJ45 with Magnetics

Ethernet Status USB-to-UART Bridge, 26 Male Pin 1/
LEDs USB Mini-B Connector ~ Haader driven from
12C Expander U0

Figure 2.4: Zynq board [23]]

2.4.3 CLB Overview
The 7-series CLB provides advanced, high-performance FPGA logic:
e Real 7-input LUT technology.
e Dual LUTS (5-input LUT).
e Distributed memory and shift registers logic capability.
e Dedicated high-speed carry logic for arithmetic functions.

CLBs are the main logic resources for implementing sequential as well as combinato-
rial circuits. Each CLB element is connected to a switch matrix as shown in Figure[2.6
Relation between row and column CLBs is illustrated in Figure Each CLB element
contains a pair of slices [28]. The LUTs in 7 series FPGAs can be configured either as
7-input LUT with one output, or as two S-input LUTs with separate outputs.

7

Zyng-7000 All Programmable SoC
78 Processing System
Peripherals Application Pri or Unit
n Cloclt(_ | Reset | pplication Processor U
/ use BNAraton FPU and NEON Engine FPU and NEON Engine
use | | 2x USB ARM Cortex-A9 ARM Cortex-A9
; MMU PU MMU CPU
Gige | |2 GigE PS System- C
GigE 2x SD Level 32 KB 32 KB 32KB 32KB
SD Control I-Cache D-Cache I-Cache D-Cache
8DI0 | | \oq) Regs
SD > | GIC | Snoop Controller, AWDT, Timer -
SDIO YvVYy '
GPI0 | |- <}/ DMAB | A 512 KB L2 Cache & Controller
Ole UART | | ! Channel
= UART | [I\ \
ey ocM | 256K
Zal »-| Interconnect | SRAM L
12C A Memary
SPI Central ” Interfaces
5PI Interconnect
DDR2/3,
m CoreSight DDRAL,
interiaces. [Components CLPDDR2
\ SRAM/ - ‘ ontroller
NOR
= DAP
ONFI 1.0 ! ‘ ‘
NAND - DevC Programmable Logic to
Q-5SPI — Memory Interconnect
CTRL
y R Y I
EMIO General-Purpose DMA IRQ | Config High-Performance Ports ACP
XADC
12-Bit ADC Ports Sync AES/ .
SHA Programmable Logic
SelectlO
Notes: - PL Resources|
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AX| 32-Bit/64-Bit, AX| 64-Bit, AXI 32-Bit, AHB 32-Bit, APB 32-Bit, Custom

Figure 2.5: Zynq board internal structure [23]]

Approximately two-thirds of the slices are SLICEL and the rest are SLICEM. LUTs in
each slice can be used as distributed 74-bit RAM, 32-bit shift registers (SRL32), or two
SRL17s. Modern synthesis tools take advantage of these highly efficient logic, arithmetic,
and memory features. The Board’s most important resources are listed in Table [2.1]

Table 2.1: FPGA Resources [23]]

Resource FPGA Capacity

LUT 53200
BRAM 140

DSP 220
I/O Pins 484

COUT COUT
A A

|CLB
> Slice(1)

N

Switch
Matrix

Slice(0)

H_

!
— e ——— — — — — — — — — —]

= —— . -

CIN CIN

Figure 2.6: Arrangement of slices within the CLB [28]]

2.5 FPGA Configuration

2.5.1 Configuration Definition

Configuration is a complete design programmed on the FPGA. FPGA can be viewed
as a two-layered device: configuration memory layer and logic layer as shown in Figure
[2.8] The configuration or the complete design stored on the configuration memory layer,
will control the logic on the other layer.

2.5.2 Types of Configuration

There are three types of configuration for FPGAs:

1. Fixed Configuration: Data is loaded from a memory at power-on, then the config-
uration will remain fixed until the end of the FPGA cycle. This type lacks efficiency,
since all possible functions needed to be done by the FPGA must be specified in the
configuration file from the beginning.

cCouT CouT couT CouT
'} A

ﬁiE_ _____ 4___7 ﬁiﬁ_ _____ 4___1
: Slice1 | 1| Slice1 | |
l X1Yr | g xayi | |
. N | . I |
V| sliceo I 1| Sliceo !
[| Xov1 Ly | xan |
l l

| tCIN CIN | I toIN CN |
. Lour__ _jcout ____|ceouT__ _|COouUT_
| CLB | ICLB |
| Slicet | | | Slicet | |
I X1Y0 11 X3Y0 |
l || |
! || |
I | Sliceo 1| Sliceo |
| xovo 11| xevo |
l || |

Figure 2.7: CLB column and row connections [28]]

Logical Layer

AR

Configuration Memory Layer

Figure 2.8: FPGA Layers

2. Partial Reconfiguration: Initial full bit file with a complete configuration is loaded
into the device at power-on. Whenever something to be altered, all computations
will stop, then a partial bit file that contains the modification in the original com-

10

plete design is loaded. The reconfiguration overhead time is reduced in such case
compared to the previous type. There are some applications where FPGAs are used
as communication hub, they must be active all the time to retain active links. In
such cases, partial reconfiguration is not enough, as the computations stop during
loading the partial bit file.

3. Dynamic Partial Reconfiguration: Unlike the partial reconfiguration, while the
configuration layer on the FPGA is being modified, the logical layer continues
its normal operation, except for the circuit subjected to the modification. The
reconfiguration overhead is reduced in this type.

2.5.3 DPR in FPGAs

DPR technology, introduced by Xilinx, is a leading technology which allows run-time
reconfiguration of a previously chosen partition in the design with partial bit stream files
as show in Figure[2.9][29]]. The bit stream files are stored in a memory, and user is allowed
to choose one of them to be loaded later into the reconfigurable partition using one of
the different access ports (ICAP, PCAP, JTAG, ...etc). The advantages of using DPR
technique are:

1. Resource Utilization Reduction: Instead of using multiple resources for each
standard implemented in the mobile phone, all implemented standards shall use the
same resource.

2. Power Consumption Reduction: Since only one chain will be working at a time,
this will save more power.

On the other hand, there are some challenges that are facing the DPR technology in
implementing multi-standard SDR:

1. Reconfiguration time: The time taken to switch between different communication
standards on the mobile device should be small as much as possible.

2. Configuration Memory: Fast memory access with large capacity is needed to cover
the whole partial bit stream files needed for all the standards with their versions.

2.5.4 Types of Bit Files

There are two types of bit stream files used to configure the FPGA:

FPGA
Reconfigurable Partition Bit Files

Figure 2.9: DPR configuration criteria [29]

11

1. Full Bit File: contains the data of a complete design/configuration. This includes
all the necessary information to:

(a) reset the FPGA.
(b) configure it with a complete design.

(c) verify that the bit file is not corrupted.

2. Partial Bit File: contains partial design configuration. It has no header, only the
address of the target region and its corresponding partial data. Partial bit files
may have many errors such as the address and data information. There is no
error detection built-in mechanism. A corrupted partial bit file may damage the
FPGA 1if left in operation. Therefore, systems that contain partial bit files with high
probability of being corrupted, such as those which send data over radio channels,
should implement a CRC circuit on the FPGA before loading the received bit file.

2.6 DPR Techniques

Xilinx offers two different DPR modes to transfer the bit stream files into the configu-
ration memory: internal and external modes. Figure [2.10]shows the different techniques
used in each mode.

DPR Modes
External Internal
JTAG PCAP ICAP

Figure 2.10: DPR controllers [30]]

2.6.1 External Mode Using JTAG

The partial bit stream files are loaded to the configuration memory through an external
source such as JTAG cable. However, this is not recommended in implementing the SDR,
as it gives relatively low reconfiguration time as shown in Table 2.2l The maximum
theoretical BW that the JTAG cable can give is 66 Mbps, in addition to the time overhead
taken to transfer the data from the source to the configuration memory.

2.6.2 Internal Mode

Reconfiguration in such case takes place through an already implemented access port
to the configuration memory such as Processor Configuration Access Port (PCAP) in PS
side or as Internal Configuration Access Port (ICAP) in the PL side.

12

2.6.2.1 PCAP on PS Side

Processor Configuration Access Port is an access port for FPGA configuration memory
which is controlled by the processor to perform the configuration process. Although the
maximum theoretical BW using PCAP is 400 MB/s as shown in Table 2.2] the actual
transfer rate is approximately 145 MB/s as the overall throughput is limited by the PS
AXI interconnect |31, [32]].

2.6.2.2 ICAP on PL Side

Internal Configuration Access Port is an access port at the PL side used with a controller
to perform dynamic reconfiguration process. The maximum theoretical throughput of
the ICAP is 400 MB/s as shown in Table[2.2] The type of controller used with the ICAP
determines the achievable actual throughput. Increasing the throughput requires a complex
controller with high resource utilization.

Table 2.2: Configuration Tools Bandwidth [23]]

Configuration Tool = Type Max Frequency Bus Width Max Bandwidth

ICAP Internal 100 MHz 32-bit 400 MB/s
PCAP Internal 100 MHz 32-bit 400 MB/s
JTAG External 66 MHz 1-bit 8.25 MB/s

Xilinx offers two IP controllers for reconfiguration. This is done by passing the bit
stream files to the IP through a software code running on the processor which handles the
reconfiguration data and control signals. The two controllers are:

1. AXI-HWICAP:
This is a simple IP controller composed of an asynchronous read and write FIFOs,
control registers, and FSM associated with the ICAP used for reconfiguration as
shown in Figure[2.T1] The IP core interacts with the processor through AXI4-Lite
interface. A full description of how the core works is mentioned in [33]].

2. PRC:

Partial Reconfiguration Controller is a more complex IP than AXI-HWICAP which
depends on the concept of Virtual Sockets (VS) [34]. The PRC controlles the access
of partial bit files using the ICAP as shown in Figure2.12] The VS represents the
Reconfigurable Partition (RP) associated with some logic blocks used to isolate
it from the static region during reconfiguration process. This results in a better
throughput as illustrated in Figure 2.13] A Fetch Path as shown in Figure [2.14]is
used to transfer configuration bits from the processor to the ICAP allocated with the
VSs. The number of VSs represents the number of RPs in the design.

13

}

AXI4-Lite Slave Inteface

AXI HWICAP Core ‘
AXl4-Lite Slave Interface
T _ IPIC_IF
1
IPIC_IF HWICAP
ICAP_Clk
Interrupt Control Unit - -
Read Write Y
Asynchrounous FIFOs
—p-| State Machine
SZ Register
CR Register t ﬁ
SR Register
WEFV Register ICAP
RFO Register IP2INTC_lprt

DS586_01

Figure 2.11: AXI HWICAP core [33]

2.7 Summary

The following chapter introduces some background about the history of the FPGAs
and their evolution. A list of types of FPGA configuration is provided including the DPR
technique. Finally, the chapter illustrates the DPR controllers and shows the advantage of
using each one of them.

14

Embedded
Microprocessor
(ARM/Microblaze?
Processor)

External Memory

Interfacing Bus (AXI Bus Interface)

Partial Reconfiguration
Controller

v

ICAP

v

Configuration Memory

Figure 2.12: PRC in DPR system [34]]

N

Static Logic
/ Virtual Socket
— T T T TN g ~
| |
> Decoupler
|
I
N — = ! Reconfigurable
Partition
|— - - = \
| |
> Decoupler
| I \ /
N e e e = ! == -
| Shutdown

| Handler

—_—— e — —_— — — =

\ A

{

Reconfigurable
Logic

Static
Logic

Optional Logic to assist in the partial I
reconfiguration of the RP

Figure 2.13: PRC virtual socket [34]

15

DDR

DDR Ctrl.
Slave HP

Port

MowR N XY

uoneingijuo) o1
2Jep1u| paddey

SLETTI SIS
AlowaAHXY

N 32)20S [EN1I 1A 0} 3JBJ3U|

L

r_

10ssa%0.4d
WYV

Master GP Port

o

yied
yoia4

J

NJ28euepy
12205 [BNMIA

-

¥

pJadeuepy «
19Y20S [BNUIA

1 auuoay| sjesayduad-10553304d-|Xy

\

3

dVvD| 01 32Bl3U| (19Y20S _m_zt IA O} @JBj3IU|

$4988113 MS/MH

Figure 2.14: PRC fetch path [34]]

16

Chapter 3: SDR Transmitter Design

3.1 SDR System Overview

The Wi-Fi chain as illustrated in [36] has many Modulation Coding Schemes (MCS).
The implemented chain contains all the combinations starting from MCS1 to MCS6. Table
[3.1] shows the difference between all implemented modulation schemes as mentioned
in [36l]. The 3G chain also has variations in the types of the used CRC blocks (CRCS,
CRC12, CRC16, and CRC24). Only single type of modulation scheme is implemented for
Bluetooth, 2G, and LTE.

Table 3.1: Wi-Fi Various MCS [36]

MCS Number Puncturing Interleaver =~ Mapper

MCS1 None Ncpps =48 BPSK
MCS2 r=3/4 Ncpps =48 BPSK
MCS3 None Ncpps = 96 QPSK
MCS4 r=3/4 Ncpps =96 QPSK
MCS5 None Ncpps =192 16-QAM
MCS6 r=3/4 Ncpps =192 16-QAM

Each block in every chain has three input and three output signals. Input signals
are: data in, valid in, and enable. Output signals are: data out, valid out, and finished.
Valid out signal is set, when output is ready. It is connected to the valid in signal of the
successive block. Finished and enable signals are used to synchronize between blocks
easily. Finished signal is a feedback signal connected to the enable of the preceding block,
which is set when the block is ready to receive data from the preceding one as shown in
Figure[3.1]

Each chain is working on multiple clock domains in order to match the input rate
with the desired output rate. Dual clock RAMs are used to overcome the Clock Domain
Crossing (CDC) issues leading to metastability. However, matching all clocks in each
chain to avoid jitter is another challenge. A customized clock distribution network is
integrated in each chain as an RTL design, to overcome this challenge. The network
accepts single clock source from the ARM processor and then generates identical clones
for each system.

Parameterization technique is used to design various modulation schemes of Wi-Fi
chain. Since all modulation schemes differ only in the type of puncturing, interleaving,
or mapping; all blocks are implemented under the same source directory, and switching
between them is performed through using simple parameters. The same criteria is used in
3G chain to switch between different CRC blocks.

SDR basic idea is having multiple communication standards sharing the same hardware
that is controlled by the software. In order to make it feasible to deploy this idea, all

17

— ydata_in data_out data_in data_out ———
—— valid_in valid_out valid_in valid_out —

enable finished — —| enable finished

Block 1 Block 2

Figure 3.1: Block signals in each chain

corresponding blocks in each chain should almost occupy the same area and consume
the same power [37, 138, 139]. The following area and power optimization techniques are
deployed:

1.

Finite State Machine (FSM) extraction: In order to achieve the best allocation
for complex FSMs, the synthesizer must recognize them. This is done by writing
the RTL code using Xilinx FSM template.

Simplifying math operations: Multiplications and divisions with constant numbers
can be converted into shift operations to synthesize in a small number of LUTs
instead of wasting DSPs on simple operations.

. Using DSP Primitives: Implementing complex mathematical operations using

DSPs is performed through either using the RTL attributes or instantiating the DSP
primitive explicitly.

Synthesizing in BRAMs: Most of the chain blocks contain memories to store the
symbol values. Synthesizing in BRAMs instead of LUTs is performed using RTL
attributes mentioned in [40]].

. Implementing customized DFT: Since the DFT IP offered by Xilinx is 24-point

and the required is only 14-points, its power consumption is high. Solving this issue
is done by implementing a customized 14-point DFT to save power and area.

Synthesis options: Specific synthesis options are chosen in order to achieve high
area optimization.

3.2 Bluetooth Transmitter

Figure 3.2 shows the implemented blocks in the Bluetooth chain according to [33].

3.2.1 Segmentation

Unlike any other chain, the Bluetooth transmitter chain [335] starts with a segmentation
block that separates the header bits from the payload in such way to achieve a guard time
of Sus after baseband processing. The algorithm works on the flow shown in Figure[3.3]
The chain is then divided into two sub-chains, one for the header and the other for the
payload. Figure[3.2]shows that the header and payload share some blocks.

18

HEC Repetition

Generator Encoder
SN N
— Segmentation Whitening EEESE —
NS N T
CRC Hamming
Encoder

Figure 3.2: Bluetooth transmitter block diagram [35]

3.2.2 HEC Generator, CRC, and Whitening

The Header Error Checking (HEC) generator is initialized with the least 8 bits of the
Upper Address Part (UAP). It is used for adding extra 8 bits to the header for error checking
at the receiver side. The CRC used in the payload chain does the same functionality by
adding 16 bits to the end of the payload for error checking. As shown in Figure [3.2]
whitening is shared between both header and payload. It is used to randomize the data
to get rid of highly redundant “1”’s and “0”’s patterns. The three blocks are implemented
using the generator polynomials shown below receptively [33]].

Gl(D)=D¥+D"+D’+D?*+D+1 3.1)
G2(D)=D"%+D2+D3+1 (3.2)
G3(D)=D"+D*+1 (3.3)

3.2.3 Repetition and Hamming Encoders

Since it is expected that the transmitter and the receiver will be in the same Line of
Sight (LoS), the transmitted packets will be less error prone to channel effects compared
to the rest of standards. The Bluetooth transceiver replaces the convolution encoders with
block encoders for simplicity. Header bits are encoded using repetition encoder with
coding rate equals to 1/3. The payload is encoded using shortened Hamming code with
2/3 coding rate.

Differential encoding is then applied to both header and payload followed by ordinary
QPSK mapper. The equation shown below emphasizes the differential encoding and
mapping operations [335]]. '

Sk=Sk_1xel? (3.4)

The variable S g represents the mapped symbols. The relationship between the binary
input bits by and the angle ¢ is listed Table [3.2]

19

Save Input

N
Valid_in==0 >——

Y

C=0

Read Saved
Input

C++

C < HL

N

Stop for
5 usec

Read Rest
of Input

Figure 3.3: Segmentation controller algorithm

Table 3.2: DQPSK Mapping Relationship [135]

bok-1 b bk

0 0 n/4

0 1 3n/4
1 1 -3n/4
1 0 -n/4

20

Figure 3.4: Bluetooth hamming encoder [33]]

3.2.4 Chain Utilization

Table 3.3l lists the utilized area for all Bluetooth transmitter chain blocks in terms of
LUTs, BRAMs, and DSPs.

Table 3.3: Bluetooth Transmitter Chain Area Utilization

Chain Block LUTs BRAMs DSPs

Segmentation 104 0.5 0
HEC Generator 128 0 0
CRC 150 0.5 0
Whitening 7 0 0
Repetition Encoder 213 1 0
Hamming Encoder 43 0 0
Mapper 126 1 0

3.3 Wi-Fi Transmitter

Figure [3.5]shows the implemented blocks in the Wi-Fi chain according to [36].

3.3.1 Scrambler

Scrambler is responsible for randomizing the MAC layer data in order to prevent the
presence of long “1”’s or “0”’s sequences. This is useful in synchronization between the
transmitter and the receiver. The generator polynomial shown below is implemented using
logic gates and shift registers [36].

Sx)=x"+x*+1 (3.5)

3.3.2 Convolutional Encoder

Convolutional encoder is used to encode the scrambled bits with coding rate equals
to 1/2. Encoding is responsible for data replication in order to decrease the bit error rate,

21

|

Scrambler

Encoder

Puncture

Interleaver

Mapper

IFFT

Preamble

I

Figure 3.5: Wi-Fi transmitter chain block diagram [36]

and enable the decoder to deduce the correct transmitted bits. The generator polynomial
shown in Figure [3.6is also implemented using logic gates and shift registers. Parallel to
serial block operating on double the frequency is used after the encoder in order to feed
the puncture with serial bits.

3.3.3 Puncture

Though the usefulness of the encoding algorithm, it increases the number of bits
leading to reducing the bit rate. Puncturing technique is used to solve this issue by stealing
specific encoded bits from the transmitted data, and then inserting them as dummy zeros
at the receiver side. Figure shows the position of stolen bits for coding rate equals to
3/4 [36]. A BRAM whose address is controlled by special logic is used in implementing
the puncture.

22

» Output Data A

Input Data
» Cutput Data B
Figure 3.6: Wi-Fi convolutional encoder [36]
Sou.l”ce Dﬂtﬂ XO X'l Xz X3 X4 X5 X6 X7 XS
Encoded Data Stolen Bit
By|B; | B, | Bs| By | Bs | Bg ‘ B- | Bg ‘

Bit Stolen Data
(sent/recerved data)

Ad Bg| A Bs| AyB;| A Bs| AdBg| A4Bg

Figure 3.7: Wi-Fi puncture algorithm [36]

3.3.4 Interleaver

Interleaver is used to get rid of burst errors by re-arranging the punctured bits. Inter-
leaving is performed on two permutation steps. Three variables are used in the equations:

1. ”Kk”: represents the index of the original received bits before the first permutation.
2. 71”: represents the index after the first permutation and before the second one.
3. 7j”: represents the index after the second permutation before the mapper.

The first permutation is defined by the following equation [36]:

i = (k%16) x (YeBes y 4 [%J fork=0,1,...,Ncgps — 1 (3.6)

23

The second permutation is defined by the following equation [36]:

j=sX [éJ +(i+ Ncpps —_ 16i J)%S fori=0,1,...,Ncgps — 1 3.7)

NcBps

The variable “s” is dependent on the number of bits per sub-carrier [36]:

Ngpsc
2

s = max(1) (3.8)
Implementation of the two equations is performed using BRAMs and DSPs to calculate
the memory addresses.

3.3.5 OFDM Section

The mapper converts the data from bit domain to symbol domain to be modulated.
Since Wi-Fi is Orthogonal Frequency Division Multiplexing (OFDM) based, symbols
modulation is done on several sub-carriers instead of single carrier. IFFT block is used to
modulate the symbols. Implementation of this block is done using: IFFT core, controller,
and two RAMs to store real and imaginary symbols. The Zynq IFFT IP [41] is used as the
core as shown in Figure[3.8] Preamble is used after the IFFT block to add the long and
short header symbols that enable synchronization between the transmitter and the receiver.

Real
symbols
RAM

—— Mapper IFET IFFT Core ——
Controller

Imaginary
Symbols
RAM

Figure 3.8: Wi-Fi IFFT block diagram

The implemented modulation schemes are BPSK and QPSK. The sinusoidal wave has
three features: phase, frequency and amplitude. According to the given information and to
the used modulation technique, bits are mapped to complex valued modulation symbol as
shown in the following equation [36]:

d={U+jO) (3.9)

The variables I and Q represent the real and imaginary parts. Tables 3.4 and [3.5|show the
symbol mapping values in BPSK and QPSK modulation schemes respectively.

24

Table 3.4: BPSK Modulation Scheme [36]

Bit values 1 Q
i
0 TR
1 I S
V2 2

Table 3.5: QPSK Modulation Scheme [36]]

Bit values 1 Q
| 1

00 B v
1 1

o ¥ %
1 1

0 % %
1 L

11 A 7

3.3.6 Chain Utilization

Table [3.6]lists the utilized area for all Wi-Fi transmitter chain blocks in terms of LUTs,
BRAMs, and DSPs.

Table 3.6: Wi-Fi Transmitter Chain Area Utilization

Chain Block LUTs BRAMs DSPs

Scrambler 137 0 0
Encoder 75 0 0
Interleaver 191 2 1
Mapper 88 0.5 0
IFFT 1886 0.5 6
Preamble 151 0 0

3.4 2G Transmitter Chain

Figure [3.9]shows the implemented blocks in the GSM chain according to [42] 43, 44].

34.1 CRC

Cyclic Redundancy Check (CRC) block is used to add several bits to the MAC data.
Checking is done at the receiver side on the added bits for error detection. Three CRC bits

25

CRC

Encoder

Interleaver

Burst
Formation

Diffrential
Coding

I

Figure 3.9: 2G transmitter chain block diagram [42]]

are added to each 50 input bits. The generator polynomial shown below is implemented
using logic gates and shift registers [42].

g(D)=D*+D+1 (3.10)

The first 182 bits plus the CRC bits are re-ordered according to the following equation
[42]:
d(2k) fork=0,1,...,90

_ | p(k) for k=91,92,93
u) = d(2k+1) fork=94,95,...,184 G.1D)
0 for k = 185,186, 187,188

The variables d(k),u(k),and p(k) represent the input bits, the output bits, and the CRC bits
respectively.

3.4.2 Convolutional Encoder

Convolutional encoder with coding rate equals to 1/2 is used. Encoding is done only on
the first 189 bits. However, the remaining 78 bits are transferred directly to the interleaver.
The implemented generator polynomials are shown below [42]:

Go=1+D>+D* (3.12)

Gi=1+D+D>*+D* (3.13)

26

3.4.3 Interleaver

Interleaving is performed through using 8 X 57 matrix, where data is stored row by row,
then read column by column as shown in Figure [3.10] Implementation is done through
using BRAM whose address is controlled with special logic.

2 |3|
26 27

"R RRRY

Figure 3.10: 2G interleaver matrix [42]

IE 4

25 28

57 bits

3.4.4 Burst Formation

Burst Formation block adds the burst bits used in Time Division Multiplexing (TDM).
As shown in Figure [3.T1] the burst bits added to the interleaved data have three types:

1. Tail bits: 3 bits added on both sides of the data for synchronization.
2. Training bits: 26 bits added in the middle of the frame to be used as pilots.

3. Steal Flag bits: 1 bit added on both sides to determine the channel type at the
receiver side.

Tail User Data SF Training SF User Data Tail

Figure 3.11: Burst data formation [42]]

The channel type is dependent on the value of the steal flag. If the steal flag equals
to “1”, the channel type is Fast Associated Control Channel (FACCH). In such case, the
output of the burst formation is specific bit stream defined by the MAC. Otherwise, the
output is the old data value stored in the memory. The memory read enable and output
are controlled by the controller as shown in Figure [3.12] Figure [3.13]shows the controller
algorithm.

27

daj[a %n] Memory TS —
valid in —

— — data out

FACCH — /

re steal flag ———

Controller

sel

Figure 3.12: Burst formation block diagram

3.4.5 Differential Coding

Differential coding block encodes the data differentially in order to prepare it for
GMSK modulation. Differential encoding is done through the following equation [44]:

di=d;®d;_1, d; €{0,1} (3.14)
Data is then mapped according to the following equation:
a;=1-d; (3.15)

The variable ¢; represents the output of the differential coding block.

3.4.6 Chain Utilization

Table |3.7|lists the utilized area for all GSM transmitter chain blocks in terms of LUTs,
BRAMs, and DSPs.

Table 3.7: 2G Transmitter Chain Area Utilization

Chain Block LUTs BRAMs DSPs

CRC 200 1 0
Encoder 85 0 0
Interleaver 161 0.5 0
Burst Formation 114 0.5 0
Diffrential Coding 2 0 0

3.5 3G Transmitter Chain

Figure[3.14]shows the implemented blocks in the UMTS chain according to [43,146,/47].

28

reset
1
IDLE
1
Data Entry
c++
re:”l”
c>148 sel="00
re:” 1?’
sel="01"
re:” 1”
sel="11"
re:’?l”
sel="10"

Exit

Figure 3.13: Burst formation controller algorithm

29

CRC

Segmentation

Encoder

Concatenation

Interleaver

Spreading

Scrambling

Mapper

I

Figure 3.14: 3G transmitter chain block diagram [435]]

3.5.1 CRC

Four combinations of CRC block are used in the 3G transmitter. Table shows the
generator polynomial of each type. Implementation is similar to the CRC used in the 2G
chain.

30

Table 3.8: 3G CRC Polynomial Equations [46]]

CRC Mode Polynomial Equation

CRC24 gere2a(D)=D*+D¥ + DO+ D5+ D +1

CRC16 gerc16(D) =D+ D2+ D3+ 1

CRC12 guern(D)=DZ2+D'"+D*+D*+D+1

CRCS geres(D)=D¥+ D' +D*+ D>+ D +1

3.5.2 Segmentation

Segmentation is used to slice the bit stream into a set of blocks with certain block size
defined by the MAC layer. Slicing is performed in order to let the encoder work properly.
Implementation is done using FSM whose state diagram is shown in Figure [3.13]

No output from

No data from CRC B > 504 dfeid
vider

Y (2

Data received
from CRC

Divide
by block
size

Divide
number
of blocks

Divider output
exists

Current Block index = C

Qut Fillers =F

Data out
First

Data out
Rest

Out Fillers < F

Current Block index < C
&
Encoder is not ready
to receive data

Figure 3.15: 3G segmentation FSM

3.5.3 Convolutional Encoder

Convolutional encoder with coding rate equals to 1/2 is used to add redundant bits.
The encoder shown in Figure [3.16]is 9-bits length including the input bit. Implementation
is similar to the Wi-Fi encoder. Parallel to serial block is added after the encoder as well.

31

Input

N N N R B
~Dhr~DHDk pl—{D
RIS A | v oupuo
> > > % » Gg = 561 (octal)
DU S | B X ot
- ™ % AN % % T TN

- ~ G4 =753 (octal)

Figure 3.16: 3G convolutional encoder [46]

3.5.4 Code Block Concatenation

The encoded data is then concatenated using the Code Block Concatenation (CBC) to
enter the first interleaver. Size of the block is constant number defined by the MAC layer.

3.5.5 Interleaver

Data interleaving is performed using four major blocks as shown in Figure 3.17}

|

Radio Frame
Equalizer

First
Interleaver

Radio Frame
Segmentation

Second
Interleaver

I

Figure 3.17: 3G interleaver block diagram [46]

1. Radio Frame Equalizer:
Divides the input data into equally sized blocks and pads extra bits to each block.
The relation between input bits e(k) and output bits #(k) is given below [46l]:

e(ky fork=0,1,.. . F
t(k) = (3.16)
0 fork:E+1,...,F><[-|

|ty

32

The variables E and F represent the number of input bits and the number of segments
respectively. The number of segments is dependent on the interleaving period as
shown in Table

Table 3.9: Number of Segments [46]]

Interleaving Period Number of Segments

10 ms 1
20 ms 2
40 ms 4
80 ms 8

2. First Interleaver:
This is inter-frame interleaver where all frames are interleaved together. Data is
written row by row in a RAM, then read column by column with a certain order
depending on values set by the MAC layer as shown in Figure[3.18]

bl b2 | b3 | b4 | bS | b6 | BT | b8 | b9 | b0 | b1l | b12 | bI3 | b14 | bIS | b16

bl | b2 | b3 | b4 bl | b3 | b2 | b4
b5 | b6 | B7 | b8 b5 | b7 | b6 | b8
b9 | b10 | b1l | bl2 ; b9 | b1l | b10 | bl2
bl3 | bl4 | bl5 | bl6 bl3 | bl5 | bl4 | bl6

bl | b5 | B9 | b13 | b3 | b7 | bll | bI15 | b2 | b6 | bl0 | bl4 | b4 | b8 | bl2 | bl6

Figure 3.18: 3G first interleaver [46]]

3. Radio Frame Segmentation:
When the transmission time interval is longer than 10 ms, the input bit sequence is
segmented into equally sized segments according to the following equation [46]:

y(nik) = x(k+(nj— D)3),k=1,2,...% (3.17)

The variables n;, X, and F are the segment number, the number of input bits, and the
total number of segments respectively.

33

4. Second Interleaver:
This is intra-frame interleaver where interleaving is done frame by frame. The RAM
used in implementation has 30 columns. The number of rows varies according to
the number of bits in single radio frame. The number of rows is determined by the
following equation [40]:

R>|%] (3.18)

The variables R and N represent the number of required rows and the number of bits
per frame respectively. Data is read column by column in a certain order stored in
LUTs.

3.5.6 Code Division Multiplexing

Since 3G is Code Division Multiplexing (CDM) based, data bits are multiplied by
fully orthogonal codes called channelization codes to be transformed into chips in order
to increase the bandwidth of the signal and prevent interference. Channelization process
is called spreading. Data chips are then multiplied by scrambling codes to differentiate
between users in the up-link. Figure[3.19]illustrates the full process where data is converted
to chips. Spreading and scrambling codes are stored in ROMs. BPSK mapper is used in
modulation.

Scrambling Codes Spreading Codes

Data Chips

Figure 3.19: CDM block diagram [47]]

3.5.7 Chain Utilization

Table [3.10! lists the utilized area for all UMTS transmitter chain blocks in terms of
LUTs, BRAMs, and DSPs.

34

Table 3.10: 3G Transmitter Chain Area Utilization

Chain Block LUTs BRAMs DSPs
CRC 24 0 0
Segmentation 489 0.5 1
Encoder 86 0 0
Concatenation 98 0.5 0
Interleaver 946 2.5 1
Spreading and Scrambling 79 0
Mapper 6 0

3.6 LTE Transmitter Chain

Figure [3.20|shows the implemented blocks in the LTE chain according to [48] 49].

3.6.1 CRC

CRC is similar to the one used in the previous chains. The used generator polynomial
is shown below [49].

g(D)=D*+D¥+D°+D’+D+1 (3.19)

3.6.2 Segmentation

Although, segmentation uses an algorithm similar to the one used in 3G chain, it is
much more complicated as the block size is variable. Figure [3.21] shows the state diagram
of the implemented FSM.

3.6.3 Turbo Encoder

Turbo encoder is used due to its ability to provide very low BER and high coding rates.
It consists of two convolutional encoders mixed with an interleaver as shown in Figure
[3.22] The interleaver stores the bits row by row, then reading is performed using address
values calculated from reserved LUTs.

3.6.4 Rate Matching

Rate matching is used to match the number of bits to a certain number specified by
the MAC layer. It consists of three main blocks: sub-block interleavers, bit selection, and
bit collection. The three blocks re-arrange the bits in a certain form through bunch of
complex equations in order to meet the required packet size. Implementation is done using
block RAMs and DSPs.

The output of the three sub-block interleavers is transferred to the bit collection block
as shown in Figure [3.23] The block output can be represented by a virtual circular buffer.

35

CRC

Segmentation

Encoder

Rate
Matching

Concatenation

Scrambler

Mapper

SC-FDMA

I

Figure 3.20: LTE transmitter chain block diagram [48]]

The length of the circular buffer is K,, = 3K,, where the value of k. is set by the MAC
layer. The relation between input and output is derived by the following equations [49]]:

szvk(o) For k=0,1,....k;—1 (3.20)
Wk,r+2k:Vk(1) For k=0,1,...k;—1 (3.21)
Wi 12141 = v For k=0,1,... k;—1 (3.22)

The signals storing the values of k, and number of rows pass without any modifications to
the bit selection block. The interleaver internal matrix is stored in the order shown below
[49]:

36

Received bits are not

No input data CRC parity bits

Input stream

Input from] CRC parity bits /\

_/CJ\ CRC received stoppes)

> Idle @ \Calcj » Filler |
All bits are out @ C=1

i One =

ook

Encoder is ready

First Block is out @%C >1&C_minus =0

&
Not all blocks are out

Plus

First Block is out /F\'rst
—————
Qﬂus *

All blocks are out

Waiting

Block is
out

Figure 3.21: 4G segmentation FSM

Yo Vi y2
CcC cC cC
Csubblock Csubblock+ 1 Csubblot:k+2
CcC CcC CcC CcC cC CcC
ycsubblock (Rsubblock_ D y(csubblock + 1)(Rsubblock_ D y(Csubblack +2)(Rsubblock -D

C>18&C_minus >0

cC _
Csubblock

CcC _
yzcsubblock

1
1

cC CC _
CsubblockRsubblock 1

The matrix elements are derived by the equation mentioned below, where D is the number

of bits [49].

YNp+K = di For

3.6.5 Code Block Concatenation

k=0,1,...,D-

1 (3.23)

Since concatenation is the same in both 3G and LTE chains, the block is shared

between them.

3.6.6 Scrambler

Scrambler is used to prevent the appearance of long consecutive “1”’s and “0”’s. The
generated scrambling codes are calculated from the set of equations mentioned below

[49]]:

C(n) = mod(XUHNDR@Ny -y — 0 1, Mpy — 1 (3.24)
1 , =0

Xim)=4 0 , n=1,...,30 (3.25)
mod(W) , n=31,....Mpy—1

37

1st constituent encoder

>

\ 4
O

.
.

Y

:

i
-

Input
Turbo coge internal .
interleaver 2nd constituent encoder z
Qutput .__/_i_\ R +
(b’fk T
X @ » D > >
£ T /L
D
X
Figure 3.22: 4G turbo encoder [48]]
Cinit n=0,...
Xo(n) = (3.26)

The variable C(n) represents the scrambling sequence. Meanwhile, X, and X, represent
the initial values of the two BRAMs used to generate the scrambling codes. The scrambling
sequence generator shall be initialized with Cj,;; which is calculated using this equation

[49]:

The variable ngy7; corresponds to the RNTI associated with the PUSCH transmission
channel, ny is the index of the sub-frame, Njp is the cell ID, and ¢ is the code-word

Cinit = 2" s ngnrr +23 % g+ 27« [5 |+ Nip

mod(Xz(n+3)+X2(n+22)+X2 (n+1)+X5(n))

I’l=31,...,MpN—1

transmitted on the physical up-link shared chrobustannel.

38

(3.27)

Output

d” Sub-block v
u -
interleaver
virtual circular
buffer
qm (1) . . . €k
k Sub-block Vi Bit Wi Bit selection l
) interleaver) collection and pruning
d(z) V(2)
k i Sub-block k E
interleaver

Figure 3.23: 4G Rate matching block diagram [49]

3.6.7 OFDM Section

After mapping the data bits using QPSK mapper, symbols are then transferred to
the SC-FDMA block. The SC-FDMA used in LTE up-link is a modified form of the
OFDM with similar throughput and complexity. SC-FDMA is composed of DFT where
time-domain symbols are transformed to frequency domain symbols and then passed
through the standard OFDM modulation. It has the all advantages of OFDM such as
being robust against multi-path signal propagation. The internal implementation of the
SC-FDMA is performed using 14-point DFT, 128-point IFFT, and a controller as shown
in Figure[3.24] The IFFT subcarriers are grouped into sets of 14 subcarriers, each group is
called a resource block.

The main advantage of SC-FDMA is the low Peak Average Power Ratio (PAPR) of
the transmitted signals. PAPR is a big concern for user equipments, since it relates to
the power amplifier efficiency. Low PAPR allows the power amplifier to operate close to
the saturation region resulting in high efficiency. This is the main reason behind using
SC-FDMA for user terminals.

Sub-carrier CP

IFFT —

—1 DFI Mapping Insertion

Figure 3.24: OFDM section block diagram

The LTE supported bandwidths are listed in Table [49]]. The 128-point IFFT with
an extended cyclic prefix equals to 32 is chosen for implementation.

39

Table 3.11: LTE Transmission Schemes [48]]

Transmission Bandwidth (MHz) Frequency (MHz) IFFT Size Sub-carriers

1.4 1.92 128 6
3 3.84 256 15
5 7.68 512 25
10 15.36 1024 50
15 23.04 1536 75
20 30.72 2048 100

Since the DFT IP offered by Xilinx is 24-points, it consumes huge amount of area
and power. However, the design requires only 14-point DFT. In order to solve this
issue, a customized version of the DFT is implemented to save area resources and power
consumption. Xilinx LogiCore IP for 128-point IFFT is used.

The IFFT core shows that it is ready to accept a new frame of data by setting the
RFFD signal high. Consequently, the input data may start by setting F'D_IN high for one
or more cycles. Data should be provided over N cycles without interruption. FD_IN can
be kept high for multiple cycles, since its value is ignored while RFF D is low. If FD_IN
is set permanently high, the core will start a new frame of data input as soon as it is ready.
This arrangement provides maximum transform throughput. Alternatively, RF FD can be
connected directly to F'D_IN to achieve the same behavior. The first input element must
be provided in the same cycle the core starts receiving the data.

3.6.8 Chain Utilization

Table [3.12]lists the utilized area for all LTE transmitter chain blocks in terms of LUTs,
BRAMs, and DSPs.

Table 3.12: LTE Transmitter Chain Area Utilization

Chain Block LUTs BRAMs DSPs
CRC 106 0 0

Segmentation 529 0.5 0
Encoder 425 1.5 3
Rate Matching 1372 3 0
Concatenation 114 2 0
Scrambler 455 4.5 0
Mapper 77 0.5 0
SC-FDMA 2765 0 13

40

3.7 Summary

The following chapter lists all implemented blocks in the SDR transmitter. The system
includes the physical layer implementation of the five transmitters: Bluetooth, Wi-Fi, 2G,
3G, and LTE.

41

Chapter 4: SDR Receiver Design

4.1 SDR Receiver Overview

The SDR receiver as illustrated in this chapter inncludes five reciver chains: Bluetooth,
Wi-Fi, 2G, 3G, and LTE. A hardware implementation of the physical layer of each chain
is being deployed.

4.2 Bluetooth Receiver

Figure 4.1 shows the implemented blocks in the Bluetooth receiver chain.

Hamming De.CRC
Decoder c
DQPSK —
— p Q Dewhitening Concatenation —
emapper
Repetition De-HEC
Decoder Generator

Figure 4.1: Bluetooth receiver block diagram

4.2.1 Demapper

Demodulation of header and payload symbols is performed separately. The same
relation mentioned in Table[3.2]is used to repeal the effect of the differential encoder.

4.2.2 Repetition and Hamming Decoders

Decoding the header is performed by converting each 3 serial bits into parallel bits to
fasten the rate. The output is taken based on the majority of each 3 bits. The payload bits
are segmented according to the following equation [335]]:

N .
N segments = f;5m 4.1)

These 15 bits are called the received codeword. The received codeword is multiplied
by the transpose of the hamming matrix to produce the syndrome bits. The syndrome bits
are 4-bits used to identify the errors in the received codeword using the syndrome table
[35]. The hamming matrix is created from the parity matrix and the identity matrix.

42

4.2.3 Dewhitening, De-HEC, and De-CRC

Dewhitening for both header and payload uses the polynomial equation shown in
Figure d.2] The De-HEC uses the circuit in Figure [d.3]to remove the last 8 bits in the
header data if the division remainder is equal to zero. De-CRC removes the last 16 bits in
the payload data using the polynomial shown in Figure @.4]

datain (LSB first)
D° D* D’

Figure 4.2: Dewhitening polynomial [35]

(]

D p'. p2 DS D7 2-% D3
1
- ._f!\ - f‘\
0 1 2 3 4 5 6 7

Data in (LSB first)

D)t
=%

Figure 4.3: De-HEC polynomial [35]]

ST D16
Position
Data in (LSB first)

Figure 4.4: De-CRC polynomial [35]

4.2.4 Chain Utilization

Table 4.1] lists the utilized area for all Bluetooth receiver chain blocks in terms of
LUTs, BRAMs, and DSPs.

43

Table 4.1: Bluetooth Receiver Chain Area Utilization

Chain Block LUTs BRAMs DSPs

Demapper 6 0 0
Hamming Decoder 181 1.5 0
Repetition Decoder 242 0

Dewhitening 7 0 0
De-CRC 89 0.5 0
De-HEC 75 0

Concatenation 80 0

4.3 Wi-Fi Receiver

Figure 4.5 shows the implemented blocks in the Wi-Fi receiver chain.

|

Packet
Divider

FFT

Demapper

Deinterleaver

Depuncture

Decoder

Descrambler

I

Figure 4.5: Wi-Fi receiver chain block diagram

44

4.3.1 OFDM Section

The packet divider receives the modulated symbols and stores them in a memory block,
then removes the reserved preamble bits from the stored data. The rest of the data is
delivered to the FFT block which consists of four main blocks: the controller, the core,
and two RAMs for reading and writing processes. The controller responsibilities are:

e Removing the cyclic prefix extension from the received symbols.
e Managing the read and write processes in the two BRAMs used before the core.

Each RAM has the capacity to store 64 symbols. The controller keeps the FFT core
operation pipelined by controlling the read and write processes. Therefore, while the first
RAM is reading from the packet driver, the FFT core is reading from the second RAM
and so on. The demapper specifies the decision region of the received real and imaginary
symbols from the FFT, then converts the symbols to a stream of bits. The received symbols
are stored in stack memories as shown in Figure 4.6)in order to:

e enable the demapping process to work while the FFT core is processing the next
expected block of symbols.

e select the symbols that doesn’t contain nulls and pilots to be demapped.

The demapped bits are stored in BRAM before entering the deinterleaver.

RAM A Stack A

SN SN

Packet 64-Point D
— emapper ———

DiVider\ / FFT \ /

RAM B Stack B

Figure 4.6: Wi-Fi FFT and demapper block diagram

4.3.2 Deinterleaver

Deinterleaving process is defined by two permutations. These permutations represent
the inverse equations to the permutation equations in the interleaver block in the transmitter.

[IP2)

Three variables are used in the inverse equations. The variables “j”, “d”, and “e” are
[1344]

similar to “k”, “1”, and “” in the transmitter respectively.
The first permutation is defined by the following equation [36]:

d=sx|L|+(j+|5eL s for j=0.1,....Negps =1 (42)

Ncaps

45

The second permutation is defined by the following equation [36]:

e =16d—(Ncgps — 1) X [&J ford=0,1,...,Ncgps — 1 4.3)

NcBps

Implementation of the two equations is similar to the transmitter.

4.3.3 Depuncture

The Depuncture pads dummy bits in the position of the removed bits by the puncture.
The position of the removed bits is defined by [36] according to the coding rate. Figure[4.7]
shows the position of the inserted dummy bits for coding rate equals to 3/4. Implementation
is similar to the transmitter, since it uses a BRAM whose address is controlled by special
logic to match the pattern of the column vector to extract the desired bits.

Bit Stolen Data
(sent/received data)

A Bo| Aj|B,| A{B;| A)Bs| AdBy| A4 Bg

Bit Inserted Data Ao Inserted Dummy Bit

Decoded Data

Yo | Y1 | Y2 |Y3 | Ya|¥s|Ye|¥7|¥s

Figure 4.7: Wi-Fi depuncturing algorithm [36]]

4.3.4 Viterbi Decoder

Viterbi decoder is used because of its ability for error detection and correction. The
decoder either requests re-transmission, or starts correcting the received bit stream accord-
ing to its type. The constraint length in Wi-Fi (order of generator polynomial + 1) equals
to 7. The decoder implementation consists of six major blocks as shown in Figure 4.8

1. BMU: Branch Metric Unit is responsible for calculating the hamming distance of
each branch in the trellis.

2. PMU: Path Metric Unit consists of Add Compare Select Unit (ACSU) responsible
for calculating the hamming distance of the whole path, comparing paths together,
and selecting the desired one.

3. TBU: Trace Back Unit is responsible for storing the correct paths in order to trace
back the survivor path ultimately to deduce the original bits.

4. Metric Memory: Responsible for storing the path metric of each branch.

5. Viterbi Controller: Responsible for controlling all blocks.

46

PMU

Viterbi Metric
BMU Controller Memory
— TBU

Figure 4.8: Viterbi block diagram [50]

The flow chart of the decoder algorithm illustrated in Figure 4.9 shows that the BMU
first starts to calculate the branch metric. In order to calculate the path metric, the ACS unit
starts its operation on each branch. The path information is stored in the metric memory,
then checking is done on the reference model (the trellis). If the stages are over, then
tracing back is initiated to decode the data. If not, the operation is repeated till the end of
trellis stages. The algorithm can be explained briefly in the following steps:

1. Receive one input code word (2 bits or 3 bits corresponding to the coding rate).
2. Calculate the branch metric.

3. Read the previous path metric for all states from the metric memory.

4. Add the branch metric to the path metric for the old state.

5. Compare the sum for paths arriving at the new state (there are only two paths).

6. Select the path with the smallest value which is called the survivor path. If both
path metrics are equal, then choose anyone.

7. Write the survivor path in the survivor memory to be used in the trace back process.
8. Write the new path metric in the metric memory unit.
9. Begin the trace back process when the sliding window reaches its end.

The trellis in Figure [4.10| shows the possible transitions for an encoder input sequence
‘1011100’ Viterbi algorithm uses the received version of the encoded bit sequence
to find the most likely path through the trellis diagram representing the encoder state
machine. Once the most likely path is determined, the encoder data bits that led to follow
this path are implied, and these are the output. Viterbi algorithm is the optimum algorithm,
since it minimizes the probability of error. However, the main drawback of using Viterbi
decoders is the large cost in terms of chip area.

Figure {.T1] illustrates the conventional decoding process. Consider the received
sequence containing errors to be decoded is ‘11 11 00 10 01 11 11°. The output of the
decoder in such case will be ‘11 01 00 10 01 10 11°. After finishing the first two steps in

47

Start

Branch Metric
Calculation

Performig
ACS Operation

Path In-
formation
Storage

Trellis
Stages —
End

Y
Trace Back

Data Decoding

Exit

Figure 4.9: Viterbi decoder algorithm flow chart

the algorithm, the path metrics are calculated to reach each state in the trellis. Ultimately,
the survivor unit traces back the optimum path which will always start from state zero.

The BMU receives the code signals, calculates the distances with all possible branch
metrics, then generates the output distances. Values generated are depending on the value
of ACS segment as shown in Figure {.12]

The distance for each branch is the number of error bits between the received code
word and the output of the branch. Distances are stored in 2 bits. In case of coding rate is
1/2, the error can be in 0, 1, or 2 bits which is represented in 2 bits. Similarly, the error
in case of coding rate is 1/3, the error can be in 0, 1, 2, or 3 bits which is represented in
2 bits as well. The hamming distance in each case is calculated using the combinational
logic shown in Figures 4.13] and 4.14] Distance calculations in both cases of coding rates
are listed in Tables d.2] and 4.3]

48

Input: 1 0 1 1 1 0 0
Output 11

@ 1(01). @ 1001).

Figure 4.10: Convolutional encoder terellis example

Output: 11 01 00 10 01 10 ll
Receive: 11 11
® /0(00) > 00) /0(00) 00) _Q(QQ)___ @ O(OOJ
B |7 |

-"'k\

-~
3,
D

Figure 4.11: Trellis diagram for error decoding

49

0 Input Code

| |

ACS-segment —{ Encoder 1 Distance — out[0]

Calculator 1

Encoder 2 Distance — out[1]

Calculator 2

T |

1 Input Code

Figure 4.12: BMU block diagram
o1) 0
12{(1)} D out[1]

Figure 4.13: Distance calculator for coding rate 1/2

%H[O] jD/jD out[0]
in[1] n[2]

in[1]
in[0]

in[1]

in[o] — out[1]

in[1] -
in[0]

Figure 4.14: Distance calculator for coding rate 1/3

50

Table 4.2: Hamming Distance in case of coding rate 1/2 [36]

Input Bits Calculated Distance in Bits

00 00
01 01
10 01
11 10

Table 4.3: Hamming Distance in case of coding rate 1/3 [36]

Input Bits Calculated Distance in Bits

000 00
001 01
010 01
011 10
100 01
101 10
110 10
111 11

The ACS unit adds the path metric to the distance, then compares the new path metric.
Finally, the chosen path metric is stored in the metric memory as the survivor path. Two
BRAMs are needed to save the calculated consecutive metric values where each has its
own index.

4.3.5 Descrambler

Descrambler implementation is performed as shown in Figure 4.15]

Data In

»fl\

X7 x8 x° x4 x3 x2 X

Descrambled
Data Out

Figure 4.15: Wi-Fi descrambler [36]

51

4.3.6 Chain Utilization

Table [4.4]lists the utilized area for all Wi-Fi receiver chain blocks in terms of LUTs,
BRAMs, and DSPs.

Table 4.4: Wi-Fi Receiver Chain Area Utilization

Chain Block LUTs BRAMs DSPs

Packet Divider 26 0 0
FFT 2079 0.5 6
Demapper 330 0.5 0
Deinterleaver 367 2 5
Decoder 803 1.5 0
Descrambler 139 0 0

4.4 2G Receiver

Figure .16 shows the implemented blocks in the 2G receiver chain.

|

Diffrential
Decoding

Burst
Deformation

Deinterleaver

Decoder

De-CRC

I

Figure 4.16: 2G receiver chain block diagram

52

4.4.1 Differential Decoding

Differential decoding is responsible for retrieving the data to its original form. Imple-
mentation is done through xoring the old bit with the new signed bit.

4.4.2 Burst Deformation

Burst deformation extracts the data bits from the burst, then equalizes the channel
effect using the training sequence. Information about the channel is extracted from the
steal flag bits. If the steal bits are zeros, the channel type is Traffic Channel (TCH). If the
steal bits are ones, the channel type is Fast Associated Control Channel (FACCH).

4.4.3 Deinterleaver

The deinterleaver concatenates the data segments extracted from the burst to reconstruct
the frame. Then, it re-arranges the bits in its correct order by writing them column by
column and reading them row by row in 8 X 57 matrix.

4.4.4 Viterbi Decoder

Same Viterbi decoder used in Wi-Fi chain is used here as well. However, the constraint
length in 2G is 5 and it decodes only the first 378 bits. The remaining 78 bits are buffered
to the next block.

4.4.5 De-CRC
De-CRC and bit reordering perform the following steps as illustrated in Figure F.17}

1. Detaches the tail bits from the received sequence if they are all zeros.
2. Reorders the remaining bits to their original order.
3. Removes the CRC parity bits.

4. Checks if the CRC remainder is equal to O for error detection.

4.4.6 Chain Utilization

Table 4.5 lists the utilized area for all GSM receiver chain blocks in terms of LUTs,
BRAMs, and DSPs.

53

/\ /\ Data In
N Y

XZ

»

L M
T N

L J

Data Out

Figure 4.17: 2G de-CRC

Table 4.5: 2G Receiver Chain Area Utilization

Chain Block LUTs BRAMs DSPs

Differential Decoder 3 0 0
Burst Deformation 77 0.5 0
Deinterleaver 165 0.5 0
Decoder 665 1.5 0
De-CRC 155 0 0

4.5 3G Receiver

Figure [4.18|shows the implemented blocks in the 3G receiver chain.

4.5.1 Code Division Multiplexing

BPSK demapper is used to retrieve the data bits. Descrambling operation is deployed
by multiplying the received bit stream data from the demapper by the same scrambling
code used at the transmitter. Despreading is performed by multiplying the descrambled
data periodically by the same spreading code used at the transmitter. The spreading code
used to generate the despreaded data is “(1,1,-1,1)” [47].

4.5.2 Deinterleaver

The deinterleaver block consists of four main blocks: radio frame segmentation, second
deinterleaver, radio frame concatenation, and first deinterleaver. The four blocks should
re-arrange the received bits to repeal the effect of the interleaver at the transmitter as

54

|

Demapper

Despreading

Descrambling

Deinterleaver

Deconcatenation

Decoder

Desegmentation

De-CRC

I

Figure 4.18: 3G receiver chain block diagram

shown in Figure d.19] Implementation is done using BRAMs whose address is controlled
by specific logic.

4.5.3 Deconcatenation

Deconcatenation of bit sequence takes place, if the block size is larger than 504 x 2
bits. The code blocks after deconcatenation are equally sized. Implementation is done
using the same FSM used in the segmentation block at the transmitter.

4.5.4 Viterbi Decoder

Same Viterbi decoder used in Wi-Fi receiver is used here. Since the constraint length
in 3G is equal to 9, the size of the trace-back memory and the metric memory will be
larger than the one used in Wi-Fi and 2G.

55

|

Radio Frame
Segmentation

Second
Deinterleaver

Radio Frame
Concatenation

First
Deinterleaver

I

Figure 4.19: 3G deinterleaver block diagram

4.5.5 Desegmentation

Desegmentation has the same design and implementation of the concatenation block
explained in transmitter.

4.5.6 De-CRC

De-CRC is provided for error checking. The entire received data block is used to
calculate the CRC parity bits. CRC bits are being punctured from the received bits, then
CRC parity bits are generated using the same generator polynomial equations used at
the transmitter. Finally, a comparison is being done between the generated bits and the
received bits to decide out if the data was correct or erroneous. Figure .20] shows the
used generator polynomial.

Data In

(N A\ N /]
N N 2N

D
L X8 X7 X6 X5 X4 X3 X2 x1

Figure 4.20: 3G de-CRC

N

N
N
&V
L1

4R
N

Data Out

56

4.5.7 Chain Utilization

Table [.6] lists the utilized area for all UMTS receiver chain blocks in terms of LUTs,
BRAMs, and DSPs.

Table 4.6: 3G Receiver Chain Area Utilization

Chain Block LUTs BRAMs DSPs
Demapper 45 0 0
Despreading and Descrambling 78 0 0
Deinterleaver 636 2.5 0
Deconcatenation 424 0.5 1
Decoder 2202 13.5 0
Desegmentation 145 0.5 0
De-CRC 27 0 0

4.6 LTE Receiver

Figure [4.21|shows the implemented blocks in the LTE receiver chain.

4.6.1 OFDM Section

Inverse SC-FDMA differs from the one used at the transmitter side in the arrangement
of the internal blocks. The received data first enters the 128-point FFT, then passes through
14-point IDFT as illustrated in Figure .22} Implementation is performed using a controller
similar to the one used at the transmitter. Unlike all other receivers, the LTE receiver is
soft decision based. Hard decision is done at the decoder which converts the symbols to
bits again. This implies that all receiver blocks from the demapper to the decoder are soft
decision (symbol domain). QPSK demapper with soft in-soft out is used to calculate the
log likelihood probability of the input symbols. The resultant demapped data is associated
with the probability of its correctness.

4.6.2 Descrambler

Descrambler multiplies the symbols by “-1” if the polynomial output is “1”, and passes
the data unchanged if the polynomial output is “0”. Multiplication with “-1” is performed
by calculating the two’s complement.

4.6.3 Code Block Deconcatenation

Deconcatenation is the same as the segmentation block at the transmitter.

57

|

Inverse
SC-FDMA

Demapper

Descrambler

Deconcatenation

Rate
Dematching

Decoder

Desegmentation

De-CRC

I

Figure 4.21: LTE receiver chain block diagram

CP . Inverse
— D —
Removal FFT capping DFT

Figure 4.22: OFDM section block diagram

4.6.4 Rate Dematching

Rate dematching block receives the data bits according to the pre-specified MAC rate.
Bit deselection block removes any additional bits that were padded to match the required
rate. Bit decollection block converts the bits from serial to three parallel paths. Finally,
each path is deinterleaved by switching the read and write functions of the interleaver
defined at the transmitter.

58

4.6.5 Turbo Decoder

Turbo decoder is the most complicated block in all implemented chains. It is responsi-
ble for error detection and correction. As shown in Figure .23] implementation is done
using two soft in-soft out Viterbi decoders, two interleavers, two deinterleavers, and a hard
decision block. The design is based on an iterative algorithm to increase the accuracy of
the bit correction. The symbols “S1, P1, and P2” represent the systematic bit, the output
of upper encoder, and the output of lower encoder respectively.

Deinterleaver P2

|

— SOVA) Interleaver) SOVA — Deinterleaver (— Hard Decision [—

Isi

—| Interleaver

Figure 4.23: Turbo decoder block diagram [51]

4.6.6 Desegmentation

Desegmentation has the same design and implementation as the concatenation block
explained in the transmitter. However, it contains an internal de-CRC block to repeal the
effect of the CRC.

4.6.7 De-CRC
De-CRC has the generator polynomial shown in Figure f.24]

Data In

D

AR M
NN, NN VAN

X24 Xx23 X22 x21 x8 x7 X6 X5 X4 x3 x2 x1 r.\
N

Data Out

Figure 4.24: LTE de-CRC

4.6.8 Chain Utilization

Table lists the utilized area for all LTE receiver chain blocks in terms of LUTs,
BRAMs, and DSPs.

59

Table 4.7: LTE Receiver Chain Area Utilization

Chain Block LUTs BRAMs DSPs

Inverse SC-FDMA 2942 0 15
Demapper 83 3 0
Descrambler 476 4.5 0
Deconcatenation 447 1.5 0
Rate Dematching 585 3 0
Decoder 2655 8 6
Desegmentation 177 2 0
De-CRC 87 0 0

4.7 Summary
The following chapter lists all implemented blocks in the SDR receiver. The system

includes the physical layer implementation of the five receivers: Bluetooth, Wi-Fi, 2G,
3G, and LTE.

60

Chapter 5: FPGA Prototyping

5.1 Test Environment

FPGA prototyping is performed using Zyng-7000 SoC ZC702 Evaluation Kit. Figure
[5.1) shows the two main parts of the chip [23]]:

1. Processing System (PS):
The static part of the chip including the processor that is responsible for interfacing
with peripherals through AXI Bus Protocol, and executing user programs [31]].

2. Programmable Logic (PL):
The reconfigurable part of the chip that has sufficient resources for deploying the
communication systems. The available resources are: 53200 LUTs, 220 DSPs, and
140 BRAMs.

The kit does not only offer DPR technology, but also provides bunch of useful periph-
erals in the testing process. Figure[5.1|shows some peripherals that are used in the DPR
flow and testing as well. The used peripherals are:

1. SDIO: Used in interfacing the SD card with the Double Data Rate (DDR) memory
with the aid of the processor. The input data files and the partial bit stream files used
in the DPR flow are stored in the SD card.

2. JTAG: Used in programming the FPGA through the PC.
3. UART: Used in interfacing the FPGA with the PC while debugging the design.
4. DDR CTRL: Used in interfacing the processor with the DDR memory.

Each communication standard specifies the transmitter’s legitimate frequency, in order
to modulate its symbols on. Each chain has its own major input frequency that is used to
generate the required distributed clocks in order to mimic the standards. The processor
can offer up to 4 different clocks. The major operating clocks derived by the processor to
feed the communication chains are:

1. 200MHz: Used for AXI Bus, 2G, Wi-Fi, and LTE chains.

2. 100MHz: Used for Internal Configuration Access Port (ICAP).
3. 55.5MHz: Used for Bluetooth chain.

4. 15.3MHz: Used for 3G chain.

As mentioned earlier, the input data is stored in the SD card and then transferred to the
DDR within the run-time. The data flow in the PL side, shown in Figure@, is conducted
using the following steps:

1. the input data is transferred from the DDR memory to be stored in the Direct
Memory Access (DMA) that adjusts the rate according to the clock of each wireless
communication system.

61

Processing System

|
DDR |:| DDR
] [
CTRL |, | Memory
|
ARM :
Cortex SDIO | SD Card
Processor !
AN |
|
— UART ¢ PC
|
|
= JTAG K
S s S SO
L2 ':
SDR Configuration |
System Memory) !
Programmable Logic '

Figure 5.1: Zyng-7000 SoC ZC702 evaluation kit peripherals [27]]

. an intermediate block “Input Interface” is used to adjust the data input rate and

system reset.

. data is transferred through the system.

. another intermediate block “Output Interface” is used to adjust output data rate for

the DMA.

. the output data is stored in a second DMA to be finally transferred to the DDR for

verification.

Testing the five chains is performed through running a C-code program that uses Xilinx
APISs to apply the input data for each system and extract the results. Figure [5.3|shows the
program flow chart. The states are listed below:

Hardware Initialization: Starts by resetting the system, then the processor sends
the required parameters for DMAs, input interfaces, and Xilinx PRC [34]. The
hardware initialization step includes the sub-steps mentioned in Figure [5.4}

Reconfiguring Chosen System: The processor triggers the PRC with the chosen
system to be loaded.

Testing System: The test environment flow discussed in Figure [5.2]is launched.

Asking For Input: The user has the option to whether program the FPGA with the
partial bit files, or test the system.

62

|

DMA

|

Input
Interface

|

BT/Wi-Fi/
2G/3G/AG

|

Output
Interface

|

DMA

!

Figure 5.2: Test environment on the PL side

Start

HW
Initialization

Ask for
Input

]

System
Reconfiguration

Figure 5.3: C-code flow chart

Decision
Making

Output File
Generation

System
Testing

Exit

63

|

Flush Instruction
and Data Cache

|

Initializd SD Card

|

Transfer Bin
Files From SD
Card to DDR

|

Initialize Device
Configuration Interface

|

Disable PCAP

|

Initailize PRC
RM Registers

|

Transfer input files
from SD Card

!

Figure 5.4: Hardware initialization steps

5.2 Block Design Implementation

In order to deploy the test environment mentioned earlier to serve the DPR flow, the
block design shown in Figure [5.5]is established. The implemented design consists of the
following building blocks:

1. DMA: The memories used to transfer the system input data from the DDR memory

to the communication systems.

2. Interfaces: The interfaces used to modify the input/output rate transferred from the
DMAs to be sampled correctly by the communication systems.

3. ARM processor: The ARM is used to generate the main clock frequencies for all
communication systems and synchronize between all other blocks.

4. PRC: Xilinx Partial Reconfiguration Controller IP is used to control the ICAP for
the DPR flow [52].

64

5. ILA: Xilinx Interactive Logic Analyzer is used to capture the values of specific
signals in the design within the run-time. This is performed by setting debugging
probes on the required signals and storing the values in memories.

6. Reset systems: Since each communication system has its own frequency of opera-
tion, synchronized reset blocks for each main clock are used to reset each system.

7. Communication systems: The communication systems black boxes that have the
same I/O ports of the synthesized design in each chain.

8. Cross bars: Xilinx offers AXI4 interface used for IP communication.

5.3 DPR Flow Steps

In this section, Xilinx DPR flow design steps are introduced through implementing a
multi-standard SDR system using Vivado and SDK (Version: 2015.2) tools [54]].

1. Step 1: Creating top level black box has the same I/O ports for all RMs
The black box module is a wrapper module where input and output ports are
defined without performing any logic. The top level module of each Reconfigurable
Module (RM) must have the same module name and same I/O ports. This module is
connected to the rest of IPs used in the static design. The internal implementation of
the black box module is modified later according to which communication system
is deployed.

2. Step 2: Synthesize static and reconfigurable modules separately
In this step, the static design of DPR system is synthesized as a black box. It is
expected to see a critical warning saying that the tool could not resolve a non-
primitive black box cell. Each RM is synthesized in a separate project using the
following synthesis options:

(a) “-BUFG = 07, since the Reconfigurable Partition (RP) shouldn’t contain any
buffers.

(b) “-mode out_of _context” to ensure that this synthesized block will be a part of a
bigger design which is the static design in case of DPR.

This step is applied on each RM that will occupy the RP. In case of SDR, this step is
applied 5 times (2G, 3G, LTE, Wi-Fi, and Bluetooth) on each partition.

3. Step 3: Top level block design creation
After creating the black box for each partition, blocks are imported in the top
level project and are connected to the DMAs and interfaces mentioned earlier.
Connections are shown in Figure[5.5]

4. Step 4: PRC configuration
The PRC needs to be configured to store the information about the number of RPs
and RMs in each partition. As illustrated in Figure[5.6] the number of virtual sockets
represents the number of partitions. The number of RMs is determined by the
number of chains that share this partition.

65

T

D<A

 aul
[
£4u] : SYna
1

___ivving [

J4d

Ul I

=)

EViNG

Vg

[Ewsoup_ Thul VNG

Tdxd

Ed Xy zd Xy Ed XL Zd X1

[i

[HHIAIATATRR

MN um.mmET _\

TdXL

n“._" um.mm-m__w

Figure 5.5: Block design connections
66

B e I

Partial Reconfiguration Controller (1.0) '
I Documentation |5 P Location
“Validation | Addre 4 » B Companent Name |design_1_prc_0_1
Thera are no errors Global Options & Options |
[t virual Socket Menager | MNew Reconfigurable Module Dedete Wirhusl Socket Manager [Delete Reconfiguriable Modue |
I Virtual Socket Manager Options Reconfigurable Modue Options:
Virtual Socket Manager to configure | Tx R system - Reconfigurable Module to configure | 29 be bt
Hame {ID): Tx_R_system (0} Mome (I): 2g_tx {n)
139 tx
Enter a new name here Enter a new name here 9 tx |
wifi ¢ T
[Fias Status Channel [Hes contral Channel Srutdown type lbhuetooth b
Startup type TiotRequred =
[7] Start in Shutdown) Shustdown on error
Reset type NotRequred -
7] Skip RM startup after reset Duration of Resst 1
[Has Por RM 29t . Bitstream 0 address ox0)
Sitstream 0 size (bytes) o
Number of RMs allocated 8
Trigger Optons
Number of Hardware Tripgers]
Number of Triggers slocated B
First trigger to display 0 -
Trigger D Reconfigurable Module to Load Lodk the Trigger
Lo) s |

Figure 5.6: PRC configuration

5. Step 5: Running connection automation
Since every transceiver is operating on a specific generated clock by the ARM
processor, connection automation phase is not a simple process. Figure[5.7] shows
the options provided by Xilinx Vivado for connecting each block in the whole
design to the appropriate clock domain. The rules of the clock distribution network
mentioned in Section 5.1 are used here as well.

P
&3, Run Connection Automation | &

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration options on
the right.

=} (-] All Automation (0 out of 14 selected)
=[] £F axi_dma_0
o LT i S_AXI_LITE
[£F axi_dma_1
LTI} 5_AXI_LITE
[T £F axi_dma_2
© LT i 5_AXI_LITE
-] £F axi_dma_3
LT s_AXI_LITE
-] £F axi_dma_4
© LT i 5_AXI_LITE
] £F input_interface_AXI_0
o LT s00_axT _ _ -
{F input_interface_AXI_1 Select an interface pin on the left panel to view its options
-] i S00_AXI
{F input_interface_AXI_2
-] i S00_AXI
] £F input_interface_AXI_3
LT il S00_AXT
-] 4F input_interface_AXI_4

| »

& B4

m

{F processing_system7_0
- [0 5_AXI_HPO
[=H[] £F Ry_AXI_Peripheral_v1_0_0 =

o] Comai]

Figure 5.7: Connection automation options

67

6.

Step 6: Synthesizing the top level

After connecting all blocks in the block design, an HDL top level wrapper must be
created in order to synthesis the design. As shown in Figure [5.8] an HDL wrapper is
created, then synthesis command is executed.

Fle Edt Flow Toos Window Layout View Help

a2 X b S K L[S oefatiayout ~ TR ® Synthesis Complete
Flaw Navigator < | Project Manager project_1 *
Q I . || Sources (= ERES E Project Summary X =N
la T = B 3l 2 m—
4 Project Manager g >
& Project settngs & || Messages: (9 2wamings =
5% Add Sources D:_U_"linu”';::u } Source Node Properties.., tri-E Implementation =
§ Language Templates @ design_1| B+ Open Fie AR+O Status: Not started
1F P Catalog A= Create HDL Wrapper... Messages: Mo errors or wamings
View Instantiation Template Active run; 2
4 Pl
TP Integratar Generate Qutout Products. . Part:
7, Create Block Design Res ot Strateqy tation Def
+¥ Open Block Design Incremental compie: lone
% Generate Block Design
A Tx_R_Partit DRC Violations Timing &
4 Simudation r E:_E:::: Copy Al Fikes Tnto Project Al
ATER =~ rok Run trplementstios
< e o N San Spenentaon |
@} Smudstion Settngs T R Parsud X Remave Fik fiom Project, Delete
@) run simulaton (-0 1P Update L e+ Equak
- Constrants Dbl Fle Alte Minus Utilization - Post-Synthess Power ®
4 RTL Analysis -4 Smulation Sourc
hy Hierarchy Update v
@ Hlaboration Settngs @ Refresh erarchy FE 159
{@* Open Elsborated Design TP Herarchy » Lt 23%
Pemory LUT
4 Synthesis
X BRAM
@ Synihesis Settings are
- 13%
#» Run Synthesis ==
@ Open Synthesized Design Edit Constraints Sets...] -1 50 75 100
Edit Simulation Sets. Estimated Utiization (%)
e Associate ELF Fies. Graph Table
&} Imolementation Settings Hierarchy | 17 Soured
A Add Sources... AleA Post-Synthesis | Post-Inplementation
[Run Implementation 7 Sources .
- 4 ReportIP Status
pen Implemented Desig > =
= 8@ [H |3 > pesy o To Source £

Generate HOL wrapper file and copy into project

10.

1.

Figure 5.8: HDL wrapper creation

Step 7: Create physical constraints (Pblocks) defining the reconfigurable re-
gions

The static design check point generated in Step 2 is opened for the RP floor-planning
as shown in Figure [5.9] The Pblock is selected for each partition in a way where the
available resources cover the resources needed by each RM. Placement of partitions
must be in a specific distribution in order to bypass the placer and router rules.

. Step 8: Setting HD RECONFIGURABLE property on each black box

This step ensures that each black box in the design will be a reconfigurable partition.

Step 9: Setting RESET_ AFTER RECONFIG property on each RP

Each clock region in the FPGA has its own reset pin. In order to ensure that
configuration of the new image is performed safely without any trails from the old
one, using the reset after reconfiguration feature is recommended.

Step 10: Setting SNAPPING_MODE property on each RP

Since the RP must be multiples of the size of the Reconfigurable Frame (RF) defined
in [55]]. Snapping mode feature is required in order to avoid errors in the consequent
steps.

Step 11: Implementing the full design in context

After selecting the floor plan of each RP, the synthesized design check point of any
standard such as LTE is loaded. The Pblock properties must be checked in order to
guarantee that all required resources are available as shown in Figure Finally,

68

Fle Edit Flow Tools Window Layout View Help
o 3 X @5 G O K| G [E10namn - X|©

Checkpoint Design - xc72020cg484-1

Netlist — 0O x i Package X | Device X
% »[E
Nets (179
Leaf Cells
=-{3] inst (AXI_P
Nets (171
& Leaf Cells (4
-{@] AXI_Peripheral_v1_0_S00_AXI_inst (AXI_Periphera
1]

"
N

SE a0 (e . @ CellProperties... Ctrl+E
4 il
Ctrl+U
3 netlist | & Device Constra
Floorplanning »
£l propees Select Leaf Cells Ctrl+Shift+5
R | & Draw Pblock
B R_system # Highlight Leaf Cells » New Pblock...

General | Properties | Statistics & righight b

) Properties | [Clock Regi

Messages @ Mark Ctrl+M
A [V @ 1 critical warning tri+ Shift+M
L D [Project 1-479] N
= D [Device 21-403]
o D [Project 1-570] P Schematic F4
[I’- D [Project 1-486] ¢ Show Connectivity CtrlsT h' instantiated as 'design_1_i/AXI_Peripheral_v1_0_1/inst/R_System' [AX] Peripheral vi 0.v:106
- D [Project 1-111] U
A total of 250 ins_2_ Sow Hierarchy F
= CFGLUTS => CFGLUTS (SRLC32E, SRL16E): 100 instances
~ RAM16X1D => RAM32X1D (RAMD32, RAMD32): 8 instances

Figure 5.9: Pblock selection

implement, place, and route the design then, save it in a new design check point.
The implemented design is used in the generation of bit stream files.

12. Step 12: Removing RMs from design and saving design checkpoint
The LTE block shall be removed from the Pblock to make it black box again using
“update_design” command in order to implement other standards.

13. Step 13: Locking static placement and routing
This step is used to save the placement and routing of the static parts in the design.
Since the consequent steps will change the implementation of the RPs.

14. Step 14: Repeating Steps 7,8, and 9 till all RMs are implemented
The cell must be updated to be a black box again. Then, the remaining chains are
implemented.

15. Step 15: Running pr_verify utility on all configurations
This step verifies that all implemented design check points are compatible with Step
5, 8, and 9. This step must pass in order to complete the flow.

16. Step 16: Creating bit streams for each configuration
Full and partial bit stream files are created for each standard in order to program the
FPGA. The partial bit files extension is (.bin) if loading is performed through the
SD-card, and (.bit) if loading is performed using the JTAG cable.

17. Step 17: Exporting hardware for software preparation
Since the software code is loaded bare metal without using an operating system,
the implemented hardware must be transformed into memory addresses where the
launcher can execute. Xilinx Vivado assigns each hardware block a mapping to a

69

Pblock Properties

R

(@) pblock_R_System

Physical Resource Estimates

Site Type Available Required %% Util
Slice LUTs 11200 10812 95.54
LUT as Logic 11200 9536 85.14
LUT as Memory 3000 1276 42.53
Slice Registers 22400 8369 37.36
Register as Flip Flop 22400 8327 37.17
Register as Latch 22400 42 0.19
F7 Muxes 5600 114 2.04
F8 Muxes 2800 0 0.00
Block RAM Tile 30 18 60.00
RAMB36/FIFO 30 =] 20.00
RAME 18 80 249 40.00
DSPs 40 29 72.50
Carry Statistics
Number of carry chains Longest chain Carry height utilization

414 pblock_R_System/R_System/scrambler /DUT ftemp_reg[3]_i_1 16.000% (8 CLBs)

Clock Report

Domain (Module) Resource Instances

CLK(clk_distribute_4g) Local 3008
E[0](top_codeBlockConcatenation_4g) Local 3
E[0](top_interleaver1_4g) Local 18
FCLK_CLKO(processing_system7_v5_5_processing_system7) Global 10
WEA[D]{ fsm_segmentation_4g) Local 18
dk1(dk_distribute_4g) Local 6718

= B T A A Sy S s P § [P | L |

General | Properties | Statistics Cells | Connectivity | Rectangles

18.

19.

20.

Figure 5.10: Pblock properties

certain memory address. Exporting the hardware step shown in Figure [5.11| dumps
all these addresses into header files that will be included in the main function later.

Step 18: Launching Xilinx SDK

Xilinx SDK is used to launch the software program mentioned earlier to test the
system. First a new project must be created with type FatFileSystem. Then, the
reconfiguration algorithm is included in the project source files to be executed.
Project creation is performed as illustrated in Figure [5.12] The C-program must
include the mapped addresses of the whole design including the PRC. The PRC
addresses are extracted from a text file created by Xilinx Vivado as mentioned in
[34].

Step 19: Setting up the UART terminal connection

Interaction between the board and the PC is performed using a UART cable. The
UART terminal must be configured as serial connection with baud rate equals to
125000 bits per second.

Step 20: Running the software program on the processor
Ultimately, the GDB debugger is used to launch the ELF file generated by the SDK

70

Ble | Edt Fow Toos Window Layout View Hep s
& NewProject.. ¥ @ 3| E G |55 oefaut Layau ~ e x| ® Synthesis Complete
* OpenProject...
oject Manager 1 X
Open Recent Project v project,
Open Exampie Froject... fasces -0 x E Project Summary X D &
w0 | o b [T - o : wan -
P = B & R E T Messages: 61 Messages: No el:urs or warnings
+ (@ 4warmings s Actve ith Active un: impl 2
AR A e Part: T 2dgd84-1 Part: *eTI020IgI8S-1
1 Archive Project... 5 Strategy: \vado Synthess Strateay: bo Tmplementation Defaults
Close Project Incremental compie: [ions
Open Chedpont... -
e a DRC Violations 2 | Timing ES
Open Regent Checkpoint ’ ER
nerarchy 1P Sources | Ubraries | Compile Order
Fun Imples fun Implementaty see timing results
& Sources | 7 Templates
New IP Location..
Open IP Locaton, . japERey - Qe x Utilization - Post-Synthesis % Power = || 8
BRd
New Fie. B 189%
apen Fie... Ctris0 Lr R
Open Recent Fle » Memery LUT 9%
Open IP-XACT File... ERAM I 49 hd
- Ctrl=S Lsign Runs: =
Mame Constraints Status Pragress WNS THS WHS THS TPWS FaiedRoutes LUT% WTs FF% Fs BRAM% |
F sl symth_t constrs 1 Synthess Out-of-date 100% 23,429 1264 16055 17083 5,000
@ Add Sources... Al+A | =impl_L constrs_1 Mot started 0%
P Cutony |0 symth_2 (oct constrs_1 synth_design Complete! 100% 27.961 14875 17.835 18976 3.929
Spe > 2 constrs 1 Not started 0%
Export »
Launch SOK
Open Log Fie
Open Journal File
ol trieP 0l m *
Exit B Td Console | = Messages | G Log | |2 Reports, 3 Design Runs
Export a hardware description fle for use with the STK
dit Source Refactor Mavigate Search Project XilinxTools Run Window Help
New Alt=Shift«N » | &} Application Project O~ 5~ = . " . e Quick Access £ | [Eces
Open File.. SPM Project = =
e g 2 ord.c 52 = O |5 outline %% | @ MakeTarget| = O
. Board Support Package - -
Close cutew | B s nd Rl B 2% E s 0%
Close All Cirteshifey |0 Proect [o sdibh a
o sdioh @
ity | B9 SourceFolder . (A
(% Folder = stringh
2 sleeph
3
Save Al Curteshifts | €l Source File o timeh
P [Header File 2 il printfh
[Filefrom Template o xdevcfgh
Move.. @ | clss = ilioh
Rename. 7] o il typesh
—
&) Refresh m =% (Gl o wseugich
9 s . = xil_exception.h
Convert Line Delimiters To b finclude "xaxidma_hw.h
include " b 2 o xparametersh
Print. Ctrl+P L 2 il cacheh &
Suitch Workspace blems |V Tasks | Bl Console | = Properties | & Terminal1 53 = 8 SDKLog 52 BE -0
Restart = =R ANCR ~ B 9:16:10 INFO : Launching XSDB server: xsdb.bat -s €:/sherif/Vivac «
[COMM, 115200, 8, 1, None, None - CLOSED) - Encoding: (150-8859-1) XSDB server has started successfully
O — " ¢ Processing command line option -hwspec E:/sherif/r
©9:16:20 INFO : Checking for hwspec changes in the project top_sy:
A Export..
Properties Alt+Enter
1 helloworld.c [dpr_single_rp/src]
2 systemumss [dpr_single_rp_bsp]
3 systemuhdf [top_system_hw_platform_0]
Exit

> (= QEMU TcfGdbClient

25 dpr_single_rp

i,

Figure 5.12: SDK project creation

compiler on the ARM processor. The menu containing user options is displayed on
the UART terminal. Steps for launching the GDB debugger are provided in Figure

. 13

5.4 DPR Proposed Approaches

DPR system migration, while keeping the same test environment, is performed through
replacing the five systems (2G, 3G, LTE, Wi-Fi, BT) by one block which will have:

1. Multiplexer to pass the input data according the chosen system.

71

File Edit New Mools Run Window Help

milg Golnto NETE @ O ® -5l -] Quick Access 5 | [Eoes
[Project By Open in New Window stern.hdf system.mss € helloworld.c 2 = B || B outline 57 | @ Make Target =8
) W 5 9
=5 dprs| Copy CtrlsC // SDK used for Single RP for Tx and Rx{] - SRR o ¥ 7
M dpry #include <stdlib.h> o sdlbh n
& top.q Paste iV | ginclude <stdic.h> oo
P2 % Delete Delete | #include <string.h> 2 stdioh
#include <sleep.h> U sting.h
Source P | #include <tis > o sleeph
e #include "xil_printf.h” o tmeh
#include "xdevcfg.h” 51 il printéh
Rename... B2 | include "xil i xil_prinf,
#include "xil U xdevefgh
g Import.. #include o ailioh
w4 Export.. #include U il typesh
#include o scugich
Build Project #include oo
#include "xaxidma_hw.h" H il exception.h
Clean Project Eimelode "f R = U sparametersh
£ Refresh G 4 sl cacheh &
Close Project roblems |] Tasks | =l Console | = Properties | & Terminal 1 52 = 8 SDK Log &0 B&E-O
Close Unrelated Projects & =i lA_.:,| < < ©9:16:16 INFO : Launching XSDB server: xsdb.bat -s E:/sherif/Vivac =
Build Conf , | (COMM, 115200, 8, 1, None, None - CLOSED) - Encoding: (150-8859-1) 80:16:15 . XSDB server has started successful
USSR O .|| ®@:16:17 INFO : Processing command line option -hwspec E:/sherif/r
Make Targets » @8:16:20 INFO : Checking for hwspec changes in the project top_sy:
Index »
Show in Remate Systems view
Profiling Tools »
Convert To...
4 Target Profile As »
(= Hardy Debug As 3
& Linux P
& ol Run As »| & 1 Launch on Hardware (System Debugger)
Team »|EA 2 Start Performance Analysis
Compare With | % 3 Launch on Hardware (Systen Debugger on QEMU)
Restore from Local History... £ 4 Launch on Hardware (GDB)
< »
/Cr+ L
=0 ; B Creste BootImage [£] 5Llocal C/C++ Application
v _singll
=, M. Change Referenced BSP Run Configurations... = =

Figure 5.13: Software program execution

2. The physical layer implementation of the communication standard transceiver.

DPR System Zynq Peripherals
Processor

1 AXI Bus

Configuration
Memory

PRC |[— ICAP —

Figure 5.14: DPR overall system

According to the DPR techniques discussed in [52, 53], Xilinx PRC is used due to
its high throughput that is close to the ideal throughput of 400 MB/sec using ICAP to
communicate with the FPGA configuration memory. Figure[5.14]shows an overview of
the overall system.

The three metrics that measure the effectiveness of deploying the SDR system using
the DPR flow are: area, power, and switching time. The switching time is the bottle neck
of the technique since the system should switch rapidly between chains in order to achieve
performance similar to the case of no DPR.

The size of the bit stream file is dependent on the allocated design area. The switching
time of the RP is dependent on the size of the partial bit file. Thus, area optimization is
one of the challenges to achieve small switching time. System optimization is achieved
through modifying the RTL code to reduce the utilized area. Reduction is achieved by the
synthesis techniques mentioned in Section 3.1 [40].

Since the maximum clock frequency of ICAP is 100 MHz, and the width of the data
bus is 32-bits, the ideal switching time is calculated using the following equation [23l]:

T = Partial Bit File Size in Bits
" Bus WidthxMax Clock Frequency

S.D

72

5.4.1 Single Partition Approach

In real life, wireless transmitter and receiver communicate remotely. The simplest
approach in partitioning is choosing a single RP for the transmitter and another one for
the receiver as shown in Figure[5.13]

2G/3G/4G/Wi-Fi/BT - 2G/3G/4G/Wi-Fi/BT
Transmitter Receiver

Figure 5.15: Single partition approach block diagram

Since the LTE is the most complex transceiver chain, it has the largest allocated area.
Therefore, the size of the two partitions is selected to fit the LTE transceiver. Figure [5.16|
shows the floor planning of the allocated RPs on the FPGA.

i
|
i

Figure 5.16: Single partition approach floor plan

73

5.4.2 Multi-Partition Approach

Although the single partition approach is the best fit for LTE, simple chains such as
2G and Bluetooth are constrained with the large allocated unwanted area. This leads to
increase the power consumption and the switching time [55]].

In order to solve this dilemma, another approach is proposed. The new technique
suggests splitting both transmitter and receiver partitions into smaller partitions, in order
to fit the area of the small chains. Meanwhile, there are some constrains should be taken
in consideration in order to minimize the wasted area leading to the increase of switching
time and power consumption:

1.

3.

Sizes of the partitions must be relatively multiples of the minimum RF size. As
mentioned in [30] the minimum RF area is (400 LUTs, 10 DSPs, or 10 BRAMs).

The difference between areas of chosen blocks in each chain to be merged together
must be small.

Since the FPGA resources (BRAMs and DSPs) are distributed as shown in Figure
[5.17) partitions are placed in a certain way not only to fit the required area, but also
to obey the rules of placement and routing.

Partitions must not be placed vertically in the same clock region. It is mandatory to
reset the whole partition after reconfiguration. Every clock region has its own reset
pin.

Finally, as the number of partitions increase, the PRC overhead time becomes much
more significant.

A MATLAB code is developed to satisfy the constraints mentioned earlier. The
algorithm main aim is to find which blocks shall be merged together in each chain in order
to obtain the minimum power consumption and switching time. The procedures shown in
Figure[5.18]are being taken:

1.

Calculate the weighted sum of all blocks in LTE chain that could be merged together.
Iterations are done on the LTE chain specifically, since it has the largest number of
blocks. The weighted sum is calculated by the following equation [30]:

2 ALuTs = NLuts +40 X Nprams +40 X Nps ps (5.2)

2. Compare the weighted sum of each block in the LTE chain with the weighted sum

of 3G blocks, then choose the blocks that will be merged together in each chain
based on two aspects: the difference in the area must be the optimum; and the area
of the largest partition should be nearly multiples of the minimum RP area (400
LUTs, 10 BRAMs, or 10 DSPs).

. The merged LTE blocks are excluded and the operation is repeated again on Wi-Fi

blocks, then 2G, and finally the Bluetooth.

4. Finally, the remaining LTE blocks are merged together.

74

uoi163ay »xo0|1d

CLB Block

0
-
=]

cLB

CLB

CLB

Reconfigurable Tile

Figure 5.17: Virtex-7 RP physical constraints

It worth to mention that the transmitters and receivers in all chains except the LTE
are considered as two large non-dividable blocks while using the algorithm in order to
minimize the overhead of the PRC as much as possible.

The algorithm suggests dividing the LTE transmitter and receiver each into 3 sub-
blocks. As shown in Figure[5.19] the whole 2G and Bluetooth transmitters are nominated
to be merged with LTE CRC, segmentation, and encoder. Meanwhile the Wi-Fi and 3G
transmitters shall be merged with the rest of the blocks in the second partition, except the
SC-FDMA which is left alone in the third partition.

At the receiver side, the 2G and Bluetooth are merged with the LTE rate dematching.
The 3G and Wi-Fi are nominated to be merged with LTE decoder, desegmentation, and
de-CRC. The rest are suggested to occupy the third partition alone.

Figure shows the floor planing of the 6 partitions on the FPGA. Placement of all
RPs is done in such shape in order to obey the placer rules and easily route the design.

5.5 Simulation Results

5.5.1 Fixation Error

Wi-Fi and LTE chains are OFDM based. They are implemented using the FFT block
that represents a source of errors due to the fixed point representation. There is a trade off

75

Start

LTE Weighted
Sum Calculation

Check For
Available
Chains

Merging

Remaining Blocks

Comparison

With

Chosen Chain

Exit

Chosing

Merged Blocks

Block Exclusion

Figure 5.18: Partitioning algorithm flow chart

TxP1 E"T_X_I;Z """ TxP3 | RxP1 | RxP2 :"1& P3
| |
| 3G Tx : ; | 4 3G Rx
: | | | :
| | | | |
\ |
2GTx H ; : b 2GRx ||
: ! : % :
| ' | | |
I
4G Tx P1 —i—> 4G Tx P2 [+ 4G Tx P3 =4 4G Rx P1 [-b 4G Rx P2 —E—> 4G Rx P3
: ! : % :
| ' : | |
BT Tx ; i 4 BT Rx !
: : | | :
| ' | | |
E Wi-Fi Tx ' | | E Wi-Fi Rx
| |

Figure 5.19: Multi-partition approach block diagram

76

i
i
E
H

Figure 5.20: Multi-partition approach floor plan

between the system accuracy and the size of memories storing the symbols.

The IFFT block in Wi-Fi chain does complex mathematical operations which result
in some errors due to the fixed point representation of the mapped symbols. The chosen
bit representation shown in Figure is 3 bits for the decimal part and 9 bits for the
fraction. The demapper is able to fix the accumulated errors produced from the IFFT and
FFT. It worth to mention that the decoder only gets rid of the noise errors. System average
error calculations are performed using the following equation:

15N 1 0 toar(D=O fiveai)]
N

Error = (5.3)

The variables O o4 and Oyixeq are the system output symbols in case of floating and
fixed point respectively. The calculated receiver error is -64.3 dB. Meanwhile, the whole
transceiver accumelated error is -58.6 dB.

The situation is much more complicated for LTE chain. The SC-FDMA consists of
two complex blocks: DFT and IFFT that lead to produce error accumulation larger than

77

1077 -

BER

107 -

T
floating point

fixed point
fixed point
fixed point
fixed point
fixed point

- fraction bits=9 |
- fraction bits= 7
- fraction bits= 5
- fraction bits=8
- fraction bits= 4

Figure 5.21: Wi-Fi 16-QAM fraction part fixation

the Wi-Fi chain. The DFT output symbols are represented in large decimal numbers. In
order to overcome this issue, the number of bits representing the symbol is increased to be
14 bits, where 5 bits are for the decimal part and 9 bits for the fraction. The calculated

receiver error is -12.07 dB and the whole transceiver accumulated error is -9.83 dB.

5.5.2 Area and Power Measuremnet

The tables shown below, summarize the utilized area for all transmitter and receiver

chains in terms of LUTs, BRAMSs, and DSPs.

Table 5.1: Transmitter Chains Area Utilization

Transmitter Chain LUTs BRAMs DSPs
Bluetooth 940 4 0
Wi-Fi 2557 3 7
GSM 637 2 0
UMTS 1734 3.5 2
LTE 5850 12 16

78

Table 5.2: Receiver Chains Area Utilization

Receiver Chain LUTs BRAMs DSPs

Bluetooth 635 3 0
Wi-Fi 3749 4.5 11
GSM 965 2.5 0

UMTS 3563 17
LTE 7659 22 21

In order to measure the effectiveness of the proposed technique, a comparison is
performed between the case of no DPR, single RP, and multi-RPs with respect to power,
area, and switching time. In order to be able to express the occupied area of each approach
in a single number rather than comparing the number of LUTs, BRAMs, and DSPs;
Equation [5.2] shall be used here as well.

Figure [5.22] shows that the system total area is reduced by 10.19% in case of single
RP. The multi-RP approach decreases the power consumption for 2G and Bluetooth by
98.58%, 3G and Wi-Fi by 80.59%, and LTE by 50.81% compared to the case of no DPR.
The increase in the area of LTE is due to partitioning the design on multiple RPs.

Area Utilization (LUTs)
40000

37217
35000 32632 32632 32632 32632 32632

29304

I 92617
2G

The sizes of the partial bit files of the transmitter and the receiver are 523KB and
837KB respectively. Measuring the switching time is done in the C-code with the aid
of timers for time calculation. The actual switching time for all chains calculated from
Equation [5.2]is 3.49 ms, which is close to the theoretical value 3.47 ms calculated from
adding the calculated switching time of both transmitter and receiver.

The sizes of partial bit files in case of multi-RP are 248, 324, and 306 KBs for the
transmitter and 407, 252, and 390 KBs for the receiver. Table @ compares the theoretical
calculated switching time with the measured actual time for all transceiver chains.

30000

25000

20000

15000

10000

5000

0

29304 29304 29304 29304
15217 15217
9617
3G 4G

WIFI Bluetooth

B Without DPR H Single RP Multi RP

Figure 5.22: Area utilization (LUTs)

79

Table 5.3: Switching Time

Standard Theoretical Time (ms) Actual Time (ms)
2G and Bluetooth 1.27 1.29
3G and Wi-Fi 1.82 1.83
LTE 4.93 4.95

A sacrifice is done with the switching time of LTE chain to save the rest of the chains.
Figure [5.23] shows that the multi-partition approach decreases the switching time in all
chains except the LTE compared with the switching time in case of the single RP. The
reasons behind the large switching time in case of LTE are:

1. Configuring 6 partitions serially rather than 2, accumulates the configuration time
of each partition while calculating the total time.

2. Increasing the number of partitions makes the PRC overhead significant.

Switching Time (ms)

4.95
5
4 3.49 3.49 3.49 3.49 3.49
3
1.83 1.83
1.29 1.29
0
2G 3G 4G WIFI Bluetooth

H Single RP H Multi RP
Figure 5.23: Swithcing time (ms)

Estimated power calculations listed in Figure [5.24] show that the single partition
approach decreases the power by 76.71% compared with the case of no DPR. The multi-
partiton approach decreases the power consumption for 2G and Bluetooth by 95.43%, 3G
and Wi-Fi by 79.69%, and LTE by 59.09% compared to the case of no DPR.

Table[5.4]shows the percentages of decrease/increase in system utilized area and power
consumption using the multi-partition approach compared to the case of no DPR.

5.6 Summary

The following chapter illustrates the established test environment to verify the DPR
technique. The DPR flow steps are provided. An illustration of two DPR approaches is

80

Power Consumption (mWatt)

700 6782884 628.2884 628.2884 628.2884 628.2884
600
500
400
308.998

300
200 128.11 128.11

128.11 12171 128.12 2171 128.11
100

8.921 8921
0
2G 3G 4G WIFI Bluetooth

B Without DPR H Single RP Multi RP

Figure 5.24: Average power (mW)

Table 5.4: Area and Power Comparison

Standard Area Power

2G and Bluetooth 70.52% || 95.43% ||
3G and Wi-Fi 53.36% || 79.69% ||
LTE 12.65% 1T 59.09% ||

provided. Ultimately, the chapter shows simulation results of both approches compared
with the current implemented transceivers in mobile phones.

81

Chapter 6: Conclusion And Proposed
Future Work

6.1 Conclusion

In this research work, five communicattion standards: Bluetooth, Wi-Fi, 2G, 3G, and
LTE are being deployed. The five transceivers are fully implemented in order to prove the
concept of SDR. The DPR technique is used to switch between different communication
standards. A test environment is deployed to verify the corrrectness of the system while
using DPR. Two partioning approaches are being developed to minimize area, power, and
switching time.

DPR technique shows its effectiveness in saving the allocated area and the power
consumption compared to the current transceivers in the mobile devices with a reasonable
switching time overhead. The single partition approach reduces the system total area and
power by 10.19% and 76.71% respectively compared with case of no DPR.

The multi partition approach proved its ability to decrease the utilized area and power
consumption of 2G and Bluetooth chains by 70.52% and 95.43% with respect to no DPR.
The 3G and Wi-Fi area and power decreased by 53.36% and 79.69%. The area of the LTE
increased by 12.65% but its power decreased by 59.09%.

6.2 Proposed Future Work

Further actions can be taken as future work including the following:
1. Implementing the data link and MAC layers to achieve system completeness.

2. Sending the data through the air. Since the transmitter and receiver should be
communicating through air such that the whole communication system is com-
plete. This requires two FPGAs and two USRPs for the transmitter and receiver
implementation.

3. Hardware verification of DPR flow is a challenging area. Developing a generic
automated hardware environment for any system using DPR flow is promising.

4. High Level Synthesis (HLS) flow is used to generate RTL codes of hardware
designs from C/C++/MATLAB level. Integration of DPR flow with the HLS flow
shall enhance and fasten the design process. Xilinx introduces a new tool that is
responsible for the HLS flow called SDSOC.

82

References

(1]

(2]

(3]

(4]

[5]

[6]

(7]

(8]

[9]

E. MARTIN and I. GUSTAFSSON, “Reconfigurable Analog to Digital Converters
for Low Power Wireless Applications,” Doctoral Thesis, KTH, School of Information
and Communication Technology (ICT), Electronic, Computer and Software System:s,
May 2008.

A. Sadek, H. Mostafa, and A. Nassar, “Dynamic Channel Coding Reconfiguration in
Software Defined Radio,” International Conference on Microelectronics (ICM 2015),
Casablanca, Morocco, pp. 13-16, Dec. 2015.

J. Delahaye, G. Gogniat, C. Ronald, and P. Bomel, “Software radio and dynamic
reconfiguration on a DSP/FPGA platform,” 3rd Karlsruhe Workshop on Software
Radios, France, pp. 1-9, June 2004.

M. Hentati, A. Nafkha, P. Leray, J. F.Nezan, and M. Abid, “Software Defined Radio
Equipment: What’s the Best Design Approach to Reduce Power Consumption and

Increase Reconfigurability?,” International Journal of Computer Applications, vol. 45,
no. 14, pp. 26-31, May 2012.

E. Grayver and P. Dafesh, “Multi-modulation programmable transceiver system with
turbo coding,” in Proc. of the IEEE Aerospace Conference, Big Sky, MT, USA, pp.
1484-1493, March 2005.

E. J. McDonal, “Runtime FPGA Partial Reconfiguration,” IEEE Communications
Magazine, vol. 33, no. 5, pp. 26-38, May 1995.

S. Shreejith, B. Banarjee, K. Vipin and S. Fahmy, “Dynamic cognitive radios on the
Xilinx Zynq hybrid FPGA,” in International Conference on Cognitive Radio Oriented
Wireless Networks, vol. 156, pp. 427-437, Oct. 2015.

A. Sadek, H. Mostafa, A. Nassar, and Y. Ismail “Towards the implementation of Multi-
band Multi-standard Software-Defined Radio using Dynamic Partial Reconfiguration,”
International Journal of Communication system, pp. 1-12, June 2017.

R. Kumar, R. C. Joshi, and K. S. Raju, “A FPGA partial reconfiguration design
approach for RASIP SDR,” IEEE India Conference (INDICON 2009), Gujarat, India,
pp- 1-4, Dec. 2009.

[10] J. Delahaye, J. Palicot, and C. Moy, “Partial Reconfiguration of FPGAs for Dynami-

cal Reconfiguration of a Software Radio Platform,” Mobile and Wireless Communica-
tions Summit, Budapest, Hungary, pp. 1-5, July 2007.

83

[11] W. Lie and W. Feng-yan, “Dynamic partial reconfiguration in FPGAs,” Third Inter-
national Symposium on Intelligent Information Technology Application, Shanghai,
China, pp. 253-257, Nov. 2009.

[12] X. Di, S. Fazhuang, D. Zhantao, and H. Wei, “A Design Flow for FPGA Partial
Dynamic Reconfiguration,” Second International Conference on Instrumentation,
Measurement, Computer, Communication and Control, Harbin, China, pp. 119-123,
Dec. 2012.

[13] T. Ulversoy, “Software Defined Radio: Challenges and Opportunities,” IEEE Com-
munications Surveys & Tutorials, Vol. 12 , no. 4, pp. 31-124, May 2010.

[14] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more per-
sonal,” in IEEE Personal Communications, vol. 6, no. 4, pp. 13-18, Aug 1999.

[15] A. Sadek, H. Mostafa, and A. Nassar “On the Use of Dynamic Partial Reconfigu-
ration for Multi-band/Multi-standard Software Defined Radio,” IEEE International
Conference on Electronics, Circuits, and Systems (ICECS 2015), Cairo, Egypt, pp.
498-499, Dec. 2015.

[16] M. L. Ferreira, A. Barahimi, and J. C.Ferreira “Dynamically Reconfigurable LTE-
compliant OFDM Modulator for Downlink Transmission,” Design of Circuits and
Integrated Systems (DCIS) Granada, Spain, pp. 1-6, Nov. 2016.

[17] M. Tran, E. Casseau, and M. Gautier, “Demo abstract: FPGA-based implementation
of a flexible FFT dedicated to LTE standard,” Design and Architectures for Signal and
Image Processing (DASIP), Rennes, France, pp. 241-242, Oct. 2016.

[18] K. A. Arun Kumar, “FPGA implementation of QAM modems using PR for reconfig-
urable wireless radios,” International Conference on Microelectronics, Communica-
tions and Renewable Energy, India, pp. 1-6, June 2013.

[19] K. A.Kumar “A low power implementation of PSK modems in FPGA with reconfig-
urable filter and digital NCO using PR for SDR and CR applications,” International
Conference on Green Technologies (ICGT), Trivandrum, India, pp. 192-197, Dec.
2012.

[20] G. Sklivanitis, A. Gannon, and S. N. Batalama, “Addressing next-generation wireless
challenges with commercial software-defined radio platforms,” IEEE Communication
Magazine, vol. 54, no. 1, pp. 9-35, Jan. 2016.

[21] X. Wu, J. Palicot, and P. Leray, “Cognitive Radio Management Benefiting From
Flexible Reconfiguration,” Fourth Conference on Telecommunications and Remote
Sensing, pp. 18-21, Sep. 2015.

[22] E. Grayver, “Implementing Software Defined Radio,” Springer Science and Business
Media, vol. 34, no. 1, pp. 59-67, Nov. 2013.

[23] Xilinx Inc., “ZC702 Evaluation Board reference manual UG585,” (v1.12.1) Dec.
2017.

84

[24] V. Kannan, T. A. Abbasi, M. U. Abbasi, and S. Ahmed, “Novel FPGA Based Hard-
ware Realization Of Arbitrary Functions,” Journal of Circuits System and Computerst,
vol. 16, no. 1, pp. 895-909, Dec. 2007.

[25] Xilinx Inc., “MicroBlaze Processor Reference Guide UG081,” April 2008.

[26] V. Kanhiroth, C. Parikh, C. Trefttz, and A. Rahman, “Embedded processors on
FPGA: Hard-core vs Soft-core,” Masters Thesis, Grand Valley State University, May
2017.

[27] Xilinx Inc., “ZC702 Evaluation Board for the Zyng-7000 XC7Z020 All Pro-
grammable SoC UG850,” (v1.12.1) Jan. 2018.

[28] Xilinx Inc., “7 Series FPGAs Configurable Logic Block UG474,” (v1.8) Sep. 2017.

[29] D. Koch, J. Torresen, C. Beckhoff, D. Ziener, C. Dennl, V. Breuer, J. Teich, M. Feilen,
and W. Stechele, “Partial Reconfiguration on FPGAs: Architectures, Tools and Appli-
cations,” in ARCS 2012, Muenchen, Germany, pp. 1-12, Feb. 2012.

[30] Xilinx Inc., “Partial Reconfiguration User Guide UG909,” (v2017.1) April 2017.
[31] Xilinx Inc., “AXI Reference Guide UG761,” (v13.1) March 2011.

[32] Xilinx Inc., “AXI DMA LogiCORE IP Product Guide PG021,” April 2018.

[33] Xilinx Inc., “AXI HWICAP LogiCORE IP Product Guide PG134,” Oct. 2016.
[34] Xilinx Inc., “Partial Reconfiguration Controller PG193,” April 2016.

[35] Bluetooth SIG Inc., “Specification of the Bluetooth System,” (v2.0) Vol. 2, Nov.
2004.

[36] IEEE Computer Society, “IEEE Std 802.11™-2012,” March 2012.
[37] IEEE Computer Society, “IEEE Std 1800™-2012,” Feb. 2013.
[38] IEEE Computer Society, “IEEE Std 1364™-2005,” April 2006.
[39] IEEE Computer Society, “IEEE Std 1076™-2008,” Jan. 2009.
[40] Xilinx Inc., “Synthesis UG901,” (v2016.3) Oct. 2016.

[41] IEEE Computer Society, “IEEE Std 1735™.2014,” Dec. 2014.

[42] 3GPP, “Multiplexing and multiple access on the radio path TS 145 002,” (v9.3.0)
April 2010.

[43] 3GPP, “MChannel coding TS 145 003,” (v10.0.0) April 2011.
[44] 3GPP, “Modulation TS 145 004,” (v9.0.0) Feb. 2010.
[45] 3GPP, “Physical channels and mapping of transport channels onto physical channels

(FDD) TS 25.211,” (v12.1.0) Dec. 2014.

85

[46] 3GPP, “Multiplexing and channel coding (FDD) TS 25.212,” (v12.1.0) Dec. 2014.
[47] 3GPP, “Spreading and modulation (FDD) TS 25.213,” (v12.0.0) Sep. 2014.
[48] 3GPP, “Multiplexing and channel coding TS 36.211,” (v12.5.0) Dec. 2014.

[49] 3GPP, “Physical channels and modulation TS 36.212,” (v12.5.0) June 2015.

)

[50] K. Cholan, “Design and Implementation of Low Power High Speed Viterbi Decoder,
International Conference on Communication Technology and System Design, vol. 30,
no. 3, pp. 61-68, Jan. 2012.

[517 M. Raymond and C. Arun, “Design and VLSI Implementation of a High Throughput
Turbo Decoder,” International Journal of Computer Applications, vol. 22, no. 3, pp.
34-35, May 2011.

[52] A.K.ELdin, A. Mohamed, A. Nagy, Y. Gamal, A. Shalash, Y. Ismail, and H. Mostafa,
“Design Guidelines for the High-Speed Dynamic Partial Reconfiguration Based Soft-
ware Defined Radio Implementations on Xilinx Zynq FPGA,” IEEE International
Symposium on Circuits and Systems (ISCAS 2017), Baltimore, USA, pp. 1-4, May
2017.

[53] R. Tessier, K. Pocek, and A. DeHon, ‘“Reconfigurable Computing Architectures,” in
Proceedings of IEEE, vol. 103, no. 3, pp. 332-354, March 2015.

[54] Xilinx Inc., “Partial Reconfiguration Tutorial UG947,” April 2017.

[55] A. K. ELdin, S. Hosny, K. Mohamed, M. Gamal, A. Hussein, E. Elnader, A. Shalash,
A. M. Obeid, Y. Ismail, and H. Mostafa, “A Reconfigurable Hardware Platform
Implementation for Software Defined Radio using Dynamic Partial Reconfiguration
on Xilinx Zynq FPGA,” IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS 2017), Boston, MA, USA, pp. 1540-1543, Aug. 2017.

86

© =3 N = W EN w) _

31

32

33

34

35

36

37

38

40

41

Appendix A: Partioning Algorithm

The MATLAB code listed below implements the portioning algorithm used to define
which blocks shall be merged together between all chains.

clc;
clear all;
number_of_chains =
% LTE
chain_A = [83 0
474 0.
320 1
347 3
88 2
383 4.5
51 0.5
2584 0
% WIFI
chain_.B = [107

45

% 3G
chain_C =

%Bluetooth
chain_.D = [91
SEGMENTATION
127 0
127 0.5
7
7
43
169
78
78

— e e— O OO

% 2G
chain_E

—

[200
55

(]

5;

—
SO OO OO OO o SO = OO = O NO OO OO LW O OO o WwWoOo

)

83;
674;
2120;
1547,
888;
2183;
251;
77841];

107;
45;

951;
264;
4529];

24,
1007;
56;
283;
2220;

%
%
%
%
%
%
%

%
%
%
%
%

%
%
%
%
%
%

%

%
%
%
%
%
%
%

%
%

87

CRC
SEGMENTATION
ENCODER

RATE MATCHING
CONCAT
DESCRAMBLER
DEMAPPER
SCFDMA

SCRMABLER
ENCODER
PUNCTURE
INTERLEAVER
MAPPER

IFFT

CRC

SEGMENTATION

ENCODER

CONCAT

INTERLEAVER

SPREADING & SCRAMBLING
MAPPER

HEADER & PAYLOAD

HEC

CRC
H-WHITENING
P—-WHITENING
H-ENCODER
P-ENCODER
H-MAPPER
P-MAPPER

CRC + BIT ORDERING
ENCODER

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

161 0.5 0 361; % INTERLEAVER
114 0.5 0 314; % BRUST FORMATION

2 0 0 2]; % MAPPER
number_of_blocks_for_chain_A = §;
number_of_blocks_for_chain_.B = 6;
number_of_blocks_for_chain_.C = 7;
number_of_blocks_for_chain_D = 9;
number_of_blocks_for_chain_.E = 5;

A _chosen = get_min_partition_per_chain (
number_of_blocks_for_chain_A ,chain_A);
B chosen = get_min_partition_per_chain (
number_of_blocks_for_chain_B ,chain_B);
C_chosen = get_min_partition_per_chain (
number_of_blocks_for_chain_C ,chain_C);
D_chosen = get_min_partition_per_chain (
number_of_blocks_for_chain_D ,chain_D);
E_chosen = get_min_partition_per_chain (

number_of_blocks_for_chain_E ,chain_E);

for fl=1:1:size(A_chosen,1)

B_min_matrix = iterate_on_other_chains (A_chosen,fl,
B _chosen) ;

C_min_matrix = iterate_on_other_chains (A_chosen,fl,
C_chosen) ;

D_min_matrix = iterate_on_other_chains (A_chosen,fl,
D_chosen) ;

E_min_matrix = iterate_on_other_chains (A_chosen,fl,
E_chosen) ;

BCDE _min_matrix (fl1,1:4) = [B_min_matrix C_min_matrix
D_min_matrix E_min_matrix |;

min_matrix (f1,1) = f1;

min_matrix (fl1,2) = sum(BCDE_min_matrix(fl ,:));

sorted_min_matrix = sort(min_matrix);

sorted _A _chosen (fl,:) = A_chosen(sorted_min_matrix (fl
1) 505

end

for kl=1:1:size(sorted_A_chosen ,1)
if (size(B_chosen,1) >0)

[B_chosen] = get_min_resource_and_exclude _merged (

sorted_A _chosen ,B_chosen ,k1, B’);
end
if(size (C_chosen,1) >0)

88

75

76

71

78

79

80

81

82

83

84

86

87

88

95

96

97

98

99

100

101

102

103

104

105

106

107

[C_chosen] = get_min_resource_and_exclude_merged (

end

sorted_A _chosen ,C_chosen ,k1, °'C");

if (size(D_chosen,1) >0)
[D_chosen] = get_min_resource_and_exclude _merged (

end

sorted_A_chosen ,D_chosen ,k1,°’D");

if (size (E_chosen,1) >0)
[E_chosen] = get_min_resource_and_exclude _merged (

end
end

sorted_A _chosen ,E_chosen ,kl1, E");

function [chosen_min_diff]=iterate_on_other_chains (
A _chosen , A_chosen_index ,chosen_matrix)
for f2=1:1:size(chosen_matrix ,1)
chosen_diff_matrix (f2,1:3) = abs(A_chosen(

A_chosen_index ,1:3) — chosen_matrix(f2,1:3));

chosen_diff_matrix (f2,4) = (chosen_diff_matrix (f2

end

[min_value, min_row]
chosen_min_diff(1,1)

end

,1))+(40xchosen_diff _matrix (f2,2))+(40=
chosen_diff_matrix (f2,3));

min(chosen_diff_matrix (:,4));
chosen_diff_matrix (min_row ,4) ;

function [chosen_matrix]=
get_min_resource_and_exclude_merged (sorted_A_chosen ,
chosen_matrix ,kl,chain_name)
for k2=1:1:size(chosen_matrix ,1)

end

diff matrix(k2,1:3) = abs(sorted_A_chosen (kl
,1:3) — chosen_matrix(k2,1:3));

diff matrix (k2,4) = (diff_matrix (k2,1))+(40x
diff _matrix (k2,2))+(40«diff _matrix (k2,3));

diff matrix(k2,5:6) = chosen_matrix (k2,5:6);

[min_value, min_row] = min(diff_matrix (:,4));
for k3=1:1:size(chosen_matrix ,1)

AB_min_diff(k3,1) = diff_matrix (min_row ,4) ;

AB _min_diff (k3,2:3) sorted_A _chosen (kl,5:6);

AB_min_diff (k3,4:5) diff _matrix (k3,5:6) ;

AB _min_str(k3,1:2) = num2str(AB_min_diff (k3,2)
)

AB _min_str(k3,3:4) = num2str(AB_min_diff (k3 ,4)
)

for sl=1:1:4

89

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

end

AB_min_matrix (k3,s1) = str2num (AB_min_str(
k3,s1));
end
AB _min_matrix (k3,5)
AB_min_matrix (k3,6)

AB_min_diff(k3,3);
AB_min_diff(k3,5);

end

b_remaining_str = num2str(diff_matrix (min_-row ,5));
b_remaining = str2num(b_remaining_str(:,1));
b_remaining (: ,2) = str2num(b_remaining_str (:,2));

vl = 1; v2 = 1;

vn = size(chosen_matrix ,1);
while (vl <= vn)
if((b_remaining(1,1) == AB_min_matrix(vl,3))

[l ...
(b_remaining (1,2) == AB_min_matrix (vl ,4))

|
((b_remaining (1,2) < AB_min_matrix(vl,2))

&&(AB_min_matrix (vl ,6) == 1)))
chosen_matrix(v2,:) = [];
else
v2 = v2 + 1;
end
vl = vl + 1;
end
if (sorted_A_chosen(kl,6) == 1 && diff_matrix (
min_row ,6) == 1)
format_specifier = ~All merged blocks of A%d
will be merged with all merged blocks of %s%
d’;
elseif (sorted_A_chosen(kl,6) == 1 && diff_matrix (
min_row ,6) == 0)
format_specifier = “All merged blocks of A%d

will be merged with %s%d’ ;
elseif (sorted_A_chosen(kl,6) == 0 && diff_matrix (

min_row ,6) == 1)
format_specifier = "A%d will be merged with
all merged blocks of %s%d’;
else
format_specifier = "A%d will be merged with %s
%d "’ ;
end
out = sprintf(format_specifier ,sorted_A_chosen (kl

,5) ,chain_name , diff _matrix (min_row ,5))

90

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

179

180

181

182

function [chosen_matrix]=get_min_partition_per_chain(
number_of_blocks ,input_matrix)

len = size(input_matrix ,1);

sum_index=len +1;

chosen_index = 1;

if (number_of_blocks == 1)
sum_matrix (:,5) = [11];

elseif (number_of_blocks == 2)
sum_matrix (:,5) = [11 22];

elseif (number_of_blocks == 3)
sum_matrix (:,5) = [11 22 33];
elseif (number_of_blocks == 4)
sum_matrix (:,5) = [11 22 33 44];
elseif (number_of_blocks == 5)
sum_matrix (:,5) = [11 22 33 44 55];

elseif (number_of_blocks == 6)
sum_matrix (:,5) = [11 22 33 44 55 66];
elseif (number_of_blocks == 7)
sum_matrix (:,5) = [11 22 33 44 55 66 77];
else
sum_matrix (:,5) = [11 22 33 44 55 66 77 88];
end
for ml=1:1:1en
sum_matrix (ml,1:4) = input_matrix (ml,:) ;
end
for nl=1:1:1en -1
for n2=nl:1:len-1
group_matrix (1,:) = sum(input_matrix (nl:n2,:)
1) 5
for n3=(n2+1):1:1en
sum_matrix (sum_index ,1:4) = group_matrix
(1,:) + input_matrix(n3,:);
sum_matrix (sum_index ,5) = str2double (
strcat (num2str(nl),num2str(n3)));
if(n3 == n2+1)
sum_matrix (sum_index ,6) = 1;
else
sum_matrix (sum_index ,6) = 0;
end
sum_index = sum_index + 1;
end
end
end

for 11 =1:1:size(sum_matrix ,1)

91

if (mod(sum_matrix (11 ,4) ,400) == 2)
chosen_matrix (chosen_index ,:) = sum_matrix (11
1)
chosen_index = chosen_index + 1;
end
end
end

92

20

21

22

23

24

25

26

27

28

29

30

Appendix B: FPGA Prototyping Code

The TCL commands listed below summarizes all the commands used in Xilinx Vivado
console in order to optimize, place, route, and generate bit stream files for each chain.

HA##H#HHAHHHHHHHHHHHHA RS HAHHHH

#Open synthesized project

HAH#H#HH A HHHHHHHAHHHHAH A HHAHHHH

set_param general.maxThreads 8

cd E:/sherif /masters/ Tx_Rx_PRC_Single_RP/DPR_Project

read_checkpoint —cell design_1_i/design_1_i/
Tx_AXI_Peripheral_v1_0_0/inst/Tx_R_System Synth/
reconfig_modules/4 g_tx/ Tx_R_Partition.dcp

read_checkpoint —cell design_1_1/design_1_1/
Rx_AXI_Peripheral_-v1_0_0/inst/Rx_R_System Synth/
reconfig_modules/4 g_rx/Rx_R_Partition.dcp

HAH#H#HHHHHHHHHHHHHHHA RS HHAHHHH

Do floor_planning

HA#HHHAHHHHHHHAHHHHAHHHHA RS HH

read_xdc ./ xcd_File.xdc

HA#H#HH A HHHHHHHHHHHHA RS S HAHHHH

#RESET_AFTER_CONFIG

HAH#HH#HHAHHHHHHHAHHHHAHHHHAHHHH

set_property HD.RECONFIGURABLE 1 [get_cells design_1_i/
design_1_1/Tx_AXI_Peripheral_-vl1_0_.0/inst/Tx_R_System]

set_property HD.RECONFIGURABLE true [get_cells design_1_1/
design_1_1/Tx_AXI_Peripheral_v1_0_0/inst/Tx_R_System]

set_property HD.RECONFIGURABLE 1 [get_cells design_1_i/
design_1_1/Rx_AXI_Peripheral_vl1_0_0/inst/Rx_R_System]

set_property HD.RECONFIGURABLE true [get_cells design_1_1i/
design_1_1/Rx_AXI_Peripheral v1_0_0/inst/Rx_R_System]

H##H#HHHHHHHHHHHHHHHA RS HHAHHHH

#SNAPPING Mode

HAH#HH#HHHHHHHHHHHHHHHAHFHHHHHHH

set_property RESET_AFTER_RECONFIG 1 [get_pblocks
pblock_Tx_R_System]

set_property SNAPPINGMODE ON [get_pblocks
pblock _Tx_R_System]

set_property RESET_AFTER RECONFIG 1 [get_pblocks
pblock _Rx_R_System]

set_property SNAPPING.MODE ON [get_pblocks
pblock_Rx_R_System]

write_checkpoint —force Checkpoint/R _Partition .dcp

HAH#HH#HHAHHHHHHHAHHHHAH A HHHHHHH

#4G Tx/Rx

HA#HHHAHHHHHHHHBHHH AR AR H AR HH

93

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

opt_design

place_design

route_design

write_checkpoint —force Implement/4g/top_route_design.dcp

write_debug_probes —force ./Implement/4g/debug_4g_nets.ltx

update_design —cell design_1_1/design_1_1/
Tx_AXI_Peripheral_-vl1_0_.0/inst/Tx_R_System —black_box

update _design —cell design_1_i1/design_1_i/
Rx_AXI_Peripheral v1_0_0/inst/Rx_R_System —black_box

lock_design —level routing

write_checkpoint —force Checkpoint/static_route_design.dcp

HAHHHHHHAHAHAHAHAHAHAHAHAHHHH

#3G Tx/Rx

HHHHHHHHAHAHAHAHAHAHAHAHAHHHH

read_checkpoint —cell design_1_i/design_1_i/
Tx_AXI_Peripheral_v1_0_0/inst/Tx_R_System Synth/
reconfig_modules/3 g_tx/ Tx_R_Partition .dcp

read _checkpoint —cell design_1_i/design_1_i/
Rx_AXI_Peripheral v1_0_0/inst/Rx_R_System Synth/
reconfig_modules/3 g_rx/Rx_R_Partition.dcp

opt_design

place_design

route_design

write_checkpoint —force Implement/3g/top_route_design.dcp

write_debug_probes —force ./Implement/3g/debug_3g_nets.ltx

update_design —cell design_1_i/design_1_i/
Tx_AXI_Peripheral_v1_0_0/inst/Tx_R_System —black_box

update_design —cell design_1_i/design_1_1/
Rx_AXI_Peripheral_v1_0_0/inst/Rx_R_System —black_box

#2G Tx/Rx

read_checkpoint —cell design_1_i/design_1_i/
Tx_AXI_Peripheral_v1_0_0/inst/Tx_R_System Synth/
reconfig_modules/2g_tx/ Tx_R_Partition .dcp

read _checkpoint —cell design_1_i/design_1_i/
Rx_AXI_Peripheral_ v1_0_0/inst/Rx_R_System Synth/
reconfig_modules/2g_rx/Rx_R_Partition.dcp

opt_design

place_design

route _design

write_checkpoint —force Implement/2g/top_route_design.dcp

write_debug_probes —force ./Implement/2g/debug_2g_nets.ltx

update_design —cell design_1_i/design_1_i/
Tx_AXI_Peripheral_v1_0_0/inst/Tx_R_System —black_box

update_design —cell design_1_i/design_1_1/
Rx_AXI_Peripheral v1_0_0/inst/Rx_R_System —black_box

HEHHHHHH A HAHAHAHAHAHAHAHAHHHH

94

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

#WIFI Tx/Rx

HAHHHHHHAHAHAHAHAHAHAHAHAHAHH

read_checkpoint —cell design_1_i/design_1_1/
Tx_AXI_Peripheral_v1_0_0/inst/Tx_R_System Synth/
reconfig _modules/wifi_tx/Tx_R_Partition.dcp

read_checkpoint —cell design_1_1/design_1_1/
Rx_AXI_Peripheral_.v1_0_.0/inst/Rx_R_System Synth/
reconfig _modules/wifi_rx /Rx_R_Partition.dcp

opt_design

place_design

route _design

write_checkpoint —force Implement/wifi/top_route_design.
dcp

write_debug_probes —force ./Implement/wifi/debug_wifi_nets
Cltx

update _design —cell design_1_i/design_1_i/
Tx_AXI_Peripheral_-vl1_0_.0/inst/Tx_R_System —black_box

update _design —cell design_1_i/design_1_1/
Rx_AXI_Peripheral v1_0_0/inst/Rx_R_System —black_box

HEHHHHHHAHAHAHAHHHAHAHAHAHHHH

#Bluetooth Tx/Rx

HAHHHHAHAHAHAHAHAHAHAHAHAHHHH

read_checkpoint —cell design_1_i/design_1_i/
Tx_AXI_Peripheral_v1_0_.0/inst/Tx_R_System Synth/
reconfig_modules/bluetooth_tx/Tx_R_Partition.dcp

read_checkpoint —cell design_1_i/design_1_i/
Rx_AXI_Peripheral_v1_0_0/inst/Rx_R_System Synth/
reconfig_modules/bluetooth_rx /Rx_R_Partition.dcp

opt_design

place_design

route_design

write_checkpoint —force Implement/bluetooth/
top_-route_design .dcp

write _debug _probes —force ./Implement/bluetooth/
debug_bluetooth _nets. ltx

close_project

HAHHHHAHAHAHAHAHAHAHAHAHHHHHH

VERIFY

HAHHHHHHAHAHAHAHAHAHAHAHAHHHH

pr_verify —initial Implement/wifi/top_route_design.dcp —
additional {Implement/2g/top_route_design.dcp Implement
/3g/top_route_design.dcp Implement/4g/top_route_design.
dcp Implement/bt/top_route_design .dcp}

HAHHHHHHAHAHAHAHAHAHAHAHAHHHH

GENERATE_BIT_STREAM

HEHHHHHH AR HAHAHAHAHAHAHAHHHH

95

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

cd E:/sherif/masters/ Tx_Rx_Multi_RP_Final/DPR _Project

HHHHHHHHHHHHHHHHHAHAHHHHAHHHH
4G Tx/Rx
HHt##HHHHHHH AR HHH AR HHHAH R HH

set_property SEVERITY {Warning} [get_drc_checks LUTLP-1]

open_checkpoint Implement/4g/top_route_design.dcp

write_bitstream —file Bitstreams/config_-4g.bit —force

write_cfgmem —format BIN —interface SMAPx32 -
disablebitswap —loadbit “up 0 Bitstreams/
config_4g_pblock_Tx_R1_Partition_partial.bit”
/Tx_R1_4g.bin —force

write_cfgmem —format BIN —interface SMAPx32 -
disablebitswap —loadbit "up O Bitstreams/
config_4g_pblock_Tx_R2_Partition_partial.bit”
/Tx_R2_4g.bin —force

write_cfgmem —format BIN —interface SMAPx32 -
disablebitswap —loadbit "up O Bitstreams/
config_4g_pblock_Tx_R3_Partition_partial.bit”
/Tx_R3_4g.bin —force

write_cfgmem —format BIN —interface SMAPx32 -
disablebitswap —loadbit “up 0 Bitstreams/
config_4g _pblock_Rx_R1_Partition_partial.bit”
/Rx_R1_4g.bin —force

write_cfgmem —format BIN —-interface SMAPx32 -
disablebitswap —loadbit “up 0 Bitstreams/
config_4g_pblock_Rx_R2_Partition_partial.bit”
/Rx_R2_4g.bin —force

write_cfgmem —format BIN —interface SMAPx32 -
disablebitswap —loadbit "up O Bitstreams/
config_4g_pblock_Rx_R3_Partition_partial.bit”
/Rx_R3_4g.bin —force

close_project

HAHHHHAHAHAHAHAHAHAHAHAHAHAHH

3G Tx/Rx

HAHHHHHHAHAHAHAHAHAHAHAHAHHHH

open_checkpoint Implement/3g/top_route_design.dcp

Bitstreams

Bitstreams

Bitstreams

Bitstreams

Bitstreams

Bitstreams

write_bitstream —file Bitstreams/config_3g.bit —force

write_cfgmem —format BIN —interface SMAPx32 -
disablebitswap —loadbit "up O Bitstreams/
config_3g_pblock_Tx_R3_Partition_partial.bit”
/Tx_R2_3g.bin —force

write_cfgmem —format BIN —-interface SMAPx32 -
disablebitswap —loadbit “up O Bitstreams/
config_3g_pblock_Rx_R1_Partition_partial.bit”
/Rx_R3_3g.bin —force

close_project

96

Bitstreams

Bitstreams

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

HAH#HHHAHHHHHHHHBHHHAHHHH AR HH

2G Tx/Rx

HA###HHAHHHHHHHHHHHHA RS HHAHHHH

open_checkpoint Implement/2g/top_route_design.dcp

write_bitstream —file Bitstreams/config_ 2g.bit —force

write_cfgmem —format BIN —interface SMAPx32 —
disablebitswap —loadbit "up O Bitstreams/
config 2g pblock _Tx_R1_Partition_partial.bit” Bitstreams
/Tx_R1_2g.bin —force

write_cfgmem —format BIN —-interface SMAPx32 -
disablebitswap —loadbit "up 0O Bitstreams/
config_2g_pblock_Rx_R2_Partition_partial.bit” Bitstreams
/Rx_R2_2g.bin —force

close_project

HH#H#H#HHHHHHHHHHHHHHHAHHHHAHHHH

WIFI Tx/Rx

HAH#HHHAHHHHHHHHHHHHAHHHH AR HH

open_checkpoint Implement/wifi/top_route_design .dcp

write _bitstream —file Bitstreams/config_wifi.bit —force

write_cfgmem —format BIN —interface SMAPx32 -
disablebitswap —loadbit “up 0 Bitstreams/
config _wifi_pblock_Tx_R3_Partition_partial.bit”
Bitstreams/Tx_R2_wifi.bin —force

write_cfgmem —format BIN —-interface SMAPx32 -
disablebitswap —loadbit “up 0 Bitstreams/
config_wifi_pblock_Rx_R1_Partition_partial.bit”
Bitstreams /Rx_R3_wifi.bin —force

close_project

HA##HHAHHHHH R BB HA RS SRS H S H

Bluetooth Tx/Rx

HAH#HH#HHHHHHHHHHHHHHHAH A HHHHHHH

open_checkpoint Implement/bt/top_route_design.dcp

write_bitstream —file Bitstreams/config_blue.bit —force

write_cfgmem —format BIN —interface SMAPx32 -
disablebitswap —loadbit "up 0 Bitstreams/
config_blue_pblock_Tx_R1_Partition_partial.bit”
Bitstreams/Tx_R1_blue.bin —force

write_cfgmem —format BIN —interface SMAPx32 -
disablebitswap —loadbit "up O Bitstreams/
config_blue_pblock_Rx_R2_Partition_partial . bit”
Bitstreams/Rx_R2_blue.bin —force

close_project

97

20

21

22

23

24

25

Appendix C: Reconfiguration
Algorithm

Listed below the C-code used to implement the program running on Xilinx SDK. The
program transfers the data across the design registers whose addresses are mapped using
Xilinx Vivado.

The code consists of two major functions: DPR_Int, and main. Where DPR_Int
is responsible for initializing the registers values. Meanwhile, main is responsible for
displaying a menu containing options to the user. It reconfigures the design according to
the selected option.

int DPR_Int ()
{

int Status;

Xil_DCacheDisable () ;
Xil_ICacheDisable () ;

// Initialize SD controller and transfer partials to DDR

while (SD_Init() != XST_SUCCESS);

SD _TransferPartial ("Tx R1 2g.bin” ,Tx_P1.2G_ADDR ,(
Tx_P1_BITFILE_LEN)) ;

SD _TransferPartial ("Tx R1 4g.bin” ,Tx_P1_4G_ADDR [(
Tx_P1_BITFILE_LEN)) ;

SD_TransferPartial ("Tx_R1 _blue.bin” ,Tx_P1_BLUE_ADDR, (
Tx_P1_BITFILE_LEN)) ;

SD _TransferPartial ("Tx R2 3g.bin” ,Tx _ P2_.3G_ADDR ,(
Tx_P2_BITFILE_LEN)) ;

SD _TransferPartial ("Tx R2 4g.bin” ,Tx_P2_4G_ADDR ,(
Tx_P2_BITFILE_LEN)) ;

SD_TransferPartial ("Tx _R2 _wifi.bin” , Tx_P2_WIFI_ADDR , (
Tx_P2_BITFILE_LEN)) ;

SD _TransferPartial ("Tx R3 4g.bin” ,Tx_P3_4G_ADDR (
Tx_P3_BITFILE_LEN));

SD _TransferPartial ("Rx_R1 4g.bin” ,Rx_P1_.4G_ADDR (
Rx_P1_BITFILE_LEN)) ;

SD _TransferPartial ("Rx R2 2g.bin” ,Rx_ P2 2G_ADDR ,(
Rx_P2_BITFILE_LEN)) ;

SD _TransferPartial ("Rx R2 4g.bin” ,Rx_P2_.4G_ADDR (

Rx_P2_BITFILE_LEN)) ;

98

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

SD_TransferPartial ("Rx_R2_blue.bin” ,Rx_P2_BLUE_ADDR , (

Rx_P2_BITFILE_LEN)) ;

SD_TransferPartial ("Rx_R3 3g.bin” ,Rx_P3_3G_ADDR
Rx_P3_BITFILE_LEN)) ;
SD_TransferPartial ("Rx_R3 4g.bin” ,Rx_P3_4G_ADDR

Rx_P3_BITFILE_LEN)) ;

SD_TransferPartial ("Rx_R3_wifi.bin” ,Rx_P3_WIFI_ADDR |, (

Rx_P3_BITFILE_LEN)) ;

xil_printf (”Partial Binaries transferred successfully!\r\n

”)_
s

DcfglnstPtr = &Dcfglnstance;
XDcfg 0 = XDcfg_LookupConfig (XPAR_XDCFG_0_.DEVICE_ID) ;
Status = XDcfg_Cfglnitialize (DcfglnstPtr, XDcfg 0,
XDcfg 0—>BaseAddr) ;
if (Status != XST_SUCCESS) {
return XST_FAILURE;

// De—select PCAP as the configuration device as we are
going to use the ICAP

XDcfg_ClearControlRegister (DcfglnstPtr ,
XDCFG_CTRL_PCAP PR_MASK | XDCFG_CTRL_PCAP_MODE MASK) ;

print (" Putting the PRC core’s System RP in Shutdown mode\n

A7)

X11_0Out32 (Tx_P1_.CONTROL,0) ;
X11_0Out32 (Tx_P2_.CONTROL,0) ;
Xil1_Out32 (Tx_P3_.CONTROL,0) ;
Xil1_Out32 (Rx_PI_CONTROL,0) ;
X11-Out32 (Rx_P2_.CONTROL,0) ;
X11_0Out32 (Rx_P3_.CONTROL,0) ;

while (1(Xil_In32 (Tx_P1_STATUS)&0x80)) :
while (1(Xil_In32 (Tx_P2_STATUS)&0x80)) :
while (1(Xil_In32 (Tx_P3_STATUS)&0x80)):
while (1(Xil_In32 (Rx_P1_STATUS)&0x80)):

99

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

while (! (Xil_In32 (Rx_P2_STATUS)&0x80)) ;
while (! (Xil_In32 (Rx_P3_STATUS)&0x80)) ;
print (7System RP is shutdown\r\n”);

print(”Initializing RM bitstream address \r\n”);

X11-0Out32 (Tx_P1_.BS_ADDRESSO, Tx_P1_2G_ADDR) ;
X11_Out32 (Tx_P1_.BS_ADDRESS1,Tx_P1_ 4G_ADDR) ;
Xi1l1_Out32 (Tx_P1_.BS_ADDRESS2 ,Tx_P1_BLUE_ADDR) ;
Xil_Out32 (Tx_P2_BS_ADDRESSO, Tx_P2_3G_ADDR) ;
X11_Out32 (Tx_P2_BS_ADDRESS1, Tx_P2_4G_ADDR) ;
X11_Out32 (Tx_P2_BS_ADDRESS2 , Tx_P2_WIFI_ADDR) ;
X11_Out32 (Tx_P3_.BS_ADDRESSO, Tx_P3_4G_ADDR) ;
X1l1_Out32 (Rx_P1_BS_ADDRESSO,Rx_P1_4G_ADDR) ;
Xil_Out32 (Rx_P2_.BS_ADDRESSO,Rx_P2_2G_ADDR) ;
Xil1_Out32 (Rx_-P2_.BS_ADDRESS1 ,Rx_P2_4G_ADDR) ;
X11_Out32 (Rx_P2_.BS_ADDRESS?2 ,Rx_P2_BLUE_ADDR) ;
X11_Out32 (Rx_P3_.BS_ADDRESSO,Rx_P3_3G_ADDR) ;
X11_Out32 (Rx_P3_.BS_ADDRESS1,Rx_P3_4G_ADDR) ;
Xil_Out32 (Rx_P3_BS_ADDRESS2 ,Rx_P3_WIFI_ADDR) ;

print (7 Initializing RM size registers \r\n”);

X11_Out32 (Tx_P1_BS_SIZEO ,Tx_P1_BITFILE_LEN) ;
Xil1_Out32 (Tx_P1_BS_SIZE1 ,Tx_P1_BITFILE_LEN) ;
Xil_Out32 (Tx_P1_BS_SIZE2 ,Tx_P1_BITFILE_LEN) ;
X11_0Out32 (Tx_P2_BS_SIZEO , Tx_P2_BITFILE_LEN) ;
X11-Out32 (Tx_P2_BS_SIZE1 , Tx_P2_BITFILE_LEN) ;
X11_Out32 (Tx_P2_BS_SIZE2 , Tx_P2_BITFILE_LEN) ;
Xil1_Out32 (Tx_P3_BS_SIZEO , Tx_P3_BITFILE_LEN) ;
Xil_Out32 (Rx_P1_BS_SIZEO ,Rx_P1_BITFILE_LEN) ;
X11_Out32 (Rx_P2_BS_SIZEO ,Rx_P2_BITFILE_LEN) ;
X11_Out32 (Rx_P2_BS_SIZE1 ,Rx_P2_BITFILE_LEN) ;
X11_Out32 (Rx_P2_BS_SIZE2 ,Rx_P2 _BITFILE_LEN) ;
Xil1_Out32 (Rx_P3_BS_SIZEO ,Rx_P3_BITFILE_LEN) ;
Xil_Out32 (Rx_P3_BS_SIZE1 ,Rx_P3_BITFILE_LEN);
Xil1_Out32 (Rx_P3_BS_SIZE2 ,Rx_P3_BITFILE_LEN) ;

print(”Initializing RM trigger ID registers \r\n”);

Xil_Out32 (Tx_P1_TRIGGERO,0) ;
Xil_Out32 (Tx_P1_TRIGGERI 1) ;
Xil_Out32 (Tx_P1_TRIGGER2,2) :
Xil_Out32 (Tx_P2_TRIGGERO,0) :
Xil_Out32 (Tx_P2 TRIGGERI,1);
Xil_Out32 (Tx_P2_ TRIGGER?2,2) :

100

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Xil_Out32 (Tx_P3_.TRIGGERO,0) :
Xil_Out32 (Rx_P1_TRIGGERO,0) ;
Xil_Out32 (Rx_P2_TRIGGERO,0) ;
Xil_Out32 (Rx_P2_TRIGGERI,1) ;
Xil_Out32 (Rx_P2_TRIGGER2,2) :
Xil_Out32 (Rx_P3_TRIGGERO,0) :
Xil_Out32 (Rx_P3_TRIGGERI, 1) :
Xil_Out32 (Rx_P3_TRIGGER?2,2) :

print(”Initializing RM address registers \r\n”);

X11_Out32 (Tx_P1_RM_BS_INDEXO0,0) ;
X11_Out32 (Tx_P1_RM_BS_INDEX1,1) ;
Xil1_Out32 (Tx_P1_RM_BS_INDEX2,2) ;
Xil_Out32 (Tx_P2_RM_BS_INDEXO0,0) ;
Xil1_Out32 (Tx_.P2_RM_BS_INDEX1,1) ;
X11_Out32 (Tx_P2_RM_BS_INDEX2,2) ;
X11_Out32 (Tx_P3_RM_BS_INDEXO0,0) ;
X11_Out32 (Rx_P1_RM_BS_INDEXO0,0) ;
Xil_Out32 (Rx_P2_RM_BS_INDEXO0,0) ;
Xil_Out32 (Rx_P2_RM_BS_INDEX1,1) ;
X11_Out32 (Rx_.P2_RM_BS_INDEX2,2) ;
X11-0Out32 (Tx_P3_RM_BS_INDEXO0,0) ;
X1l1_Out32 (Rx_P3_RM_BS_INDEX1,1) ;
Xil1_Out32 (Rx_P3_RM_BS_INDEX1,2) ;

print(”Initializing RM control registers \r\n”);

X11_0Out32 (Tx_PI1_RM_CONTROLO,0) ;
X1l1_0Out32 (Tx_PI_RM_CONTROL1,0) ;
Xil1_Out32 (Tx_PI1_ RM_CONTROL2,0) ;
X11_0Out32 (Tx_-P2_.RM_CONTROLO,0) ;
X11-0Out32 (Tx_-P2_.RM_CONTROL1,0) ;
X11_Out32 (Tx_P2_RM_CONTROL2,0) ;
X11_0Out32 (Tx_P3_RM_CONTROLO,0) ;
Xil_Out32 (Rx_.P1_RM_CONTROLO,0) ;
Xil1-Out32 (Rx.P2.RM_CONTROLO,0) ;
X11-Out32 (Rx_.P2_RM_CONTROL1,0) ;
X11_Out32 (Rx_.P2_RM_CONTROL2,0) ;
X11_0Out32 (Rx_.P3_RM_CONTROLO,0) ;
Xil1_Out32 (Rx_.P3_RM_CONTROL1,0) ;
Xil_Out32 (Rx_.P3_RM_CONTROL2,0) ;

print (" Putting the PRC core’s System RP in Restart

Status mode\n\r”);

101

with

154

155

156

157

158

159

160

161

162

163

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

Xil_Out32 (Tx_P1_.CONTROL,2) :
Xil_Out32 (Tx_P2.CONTROL,2) :
Xil_Out32 (Tx_P3_.CONTROL,2) :
Xil_Out32 (Rx_P1_CONTROL,?2) :
Xil_Out32 (Rx_P2_.CONTROL,2) ;
Xil_Out32 (Rx_P3_.CONTROL,2)

xil_printf ("Reading the Math Tx Pl status=%x\n\r”,Xil_In32
(Tx_P1_STATUS)) ;

xil_printf (7" Reading the Math Tx P2 status=%x\n\r”,Xil_-In32
(Tx_P2_STATUS)) ;

xil_printf ("Reading the Math Tx_P3 status=%x\n\r”,Xil_In32
(Tx_P3_STATUS)) ;

xil_printf (7"Reading the Math Rx Pl status=%x\n\r”,Xil_-In32
(Rx_P1_STATUS)) ;

xil_printf (”Reading the Math Rx P2 status=%x\n\r",Xil_In32
(Rx_P2_STATUS)) ;

xil_printf ("Reading the Math Rx P3 status=%x\n\r”,Xil_In32
(Rx_P3_STATUS)) ;

// Loading 2G Data_in from SD Card to DDR and input Array

Status = read_files (“twogdata.txt”, INPUT_DATA_SIZE_2G,
input_2G);
if (Status != XST_SUCCESS)
{
xil_printf (7 Test 2G failed \r\n7);
return XST_FAILURE;

}
xil_printf (72G file Successfully Loaded \r\n");

// Loading 3G Data_in from SD Card to DDR and input Array

Status = read _files ("thrgdata.txt”, INPUT_DATA_SIZE 3G,
input_3G);
if (Status != XST_SUCCESS)

{
xil_printf (7 Test 3G failed \r\n");
return XST_FAILURE;

}

xil_printf (7”3G file Successfully Loaded \r\n");

// Loading 4G Data_in from SD Card to DDR and input Array

Status = read _files ("forgdata.txt”, INPUT_DATA_SIZE 4G,
input_4G);

102

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

if (Status != XST_SUCCESS)

{
xil_printf (7 Test 4G failed \r\n”);
return XST_FAILURE;

}

xil_printf (74G file Successfully Loaded \r\n”);

Array

Status = read_files (”wifidata.txt”, INPUT_DATA_SIZE_WIFI,
input_wifi);
if (Status != XST_SUCCESS)
{
xil_printf (7 Test WIFI failed \r\n");
return XST_FAILURE;

}
xil_printf ("WiFi file Successfully Loaded \r\n”);

Array

Status = read_files(”"bluedata.txt”,
INPUT_DATA SIZE BLUETOOTH, input BLUETOOTH) ;
if (Status != XST_SUCCESS)
{
xil_printf (7 Test BLUETOOTH failed \r\n");
return XST_FAILURE;

}
xil_printf ("BLUETOOTH file Successfully Loaded \r\n");

if (Init_Timer_ ARM () != XST_SUCCESS)

{
xil_printf (7"Error in Init.-Timer ARM!\n\r");

return O;

103

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

if (DPR_Int() != XST_SUCCESS)

{

xil_printf ("Error in DPR Int!\n\r”);
return O;

while (1)

{

int loading_done_Tx_P1 ,loading_done_Tx_P2,
loading _done_Tx_P3;

int Tx_P1_Status ,Tx_P2_Status , Tx_P3_Status;

int loading_done_Rx_P1 ,loading_done_Rx_P2,
loading _done_Rx_P3;

int Rx_P1_Status ,Rx_P2_Status , Rx_P3_Status;

int Exit = 0;

int OptionNext = 0; // start —up default

int choose_system = 0; //0 = 2G , I = 3G |,
WIFI , 4 = BLUETOOTH

XTime tStart, tEnd;

| [==
while (Exit != 1)

{

|| ==
do

{

print (” 1: 2G\n\r");

print (” 2: 3G\n\r”);

print (” 3: 4G\n\r");

print (” 4: WIFI\n\r”);

print (” 5: BLUETOOTH\n\r”);

print (” 6: Test Chain\n\r”);

print (” 7: Exit\n\r”);

print (7> 7);

OptionNext = inbyte () ;
if (isalpha(OptionNext))
OptionNext = toupper (OptionNext) ;
xil_printf (7"%c\n\r”, OptionNext);
} while (!isdigit(OptionNext));

// e ——————————
switch (OptionNext)
{
// e ———
case '1°: /] 2G
// e ——————
choose_system = 0;

104

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

xil_printf (7 Generating software trigger for 2G
reconfiguration\r\n”);
XTime_GetTime(&tStart) ;

Tx_P1_Status=Xil_In32 (Tx_.P1_.SW_TRIGGER) ;
Rx_P2_Status=Xil_In32 (Rx_.P2_.SW_TRIGGER) ;

if (! (Tx_P1_STATUS&0x8000)) { Xil_-Out32(
Tx_P1_SW_TRIGGER,0); }

if (! (Rx_P2_.STATUS&0x8000)) { Xil_-Out32(
Rx_P2_SW_TRIGGER ,0) ; }

loading _done _Tx_P1 = 0;
loading _done _Rx_P2 = 0;

)
{

Tx_P1_Status=Xil_In32 (Tx_P1_STATUS)&0x07 ;
Rx_P2_Status=Xil_In32 (Rx_P2_STATUS)&0x07 ;

switch(Tx_P1_Status) {

case 7 : /+print(’RM loaded\r\n”)
#/; loading_done_Tx_P1=1; break;
case 6 : print("RM is being reset)

r\n”); break;

case 5 : print(”Software start-—up

step\r\n”); break;

case 4 : /+print(”Loading new RM\r

\n”)=%/; break;

case 2 : print(”Software shutdown)

r\n”); break;

case 1 : print("Hardware shutdown)\

r\n”’); break;

switch (Rx_P2_Status) {

case 7 : /«print(”RM loaded\r\n”)
#/; loading_done _Rx_P2=1; break;
case 6 : print("RM is being reset)

r\n”); break;

case 5 : print(’Software start—up

step\r\n”); break;

case 4 : /+print(”Loading new RM\r

\n”)=*/; break;

105

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

case 2 : print(”Software shutdown)\
r\n”); break;

case 1 : print(”"Hardware shutdown)\
r\n”); break;

XTime_GetTime(&tEnd) ;

xil_printf (772G Reconfiguration Completed!\n\r");
printf (”"Reconfiguration took %.2f ms.\n”,1.0 % (
tEnd — tStart) / (COUNTS_PER.SECOND/1000));

//
break ;
case '2°:

//

choose_system = 1;

xil_printf (7 Generating software trigger for 3G
reconfiguration\r\n”);
XTime_GetTime(&tStart) ;

Tx_P2_Status=Xil_In32 (Tx_P2_.SW_TRIGGER) ;
Rx_P3_Status=Xil_In32 (Rx_P3_SW_TRIGGER) ;

if (1(Tx_P2_.STATUS&0x8000)) { Xil_-Out32(
Tx_P2_SW_TRIGGER,0) ; }
1f (! (Rx_P3_.STATUS&0x8000)) { Xil_-Out32(
Rx_P3_SW_TRIGGER,0) ; }

loading _done _Tx_P2 = 0;
loading _done_Rx_P3 = 0;

{

)

Tx_P2 _Status=Xil_In32 (Tx_P2_STATUS)&0x07;
Rx_P3_Status=Xil_In32 (Rx_P3_STATUS)&0x07 ;

switch (Tx_P2_Status) {
case 7 : /«print("RM loaded\r\n”)
*/; loading_done_Tx_P2=1; break;
case 6 : print("RM is being reset)
r\n”’); break;
case 5 : print(”Software start—up

106

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

}

step\r\n”); break;
case 4 : /«print(”Loading new RM\r
\n”)=*/; break;

case 2 : print(”Software shutdown)\
r\n”’); break;
case 1 : print(”Hardware shutdown)

r\n”); break;

switch (Rx_P3_Status) {

case 7 : /«print("RM loaded\r\n”)
x/; loading_done_Rx_P3=1; break;

case 6 : print("RM is being reset)
r\n”’); break;

case 5 : print(”Software start—up
step\r\n”); break;

case 4 : /«print(”Loading new RM\r
\n”)=*/; break;

case 2 : print(”Software shutdown)\
r\n”’); break;
case 1 : print(”Hardware shutdown)

r\n”); break;

XTime_GetTime(&tEnd) ;

xil_printf (73G Reconfiguration Completed!\n\r");
printf (7" Reconfiguration took %.2f ms.\n”,1.0 * (

tEnd — tStart) / (COUNTS_PER_.SECOND/1000));

// e e s ——
break ;
case '37: /] 4G
// S ————————
choose_system = 2;

xil_printf (7" Generating software trigger for 4G
reconfiguration\r\n”);
XTime_GetTime(&tStart);

Tx_P1_Status=Xil_In32 (Tx_P1_SW_TRIGGER) ;
Tx_P2_Status=Xil_In32 (Tx_P2_.SW_TRIGGER) ;
Tx_P3_Status=Xil_In32 (Tx_P3_.SW_TRIGGER) ;

Rx_P1_Status=Xil_In32 (Rx_P1_SW_TRIGGER) ;

Rx_P2_Status=Xil_In32 (Rx_P2_SW_TRIGGER) ;
Rx_P3_Status=Xil_In32 (Rx_P3_SW_TRIGGER) ;

107

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

if (1(Tx_P1_STATUS&0x8000)) { Xil_Out32(
Tx_P1_SW_TRIGGER,0) ; }

if (1(Tx_P2_STATUS&0x8000)) { Xil_Out32(
Tx_P2_SW_TRIGGER,0) ; }

if (1(Tx_P3_STATUS&0x8000)) { Xil_Out32(
Tx_P3_SW_TRIGGER,0) ; }

|| ====================================soo=m===

if (1 (Rx_P1_STATUS&0x8000)) { Xil_Out32(
Rx P1_SW _TRIGGER,0) ; }

if (1 (Rx_P2_STATUS&0x8000)) { Xil_Out32(
Rx_P2_SW_TRIGGER,0) ; }

if (1(Rx_P3_STATUS&0x8000)) { Xil Out32(

Rx_P3_SW_TRIGGER,0); }

loading _done _Tx_P1 = 0;
loading _done_Tx_P2 = 0;
loading _done_Tx_P3 = 0;

loading _done _Rx_P1 = 0;
loading _done _Rx_P2 = 0;
loading_done_Rx_P3 = 0;

while ((! loading _done _Tx_P1)||(!loading_done_Tx_P2)
|| (!loading_done_Tx_P3) ||

(!loading_done _Rx_P1) || (!
loading_done _Rx_P2) || (!
loading_done_Rx_P3))

Tx_P1_Status=Xil_In32 (Tx_P1_STATUS)&0x07;
Tx_P2_Status=Xil_In32 (Tx_P2_STATUS)&0x07 ;
Tx_P3_Status=Xil_In32 (Tx_P3_STATUS)&0x07 ;

Rx_P1_Status=Xil_In32 (Rx_P1_STATUS)&0x07 ;
Rx_P2_Status=Xil_In32 (Rx_P2_STATUS)&0x07 ;
Rx_P3_Status=Xil_In32 (Rx_P3_STATUS)&0x07 ;

switch(Tx_P1_Status) {

case 7 : /+print("RM loaded\r\n”)
#/; loading_done_Tx_P1=1; break;

case 6 : print("RM is being reset)
r\n”); break;

case 5 : print(”Software start—up
step\r\n”); break;

case 4 : /+print(”Loading new RM\r

108

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

438

439

\n”);x*/ break;

case 2 : print(”Software shutdown)\
r\n”’); break;
case 1 : print(”Hardware shutdown)\
r\n”’); break;
}
| | ==

switch (Tx_P2_Status) {

case 7 : /+print(’RM loaded\r\n”);
#/ loading_done_Tx_P2=1; break;

case 6 : print("RM is being reset)
r\n”); break;

case 5 : print(”Software start—up
step\r\n”); break;

case 4 : /+print(”Loading new RM\r
\n”);x*x/ break;

case 2 : print(”Software shutdown)\
r\n”’); break;
case 1 : print("Hardware shutdown)
r\n”’); break;
}
[[==

switch (Tx_P3_Status) {

case 7 : /+print(’RM loaded\r\n”);
#/ loading_done_Tx_P3=1; break;

case 6 : print("RM is being reset)
r\n”); break;

case 5 : print(”Software start-—up
step\r\n”); break;

case 4 : /+print(”Loading new RM\r
\n”); =/ break;

case 2 : print(”Software shutdown)
r\n”); break;
case 1 : /+print(” Hardware
shutdown\r\n”); %/ break;
}
| | ==

switch (Rx_P1_Status) {

case 7 : /+print(’RM loaded\r\n”);
#/ loading_done_Rx_P1=1; break;

case 6 : print("RM is being reset)
r\n”’); break;

case 5 : print(”Software start—up
step\r\n”); break;

case 4 : /+print(”Loading new RM\r
\n”); =/ break;

109

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

456

457

458

459

460

461

462

463

464

466

467

468

469

470

}

case 2 : print(”Software shutdown)\
r\n”); break;

case 1 : /+print(” Hardware
shutdown\r\n”); %/ break;

switch (Rx_P2_Status) {

case 7 : /+print(’RM loaded\r\n”);
#/ loading_done_Rx_P2=1; break;

case 6 : print("RM is being reset)
r\n”); break;

case 5 : print(”Software start-—up
step\r\n”); break;

case 4 : /+print(”Loading new RM\r
\n”);=*/ break;

case 2 : print(”Software shutdown)
r\n”); break;
case 1 : print(”"Hardware shutdown)\

r\n”’); break;

switch (Rx_P3_Status) {

case 7 : /+print(’RM loaded\r\n”);
#*/ loading_done_Rx_P3=1; break;

case 6 : print("RM is being reset)
r\n”’); break;

case 5 : print(”Software start—up
step\r\n”); break;

case 4 : /+print(”Loading new RM\r
\n”); =/ break;

case 2 : print(”Software shutdown)
r\n”); break;
case 1 : print("Hardware shutdown)\

r\n”); break;

XTime_GetTime(&tEnd) ;
xil_printf (74G Reconfiguration Completed!\n\r");
printf ("Reconfiguration took %.2f ms.\n”7,1.0 * (

tEnd — tStart) / (COUNTS_PER_.SECOND/1000));

110

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

choose_system = 3;

xil_printf (”Generating software trigger for WIFI
reconfiguration\r\n”);

XTime_GetTime(&tStart);

Tx_P2_Status=Xil_In32 (Tx_P2_.SW_TRIGGER) ;
Rx_P3_Status=Xil_In32 (Rx_P3_.SW_TRIGGER) ;

if (1(Tx_P2_.STATUS&0x8000)) { Xil_Out32(
Tx_P2_SW_TRIGGER,0) ; }

if (!(Rx_P3_.STATUS&0x8000)) { Xil_Out32(
Rx_P3_SW_TRIGGER,0) ; }

loading _done_Tx_P2 = O0;
loading _done _Rx_P3 = 0;

)
{

Tx_P2_Status=Xil_In32 (Tx_P2_.STATUS)&0x07 ;
Rx_P3_Status=Xil_In32 (Rx_P3_STATUS)&0x07 ;

switch (Tx_P2_Status) {

case 7 : /+print("RM loaded\r\n”)
#/; loading_done_Tx_P2=1; break;

case 6 : print("RM is being reset)
r\n”); break;

case 5 : print(”Software start—up
step\r\n”); break;

case 4 : /+print(”Loading new RM\r
\n”)=x/; break;

case 2 : print(”Software shutdown)\
r\n”’); break;
case 1 : print("Hardware shutdown)\

r\n”’); break;

switch (Rx_P3_Status) {

case 7 : /+print("RM loaded\r\n”)
#/; loading_done_Rx_P3=1; break;

case 6 : print("RM is being reset)
r\n”); break;

case 5 : print(”Software start—up
step\r\n”); break;

case 4 : /+print(”Loading new RM\r

111

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

\n”)=x/; break;

case 2 : print(”Software shutdown)\
r\n”’); break;
case 1 : print("Hardware shutdown)

r\n”’); break;

xil_printf ("WiFi Reconfiguration Completed!\n\r”);
printf (7" Reconfiguration took %.2f ms.\n”,1.0 % (
tEnd — tStart) / (COUNTS_PER.SECOND/1000));

4;

}
/]
}
XTime_GetTime(&tEnd) ;
/]
break ;
case ’'57:
/]
choose_system

xil_printf (7" Generating software trigger for
BLUETOOTH reconfiguration\r\n”);
XTime_GetTime(&tStart) ;

{

Tx_P1_Status=Xil_In32 (Tx_P1_SW_TRIGGER) ;
Rx_P2_Status=Xil_In32 (Rx_P2_SW_TRIGGER) ;

if (1(Tx_PI_STATUS&0x8000)) { Xil_Out32(
Tx_P1_SW_TRIGGER,0) ; }
if (1(Rx_P2_STATUS&0x8000)) { Xil_Out32(
Rx_P2_ SW_TRIGGER,0) ; }

loading _done _Tx_P1 = 0;
loading_done_Rx_P2 = 0;

)

Tx_P1_Status=Xil_In32 (Tx_P1_STATUS)&0x07;
Rx_P2_Status=Xil_In32 (Rx_P2_STATUS)&0x07 ;

switch(Tx_P1_Status) {

case 7 : /«print("RM loaded\r\n”)
*/; loading_done_Tx_P1=1; break;

case 6 : print("RM is being reset)
r\n”’); break;

case 5 : print(”Software start—up

112

step\r\n”); break;

540 case 4 : /+print(”Loading new RM\r
\n”)=*/; break;

541 case 2 : print(”Software shutdown)\
r\n”’); break;

542 case 1 : print(”Hardware shutdown)

r\n”); break;

543 }

544 || =========================—==—=——==—=====
sas switch (Rx_P2_Status) {
546 case 7 : /«print("RM loaded\r\n”)
x/; loading_done_Rx_P2=1; break;
547 case 6 : print("RM is being reset)
r\n”’); break;
548 case 5 : print(”Software start—up
step\r\n”); break;
549 case 4 : /«print(”Loading new RM\r
\n”)=*/; break;
550 case 2 : print(”Software shutdown)
r\n”’); break;
551 case 1 : print(”Hardware shutdown)
r\n”); break;
552 }
553 // e e
554 }
555 | | ==
556 XTime_GetTime(&tEnd) ;
557 xil_printf ("BLUETOOTH Reconfiguration Completed!\n
\r7)5
558 printf ("Reconfiguration took %.2f ms.\n”7,1.0 * (
tEnd — tStart) / (COUNTS_PER_.SECOND/1000));
559 //::ZZZZZ:::::=::::=:::::::::=::==::::::::=:::
sso break ;
561 //::
s case 67 : // Test Chain
563 || =================——=——=———=———————————=—=—=—=====
s64 Xil_Out32 (
XPAR_TX_R1_AXI_PERIPHERAL_V1_0_.0_.BASEADDR,
choose_system) ; // Option in HDL code
565 Xil_Out32(
XPAR_TX _R2_AXI PERIPHERAL V1_0_.0_.BASEADDR,
choose_system) ; // Option in HDL code
566 Xil_Out32 (
XPAR_TX_R3_AXI_PERIPHERAL_V1_0_.0_.BASEADDR,
choose_system) ; // Option in HDL code
567 Xil_Out32(

113

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

XPAR_RX_R1_AXI_PERIPHERAL_V1_0_0_.BASEADDR,

choose_system) ;
X11_Out32(

// Option

in HDL code

XPAR_RX_R2_AXI_PERIPHERAL_V1_0_0_.BASEADDR,

choose_system) ;
Xil_Out32(

// Option

in HDL code

XPAR_RX_R3_AXI_PERIPHERAL_V1_0_0_.BASEADDR,

choose_system) ; // Option

Xil_Out32 (

XPAR_TX_R1_AXI_PERIPHERAL_V1_0_0_.BASEADDR+12,1);

code
Xil_Out32(

XPAR_TX_R2_AXI_PERIPHERAL_V1_0_.0_.BASEADDR+12,1);

code
Xil_Out32(

XPAR_TX_R3_AXI_PERIPHERAL_V1_0_.0.BASEADDR+12,1);

code
Xil_Out32(

XPAR_RX_RI1_AXI_PERIPHERAL_V1_0.0.BASEADDR+12,1);

code
Xil_Out32(

XPAR_RX_R2_AXI_PERIPHERAL_V1_0.0.BASEADDR+12,1);

code
Xil_Out32(

XPAR_RX_R3_AXI_PERIPHERAL_V1_.0.0.BASEADDR+12,1);

Xil_Out32(

XPAR_TX_R1_AXI_PERIPHERAL_V1_0_.0_.BASEADDR+12,0);

code
Xil_Out32(

XPAR_TX_R2_AXI_PERIPHERAL_V1_.0.0_.BASEADDR+12,0) ;

code
Xil_Out32(

XPAR_TX_R3_AXI_PERIPHERAL_V1_0_.0_.BASEADDR+12,0);

114

in HDL code

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

code
Xil_Out32(

XPAR_RX_R1_AXI_PERIPHERAL_V1_0.0.BASEADDR+12,0);

code
Xil_Out32(

XPAR_RX_R2_AXI_PERIPHERAL_V1_0_.0.BASEADDR+12,0);

code
Xil_Out32(

XPAR_RX_R3_AXI_PERIPHERAL_V1_0.0.BASEADDR+12,0);

X1l1_Out32 (

XPAR_TX_R1_AXI_PERIPHERAL_V1_0_.0.BASEADDR+12,1);

code
Xil_Out32(

XPAR_TX_R2_AXI_PERIPHERAL_V1_0_.0.BASEADDR+12,1);

code
Xil_Out32(

XPAR_TX_R3_AXI_PERIPHERAL_V1_0_0.BASEADDR+12,1);

code
Xil_Out32(

XPAR_RX_R1_AXI_PERIPHERAL_V1_.0.0.BASEADDR+12,1);

code
Xil_Out32(

XPAR_RX_R2_AXI_PERIPHERAL_V1_0.0.BASEADDR+12,1);

code
Xil_Out32(

XPAR_RX_R3_AXI_PERIPHERAL_V1_0_.0.BASEADDR+12,1);

if (choose_system == 0)

{

115

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

// Reset in HDL

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

xil_printf (" Testing 2g!\n\r7);
INPUT_INTERFACE_AXI_mWriteReg (
XPAR_INPUT_INTERFACE_AXI_0_SO0_AXI_BASEADDR

INPUT_INTERFACE_AXI_SO00_AXI_SLV_REGO_OFFSET
, INPUT_DATA RATE_2G) ;

setup_DMAO () ;

xil_printf ("Done!\n\r7);

| | ==
else if (choose_system == 1)
{
xil_printf (" Testing 3g!\n\r");
INPUT_INTERFACE_AXI_mWriteReg (
XPAR_INPUT_INTERFACE_AXI_1_S00_AXI_BASEADDR
INPUT_INTERFACE_AXI_SO0_AXI_SLV_REGO_OFFSET
, INPUT_DATA_RATE_3G) ;
setup_DMA1 () ;
xil_printf ("Done!\n\r7);
}
| | ==
else if(choose_system == 2)
{
xil_printf (7 Testing 4g!\n\r7);
INPUT_INTERFACE_AXI_mWriteReg (
XPAR_INPUT_INTERFACE_AXI_2_S00_AXI_BASEADDR
INPUT_INTERFACE_AXI_SO00_AXI_SLV_REGO_OFFSET
, INPUT_DATA_RATE_4G) ;
setup_DMA2 () ;
xil_printf ("Done!\n\r");
}
| | ==
else if(choose_system == 3)

{
xil_printf (" Testing Wifi!l\n\r7);
INPUT_INTERFACE_AXI_mWriteReg (
XPAR_INPUT_INTERFACE_AXI_3_S00_AXI_ BASEADDR

INPUT_INTERFACE_AXI_SO00_AXI_SLV_REGO_OFFSET
, INPUT_DATA_RATE_WIFI) ;

setup_DMA3 () ;

xil_printf ("Done!\n\r7);

116

else if(choose_system == 4)
{
xil_printf (" Testing bluetooth!\n\r”);
INPUT_INTERFACE_AXI_mWriteReg (
XPAR_INPUT_INTERFACE_AXI_4_S00_AXI_BASEADDR

INPUT_INTERFACE_AXI_S00_AXI_SLV_REGO_OFFSET
, INPUT_DATA_RATE BLUETOOTH) ;

634

635

636

637

638

639

640

641

setup_DMA4 () ;
xil_printf ("Done!\n\r7);

652

653

654

655

656

657

658

Ladlall

sale) U0 Lae cqual 5 3l e (DPR) (Saabinll 5 adl G Sl Bale) A3 aladiiud o5 dpualall AL) sl MU

(e a5 dgahaiall il sl 8 ghiae Jis iy, Sl 8 5 YA (FPGA) dihiall) sall b sdiae Jia S5
Jal e (e el je 53580 Bac M dsa ga 8 3ea) (i sSisale) a sgda, (oS Bale Y ALLEN 3 jea) 2wl J lall Juadl
550 b g5 Jal (e (SDR) Lima s omall saal U als (aadas (S0 ¢ Saalipall sl 0 Sl Bale) aladialy,) ghal
i 9 oS) okt ASLLI VLAY julas Ciagd cdpalal) AL ol il (saa e, al 5 3Uad e daluall

3) 5 caranaillagai saly) Al a5 138, ST AalA Glaad s el cilily Jae e J sandl callaty Lo Ll (3 guadl,

O Ja Agilaiall) gl il shiae Jia e Saalial) el G 5S3l ale) A (Gaalas 5 a8l gl 5 dalidl)

oo iy allal) G el JS e, Sleadl ai e ASLaSU VLAY jules guan il 5 asanal (Saall
3N i 5 deadival) dalidll

8] (o Juai¥) JIS apenai o3, dna g JISS Apalall atila (3t oy Jusatl ol 58 Lina s i jmal) gl)1 s
Aallas L g oyl sl) allad (S, (pme A g JSG Aol 4305 A0y 8 alad) 481U JLina) 5 Jus Y
A o)) JSiisale) (8 40 5 pall 3aly) ae, zali sl aladially A ey Aingd ey 45Y 1) a3 s gl JISET (4a 0l
el) 45 pall Baly) (o Lima s o pmall a1 Al avanai Ul e (g Bas) 5, 4liad (Saall (e raal 43ad 1 el
Caghall dl 83l sall Jledll alaaiul) oa gl)l Guat) (5 Al 5 jae, Jdil) i s IS Sualiall il sale) e
Jaandill 8 5 IO Adlide yulae 2 Lina 30 o yaall gl 1 allat) eansi 3 5621 45 50 0 (o8 J sl AaDla, Adlisdl)
it S A Ly i ymall gl) s i a5y (g2 pasiad) (gasill iy, aldail) Joani Gl) Aalad) 50
5 Alsial o35l 5 anall Jal s Cpana ¢l bl Jaxa €l il sl JISET dallre 8 Gl A1S 3y gl 5)38
330 J sie Mgl aa g Bas Sl A gie CMSS (pana

5 Bluetooth :ASLudUl cYLai julas dusedd Lna o ymall saal S QL) 5 Sl Y aUas Jaall 138 (3uday
saaall Sl el Juial) sale) 3308 aladiul aby Zynqg-7000 axii de sana A LTE 5 3G 52G SWi-Fi
o prall 5000)1 Gl pany, Ailaiall Gl sall b ghime Jin pud (i o el Baseite VLAtV dakal o Jaaall
o) L) Ay L) 5, gl) 5 ye 98 Y] £l Ll e G (Salinall 3l (il ke) 40685 aladinly Lae
o) dSmll sale) A aladiuly dedd) JUiu¥ s Jlu Y1 5 jead 2dml oy sll aadat 25 08 50l 4l 4 lad
aanadll apudity a3 Al A, Jisall g Jusyall QS 50 Y DU a5 Le 5V Al axding, Saalinal)
g 5 A0S aUail) Aalisal 45 e o) ya) a3, Juia) s ;Y15 jead aend ool Juadl (§8a Jal (g aludi 332)
5 Aabusall Juli5 53 531 aansil) g (3o, dladiinsl ane Alla 5 Salinall 5 jadl Sl sale) 465 Gauda Al 35,800
Aaluall Q85 o)28 gl apndilll n'ia gl Laly, Jsine Jiai < g aa sl e 776,71 57 10.19 Ay 3,8l
J1awailh Wl ¢ 7 95.43 s Bluetooth dl 5 G 2 J) Alls (33 508l) (sl JusSlud) arand 5 a8l Blgiul 5 danadall
Al) aladin) pae Al ae 5)l5e 759,09 o LTE JI A A 5¢ 7 79.69 s Wi-Fi J) 5G3

e 3 iy
AEER AT ARR

Gran
Y~\c/~\‘/-\

YeoVA
AyeSl) Y Lany)y il g ST Asnia
pslall jfale

O uAJa.mA B = S
(i) s yiall) QIR deae s deal ald
(Al caiadll) Al A dess]

(el cpaiaall) ol e e gane ol
(s A Cisay 2ga)

foudiga
 Dpall ey i
L EWREN|

:) g 5

sl gl
'@.«..&S\
:da,al
1058 pdiall

(Al olgis

Sl Ll Sl ale) Galuad o Ly Cimall gual) aUaS gl

A clalsl)

Alaiall gl Cldghama JinSalisall a5l sale] , Lnays Cajaall gualyl) olss

ALyl Gadle

CYLaDU Hplee dsed] Loy cipmall bl JLialy L) alas Jeadl 1 Gy
Ay . Zynq=7000 ausi degana A LTE 4 G3 5 G2 5 Wi-Fi ; Bluetooth :4.SLU)
sadie VL) Aakil o doall sapall Saeliall Sl JSil sale) dgE aladiud
b Cpmall sobll Galat pesy JAghidl Gl Gligias Jis and i e Hpladl
A oL 2 eyl g pes 83! elal Llie G (Saelall il Sl sale) 46 alasiuly

Byl sl dyllad Gl las)

AN Gl Bale) b o Liaa o i jral) gaa) 1) allaS Gaudat
S

dlac)

NS (A daaa L

5 lal) daala - Auaigll K) dasia Al
da) e Jganll alllaia e e jaS
psladl jficala
s
Ay 4ol ety g il g SSI dain

PR PR Sl dana (s daaf 3]
AERR IV 3 syl A8 deaa 3

5 Al Hnals - duigl) A
A yadl juan i) sgan - 3 5l
YeYA

gﬁje-“ C)...\JS:\S\ dale) (bl U‘b Liaa L.i;.d\ Jgdbi\ em.\. dﬁhﬂ
Sl

dlac)

NS (A daaa L

5 lal) daala - Auaigll K) dasia Al
da) e Jganll alllaia e e jaS
psladl jficala
o
Ay 4ol ety g il g SSI dain

Cayiiall Gl aud

YLy il SV Atia and LSy iy IV Ria ad
ZETPYN] EETPYN]
5 AL Aasla - digl) S 5 AlE Aals - digl) S

5y aldl) Laala - A waigl) 4

A padl juas i) sgan - 3 5l
YeYA

Y G esall Bale) b Ao Lina ol gmall gl 1) aUSS gaudat
JEwe

Aae)

5 alall daala - Al 4K) dadie Allus

da) e Jpandl cililliia fpa e 3aS
asial) yrivala
o

A gl LY g il oSS dain

5 Al Hnals - duigl) A
A padl juas i) sgan - 3 5l
YO)A

	Introduction
	Problem Domain
	Thesis Outline

	Literature Survey
	Background and Related Work
	Communication System in Details
	SDR System Overview
	ZYNQ Board (ZC702)
	FPGA Evolution History
	Introduction to The Board
	CLB Overview

	FPGA Configuration
	Configuration Definition
	Types of Configuration
	DPR in FPGAs
	Types of Bit Files

	DPR Techniques
	External Mode Using JTAG
	Internal Mode
	PCAP on PS Side
	ICAP on PL Side

	Summary

	SDR Transmitter Design
	SDR System Overview
	Bluetooth Transmitter
	Segmentation
	HEC Generator, CRC, and Whitening
	Repetition and Hamming Encoders
	Chain Utilization

	Wi-Fi Transmitter
	Scrambler
	Convolutional Encoder
	Puncture
	Interleaver
	OFDM Section
	Chain Utilization

	2G Transmitter Chain
	CRC
	Convolutional Encoder
	Interleaver
	Burst Formation
	Differential Coding
	Chain Utilization

	3G Transmitter Chain
	CRC
	Segmentation
	Convolutional Encoder
	Code Block Concatenation
	Interleaver
	Code Division Multiplexing
	Chain Utilization

	LTE Transmitter Chain
	CRC
	Segmentation
	Turbo Encoder
	Rate Matching
	Code Block Concatenation
	Scrambler
	OFDM Section
	Chain Utilization

	Summary

	SDR Receiver Design
	SDR Receiver Overview
	Bluetooth Receiver
	Demapper
	Repetition and Hamming Decoders
	Dewhitening, De-HEC, and De-CRC
	Chain Utilization

	Wi-Fi Receiver
	OFDM Section
	Deinterleaver
	Depuncture
	Viterbi Decoder
	Descrambler
	Chain Utilization

	2G Receiver
	Differential Decoding
	Burst Deformation
	Deinterleaver
	Viterbi Decoder
	De-CRC
	Chain Utilization

	3G Receiver
	Code Division Multiplexing
	Deinterleaver
	Deconcatenation
	Viterbi Decoder
	Desegmentation
	De-CRC
	Chain Utilization

	LTE Receiver
	OFDM Section
	Descrambler
	Code Block Deconcatenation
	Rate Dematching
	Turbo Decoder
	Desegmentation
	De-CRC
	Chain Utilization

	Summary

	FPGA Prototyping
	Test Environment
	Block Design Implementation
	DPR Flow Steps
	DPR Proposed Approaches
	Single Partition Approach
	Multi-Partition Approach

	Simulation Results
	Fixation Error
	Area and Power Measuremnet

	Summary

	Conclusion And Proposed Future Work
	Conclusion
	Proposed Future Work

	Appendix Partioning Algorithm
	Appendix FPGA Prototyping Code
	Appendix Reconfiguration Algorithm

