

Development of a Generic and a Reconfigurable UVM-Based
Verification Environment for SoC Buses

Alaa Hussien1, Samar Mohamed1, Mohamed Soliman1, Hager Mostafa1, Khaled Salah2, Mohamed Dessouky2, Hassan Mostafa3
1Department of electronics and communications, faculty of engineering, Ain Shams University, Cairo, Egypt.

2Mentor Graphics, Cairo, Egypt.
3Electronics and Communications Engineering Department, Cairo University, Giza

 Email: Khaled_mohamed@mentor.com, mohamed_dessouky@mentor.com, hmostafa@uwaterloo.ca

Abstract – The similarities between SoC buses depends
partially but not totally on domain. Generic universal
verification methodology (UVM) architectures can be
used to reduce effort and time to market. Generic UVM
allows focusing on test cases rather than building the
UVM. Although there are common features between
SoC buses, but some properties and test cases must be
customized. This paper presents a generic and reusable
verification environment for SoC buses to accelerate
verification process. To evaluate the efficiency of the
proposed methodology, we apply it to three different
SoC buses. The results are very promising in terms of
high reusability and reducing of verification time.

 KEYWORDS - Universal Verification Methodology
(UVM), SoC buses, Bus Functional Model (BFM),
Generic, Unified, Reuse.

I. INTRODUCTION
 SoC buses are vital components in any SoC. Due to
rapidly increasing operation frequencies, the
performance of the SoC design heavily depends upon
the efficiency of its bus structure [1].

 ASIC/SoC verification is one of the most important
tasks in digital design world. A fact tells that 60 to 70 %
of total design time is consumed by verification only.
Different companies adopt different verification
methodology till universal verification methodology
(UVM) comes into the picture, which is the best solution
to overcome most of the drawbacks reported by the
previously used methodologies [2].

 Reusable verification environment is required to
reduce verification efforts. The idea is nothing but “plug
and play” for DUT/DUV with some minor changes in
the testing environment with each new protocol.

 “Reuse” is a term that is frequently associated with
verification productivity. When a verification
environment is needed for a new design, or for a design
revision with significant changes, it is important to
highly reuse what you have. In our previous work, we
presented generic UVM for DRAM and flash-based
memory controllers [3]-[4].

 In this work, we present a generic and reusable
verification environment for SoC buses. The proposed
methodology makes use of the common features
between different SoC buses to build generic UVM
components. The proposed methodology is applied to
some SoC buses such as AMBA APB, AMBA AHB and
Avalon.

 The rest of this paper is organized as follows: Section
II presents the followed methodology including a

flowchart of the steps taken. Section III, as a central part
of this paper, gives an overview of the implementation
methodology. In Section IV, for proofing of concept
purpose, waveforms are attached indicating the success
of the claimed idea. Concluding remarks and future
plans are given in Section V.

II. METHODOLOGY
 The current sections discuss the followed
methodology:
1. Firstly, a strategy has been adopted to collect the

common features between different SoC protocols
by performing a detailed comparative study on
their different aspects and domains (Table 1).

2. Secondly after scrutiny and observing all the
similarities as the common commands, signals’
operations and topology could be obtained to build
a generic UVM template.

3. Common features are used as an input to produce
a generic UVM and to implement a BFM for the
selected protocols to be tested.

4. Finally, the shown flowchart in Fig.1 briefly
summarize our methodology.

 Main Challenges of Previous
Environment/Verification Methodology were as
follows:
1. Reusability

a. Test cases from pre-designed verification
environments could not be reused.

2. Significant time was spent in reproducing and
tailoring the environment to be generic.

3. Wire level assignments and assertions are protocol
dependent [9].

Survey on SoC buses

Extract common Features

UVM generic template

Apply on SoC protocols

Generic
enough Exit

Yes No

195

978-1-7281-4058-2/19/$31.00 ©2019 IEEE
978-1-7281-4058-2/19/$31.00 ©2019 IEEE

978-1-7281-4058-2/19/$31.00 ©2019 IEEE

Fig.1 The proposed methdology Flow.

Fig.2 UVM Architecture

 III. IMPLEMENTATION AND

VERIFICATION

 By investigating the most common architectures of
the UVM and by investigating the test scenarios and
sequences for the selected SoC buses, we came up with
the following generic architecture. So, our environment
can now be recognized as shown in Fig.2.
 The top module contains different test case
scenarios, each one of them instantiate our environment
then the environment instantiates our scoreboard and
master/slave agent which contains the sequencer, driver,
monitor. Notice that we developed a master and a slave
agent and according to the user’s needs we can choose
which agent suits his test case. Concerning the test cases,
the main focus was pointed to the most generic
command such as read, write, write then read, wait then
read and wait then write. For the sequence item and
interface, data and address widths all are parameterized.
The driver is the most challenging block due to the
differences between the sequences of operations and
signals in each protocol, but thanks to the common
functionality of SoC buses, we could successfully
choose some scenarios that could be applied to all SoC
buses. Moreover, in order to provide full controllability
to the designer, there’s a function built specially for
using generic names and a generic operation flow.

A. Case Study 1: AMBA APB Protocol

First, we applied our UVM environment to APB
protocol, all of the APB operations where covered in our
test cases, the driver operations were adjusted manually
and we used the master agent as we want to test a slave
memory, then we changed the data/address size
parameter to be 32 bits to fit the size of the APB
interface. Listing 1 shows the APB test scenario [10].

B. Case Study 2: AMBA AHB Protocol

 Our next case was AHB, we applied our UVM
environment to AHB protocol, some blocks where
efficiently reused as the sequencer, portion of the driver
as shown in Listing 2 and the basic commands as single
read and write in the tests [10].

C. Case Study 3: Avalon Protocol

 Avalon is very similar to APB protocol, so we didn’t
change much in our environment, we made minor
modifications in the signal’s names and in the driver/test
cases [13].

Listing 1: Alternate read and write with wait.

Listing 2: Reusable build phase of the driver.

Driver

Sequencer

Monitor

Scoreboard

DUT

Agent

ENV

Test

Top

InterfaceI InterfaceiNTERFACE

Results

Configuration Sequence Library

Test Test Library

class apb_one_write_one_read_wait_test extends
apb_base_test;

`uvm_component_utils(apb_one_write_one_read_wait_test)

task run_phase (uvm_phase phase);

apb_write_al_sequence apb_wr_al_seq;

 apb_read_al_sequence apb_rd_al_seq;

apb_with_wait_sequence apb_wait_seq;

 function void ahb_mdriver::build_phase(uvm_phase
phase);
 if(!uvm_config_db#(ahb_magent_config)::get(this,
"", "ahb_magent_config", magt_cfg))
 begin
 `uvm_fatal(get_full_name(), "Cannot get VIF
from configuration database!")
 end
 super.build_phase(phase);
 endfunction

Interface

196

978-1-7281-4058-2/19/$31.00 ©2019 IEEE

Transfer of one Byte each transfer of 8

 The following figures are samples of operations done
on the APB and AHB protocols.

A. APB Bus
 For APB a combination of tests was simulated,

read and write were alternated with wait feature.
The waveform is shown in Fig.3 and Fig.4
B. AHB Bus
 For the AHB bus, there are more advanced
functions than the APB so an increment test was
performed with an error test to check how the slave
will respond.
 Also, wrap16 read test and Increment 8 write test
were implemented and the behavior of the addresses
were checked as shown in Fig.5 and fig. 6.

IV. PERFORMANCE EVALUATION

 According to a real extracted statistic of the effort
done to verify a certain bus (AMBA AXI3 or AMBA
AHB), which reveals that one consumes around 1 month
to build the whole UVM environment with test scenarios
(partial but not full test cases) and consumes around 1
week to build the test cases only (without worrying
about building the UVM environment) as shown in Fig.
5 [4]-[9].

 Also, Fig. 7 and Fig.8 demonstrates the number of
weeks required to build a UVM for each protocol from
scratch vs. using a generic template and make use of the

reusability.
 Fig.3 APB Alternate read and write with wait.

Fig.4 AHB increment write followed by error.

Fig.7 Statistics for the time needed for verification.

Fig.8 Comparison between generic and a non-generic UVM.

Fig.5 AHB Wrap16 Read.

Fig. 6 AHB Incre8 Write.

4

1

0

2

4

6

AHB/AXI3

NO
. O

F
W

EE
KS

TIME NEEDED FOR
VERIFICATION

Not a generic UVM Generic UVM

Non Seq. followed by seq. Transfer

3
4

33

1 1

0

2

4

6

APB AHB Avalon

NO
. O

F W
EE

KS

TIME NEEDED FOR
VERIFICATION

Not a generic UVM Generic UVM

197

 Table 1 Comparative Study between different SoC Buses

V. CONCLUSIONS AND FUTUR WORK
 In this paper, a generic UVM verification
environment for verification of SoC buses is proposed.
As compared to earlier methodologies, the proposed
methodology helped in saving verification cost and
effort with the help of a detailed comparative survey
between more than 10 protocols. Although this
environment is developed for SoC buses with single
interface. The concept could be extended for SoCs with
multiple interfaces. So, in future, as an adaptation, a
generic UVM template could be generated to verify
more buses and develop a verification environment for
the whole SoC.

REFERENCES
[1] Bennini L., DeMicheli G., Networks on Chips: A New SoC

Paradigm, IEEE Computer, Vol. 35, No. 1, Jan. 2002, pp.70- 78.
[2] K. Salah, “A UVM-Based Smart Functional Verification

Platform: Concepts , Pros , Cons , and Opportunities,” In Design
& Test Symposium (IDT), 2014 9th International, pp. 94-99.
IEEE, 2014.

[3] K. Salah, and H. Mostafa. "Constructing Effective UVM testbench
for DRAM Memory Controllers." New Generation of CAS
(NGCAS). IEEE, 2018.

[4] K. Salah "A Unified UVM Architecture for Flash-Based
Memory." 2017 18th International Workshop on Microprocessor
and SOC Test and Verification (MTV). IEEE, 2017.

[5] [2] P. Patil, V. Sangamkar, “A Review of System-On-Chip Bus
Protocols”, International Journal of Advanced Research in
Electrical, Vol. 4, Issue 1, Jan. 2015, pp. 2.

[6] GRZEMBA, book is based on the MOST Specification, E2, 2010.
[7] MIPI alliance specifications, https://www.mipi.org.
[8] [https://github.com/marcoz001/axi-uvm
[9] generic system verilog universal,

https://arxiv.org/ftp/arxiv/papers/1301/1301.2858.pdf
[10] ARM.AMBA Specifications v2.0, 1999.
[11] Core Connect Bus specifications, by IBM,International, 1999.
[12] FlexRay Communications System Protocol Specification.
[13] Altera Avalon, Avalon bus specification: Ref. manual. July, 2003.
[14] Rovin and Sagar, PCI Bus Specifications.
[15] Siemens Corp., Version 2.0, Siemens Microelectronics.
[16] STbus communication, User manual, October 2012.
[17] LIN Protocol and Physical Layer Requirements -TI, Feb. 2018.
[18] Essential Guide to Serial ATA and SATA Express.
[19] Richard Herveille, “WISHBONE SoC Interconnection” .
[20] Serial Attached SCSI Standard.

 Feature Data

/Address Size

Burst Domain Arbitration type

Bus Topology

Avalon[13]

8, 16, 32, 64,
128

Supported FPGA & SOPC Slave - side

Point to point

Wishbone[19] 8,16,32 &64/

0-64
Supported FPGA

Defined by the

end user.

Shared Bus/Crossbar-switch/Data

flow ring

STBus[16]
8,16,32,64 Supported

ATM Networks
(Consumer App)

Priority/TDMA

Shared bus/Crossbar

SAS[20] 8,16,32&64

/0-64

Supported Move data to & from
hard disk drives

Priority
point-to point switched

SATA[18] Up to 2048
byte

Not Supported Connect to hard disk
drivers

No arbitration
Point to point

PCI[14]
2/64-bits

Supported
Chip to chip TDMA Point to point

Core frame[20]
400MB/sec

 Supported Bluetooth/Wi-Fi
communications

Priority Point to point

Core connect[11] 16, 32 and 64
byte 256 bits

 Supported
 SoC Priority

Hierarchal Shared/crossbar

MIPI (DigRf)[7] 1.5Gb/s Not Supported Mobile. No arbitration. Point-point/multiplexing

LIN[17] 0 to 8 Bytes/
No address

Not Supported

Automotive Domain

No arbitration.
Shared bus (1 to 16 slaves)

FlexRay[12]
10MbPS/None

Supported
(Dynamic slot)

TDMA /
FTDMA/
Priority

Flexible

CAN[15]
Up to 64 bits

Supported
(dynamic slot)

Priority Shared bus

MOST[5]

Default is16
bit address

Not specified

TDMA/ Priority

Ring

AMBA[10]

AXI3

32, 64, 128,
256, 512, or

1024 bits wide
/ 32 bit.

Supported

Designing high-

performance

embedded

microcontrollers

No arbitration Point to point

APB
(8,16 or 32
bits) /32 bit.

/32 bit.

Supported No arbitration
Point to point

ASB

(32,64,128 or
256 bit) / 32

bit. or 256 bit)
/ 32 bit.

Supported

Priority

Matrix

AHB

(32,64,128 or
256 bit) / 32

bit. or 256 bit)
/ 32 bit.

Supported Priority Matrix

Bus

198

