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 Abstract– In this paper software implementation performance 
of CAESAR’s competition round 3 Authenticated Encryption 
(AE) stream cipher algorithms is improved using Xilinx SDSoC 
tool. Xilinx SDSoC (Software Defined System-on-Chip) tool 
accelerates designs running on Zynq 7000 devices by implement 
heterogeneous co-design run on FPGA-CPU platform. AE 
schemes are providing both confidentiality and integrity of data 
which have a major role in wide number of applications such as 
IoT, Automotive, Medical devices, Sensors and real world 
protocols like TLS, SSH or IPsec. AE can be implemented either 
in software or in hardware. This paper will show that using SW-
HW co-design improves the speed of the software implementation 
for ACORN, AEGIS, MORUS and Tiaoxin AE stream cipher 
algorithms. 

 Index Terms – Authenticated Encryption, ACORN, MORUS, 
AEGIS, Tiaoxin, Stream Ciphers, CAESAR, SDSoC. 

I.  INTRODUCTION 
 Authenticated Encryption is symmetric key cryptographic 
algorithms that provide both security and integrity using same 
algorithm [2]. Competition for Authenticated Encryption: 
Security, Applicability and Robustness (CAESAR) 
cryptographic competition was announced to select a portfolio 
for single path AE scheme which is faster than AES-GCM. 
The first round of CAESAR was started with 57 candidates, 
30 ciphers were selected for the 2nd round, 15 ciphers were 
selected for the 3rd round and the final portfolio was 
announced in February 2019. 

There are three approaches to design an integrated 
authenticated encryption algorithm, block cipher, stream 
cipher, and dedicated cipher [1]. Stream cipher takes input as a 
secret Key (K) and an Initialization Vector (IV) and loads 
them to keystream generator. Then, either the output of 
keystream generator will be XORed with plaintext to produce 
ciphertext for encryption process or the output of keystream 
generator will be XORed with ciphertext to generate plaintext 
for decryption process [4]. Stream cipher usually divides the 
message into successive characters. Based on the size of the 
character, a stream cipher can be either bit-based or word- 
based. In the bit-based stream cipher, the cipher operates on 
each bit separately. In the word-based stream cipher, each 
character consists of a group of bits called a word and the 
cipher operates on these words to encrypt/ decrypt a message 
as described in [1]. 

Stream Cipher AE schemes have five phases of operation 
called: initialization, associated data loading, encryption, tag 
generation, and finally decryption and tag verification. For 
each phase, the internal state registers’ values will be updated 
after applying some logic operations on them. Then these 
values will be used to define the keystream generator output. 
The output tag is generated by applying plaintext as an input 
of state registers as described in [1]. 

 In this paper, the software implementation performance of 
CAESAR Round 3 AE stream cipher algorithms namely 
ACORN, MORUS, AEGIS, and Tiaoxin is enhanced using 
Zynq ZC702 evaluation board by moving some functions to be 
implemented on FPGA instead of CPU to reduce the number 
of clock cycles which are needed for encryption or decryption 
operations. C++ source codes which are available on 
ATHENa website [5] were used as a reference and modified to 
be applicable to be implemented on heterogeneous FPGA-
CPU platform. Then some functions were selected to be 
implemented on FPGA. Finally, the speed enhancement was 
measured after using this platform for each algorithm.  

The paper is organized as follows: section II describes 
Xilinx ZC702 heterogeneous CPU-FPGA platform. Section III 
describes an overview and the proposed implementation of 
ACORN, AEGIS, MORUS and Tiaoxin algorithms. Section 
IV shows the results of co-design implementation.  Section V 
shows designs recommendation. Finally, Section VI concludes 
the paper work. 

II. HETEROGENEOUS PLATFORM  
Xilinx SDSoC (Software Defined System-on-Chip) tool is 

a C/C++ development environment used to create hardware-
software co-designs on a heterogeneous FPGA-CPU for 
Zynq®-7000 All Programmable SoC platforms. It is used to 
improve performance of C/C++ code by reducing number of 
clock cycles of the function that is implemented on 
hardware[6].  

 As in [7], software implementations have fixed resources 
and offer limited opportunities for parallelization. A processor 
executes a program as a sequence of instructions generated by 
processor compiler tools, which transform an algorithm 
expressed in C/C++ into assembly language. Even a simple 
operation, like the addition of two values, results in multiple 
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assembly instructions that must be executed across multiple 
clock cycles. It takes lower clock cycles when implemented on 
FPGA which has a high degree of parallelism in algorithm 
execution.  

SDSoC allows implementing functions on hardware 
where data bus widths can be either 8-bits, 16-bits, 24-bits or 
32-bits. Interface buses between FPGA and CPU can be 
AXI_FIFO, AXI_LITE, AXIDMA_SIMPLE…etc. 
AXIDMA_SIMPLE is the most efficient bulk transfer engine. 
However, it consumes a large area. It supports up to 8MB 
transfers [6].   

In this paper, a standalone project was created for each 
algorithm on Xilinx Zynq ZC702 device, that uses dual-Core 
ARM Cortex A9 processor and XC7Z020-CLG484 based 
FPGA as the programming logic [6]. FPGA clock frequency is 
set to 100MHz. Choosing the functions to be implemented on 
FPGA is based on the number of function calls to 
encrypt/decrypt single message, number of required 
input/output ports for each function, and input/output data 
types and sizes. HLS pragmas were used in the hardware 
functions to improve performance as described in [8]. The 
board setup was set as in [9], [10] to measure software 
performance.  

III. STREAM CIPHERS OVERVIEW  

 A. ACORN 

 
Fig. 1. ACORN IMPLEMENTATION  

 ACORN is a stream authenticated encryption cipher 
based on a binary feedback shift register [1] [12]. This paper 
shows the performance of High speed 32-bit ACORNv3 [11]. 
The state register of ACORN consists of 293 bits. Its value is 
updated by applying the following four logic operation 
functions:  

• Non-Linear feedback function: which applies XOR 
operation on state register output and saves the results 
on fifteen 32-bit registers. 

•  KSG128 function: which takes the result of non-linear 
feedback function to generate keystream new bits (Ks31 
... Ks0) which is used to generate ciphertext. 

•  FBK128 function: which takes the output of KSG128 
function and non-linear feedback function to produce 
the 32-bits data output. 

•  State update function: which uses the previous value of 
state register and output data of the other functions to 
generate a new state register value. 

In this paper, the C++ code was modified to change the 
variables’ data types from arrays of 1-bit elements to be arrays 
of 8-bits or 32-bits elements to reduce the number of clock 
cycles. The core functions (non-linear feedback, KSG, FBK, 
and state update) were combined into one function and 
implemented on FPGA as shown in “Fig. 1”. 

B. AEGIS 
AEGIS is a dedicated stream cipher with large state size 

which is updated continuously [1].  This paper shows the 
performance of AEGIS128-L. AEGIS128-L is based on AES 
round function, it processes a 16-byte message block with 8 
AES round functions [1]. The state registers of AEGIS consist 
of eight 128-bit sub-registers (S0, S1, ..., S7). Those values are 
updated by applying 8-parallel Rounds of AES function on 
state register output and XOR S0, S4 with external input to 
calculate those new values as described in [1] and [13]. The 
external input can be either IV or Key or Associated Data 
(AD) or current plaintext or previous ciphertext or input 
message length. The output of state registers is used to 
generate keystream output then it is XORed with a plaintext to 
generate a ciphertext. 

 
Fig. 2. AEGIS IMPLEMENTATION 

The proposed implementation of AEGIS is shown in “Fig. 
2”. The state registers, cipher generator, the logic operations 
that define external inputs for each phase, and AES functions 
were implemented on FPGA, while the Finite State Machine 
(FSM), key initialization, state registers initializations, and tag 
generation were implemented on CPU. 
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Fig. 3. MORUS IMPLEMENTATION 

C. MORUS 
MORUS is a stream cipher with large state size. It uses a 

scheme similar to a type 3 Feistel scheme to update its state 
registers [14]. In this paper, the performance of MORUS-
1280-128 is shown. MORUS consists of five 256-bit state 
registers (S0,0,…,S0,4), those values are updated by applying 5-
rounds of MORUS core function on both external input and 
state registers output. MORUS core function consists of AND, 
XOR and rotate operations [12]. The 256-bit register is split 
into smaller parts of 64-bit registers to apply rotation function 
on them as described in [14]. Input of MORUS core function 
can be either input data length or previous ciphertext or 
plaintext or AD [15]. Keystream new values are generated by 
applying XOR and shift operations on the state registers 
output. 

The proposed implementation is shown in “Fig. 3”, state 
registers, cipher generator functions, the logic operations that 
define external inputs for each phase and core function were 
implemented on FPGA, while the other functions were 
implemented on CPU. 

D. Tiaoxin 
 Tiaoxin is a dedicated word-based non-linear feedback 
shift register stream cipher [1]. This paper shows the 
performance of Tiaoxin-346v2. The state registers of Tiaoxin 
consist of thirteen 128-bit state registers that are divided into 3 
groups namely: T3, T4, and T6 that consist of 3, 4, and 6 
registers, respectively [16]. The first two registers of each 
group are updated by applying 6-parallel rounds of AES 
function on the first and last register of each group [17]. Then 
they are XORed with external input. The other registers values 
are updated by shifting the previous register output. External 
input can be either constant values (Z0, Z1) or Key or IV or 
AD or plaintext or input data length. The new keystream value 
is produced by applying XOR and AND operations on the 
state register output. 

 
Fig. 4. Tiaoxin IMPLEMENTATION 

The proposed implementation of Tiaoxin is shown in “Fig. 
4”. Key generator, AES function, state update function, state 
registers, and cipher generator were implemented on FPGA, 
while the other functions were implemented on CPU. 

IV. RESULTS 
To evaluate the performance of the proposed 

implementations on SDSoC, 25 input messages were applied 
with different data length to each algorithm, 13 of them for 
encryption operation, and 12 of them for decryption operation. 
These messages were defined in the C++ test-benches that are 
available on ATHENa website [5]. Performance is measured 
in terms of the number of CPU clock cycles to encrypt or 
decrypt those messages and in terms of area utilization of the 
FPGA resources.  

The function that is proposed to be implemented on 
hardware is called cipher_hw function and the function of the 
whole algorithm is called ciphercore function. Table I shows 
the performance of cipher_hw in terms of the equivalent 
number of CPU clock cycles when this function is 
implemented on FPGA. It also shows the speed up factor 
which is defined as the ratio between software implementation 
CPU clock cycles to hardware implementation equivalent 
CPU clock cycles and number of function calls that were used 
to encrypt or decrypt the defined messages. 

Table I: Co-Design Performance for cipher_hw Function 

Algorithm CPU cycles of proposed 
implementation 

Speed up 
factor 

# of HW function 
calls 

ACORN 8074 30.3 2634 

AEGIS 10331 109.3 530 

MORUS 8037 45.4 790 

Tiaoxin 11166 84.2 998 
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Table II shows the performance of the whole algorithm 
(ciphercore function) which include cipher_hw function and 
the other functions that will be implemented on software. 
Performance of ciphercore function is measured in terms of 
number of the CPU clock cycles when cipher_hw function 
was implemented on hardware and the remaining functions 
implemented on software, number of CPU clock cycles for co-
design implementation that needed to encrypt or decrypt one 
byte, and the speed up factor which is defined as the ratio 
between CPU clock cycles of software only implementation 
without moving any function from FPGA to CPU clock cycles 
of the co-design implementation. Table II shows also the 
number of bytes of the defined input messages for each 
algorithm. 

Table II: Co-Design Performance for ciphercore Function 

Algorithm 
CPU cycles of 
proposed 
implementation 

Speed up 
factor # of bytes Cycles per 

bytes 

ACORN 103977664 7 1143 90969 

AEGIS 28571250 21.7 2626 10880 

MORUS 36421980 8.7 2943 12375 

Tiaoxin 75880446 13.2 3205 23675 
 

 
Fig. 5. FPGA UTILIZATION 

 “Fig. 5” shows the FPGA area utilization that was used to 
implement cipher_hw function on hardware for each algorithm 
in terms of LUT, FF and BRAM utilization. It includes the 
area of resources that was needed for cipher_hw function 
implementation and the area of AXIDMA interface buffers.  

Zynq ZC702 Evaluation kit’s FPGA is implemented based 
on Artix®-7 programmable logic [18], while each slice 
consists of 4 LUT and 8 FFs [19]. The number of slices that 
were used to implement interface buffers can be estimated by 
dividing number of LUT by 4 and dividing number of FF by 8 
and getting the maximum value of those two values. However, 
the number of Slices that were required to implement 
cipher_hw function could not be estimated directly by the 
previously mentioned method as the array reshaping and loop 
unrolling pragmas were used on cipher_hw function to 
increase parallelism level and improve performance. This 
leads to increase the number of the required slices as the slices 

were partially utilized by the synthesis tool for parallel design 
in order to decrease the wires routing and satisfy the timing 
constraints as described in [20]. The actual number of slices 
that were used by cipher_hw function are measured using 
Vivado HLS tool after exporting this function to RTL.  

Table III: Figure of Merit Results 

Algorithm Slice Utilization [%] FoM 

ACORN 49.6 15472 

AEGIS 79.6 9005 

MORUS 55.4 2661 

Tiaoxin 81.2 11688 

 
A new metric called Figure of Merit (FoM) was defined to 

represent the performance in terms of number of clock cycles, 
BRAM utilization and the FPGA slices utilization as shown in 
(1). Table III shows the FOM results and the area utilization in 
terms of number of slices for each algorithm. From these 
results, the MORUS algorithm has the best performance while 
the ACORN algorithm has the worst performance. 

FoM = Clock Cycles per Byte * BRAM Util. * FPGA Slice Util.   (1) 

V.  DESIGN INSIGHTS 

• Using SW-HW co-design implementation improves the 
number of CPU clock cycles for all algorithms. 
MORUS has the best performance in this proposal. 
However, the number of clock cycles for MORUS is 
slightly higher than AEGIS, but it has a lower area. 

• ACORN is a lightweight AE algorithm, it has a very 
small area in hardware. ACORN has many control 
signals, those will consume many CPU clock cycles to 
update these values on software implementation. Also, 
for a co-design implementation, moving functions that 
are used to define control signals for each phase needs 
to use more input and output interfaces that will 
consume extra area utilization and extra clock cycles to 
move variables between CPU and FPGA. So, it is 
recommended to implement ACORN on hardware only 
rather than using software or co-design 
implementations. 

• AEGIS is composed of eight different AES round 
functions. AES algorithm consists of Sub Bytes, Shift 
Rows and Mix Columns functions. Sub Bytes function 
can be implemented using BRAM or CLB. In this 
paper, it was implemented using BRAM. That is why it 
has the highest BRAM utilization. BRAM utilization 
will be reduced to 51.7% if AES Sub Bytes function is 
implemented using CLB. 

• Tiaoxin is similar to AEGIS. Both of them consist of 
AES, XOR and shift operations for encryption. Tiaoxin 
has six similar AES functions, while Sub Bytes 
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function is implemented using BRAM. If Sub Bytes 
function is implemented using CLB, BRAM utilization 
will be reduced to 51.7% like AEGIS.  

• AEGIS is faster than Tiaoxin by a factor of 2. Both of 
them have similar FPGA slice utilization and the same 
BRAM utilization if Sub Bytes function was 
implemented using CLB. So, it is recommended to use 
AEGIS algorithm instead of Tiaoxin.  

 

VI. CONCLUSION 
 This paper showed that using SW-HW co-design improves 
the speed of the software implementation for ACORN, 
AEGIS, MORUS and Tiaoxin AE stream cipher algorithms. In 
this paper, the AEGIS algorithm had minimum cycles per 
byte. However, it consumed large area, while MORUS’s 
number of CPU clock cycles per byte was slightly higher than 
AEGIS but it consumed 65% of AEGIS area. ACORN had the 
worst performance for software implementation, but the best 
area utilization.  
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