
Accelerated Software Implementation of Authenticated
Encryption Stream Ciphers for High Speed Applications

Sara Taha1, Hassan Mostafa1, 2
1 Department of Electronics and Communications Engineering, Cairo University, Egypt 2 University of Science and technology,

Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt.
sarahtahamostafa@gmail.com , hmostafa@uwaterloo.ca

 Abstract– In this paper software implementation performance
of CAESAR’s competition round 3 Authenticated Encryption
(AE) stream cipher algorithms is improved using Xilinx SDSoC
tool. Xilinx SDSoC (Software Defined System-on-Chip) tool
accelerates designs running on Zynq 7000 devices by implement
heterogeneous co-design run on FPGA-CPU platform. AE
schemes are providing both confidentiality and integrity of data
which have a major role in wide number of applications such as
IoT, Automotive, Medical devices, Sensors and real world
protocols like TLS, SSH or IPsec. AE can be implemented either
in software or in hardware. This paper will show that using SW-
HW co-design improves the speed of the software implementation
for ACORN, AEGIS, MORUS and Tiaoxin AE stream cipher
algorithms.

 Index Terms – Authenticated Encryption, ACORN, MORUS,
AEGIS, Tiaoxin, Stream Ciphers, CAESAR, SDSoC.

I. INTRODUCTION
 Authenticated Encryption is symmetric key cryptographic
algorithms that provide both security and integrity using same
algorithm [2]. Competition for Authenticated Encryption:
Security, Applicability and Robustness (CAESAR)
cryptographic competition was announced to select a portfolio
for single path AE scheme which is faster than AES-GCM.
The first round of CAESAR was started with 57 candidates,
30 ciphers were selected for the 2nd round, 15 ciphers were
selected for the 3rd round and the final portfolio was
announced in February 2019.

There are three approaches to design an integrated
authenticated encryption algorithm, block cipher, stream
cipher, and dedicated cipher [1]. Stream cipher takes input as a
secret Key (K) and an Initialization Vector (IV) and loads
them to keystream generator. Then, either the output of
keystream generator will be XORed with plaintext to produce
ciphertext for encryption process or the output of keystream
generator will be XORed with ciphertext to generate plaintext
for decryption process [4]. Stream cipher usually divides the
message into successive characters. Based on the size of the
character, a stream cipher can be either bit-based or word-
based. In the bit-based stream cipher, the cipher operates on
each bit separately. In the word-based stream cipher, each
character consists of a group of bits called a word and the
cipher operates on these words to encrypt/ decrypt a message
as described in [1].

Stream Cipher AE schemes have five phases of operation
called: initialization, associated data loading, encryption, tag
generation, and finally decryption and tag verification. For
each phase, the internal state registers’ values will be updated
after applying some logic operations on them. Then these
values will be used to define the keystream generator output.
The output tag is generated by applying plaintext as an input
of state registers as described in [1].

 In this paper, the software implementation performance of
CAESAR Round 3 AE stream cipher algorithms namely
ACORN, MORUS, AEGIS, and Tiaoxin is enhanced using
Zynq ZC702 evaluation board by moving some functions to be
implemented on FPGA instead of CPU to reduce the number
of clock cycles which are needed for encryption or decryption
operations. C++ source codes which are available on
ATHENa website [5] were used as a reference and modified to
be applicable to be implemented on heterogeneous FPGA-
CPU platform. Then some functions were selected to be
implemented on FPGA. Finally, the speed enhancement was
measured after using this platform for each algorithm.

The paper is organized as follows: section II describes
Xilinx ZC702 heterogeneous CPU-FPGA platform. Section III
describes an overview and the proposed implementation of
ACORN, AEGIS, MORUS and Tiaoxin algorithms. Section
IV shows the results of co-design implementation. Section V
shows designs recommendation. Finally, Section VI concludes
the paper work.

II. HETEROGENEOUS PLATFORM
Xilinx SDSoC (Software Defined System-on-Chip) tool is

a C/C++ development environment used to create hardware-
software co-designs on a heterogeneous FPGA-CPU for
Zynq®-7000 All Programmable SoC platforms. It is used to
improve performance of C/C++ code by reducing number of
clock cycles of the function that is implemented on
hardware[6].

 As in [7], software implementations have fixed resources
and offer limited opportunities for parallelization. A processor
executes a program as a sequence of instructions generated by
processor compiler tools, which transform an algorithm
expressed in C/C++ into assembly language. Even a simple
operation, like the addition of two values, results in multiple

27

978-1-7281-4058-2/19/$31.00 ©2019 IEEE

assembly instructions that must be executed across multiple
clock cycles. It takes lower clock cycles when implemented on
FPGA which has a high degree of parallelism in algorithm
execution.

SDSoC allows implementing functions on hardware
where data bus widths can be either 8-bits, 16-bits, 24-bits or
32-bits. Interface buses between FPGA and CPU can be
AXI_FIFO, AXI_LITE, AXIDMA_SIMPLE…etc.
AXIDMA_SIMPLE is the most efficient bulk transfer engine.
However, it consumes a large area. It supports up to 8MB
transfers [6].

In this paper, a standalone project was created for each
algorithm on Xilinx Zynq ZC702 device, that uses dual-Core
ARM Cortex A9 processor and XC7Z020-CLG484 based
FPGA as the programming logic [6]. FPGA clock frequency is
set to 100MHz. Choosing the functions to be implemented on
FPGA is based on the number of function calls to
encrypt/decrypt single message, number of required
input/output ports for each function, and input/output data
types and sizes. HLS pragmas were used in the hardware
functions to improve performance as described in [8]. The
board setup was set as in [9], [10] to measure software
performance.

III. STREAM CIPHERS OVERVIEW

 A. ACORN

Fig. 1. ACORN IMPLEMENTATION

 ACORN is a stream authenticated encryption cipher
based on a binary feedback shift register [1] [12]. This paper
shows the performance of High speed 32-bit ACORNv3 [11].
The state register of ACORN consists of 293 bits. Its value is
updated by applying the following four logic operation
functions:

• Non-Linear feedback function: which applies XOR
operation on state register output and saves the results
on fifteen 32-bit registers.

• KSG128 function: which takes the result of non-linear
feedback function to generate keystream new bits (Ks31
... Ks0) which is used to generate ciphertext.

• FBK128 function: which takes the output of KSG128
function and non-linear feedback function to produce
the 32-bits data output.

• State update function: which uses the previous value of
state register and output data of the other functions to
generate a new state register value.

In this paper, the C++ code was modified to change the
variables’ data types from arrays of 1-bit elements to be arrays
of 8-bits or 32-bits elements to reduce the number of clock
cycles. The core functions (non-linear feedback, KSG, FBK,
and state update) were combined into one function and
implemented on FPGA as shown in “Fig. 1”.

B. AEGIS
AEGIS is a dedicated stream cipher with large state size

which is updated continuously [1]. This paper shows the
performance of AEGIS128-L. AEGIS128-L is based on AES
round function, it processes a 16-byte message block with 8
AES round functions [1]. The state registers of AEGIS consist
of eight 128-bit sub-registers (S0, S1, ..., S7). Those values are
updated by applying 8-parallel Rounds of AES function on
state register output and XOR S0, S4 with external input to
calculate those new values as described in [1] and [13]. The
external input can be either IV or Key or Associated Data
(AD) or current plaintext or previous ciphertext or input
message length. The output of state registers is used to
generate keystream output then it is XORed with a plaintext to
generate a ciphertext.

Fig. 2. AEGIS IMPLEMENTATION

The proposed implementation of AEGIS is shown in “Fig.
2”. The state registers, cipher generator, the logic operations
that define external inputs for each phase, and AES functions
were implemented on FPGA, while the Finite State Machine
(FSM), key initialization, state registers initializations, and tag
generation were implemented on CPU.

28

Fig. 3. MORUS IMPLEMENTATION

C. MORUS
MORUS is a stream cipher with large state size. It uses a

scheme similar to a type 3 Feistel scheme to update its state
registers [14]. In this paper, the performance of MORUS-
1280-128 is shown. MORUS consists of five 256-bit state
registers (S0,0,…,S0,4), those values are updated by applying 5-
rounds of MORUS core function on both external input and
state registers output. MORUS core function consists of AND,
XOR and rotate operations [12]. The 256-bit register is split
into smaller parts of 64-bit registers to apply rotation function
on them as described in [14]. Input of MORUS core function
can be either input data length or previous ciphertext or
plaintext or AD [15]. Keystream new values are generated by
applying XOR and shift operations on the state registers
output.

The proposed implementation is shown in “Fig. 3”, state
registers, cipher generator functions, the logic operations that
define external inputs for each phase and core function were
implemented on FPGA, while the other functions were
implemented on CPU.

D. Tiaoxin
 Tiaoxin is a dedicated word-based non-linear feedback
shift register stream cipher [1]. This paper shows the
performance of Tiaoxin-346v2. The state registers of Tiaoxin
consist of thirteen 128-bit state registers that are divided into 3
groups namely: T3, T4, and T6 that consist of 3, 4, and 6
registers, respectively [16]. The first two registers of each
group are updated by applying 6-parallel rounds of AES
function on the first and last register of each group [17]. Then
they are XORed with external input. The other registers values
are updated by shifting the previous register output. External
input can be either constant values (Z0, Z1) or Key or IV or
AD or plaintext or input data length. The new keystream value
is produced by applying XOR and AND operations on the
state register output.

Fig. 4. Tiaoxin IMPLEMENTATION

The proposed implementation of Tiaoxin is shown in “Fig.
4”. Key generator, AES function, state update function, state
registers, and cipher generator were implemented on FPGA,
while the other functions were implemented on CPU.

IV. RESULTS
To evaluate the performance of the proposed

implementations on SDSoC, 25 input messages were applied
with different data length to each algorithm, 13 of them for
encryption operation, and 12 of them for decryption operation.
These messages were defined in the C++ test-benches that are
available on ATHENa website [5]. Performance is measured
in terms of the number of CPU clock cycles to encrypt or
decrypt those messages and in terms of area utilization of the
FPGA resources.

The function that is proposed to be implemented on
hardware is called cipher_hw function and the function of the
whole algorithm is called ciphercore function. Table I shows
the performance of cipher_hw in terms of the equivalent
number of CPU clock cycles when this function is
implemented on FPGA. It also shows the speed up factor
which is defined as the ratio between software implementation
CPU clock cycles to hardware implementation equivalent
CPU clock cycles and number of function calls that were used
to encrypt or decrypt the defined messages.

Table I: Co-Design Performance for cipher_hw Function

Algorithm CPU cycles of proposed
implementation

Speed up
factor

of HW function
calls

ACORN 8074 30.3 2634

AEGIS 10331 109.3 530

MORUS 8037 45.4 790

Tiaoxin 11166 84.2 998

29

Table II shows the performance of the whole algorithm
(ciphercore function) which include cipher_hw function and
the other functions that will be implemented on software.
Performance of ciphercore function is measured in terms of
number of the CPU clock cycles when cipher_hw function
was implemented on hardware and the remaining functions
implemented on software, number of CPU clock cycles for co-
design implementation that needed to encrypt or decrypt one
byte, and the speed up factor which is defined as the ratio
between CPU clock cycles of software only implementation
without moving any function from FPGA to CPU clock cycles
of the co-design implementation. Table II shows also the
number of bytes of the defined input messages for each
algorithm.

Table II: Co-Design Performance for ciphercore Function

Algorithm
CPU cycles of
proposed
implementation

Speed up
factor # of bytes Cycles per

bytes

ACORN 103977664 7 1143 90969

AEGIS 28571250 21.7 2626 10880

MORUS 36421980 8.7 2943 12375

Tiaoxin 75880446 13.2 3205 23675

Fig. 5. FPGA UTILIZATION

 “Fig. 5” shows the FPGA area utilization that was used to
implement cipher_hw function on hardware for each algorithm
in terms of LUT, FF and BRAM utilization. It includes the
area of resources that was needed for cipher_hw function
implementation and the area of AXIDMA interface buffers.

Zynq ZC702 Evaluation kit’s FPGA is implemented based
on Artix®-7 programmable logic [18], while each slice
consists of 4 LUT and 8 FFs [19]. The number of slices that
were used to implement interface buffers can be estimated by
dividing number of LUT by 4 and dividing number of FF by 8
and getting the maximum value of those two values. However,
the number of Slices that were required to implement
cipher_hw function could not be estimated directly by the
previously mentioned method as the array reshaping and loop
unrolling pragmas were used on cipher_hw function to
increase parallelism level and improve performance. This
leads to increase the number of the required slices as the slices

were partially utilized by the synthesis tool for parallel design
in order to decrease the wires routing and satisfy the timing
constraints as described in [20]. The actual number of slices
that were used by cipher_hw function are measured using
Vivado HLS tool after exporting this function to RTL.

Table III: Figure of Merit Results

Algorithm Slice Utilization [%] FoM

ACORN 49.6 15472

AEGIS 79.6 9005

MORUS 55.4 2661

Tiaoxin 81.2 11688

A new metric called Figure of Merit (FoM) was defined to

represent the performance in terms of number of clock cycles,
BRAM utilization and the FPGA slices utilization as shown in
(1). Table III shows the FOM results and the area utilization in
terms of number of slices for each algorithm. From these
results, the MORUS algorithm has the best performance while
the ACORN algorithm has the worst performance.

FoM = Clock Cycles per Byte * BRAM Util. * FPGA Slice Util. (1)

V. DESIGN INSIGHTS

• Using SW-HW co-design implementation improves the
number of CPU clock cycles for all algorithms.
MORUS has the best performance in this proposal.
However, the number of clock cycles for MORUS is
slightly higher than AEGIS, but it has a lower area.

• ACORN is a lightweight AE algorithm, it has a very
small area in hardware. ACORN has many control
signals, those will consume many CPU clock cycles to
update these values on software implementation. Also,
for a co-design implementation, moving functions that
are used to define control signals for each phase needs
to use more input and output interfaces that will
consume extra area utilization and extra clock cycles to
move variables between CPU and FPGA. So, it is
recommended to implement ACORN on hardware only
rather than using software or co-design
implementations.

• AEGIS is composed of eight different AES round
functions. AES algorithm consists of Sub Bytes, Shift
Rows and Mix Columns functions. Sub Bytes function
can be implemented using BRAM or CLB. In this
paper, it was implemented using BRAM. That is why it
has the highest BRAM utilization. BRAM utilization
will be reduced to 51.7% if AES Sub Bytes function is
implemented using CLB.

• Tiaoxin is similar to AEGIS. Both of them consist of
AES, XOR and shift operations for encryption. Tiaoxin
has six similar AES functions, while Sub Bytes

30

function is implemented using BRAM. If Sub Bytes
function is implemented using CLB, BRAM utilization
will be reduced to 51.7% like AEGIS.

• AEGIS is faster than Tiaoxin by a factor of 2. Both of
them have similar FPGA slice utilization and the same
BRAM utilization if Sub Bytes function was
implemented using CLB. So, it is recommended to use
AEGIS algorithm instead of Tiaoxin.

VI. CONCLUSION
 This paper showed that using SW-HW co-design improves
the speed of the software implementation for ACORN,
AEGIS, MORUS and Tiaoxin AE stream cipher algorithms. In
this paper, the AEGIS algorithm had minimum cycles per
byte. However, it consumed large area, while MORUS’s
number of CPU clock cycles per byte was slightly higher than
AEGIS but it consumed 65% of AEGIS area. ACORN had the
worst performance for software implementation, but the best
area utilization.

ACKNOWLEDGMENT
 This work was partially funded by ONE Lab at Zewail
City of Science and Technology and at Cairo University,
NTRA, ITIDA, and ASRT.

REFERENCES
[1] Md Iftekhar Salam, “Analysis of Authenticated Encryption Based on

Stream Cipher,” PhD. Thesis, University of Technology, Australia 2018.
[2] N. Samir, Y. Gamal, A. N. El-Zeiny, O. Mahmoud, A. Shawky, A. Saeed,

and H. Mostafa, “Energy-Adaptive Lightweight Hardware Security
Module Using Partial Dynamic Reconfiguration for Energy Limited
Internet of Things Applications”, IEEE International Symposium on
Circuits and Systems (ISCAS 2019), Sapporo, Japan, pp. 1-4, 2019.

[3] H.Wu, B.Preneel, “AEGIS: A Fast-Authenticated Encryption Algorithm
(v1.1),” competitions.cr.yp.to, Sept. 15, 2016 [Online]. Available:
https://competitions.cr.yp.to/round3/aegisv11.pdf. [Accessed May 20,
2019].

[4] P.Sarkar, “Modes of Operations for Encryption and Authentication Using
Stream Ciphers Supporting an Initialization Vector,” eprint.iacr.org, June
6,2011 [Online]. Available: https://eprint.iacr.org/2011/299.pdf .
[Accessed May 10, 2019].

[5] ATHENa, CERG “Source Code for CAESAR Round 3 Candidates (HLS-
ready C and automatically generated RTL VHDL, High-Speed
Implementations),” cryptography.gmu.edu, Dec. 2017 [Online].
Available:
https://cryptography.gmu.edu/athena/index.php?id=CAESAR_source_cod
es . [Accessed April 10, 2019] .

[6] Xilinx Inc., “SDSoC Environment User Guide,” UG1027, June 20, 2017.
[7] Xilinx Inc., “SDSoC Programmers Guide,” UG1278, Jan. 24, 2019.
[8] Xilinx Inc., “Vivado Design Suite User Guide, High-Level Synthesis,”

UG902, Dec. 20, 2018.
[9] Xilinx Inc., “SDSoC Environment Debugging Guide,” UG1282, Jan. 24,

2019.
[10] Xilinx Inc., “ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC

User Guide,” UG850, March 27, 2019.
[11] H.Wu, “ACORN: A Lightweight Authenticated Cipher (v3),”

competitions.cr.yp.to, Sept. 15, 2016 [Online]. Available:
https://competitions.cr.yp.to/round3/acornv3.pdf,. [Accessed May 10,
2019].

[12] S. Sharaf, and H. Mostafa, “A Study of Authentication Encryption
Algorithms (POET, Deoxys, AEZ, MORUS, ACORN, AEGIS, AES-
GCM) For Automotive Security”, IEEE International Conference on
Microelectronics (ICM 2018), Sousse, Tunisia, pp. 315-318, 2018.

[13] S. Soliman, M. A. Jaela, A. M. Abotaleb, Y. Hassan, M. A. Abdelghany,
A. T. Abdel-Hamid, K. N. Salama, and H. Mostafa, “FPGA
Implementation of Dynamically Reconfigurable IoT Security Module
Using Algorithm Hopping”, Elsevier Integration VLSI Journal, vol. 68,
pp. 108-121, 2019.

[14] Rajesh Kumar Pal, “Implementation and Evaluation of Authenticated
Encryption Algorithms on JAVA Card Platform,” M. S. Thesis, Masaryk
University, Brno 2017.

[15] H.Wu and T.Huang “The Authenticated Cipher MORUS (v2),”
competitions.cr.yp.to, Sept. 19,2016[Online]. Available:
https://competitions.cr.yp.to/round3/morusv2.pdf [Accessed May 20,
2019].

[16] A.Abbas, H.Mostafa, and A.N.Mohieldin, “Low Area and Low Power
Implementation for CAESAR Authenticated Cipher,” New Generation of
CAS, Nov. 2018.

[17] Ivica Nikolic, “Tiaoxin-346 VERSION 2.1,” competitions.cr.yp.to, Sept.
19,2016[Online]. Available:
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf. [Accessed May 20,
2019].

[18] Xilinx Inc., “Zynq-7000 SoC Product Advantages,” Xilinx Inc. [Online].
Available: https://www.xilinx.com/products/silicon-devices/soc/zynq-
7000.html. [Accessed: April 15, 2019].

[19] Xilinx Inc., “7 Series FPGAs Configurable Logic Block User Guide,”
UG474, Sept. 27, 2016.

[20] K.M.A.Ali “Parallel reconfigurable hardware architectures for video
processing applications” pdfs.semanticscholar.org, May 14, 2018
[Online]. Available:
https://pdfs.semanticscholar.org/7d58/5fb7e0d54bb230144b85983f249a6
3c6cb45.pdf . [Accessed April 2, 2019].

31

