
Low power CNN hardware FPGA implementation
Sherry Hareth

School of Electronics and
Comunication Engineering

Arab academy for science and
technology and maritime transport

Cairo, Egypt
Email:sherry heshmat@yahoo.com

Hassan Mostafa
Department of Electronics

and Communications Engineering,
Cairo University, Egypt

University of Science and technology
Nanotechnology and Nanoelectronics Program

Zewail City of Science and Technology
October Gardens

6th of October, Giza 12578, Egypt
Email: hmostafa@uwaterloo.ca

Khaled Ali Shehata
School of Electronics and
Comunication Engineering

Arab academy for science and
technology and maritime transport

Cairo, Egypt
Email: Khaledshehata58@gmail.com

Abstract—A convolution Neural Networks (CNN) goes under
the wide umbrella of Deep Neural Networks (DNN) whose
applications are widely used. For example, the later are used
in robotics and different applications of recognition like speech
recognition and facial recognition, also nowadays in autonomous
cars. Therefore the aim of implementing the CNN is to be used
in real time applications. As a result of that, Graphics processing
units (GPUs) are used but their worst disadvantage is it’s high
power consumption which can’t be used in daily used equipments.

The target of this paper is to solve the power consumption
problem by using Field Programmable Array (FPGA) which
has low power consumption, and flexible architecture. The
implementation architecture of Alex Network, which consists of
three fully connected layers and five convolution layers, on FPGA
will depend on two main techniques parallelism of resources, and
pipelining inside of some layers.

Keywords—Convolution (Conv), Fully Connected(FC), Feature
maps (Fmaps), Rectified Linear Unit (ReLU), maximum pooling
(maxpooling), Multiplication And accumulation (MAC) opera-
tion, Parallel Engine (PE), Local Response Normalization (LRN),
Register Files (RF), Partial Sum Buffer (PSUM).

I. INTRODUCTION

The target of modern digital systems towards eliminating
direct programming and creating an intelligent system that
can automatically adapt to new situations, is the job of
the Artificial Intelligence (AI)[1], and Deep Learning (DL)
nowadays. CNNs are one of the DL algorithms used for many
applications such as image processing[2], face recognition
[3],[4], autonomous cars [5], and robotics [6]. Due to the
large parameters and huge amount of resources needed to
be computed in CNN, the GPUs are used because they
are known for their high throughput, large band width on-
chip, and off-chip [7]. In addition to their ability to manage
a massive parallelism, and large data reuse, they are also
used to improve both training, and classification processes
of CNNs [8]. On the other hand, the main disadvantage
of using the GPUs is consuming large amount of power
which is an important evaluation metric for modern digital
systems. For example, Autonomous cars need high energy
efficiency and real time performance. Therefore the direction
towards using new FPGA generations instead of GPUs is

highly preferred as they provide superior energy efficiency
(Performance/Watt) than GPUs for DNNs [7]. Moreover, the
new FPGA generations are famous with their capability of
handling large hardware resources, and computing a huge
number of floating points units. Implementation of CNN on
FPGA is considered as a state of art of a designer for example
in [7] the authors offered a case study on accelerating Ternary
ResNet to compare between the usage of GPU, and new FPGA
generation performance for DNNs. The later enhances the
performance by 10%. Another way of implementing CNN is
presented in [9] using a technique called row stationary which
maximize the reuse, and accumulation in the local memory
level for all types of data.

This paper is organized as follows; in Section II Background
overview on CNN is presented. Section III Describes the
framework used in the hardware implementation. Section
IV Shows the hardware utilization results after performing
the synthesis. Section V Represents pipelining. Section VI
Concludes the proposed implementation .

II. BACKGROUND

CNNs have two operational phases training phase and
inference phase. The training phase is done on a known
data set to learn the weights for minimizing the errors. The
inference phase has a feature extractor and a classifier. AlexNet
[10] consists of five Conv layers and three FC layers while the
last FC layer is fed to a 1000-way Softmax which produces a
distribution over the 1000 class labels. A non-linearity unit
which is ReLU is used in each layer. Also maxpooling is
applied to the outputs of layers 1, 2, and 5. To sum up, AlexNet
requires 61 million weights and 724 million MACs to process
one (227⇥227) input image. At first, the convolution layers are
considered as the heart of AlexNet because of their main role
which depends on MAC operations represented by a unit called
PE shown in figure (1-(a)). The MAC operation are done by
multiplying the input data of the image (input Fmaps) element
by element with the trained weights which are called kernels
filters, and accumulating operation is done as shown in figure
(1-(a)) [6] . The output of the convolution layers are feed into

162

978-1-7281-4058-2/19/$31.00 ©2019 IEEE

Fig. 1. (a)PE (b)Two-dimensional convolutional reuse within spatial array for
row stationary dataflow[7]

output Fmaps after sliding different Kernels filters with strides
given within each convolution layers. Secondly, ReLU layers
are usually placed after each convolution layer. They are used
as an introduction to a non-linear operation. This non-linear
operation makes the network adapt with any given data sets.
ReLU clamps all negative values to 0, and returns all positive
values. Thirdly, LRN layers are placed after ReLU layers.
They are used to normalize the response of the neurons across
the depth of the same spatial location, which speed up the
training process, and enhance the system accuracy. Fourthly,
maxpooling layers are used to reduce the dimension of each
Fmaps, and return the most important feature information.

III. HARDWARE ARCHITECTURE

The goal of the introduced architecture is to reduce the
time taken for AlexNet to classify an image which means
accelerating the CNN. In this section, the layers of AlexNet
architecture implementation are presented in the inference
phase. The technique used to handle the dataflow is row
stationary and as mentioned in section (II) that the most
important unit in our design is PE which acts as a neuron.
Figure(1-(a)) shows the PE unit which consists of two RF to
store the input as well as the current filter, and MAC operation
to compute the partial sums that requires just one memory
space. Since there are overlaps of input activations Fmaps
between different sliding windows, the input can then be kept
in the RF and get reused. With each PE processing a 1-D
convolution, multiple PEs can be aggregated to complete the
2-D convolution as shown in figure (1-(b)). Therefore the main
computational power in this design lies upon a matrix of PEs
used in Conv layers. One of the main features of the design
is using an array of 168 PEs that are mapped as a matrix of
(14⇥ 12) PEs to compute the output of all layers.

A. Convolution Layers

1) First Convolution Layer: The input of this layer is the
input image to the network, and it’s size is (227⇥227⇥3). This
layer consists of 96 filters each having a size of (11⇥ 11⇥ 3)
with stride 4. Therefore to compute one row, 11 PEs should be
stacked together vertically. The input is divided into 4 parts;
each part consists of 63 rows, and is stored in a swapping 1
buffer. This will produce 14 rows of the output feature maps
when convolved with the filters. The filters are divided into
6 groups of 16 filters. Those filters will be stored with their

corresponding biases in the filter buffer. So, the matrix of the
PEs should be (11⇥ 14). Each PE holds 16 rows of the same
depth from 16 different filters in one of the RFs and 1 row
of the input of that depth in the other RF. The outputs of
the convolution of each filter row and input row are summed
vertically to produce the partial sums of one row of one of
the output feature maps. Due to the presence of 3 depths, we
have to store these partial sums in PSUM buffer. The size of
this buffer should be (14⇥ 55⇥ 16).

2) Second Convolution Layer: The input of this layer is
the output of the first LRN Layer with size (27 ⇥ 27 ⇥ 96).
It is stored in swapping buffer 2. This layer consists of 256
filters, each having a size of (5 ⇥ 5 ⇥ 48), and with stride
1. The new feature added to this layer is that the input and
the filters are divided into two groups; the first group of filers
consists of the first 128 filters and they get convolved with
the first half of the number of depths of the input (i.e. first
(27⇥27⇥48)), the second group acts as the first one. The zero
padding technique is used here to ensure that the output feature
maps spatial dimensions are the same as those of the input
feature maps (i.e. (27⇥ 27)). So, to compute one row, 5 PEs
should be stacked together vertically. The filters of each part
are divided into 9 batches of 15 filters except the ninth batch
which contains 8 filters only. Those filters will be stored with
their corresponding biases in the filter buffer. To accelerate the
design, the matrix of the PEs in layer 2 will be considered as
(10 ⇥ 14) where each output pixel will be the output of two
depths from the same filter. In this layer, 8 depths of the filter,
and input are stored in the PE each time. Size of PSUM buffer
is (27⇥ 27⇥ 15).

3) Third Convolution Layer: The input of this layer is the
output of the second LRN layer with size (13⇥13⇥256). It is
stored in swapping buffer 2. This layer consists of 384 filters,
each having a size of (3⇥3⇥256). Stride is 1, while the zero
padding technique is also used in this layer. To compute one
row, 3 PEs should be stacked together vertically. The input is
divided into 4 parts; each part has 64 depths. The filters are
divided into 48 groups of 8 filters each. So, the matrix of the
PEs should be (3 ⇥ 13). Each PE holds 1 row of the same
filter from 16 different depths in one of the RFs and 1 row
of the input corresponding to each of those 16 depths in the
other RF. The size of the PSUM buffer is (13⇥ 13⇥ 16).

4) Fourth Convolution layer: The input of this layer is the
output of the previous Conv layer, so its size is (13⇥13⇥384).
It is stored in swapping buffer 1. This layer consists of 384
filters, each having a size of (3⇥3⇥192) with stride 1, and the
zero padding. The filters are divided into two groups; the first
group consists of the first 192 filters, and they get convolved
with the first half of the number of depths of the input (i.e. first
(13⇥ 13⇥ 192)), the second group acts as the first one. The
filters of each part are divided into 12 batches of 16 filters
each. Those filters will be stored with their corresponding
biases in the filter buffer. So, to compute one row of the output,
3 PEs should be stacked together vertically, and their matrix
should be (3 ⇥ 13). Each PE from every part of the 4 parts
will contain 16 depths of one filter. The size of PSUM buffer

163

is (13⇥ 13⇥ 16).
5) Fifth Convolution Layer: The input of this layer is the

output of the previous Conv layer with size (13⇥ 13⇥ 384).
It is stored in swapping buffer 2. This layer consists of 256
filters, each having a size of (3 ⇥ 3 ⇥ 192). The stride is 1,
and the zero padding technique is also used. The input, and
the filters are divided into two groups; the first group of filters
consists of the first 128 filters, and they get convolved with
the first half of the number of depths of the input (i.e. first
(13⇥ 13⇥ 192)), the second group acts as the first one. The
filters of each part are divided into 8 batches of 16 filters each.
Those filters will be stored with their corresponding biases in
the filter buffer. So, the matrix of the PEs should be (3⇥ 13).
So, to compute one row, 3 PEs should be stacked together
vertically. When the first 3 rows are stored, no other PEs are
activated in the same column at this time, as they will be used
for the storage of another depth to keep the vertical summation
valid, meaning that no extra hardware has to be added to that
used in layer 1.

B. Pooling Layers

There are three maxpooling layers (pool1, pool2, and pool5)
each has a window of (3 ⇥ 3), and a stride of 2. The whole
feature map of any depth must be ready to perform the pooling
successfully; this is valid in the second through fifth layers
as the sizes of the feature maps are relatively small. For the
first layer the convolution is divided into several iterations that
will allow the maxpooling layer to receive nearly a quarter of
feature map. Therefore to stride in the vertical direction in the
last 2 rows of the part of the feature map present, the pooling is
divided into two parts. The first part contains the maxpooling
of the last two rows. This is equivalent to a (2⇥ 3) window,
and the remaining (1⇥3) is taken from the first row from the
part of the feature map ready during the next iteration. The
last step is to choose from the maximum of both parts.

C. Local Response Normalization (LRN) Layer

The schematic of LRN shown in figure (2) is describing the
mathematical flow of it’s normalization formula. Each block
in the schematic is terminated by a register to store the output
of the block for duration of one clock cycle. The advantage
of this architecture is to break the long 1 cycle path of the
block to a multi-cycle path with a much less cycle period. As
a result of that, the frequency of the used clock is increased.
Another advantage is to allow the use of pipelining through
this multi-cycle path, which allows boosting the throughput
of the whole block by 9 times. The multi-cycle path of the
block consists of 18 cycles; 2 cycles for the input register
and the first adder, respectively. The remaining 16 cycles are
for the division block. The adders and multipliers used are
implemented automatically as LUTs and DSPs, respectively,
on the FPGA.

D. Fully Connected Layers

The input to the fully connected layers needs to be a vector
so reshaping is done to the output of the maxpooling layer 5
(6⇥ 6⇥ 256) to make it a vector of (9216⇥ 1).

Fig. 2. LRN schematic

1) Fully Connected layer 6: The input size of this layer is
9216 pixels, which is stored in swapping buffers. There are
4096 filters each of 9216 weights, are stored in the swapping
buffer with their biases. When storing in the PEs, the caches
are divided into two groups. The first group stores the input
pixels where each cache is filled with 256 pixels of the input
pixels so the whole input needs 36 PEs to be stored. The input
is stored 2 times to exploit a total of 72 PEs except for the
last 2 columns of PEs which are not used. The second group
stores the same way like the first one.

2) Fully Connected layer 7: The input size of this layer is
4096 pixels which is stored in the swapping buffer. There are
4096 filters each of 4096 pixels; only 3 filters are stored in the
swapping buffer as well as the 4096 biases. Each feature map
cache is filled with 171 pixels of input pixels, so the whole
input needs 24 PEs to be stored but the last feature map is only
filled with 163 pixels of input, therefore the input is stored 3
times.

3) Fully Connected layer 8: It is exactly the same in its
operation as FC 7, and 8 except that the number of filters here
is 1000 filters. It computes the class probability by outputting
a vector of 1000 dimensions, where 1000 being the number
of classes. Estimation is done to the output of this layer to
determine the class of the input which is the class with the
highest probability score.

E. Memory Hierarchy

Overall, there are three levels of memory hierarchy in the
system as shown in figure (3) to decrease energy per access
which are DRAM (SD card), GLOBAL BUFFERS (Filter,
PSUM, Swapping1, and Swapping 2), and Inter-PE CACHES.
DRAMs are used to store all the weights, and bais of the
network. The Inter-PE CACHES are used for storing the part
of the input, and weights for local reuse.

IV. SYNTHESIS

The utilization of the resources after performing the syn-
thesis is shown in tables (I), (II), and (III) for the discussed
layers of AlexNet. The implementation is done on Zynq ZC-
702 FPGA using the Vivado 2015.1 synthesis tool. Form the
power consumption point of view the results show that the
consumed on chip dynamic power is 59%, while the static
power consumed is 41%.

164

Fig. 3. Memory Hierarchy

TABLE I
FPGA UTILIZATION FOR LOGIC GATES AND LUT

Site type Used Fixed Available Util %
Slice LUTs 31943 0 53200 60.04
LUT as Logic 21159 0 53200 39.77
LUT as Memory 10784 0 17400 61.98
LUT as Distributed RAM 10752 0
LUT as shift Register 32 0
Slice Registers 8044 0 106400 7.56
Registers as Flip Flop 7718 0 106400 7.25
Registers as Latch 326 0 106400 0.31
F7 Muxes 5394 0 26600 20.28
F8 Muxes 2688 0 13300 20.21

TABLE II
FPGA MEMORY UTILIZATION

Site type Used Fixed Available Util %
Block RAM Tile 126 0 140 90.00
RAMB36/FIFO 120 0 140 85.71
RAMB36E1 only 120
RAMB18 12 0 280 4.29
RAMB18E1 only 12

TABLE III
FPGA DSP UTILIZATION

Site type Used Fixed Available Util %
DSPs 217 0 220 98.64
DSP48E1 only 217

Moreover table (IV) shows the utilization of the PEs,
latency, and number of MAC operations used in Conv layers.

TABLE IV
SHOWS THE CONV LAYERS PE UTILIZATION, MAC OPERATIONS, AND

LATENCY

Point of comparison Utilization of PEs (%) MAC Operations Latency(milliseconds)
Conv layer 1 154(91.66%) 105.41 M 41.1
Conv layer 2 140(83.33%) 447.79 M 60.8
Conv layer 3 156(92.85%) 415.33 M 78.8
Conv layer 4 156(92.85%) 623.00 M 58
Conv layer5 156(92.85%) 415.33 M 43.5

V. PIPELINING

In the design 32-bits fixed point division block is used.
Table(V) compares the power and time consumption with,
and without pipelining which illustrates the importance of

using pipelining. The time consumed without pipelining is
not reasonable for any AI therefore it is important to use
pipelining.

TABLE V
COMPARISON BETWEEN HARDWARE RESOURCES AFTER

PIPELINING

Point of comparison Without Pipelining With Pipelining
Maximum frequency 4.88 MHz 59.33 MHz
Dynamic power(50% of switching) 7 mW 79 mW
Static power 120 mW 121 mW

VI. CONCLUSION

In conclusion, the paper represents an implementation of
Alex Network on ZYNQ-702 FPGA operating on 50 MHz
frequency. Moreover, memory hierarchy and row stationary
techniques are used in the introduced architecture design to
lower the power consumption of the whole system using only
60 percentage of the on chip power. In addition to this, the
design can fit any network architectures not only AlexNet.

VII. ACKNOWLEDGEMENT
This work was partially funded by ONE Lab at Zewail City

of Science and Technology and at Cairo University, NTRA,
ITIDA, and ASRT. Also,the authors would like to thank
Ibrahim Medhat, Amr Gamal, Mohamed Ayman, Mahmoud
Abdel, and Mennatullah Sayed for their support in the design,
and simulation.

REFERENCES

[1] Y. Alhazek, A. Ibrahim, M. Amer, A. Abubakr, and H. Mostafa, “Hard-
ware Accelerated Epileptic Seizure Detection System Using Support
Vector Machine,”, IEEE International Conference on Modern Circuits
and Systems Technology (MOCAST 2019), Thessaloniki, Greece, pp.
1-4, 2019.

[2] M. Adel, A. Kotb, O. Farag, S. M. Darwish, and H. Mostafa,“Breast
Cancer Diagnosis Using Image Processing and Machine Learning for
Elastography Images,”, IEEE International Conference on Modern Cir-
cuits and Systems Technology (MOCAST 2019), Thessaloniki, Greece,
pp. 1-4, 2019.

[3] M. Cokun, A. Uar, . Yildirim and Y. Demir,“Face recognition based on
convolutional neural network, ”Addison-Wesley, Reading, Massachusetts,
1993. in MEES, 2017.

[4] E. Adel, R. Magdy, S. Mohamed, M. Mamdouh, and H. Mostafa,
“Accelerating Deep Neural Networks Using FPGA,”IEEE International
Conference on Microelectronics (ICM 2018), Sousse, Tunisia, pp. 180-
183, 2018.

[5] M. I. Elzayat, A. M. Saad, M. M. Mostafa, M. R. Hassan, M. S. Dawr-
weesh, H. Abdelmunim, and H. Mostafa,“Real-Time Car Detection-Based
Depth Estimation Using Mono Camera,”IEEE International Conference
on Microelectronics (ICM 2018), Sousse, Tunisia, pp. 260-263, 2018.

[6] S. Levine, C. Finn, T. Darrell, and P. Abbeel,“End-to-end training of deep
visuomotor policies, ”J. Mach. Learn. Res., vol. 17, no. 39,pp. 140, 2016.

[7] Eriko N, Ganesh V, Jaewoong S, Debbie M, Randy H, Jason Gee Hock
Ong , Yeong Tat Liew, Krishnan S , Duncan M, Suchit S,and Guy
B,“Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural
Networks?,”,in FPGA International Symposium on Field Programmable
Gate Arrays, 2017.

[8] V. Sze et al,“Efficient Processing of Deep Neural Networks: A Tutorial
and Survey,”,arXiv preprint arXiv:1703.09039, 2017.

[9] Y. Chen, T. Krishna, J. Emer, and V. Sze,“Eyeriss : An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks, ”in
ISSCC, 2016.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton,“ImageNet
Classification with Deep Convolutional Neural Networks,”in Image
Net,2012.

165

