

HARDWARE IMPLEMENTATIONS OF MACHINE

LEARNING TECHNIQUES FOR NEURAL SEIZURE

DETECTION

By

Mohamed Adel Attia Elhady Elgammal

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2018

 *The Student must Return to the Postgraduate Office

HARDWARE IMPLEMENTATIONS OF MACHINE

LEARNING TECHNIQUES FOR NEURAL

SEIZURE DETECTION

By

Mohamed Adel Attia Elhady Elgammal

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Dr. Ahmed Nader Mohieldien

……………………………….

 Dr. Hassan Mostafa Hassan

……………………………….

Associate Professor

Department of Electronics and Electrical

Communications

Faculty of Engineering, Cairo University

 Assistant Professor

Department of Electronics and Electrical

Communications

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2018

 *The Student must Return to the Postgraduate Office

HARDWARE IMPLEMENTATIONS OF MACHINE

LEARNING TECHNIQUES FOR NEURAL SEIZURE

DETECTION

By

Mohamed Adel Attia Elhady Elgammal

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

 Electronics and Communications Engineering

Approved by the

Examining Committee

Prof. Dr. Ahmed Nader Mohieldein, Thesis Main Advisor

Prof. Dr. Mohamed Fathy Abu-Elyazeed, Internal Examiner

Prof. Dr. Yehya Hassan Ghallab, External Examiner
- Associate professor, Faculty of Engineering Helwan University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2018

 *The Student must Return to the Postgraduate Office

Engineer’s Name: Mohamed Adel Attia Elhady Elgammal

Date of Birth: 05/12/1993

Nationality: Egyptian

E-mail: Mohamed.adel567@gmail.com

Phone: 01067780710

Address: Faisel st., Giza, 11443

Registration Date: 1/10/2016

Awarding Date: …./…./……..

Degree: Master of Science

Department: Electronics and Electrical Communications

Engineering

Supervisors:

 Prof. Ahmed Nader Mohieldin

Dr. Hassan Mostafa Hassan

Examiners:

 Prof. Yehya H. Ghallab (External examiner)

 Prof. Mohamed F. Abu-Elyazeed (Internal examiner)

 Prof. Ahmed N. Mohieldein (Thesis main advisor)

Title of Thesis:

HARDWARE IMPLEMENTATIONS OF MACHINE LEARNING TECHNIQUES

FOR NEURAL SEIZURE DETECTION

Key Words:

Seizure Detection; Machine Learning; Support Vector Machine; Artificial Neural

Network; Accelerator.

Summary:

In this thesis an automatic seizure detection is proposed. For features extraction,

more than 20 linear and nonlinear features are software implemented and tested to

measure their efficiency in seizure detection. For classification block, two different

algorithms are implemented: Artificial Neural Network (ANN) and Support Vector

Machine (SVM). Support Vector Machine (SVM) training accelerators are also

implemented using two different techniques: Gradient Ascent (GA) and Sequential

Minimal Optimization (SMO). Finally, a new EEG dataset is extracted from rats in

collaboration with a research team from the Faculty of Science, Cairo university and

ONE lab.

i

Acknowledgments

In the beginning of this thesis, I would like to thank many people who supported me

and encouraged me to give more effort to reach that output.

First, to my advisors, Dr. Ahmed Nader Mohieldein and Dr. Hassan Mostafa, I would

like to express my sincere gratefulness and appreciation for their excellent guidance,

caring, patience, and immense help in planning and executing the work in a timely

manner. Their great personality and creativity provided me with an excellent

atmosphere for work, while their technical insight and experience helped me a lot in my

research. Their support at the time of crisis will always be remembered.

Of course, I cannot find words enough to express the gratitude and appreciation that I

owe to my family. My father, my mother, my sisters and my brother Mahmoud are my

main supporters and they owe everything I reach. Their tender love and support have

always been the cementing force for building what was achieved.

ii

Dedication

This thesis is dedicated to my father and my mother.

iii

Table of Contents

ACKNOWLEDGMENTS .. I

DEDICATION ... II

TABLE OF CONTENTS .. III

LIST OF TABLES ... V

LIST OF FIGURES ... VI

NOMENCLATURE ... VII

ABSTRACT .. VIII

CHAPTER 1 : INTRODUCTION .. 1

1.1. MOTIVATION .. 1

1.2. PROPOSED WORK ... 1

1.3. ORGANIZATION OF THE THESIS ... 2

CHAPTER 2 : LITERATURE REVIEW. ... 3

2.1. DIAGNOSIS AND TREATMENT OF EPILEPSY .. 3

2.2. ELECTROENCEPHALOGRAM (EEG) SIGNAL .. 4

2.3. SEIZURE DETECTION .. 5

2.4. AUTOMATIC SEIZURE DETECTION SYSTEM ... 8

2.4.1. EEG Acquisition ... 8

2.4.2. Preprocessing .. 9

2.4.3. Feature extraction .. 10

2.4.4. Classification ... 11

2.5. MACHINE LEARNING .. 12

2.6. DATASET.. 14

2.7. PERFORMANCE METRICS ... 14

2.8. PREVIOUS WORK ... 16

2.8.1. Feature extraction and selection .. 16

2.8.2. Hardware implementation of SVM training accelerators 16

CHAPTER 3 : DESIGN OF FEATURE EXTRACTION AND SELECTION 18

3.1. LINEAR FEATURES ... 18

3.2. NONLINEAR FEATURES .. 20

3.3. SIMULATION SETUP ... 22

3.4. SIMULATION RESULTS ... 23

CHAPTER 4 : DESIGN OF SUPPORT VECTOR MACHINE TRAINING

ACCELERATORS ... 30

4.1. SUPPORT VECTOR MACHINE .. 30

4.2. GRADIENT ASCENT (GA) ... 33

iv

4.2.1. Algorithm .. 33

4.2.2. Hardware Implementation ... 35

4.3. SEQUENTIAL MINIMAL OPTIMIZATION (SMO) 37

4.3.1. Algorithm .. 37

4.3.2. Hardware implementation ... 39
4.3.2.1. The SMO Processing Unit ... 40
4.3.2.2. The SMO controller ... 47

4.4. SIMULATION SETUP ... 48

4.5. SIMULATION RESULTS ... 48

4.6. HARDWARE IMPLEMENTATION RESULTS ... 49

CHAPTER 5 : DESIGN OF CLASSIFIERS ... 51

5.1. SUPPORT VECTOR MACHINE (SVM) CLASSIFIER 51

5.1.1. Algorithm .. 51

5.1.2. Hardware implementation ... 51

5.2. ARTIFICIAL NEURAL NETWORK (ANN) ... 52

5.2.1. Algorithm .. 52

5.3. HARDWARE IMPLEMENTATION ... 53

5.4. MODIFIED ANN ... 54

5.5. SIMULATION SETUP ... 55

5.6. SIMULATION RESULTS ... 56

5.7. HARDWARE IMPLEMENTATION RESULTS ... 56

CHAPTER 6 : RATS DATASET GENERATION ... 58

CONCLUSIONS AND FUTURE WORK.. 67

APPENDIX A: MATLAB SIMULATION CODES .. 74

APPENDIX B: DETAILED FEATURE SELECTION RESULTS 105

v

List of Tables

Table 1 - CHB MIT patients. .. 15

Table 2- Psuedo code of Gradient Ascent algorithm.. 34
Table 3 - PSUEDO code of Sequential Minimal Optimization algorithm. 38
Table 4 - Learned function PSUEDO code. ... 42
Table 5 - Limits calculator PSUEDO code. ... 46
Table 6 - Performance measurement for seizure detection using different SVM training

techniques. .. 49
Table 7 - Performance comparison to prior work. ... 49
Table 8 - Hardware implementation results of SVM training algorithms on UMC

130nm platform. ... 50
Table 9 - Hardware implementation results of SVM training algorithms on Spartan-6

FPGA platform. .. 50
Table 10 - Performance measurement for seizure detection using different classification

techniques. .. 56

Table 11 - Hardware implementation results of different classification techniques on

UMC 130nm platform. ... 57
Table 12 - Hardware implementation results of different classification techniques on

Spartan-6 FPGA platform... 57

vi

List of Figures

Figure 1 Typical EEG signal measured from 4 different electrodes 6

Figure 2 - EEG frequency spectrum bands... 7
Figure 3 - Automatic seizure detection system block diagram. 8
Figure 4 - 10-20 system for EEG measurement. .. 9
Figure 5 - EEG signal divided into time epochs= 4 secs. ... 11
Figure 6 - Supervised learning example. .. 12

Figure 7 - Unsupervised learning example. .. 13
Figure 8 - Training points for Hjorth mobility, Hjorth complexity and Maximum

absolute value features. .. 25

Figure 9 - Training points for Hurst exponent, average energy and minimum absolute

value features. ... 26
Figure 10 - Training data points of Fractal Dimension, Hurst Exponent and Coastline

features. .. 27
Figure 11 - Number of features' combinations in each range of sensitivity. 28

Figure 12 - number of incidence of each feature in the combinations with sensitivity

>90%. ... 29
Figure 13- Different classification hyperplanes ... 31

Figure 14- Soft Margin SVM. .. 32
Figure 15 - Gradient Ascent training circuit block diagram... 34
Figure 16 - GA controller finite state machine. .. 35

Figure 17 - GA kernel calculation phases finite state machine. 35
Figure 18 - GA kernel finalization phases finite state machine. 37

Figure 19 - The bounding values of two Lagrange multipliers. 38
Figure 20 - Sequential Minimal Optimization training circuit block diagram. 40

Figure 21 - SMO processing unit block diagram. .. 41
Figure 22 - kernel function block diagram. .. 42

Figure 23 - Learned function FSM. .. 43
Figure 24 - Bias calculator FSM. ... 44
Figure 25 - Bias calculator hardware implementation block diagram. 45
Figure 26 - Limits calculator block diagram. ... 47

Figure 27 - SMO processing unit FSM. ... 48
Figure 28 - Top level SVM classifier block diagram. .. 52
Figure 29 - Three layer feedforward network architecture. ... 53
Figure 30 - Top level ANN classifier block diagram. .. 54

Figure 31 - ANN feadforward architecture. ... 55
Figure 32 - RNN architecture. .. 55
Figure 33 - Electrodes implantation surgery on rats. ... 63

Figure 34 - LabLinc V system .. 64
Figure 35 - EEG reading experiment.. 65
Figure 36 - Sample of the recorded rats EEG. .. 66

file:///D:/Communications/Research/2018/thesis/FECU%20Thesis%20template9.docx%23_Toc514623285

vii

Nomenclature

Abbreviation Description

AED Anti-Epileptic Drugs

ANN Artificial Neural Network

CNS Central Nervous System

ECG Electrocardiogram

FD Fractal Dimension

FFT Fast Fourier Transform

FNPS False Negatives Per Seizure

FPPS False Positives Per Seizure

GA Gradient Ascent

MAV Mean Absolute Value

ML Machine Learning

PPM Partial Products Matrix

QP Quadratic Programming

RBF Radial Basis function

RMS Root Mean Square

SD Standard Deviation

SDA Seizure Detection Algorithm

SMO Sequential Minimal Optimization

SVM Support Vector Machine

VNS Vagal Nerve Stimulations

WHO World Health Organization

WT Wavelet Transform

viii

Abstract

Epilepsy is one of the most common neurological disorders that affects lives of

millions of people around the world. Therefore, automatic seizure detection systems has

been introduced.

The proposed work in the thesis aims to design and implement an implantable chip

that helps in seizure detection. The system of automatic seizure detection consists of 4

stages: preprocessing, feature extraction, feature selection and classification. For

features extraction, more than 20 linear and nonlinear features are software

implemented and tested to measure their efficiency in seizure detection. Then, an

exhaustive search is performed to choose the best features.

For the classification block, different machine learning techniques are hardware

implemented to classify seizure and non-seizure epochs. The classifier block is

implemented using Artificial Neural Network (ANN) and Support Vector Machine

(SVM). A comparison is performed between the two classifiers on the performance, area

and energy consumption. A modification is proposed on ANN to improve performance.

As the neural seizure detection is a very complex problem, support vector machine

(SVM) training accelerators are implemented to speed up the training phase. The

implementation of the accelerator is done using two different algorithms: Gradient

Ascent (GA) and Sequential Minimal Optimization (SMO).

Moreover, a new EEG dataset is extracted in collaboration with a research team from

the Faculty of Science, Cairo University and ONE lab. The new dataset is extracted from

rats before, during and after seizures. This dataset is extracted using commercial

industrial amplifier and a BioBench based software.

1

Chapter 1 : Introduction

Human brain is the main part of the central neural system (CNS). It is a very complex

system that consists of billions of neurons organized in a huge network. It is responsible

on receiving and collecting measurements from sensors all over the body and taking

decisions to make humans behave as they do. This great system –the human brain- is

divided into multiple regions. Each region is responsible on a specific task.

Understanding how human brain works is a very interested research topic that has been

studied at different spatial scales: microscopic and macroscopic. It is found that different

neurons and regions communicate with each other through this network. Many Disorders

affect human brain and consequently cause malfunction in human behavior.

1.1. Motivation

Epilepsy is a central nervous system (CNS) disorder resulting from abnormal

activities. It is one of the chronic diseases the affects people from all ages. According to

World Health Organization (WHO), more than 50 millions around the world have

epilepsy [1]. Epilepsy causes seizures on infrequent basis. Epileptic seizures vary in type,

strength and duration. People who have epilepsy face many obstacles in their daily life

such as driving a car and cooking. Epileptic seizure is a large-scale phenomenon in which

a large portion of the brain is involved in the abnormal activity not only one neuron.

Thus, having a very large number of neurons and a dense network among these neurons

are the main conditions for epileptic seizures. These conditions are satisfied in the human

brain in the normal activity [2].

Epilepsy is classified into some generalized categories: focal seizures, non-focal

seizures and continuous seizures. In focal epilepsy, a specific part of the brain is the main

source of the seizures due to some damaged neurons. These damaged neurons start the

abnormal activity then this activity spreads to a large portion of the brain.

In non-focal seizures, sometimes called generalized seizures, the epileptic activity

starts at the whole brain simultaneously. Scientists suggests that the cause of generalized

seizures is due to brain properties rather than some damaged neurons [2].

In continuous seizures, there is almost no recovery between the seizures. It is the

most dangerous type of seizures as it might threat patient’s life.

1.2. Proposed Work

In this thesis proposal, an automatic seizure detection system is proposed to measure

the EEG signal of a seizure patient. The system extracts some discriminating features

from the EEG. Then, different classification techniques are proposed to classify the

seizure and non- seizure time epochs. Hardware implementations of support vector

2

machine (SVM) classifier and artificial neural network (ANN) are proposed and

compared. Moreover, a hardware implementation of an accelerator of support vector

machine learning is implemented using two different techniques. The two techniques are:

gradient ascent (GA) and sequential minimal optimization (SMO).

1.3. Organization of the thesis

The reminder of the thesis is organized as follows: Chapter 2 introduces basic

concepts for the epilepsy treatment techniques, the EEG signal, automatic seizure

detection system and machine learning techniques. It also introduces a literature review

of the previous work done on the literature. Chapter 3 presents detailed analysis of the

proposed feature extraction and selection process. It also tabulates the results of the

feature extraction and selection and the best features found. Chapter 4 presents a detailed

analysis of the SVM training procedure and two different algorithms are presented and

hardware implemented. Chapter 5 presented a detailed analysis of different classifiers

techniques and their proposed hardware implementations. Chapter 6 shows the work

done to generate a new EEG dataset from rats to be used in testing. Finally, appendices

illustrates the MATLAB codes used for software simulations and the detailed results of

feature selection process.

3

Chapter 2 : Literature Review.

2.1. Diagnosis and Treatment of Epilepsy

The presence of abnormal or damaged neurons in the brain does not necessarily

cause seizures. To diagnose an epileptic seizure, many imaging of the brain should be

taken. Also, medical history of the patient should be reviewed.

After diagnosis an epilepsy and determining its type, different treatment techniques

such as Anti-Epileptic Drugs, Surgical resection and Electrical stimulation are used.

Anti-epileptic drugs (AEDs) is one of the most common methods to treat epilepsy.

AEDs attempt to treat epilepsy by changing the chemistry of the brain. Hence, AEDs aim

to control seizures and they work well with almost two-thirds of epilepsy patients. On

the other hand, they have many side effects as they affect the whole brain. Another

drawback of the AEDs is that they are totally experimental. Doctors start to try a

combination of drugs that shows good results with other patients who have the same age,

gender and medical history. Then, they try different combinations and doses till they get

the right combination that gives the best result with that patient. That best mixture of

drugs should balance between controlling the seizures and minimizing the side effects as

much as possible. A great research is being done on AEDs and is achieving good results

[3].

The second technique that is used in epilepsy treatment is surgical resection [4]. This

solution is used specially for focal seizures and when a mixture of more than 3 AEDs

could not control seizures [2]. A surgery of removing the damaged neurons and resection

it from the brain network is performed. This surgery causes that the abnormal activity of

the damaged neurons could not be transferred to the whole brain. Hence, no seizures

occur. Many tests should be done on the brain before starting the surgery to determine

the portion of the brain that causes seizures. Also, the removed portion should not be

responsible of one of the main functions of the patient like memory, vision, hearing,

speaking or moving. The large amount of redundancy in human brain neurons made it

possible to remove a small portion without facing a great effects on human’s daily life.

When the first two techniques could not help in epilepsy treatment, Doctors think of

alternative ways to control and limit seizures for this patient. One of these ways is

electrical stimulation. Many people may think that electrical stimulation for neurons may

cause more seizures not reducing them. However, it is proven that electrical stimulation

causes a reduction in seizures in many cases [5].

Vagal nerve stimulation (VNS) is one of the most common treatments of epilepsy

based on electrical stimulation [6]. VNS includes implanting stimulating electrodes on

the brain cortex and an electrical battery on the chest cavity. These electrodes are used to

give electrical stimulation to specific regions in the brain lobe to reduce seizures [7]. The

clinical experiments of VNS have showed a reduction by 50% of the total number of

seizures. Also, the implanted device stays working for years after activation [2]. VNS

also has the advantage of not having the side effects caused by AEDs. However, VNS

4

has some drawbacks. First, it is a way to reduce seizures not eliminate them. Second,

VNS affects a large portion of the brain not the required portion only.

The way the electrical is applied to the brain is under great research. Traditionally,

the electrical stimulation was used continuously on an on-off modes. In slow on-off

mode, the stimulation is used for 30 seconds. Then, it is being off for 5 minutes. While

in fast mode the stimulation is used for 7 seconds and then being off for 12 seconds [8].

The choice of a specific mode, period and shape of an electrical stimulation used for a

specific patient is usually empirical.

Nowadays, research is done to detect seizures and apply electrical stimulation once

a seizure has begun instead of applying it continuously. This will minimize the side

effects greatly. Moreover, the battery life will be extended greatly. However, many

challenges face researchers. Automatic seizure detection is very challengeable and many

research is being done for the automatic detection and prediction of epileptic seizures

with different approaches. One approach is to analyze the muscles movement to detect

epileptic seizures [9]. Another approach is studying the electrocardiogram (ECG) signal

of the heart [10]. A third approach is electroencephalogram (EEG) analysis.

2.2. Electroencephalogram (EEG) signal

As mentioned above, Analysis of EEG signal is one of the most common approaches

used for seizure detection and prediction. EEG is an electrical record of what is

happening inside the brain. Traditionally, Electrical voltage was first measured from

monkeys on 1875. However, there was almost no meaningful benefit from it until 1920s

[11].

EEG signal is the electrical signals generated by human brain. These electrical

signals’ amplitude are less than 300μV. The frequency response of these signals are

spanned to 100Hz. Because of the very low amplitude of the EEG signals, the process of

EEG measurement is a very challengeable task.

EEG measurements are made at various scales. First type is scalp EEG where

measurement electrodes are added on the skull. The scalp electrodes can be easily

attached. However, recordings from scalp EEG are highly attenuated as the skull acts as

a filter so a very large portion of the brain should be involved in the seizure to be able to

detect seizures from EEG. However, the performance of EEG measurement using scalp

electrodes can be enhanced by using more electrodes. In practice, more than 20 electrodes

are used and placed on patient’s skull. However, some research has proposed more

electrodes up to 256 electrodes to increase measurement performance [12]. The

placement of the electrodes on the skull follows many standards as 10-10 and 10-20

system. A typical EEG signal measured from 4 different scalp electrodes are shown in

Figure 1.

The second type of EEG measurement is intra-cranial EEG where electrodes are

implanted on the cortex in a surgery. This type of measurement is more accurate and can

record measurement of a smaller scale of neurons [13].

5

The EEG signal frequency domain is divided into multiple frequency bands:

- The Delta bands contains signals with frequencies less than 4 Hz.

- The Theta band contains signals with frequencies between 4-7 Hz.

- The Alpha band contains signals with frequencies between 8-12 Hz

- The Beta band contains signals with frequencies between 12-30 Hz

- The Gamma band contains signals with frequencies between 30-100 Hz

These bands are shown in Figure 2.

Each frequency band contains a specific kind of information. Research is performed

to extract information from each frequency band. Cantero et al. proved that the Theta

band contains information about the transition from sleeping to waking up [14]. Palva et

al. proved that the Alpha band contains information about making a calculation [15]. The

second type of information that can be extracted from EEG signals is the transient

information. In transient analysis, different spikes are measured and analyzed. These

spikes can be caused due to a neurological disease like epilepsy or due to other artifacts.

These artifacts exist due to different causes like biological or environmental reasons. It

is so important to remove such artifacts before processing the EEG signal to detect

seizure.

2.3. Seizure Detection

One of the main problems that is obstructing the research for epilepsy treatment is

the absence of a perfect way to detect seizure. In the pre-computer era the reading of

EEG was performed by experienced encephalographers who, based on their experience,

decided whether the recording was a seizure or not. Nowadays, even with the great

computational power, the EEG analysis by expert encephalographers remains one of the

most powerful approaches for seizure detection. However, the EEG analysis by experts

are very subjective and very time-consuming. The purpose of seizure detection

algorithms (SDA) is to replace this old-fashioned way of EEG analysis by another

process that automatically detect seizures. In order to compare the performance of

different detection methods some of the following important performance measures can

be used. The first measure is the percentage of missed seizures in 24h. However, as noted

by P. Buteneers [12], it is probably more relevant to look at the false negatives per seizure

(FNPS), as this measure allows a fair comparison between different EEG recordings. The

same applies for another measure, namely the number of false positives, where the false

positives per seizure (FPPS) can replace the number of false positives during 24h. From

a more practical point of view the time necessary for the detection of the seizure, also

called the detection delay, is an important parameter as well.

6

Figure 1 Typical EEG signal measured from 4 different electrodes

7

 Figure 2 - EEG frequency spectrum bands.

8

2.4. Automatic seizure detection system

Figure 3 - Automatic seizure detection system block diagram.

Figure 3 shows the block diagram of the automatic seizure detection system. The

system mainly consists of 4 stages.

2.4.1. EEG Acquisition

The first stage is the Multi-channel EEG signal acquisition. In this stage, Different

electrodes are used to sense and measure EEG signals from different spatial positions on

the skull or the cortex. The efficiency of the electrodes affects the overall performance

of seizure detection greatly. The positioning of the measurement electrodes on the skull

follows different standards. One of these standards are the 10-20 system shown in Figure

4.

9

Figure 4 - 10-20 system for EEG measurement.

2.4.2. Preprocessing

The second stage is preprocessing. In preprocessing stage, the raw EEG data

measured by electrodes are prepared for analysis and processing. The preprocessing stage

includes filtering the signal and only keeping the frequency range of interest. The

preprocessing also includes removing artifacts. It also includes normalizing the EEG data

to be at the same level of the other signals measured by other equipment or from other

patients.

Normalization means that data are converted to a form that is compared to all the

other data measured using different measurement equipment or from different patients.

For instance, if two different measurement systems are used, the EEG signal of each

system would be different. The first system’s EEG amplitude may vary from 0 to 15 𝜇𝑉.

While the second system’s EEG amplitude may vary from -10 to 10 𝜇𝑉. These different

EEG signals cannot be directly compared. Hence, all measured EEG data are normalized

to the same range from -1 to 1. Then, all EEG signals from different measurement devices

and different patients can be compared. The normalization process is done through two

steps. First, removing the mean value of the EEG signal. Then, scaling the EEG signal

10

by dividing it by its standard deviation. This normalization techniques should be done

again after feature extraction phase.

Artifacts are generated due to different sources. Some artifacts are originated due to

movement like eye blinks. Other artifacts are originated due to errors and noise in the

measurement devices. Moreover, power line artefacts reside between 50 and 60 Hz

depending on the power frequency used in the country. Dealing with the artifacts

is performed using several methods. First, some artifacts are ignored as their effect

on the features extracted are minor. Second, some artifacts are rejected. The time

epoch or frequency domain of this artifacts are excluded from the analysis. Finally,

some artifacts are removed from the signal using filters to eliminate specific

frequencies using different types of filters: high-pass, low-pass, band-pass and

band-stop filters. As many research has proved that most brain EEG power

spectral is found between 3 and 30 Hz as shown in Figure 2. Libenson

et al. proved that the EEG signals do not exceed 40 Hz [16]. Hence, Blanco et al.

proposed using a low pass filter with a cut-off frequency equals to 40 Hz [17].

Preprocessing is the process in which the EEG is prepared for analysis. The signal

processing in this area involves the removal of unwanted aspects, such as artifact

and high frequency content, and normalizing the EEG data so that it is comparable

to all other data (e.g., normalize the amplitude range, sampling frequency, etc).

2.4.3. Feature extraction

The third block is feature extraction and selection. In this stage, different

discriminating features are extracted from the EEG signal to differentiate between

seizure and non-seizure intervals. Multiple features are used together as an input

to the classifier. The appropriate choice of the discriminating features is the key

of the classifier performance.

The features are extracted from different domains: time domain, frequency

domain and time-frequency domain. The EEG signal is divided in time into

several time epochs as shown in Figure 5. In each time epoch, the values of the

features used are extracted. If the feature used is a time domain feature, the feature

is extracted directly from the EEG signal. If the feature used is a frequency domain

feature, FFT is adopted first to get the frequency domain of the EEG signal. Then,

the used feature is extracted from the frequency domain of the EEG signal. Finally,

if the feature used is a time-frequency domain feature, a Wavelet transform is

adopted first on the EEG signal. Then, the feature is extracted from the calculated

time-frequency domain.

11

Figure 5 - EEG signal divided into time epochs= 4 secs.

 A wavelet transform (WT) is used to represent any signal in multiple wavelets. It

helps to represent the signal in time-frequency representation.

2.4.4. Classification

After discriminating features are extracted from the EEG signal, these features need

to be judged to detect the existence of seizure. Taking a decision of seizure existence is

made based on several methods.

The old-fashioned method is comparing each feature value to a pre-determined

threshold. If the value of the feature in a time epoch exceeds the threshold, the system

detects a seizure in this time epoch. This method did not achieve an acceptable

performance for many reasons. First, choosing the threshold value for each feature is a

very challenging task as this value is the main key of the overall performance. Second,

the chosen value of the threshold is not constant for all patients and in all conditions. This

is due to the fact that the range of normal EEG signal changes from patient to another.

Also, the EEG signal range changes with the status of the person. For example, the EEG

for the same person varies during sleeping, eye blinking or doing sports.

To overcome this problem, many researches proposed to use machine learning

techniques that will be discussed in the next section.

12

2.5. Machine learning

Machine learning (ML) is the science of making the computers able to learn

themselves by their own from observing large number of examples. Machine learning is

not a newly invented science. ML has been proposed by Arthur Samuel from 1949

through late 1960s [18]. He explicitly defined ML as it is known today at 1959 [19]. In

ML, many statistical studies are performed on a very large amount of data. Recently,

machine learning and artificial intelligence become very hot topics for all software and

hardware researchers. This is due to the great growth in the computational capabilities.

Nowadays, ML is playing a great role in many fields.

ML techniques are classified into different categories as follows:

- Supervised learning

In supervised learning, the task is to find a function to map any new input to the

corresponding output based on some training points. Each of the training points is

described by their input value and their associated labels or outputs. The input-output

relation is deduced from the training example. Then, this relation is used to find the

output of any new input test point even if this new point is totally unseen in the

training examples. Figure 6 shows an example of the supervised learning problems.

In this example, multiple training points from two different groups are given. One

group is represented by the red circle while the other group is represented by the blue

circle. For each training example, a point is drawn on the x-y plane based on its

corresponding label (group). The task of the problem is to find the separable line.

After finding the line, any new point is represented on the x-y plane. Then, the type

(group) of this point is determined based on its location relative to the line.

Figure 6 - Supervised learning example.

- Unsupervised learning

In unsupervised learning, the task is to find a function to map any new input to

the corresponding group based on some training points. In other words, the task of

the unsupervised learning is clustering and categorizing. Each of the training points

13

is described by their input value only and all the points are unlabeled. Hence, in the

training phase only the similar training points are clustered in one group. Then, any

new testing point is attached to one of these groups. Figure 7 shows an example of

the unsupervised learning. In this example, multiple training points are given. All the

training points are unlabeled; only their input value are given but their outputs are

not. All the points are represented by the same symbol on the x-y plane. The task of

the unsupervised learning is to cluster these points into two groups based on their

values. After finalizing training and finding the separable line between the two

groups, any new test point can be classified into one of the two groups.

Figure 7 - Unsupervised learning example.

- Reinforcement learning

In the reinforcement learning, the computer interacts with a changing

environment, its behavior towards this environment is assessed by some

reinforcements. These reinforcements are either rewards or punishments.

For the work proposed in this thesis, supervised learning is the type used as the EEG

data is labeled. Different supervised learning techniques are used and compared.

Consider a supervised problem is formulated as follows:

A training data set is given as pairs of input-output points

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … . , (𝑥𝑛−1, 𝑦𝑛−1), (𝑥𝑛, 𝑦𝑛)}

The supervised learning’s task is to fit a function that maps the inputs 𝑥𝑖 to their

corresponding outputs 𝑦𝑖 . The supervised learning problems are classified into 2

categories based on the range of 𝑦𝑖 . If 𝑦𝑖 is a real number, the problem is called a

regression problem. For example, having a database of prices of different apartments

with different areas and predict the price of any apartment of a specific area is a

regression problem as the price may take any real number. The second group of

supervised learning problems is classification problem where 𝑦𝑖 may take only one of

discrete set of values. In both groups of problems, the task is the same; finding a function

that relates the output to the input. If the performance achieved by a specific function is

14

too low when tested on the training examples, a higher order function should be used.

However, the performance may be great on the training data only and is very low for any

new testing data point. This problem is a well-known problem in machine learning which

is called over-fitting. The problem of over fitting is caused due to:

1- Very complex model: in this case a very complex function is used to fit simple

data. The solution in this case is to use a lower order function.

2- Few training examples: the second reason of the over-fitting problem is using a

few number of training examples. Hence, adding more training examples to the

dataset may solve the problem of over-fitting.

The proposed work is in the field of seizure detection. Hence, supervised learning is

the most important machine learning type used. The problem of seizure detection is a

classification problem as the output is only one of 2 groups: seizure and non-seizure.

2.6. Dataset

The database used in this work was collected at the Children’s Hospital Boston

(CHB) by a team of researchers from the Massachusetts Institute of Technology (MIT).

The dataset consists of EEG recordings from subjects with intractable seizures. The

AEDs doses are stopped for several days. Then, the researchers monitored the patients

for multiple days. The signals are recorded from different patients with different age and

sex as shown in Table 1. Noting that Chb01 and Chb21 are the same female patient but

after 1.5 years.

Each case of the 23 case has 9 up to 42 .edf files. These .edf files are almost

continuous with a very limited cuts up to 10 seconds when the EEG signals are not

recorded due to some hardware limitations. Moreover, all the protected health

information of the patients are preserved and deleted from the .edf files. Even the absolute

date of each record has been changed with another one but the relative time and date of

the same patient remained constant. Each .edf file contains the data of almost one hour

for the patient. Beside the .edf files, a .txt file is available for each patient. This .txt file

contains information about the different epileptic seizures of this patient that happened

during recording and the specific time of start and end of each seizure.

2.7. Performance Metrics

The performance of the system is measured through different performance metrics

that are widely used especially in neural seizure detection. These metrics are accuracy,

specificity and sensitivity of the classifier. The sensitivity is the true positive rate or the

percentage of seizure that could be detected successfully by the classifier and could be

calculated as follows:

𝑆𝑒𝑛𝑠𝑖𝑡𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

The specificity is the true negative rate or the number of non-seizure epochs detected

successfully by the classifier and could be calculated as follows:

15

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Where TP denotes true positives,

 TN denotes true negatives,

 FP denotes false positives,

 FN denotes false negatives.

There is always a trade-off between sensitivity and specificity. As sensitivity

increases, specificity decreases and vice versa. Hence, a combining performance metric

is defined which is called accuracy. Accuracy means the percentage of the right decisions

to the total decisions made by the classifier. Accuracy can be calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

Table 1 - CHB MIT patients.

Case Gender Age

Chb01 Female 11

Chb02 Male 11

Chb03 Female 14

Chb04 Male 22

Chb05 Female 7

Chb06 Female 1.5

Chb07 Female 14.5

Chb08 Male 3.5

Chb09 Female 10

Chb10 Male 3

Chb11 Female 12

Chb12 Female 2

Chb13 Female 3

Chb14 Female 9

Chb15 Male 16

Chb16 Female 7

Chb17 Female 12

Chb18 Female 18

Chb19 Female 19

Chb20 Female 6

Chb21 Female 13

Chb22 Female 9

Chb23 Female 6

16

2.8. Previous Work

As explained in the introduction, Epilepsy is a very dangerous disease that affects

quality of life of its patients. Due to the large number of epilepsy patients, a great effort

is done in treatment of the epilepsy especially using electrical stimulation. The work done

to detect seizure using EEG includes many methods: single channel or multi-channel

[20]. In single channel based seizure detection systems, it is required to choose the

appropriate channel that is the nearest to the seizure focus. This type is mainly used in

focal seizures. The process of choosing the channel is performed by measurement of

different channels and choose the best performance channel. Another solution is to use

all the measured and available signals, and detect seizure based on the EEG signals from

multi-channel [21].

After the EEG measurement is done, many research is done on preprocessing.

Wackermann et al. used several EEG analysis methods to characterize the sleeping effect

of EEG [22]. Another source of artifacts is the eye movement and blinks. The electrical

activity accompanied with the eye movement is strong enough to be recorded with EEG.

The amplitude of the eye movement artifact is larger than that of the background EEG

activity so many research is done in the area of removing eye movement effects [23].

Moreover, many work is done to remove muscles moving artifacts such as that done by

Van Boxtel et al. [24].

2.8.1. Feature extraction and selection

Many work is done on the analysis of EEG signals for seizure detection in the

literature. Features extracted from EEG along with different machine learning algorithms

are used to detect seizure. Yuan Q. et al. used nonlinear feature extraction strategies such

as approximate entropy and Hurst exponent and got 93.75% and 79.75% sensitivity

respectively [25]. Also, nonlinear feature extraction strategies were used in multiple

papers [26], [27], [6]. Li. et al. got a sensitivity ranging from 82.75% to 97% based on

the combination used [26]. Panda. et al. got 91.2% classification accuracy [27] and

Kolekar et al. got 81.67%, 91.25% and 82.22% accuracy for different classification

strategies [28]. Support vector machine (SVM) is used in many of these papers with

Radial Basis function (RBF) kernel for classification [25], [26], [27], [28]. Generally, the

results obtained through SVM with RBF kernel are usually more accurate, however a

hardware implementation for an RBF kernel consumes much more power than linear and

polynomial kernels.

2.8.2. Hardware implementation of SVM training

accelerators

Many research has been done in implementing hardware implementations and

accelerators for SVM training [29]. Keerthiet al. proposed a parallel implementation of

multiple CPUs for processing partitioned data sets [30]. The use of multiple CPUs leads

to increase the overall performance. One the other hand, it greatly increases the power

consumption. Caoet et al. developed a hardware implementation of SVM training circuit

using MATLAB HDL coder [31]. The performance degraded due to the lack of

optimizations. Chih-Hsiang et al. proposed a re-configurable chip with SMO-based SVM

training [32]. The proposed architecture decreased the routing overhead, accelerated

kernel function update and used pipelining. However, some hardware usage and training

17

speed problems have appeared. Lazaro et al. proposed a hardware-software architecture

to speed up SVM training using SMO. As the dot product takes most of calculation time

in SMO, it is chosen to be implemented on hardware [33].

Jhing-Fa et al also proposed a HW/SW co-design solution for multiclass SMO

training [34]. A hardware-software co-design system for accelerating the SVM learning

phase was presented based on another decomposition algorithm instead of the common

SMO algorithm [35]. M. Rabieah et al proposed a complete FPGA-based system for

nonlinear SVM learning using ensemble learning [36]. S. Wang et al proposed a FPGA-

based reconfiguration framework to speed up the online LS-SVM training [37].

However, the block RAM usage and reconfiguration efficiency are the main challenges.

In this paper, more work is done in the area of training the SVM classifier to have better

results without the need to have complex transformations or complex kernel functions

like those proposed in [38], [39], [40].

18

Chapter 3 : Design of Feature Extraction and Selection

The feature extraction step is a very important step in automatic seizure detection

systems. In feature extraction step the discriminating features are extracted from the EEG

signal. These features should differentiate between different phases of the EEG signal.

Several features are proposed and used in literature to detect seizure. The extracted

features are extracted can be categorized depending on the domain from which they are

extracted as follows:

1- Time domain features

2- Frequency domain features

3- Time-frequency domain features (Wavelet)

The features extracted from EEG signals can also be categorized into 2 different

groups: linear and non-linear features.

3.1. Linear Features

Different linear features are implemented, extracted and tested. The 11 linear features

are as follows:

 Mean Absolute Value (MAV)

𝑀𝐴𝑉 =
1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

 Root Mean Square (RMS)

RMS was used combined with other features for seizure prediction in [41]. RMS is

calculated as follows:

𝑅𝑀𝑆 = √
1

𝑁
 ∑𝑥𝑖

2

𝑁

𝑖=1

 Standard Deviation (SD)

Standard Deviation is a measure of the average deviation from the mean. It was used in

[42] and achieved high performance. SD can be calculated as follows:

𝑆𝐷 = √
∑ (𝑥𝑖 −𝑚𝑒𝑎𝑛(𝑥))
𝑁
𝑖=1

𝑁 − 1

Where 𝑚𝑒𝑎𝑛(𝑥) =
∑ 𝑥𝑖
𝑁
𝑖=1

𝑁

19

 Variance

Variance is the standard deviation raised to the power of two. It is easier to calculate the

variance rather than calculate SD. Hence, both SD and variance are tested to check if

easier calculation would reflect on the performance or not.

 Maximum Absolute Value

Calculating the maximum absolute value for every epoch of time. It was used in [42]

with other features achieving performance more than 98%.

 Minimum Absolute Value

Calculating the minimum absolute value for every epoch of time.

 Average Energy

In epileptic seizures, the amplitude and frequency of the EEG signal increases. This

was a motivation to include the average energy of the epoch as a feature. It is defined as

follows:

𝐸 =∑𝑥𝑖
2

𝑁

𝑖=1

 Fluctuation Index (Coastline)

Fluctuation Index (FI) measures the fluctuation in the signal. During seizure periods, it

is found that EEG exhibits high fluctuations relative to non-seizure periods. FI is

defined as follows:

𝐹𝐼 =∑|𝑥𝑖+1 − 𝑥𝑖|

𝑁

𝑖=1

 Hjorth parameters: Mobility

Mobility is the square root of the variance of the first derivative divided over the

variance of the signal.

 Hjorth paramteres: Complexity

Complexity represents the change in frequency with respect to a pure sine wave

 Skew

Skew measures how non symmetric the data is. It was used with other features for

classification by Zhang [42]. It is calculated as follows:

𝑆𝑘𝑒𝑤 =
1

𝑀
∑(

𝑋(𝑤) − 𝜇𝑤
𝜎𝑤

)

3𝑁

𝑖=1

20

Where 𝑋(𝑤) is the sample value at frequency domain,

𝜇𝑤 is the mean value of the samples at frequency domain,

𝜎𝑤 is the standard deviation of the samples at frequency domain.

 Kurtosis

Kurtosis is the same as skew but raised to power 4 as follows:

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑀
∑(

𝑋(𝑤) − 𝜇𝑤
𝜎𝑤

)

4𝑁

𝑖=1

3.2. Nonlinear Features

Non-linear analysis of EEG signal exhibit description of the non-stationary nature of

the signals. Different features are used by different researchers in the literature. They

used many features from information theory, nonlinear dynamical analysis, and

stochastic processes analysis. Non-linear features showed promising results in both

detection and prediction for epileptic seizures [43]. In this study, different nonlinear

features are examined as follows:

 Approximate Entropy (ApEn)

Approximate entropy is a probabilistic method developed by Steve M. Pincus [44].

It measures how ordered or disordered a given EEG signal is. A small output value

indicates regularity in the input EEG signal, and on the contrary, as the EEG gets more

irregular, the higher the output value becomes [45]. The dataset is divided into

overlapping subsequences.

𝑆(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 1), …… , 𝑥(𝑖 + 𝑚 − 1)]

 Where 𝑖 = 1,2, … . , 𝑁 − 𝑚 + 1,

𝑚 is the length of each subsequent.

Then, the algorithm searches for matched patterns by calculating the distance

between each subsequent and all other subsequences. Finally, it compares this distance

with a certain tolerance r. If the distance is less than the tolerance, the patterns are

considered matched which supports the decision of having a regular predictable EEG

and vice versa. A distance function 𝑑[𝑥(𝑖) , 𝑥(𝑗)] between each subsequent and

every other subsequent is calculated first. Then, the correlation 𝑙𝑜𝑔 𝐶𝑖
𝑚 (𝑟) is

calculated by counting the distances that are smaller than a tolerance r and then divided

by the number of subsequences 𝑁 − 𝑚 + 1. Finally, the logs of these values are

summed together and formulating approximate entropy as follows:

21

𝜑𝑚(𝑟) =
1

𝑁 −𝑚 + !
∑log (𝐶(𝑟))

𝑁

𝑖=1

Finally the approximate entropy can be calculated as follows:

𝐴𝑝𝐸𝑛 = 𝜑𝑚(𝑟) − 𝜑𝑚−1(𝑟)

 Shannon Entropy

Shannon entropy is a measure for information that the system exhibits. It estimates

the number of bits required to encode a string of symbols based on their frequencies

[46]. Continuous values of EEG signals are quantized. Then, the frequency of each

symbol is calculated to get Shannon Entropy as follows:

𝐻(𝑥) = −∑𝑃(𝑥𝑖). log (𝑃(𝑥𝑖))

𝑁

𝑖=1

Where 𝑃(𝑥𝑖) is the probability of the symbol 𝑥𝑖 .

 Permutation Entropy

Permutation entropy, as other entropies, measures how disordered the EEG signal is.

However, it is computed independent of the values of the samples. First, a mapping

function is applied to generate windows of length n. Probability of a given permutation

is given as:

𝑃(𝜋) =
𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝜋

𝑇 − 𝑛 + 1

𝐻𝑛
∗ = −∑𝑃(𝜋). log(𝑃(𝜋))

 Renyie Entropy

Renyie entropy generalizes Shannon entropy as the parameter 𝛼 gives an extra degree

of freedom for the distributions. It is calculated as follows:

𝐻(𝑥) = −
1

1 − 𝛼
log (∑𝑃𝑖

𝛼

𝑁

𝑖=1

)

 Hurst Exponent

Hurst Exponent is a measure of whether the data is pure white noise or it contains

information. If H is equal to 0.5, then the time series is purely random. However, if it is

larger than 0.5, then it contains some trends. It is calculated for a given time series with

length t from the rescaled range series (R/S) which is calculated from the standard

deviation S and the range series R. Finally, a line fitting is done between 𝑙𝑜𝑔(𝑅/𝑆) and

𝑙𝑜𝑔(𝑇) to get the Hurst exponent value [47].

22

Where R is the maximum deviation from the mean and the minimum deviation from

the mean, S is the standard deviation,
𝑅

𝑆
 is the rescaled value and 𝑇 is the sample

duration.

 Modified Hurst Exponent

The Hurst exponent is the slope of the linear fit of the log-log graph. Another simpler

implementation for the Hurst Exponent was using the below equation.

𝐻 =
log (

𝑅

𝑆
)

log (𝑇)

In this implementation it is assumed that this linear fit will always pass through the

origin.

 Fractal Dimension

Fractal Dimension (FD) is based on fractal geometry. Higuchi’s algorithm with k= 5 is

used to calculate the fractal dimension [48].

3.3. Simulation Setup

A software implementation of all proposed features discussed is done using

MATLAB2016a. Different combinations of the 20 proposed features are used and tested

along with linear kernel SVM. The performance metrics -sensitivity, specificity and

accuracy- are extracted from each combination and compared.

The procedure to get the best performing combination could be built using two

methods

1- All-in then backward elimination according to p-value:

This method is done by extracting all the proposed features and

testing the performance. Then, a trial to eliminate one of the

features is performed. The task is to choose the first features that

will be eliminated. The features that will be eliminated is the one

that has the minimum effect on the performance metrics. Then,

this step is repeated until having the minimum number of features

that achieve an acceptable performance.

2- Trying all possible combinations for a fixed number of features:

This method is done by choosing constant number of features in

each combination. Then, all the combinations between the

proposed features are tested and for each combination the

performance metrics are calculated. Then, the best performance

combination is chosen.

23

In this work, the second solution was adopted. The decision was made to use three

features in each combination based on many work done in the literature [25], [27], [28].

A total of 1140 combinations are tested and compared.

A MATLAB script is developed to test the combinations between the features one

by one. Each combination consists of 3 features. The code chooses one of these

combinations and extract the corresponding features from all training and testing data.

Then, the code trains a linear kernel SVM using the extracted features. Then, the test data

points are tested on the resultant hyperplane. Finally, the performance metrics are

calculated and written to the output file. For each combination a line is written to the

output file containing the features of this combination, the resulting sensitivity,

specificity and accuracy.

The output needed from the simulation is to find a combination of 3 features that

make the data points linearly separable. If such combination of feature is found, it will

achieve a very high performance using linear kernel SVM. That will save great punch of

energy as the linear kernel consumes energy less than any other type of kernel functions

such as polynomial and RBF kernel.

3.4. Simulation Results

The visualization of data points with different extracted features can give a good

evidence of the great effect of feature selection on the performance of the classifier.

Figure 8 shows the training data points when the selected features are Hjorth mobility,

Hjorth complexity and maximum absolute value. The figure shows the objection of the

data points on the plane of each 2 features where feature 1 is the Hjorth mobility, feature

2 is Hjorth complexity and feature 3 is the maximum absolute value. It is clear from the

figure that these features are not linearly separable. When trying these features with linear

kernel SVM, the performance achieved is 0 % sensitivity, 100% specificity and 99.7%

accuracy which means that the classifier classify all points into non-seizure.

Figure 9 shows the training data points when the selected features are Hurst

exponent, average energy and minimum absolute value. In this figure, feature 1 is Hurst

exponent, feature 2 is average energy and feature 3 is the minimum absolute value. Some

data points can be linearly separable especially in the plane of Hurst exponent and

average energy. The performance achieved by these features is: 62.9% sensitivity, 98.8%

specificity and 98.7% accuracy.

Figure 10 shows the training data points when the selected features are Fractal

Dimension, Hurst Exponent and Coastline features where feature 1 is fractal dimension,

feature 2 is Hurst exponent and feature 3 is coastline. It is clear that all the data points

are almost separable in all planes. That’s why the achieved performance becomes:

96.77% sensitivity, 97.9% specificity and 97.9% accuracy.

After finalizing the simulations of the all 1140 combinations and by analyzing the

detailed results shown in Appendix B, it is noticeable that the minimum specificity

achieved is 96.4% and the maximum specificity is 100%. Hence, the specificity achieved

24

from all features’ combinations are acceptable. So, the specificity is not the key

performance metric to choose the best combination. On the other hand, the sensitivity

ranges from 0% to 96.77%. To be able to analysis and visualize these results, the

combinations are grouped into multiple groups based on their sensitivity value. The

number of features of each group are shown in Figure 11.

The combinations of interest are those which have sensitivity more than 90%. To

analyze these combinations, the number of repetition of each feature in these

combinations are counted. Then, the features are sorted by their repetition counts from

largest to smallest as shown in Figure 12.

It is found that fractual dimension is a very important feature as it exists in all the

features’ combinations that have sensitivity more than 90%. Moreover, the best

combination –the one that gives the maximum performance- is the combination of

fractual dimension, Hurst exponent and coastline. This combination achieves sensitivity

equals to 96.77%.

25

Figure 8 - Training points for Hjorth mobility, Hjorth complexity and

Maximum absolute value features.

26

Figure 9 - Training points for Hurst exponent, average energy and minimum

absolute value features.

27

Figure 10 - Training data points of Fractal Dimension, Hurst Exponent and

Coastline features.

28

Figure 11 - Number of features' combinations in each range of sensitivity.

29

Figure 12 - number of incidence of each feature in the combinations with

sensitivity >90%.

30

Chapter 4 : Design of Support Vector Machine Training

Accelerators

4.1. Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning and classification

model that is gaining much attention of researchers in statistical classification and

regression analysis problems. SVM is widely used in many applications such as face

detection, handwriting detection and bioinformatics [49]. SVM was first introduced by

Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 1963 [50]. SVM uses a set of

training examples categorized into 2 or more groups. SVM works in two main phases:

training phase and classification phase.

Training in SVM is a process in which a hyperplane that separates two labeled sets

of training examples is determined. SVM searches for the hyperplane that gives the

largest margin between the two sets. The subsequent step is to classify unlabeled testing

examples into one of two classes. Finding the hyperplane is a problem of solving a

quadratic programming (QP) problem subject to constraints [51].

The optimization problem has infinite number of solutions. Hence, different

hyperplanes can perfectly separate the two different groups in the case of binary

classification as shown in Figure 13. All the three hyperplanes in (A), (B), (C) separates

the two groups with zero errors. SVM defines the best hyperplane is the one the

hyperplane that gives the largest margin between the two sets. Hence, SVM chooses the

hyperplane shown in Figure 13-C.

(A) (B)

31

(C)

Figure 13- Different classification hyperplanes

As mentioned earlier, SVM learns from a training set of N dimensional vectors 𝑥𝑖
and their associated classes (labels)𝑦𝑖 . In case of binary classification, 𝑦𝑖 ∈ {0,1} ,

i=1,2,…,n. SVM deals with linearly separable data points directly. For the non-linearly

separable data points, the non-linearly separable dataset is mapped into a higher

dimensional domain in which the mapped data points are linearly separable. As this

mapping may contain heavy computing especially with the large number of data points

another approach called Kernel trick is used. Kernel methods uses kernel functions to

operate in a high-dimensional feature space without the need of calculating the mapping

of each data point. Then, SVM finds the hyperplane that gives the largest margin in the

new feature space. This hyper plan is defined as follows:

𝑤.𝜑(𝑥) + 𝑏 = 0 (1)
Where 𝑤 is the normal to the hyperplane, 𝜑(𝑥) is the mapping function used to map

each input vector to the feature space and b is the bias.

The distance from the nearest points to the hyperplane from each side equals to
2

||𝑤||
.

Therefore, to choose the hyperplane that maximize the margin, the optimization problem

is formulated as follows:

𝑚𝑖𝑛𝑤,𝑏
||𝑤||2

2
 (2)

Subject to 𝑦𝑖(𝑤. 𝜑(𝑥) + 𝑏) ≥ 1

This is denoted by hard margin SVM, where the hyperplane perfectly separates the

two sets according to eqn.(1). A modified version of SVM introduces a trade-off between

the size of the margin and the number of errors in the classification process is given in

eqn.(3). This is performed by defining a penalty parameter C. The optimization problem

is formulated as:

𝑚𝑖𝑛𝑤,𝑏
||𝑤||2

2
 + 𝐶 ∑𝜉𝑖 (3)

𝑛

𝑖=1

Subject to:

𝑦𝑖(𝑤. 𝜑(𝑥) + 𝑏) ≥ 1 − 𝜉𝑖,
𝜉𝑖 ≥ 0

Where 𝜉𝑖 is the slack for the 𝑖𝑡ℎ training point as shown in Figure 14.

32

The penalty parameter C should be selected carefully for each data set. If C is

selected large, the weight of any wrong classified point is very large so the convergence

of the problem takes large number of iterations. If C is selected small, some errors are

allowed to maximize the margin and get the solution in fewer number of iterations than

the large C scenario.

Figure 14- Soft Margin SVM.

The modeled problem is solved using Lagrange multiplier as follows:

min
𝛼
𝜓(𝛼) =

1

2
∑𝑦𝑖. 𝑦𝑗 . 𝐾(𝑥𝑖 , 𝑥𝑗). 𝛼𝑖 . 𝛼𝑗

𝑛

𝑖=1

− ∑𝛼𝑖

𝑛

𝑖=1

 (4)

Subject to:

∑ 𝑦𝑖. 𝛼𝑖
𝑛
𝑖=1 = 0,

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,2, … , 𝑛

Where 𝛼 is Lagrange multiplier, Kernel functions K. Different Kernel functions are

widely used in SVM applications as follows:

Linear Kernel:

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖. 𝑥𝑗

Polynomial Kernel:

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖. 𝑥𝑗 + 1)
𝑑

 Where d is the polynomial degree

Exponential Kernel:

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒
−𝛾 ||𝑥𝑖−𝑥𝑗||

2

By solving the problem formulated in eqn.(4), the values of 𝛼𝑖′𝑠 are obtained. The

values of each 𝛼 is classified into one of the three following classes:

1) 𝛼𝑖 = 0 represents the correctly classified points outside the margin

2) 0 < 𝛼𝑖 < 𝐶 represents the training data points that define the margin

33

3) 𝛼𝑖 = 𝐶 represents the wrongly classified points and the points that violated the

margin (where 𝜉𝑖 ≠ 0)

Many techniques are used to solve this QP problem. In this thesis, two training

techniques of SVM are tested, hardware implemented and compared. The two techniques

are Gradient Ascent (GA) and Sequential Minimal Optimization (SMO). The two

techniques’ algorithms and hardware implementations are discussed in details in the

following sections.

4.2. Gradient Ascent (GA)

4.2.1. Algorithm

Gradient ascent is an iterative optimization algorithm that solves minimization

problems. It depends on taking steps towards the minimum point proportional to the slope

of the function at the current point. By applying the algorithm of gradient ascent on the

SVM optimization problem in eqn.(4), the following formula is used to update 𝛼𝑖 in each

iteration:

𝛼𝑖
𝑛𝑒𝑤 = 𝛼𝑖 − 𝑠𝑡𝑒𝑝 ∗ 𝑦𝑖 ∗ (𝛼𝑖 . 𝑦𝑖, 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏)

Constrained to

0 ≤ 𝛼𝑖
𝑛𝑒𝑤 ≤ 𝐶

Where b is the bias of the training set points.

After calculating all 𝛼′𝑠, the hyper plane is calculated as follows:

𝑤 =∑𝛼𝑖. 𝑥𝑖 . 𝑦𝑖

𝑛

𝑖=1

To get the new bias 𝑏𝑛𝑒𝑤, substitute in the following formula by 𝑥𝑖 , 𝑦𝑖 of any of the

support vector points (those with 0 < 𝛼𝑖 < 𝐶)
𝑏𝑛𝑒𝑤 = 𝑦𝑖 − 𝑤.𝐾(𝑥𝑖 , 𝑥𝑗)

Table I shows the detailed GA algorithm using a pseudo code. First, all Lagrange

multipliers 𝛼′𝑠 and bias 𝑏 are initialized to zero. In each iteration, two loops are

performed: the outer loop in which the input vector 𝑥𝑖 is read from the memory, and the

inner loop in which the Kernel function value is calculated between 𝑥𝑗 and all other input

vectors. Then, 𝛼𝑖 is updated with the new value and passed to the outer loop with the

next 𝛼 till all Lagrange multipliers are updated. Then, the bias is updated and a

convergence check is applied. One important note on the training and testing data sets is

that they should be normalized to make all data point components mapped to the range

(-1; 1). This is conducted easily by subtracting the mean value of the components from

each component, then dividing the resultant value by their standard deviation.

34

Table 2- Psuedo code of Gradient Ascent algorithm.

Initial

 𝑤 = 0, 𝛼 = 0, 𝑏 = 0

Iterate till convergence

 Loop1

 Read 𝑥𝑖 from memory

 Loop2

 Read 𝑥𝑗 , 𝛼𝑗 , 𝑦𝑗 from

memory

 Calculate 𝐾(𝑥𝑖 , 𝑥𝑗)
 Multiply

𝐾(𝑥𝑖, 𝑥𝑗). 𝛼𝑗 . 𝑦𝑗

 End loop2

 Update 𝛼𝑖
𝑛𝑒𝑤

 Check 𝛼𝑖
𝑛𝑒𝑤 satisfies constraint

 End loop1

 Update bias

Check for convergence

Figure 15 - Gradient Ascent training circuit block diagram.

35

4.2.2. Hardware Implementation

Figure 15 shows the architecture of the top level design of the Gradient Ascent (GA)

algorithm which consists of three main blocks: memory, controller and bias calculator.

Figure 16 - GA controller finite state machine.

Figure 17 - GA kernel calculation phases finite state machine.

The memory contains the values of 𝑦𝑖 , 𝛼𝑖 , 𝑥𝑖 , 𝑏, 𝛼𝑖
𝑛𝑒𝑤 and has separate input

data, output data, read address and write address ports. All these ports are drived by the

controller module. The memory is designed carefully and the data is arranged in it to

achieve minimum memory access times.

The controller is the main block in the architecture. It contains the main finite

state machine (FSM) that controls the flow of the data and the memory interface. Figure

16 shows the controller FSM noting that some states in the FSM contain other

embedded FSMs as will be explained later.

In INIT state, all variables are initialized and the memory read address is set. In

the Kernel calculation state, the value of the kernel function is calculated through many

phases as depicted in Figure 17.

In READ_I phase, the input vector 𝑥𝑖 is read from the memory. In READ_J, the

input vector 𝑥𝑗 is read form the memory. Then, the kernel function is calculated in

KERNEL_CALC phase. After the kernel calculation is conducted, the main controller

FSM is moved to the Kernel finalization state.

In the Kernel finalization state, the expression 𝑥𝑗 . 𝛼𝑗 is calculated and is

multiplied by the kernel function value and then the output is sent to be accumulated at

the bias calculator. The FSM of different phases of the Kernel finalization state is

portrayed in Figure 18. IN ADDRESS_YJ phase, the FSM generates the address of 𝑦𝑗 .

IN WAIT_FOR_MEM phase, the FSM generates the address of 𝛼𝑗 . Then the controller

reads the values of 𝑦𝑗 and 𝛼𝑗 in READ_YJ and READ_ALPHA respectively. IN

CALC_ALPHA_Y phase, the value 𝛼𝑗 . 𝑦𝑗 is calculated using an XOR gate. The value

36

𝛼𝑗 . 𝑦𝑗 .(𝑥𝑖 . 𝑥𝑗) is calculated in CALC_OUT phase using a multiplier. This vale is

passed to the top level module to be accumulated for different i's. In this phase, the

address of b is generated and sent to memory.

In WAIT_FOR_MEM2, READ_B,READ_YI and SEND_X phases, the FSM

reads the values of 𝛼𝑖, 𝑦_𝑖, b and passes them to the top level to be used in bias

calculation as the controller is the only unit that interfaces with the memory.

Different approximate computing techniques are used in implementing the

proposed GA training accelerators to reduce power consumption. First of all, fixed

point is used instead of the computationally expensive floating point. Using software

simulation results, a 16-bit word length is enough for achieving the same performance

(i.e., accuracy). Reducing the word length less than 16 bits achieves more power saving

with the cost of performance degradation. At a certain word length, the full dynamic

range of the bits should be used in order to achieve the highest accuracy for this

configuration. This requires a smart selection of the integer and fraction portions of the

fixed point word length.

Second, Computation skipping is used in different steps in the two algorithms

(i.e., multiplying by zero is skipped). As 𝛼 = 0 for all non support vector points, many

multiplication operations are skipped.

Finally, inaccurate arithmetic techniques are adopted in the hardware

accelerator implementations. Using inaccurate arithmetic operations introduces some

errors which are acceptable in a specific range. However, using this inaccurate

arithmetic operations saves a big chunk of energy. As multiplier are one of the most

power hungry blocks, the signed truncated multiplier proposed in [52] is utilized. The

signed truncated multiplier consumes less power than accurate multipliers by summing

an optimized partial products matrix (PPM). A truncated accumulation is used then

accumulating the whole output of the multiplier (i.e., the output of the multiplier is

truncated to the specified word length, than the accumulation operation is performed).

This also reduces the size/power of the needed accumulator and has a small impact on

accuracy. Sign and magnitude representation is used for negative numbers to facilitate

the multiplication by -1 which appears in the algorithm several times, therefore an XOR

implementation is utilized. Moreover, the step size is chosen to be multiples of 2 to use

an add-shift multiplier to reduce the power consumption.

37

Figure 18 - GA kernel finalization phases finite state machine.

4.3. Sequential Minimal Optimization (SMO)

4.3.1. Algorithm

The SMO algorithm was introduced and comprehensively explained by John Platt

[51]. The main idea of the SMO technique is to break any large QP problem into multiple

smaller ones. It solves the constrained quadratic programming problem efficiently as it

iteratively narrows the optimization problem to just two Lagrange multipliers in each

iteration. The selection of the two Lagrange multipliers to optimize the function value in

each iteration is performed heuristically. However, depending on the application, the

SMO algorithm scales somewhere between linear and quadratic with the number of the

data training set.

The SMO algorithm optimizes the objective function by jointly optimizing two

Lagrange multipliers. The fact that optimizing two Lagrange multipliers is performed

analytically makes the SMO algorithm advantageous. The SMO algorithm is summarized

in Table 3.

The SMO algorithm starts by selecting two Lagrange multipliers to optimize the

objective function and calculates the bounding values of the two Lagrange multipliers.

38

The bounding values of only two Lagrange multipliers are depicted in a 2-D square as in

Figure 19. On the left, the bounding square when 𝑦1 ≠ 𝑦2. Hence, 𝛼1 − 𝛼2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.
On the right, the bounding square when 𝑦1 = 𝑦2 . Hence, 𝛼1 + 𝛼2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . The

square sides represent the maximum and the minimum values of the Lagrange multipliers

while the diagonal line represents the values the two Lagrange multipliers are allowed to

take.

Table 3 - PSUEDO code of Sequential Minimal Optimization algorithm.

𝐼𝑛𝑖𝑡𝑖𝑎𝑙

 𝑤 = 0, 𝛼 = 0, 𝑏 = 0

𝐼𝑡𝑒𝑟𝑎𝑡𝑒 𝑡𝑖𝑙𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

 𝑆𝑒𝑙𝑒𝑐𝑡 𝑖 𝑎𝑛𝑑 𝑗
 𝑟𝑒𝑎𝑑 𝑥𝑖𝑎𝑛𝑑 𝑥𝑗𝑓𝑟𝑜𝑚 𝑚𝑒𝑚𝑜𝑟𝑦

 𝑐𝑎𝑘𝑐𝑢𝑙𝑎𝑡𝑒 𝑘𝑒𝑟𝑛𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝐾𝑖𝑖, 𝐾𝑖𝑗, 𝐾𝑗𝑗
 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟𝑠 𝐸𝑖, 𝐸𝑗
 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡𝑠 𝐿 𝑎𝑛𝑑 𝐻
 𝜂 = 2𝐾𝑖𝑗 − 𝐾𝑖𝑖 − 𝐾𝑖𝑗

𝛼𝑗
𝑛𝑒𝑤 = 𝛼𝑗

𝑜𝑙𝑑 +
𝑦𝑗(𝐸𝑗

𝑜𝑙𝑑 − 𝐸𝑗
𝑛𝑒𝑤)

𝜂

 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑖𝑎𝑠 𝑏

𝑐ℎ𝑒𝑐𝑘 𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑎𝑛𝑐𝑒

Figure 19 - The bounding values of two Lagrange multipliers.

Denoting the two Lagrange multipliers by: 𝛼
1
 𝑎𝑛𝑑 𝛼2, it is required to get the

new values for the two Lagrange multipliers 𝛼1
𝑛𝑒𝑤, 𝛼2

𝑛𝑒𝑤 from the old set of all

Lagrange multipliers {𝛼1
𝑜𝑙𝑑, 𝛼2

𝑜𝑙𝑑, 𝛼3, 𝛼4, … , 𝛼𝑁}, where 𝛼1
𝑜𝑙𝑑 , 𝛼2

𝑜𝑙𝑑 have the initial value

zero.

Given the constraint equation ∑ 𝛼𝑖. 𝑦𝑖 = 0𝑁
𝑖=1 , the following condition is derived:

39

𝑦1𝛼1
𝑛𝑒𝑤 + 𝑦2𝛼2

𝑛𝑒𝑤 = 𝑦1𝛼1
𝑜𝑙𝑑 + 𝑦2𝛼2

𝑜𝑙𝑑

Following the derivations in [51], 𝛼
𝑗

𝑛𝑒𝑤
 is obtained by the following equation:

𝛼
𝑗

𝑛𝑒𝑤
= 𝛼𝑗

𝑜𝑙𝑑 +
𝑦𝑗(𝐸𝑗

𝑜𝑙𝑑 − 𝐸𝑗
𝑛𝑒𝑤)

𝜂

Where 𝐾𝑖𝑖 = 𝑥𝑖
𝑇 . 𝑥𝑖,

𝐾𝑗𝑗 = 𝑥𝑗
𝑇 . 𝑥𝑗 ,

𝐾𝑖𝑗 = 𝑥𝑖
𝑇 . 𝑥𝑗 ,

𝜂 = 2𝐾𝑖𝑗 − 𝐾𝑖𝑖 − 𝐾𝑗𝑗 ,

𝐸𝑖 = 𝑤𝑇𝑥𝑖 − 𝑏 − 𝑦𝑖.

Referring to the constraints depicted in Figure 19, 𝛼
𝑗

𝑛𝑒𝑤
 is clipped to be in the feasible

range. Therefore, 𝛼
𝑗

𝑛𝑒𝑤,𝑐𝑙𝑖𝑝𝑝𝑒𝑑
 is obtained by:

𝛼
𝑗

𝑛𝑒𝑤,𝑐𝑙𝑖𝑝𝑝𝑒𝑑
=

{

𝐻, 𝛼 ≥ 𝐻

𝛼𝑗
𝑛𝑒𝑤, 𝐿 ≤ 𝛼𝑗

𝑛𝑒𝑤 ≤ 𝐻

𝐿, 𝛼 ≤ 𝐿 }

And therefore, 𝛼
𝑖

𝑛𝑒𝑤
 is calculated as follows:

𝛼
𝑖

𝑛𝑒𝑤
= 𝛼𝑖

𝑜𝑙𝑑 + 𝑡(𝛼𝑗
𝑜𝑙𝑑 − 𝛼𝑗

𝑜𝑙𝑑,𝑐𝑙𝑖𝑝𝑝𝑒𝑑)

Where 𝑡 = 𝑦𝑖. 𝑦𝑗

4.3.2. Hardware implementation

 In order to keep the architecture generalized for any heuristic model of selecting

Lagrange multiplier, the SMO training architecture is divided into three main blocks;

the SMO processing unit, the SMO controller and the main memory as shown in

40

Figure 20 - Sequential Minimal Optimization training circuit block diagram.

4.3.2.1. The SMO Processing Unit

The SMO processing unit is responsible for calculating the new values of the two

previously selected Lagrange multiplier. Figure 21 shows the building blocks of the SMO

processing unit.

1- Register file

In order to speed up the processing and avoid the repeated memory access,

some variables are cached in a register file to be processed later by the other SMO

processing unit blocks. The variables chosen to be cached in the register file are

𝛼𝑖, 𝛼𝑗 , 𝑦𝑖 , 𝑦𝑗 , 𝐵, 𝛼𝑖
𝑛𝑒𝑤, 𝛼𝑗

𝑛𝑒𝑤, 𝐸𝑖 , 𝐸𝑗 .

2- Kernel function

The calculation of η requires the calculation of the two Lagrange multiplier self

and cross kernel. Hence, the kernel function unit calculates the value of the

𝑘𝑖𝑖 , 𝑘𝑗𝑗 , 𝑘𝑖𝑗 simultaneously. After receiving the index of current Lagrange

multipliers, the kernel function unit reads from the memory the value of the two

Lagrange multipliers and pass them to three multiply-add units as shown in Figure

22. In the case of polynomial kernel instead of the linear one, the design also have

an adder to add 1 to each K then use a multiplier to raise the value to the

polynomial degree in multiple clocks. The kernel function unit includes an internal

controller to manage the iterative process of reading the Lagrange multiplier and

updating the kernels value.

41

Figure 21 - SMO processing unit block diagram.

42

Figure 22 - kernel function block diagram.

3- Learned function

Learned function is used to calculate 𝑤𝑇𝑥 or ∑ 𝛼𝑖 . 𝑦𝑖. 𝐾(𝑥𝑖 , 𝑥𝑗)
𝑛
𝑖=1 which is used

in calculating the error E. By expanding the equation ∑ 𝛼𝑖. 𝑦𝑖. 𝐾(𝑥𝑖 , 𝑥𝑗)
𝑛
𝑖=1 , the

pseudo in Table 2 is obtained.

Table 4 - Learned function PSUEDO code.

𝑓𝑜𝑟 𝑗 = 1:𝑁
 𝑓𝑜𝑟 𝑑 = 1: 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠
 𝑘 = 𝑘 + 𝑥𝑖,𝑑𝑥𝑗,𝑑

 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝛼𝑖𝑦𝑖𝑘
𝑓𝑢𝑛𝑐 = 𝑠𝑢𝑚

The implementation requires two multiply-add units; one to calculate the kernel

and the other to update the learned function. However, since the two calculation is

dependent, one multiply-add unit is shared to calculate both values.

43

The FSM of the learned function is shown clearly in Figure 23. In the

first state, 𝛼𝑖 is read. If 𝛼𝑖 ≠ 0 , the FSM is moved to the kernel calculation

state. Then, 𝑦𝑗 is read to update the learned function value.

Figure 23 - Learned function FSM.

4- Bias calculator

The change in the threshold is computed by forcing 𝐸𝑖
𝑛𝑒𝑤 to be zero if

0 < 𝛼𝑖
𝑛𝑒𝑤 < 𝐶 and then

𝑏1 = 𝐸𝑖 + 𝑦𝑖 . ∆𝛼𝑖 . 𝑘𝑖𝑖 + 𝑦𝑗 . ∆𝛼𝑗. 𝑘𝑖𝑗 + 𝑏

Where ∆𝛼𝑖 = 𝛼𝑖
𝑛𝑒𝑤 − 𝛼𝑖 ,

∆𝛼𝑗 = 𝛼𝑗
𝑛𝑒𝑤 − 𝛼𝑗

Otherwise, the threshold is computed by forcing 𝐸𝑗
𝑛𝑒𝑤 to be zero if

0 < 𝛼𝑖
𝑛𝑒𝑤 < 𝐶 and then

𝑏2 = 𝐸𝑗 + 𝑦𝑖 . ∆𝛼𝑖 . 𝑘𝑖𝑗 + 𝑦𝑗 . ∆𝛼𝑗 . 𝑘𝑗𝑗 + 𝑏

Finally, the new bias is calculated as follows:

𝑏 =

{

𝑏1, 0 < 𝛼𝑖

𝑛𝑒𝑤 < 𝐶

𝑏2, 0 < 𝛼𝑗
𝑛𝑒𝑤 < 𝐶

𝑏! + 𝑏2
2

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}

44

Figure 24 shows clearly the FSM of bias calculator which consists of different

states: calculate b1, calculate b2 then choose one of them or their average.

Figure 25 illustrates the implementation of the bias calculator unit. The unit is

implemented using only two multipliers, four adders, and three intermediate registers

A, B, and b1.

Figure 24 - Bias calculator FSM.

To exploit the similarities between equations of calculating 𝑏1𝑎𝑛𝑑 𝑏2, they can be

rewritten as:

𝑏1 = 𝐸1 + 𝑇1 + 𝑇2 + 𝑏

𝑏2 = 𝐸2 + 𝑇3 + 𝑇4 + 𝑏

Where 𝑇1 = 𝑦𝑖. ∆𝛼𝑖. 𝐾𝑖𝑖,
𝑇2 = 𝑦𝑗 . ∆𝛼𝑗 . 𝐾𝑖𝑗,

𝑇3 = 𝑦𝑖. ∆𝛼𝑖. 𝐾𝑖𝑗,

and 𝑇4 = 𝑦𝑗 . ∆𝛼𝑗 . 𝐾𝑗𝑗 .

45

Figure 25 - Bias calculator hardware implementation block diagram.

Noticing the similarity between T1 and T3, only one multiplier is used to calculate

∆𝛼𝑖. 𝑘𝑖𝑖 and ∆𝛼𝑖. 𝑘𝑖𝑗, and therefore the values of 𝑇1 and 𝑇3. Based on the condition 0 <

 𝛼𝑖
𝑛𝑒𝑤 < 𝐶 and the condition 0 < 𝛼𝑗

𝑛𝑒𝑤 < 𝐶 , either 𝑘𝑖𝑖 or 𝑘𝑖𝑗 is selected to be an

input to the multiplier. If both conditions are satisfied, both 𝑏1 and 𝑏2 gives the same

value. In the proposed hardware implementation, the priority is given to 𝑏1 to reduce

the hardware complexity. Therefore, the value of register A is calculated. The fact that

y has a unity value, with positive or negative sign, and adopting the sign and magnitude

representation, results in reducing the multiplication of y to a single XOR gate between

y sign and the multiplicand sign. Similarly, 𝑇2 and 𝑇4 calculations require only one

multiplier and then the value of B register is obtained in parallel with the calculation of

the register A. If both conditions are not satisfied, the calculation is carried out to

determine the value of 𝑏1 , then the process is repeated to determine the value of 𝑏2 and

finally the value of 𝑏! and 𝑏2 are averaged.

5- Limits calculator

The value of the lower band L and the upper band H depends on the slope in

Figure 19. Therefore the value of the limits is obtained as follows:

𝑖𝑓 𝑦𝑖 ≠ 𝑦𝑗 → 𝐿 = max(0, 𝛼𝑗 − 𝛼𝑖) , 𝐻 = min (𝐶, 𝐶 + 𝛼𝑗 − 𝛼𝑖)

𝑖𝑓 𝑦𝑖 = 𝑦𝑗 → 𝐿 = max(0, 𝛼𝑗 + 𝛼𝑖 − 𝐶) ,𝐻 = min (𝐶, 𝛼𝑗 + 𝛼𝑖)

Again, comparing 𝑦𝑖 and 𝑦𝑗 is done using a single XOR gate. From the previous

equations of L and H, L and H take on the values 0, C , 𝛼𝑗 ± 𝛼𝑖 , or 𝛼𝑗 ± 𝛼𝑖 ± 𝐶 .

Therefore, only two adders are required to calculate L and H, while the signs are

46

determined using XOR gates. To further understand the implementation, the limits

calculation process is described using the pseudo code in Table 5.

In the first part, the first adder is adjusted to add 𝛼𝑗 – 𝛼𝑖 and the second adder is

adjusted to add C to the output of the first adder, (i.e., + 𝛼𝑗 – 𝛼𝑖) . Then a multiplexer

is used to select between the values 0 and 𝛼𝑗 – 𝛼𝑖 for L, and the values C and 𝐶 +

 𝛼𝑗 – 𝛼𝑖 for H.

In the second part, the first adder is adjusted to add 𝛼𝑗 + 𝛼𝑖 and the second adder

is adjusted to add −𝐶 to the output of the first adder, (i.e., 𝛼𝑗 + 𝛼𝑖 − 𝐶) . Then a

multiplexer is used to select between the values 0 and 𝛼𝑗 + 𝛼𝑖 − 𝐶 for L, and the

values C and 𝛼𝑗 + 𝛼𝑖 for H. The sign adjustment of 𝛼𝑖 and C is controlled by

examining if 𝑦𝑖 ≠ 𝑦𝑗 . This examine is performed using an XOR gate. Accordingly,

the sign of 𝛼𝑖 and C is altered by another two XOR gates. Noting that the cases when 𝛼𝑖
is required to be negative is the same cases when C is required to be positive. That is

why a NOT gate is added to the sign of C as shown in Figure 26.

Table 5 - Limits calculator PSUEDO code.

 𝑖𝑓 𝑦𝑖 ≠ 𝑦𝑗 𝑡ℎ𝑒𝑛

 𝑖𝑓 𝛼𝑗 − 𝛼𝑖𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡ℎ𝑒𝑛

 𝐿 = 𝛼𝑗 − 𝛼𝑖

 𝐻 = 𝐶

 𝑒𝑙𝑠𝑒 𝑡ℎ𝑒𝑛

 𝐿 = 0

 𝐻 = 𝛼𝑗 − 𝛼𝑖 + 𝐶

 𝑒𝑛𝑑 𝑖𝑓

𝑒𝑙𝑠𝑒 𝑡ℎ𝑒𝑛

 𝑖𝑓 𝛼𝑗 + 𝛼𝑖 − 𝐶 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡ℎ𝑒𝑛

 𝐿 = 𝛼𝑗 + 𝛼𝑖 − 𝐶

 𝐻 = 𝐶

 𝑒𝑙𝑠𝑒 𝑡ℎ𝑒𝑛

 𝐿 = 0

 𝐻 = 𝛼𝑖 + 𝛼𝑗

 𝑒𝑛𝑑 𝑖𝑓

𝑒𝑛𝑑 𝑖𝑓

47

Figure 26 - Limits calculator block diagram.

6- Memory interface

The memory interface is responsible for receiving the requests for the memory

read and write operations and handling the memory access separately by different

blocks, which increases the memory access parallelism.

7- Controller

This unit controls the other units by initiating a triggering signal for each unit

and manages the data flow between them. Figure 27 summarizes the control state

machine of the control unit.

4.3.2.2. The SMO controller

The SMO controller is responsible for selecting the two Lagrange multipliers and

controls the SMO processing unit. The SMO controller keeps iterating over Lagrange

multipliers till conversion happens or the maximum number of iterations is exceeded.

Compared to the SMO processing unit, the SMO controller hardware is simpler and

consumes less area.

The same approximate computing techniques used in the hardware implementation

of the GA accelerator are also adopted in the hardware implementation of the SMO

accelerator. Fixed point arithmetic, computation skipping, inaccurate arithmetic and

sign/ magnitude implementation is used in the proposed implementation.

48

Figure 27 - SMO processing unit FSM.

4.4. Simulation Setup

The SVM training accelerators techniques implemented in this paper are tested first

on MATLAB2016a. EEG signals of patients are first processed, then the features that

give the best performance are extracted. Then, the training and testing data are used to

verify the performance of the training algorithms. The proposed training techniques are

software implemented on MATLAB to measure the performance. Xilinx ISE 14.2 is

utilized to design and develop the VLSI architecture of the algorithms. The design is

synthesized on Xilinx Spartan-6 FPGA. For the implementation on ASIC, Synopsys

DesignCompiler (DC) B-2008.09 with UMC 130nm library is adopted.

Results are collected in two main phases. The first phase is evaluating the

performance simulation results. The second phase is calculating the hardware

implementation metrics such as area, power and maximum frequency for both ASIC and

FPGA implementations.

4.5. Simulation Results

After implementing both SVM training algorithms –GA and SMO- on MATLAB

2016a, both algorithms are tested with linear kernel and their results are shown in Table

6. The performance of both algorithms are almost the same. They both achieve sensitivity

equals to 96%.

49

The performance obtained by the proposed architectures is also compared to the

performance achieved by prior work as shown in Table 7. It is obvious that the sensitivity

obtained by the proposed architectures is equal to and exceeds that achieved by the prior

work. This results obtained despite using linear kernel while most of the prior work used

Radial Basis Function (RBF) kernel. This saves much energy as the linear function kernel

is less complex than the RBF kernel and needs less computations.

Table 6 - Performance measurement for seizure detection using different SVM

training techniques.

Algorithm Sensitivity Specificity Accuracy

GA 95.8 92.34 92.35

SMO 96.0 97.9 97.9

Table 7 - Performance comparison to prior work.

Method Kernel Type Sensitivity

[25] RBF 95%

[26] RBF 97%

[53] RBF 94.5%

Proposed Linear 96.7%

4.6. Hardware Implementation Results

The hardware implementations of SVM learning circuit are presented on both FPGA

and ASIC platforms. Table 8 shows the ASIC implementation results using UMC 130nm

where both techniques use a clock frequency equals to 100 𝑀𝐻𝑧. Table 8 shows area,

power and the number of clock cycles that each algorithm takes to finish training. As

power consumption is not a good comparison metric, power delay product is calculated

as the product of power consumption of each technique and the number of clock cycles

needed to finalize training.

Table 9 lists the resources used in Xilinx Spartan-6 FPGA such as LUTs and registers

slices. Table 9 also tabulates the dynamic power consumption of each algorithm and the

power delay product (PDP). PDP is calculated as the multiplication of dynamic power

with the number of clock cycles needed to finish training.

50

Table 8 - Hardware implementation results of SVM training algorithms on UMC

130nm platform.

Algorithm Area (𝒏𝒎𝟐) Power (𝝁𝑾) # training

cycle

PDP

GA 18143 463 150K 69.45

SMO 43259 910 30K 27.3

Table 9 - Hardware implementation results of SVM training algorithms on

Spartan-6 FPGA platform.

Algorithm Utilization Power

(𝒎𝑾)
PDP

LUTs Registers

GA 661 535 6 900

SMO 3360 566 17.2 516

Table 8 shows the comparison between the implementation of both algorithms on

ASIC platform in area and power consumption. It is obvious that the GA implementation

consumes less area and instantaneous power than that consumed by the SMO

implementation. However, the large number of clock cycles needed for the GA algorithm

to finalize training makes the energy consumed by the GA algorithm is more than that

consumed by the SMO algorithm. It is so clear that the time required by the GA algorithm

to finalize training is 5x the time required by the SMO algorithm.

In Table 9, it is obvious that the GA algorithm has the advantage of less utilization,

higher maximum frequency and less power consumption than the SMO algorithm.

However, the main disadvantage of the GA algorithm is the large required number of

clock cycles for training, which reaches up to 150,000 compared to 30,000 clock cycles

only for the SMO algorithm. The utilization used by the SMO accelerator is less than that

achieved by [34].

51

Chapter 5 : Design of Classifiers

As mentioned in the introduction and literature review, many machine learning

techniques are used to detect seizure. Two different techniques are proposed and

hardware implemented for classification and their performance for neural seizure

detection is measured. The two techniques are Support Vector Machine (SVM) and

Artificial Neural Networks (ANN). Both algorithms are discussed in details in the

following to sections.

5.1. Support Vector Machine (SVM) Classifier

5.1.1. Algorithm

After the completion of training phase, the classification phase starts. For any input

vector 𝑥𝑡𝑒𝑠𝑡 , by substituting in the following formula using the final value of 𝛼's and b ,

the corresponding class 𝑦𝑡𝑒𝑠𝑡 is calculated as follows:

𝑦𝑡𝑒𝑠𝑡 =∑𝛼𝑗𝑦𝑗𝑥𝑡𝑒𝑠𝑡𝑥𝑗 + 𝑏

𝑛

𝑗=1

5.1.2. Hardware implementation

The training of SVM is done offline or using the hardware accelerator proposed

in Chapter 4. Hence, only the SVM classifier needs to be hardware implemented. Figure

28 shows the architecture of the top level design of the SVM classifier which consists of

6 main block: three ROM blocks, classifier block and inner product block.

The first ROM block is used to save the input vectors of the support vector points.

The width of this ROM is the same as the data width, while the depth equals to the

number of support vectors multiplied by the number of the classification problem

dimensions.

The second ROM block is used to save the values of non-zero 's. The width of this

ROM is the same as the data width, while the depth equals to the number of support

vectors.

The third ROM block is used to save the values of the true labels of the support

vector points. The width of this ROM is one bit, while the depth is the number of

support vectors.

The finite state machine (FSM) is responsible for generating the addresses of the

three ROMs and the enable signal of classifier block.

The classifier block is the main block of the architecture. First, each 𝛼 is multiplied

by its corresponding label 𝑦. As the implementation used for negative numbers is sign-

52

magnitude implementation, the multiplication is performed using an XOR gate instead

of a multiplier. The value of 𝛼𝑖. 𝑦𝑖 is saved in a register. An inner product block of size

equal to the number of dimensions is used to multiply the input test vector with the

input vector of the 𝑖𝑡ℎ support vector point. The output of the classifier block is fed to

the inner product block to calculate the class.

The inner product block is a multiple-add block with only one adder and one

multiplier that multiply two vectors of size equal to the number of non-zero 𝛼's. The

output of this block is the class and a valid out signal.

In the hardware implementation of SVM classifier, fixed point simulation is used.

Using software simulation results, it is found that a 16-bit word length is enough for

achieving the same performance (i.e., accuracy). Same as that used in the training

accelerators, computation skipping is adopted to save more power/ area.

Figure 28 - Top level SVM classifier block diagram.

5.2. Artificial Neural Network (ANN)

5.2.1. Algorithm

Over the past twenty years, many methods inspired by the understanding of the

structure and function of the biological neural networks are evolved. One of these

methods is the artificial neural network (ANN) [54]. Neural networks are used in various

applications such as classification, pattern recognition, and data analysis [55]. ANN

mainly consists of an input layer, one or more hidden layers and one output layer as

shown in Figure 29. Each layer consists of multiple neurons and different weights are

given to the connections among these neurons. Each neuron in the input layer takes in

53

one data source. The output of each input layer neuron is the input for each of the hidden

layer neurons [56].

Finding the weight of each neuron is performed in the training phase. After the neural

network is trained, any new input vector is fed to the input layer. The value of each node

is calculated by multiplying the input node value by the connection weight and adding

all the values entering this node. To detect seizure and differentiate between seizure and

non-seizure epochs, the architecture of the ANN used is a single hidden layer with 10

neurons. The activation function used is the Sigmoid function.

For any new data point, the data point is submitted to the input layer. The value of

each node in the first hidden layer thorough add-multiply operation. This procedure is

performed with all nodes in all hidden layer until the value of output layer node is

calculated.

Figure 29 - Three layer feedforward network architecture.

5.3. Hardware implementation

The architecture of the ANN classifier consists of ROM block, two RAM blocks,

four counters, neuron block and finite state machine as shown in Figure 30.

A ROM block is used to save the weights of each connection. A single data port

RAM is used to save the values of each node (neuron) of the hidden layer. A double data

port RAM is used to save the values of each node of the input layer. Four counters are

used to generate the addresses of the ROM, single data port RAM and double data port

RAM. The neuron block is a multiply-accumulate block that consists of multiplier, adder,

register and activation function block. The activation function used is the Sigmoid

function and is implemented as a combinational circuit. The FSM is responsible for

controlling the overall system.

54

Different approximate computing techniques are used in implementing the proposed

ANN. First of all, fixed point is used instead of the computationally expensive floating

point. Using software simulation results, a 16-bit word length is enough for achieving the

same performance (i.e., accuracy, in ANNs). Reducing the word length less than 16 bits

achieves more power saving with the cost of performance degradation. Another

technique for energy saving is the adoption of approximate implementation of the

activation functions. For example, instead of implementing the exponential function for

calculating the Sigmoid function, a Piece-Wise Linear (PWL) approximation is used to

reduce the power consumption.

Figure 30 - Top level ANN classifier block diagram.

5.4. Modified ANN

The ANN can achieve a good performance. However, the problem of the ANN is

that the decision made in each time epoch is an instantaneous decision. Only the features’

values at this time epoch affect the classification output. The task of seizure detection is

an accumulative task. The history of the features’ values in the previous time epochs can

affect the classification. To do so, the single hidden layer used can be a recurrent layer.

Recurrent layer has a backward connection. This backward connection means that the

output of the nodes in the hidden layer serves as input for the same hidden layer on the

next time epoch as shown in Figure 31 and Figure 32. This sort of feedback serves as

memory to save the output of the hidden layer in the previous time epochs.

55

The weight of the backward connection from the hidden layer to the input of the

same layer is constant through different time epochs. This weight (𝑊ℎℎ) can take one of

three different values:

1- 𝑊ℎℎ < 1

2- 𝑊ℎℎ ≈ 1

3- 𝑊ℎℎ > 1

In this case, the 𝑊ℎℎ is chosen less than <1; the memory of the network is limited

over time. Hence, the oldest neuron value vanishes over time.

Figure 31 - ANN feadforward architecture.

Figure 32 - RNN architecture.

The only difference in hardware implementation is adding a FIFO to the hidden layer

to save the output of the hidden layer for the last n outputs to serve as an input in this

timestamp.

5.5. Simulation Setup

Both classifiers are software implemented using MATLAB 2016a to measure the

performance of each algorithm. The design is synthesized on Xilinx Spartan-6 FPGA.

For the implementation on ASIC, Synopsys Design Compiler (DC) B-2008.09 with

UMC 130nm library is adopted.

Results are collected in two main phases. The first phase is evaluating the

performance simulation results. The second phase is calculating the hardware

implementation metrics such as area, power and maximum frequency for both ASIC and

FPGA implementations.

56

5.6. Simulation Results

As shown in Table 10, a comparison between SVM and ANN classifier is performed.

The SVM chosen is a linear kernel SVM. The ANN is designed with only one hidden

layer with 10 neurons. The two algorithms with the chosen parameters give almost the

same performance. This makes the comparison of the power, area and energy as fair as

possible.

The appropriate choice of the applied features helps in achieving very high

sensitivity using linear kernel in the SVM and using only one hidden layer with only 10

neurons in the hidden layer. This performance exceeds that obtained by Yuan et al. by

using SVM with radial basis function (RBF). Yuan et al. got sensitivity ranging from

73.5% to 95% using different features [25].

Table 10 - Performance measurement for seizure detection using different

classification techniques.

Algorithm Sensitivity Specificity Accuracy

SVM 96.23 92.90 97.89

ANN 96.5 97.88 97.88

5.7. Hardware Implementation Results

Table 11 shows the hardware implementation results of SVM and ANN

classification techniques on ASIC platform. The library UMC 130nm is adopted. In Table

11, it is obvious that the SVM algorithm has the advantage of less utilization, higher

maximum frequency and less power consumption than the ANN algorithm. However,

the main disadvantage of the SVM algorithm is the large required number of clock cycles

to classify every new data point, which reaches up to 1020 clock cycle compared to 30

clock cycle only for the ANN algorithm. This very large number of clock cycle is due to

the fact that neural seizure detection problem is a very complex one. Hence, the SVM

technique has many support vectors and the inner product occurs for every testing point

is very large. However in the case of ANN, only the output of each node is calculated

through an add-multiply block. As the throughput of each algorithm is different, power

consumption is not a good comparison metric. Hence, power delay product is calculated.

Although SVM algorithms consumes less power than the ANN algorithm, the power

delay product is much larger.

Table 12 shows the same comparison between the implementation of SVM and ANN

classifiers on Spartan-6 FPGA platform. The instantaneous power consumption of the

GA algorithm is less than that consumed by the SMO algorithm. However, the energy

consumption of the GA is much larger than that consumed by the SMO algorithm due to

the large number of clock cycles needed by SVM to finalize classification of each testing

point.

57

Table 11 - Hardware implementation results of different classification techniques

on UMC 130nm platform.

Algorithm Area (𝒏𝒎𝟐) Power (𝝁𝑾) # cycles PDP

SVM 3963 2.15 1020 2193

ANN 16040 8.08 30 242.4

Table 12 - Hardware implementation results of different classification techniques

on Spartan-6 FPGA platform.

Algorithm Utilization Power

(𝒎𝑾)
PDP

LUTs Registers

SVM 293 137 1 1020

ANN 401 256 3 90

58

Chapter 6 : Rats Dataset Generation

The PhysioNet data set used in this work has some drawbacks. The first drawback

is the limited number of seizures recorded for each patient which makes the training

process very difficult. To enhance the overall performance of the seizure detection, more

seizure epochs should be recorded for each patient. The second drawback is the

unbalanced data. The number of time epochs which have seizure are much less than those

which do not have seizure. To solve this problem, a new dataset is measured from rats.

This dataset collected in collaboration with the Faculty of Science, Cairo

University and ONE lab. The dataset consists of EEG recordings from rats during ictal

and inter-ictal periods. Subjects were injected with drugs that cause temporary seizures.

Subjects were monitored for one hour: before, during and after the ictal seizure.

Recordings are measured from 13 different rats. Weights of the rats varies from 90

to 150 gm. Each animal data is exported to an excel sheet that contains the value of the

EEG signal in each time sample.

A surgery was performed for each rat to implant 3 electrodes on the cortex lobe.

The surgery performed is shown in Figure 33.

After implanting the electrodes in the rats’ cortex as shown in Figure 33-j, the

measurement equipment is set up. A commercial EEG instrumentation amplifier is

used. The amplifier used is Colbourn instruments’ LabLinc V system shown in Figure

34. This system consists of power base, signal acquisition unit, signal processing unit,

power amplifier and computer interface module. The system is so modular, as it

consists of different modules. Each module has multiple channels and different number

of modules can be connected vertically. In this experiment, only one module is used as

2 only channels are adopted. The module used is V75-08 module which consists of 4-

channel EEG amplifier. A National Instruments NI 6030E interface card is used to

interface the LAbLinc V amplifier with the pc. The card has up to 16 analog input

channels, only 2 of them are used. The resolution of the acquisition, measurement,

amplification and interfacing modules are 12 bits.

The software used for acquisition of the measured EEG signal, record it and export

it in excel sheet is a BioBench based software. The software reads the data from each

channel of the NI card and stores them in an excel sheet with the corresponding time

frame.

Figure 35 shows a life experiment for EEG signal recording from one of the rats.

The recorded EEG signals from the all 13 rats are preprocessed and organized in 13

different excel sheet, a different one for each rat.

59

(a)

(b)

60

(c)

(d)

61

(e)

(f)

62

(g)

(h)

63

(i)

(j)

Figure 33 - Electrodes implantation surgery on rats.

64

Figure 34 - LabLinc V system

(a)

65

(b)

Figure 35 - EEG reading experiment.

The EEG is recorded for the 13 rats in both ictal and inter-ictal periods. These EEG

signals are the start of the new rats’ dataset as shown in Figure 36.

66

Figure 36 - Sample of the recorded rats EEG.

67

Conclusions and Future work

In this research, the problem of neural seizure detection problem is addressed. An

automatic seizure detection system is proposed with a very-high efficiency.

As Feature extraction and selection is a key metric in enhancing the performance of

classifier. More than 1100 combinations are tested with linear kernel SVM. Each

combination consists of 3 features. 126 combinations of them give sensitivity between

90 and 95%. 25 combinations of them give sensitivity more than 95%, while the

specificity and accuracy are more than 96% for all combinations. This result equals to

and exceeds that achieved by prior work however using linear kernel function instead of

the RBF kernel used in these prior work [25], [26], [53]. After exhaustive search, it is

found that fractal dimension, Hurst exponent and coastline combination is the best

combination that achieved sensitivity up to 96.77 % using linear kernel SVM classifier.

As the SVM learning process is a very complex process especially with the large

problems like neural seizure detection, a hardware accelerator for SVM training is

proposed. The training is accelerator using two different algorithms: Gradient ascent and

Sequential Minimal Optimization. The implemented hardware are proposed to be used

as accelerators IP especially in the problems with large training examples. The proposed

accelerators achieved a sensitivity up to 96% using linear kernel function. It is found that

the GA accelerator consumes less power and area than the SMO accelerator. However,

the GA accelerator takes 5x clock cycles to finish training more than the SMO

accelerator. That makes the GA accelerator more energy hungry than the SMO

accelerator.

Then, a hardware implementation of different classifiers techniques are proposed.

The proposed techniques are support vector machine (SVM) and artificial neural network

(ANN). The proposed SVM is chosen with linear kernel function. On the other hand, the

ANN classifier is designed with single hidden layer with 10 neurons in the hidden layer.

The ANN and SVM classifiers parameters are chosen to achieve the same performance

from both classifiers. For the same performance, the ANN classifier consumes less

energy than the SVM classifier for each input vector. However, the instantaneous power

consumed in the ANN classifier is more than that of the SVM classifier. This is due to

the very large number of clock cycles needed by the SVM classifier to finalize classifying

for any input vector compared to the ANN classifier.

Moreover, an effort was done to generate a new EEG dataset for rats that can be used

to detect seizures in collaboration with the Faculty of Science, Cairo University and ONE

lab. A DBS surgery was performed for 13 rats and depth electrodes were implanted on

their cortex. The rats are injected with a specific dose of drugs that cause the rats to have

a temporarily epileptic seizure. Some commercial EEG amplifiers were used to measure,

amplify and record these EEG signals. The signals measured from the different rats

before, during and after the seizure periods are shown in Figure 36.

As extension to this work, the following points are recommended for the future work:

- More optimizations can be done on the proposed hardware implementations to

save more energy

68

- The dataset extracted from rats should be tested against the proposed system.

- Using the DPR capabilities of the FPGA to enhance the utilization and

performance of the system.

69

References

[1] D. Pfaff and N. Volkow, Neuroscience in the 21st century: from basic to clinical,

Springer, 2016.

[2] A. Varsavsky, M. Iven and C. Mark, Epileptic seizures and the EEG:

measurement, models, detection and prediction, CRC Press, 2016.

[3] T. A. Ketter, R. M. Post and W. H. Theodore., "Positive and negative psychiatric

effects of antiepileptic drugs in patients with seizure disorders," Neurology, vol.

53, pp. S53--67, 1999.

[4] M. S. Berger, J. Kincaid, G. A. Ojemann and E. Lettich, "Brain mapping

techniques to maximize resection, safety, and seizure control in children with

brain tumors," Neurosurgery, vol. 25, pp. 786-792, 1989.

[5] F. L. da Silva, W. Kamphuis, M. Titulaer, M. Vreugdenhil and W. Wadman, "An

experimental model of progressive epilepsy: the development of kindling of the

hippocampus of the rat," The Italian Journal of Neurological Sciences, vol. 16,

pp. 45-57, 1995.

[6] P. Boon, R. Raedt, V. De Herdt, T. Wyckhuys and K. Vonck, "Electrical

stimulation for the treatment of epilepsy," Neurotherapeutics, vol. 6, pp. 218-227,

2009.

[7] S. C. Schachter and C. B. Saper, "Vagus nerve stimulation," Epilepsia, vol. 39,

pp. 677-686, 1998.

[8] J. V. Murphy and A. A. Patil, "Stimulation of the nervous system for the

management of seizures," CNS drugs, vol. 17, pp. 101-115, 2003.

[9] A. Marquez, M. Dunn, J. Ciriaco and F. Farahmand, "iSeiz: A low-cost real-time

seizure detection system utilizing cloud computing," in Global Humanitarian

Technology Conference (GHTC), 2017.

[10] A. Ghosh, A. Sarkar, T. Das and P. Basak, "Pre-ictal epileptic seizure prediction

based on ECG signal analysis," in Convergence in Technology (I2CT), 2017.

[11] J. a. P. R. Malmivuo, Bioelectromagnetism: principles and applications of

bioelectric and biomagnetic fields, Oxford University Press, USA, 1995.

70

[12] C. J. Chu, "High density EEG—What do we have to lose?," Clinical

neurophysiology: official journal of the International Federation of Clinical

Neurophysiology, vol. 126, p. 433, 2015.

[13] S. V. Pacia and J. S. Ebersole, "Intracranial EEG substrates of scalp ictal patterns

from temporal lobe foci," Epilepsia, vol. 38, pp. 642-654, 1997.

[14] J. L. Cantero, M. Atienza, R. Stickgold, M. J. Kahana, J. R. Madsen and B.

Kocsis, "Sleep-dependent θ oscillations in the human hippocampus and

neocortex," Journal of Neuroscience, vol. 23, pp. 10897-10903, 2003.

[15] S. Palva and J. M. Palva, "New vistas for α-frequency band oscillations," Trends

in neurosciences, vol. 30, pp. 150-158, 2007.

[16] M. H. Libenson, Practical Approach to Electroencephalography E-Book, 2012.

[17] S. Blanco, S. Kochen, O. Rosso and P. Salgado, "Applying time-frequency

analysis to seizure EEG activity," IEEE Engineering in medicine and biology

magazine, vol. 16, pp. 64-71, 1997.

[18] J. McCarthy and E. A. Feigenbaum, "In memoriam: Arthur samuel: Pioneer in

machine learning," AI Magazine, vol. 11, p. 10, 1990.

[19] A. L. Samuel, "Some studies in machine learning using the game of checkers,"

IBM Journal of research and development, vol. 3, pp. 210-229, 1959.

[20] U. R. Acharya, S. V. Sree, G. Swapna, R. J. Martis and J. S. Suri, "Automated

EEG analysis of epilepsy: a review," Knowledge-Based Systems, vol. 45, pp.

147-165, 2013.

[21] B. Hunyadi, M. Signoretto, W. Van Paesschen, J. A. Suykens, S. Van Huffel and

M. De Vos, "Incorporating structural information from the multichannel EEG

improves patient-specific seizure detection," Clinical Neurophysiology, vol. 123,

pp. 2352-2361, 2012.

[22] J. Wackermann, "Beyond mapping: estimating complexity of multichannel EEG

recordings.," Acta neurobiologiae experimentalis, vol. 56, pp. 197-208, 1996.

[23] R. J. Croft and R. J. Barry, "Removal of ocular artifact from the EEG: a review,"

Neurophysiologie Clinique/Clinical Neurophysiology, vol. 30, pp. 5-19, 2000.

[24] A. Van Boxtel, "Optimal signal bandwidth for the recording of surface EMG

activity of facial, jaw, oral, and neck muscles," Psychophysiology, vol. 38, pp.

22-34, 2001.

71

[25] Q. Yuan, W. Zhou, S. Li and D. Cai, "Epileptic EEG classification based on

extreme learning machine and nonlinear features," Epilepsy research, vol. 96, pp.

29-38, 2011.

[26] S. Li, W. Zhou, Q. Yuan, S. Geng and D. Cai, "Feature extraction and recognition

of ictal EEG using EMD and SVM," Computers in biology and medicine, vol. 43,

pp. 807-816, 2013.

[27] R. Panda, P. Khobragade, P. Jambhule, S. Jengthe, P. Pal and T. Gandhi,

"Classification of EEG signal using wavelet transform and support vector

machine for epileptic seizure diction," in International Conference on Systems in

Medicine and Biology (ICSMB), 2010.

[28] Kolekar, M. H, Dash and D. Prasad, "A nonlinear feature based epileptic seizure

detection using least square support vector machine classifier," in TENCON

2015-2015 IEEE Region 10 Conference, 2015.

[29] S. M. Afifi, H. GholamHosseini and S. Poopak, "Hardware implementations of

SVM on FPGA: A state-of-the-art review of current practice," International

Journal of Innovative Science Engineering and Technology (IJISET), 2015.

[30] L. J. Cao, S. S. Keerthi, C. J. Ong, J. Q. Zhang, U. Periyathamby, X. J. Fu and H.

Lee, "Parallel sequential minimal optimization for the training of support vector

machines," IEEE Trans. Neural Networks, vol. 17, pp. 1039-1049, 2006.

[31] Cao, Kui-kang, S. Hai-bin and C. Hua-feng, "A parallel and scalable digital

architecture for training support vector machines," Journal of Zhejiang University

SCIENCE C, vol. 11, pp. 620-628, 2010.

[32] C.-H. Peng, B.-W. Chen, T.-W. Kuan, P.-C. Lin, J.-F. Wang and N.-S. Shih,

"REC-STA: Reconfigurable and efficient chip design with SMO-based training

accelerator," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 22, pp. 1791-1802, 2014.

[33] L. Bustio-Mart{\'\i}nez, R. Cumplido, J. Hern{\'a}ndez-Palancar and C.

Feregrino-Uribe, "On the Design of a Hardware-Software Architecture for

Acceleration of SVM’s Training Phase," in Mexican Conference on Pattern

Recognition, 2010.

[34] J.-F. Wang, J.-S. Peng, J.-C. Wang, P.-C. Lin and T.-W. Kuan,

"Hardware/software co-design for fast-trainable speaker identification system

based on SMO," in IEEE International Conference on Systems, Man, and

Cybernetics (SMC), 2011.

72

[35] S. Venkateshan, A. Patel and K. Varghese, "Hybrid working set algorithm for

SVM learning with a kernel coprocessor on FPGA," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 23, pp. 2221-2232, 2015.

[36] M. B. Rabieah and C.-S. Bouganis, "FPGA based nonlinear support vector

machine training using an ensemble learning," in 25th International Conference

on Field Programmable Logic and Applications (FPL), 2015.

[37] W. Shaojun, P. Yu, Z. Guangquan and P. Xiyuan, "Accelerating on-line training

of LS-SVM with run-time reconfiguration," in International Conference on Field-

Programmable Technology (FPT), 2011.

[38] A. Bhattacharyya and B. R. Pachori, "A multivariate approach for patient-specific

EEG seizure detection using empirical wavelet transform," IEEE Transactions on

Biomedical Engineering, vol. 64, pp. 2003-2015, 2017.

[39] M. Sharma, B. Pachori, A. Ram and U. Rajendra, "A new approach to

characterize epileptic seizures using analytic time-frequency flexible wavelet

transform and fractal dimension," Pattern Recognition Letters, vol. 94, pp. 172-

179, 2017.

[40] R. R. Sharma and R. B. Pachori, "Time-frequency representation using

IEVDHM-HT with application to classification of epileptic EEG signals," IET

Science, Measurement & Technology, vol. 12, pp. 72-82, 2017.

[41] T. Das, A. Ghosh, S. Guha and P. Basak, "Classification of EEG Signals for

Prediction of Seizure using Multi-Feature Extraction," 1st International

Conference on Electronics, Materials Engineering and Nano-Technology

(IEMENTech), pp. 1-4, 2017.

[42] T. Zhang and W. Chen, "LMD based features for the automatic seizure detection

of EEG signals using SVM," IEEE Transactions on Neural Systems and

Rehabilitation Engineering, vol. 25, pp. 1100-1108, 2017.

[43] V. Sakkalis, Modern Electroencephalographic Assessment Techniques, 2015.

[44] S. Pincus, "Approximate entropy as an irregularity measure for financial data,"

Econometric Reviews, vol. 27, pp. 4-6, 2008.

[45] S. M. Pincus, "Approximate entropy as a measure of system complexity.,"

Proceedings of the National Academy of Sciences, vol. 88, pp. 2297-2301, 1991.

[46] P. R. Pal, N. P. Mohanty and T. Gandhi, "ENTROPY BASED DETECTION \&

EVALUATION OF EPILEPTIC SEIZURE," International Journal of Applied,

vol. 4, pp. 73-77, 2011.

73

[47] V. Vijith, J. E. Jacob, T. Iype, K. Gopakumar and D. G. Yohannan, "Epileptic

seizure detection using non linear analysis of EEG," International Conference on

Inventive Computation Technologies (ICICT), pp. 1-6, 2016.

[48] T. Higuchi, "Approach to an irregular time series on the basis of the fractal

theory," Physica D: Nonlinear Phenomena, vol. 31, pp. 277-283, 1988.

[49] P. Bhuvaneswari and J. S. Kumar, "Support vector machine technique for EEG

signals," International Journal of Computer Applications, vol. 63, 2013.

[50] A. Gammerman and V. Vovk, "Alexey Chervonenkis's bibliography: introductory

comments.," Journal of Machine Learning Research, vol. 16, pp. 2051-2066,

2015.

[51] J. Platt, "Sequential minimal optimization: A fast algorithm for training support

vector machines," 1998.

[52] N. Petra, D. De Caro, V. Garofalo, E. Napoli and A. G. Strollo, "Truncated binary

multipliers with variable correction and minimum mean square error," IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp. 1312-1325,

2010.

[53] Y. Liu, W. Zhou, Q. Yuan and S. Chen, "Automatic seizure detection using

wavelet transform and SVM in long-term intracranial EEG," IEEE transactions on

neural systems and rehabilitation engineering, vol. 20, no. IEEE, pp. 749-755,

2012.

[54] B. Yegnanarayana, Artificial neural networks, PHI Learning Pvt. Ltd., 2009.

[55] A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," Advances in neural information processing

systems, pp. 1097-1105, 2012.

[56] D. O’Leary and J. Kubby, "Feature Selection and ANN Solar Power Prediction,"

Journal of Renewable Energy, 2017.

74

Appendix A : MATLAB Simulation Codes

Main.m
Clc
clear
close all

% change the paths to add chb01, functions, helpfunctions in your

machine.
addpath D:\Communications\Research\New_Research\New_tools\chb01
addpath D:\Communications\Research\2018\nonlinear_features\functions
addpath

D:\Communications\Research\2018\nonlinear_features\helpFunctions
warning('off','MATLAB:legend:IgnoringExtraEntries')

%% Code for calculating different combinations of both linear and

non-linear fatures then classify the data according to the

combinations.

%%
%%%
% Loading the data of CHB-MIT Scalp EEG Database
%%%
samplePerSecond = 921600/60/60;
seconds = 4; %The number of seconds in each window
N = samplePerSecond*seconds; % window interval

[files_names,seizure_start,seizure_ending,s_starts] = dataLoading();

%%
%%%
% Locating the first patient data for classification
%%%

patient = 1; % the first patient
file_name=files_names{patient};
start = seizure_start{patient};
ending = seizure_ending{patient};
hour = s_starts{patient};
hour = 15;
% h=3,4,15,16,18,21,26 => contain seizures for the first patient
clear all_data
all_data=ReadEDF(file_name(hour,:)); % hour that contain seizure

over 23 channels

%%
%%%
% Actual Seizure Locations Vector
%%%

sez_true_train=zeros(floor(length(all_data{1})/N),1);
for j=1:3
 if start(hour,j)~=0

75

sez_true_train(floor(start(hour,j)/seconds):floor(ending(hour,j)/sec

onds),1) = ...

ones(length(floor(start(hour,j)/seconds):floor(ending(hour,j)/second

s)),1);
 end
end

% try different cominations (10C3 = 120 combinations)
c = combnk(1:20,3);
%feature1= 2;
%feature2= 12;
%feature3= 14;

 for i = 886:-1:1
 all_data=ReadEDF(file_name(hour,:)); % hour that contain seizure

over 23 channels

 temp = c(i,:);

 feature1=temp(1);
 feature2=temp(2);
 feature3=temp(3);

%
%%%
% Feature extraction and Ploting
%%%
clc
fprintf('\nTraining ..\n');

[trainingData] = features_detection(all_data,

N,feature1,feature2,feature3);

visualize_trainingdata(trainingData,sez_true_train,'True class of

training examples',patient,hour)

%%
%%%
% SVM Linear Classification
%%%

%svmTrain =

fitcsvm(trainingData,sez_true_train,'KernelFunction','RBF'); %

classes to be 1, 0
%svmTrain =

fitcsvm(trainingData,sez_true_train,'KernelFunction','polynomial','P

olynomialOrder',2); % classes to be 1, 0
svmTrain =

svmtrain(trainingData,sez_true_train,'kernel_function','linear');

% classes to be 1, 0

fprintf('\nDone.\n');

%%

76

%svmClassification = predict(svmTrain,trainingData);

%visualize_trainingdata(trainingData,svmClassification,'Training Set

Classification',patient,hour)

%%
%%%
% Testing data generation
%%%

SVM_TP=0;
SVM_TN=0;
SVM_FP=0;
SVM_FN=0;

for h = hour+1:size(file_name,1)
 if(h==20|| h==26)
 continue;
 end

 tic
 clear all_data
 all_data=ReadEDF(file_name(h,:));

 % Actual Seizure Locations Vector
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 sez_true_test=zeros(1,floor(length(all_data{1})/N));
 for j=1:3
 if start(h,j)~=0

sez_true_test(1,floor(start(h,j)/seconds):floor(ending(h,j)/seconds)

)= ...

ones(1,length(floor(start(h,j)/seconds):floor(ending(h,j)/seconds)))

;
 end
 end

 fprintf(' \nFor h = %i: \n',h);
 [testingData] = features_detection(all_data,

N,feature1,feature2,feature3);

 svmClassification = svmclassify(svmTrain,testingData);

 % plot ictal hours to see the classification on each hour
% if(h==4||h==15||h==16||h==18||h==21||h==26)
%

visualize_testingdata(testingData,svmClassification,sez_true_test,'C

lassification of testing examples',patient,hour)
% end

 % Performance
 %%%%%%%%%%%%%

[TP,TN,FP,FN]=detection_performance(svmClassification,sez_true_test)

;
 SVM_TP=SVM_TP+TP;
 SVM_TN=SVM_TN+TN;

77

 SVM_FP=SVM_FP+FP;
 SVM_FN=SVM_FN+FN;
 toc
end

SVM_sensitivity=SVM_TP/(SVM_TP+SVM_FN)*100;
SVM_specificity=SVM_TN/(SVM_TN+SVM_FP)*100;
SVM_accuracy=(SVM_TP+SVM_TN)/(SVM_TP+SVM_TN+SVM_FP+SVM_FN)*100;
results=[patient,hour,SVM_sensitivity,SVM_specificity,SVM_accuracy];
confusion_matrix = [SVM_TP SVM_FP; SVM_FN SVM_TN];
fprintf('--------\nResults:\n--------\n');

% print to the results file each iteration to record the results:

fileID = fopen('results.txt','a');

fprintf(fileID, 'Patient %i trained at hour = %i with Sensitivity =

%f , Specificity = %f and Accuracy = %f with features = [%i,%i,%i]

%s\n',...
 patient,hour,

SVM_sensitivity,SVM_specificity,

SVM_accuracy,feature1,feature2,feature3,datestr(now,'HH:MM:SS'));
fclose(fileID);

clearvars -except sez_true_train all_data hour patient c

samplePerSecond N seconds file_name start i ending

end

Feature_detection.m
function [trainingData] = features_detection(all_data,

N,featureNum1,featureNum2, featureNum3)

numberOfchannels=23;
for channel=1:numberOfchannels % loop on each channel

 data=cell2mat(all_data(:,channel));

%%%%%%%%%%%%%%%%%%%%%%%% Window is 1024 samples

%%%%%%%%%%%%%%%%%%%%%%%%%%%

new_data = reshape(data,N,floor(length(data)/N));

% % 1. Standard Deviation
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==1 || featureNum2 ==1 || featureNum3 ==1)
 omar=reshape(data,N,(length(data)/N));
 for i=1:(length(data)/N)
 oahmed(1,i)=STD(omar(:,i));
 end
 standardeviation(channel,:)=oahmed;
end

% % 2. Fractual Dimension
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==2 || featureNum2 ==2 || featureNum3 ==2)
 omar=reshape(data,N,(length(data)/N));
 for i=1:(length(data)/N)
 oahmed(1,i)=FD(omar(:,i));

78

 end
 fractualdimension(channel,:)=oahmed;
end

% % 3. Hurst Exponent
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==3 || featureNum2 ==3 || featureNum3 ==3)
 omar=reshape(data,N,(length(data)/N));
 for i=1:(length(data)/N)
 oahmed(1,i)=hurstcomponent(omar(:,i),1/256);
 end
 hurstexp(channel,:)=oahmed;
end

% % 4. Kurtosis
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==4 || featureNum2 ==4 || featureNum3 ==4)
 omar=reshape(data,N,(length(data)/N));
 for i=1:(length(data)/N)
 oahmed(1,i)=Pkurt(omar(:,i));
 end
 Kurtos(channel,:)=oahmed;
end

% % 5. Skew
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==5 || featureNum2 ==5 || featureNum3 ==5)
 omar=reshape(data,N,(length(data)/N));
 for i=1:(length(data)/N)
 oahmed(1,i)=Pskew(omar(:,i));
 end
 skew(channel,:)=oahmed;
end

% % 6. variance
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==6 || featureNum2 ==6 || featureNum3 ==6)
 omar=reshape(data,N,(length(data)/N));
 for i=1:(length(data)/N)
 oahmed(1,i)=VAR(omar(:,i));
 end
 variance(channel,:)=oahmed;
end

% % 7. Permutation Entropy
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==7 || featureNum2 ==7 || featureNum3 ==7)
 for i=1:length(data)/N
 perEnt(channel,i) = per_entropy(downsample(new_data(i,:),5),3);
 end
end

% 8. Approximate Entropy
% %%%%%%%%%%%%%%%%%%%

79

if(featureNum1 ==8 || featureNum2 ==8 || featureNum3 ==8)
 for i=1:length(data)/N
 approxEntropy(channel,i) =

approxEnt(2,0.5,downsample(new_data(i,:),5));
 end
end

if(featureNum1 ==9 || featureNum2 ==9 || featureNum3 ==9)
% 9. Shannon Entropy
 %%%%%%%%%%%%%%
 for i=1:length(data)/N
 ShannonEnt(channel,i) =

ShannonEntropy(new_data(i,:),max(new_data(i,:)),4);
 end
end
% 10. Spectral Entropy
 %%%%%%%%%%%%%%%%%%%%
if(featureNum1 ==10 || featureNum2 ==10 || featureNum3 ==10)
 for i=1:length(data)/N
 SpectralEnt(channel, i) = SpectralEntropy(new_data(i,:),8);
 end
end
% 11. Renyie Entropy
 %%%%%%%%%%%%%%%%%%
if(featureNum1 ==11 || featureNum2 ==11 || featureNum3 ==11)
 for i=1:length(data)/N
 renyient(channel,i) =

renyientropy(new_data(i,:),2,max(new_data(i,:)),8);
 end
end
% 12. Hurst Exponent
% %%%%%%%%%%%%%%%%%%
if(featureNum1 ==12 || featureNum2 ==12 || featureNum3 ==12)
 for i=1:length(data)/N
 hurstExpo(channel,i) =

estimate_hurst_exponent(new_data(i,:),3);
 end
end
% 13. Average Energy
% % %%%%%%%%%%%%%%%%%%
if(featureNum1 ==13 || featureNum2 ==13 || featureNum3 ==13)
 E=data.^2;
 E=E(1:floor(length(E)/N)*N,1);
 Eavg(channel,:)=1/N*sum(reshape(E,N,length(E)/N),1);%coastline

vector
end
% 14. Coastline Feature (Fluctuation Index)
% %%%
if(featureNum1 ==14 || featureNum2 ==14 || featureNum3 ==14)
 abs_bet_2_succsessive=abs([data(2:length(data));0]-data);%This

vector will have the absolute difference between two successive EEG

data points

abs_bet_2_succsessive=abs_bet_2_succsessive(1:floor(length(abs_bet_2

_succsessive)/N)*N,1);

CL(channel,:)=sum(reshape(abs_bet_2_succsessive,N,length(abs_bet_2_s

uccsessive)/N),1);%coastline vector
end
% 15. Hjorth Parameters: Mobility
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

80

if(featureNum1 ==15 || featureNum2 ==15 || featureNum3 ==15)
 for i=1:length(data)/N
 [mobility(channel,i),~] = HjorthParameters(new_data(i,:)');
 end
end

% 16. Hjorth Parameters: Complexity
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if(featureNum1 ==16 || featureNum2 ==16 || featureNum3 ==16)
 for i=1:length(data)/N
 [~,complexity(channel,i)] = HjorthParameters(new_data(i,:)');
 end
end

% % 17. Mean absolute value
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==17 || featureNum2 ==17 || featureNum3 ==17)
 omar=reshape(data,N,(length(data)/N));
 for i=1:(length(data)/N)
 oahmed(1,i)=MAV(omar(:,i));
 end
 meanabs(channel,:)=oahmed;
end

% % 18. Max absolute value
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==18 || featureNum2 ==18 || featureNum3 ==18)
 omar=reshape(data,N,(length(data)/N));
 for i=1:(length(data)/N)
 oahmed(1,i)=MAX(omar(:,i));
 end
 maxabs(channel,:)=oahmed;
end

% % 19. Min absolute value
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==19 || featureNum2 ==19 || featureNum3 ==19)
 omar=reshape(data,N,(length(data)/N));
 for i=1:(length(data)/N)
 oahmed(1,i)=MIN(omar(:,i));
 end
 minabs(channel,:)=oahmed;
end

% % 20. root mean square
% %%%%%%%%%%%%%%%%%%%
if(featureNum1 ==20 || featureNum2 ==20 || featureNum3 ==20)
 omar=reshape(data,N,(length(data)/N));
 for i=1:(length(data)/N)
 oahmed(1,i)=RMS(omar(:,i));
 end
 rootmeansqua(channel,:)=oahmed;
end

 fprintf('%i ',channel);
end

81

%% constructing features:
features = zeros(numberOfchannels,floor(length(data)/N),3);
i=1;
if(featureNum1 ==1 || featureNum2 ==1 || featureNum3 ==1)
 features(:,:,i) = standardeviation;
 i= i+1;
end

if(featureNum1 ==2 || featureNum2 ==2 || featureNum3 ==2)
 features(:,:,i) = fractualdimension;
 i= i+1;
end

if(featureNum1 ==3 || featureNum2 ==3 || featureNum3 ==3)
 features(:,:,i) = hurstexp;
 i= i+1;
end

if(featureNum1 ==4 || featureNum2 ==4 || featureNum3 ==4)
 features(:,:,i) = Kurtos;
 i= i+1;
end

if(featureNum1 ==5 || featureNum2 ==5 || featureNum3 ==5)
 features(:,:,i) = skew;
 i= i+1;
end

if(featureNum1 ==6 || featureNum2 ==6 || featureNum3 ==6)
 features(:,:,i) = variance;
 i= i+1;
end

if(featureNum1 ==7 || featureNum2 ==7 || featureNum3 ==7)
 features(:,:,i) = perEnt;
 i= i+1;
end
if (featureNum1 ==8 || featureNum2 ==8 || featureNum3 ==8)
 features(:,:,i) = approxEntropy;
 i= i+1;
end
if (featureNum1 ==9 || featureNum2 ==9 || featureNum3 ==9)
 features(:,:,i) = ShannonEnt;
 i = i +1;
end
if (featureNum1 ==10 || featureNum2 ==10 || featureNum3 ==10)
 features(:,:,i) = SpectralEnt;
 i = i +1;
end
if (featureNum1 ==11 || featureNum2 ==11 || featureNum3 ==11)
 features(:,:,i) = renyient;
 i = i +1;
end
if (featureNum1 ==12 || featureNum2 ==12 || featureNum3 ==12)
 features(:,:,i) = hurstExpo;
 i = i +1;
end
if (featureNum1 ==13 || featureNum2 ==13 || featureNum3 ==13)

82

 features(:,:,i) = Eavg;
 i = i +1;
end
if (featureNum1 ==14 || featureNum2 ==14 || featureNum3 ==14)
 features(:,:,i) = CL;
 i = i +1;
end
if (featureNum1 ==15 || featureNum2 ==15 || featureNum3 ==15)
 features(:,:,i) = mobility;
 i = i +1;
end
if (featureNum1 ==16 || featureNum2 ==16 || featureNum3 ==16)
 features(:,:,i) = complexity;
 i = i +1;
end
if (featureNum1 ==17 || featureNum2 ==17 || featureNum3 ==17)
 features(:,:,i) = meanabs;
 i = i +1;
end
if (featureNum1 ==18 || featureNum2 ==18 || featureNum3 ==18)
 features(:,:,i) = maxabs;
 i = i +1;
end

if (featureNum1 ==19 || featureNum2 ==19 || featureNum3 ==19)
 features(:,:,i) = minabs;
 i = i +1;
end

if (featureNum1 ==20 || featureNum2 ==20 || featureNum3 ==20)
 features(:,:,i) = rootmeansqua;
 i = i +1;
end

%%
%%%
% Combine the channels into an average channel
%%%

feature1 = features(:,:,1);
feature2 = features(:,:,2);
feature3 = features(:,:,3);

feature1_train=sum(feature1,1)/numberOfchannels;
feature2_train=sum(feature2,1)/numberOfchannels;
feature3_train=sum(feature3,1)/numberOfchannels;

%%%
% Features Normalization & Training
%%%

trainingData=[feature1_train' feature2_train' feature3_train'];

mean1=nanmean(trainingData(:,1));
mean2=nanmean(trainingData(:,2));
mean3=nanmean(trainingData(:,3));

var1=nanvar(trainingData(:,1));

83

var2=nanvar(trainingData(:,2));
var3=nanvar(trainingData(:,3));

trainingData(:,1)=(trainingData(:,1)-mean1)/sqrt(var1);
trainingData(:,2)=(trainingData(:,2)-mean2)/sqrt(var2);
trainingData(:,3)=(trainingData(:,3)-mean3)/sqrt(var3);

end

approxEnt.m
function [apen] = approxEnt(window_length,r,data)

%% Code for computing approximate entropy for a time series:

Approximate

% To run this function- type: approx_entropy('window

length','similarity measure','data set')
% i.e approx_entropy(5,0.5,data)
% Author: Avinash Parnandi, parnandi@usc.edu,

http://robotics.usc.edu/~parnandi/

%%

for m=window_length:window_length+1 % to be able to calculate

the phi(r)^m - phi(r)^(m+1)

set = 0;
count = 0;
counter = 0;

for i=1:(length(data))-m+1
 current_window = data(i:i+m-1); % current window stores the

sequence to be compared with other sequences

 for j=1:length(data)-m+1
 sliding_window = data(j:j+m-1); % get a window for comparision

with the current_window

 % compare two windows, element by element
 % can also use some kind of norm measure; that will perform

better
 for k=1:m
 if((abs(current_window(k)-sliding_window(k))>r) && set == 0)
 set = 1; % i.e. the difference between the two sequence

is greater than the given value
 end
 end
 if(set==0)
 count = count+1; % this measures how many sliding_windows

are similar to the current_window
 end
 set = 0; % reseting 'set'

 end
 counter(i)=count/(length(data)-m+1); % need the number of similar

windows for every cuurent_window

84

 count=0;

end

correlation(m-window_length+1) = ((sum(counter))/(length(data)-

m+1));

end

apen = log(correlation(1)/correlation(2));
end

Estimate_hurst_exponent.m
function [hurst] = estimate_hurst_exponent(data,no_iterations)

[~,npoints]=size(data);
yvals = zeros(1,no_iterations);
xvals = zeros(1,no_iterations);

k=1;
for i = 10:(npoints/no_iterations):npoints

original_signal= data(1:i);

signal_mean = sum(original_signal)/npoints;
X = original_signal - signal_mean;
Y = cumsum(X);

Rn = max(Y) - min(Y);
original_std = std(original_signal);

yvals(k) = log(Rn/original_std);
xvals(k) = log(i);
k = k+1;

end

p2=polyfit(xvals,yvals,1);
hurst=p2(1); % Hurst exponent is the slope of

the linear fit of log-log plot

end

HjorthParameters.m
function [mobility,complexity] = HjorthParameters(xV)

n = length(xV);
dxV = diff([0;xV]);
ddxV = diff([0;dxV]);
mx2 = mean(xV.^2);
mdx2 = mean(dxV.^2);
mddx2 = mean(ddxV.^2);

mob = mdx2 / mx2;
complexity = sqrt(mddx2 / mdx2 - mob);
mobility = sqrt(mob);

85

end

Per_entropy.m
function perEnt = per_entropy(data,win)

for i = 1:length(data)-floor(win/2)-1

[~,I(i,:)] = sort(data(i:i+win-1));

end

[~,jj,kk]=unique(I,'rows','stable');
f=histc(kk,1:numel(jj)); % Frequency
P = f/length(data);

perEnt= -sum(P.*log(P));
end

Quantizer.m
function [quantized_signal] = quantizer(sampled_signal,varargin)
%%

%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Sample of input for quantizer funtion:
%%
%%% ts = 0.1;
%%% nLevels = 5;
%%% mp = 5;
%%% m_law=2;
%%% [binary_signal,level_signal,quantized_signal] =

quantizer(sampled_sig,'NLevels', nLevels,
%%% 'SigMax',

mp, 'QuantizerType', 0,'MeuValue',m_law);
%%

%%%

%% Input Oarsing Handeling
quantizationType = 1;
mp = max(sampled_signal);
nLevels = 4;
meu = 1;

p = inputParser();
addOptional(p, 'QuantizerType', quantizationType, @isnumeric);
addOptional(p, 'NLevels', nLevels, @isnumeric);
addOptional(p, 'MeuValue', meu, @isnumeric);
addOptional(p, 'SigMax', mp, @isnumeric);
parse(p, varargin{:});

nLevels = p.Results.NLevels;
mp = p.Results.SigMax;

if (2^(ceil(log2(nLevels))) > nLevels)
 disp('Number of Levels must be multiple of 2');
 nLevels = 2^(ceil(log2(nLevels)));
 fprintf('A %d number of levels was chosen instead \n',nLevels);

86

end

%% Uniform mid-rise quantizer

quantized_signal = zeros(size(sampled_signal));
level_signal= zeros(size(sampled_signal));
detla = 2*mp/(nLevels-1);

for n =1:length(sampled_signal)
 current_level = -mp;
 level_number = 0;
 for k= 1:nLevels

 if((sampled_signal(n) <= current_level && sampled_signal(n)

>= current_level - detla/2) || (sampled_signal(n) >= current_level

&& sampled_signal(n) <= current_level + detla/2))
 quantized_signal(n) = current_level;
 level_signal(n) = level_number;
 break;
 end

 level_number = level_number + 1;
 current_level = current_level + detla;

 end
end
end

Renyientropy.m
function RENYI = renyientropy(X,alpha,sig_Max,levels)

 % Number of levels for quantization and the signal maximum value
 [quantized] = quantizer(X,'NLevels', levels,'SigMax', sig_Max);

 unique_values = unique(quantized);

 Frequency = zeros(size(unique_values));

 % Calculate sample frequencies
 for level = 1:length(unique_values)
 Frequency(level) = sum(quantized == unique_values(level));
 end

 % Calculate sample class probabilities
 P = Frequency / sum(Frequency);

 % Calculate Shannon Entropy
 RENYI=(1/1-alpha).* log2(sum(P .^alpha));
end

sampEntropy.m
function [ApEn] = sampEntropy(window_length,r,data)

%% Code for computing approximate entropy for a time series: Sample

87

% To run this function- type: approx_entropy('window

length','similarity measure','data set')
% i.e approx_entropy(5,0.5,data)
% Author: Avinash Parnandi, parnandi@usc.edu,

http://robotics.usc.edu/~parnandi/

%%

for m=window_length:window_length+1 % to be able to calculate

the phi(r)^m - phi(r)^(m+1)

set = 0;
count = 0;
counter = 0;

for i=1:(length(data))-m+1
 current_window = data(i:i+m-1); % current window stores the

sequence to be compared with other sequences

 for j=1:length(data)-m+1

 if i==j
 continue;
 end

 sliding_window = data(j:j+m-1); % get a window for comparision

with the current_window

 % compare two windows, element by element
 % can also use some kind of norm measure; that will perform

better
 for k=1:m
 if((abs(current_window(k)-sliding_window(k))>r) && set == 0)
 set = 1; % i.e. the difference between the two sequence

is greater than the given value
 end
 end
 if(set==0)
 count = count+1; % this measures how many sliding_windows

are similar to the current_window
 end
 set = 0; % reseting 'set'

 end
 counter(i)=count/(length(data)-m+1); % need the number of similar

windows for every cuurent_window
 count=0;

end

correlation(m-window_length+1) = ((sum(counter))/(length(data)-

m+1));

end

ApEn = log(correlation(1)/correlation(2));

88

end

ShannonEntropy.m
function H = ShannonEntropy(X,sig_Max,levels)

 % Number of levels for quantization and the signal maximum value
 [quantized] = quantizer(X,'NLevels', levels,'SigMax', sig_Max);

 unique_values = unique(quantized);

 Frequency = zeros(size(unique_values));

 % Calculate sample frequencies
 for level = 1:length(unique_values)
 Frequency(level) = sum(quantized == unique_values(level));
 end

 % Calculate sample class probabilities
 P = Frequency / sum(Frequency);

 % Calculate Shannon Entropy
 H = -sum(P .* log(P));

end

SpectralEntropy.m
function Entropy = SpectralEntropy(y,levels)

Fs = 100;

Y = fft(y);
Y = Y(1:floor(length(y)/2)+1);
Y = 1/(length(y)*Fs)*(Y.*conj(Y));
df = 1000/length(y);
freq = 0:df:500;

PSD = Y.^2/length(y);
Normalized_PSD = PSD/sum(PSD);

quantized_PSD = quantizer(Normalized_PSD,'NLevels', levels,'SigMax',

max(Normalized_PSD));

% Sampling in Frequency:

Entropy = -sum(Normalized_PSD.*log(Normalized_PSD));

end

ACF.m
function y=ACF(x,k)
ck=0;
xbar=MAV(x);
for i=1:(length(x)-k)
 ck=ck+((x(i)-xbar)*(x(i+k)-xbar));
end

89

ck=ck/length(x);
c0=VAR(x);
y=ck/c0;
end

FD.m
function p=FD(x)
x1=x(1);
x2=x(2);
x3=x(3);
x4=x(4);
x5=x(5);

for i=1:((length(x)-1)/5) %m?
 x1=[x1 x(1+(5*i))];
end

for i=1:((length(x)-2)/5)
 x2=[x2 x(2+(5*i))];
end

for i=1:((length(x)-3)/5)
 x3=[x3 x(3+(5*i))];
end

for i=1:((length(x)-4)/5)
 x4=[x4 x(4+(5*i))];
end

for i=1:((length(x)-5)/5)
 x5=[x5 x(5+(5*i))];
end
a1=(length(x)-1)/5;
a2=(length(x)-2)/5;
a3=(length(x)-3)/5;
a4=(length(x)-4)/5;
a5=(length(x)-5)/5;

L1=0;
for i=1:a1
 L1=L1+(abs(x(1+(i*5))-x(1+((i-1)*5)))/(length(x)-1));
end
L1=L1/(a1*5);

L2=0;
for i=1:a2
 L2=L2+(abs(x(2+(i*5))-x(2+((i-1)*5)))/(length(x)-1));
end
L2=L2/(a2*5);

L3=0;
for i=1:a3
 L3=L3+(abs(x(3+(i*5))-x(3+((i-1)*5)))/(length(x)-1));
end
L3=L3/(a3*5);

90

L4=0;
for i=1:a4
 L4=L4+(abs(x(4+(i*5))-x(4+((i-1)*5)))/(length(x)-1));
end
L4=L4/(a4*5);

L5=0;
for i=1:a5
 L5=L5+(abs(x(5+(i*5))-x(5+((i-1)*5)))/(length(x)-1));
end
L5=L5/(a5*5);

k=(log(L1)/log(1/5));
q=(log(L2)/log(1/5));
r=(log(L3)/log(1/5));
s=(log(L4)/log(1/5));
u=(log(L5)/log(1/5));
p=(k+q+r+s+u)/5;
end

Hurstcomponent.m
function H=hurstcomponent(x,T)
data=x; %adding input in internal variable
average=MAV(data);
differences=data-average;
maxdevfrommean=MAX(differences);
mindevfrommean=MIN(differences);
R=abs(abs(maxdevfrommean)-abs(mindevfrommean));
S=STD(data);
H=log(R/S)/log(T);
end

MAV.m
function y=MAV(x)
temp=abs(x);
y=sum(temp)/length(x);
end

MAX.m
function y=MAX(x)
temp1=x(1);
for i=1:length(x);
 if(abs(x(i))>abs(temp1))
 temp1=x(i);
 elseif(abs(x(i))==abs(temp1))
 if(angle(x(i))>angle(temp1))
 temp1=x(i);
 else
 temp1=temp1;
 end
 else
 temp1=temp1;
 end
end
y=temp1;
end

91

Min.m
function y=MIN(x)
temp1=x(1);
for i=1:length(x);
 if(abs(x(i))<abs(temp1))
 temp1=x(i);
 elseif(abs(x(i))==abs(temp1))
 if(angle(x(i))<angle(temp1))
 temp1=x(i);
 else
 temp1=temp1;
 end
 else
 temp1=temp1;
 end
end
y=temp1;

Pkurt.m
function y=Pkurt(x)
X=x;
averageofX=sum(X)/length(X);
stdofX=STD(x);
y=sum((((X-averageofX)/stdofX).^4))/length(X);
end

Pmax.m
function y=Pmax(x)
y=MAX(fft(x));
max(x)
end

Pskew.m
function y=Pskew(x)
X=x;
averageofX=sum(X)/length(X);
stdofX=STD(x);
y=sum((((X-averageofX)/stdofX).^3))/length(X);
end

RMS.m
function y=RMS(x)
temp=x.*x;
y=sqrt(sum(temp)/length(x));
end

STD.m

function y=STD(x)
averageofX=sum(x)/length(x);
y=sqrt(sum(((x-averageofX).*(x-averageofX)))/(length(x)-1));
end

VAR.m
function y=VAR(x)
averageofX=sum(x)/length(x);
y=(sum(((x-averageofX).*(x-averageofX)))/(length(x)-1));

92

end

dataLoading.m
function [files_names,seizure_start,seizure_ending,s_starts] =

dataLoading()

 file_1=['chb01_01.edf'; 'chb01_02.edf'; 'chb01_03.edf';

'chb01_04.edf'; 'chb01_05.edf'; 'chb01_06.edf'; 'chb01_07.edf';

'chb01_08.edf'; 'chb01_09.edf'; 'chb01_10.edf'; 'chb01_11.edf';

'chb01_12.edf'; 'chb01_13.edf'; 'chb01_14.edf'; 'chb01_15.edf';

'chb01_16.edf'; 'chb01_17.edf'; 'chb01_18.edf'; 'chb01_19.edf';

'chb01_20.edf'; 'chb01_21.edf'; 'chb01_22.edf'; 'chb01_23.edf';

'chb01_24.edf'; 'chb01_25.edf'; 'chb01_26.edf'; 'chb01_27.edf';

'chb01_29.edf'; 'chb01_30.edf'; 'chb01_31.edf'; 'chb01_32.edf';

'chb01_33.edf'; 'chb01_34.edf'; 'chb01_36.edf'; 'chb01_37.edf';

'chb01_38.edf'; 'chb01_39.edf'; 'chb01_40.edf'; 'chb01_41.edf';

'chb01_42.edf'; 'chb01_43.edf'; 'chb01_46.edf'];
 start_1=[0 0 0; 0 0 0; 2996 0 0; 1467 0 0; 0 0 0; 0 0

0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 1732 0 0; 1015 0 0; 0 0 0; 1720 0 0; 0 0 0; 0

0 0; 327 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 1862 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0];
ending_1=[0 0 0; 0 0 0; 3036 0 0; 1494 0 0; 0 0 0; 0 0

0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 1772 0 0; 1066 0 0; 0 0 0; 1810 0 0; 0 0 0; 0

0 0; 420 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 1963 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0];
s_start_1=3;

 file_2=['chb02_01.edf'; 'chb02_02.edf'; 'chb02_03.edf';

'chb02_04.edf'; 'chb02_05.edf'; 'chb02_06.edf'; 'chb02_07.edf';

'chb02_08.edf'; 'chb02_09.edf'; 'chb02_10.edf'; 'chb02_11.edf';

'chb02_12.edf'; 'chb02_13.edf'; 'chb02_14.edf'; 'chb02_15.edf';

'chb02_16.edf'; 'chb02_17.edf'; 'chb02_18.edf'; 'chb02_19.edf';

'chb02_20.edf'; 'chb02_22.edf'; 'chb02_23.edf'; 'chb02_24.edf';

'chb02_25.edf'; 'chb02_26.edf'; 'chb02_27.edf'; 'chb02_28.edf';

'chb02_29.edf'; 'chb02_30.edf'; 'chb02_31.edf'; 'chb02_32.edf';

'chb02_33.edf'; 'chb02_34.edf'; 'chb02_35.edf'];
 start_2=[0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0

0; 0 0 0; 0 0 0; 0 0 0; 0 0 0

; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0

; 130 0 0; 0 0 0; 0 0 0; 3369 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0];
ending_2=[0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0

0; 0 0 0; 0 0 0; 0 0 0; 0 0 0

; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0

; 212 0 0; 0 0 0; 0 0 0; 3378 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0];
s_start_2=16;
 file_3=['chb03_01.edf'; 'chb03_02.edf'; 'chb03_03.edf';

'chb03_04.edf'; 'chb03_05.edf'; 'chb03_06.edf'; 'chb03_07.edf';

'chb03_08.edf'; 'chb03_09.edf'; 'chb03_10.edf'; 'chb03_11.edf';

'chb03_12.edf'; 'chb03_13.edf'; 'chb03_14.edf'; 'chb03_15.edf';

'chb03_16.edf'; 'chb03_17.edf'; 'chb03_18.edf'; 'chb03_19.edf';

93

'chb03_20.edf'; 'chb03_21.edf'; 'chb03_22.edf'; 'chb03_23.edf';

'chb03_24.edf'; 'chb03_25.edf'; 'chb03_26.edf'; 'chb03_27.edf';

'chb03_28.edf'; 'chb03_29.edf'; 'chb03_30.edf'; 'chb03_31.edf';

'chb03_32.edf'; 'chb03_33.edf'; 'chb03_34.edf'; 'chb03_35.edf';

'chb03_36.edf'; 'chb03_37.edf'; 'chb03_38.edf'];
 start_3=[362 0 0; 731 0 0; 432 0 0; 2162 0 0; 0 0 0; 0 0

0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0;

1982 0 0; 2592 0 0; 1725 0 0; 0 0 0; 0 0 0];
ending_3=[414 0 0; 796 0 0; 501 0 0; 2214 0 0; 0 0 0; 0 0

0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0;

2029 0 0; 2656 0 0; 1778 0 0; 0 0 0; 0 0 0];
s_start_3=4;
 file_4=['chb04_01.edf'; 'chb04_02.edf'; 'chb04_03.edf';

'chb04_04.edf'; 'chb04_05.edf'; 'chb04_06.edf'; 'chb04_07.edf';

'chb04_08.edf'; 'chb04_09.edf'; 'chb04_10.edf'; 'chb04_11.edf';

'chb04_12.edf'; 'chb04_13.edf'; 'chb04_14.edf'; 'chb04_15.edf';

'chb04_16.edf'; 'chb04_17.edf'; 'chb04_18.edf'; 'chb04_19.edf';

'chb04_21.edf'; 'chb04_22.edf'; 'chb04_23.edf'; 'chb04_24.edf';

'chb04_25.edf'; 'chb04_26.edf'; 'chb04_27.edf'; 'chb04_28.edf';

'chb04_29.edf'; 'chb04_30.edf'; 'chb04_31.edf'; 'chb04_32.edf';

'chb04_33.edf'; 'chb04_34.edf'; 'chb04_35.edf'; 'chb04_36.edf';

'chb04_37.edf'; 'chb04_38.edf'; 'chb04_39.edf'; 'chb04_40.edf';

'chb04_41.edf'; 'chb04_42.edf'; 'chb04_43.edf'];
 start_4=[0 0 0; 0 0 0; 0 0 0; 0 0 0; 7804 0 0; 0 0

0; 0 0 0; 6446 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0;

1679 3782 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0];
ending_4=[0 0 0; 0 0 0; 0 0 0; 0 0 0; 7853 0 0; 0 0

0; 0 0 0; 6557 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0;

1781 3898 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0

0 0; 0 0 0; 0 0 0];
s_start_4=8;
 file_5=['chb05_01.edf'; 'chb05_02.edf'; 'chb05_03.edf';

'chb05_04.edf'; 'chb05_05.edf'; 'chb05_06.edf'; 'chb05_07.edf';

'chb05_08.edf'; 'chb05_09.edf'; 'chb05_10.edf'; 'chb05_11.edf';

'chb05_12.edf'; 'chb05_13.edf'; 'chb05_14.edf'; 'chb05_15.edf';

'chb05_16.edf'; 'chb05_17.edf'; 'chb05_18.edf'; 'chb05_19.edf';

'chb05_20.edf'; 'chb05_21.edf'; 'chb05_22.edf'; 'chb05_23.edf';

'chb05_24.edf'; 'chb05_25.edf'; 'chb05_26.edf'; 'chb05_27.edf';

'chb05_28.edf'; 'chb05_29.edf'; 'chb05_30.edf'; 'chb05_31.edf';

'chb05_32.edf'; 'chb05_33.edf'; 'chb05_34.edf'; 'chb05_35.edf';

'chb05_36.edf'; 'chb05_37.edf'; 'chb05_38.edf'; 'chb05_39.edf'];
 start_5=[0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;417 0 0;0 0 0;0 0 0;0 0 0;0

0 0;0 0 0;0 0 0;1086 0 0;0 0 0;0 0 0;2317 0 0;2451 0 0;0 0 0;0 0 0;0

0 0;0 0 0;2348 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0

0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0];
ending_5=[0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;532 0 0;0 0 0;0 0 0;0 0 0;0

0 0;0 0 0;0 0 0;1196 0 0;0 0 0;0 0 0;2413 0 0;2571 0 0;0 0 0;0 0 0;0

94

0 0;0 0 0;2465 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0

0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0];
s_start_5=6;
 file_6=['chb06_01.edf'; 'chb06_02.edf'; 'chb06_03.edf';

'chb06_04.edf'; 'chb06_05.edf'; 'chb06_06.edf'; 'chb06_07.edf';

'chb06_08.edf'; 'chb06_09.edf'; 'chb06_10.edf'; 'chb06_12.edf';

'chb06_13.edf'; 'chb06_14.edf'; 'chb06_15.edf'; 'chb06_16.edf';

'chb06_17.edf'; 'chb06_18.edf'; 'chb06_24.edf'];
 start_6=[1724 7461 13525 ; 0 0 0 ; 0 0 0 ; 327

6211 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ;

12500 0 0 ; 10833 0 0 ; 0 0 0 ; 506 0 0 ; 0

0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 7799 0 0 ;

9387 0 0];
ending_6=[1738 7476 13540 ; 0 0 0 ; 0 0 0 ; 347 6231 0 ; 0

0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 12516 0 0 ; 10845 0 0 ; 0

0 0 ; 519 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 7811 0

0 ; 9403 0 0];
s_start_6=10;
 file_7=['chb07_01.edf'; 'chb07_02.edf'; 'chb07_03.edf';

'chb07_04.edf'; 'chb07_05.edf'; 'chb07_06.edf'; 'chb07_07.edf';

'chb07_08.edf'; 'chb07_09.edf'; 'chb07_10.edf'; 'chb07_11.edf';

'chb07_12.edf'; 'chb07_13.edf'; 'chb07_14.edf'; 'chb07_15.edf';

'chb07_16.edf'; 'chb07_17.edf'; 'chb07_18.edf'; 'chb07_19.edf'];
 start_7=[0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0

0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 4920 0 0 ; 3285 0 0 ; 0 0 0 ; 0 0 0 ;

0 0 0 ; 0 0 0 ; 0 0 0 ; 13688 0 0];
ending_7=[0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0

0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 5006 0 0 ; 3381 0 0 ; 0 0 0 ; 0 0 0 ;

0 0 0 ; 0 0 0 ; 0 0 0 ; 13831 0 0];
s_start_7=12;
 file_8=['chb08_02.edf'; 'chb08_03.edf'; 'chb08_04.edf';

'chb08_05.edf'; 'chb08_10.edf'; 'chb08_11.edf'; 'chb08_12.edf';

'chb08_13.edf'; 'chb08_14.edf'; 'chb08_15.edf'; 'chb08_16.edf';

'chb08_17.edf'; 'chb08_18.edf'; 'chb08_19.edf'; 'chb08_20.edf';

'chb08_21.edf'; 'chb08_22.edf'; 'chb08_23.edf'; 'chb08_24.edf';

'chb08_29.edf'];
 start_8=[2670 0 0 ; 0 0 0 ; 0 0 0 ; 2856 0 0 ; 0 0 0 ; 2988 0 0 ;

0 0 0 ; 2417 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0

0 0 ; 2083 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0];
ending_8=[2841 0 0 ; 0 0 0 ; 0 0 0 ; 3046 0 0 ; 0 0 0 ; 3122 0 0 ;

0 0 0 ; 2577 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0

0 0 ; 2347 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0];
s_start_8=4;
 file_9=['chb09_01.edf'; 'chb09_02.edf'; 'chb09_03.edf';

'chb09_04.edf'; 'chb09_05.edf'; 'chb09_06.edf'; 'chb09_07.edf';

'chb09_08.edf'; 'chb09_09.edf'; 'chb09_10.edf'; 'chb09_11.edf';

'chb09_12.edf'; 'chb09_13.edf'; 'chb09_14.edf'; 'chb09_15.edf';

'chb09_16.edf'; 'chb09_17.edf'; 'chb09_18.edf'; 'chb09_19.edf'];
 start_9=[0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 12231 0

0 ; 0 0 0 ; 2951 9196 0 ; 0 0 0 ; 0 0 0 ;

0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0

; 0 0 0 ; 5299 0 0];
ending_9=[0 0 0 ;0 0 0 ;0 0 0 ;0 0 0 ;0 0 0 ;12295 0 0 ;0 0 0

;3030 9267 0 ;0 0 0 ;0 0 0 ;0 0 0 ;0 0 0 ;0 0 0 ;0 0 0 ;0 0

0 ;0 0 0 ;0 0 0 ;0 0 0 ;5361 0 0];
s_start_9=6;
 file_10=['chb10_01.edf'; 'chb10_02.edf'; 'chb10_03.edf';

'chb10_04.edf'; 'chb10_05.edf'; 'chb10_06.edf'; 'chb10_07.edf';

'chb10_08.edf'; 'chb10_12.edf'; 'chb10_13.edf'; 'chb10_14.edf';

'chb10_15.edf'; 'chb10_16.edf'; 'chb10_17.edf'; 'chb10_18.edf';

'chb10_19.edf'; 'chb10_20.edf'; 'chb10_21.edf'; 'chb10_22.edf';

95

'chb10_27.edf'; 'chb10_28.edf'; 'chb10_30.edf'; 'chb10_31.edf';

'chb10_38.edf'; 'chb10_89.edf'];
 start_10=[0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0

0 0 ; 0 0 0 ; 6313 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0

0 ; 0 0 0 ; 0 0 0 ; 6888 0 0 ; 0 0 0 ; 0 0 0 ; 2382 0 0 ; 0 0

0 ; 3021 0 0 ; 3801 0 0 ; 4618 0 0 ; 1383 0 0];
ending_10=[0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0

0 0 ; 0 0 0 ; 6348 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0

0 ; 0 0 0 ; 0 0 0 ; 6958 0 0 ; 0 0 0 ; 0 0 0 ; 2447 0 0 ; 0 0

0 ; 3079 0 0 ; 3877 0 0 ; 4707 0 0 ; 1437 0 0];
s_start_10=23;

files_names = {file_1, file_2, file_3, file_4, file_5, file_6,

file_7, file_8, file_9, file_10};
seizure_start = {start_1, start_2, start_3, start_4, start_5,

start_6, start_7, start_8, start_9, start_10};
seizure_ending = {ending_1, ending_2, ending_3, ending_4, ending_5,

ending_6, ending_7, ending_8, ending_9, ending_10};
s_starts = {s_start_1, s_start_2, s_start_3, s_start_4, s_start_5,

s_start_6, s_start_7, s_start_8, s_start_9, s_start_10};

Detection_Performance.m
function

[TP,TN,FP,FN]=detection_performance(Classification,seizure_true)
TP=0;TN=0;FP=0;FN=0;

for i=1:length(Classification)
 if(Classification(i)==1)&&(seizure_true(1,i)==1)
 TP=TP+1;
 elseif(Classification(i)==0)&&(seizure_true(1,i)==0)
 TN=TN+1;
 elseif(Classification(i)==1)&&(seizure_true(1,i)==0)
 FP=FP+1;
 elseif(Classification(i)==0)&&(seizure_true(1,i)==1)
 FN=FN+1;
 end
end

ReadEDF.m

function [data, header] = ReadEDF(filename)

% Author: Shapkin Andrey,
% 15-OCT-2012

% filename - File name
% data - Contains a signals in structure of cells
% header - Contains header

fid = fopen(filename,'r','ieee-le');

%%% HEADER LOAD
% PART1: (GENERAL)
hdr = char(fread(fid,256,'uchar')');
header.ver=str2num(hdr(1:8)); % 8 ascii : version of this

data format (0)
header.patientID = char(hdr(9:88)); % 80 ascii : local patient

identification
header.recordID = char(hdr(89:168)); % 80 ascii : local

recording identification

96

header.startdate=char(hdr(169:176)); % 8 ascii : startdate of

recording (dd.mm.yy)
header.starttime = char(hdr(177:184)); % 8 ascii : starttime of

recording (hh.mm.ss)
header.length = str2num (hdr(185:192)); % 8 ascii : number of bytes

in header record
reserved = hdr(193:236); % [EDF+C] % 44 ascii : reserved
header.records = str2num (hdr(237:244)); % 8 ascii : number of data

records (-1 if unknown)
header.duration = str2num (hdr(245:252)); % 8 ascii : duration of a

data record, in seconds
header.channels = str2num (hdr(253:256));% 4 ascii : number of

signals (ns) in data record

%%%% PART2 (DEPENDS ON QUANTITY OF CHANNELS)

header.labels=cellstr(char(fread(fid,[16,header.channels],'char')'))

; % ns * 16 ascii : ns * label (e.g. EEG FpzCz or Body temp)
header.transducer

=cellstr(char(fread(fid,[80,header.channels],'char')')); % ns * 80

ascii : ns * transducer type (e.g. AgAgCl electrode)
header.units =

cellstr(char(fread(fid,[8,header.channels],'char')')); % ns * 8

ascii : ns * physical dimension (e.g. uV or degreeC)
header.physmin =

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8

ascii : ns * physical minimum (e.g. -500 or 34)
header.physmax =

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8

ascii : ns * physical maximum (e.g. 500 or 40)
header.digmin =

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8

ascii : ns * digital minimum (e.g. -2048)
header.digmax =

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8

ascii : ns * digital maximum (e.g. 2047)
header.prefilt

=cellstr(char(fread(fid,[80,header.channels],'char')')); % ns * 80

ascii : ns * prefiltering (e.g. HP:0.1Hz LP:75Hz)
header.samplerate =

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8

ascii : ns * nr of samples in each data record
reserved = char(fread(fid,[32,header.channels],'char')'); % ns * 32

ascii : ns * reserved

f1=find(cellfun('isempty', regexp(header.labels, 'EDF Annotations',

'once'))==0); % Channels number with the EDF Annotations
f2=find(cellfun('isempty', regexp(header.labels, 'Status',

'once'))==0); % Channels number with the EDF Annotations
f=[f1(:); f2(:)];
%%%%%% PART 3: Loading of signals

%Structure of the data in format EDF:

%[block1 block2 .. , block N], where N=header.records
% Block structure:
% [(d seconds of 1 channel) (d seconds of 2 channel) ... (d seconds

of ï¿½h channel)], Where ï¿½h - quantity of channels, d - duration

of the block

97

% Ch = header.channels
% d = header.duration

Ch_data = fread(fid,'int16'); % Loading of signals

fclose(fid); % close a file

%%%%% PART 4: Transformation of the data
if header.records<0, % If the quantity of blocks is not known
R=sum(header.duration*header.samplerate); % Length of one block
header.records=fix(length(Ch_data)./R); % Quantity of written down

blocks
end

% Separating a read signal into blocks
Ch_data=reshape(Ch_data, [], header.records);

% establishing calibration parametres

sf = (header.physmax - header.physmin)./(header.digmax -

header.digmin);
dc = header.physmax - sf.* header.digmax;

data=cell(1, header.channels);
Rs=cumsum([1; header.duration*header.samplerate]); %

ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½

ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ Rs(k):Rs(k+1)-1

% separating of signals of everyone the channel from blocks
% and recording of signals in structure of cells

for k=1:header.channels

data{k}=reshape(Ch_data(Rs(k):Rs(k+1)-1, :), [], 1);
if sum(k==f)==0 % non ï¿½nnotation
% Calibration of the data
data{k}=data{k}.*sf(k)+dc(k);
end
end

% PART 5: ANNOTATION READ
 header.annotation.event={};
 header.annotation.starttime=[];
 header.annotation.duration=[];
 header.annotation.data={};

if sum(f)>0

try

for p1=1:length(f)
Annt=char(typecast(int16(data{f(p1)}), 'uint8'))';

98

% separate of annotation on blocks
Annt=buffer(Annt, header.samplerate(f(p1)).*2, 0)';
ANsize=size(Annt);
 for p2=1:ANsize(1)
 % search TALs starttime
 Annt1=Annt(p2, :);
 Tstart=regexp(Annt1, '+');
 Tstart=[Tstart(2:end) ANsize(2)];

 for p3=1:length(Tstart)-1
 A=Annt1(Tstart(p3):Tstart(p3+1)-1); % TALs block
 header.annotation.data={header.annotation.data{:} A};

 % duration and starttime TALs
 Tds=find(A==20 | A==21);
 if length(Tds)>2
 td=str2num(A(Tds(1)+1:Tds(2)-1));
 if isempty(td), td=0; end

header.annotation.duration=[header.annotation.duration(:); td];

header.annotation.starttime=[header.annotation.starttime(:);

str2num(A(2:Tds(1)-1))];
 header.annotation.event={header.annotation.event{:}

A(Tds(2)+1:Tds(end)-1)};
 else

header.annotation.duration=[header.annotation.duration(:); 0];

header.annotation.starttime=[header.annotation.starttime(:);

str2num(A(2:Tds(1)-1))];
 header.annotation.event={header.annotation.event{:}

A(Tds(1)+1:Tds(end)-1)};
 end
 end
 end
end

% delete annotation
a=find(cell2mat(cellfun(@length, header.annotation.event,

'UniformOutput', false))==0);
header.annotation.event(a)=[];
header.annotation.starttime(a)=[];
header.annotation.duration(a)=[];

end

end

header.samplerate(f)=[];
header.channels=header.channels-length(f);
header.labels(f)=[];
header.transducer(f)=[];
header.units(f)=[];
header.physmin(f)=[];
header.physmax(f)=[];
header.digmin(f)=[];
header.digmax(f)=[];
header.prefilt(f)=[];
data(f)=[];

99

end

Visualize_testingData.m

function

visualize_testingdata(testingData,svmClassification,sez_true_test,te

xt,patient,h)

figure
subplot(3,1,1)

gscatter(testingData(:,1),testingData(:,2),

svmClassification,'br','x+')
hold on
gscatter(testingData(:,1),testingData(:,2), sez_true_test,'kb','oo')
legend('Predicted Non-ictal','Predicted Ictal','Actual Non-

ictal','Actual Ictal')
% title(text + ' for h = '+ string(h) + ' from patient #'+

string(patient))
xlabel('feature 1');
ylabel('feature 2');
hold off

subplot(3,1,2)

gscatter(testingData(:,1),testingData(:,3),

svmClassification,'br','x+')
hold on
gscatter(testingData(:,1),testingData(:,3), sez_true_test,'kb','oo')
legend('Predicted Non-ictal','Predicted Ictal','Actual Non-

ictal','Actual Ictal')
% title(text + ' for h = '+string(h) + ' from patient

#'+string(patient))
xlabel('feature 1');
ylabel('feature 3');
hold off

subplot(3,1,3)

gscatter(testingData(:,2),testingData(:,3),

svmClassification,'br','x+')
hold on
gscatter(testingData(:,2),testingData(:,3), sez_true_test,'kb','oo')
legend('Predicted Non-ictal','Predicted Ictal','Actual Non-

ictal','Actual Ictal')
% title(text + ' for h = '+string(h) + ' from patient

#'+string(patient))
xlabel('feature 2');
ylabel('feature 3');
hold off

end

visualize_trainingdata.m
function

visualize_trainingdata(trainingData,sez_true_train,text,patient,hour

)

100

figure
gscatter((trainingData(:,1)),(trainingData(:,2)),

sez_true_train,'br','xo')

hold on
legend('Non-ictal','Ictal')
%title(string(text) + ' for h = '+string(hour) + ' from patient

#'+string(patient))
%xlabel('Mean Absolute Value');
%ylabel('RMS');

hold off
figure;
figure
subplot(3,1,1)
gscatter((trainingData(:,1)),(trainingData(:,2)),

sez_true_train,'br','xo')

hold on
legend('Non-ictal','Ictal')
%title(string(text) + ' for h = '+string(hour) + ' from patient

#'+string(patient))
xlabel('feature 1');
ylabel('feature 2');

hold off

subplot(3,1,2)
gscatter((trainingData(:,1)),(trainingData(:,3)),

sez_true_train,'br','xo')
hold on
legend('Non-ictal','Ictal')
%title(string(text) + ' for h = '+string(hour) + ' from patient

#'+string(patient))
xlabel('feature 1');
ylabel('feature 3');

hold off

subplot(3,1,3)
gscatter((trainingData(:,2)),(trainingData(:,3)),

sez_true_train,'br','xo')
hold on
legend('Non-ictal','Ictal')
%title(string(text) + ' for h = '+string(hour) + ' from patient

#'+string(patient))
xlabel('feature 2');
ylabel('feature 3');

hold off
end

Linear_grad_svm.m

function [model] = linear_grad_svm(xt,y,Q)

N=length(xt);
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

101

alpha=zeros(N,1);
b=0;
alpha_new=zeros(N,1);
skip=zeros(N,1);
C=1;
margin=1.5*1e-7;
%step=1e-10;
step=1e-7;
%step=0.0016;
keep_search=1;
alpha_hist=zeros(100000,15);
k=1;

while(keep_search && k<1000)
%for k=1:100000
 %acc_w=zeros(1,size(xt,2));
 acc_w=0;
 for i=1:N
 acc=0;
 for j=1:N

acc=acc+alpha(j,:)*y(j,:)*((xt(i,:)*xt(j,:)'+1).^Q);
 %acc=acc+alpha(j,:)*y(j,:)*((xt(i,:)*xt(j,:)'));
 end
 alpha_new(i,1)= alpha(i,1)-(step*((y(i,:)*(acc+b))-1));
 % alpha_new(i,1)= 1-step*(y(i,:)*acc);
 if alpha_new(i,1)>C
 alpha_new(i,1) = C;
 skip(i,1)=1;
 elseif alpha_new(i,1) < 0
 alpha_new(i,1) = 0;
 skip(i,1)=1;
 end
 %acc_w=acc_w+alpha(i)*y(i)*xt(i,:);
 %acc_w=acc_w+alpha(i)*y(i);
 %acc_w=acc_w + ((xt(i,:)*xt(2,:)' +1)^Q);
% alpha_new(i,1)=min(C,max(0, alpha(i,1)-

step*(y(i,:)*(acc+b)-1)));
 end
 %b_new=b-step*(alpha'*y);
 W=(alpha_new.*y)';
 SV=1;
 for l=1:N
 if(alpha_new(l)~=0)
 SV=l;
 break;
 end
 end
 b_new=y(SV) - (alpha_new.*y)'*((xt*xt(SV,:)'+1).^Q);
 %b_new=y(3) - W*xt*xt(3,:)';
%MA
 %b_new=y(3)-acc_w*xt(3,:)';
 %b_new = y(2) -acc_w
 %b_new=y(1)- (alpha.*y)'*((xt*(xt(1,:)') +1).^Q)
%MA_end

 comp=sum(abs([alpha;b]-[alpha_new;b_new]))>margin;
 alpha=alpha_new;

102

 b=b_new;
 %alpha_hist(k,:)=alpha;
 %keep_search=sum(comp);
 keep_search=comp;

 k=k+1

 %plot_svm(x1,x2,W,b);
 %pause;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
W=(alpha.*y)'*xt;
model.w=W;
model.b=b;
model.alpha=alpha(alpha~=0);
model.xt=xt(alpha~=0,:);
model.y=y(alpha~=0);
sum(model.y)
size(model.y)
end

Smo_training_fn.m
function [model]=smo_train_fn(X,Y,Q)

tol = 1e-23;
max_passes = 100;
% Data parameters
m = size(X, 1);
n = size(X, 2);
% Map 0 to -1
Y(Y==0) = -1;
% Variables
alphas = zeros(m, 1);
b = 0;
E = zeros(m, 1);
passes = 0;
eta = 0;
L = 0;
H = 0;
C = 50;
K = (X*X'+1).^Q;
% K = X*X';
% Train
dots = 12;
while passes < max_passes,
 num_changed_alphas = 0;
 for i = 1:m,
 % Calculate Ei = f(x(i)) - y(i) using (2).
 % E(i) = b + sum (X(i, :) * (repmat(alphas.*Y,1,n).*X)') -

Y(i);
 E(i) = b + sum (alphas.*Y.*K(:,i)) - Y(i);
 if ((Y(i)*E(i) < -tol && alphas(i) < C) || (Y(i)*E(i) > tol

&& alphas(i) > 0)),
 % In practice, there are many heuristics one can use to

select
 % the i and j. In this simplified code, select them

randomly.

103

% j = ceil(m * rand());
% while j == i, % Make sure i \neq j
% j = ceil(m * rand());
% end
 for j=[1:i-1,i+1:m]
 % Calculate Ej = f(x(j)) - y(j) using (2).
 E(j) = b + sum (alphas.*Y.*K(:,j)) - Y(j);
 % Save old alphas
 alpha_i_old = alphas(i);
 alpha_j_old = alphas(j);
 % Compute L and H by (10) or (11).
 if (Y(i) == Y(j)),
 L = max(0, alphas(j) + alphas(i) - C);
 H = min(C, alphas(j) + alphas(i));
 else
 L = max(0, alphas(j) - alphas(i));
 H = min(C, C + alphas(j) - alphas(i));
 end
 if (L == H),
 % continue to next i.
 continue;
 end
 % Compute eta by (14).
 eta = 2 * K(i,j) - K(i,i) - K(j,j);
 if (eta >= 0),
 % continue to next i.
 continue;
 end
 % Compute and clip new value for alpha j using (12) and

(15).
 alphas(j) = alphas(j) - (Y(j) * (E(i) - E(j))) / eta;
 % Clip
 alphas(j) = min (H, alphas(j));
 alphas(j) = max (L, alphas(j));
 % Check if change in alpha is significant
 if (abs(alphas(j) - alpha_j_old) < tol),
 % continue to next i.
 % replace anyway
 alphas(j) = alpha_j_old;
 continue;
 end
 % Determine value for alpha i using (16).
 alphas(i) = alphas(i) + Y(i)*Y(j)*(alpha_j_old -

alphas(j));
 % Compute b1 and b2 using (17) and (18) respectively.
 b1 = b - E(i) ...
 - Y(i) * (alphas(i) - alpha_i_old) * K(i,i)' ...
 - Y(j) * (alphas(j) - alpha_j_old) * K(i,j)';
 b2 = b - E(j) ...
 - Y(i) * (alphas(i) - alpha_i_old) * K(i,j)' ...
 - Y(j) * (alphas(j) - alpha_j_old) * K(j,j)';
 % Compute b by (19).
 if (0 < alphas(i) && alphas(i) < C),
 b = b1;
 elseif (0 < alphas(j) && alphas(j) < C),
 b = b2;
 else
 b = (b1+b2)/2;
 end
 num_changed_alphas = num_changed_alphas + 1;
 end

104

 end
 end
% if (num_changed_alphas == 0),
 passes = passes + 1;
% else
% passes = 0;
% end

% X=X((find(alphas~=0)),:);
% Y=Y((find(alphas~=0)),:);
% alphas=alphas((find(alphas~=0)),:);
% K = (X*X'+1).^Q;
% m = size(X, 1);

 fprintf('.');
 dots = dots + 1;
 if dots > 78
 dots = 0;
 fprintf('\n');
 end
end
fprintf(' Done! \n\n');
% Save the model
idx = alphas > 0;
model.X= X(idx,:);
model.Y= Y(idx);
model.b= b;
model.alphas= alphas(idx);
model.w = ((alphas.*Y)'*X)';
end

105

Appendix B - Detailed feature selection results

Feature1 Feature2 Feature3 Sensitivity Specificity Accuracy

Max Absolute
Value

Min Absolute
Value

Root Mean
Square 82.25807 98.22944 98.18391

Mean Absolute
Value

Min Absolute
Value

Root Mean
Square 87.09677 97.86057 97.82989

Mean Absolute
Value

Max Absolute
Value

Root Mean
Square 83.87097 98.2156 98.17471

Mean Absolute
Value

Max Absolute
Value

Min Absolute
Value 87.09677 97.91129 97.88046

Hjorth
Complexity

Mean Absolute
Value

Max Absolute
Value 83.87097 98.3862 98.34483

Hjorth
Complexity

Mean Absolute
Value

Min Absolute
Value 85.48387 98.12339 98.08736

Hjorth
Complexity

Mean Absolute
Value

Root Mean
Square 83.87097 98.28938 98.24828

Hjorth
Complexity

Max Absolute
Value

Min Absolute
Value 0 100 99.71494

Hjorth
Complexity

Max Absolute
Value

Root Mean
Square 80.64516 98.50148 98.45058

Hjorth
Complexity

Min Absolute
Value

Root Mean
Square 83.87097 98.20177 98.16092

Hjorth Mobility
Hjorth

Complexity
Mean Absolute

Value 85.48387 98.17872 98.14253

Hjorth Mobility
Hjorth

Complexity
Max Absolute

Value 0 100 99.71494

Hjorth Mobility
Hjorth

Complexity
Min Absolute

Value 0 100 99.71494

Hjorth Mobility
Hjorth

Complexity
Root Mean

Square 82.25807 98.2986 98.25287

Hjorth Mobility
Mean Absolute

Value
Max Absolute

Value 83.87097 98.48303 98.44138

Hjorth Mobility
Mean Absolute

Value
Min Absolute

Value 85.48387 98.07728 98.04138

Hjorth Mobility
Mean Absolute

Value
Root Mean

Square 82.25807 98.31243 98.26667

Hjorth Mobility
Max Absolute

Value
Min Absolute

Value 0 100 99.71494

Hjorth Mobility
Max Absolute

Value
Root Mean

Square 80.64516 98.48764 98.43678

Hjorth Mobility
Min Absolute

Value
Root Mean

Square 83.87097 98.22944 98.18851

Coastline
Min Absolute

Value
Root Mean

Square 85.48387 97.98967 97.95402

Coastline
Max Absolute

Value
Root Mean

Square 80.64516 98.33087 98.28046

106

Coastline
Max Absolute

Value
Min Absolute

Value 0 100 99.71494

Coastline
Mean Absolute

Value
Root Mean

Square 83.87097 98.06806 98.02759

Coastline
Mean Absolute

Value
Min Absolute

Value 87.09677 97.81907 97.78851

Coastline
Mean Absolute

Value
Max Absolute

Value 83.87097 98.23405 98.1931

Coastline
Hjorth

Complexity
Root Mean

Square 80.64516 98.3862 98.33563

Coastline
Hjorth

Complexity
Min Absolute

Value 0 100 99.71494

Coastline
Hjorth

Complexity
Max Absolute

Value 0 100 99.71494

Coastline
Hjorth

Complexity
Mean Absolute

Value 85.48387 98.22021 98.18391

Coastline Hjorth Mobility
Root Mean

Square 83.87097 98.34471 98.30345

Coastline Hjorth Mobility
Min Absolute

Value 0 100 99.71494

Coastline Hjorth Mobility
Max Absolute

Value 0 100 99.71494

Coastline Hjorth Mobility
Mean Absolute

Value 85.48387 98.25249 98.21609

Coastline Hjorth Mobility
Hjorth

Complexity 0 100 99.71494

Average Energy
Min Absolute

Value
Root Mean

Square 72.58065 98.61214 98.53793

Average Energy
Max Absolute

Value
Root Mean

Square 67.74194 98.99023 98.90115

Average Energy
Max Absolute

Value
Min Absolute

Value 56.45161 98.80579 98.68506

Average Energy
Mean Absolute

Value
Root Mean

Square 74.19355 98.72741 98.65747

Average Energy
Mean Absolute

Value
Min Absolute

Value 75.80645 98.51531 98.45058

Average Energy
Mean Absolute

Value
Max Absolute

Value 75.80645 98.79657 98.73103

Average Energy
Hjorth

Complexity
Root Mean

Square 67.74194 98.981 98.89195

Average Energy
Hjorth

Complexity
Min Absolute

Value 61.29032 99.02711 98.91954

Average Energy
Hjorth

Complexity
Max Absolute

Value 62.90323 99.18388 99.08046

Average Energy
Hjorth

Complexity
Mean Absolute

Value 69.35484 98.94412 98.85977

Average Energy Hjorth Mobility
Root Mean

Square 67.74194 98.95334 98.86437

Average Energy Hjorth Mobility
Min Absolute

Value 61.29032 98.98561 98.87816

107

Average Energy Hjorth Mobility
Max Absolute

Value 61.29032 99.15161 99.04368

Average Energy Hjorth Mobility
Mean Absolute

Value 67.74194 98.9349 98.84598

Average Energy Hjorth Mobility
Hjorth

Complexity 62.90323 99.07322 98.97012

Average Energy Coastline
Root Mean

Square 61.29032 98.8519 98.74483

Average Energy Coastline
Min Absolute

Value 61.29032 98.79196 98.68506

Average Energy Coastline
Max Absolute

Value 58.06452 99.064 98.94713

Average Energy Coastline
Mean Absolute

Value 70.96774 98.7689 98.68966

Average Energy Coastline
Hjorth

Complexity 62.90323 99.06861 98.96552

Average Energy Coastline Hjorth Mobility 62.90323 99.0225 98.91954

Hurst Exponent
Min Absolute

Value
Root Mean

Square 83.87097 97.90668 97.86667

Hurst Exponent
Max Absolute

Value
Root Mean

Square 83.87097 98.17872 98.13793

Hurst Exponent
Max Absolute

Value
Min Absolute

Value 0 100 99.71494

Hurst Exponent
Mean Absolute

Value
Root Mean

Square 85.48387 97.80524 97.77012

Hurst Exponent
Mean Absolute

Value
Min Absolute

Value 87.09677 97.74069 97.71035

Hurst Exponent
Mean Absolute

Value
Max Absolute

Value 87.09677 98.07728 98.04598

Hurst Exponent
Hjorth

Complexity
Root Mean

Square 83.87097 98.17872 98.13793

Hurst Exponent
Hjorth

Complexity
Min Absolute

Value 0 100 99.71494

Hurst Exponent
Hjorth

Complexity
Max Absolute

Value 0 100 99.71494

Hurst Exponent
Hjorth

Complexity
Mean Absolute

Value 85.48387 97.92051 97.88506

Hurst Exponent Hjorth Mobility
Root Mean

Square 85.48387 97.63003 97.5954

Hurst Exponent Hjorth Mobility
Min Absolute

Value 0 100 99.71494

Hurst Exponent Hjorth Mobility
Max Absolute

Value 0 100 99.71494

Hurst Exponent Hjorth Mobility
Mean Absolute

Value 85.48387 97.47787 97.44368

Hurst Exponent Hjorth Mobility
Hjorth

Complexity 0 100 99.71494

Hurst Exponent Coastline
Root Mean

Square 85.48387 97.87901 97.84368

108

Hurst Exponent Coastline
Min Absolute

Value 0 100 99.71494

Hurst Exponent Coastline
Max Absolute

Value 0 100 99.71494

Hurst Exponent Coastline
Mean Absolute

Value 87.09677 97.73146 97.70115

Hurst Exponent Coastline
Hjorth

Complexity 0 100 99.71494

Hurst Exponent Coastline Hjorth Mobility 0 100 99.71494

Hurst Exponent Average Energy
Root Mean

Square 72.58065 98.69974 98.62529

Hurst Exponent Average Energy
Min Absolute

Value 62.90323 98.82424 98.72184

Hurst Exponent Average Energy
Max Absolute

Value 59.67742 99.17466 99.06207

Hurst Exponent Average Energy
Mean Absolute

Value 74.19355 98.59369 98.52414

Hurst Exponent Average Energy
Hjorth

Complexity 72.58065 98.47842 98.4046

Hurst Exponent Average Energy Hjorth Mobility 82.25807 97.81907 97.77471

Hurst Exponent Average Energy Coastline 62.90323 98.9349 98.83218

Renyie Entropy
Min Absolute

Value
Root Mean

Square 82.25807 97.7868 97.74253

Renyie Entropy
Max Absolute

Value
Root Mean

Square 82.25807 98.5107 98.46437

Renyie Entropy
Max Absolute

Value
Min Absolute

Value 0 100 99.71494

Renyie Entropy
Mean Absolute

Value
Root Mean

Square 82.25807 98.16488 98.11954

Renyie Entropy
Mean Absolute

Value
Min Absolute

Value 87.09677 97.74991 97.71954

Renyie Entropy
Mean Absolute

Value
Max Absolute

Value 83.87097 98.34932 98.30805

Renyie Entropy
Hjorth

Complexity
Root Mean

Square 80.64516 98.33549 98.28506

Renyie Entropy
Hjorth

Complexity
Min Absolute

Value 0 100 99.71494

Renyie Entropy
Hjorth

Complexity
Max Absolute

Value 0 100 99.71494

Renyie Entropy
Hjorth

Complexity
Mean Absolute

Value 85.48387 98.22944 98.1931

Renyie Entropy Hjorth Mobility
Root Mean

Square 82.25807 98.3401 98.29425

Renyie Entropy Hjorth Mobility
Min Absolute

Value 0 100 99.71494

Renyie Entropy Hjorth Mobility
Max Absolute

Value 0 100 99.71494

Renyie Entropy Hjorth Mobility
Mean Absolute

Value 85.48387 98.19716 98.16092

109

Renyie Entropy Hjorth Mobility
Hjorth

Complexity 0 100 99.71494

Renyie Entropy Coastline
Root Mean

Square 77.41936 98.12339 98.06437

Renyie Entropy Coastline
Min Absolute

Value 0 100 99.71494

Renyie Entropy Coastline
Max Absolute

Value 0 100 99.71494

Renyie Entropy Coastline
Mean Absolute

Value 79.03226 98.11417 98.05977

Renyie Entropy Coastline
Hjorth

Complexity 0 100 99.71494

Renyie Entropy Coastline Hjorth Mobility 0 100 99.71494

Renyie Entropy Average Energy
Root Mean

Square 72.58065 98.62597 98.55172

Renyie Entropy Average Energy
Min Absolute

Value 56.45161 98.86573 98.74483

Renyie Entropy Average Energy
Max Absolute

Value 64.51613 99.0225 98.92414

Renyie Entropy Average Energy
Mean Absolute

Value 75.80645 98.52914 98.46437

Renyie Entropy Average Energy
Hjorth

Complexity 62.90323 99.064 98.96092

Renyie Entropy Average Energy Hjorth Mobility 62.90323 99.07783 98.97471

Renyie Entropy Average Energy Coastline 58.06452 98.8104 98.69425

Renyie Entropy Hurst Exponent
Root Mean

Square 85.48387 97.80985 97.77471

Renyie Entropy Hurst Exponent
Min Absolute

Value 0 100 99.71494

Renyie Entropy Hurst Exponent
Max Absolute

Value 0 100 99.71494

Renyie Entropy Hurst Exponent
Mean Absolute

Value 87.09677 97.72685 97.69655

Renyie Entropy Hurst Exponent
Hjorth

Complexity 0 100 99.71494

Renyie Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494

Renyie Entropy Hurst Exponent Coastline 0 100 99.71494

Renyie Entropy Hurst Exponent Average Energy 62.90323 98.90262 98.8

Spectral Entropy
Min Absolute

Value
Root Mean

Square 85.48387 97.81446 97.77931

Spectral Entropy
Max Absolute

Value
Root Mean

Square 83.87097 98.40926 98.36782

Spectral Entropy
Max Absolute

Value
Min Absolute

Value 0 100 99.71494

Spectral Entropy
Mean Absolute

Value
Root Mean

Square 87.09677 98.06806 98.03678

Spectral Entropy
Mean Absolute

Value
Min Absolute

Value 87.09677 97.80524 97.77471

Spectral Entropy
Mean Absolute

Value
Max Absolute

Value 83.87097 98.24327 98.2023

110

Spectral Entropy
Hjorth

Complexity
Root Mean

Square 80.64516 98.22021 98.17012

Spectral Entropy
Hjorth

Complexity
Min Absolute

Value 0 100 99.71494

Spectral Entropy
Hjorth

Complexity
Max Absolute

Value 0 100 99.71494

Spectral Entropy
Hjorth

Complexity
Mean Absolute

Value 85.48387 98.13261 98.09655

Spectral Entropy Hjorth Mobility
Root Mean

Square 83.87097 98.1695 98.12874

Spectral Entropy Hjorth Mobility
Min Absolute

Value 0 100 99.71494

Spectral Entropy Hjorth Mobility
Max Absolute

Value 0 100 99.71494

Spectral Entropy Hjorth Mobility
Mean Absolute

Value 83.87097 98.20177 98.16092

Spectral Entropy Hjorth Mobility
Hjorth

Complexity 0 100 99.71494

Spectral Entropy Coastline
Root Mean

Square 82.25807 98.0035 97.95862

Spectral Entropy Coastline
Min Absolute

Value 0 100 99.71494

Spectral Entropy Coastline
Max Absolute

Value 0 100 99.71494

Spectral Entropy Coastline
Mean Absolute

Value 85.48387 98.04961 98.01379

Spectral Entropy Coastline
Hjorth

Complexity 0 100 99.71494

Spectral Entropy Coastline Hjorth Mobility 0 100 99.71494

Spectral Entropy Average Energy
Root Mean

Square 67.74194 98.86573 98.77701

Spectral Entropy Average Energy
Min Absolute

Value 62.90323 98.80579 98.70345

Spectral Entropy Average Energy
Max Absolute

Value 62.90323 99.08244 98.97931

Spectral Entropy Average Energy
Mean Absolute

Value 72.58065 98.75046 98.67586

Spectral Entropy Average Energy
Hjorth

Complexity 62.90323 99.08244 98.97931

Spectral Entropy Average Energy Hjorth Mobility 62.90323 99.00867 98.90575

Spectral Entropy Average Energy Coastline 67.74194 98.86112 98.77241

Spectral Entropy Hurst Exponent
Root Mean

Square 83.87097 97.80524 97.76552

Spectral Entropy Hurst Exponent
Min Absolute

Value 0 100 99.71494

Spectral Entropy Hurst Exponent
Max Absolute

Value 0 100 99.71494

Spectral Entropy Hurst Exponent
Mean Absolute

Value 87.09677 97.68536 97.65517

111

Spectral Entropy Hurst Exponent
Hjorth

Complexity 0 100 99.71494

Spectral Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494

Spectral Entropy Hurst Exponent Coastline 0 100 99.71494

Spectral Entropy Hurst Exponent Average Energy 61.29032 98.93951 98.83218

Spectral Entropy Renyie Entropy
Root Mean

Square 82.25807 98.20638 98.16092

Spectral Entropy Renyie Entropy
Min Absolute

Value 0 100 99.71494

Spectral Entropy Renyie Entropy
Max Absolute

Value 0 100 99.71494

Spectral Entropy Renyie Entropy
Mean Absolute

Value 82.25807 98.1695 98.12414

Spectral Entropy Renyie Entropy
Hjorth

Complexity 0 100 99.71494

Spectral Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494

Spectral Entropy Renyie Entropy Coastline 0 100 99.71494

Spectral Entropy Renyie Entropy Average Energy 66.12903 98.8934 98.8

Spectral Entropy Renyie Entropy Hurst Exponent 0 100 99.71494

Shannon Entropy
Min Absolute

Value
Root Mean

Square 83.87097 97.66691 97.62759

Shannon Entropy
Max Absolute

Value
Root Mean

Square 82.25807 98.3862 98.34023

Shannon Entropy
Max Absolute

Value
Min Absolute

Value 0 100 99.71494

Shannon Entropy
Mean Absolute

Value
Root Mean

Square 83.87097 97.98967 97.94943

Shannon Entropy
Mean Absolute

Value
Min Absolute

Value 87.09677 97.67613 97.64598

Shannon Entropy
Mean Absolute

Value
Max Absolute

Value 85.48387 98.22483 98.18851

Shannon Entropy
Hjorth

Complexity
Root Mean

Square 82.25807 98.31243 98.26667

Shannon Entropy
Hjorth

Complexity
Min Absolute

Value 0 100 99.71494

Shannon Entropy
Hjorth

Complexity
Max Absolute

Value 0 100 99.71494

Shannon Entropy
Hjorth

Complexity
Mean Absolute

Value 85.48387 98.20638 98.17012

Shannon Entropy Hjorth Mobility
Root Mean

Square 82.25807 98.31704 98.27126

Shannon Entropy Hjorth Mobility
Min Absolute

Value 0 100 99.71494

Shannon Entropy Hjorth Mobility
Max Absolute

Value 0 100 99.71494

Shannon Entropy Hjorth Mobility
Mean Absolute

Value 85.48387 98.22483 98.18851

Shannon Entropy Hjorth Mobility
Hjorth

Complexity 0 100 99.71494

112

Shannon Entropy Coastline
Root Mean

Square 82.25807 98.04039 97.9954

Shannon Entropy Coastline
Min Absolute

Value 0 100 99.71494

Shannon Entropy Coastline
Max Absolute

Value 0 100 99.71494

Shannon Entropy Coastline
Mean Absolute

Value 82.25807 98.0865 98.04138

Shannon Entropy Coastline
Hjorth

Complexity 0 100 99.71494

Shannon Entropy Coastline Hjorth Mobility 0 100 99.71494

Shannon Entropy Average Energy
Root Mean

Square 72.58065 98.57525 98.50115

Shannon Entropy Average Energy
Min Absolute

Value 58.06452 98.78274 98.66667

Shannon Entropy Average Energy
Max Absolute

Value 64.51613 99.00867 98.91035

Shannon Entropy Average Energy
Mean Absolute

Value 79.03226 98.43231 98.37701

Shannon Entropy Average Energy
Hjorth

Complexity 62.90323 99.064 98.96092

Shannon Entropy Average Energy Hjorth Mobility 62.90323 99.06861 98.96552

Shannon Entropy Average Energy Coastline 61.29032 98.78274 98.67586

Shannon Entropy Hurst Exponent
Root Mean

Square 85.48387 97.86518 97.82989

Shannon Entropy Hurst Exponent
Min Absolute

Value 0 100 99.71494

Shannon Entropy Hurst Exponent
Max Absolute

Value 0 100 99.71494

Shannon Entropy Hurst Exponent
Mean Absolute

Value 87.09677 97.69919 97.66897

Shannon Entropy Hurst Exponent
Hjorth

Complexity 0 100 99.71494

Shannon Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494

Shannon Entropy Hurst Exponent Coastline 0 100 99.71494

Shannon Entropy Hurst Exponent Average Energy 62.90323 98.90262 98.8

Shannon Entropy Renyie Entropy
Root Mean

Square 83.87097 98.04039 98

Shannon Entropy Renyie Entropy
Min Absolute

Value 0 100 99.71494

Shannon Entropy Renyie Entropy
Max Absolute

Value 0 100 99.71494

Shannon Entropy Renyie Entropy
Mean Absolute

Value 83.87097 98.0035 97.96322

Shannon Entropy Renyie Entropy
Hjorth

Complexity 0 100 99.71494

Shannon Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494

Shannon Entropy Renyie Entropy Coastline 0 100 99.71494

Shannon Entropy Renyie Entropy Average Energy 67.74194 98.8104 98.72184

113

Shannon Entropy Renyie Entropy Hurst Exponent 0 100 99.71494

Shannon Entropy Spectral Entropy
Root Mean

Square 83.87097 98.03578 97.9954

Shannon Entropy Spectral Entropy
Min Absolute

Value 0 100 99.71494

Shannon Entropy Spectral Entropy
Max Absolute

Value 0 100 99.71494

Shannon Entropy Spectral Entropy
Mean Absolute

Value 83.87097 97.98506 97.94483

Shannon Entropy Spectral Entropy
Hjorth

Complexity 0 100 99.71494

Shannon Entropy Spectral Entropy Hjorth Mobility 0 100 99.71494

Shannon Entropy Spectral Entropy Coastline 0 100 99.71494

Shannon Entropy Spectral Entropy Average Energy 66.12903 98.83346 98.74023

Shannon Entropy Spectral Entropy Hurst Exponent 0 100 99.71494

Shannon Entropy Spectral Entropy Renyie Entropy 0 100 99.71494

Approximate
Entropy

Min Absolute
Value

Root Mean
Square 85.48387 97.82368 97.78851

Approximate
Entropy

Max Absolute
Value

Root Mean
Square 83.87097 98.29399 98.25287

Approximate
Entropy

Max Absolute
Value

Min Absolute
Value 0 100 99.71494

Approximate
Entropy

Mean Absolute
Value

Root Mean
Square 87.09677 98.05883 98.02759

Approximate
Entropy

Mean Absolute
Value

Min Absolute
Value 87.09677 97.80063 97.77012

Approximate
Entropy

Mean Absolute
Value

Max Absolute
Value 85.48387 98.16488 98.12874

Approximate
Entropy

Hjorth
Complexity

Root Mean
Square 82.25807 98.15566 98.11035

Approximate
Entropy

Hjorth
Complexity

Min Absolute
Value 0 100 99.71494

Approximate
Entropy

Hjorth
Complexity

Max Absolute
Value 0 100 99.71494

Approximate
Entropy

Hjorth
Complexity

Mean Absolute
Value 85.48387 98.11417 98.07816

Approximate
Entropy Hjorth Mobility

Root Mean
Square 83.87097 98.13722 98.09655

Approximate
Entropy Hjorth Mobility

Min Absolute
Value 0 100 99.71494

Approximate
Entropy Hjorth Mobility

Max Absolute
Value 0 100 99.71494

Approximate
Entropy Hjorth Mobility

Mean Absolute
Value 85.48387 98.0865 98.05058

Approximate
Entropy Hjorth Mobility

Hjorth
Complexity 0 100 99.71494

Approximate
Entropy Coastline

Root Mean
Square 82.25807 98.01273 97.96782

Approximate
Entropy Coastline

Min Absolute
Value 0 100 99.71494

114

Approximate
Entropy Coastline

Max Absolute
Value 0 100 99.71494

Approximate
Entropy Coastline

Mean Absolute
Value 85.48387 98.00812 97.97241

Approximate
Entropy Coastline

Hjorth
Complexity 0 100 99.71494

Approximate
Entropy Coastline Hjorth Mobility 0 100 99.71494

Approximate
Entropy Average Energy

Root Mean
Square 70.96774 98.73202 98.65287

Approximate
Entropy Average Energy

Min Absolute
Value 64.51613 98.75507 98.65747

Approximate
Entropy Average Energy

Max Absolute
Value 64.51613 99.04556 98.94713

Approximate
Entropy Average Energy

Mean Absolute
Value 75.80645 98.60291 98.53793

Approximate
Entropy Average Energy

Hjorth
Complexity 64.51613 99.02711 98.92874

Approximate
Entropy Average Energy Hjorth Mobility 62.90323 98.97178 98.86897

Approximate
Entropy Average Energy Coastline 64.51613 98.86112 98.76322

Approximate
Entropy Hurst Exponent

Root Mean
Square 85.48387 97.82368 97.78851

Approximate
Entropy Hurst Exponent

Min Absolute
Value 0 100 99.71494

Approximate
Entropy Hurst Exponent

Max Absolute
Value 0 100 99.71494

Approximate
Entropy Hurst Exponent

Mean Absolute
Value 85.48387 97.78218 97.74713

Approximate
Entropy Hurst Exponent

Hjorth
Complexity 0 100 99.71494

Approximate
Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494

Approximate
Entropy Hurst Exponent Coastline 0 100 99.71494

Approximate
Entropy Hurst Exponent Average Energy 62.90323 98.91645 98.81379

Approximate
Entropy Renyie Entropy

Root Mean
Square 82.25807 98.13261 98.08736

Approximate
Entropy Renyie Entropy

Min Absolute
Value 0 100 99.71494

Approximate
Entropy Renyie Entropy

Max Absolute
Value 0 100 99.71494

Approximate
Entropy Renyie Entropy

Mean Absolute
Value 85.48387 98.15105 98.11494

Approximate
Entropy Renyie Entropy

Hjorth
Complexity 0 100 99.71494

Approximate
Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494

115

Approximate
Entropy Renyie Entropy Coastline 0 100 99.71494

Approximate
Entropy Renyie Entropy Average Energy 69.35484 98.84729 98.76322

Approximate
Entropy Renyie Entropy Hurst Exponent 0 100 99.71494

Approximate
Entropy Spectral Entropy

Root Mean
Square 85.48387 98.06345 98.02759

Approximate
Entropy Spectral Entropy

Min Absolute
Value 0 100 99.71494

Approximate
Entropy Spectral Entropy

Max Absolute
Value 0 100 99.71494

Approximate
Entropy Spectral Entropy

Mean Absolute
Value 87.09677 98.04961 98.01839

Approximate
Entropy Spectral Entropy

Hjorth
Complexity 0 100 99.71494

Approximate
Entropy Spectral Entropy Hjorth Mobility 0 100 99.71494

Approximate
Entropy Spectral Entropy Coastline 0 100 99.71494

Approximate
Entropy Spectral Entropy Average Energy 67.74194 98.88418 98.7954

Approximate
Entropy Spectral Entropy Hurst Exponent 0 100 99.71494

Approximate
Entropy Spectral Entropy Renyie Entropy 0 100 99.71494

Approximate
Entropy Shannon Entropy

Root Mean
Square 83.87097 98.04961 98.0092

Approximate
Entropy Shannon Entropy

Min Absolute
Value 0 100 99.71494

Approximate
Entropy Shannon Entropy

Max Absolute
Value 0 100 99.71494

Approximate
Entropy Shannon Entropy

Mean Absolute
Value 87.09677 98.04039 98.0092

Approximate
Entropy Shannon Entropy

Hjorth
Complexity 0 100 99.71494

Approximate
Entropy Shannon Entropy Hjorth Mobility 0 100 99.71494

Approximate
Entropy Shannon Entropy Coastline 0 100 99.71494

Approximate
Entropy Shannon Entropy Average Energy 67.74194 98.75046 98.66207

Approximate
Entropy Shannon Entropy Hurst Exponent 0 100 99.71494

Approximate
Entropy Shannon Entropy Renyie Entropy 0 100 99.71494

Approximate
Entropy Shannon Entropy Spectral Entropy 0 100 99.71494

Permutation
Entropy

Min Absolute
Value

Root Mean
Square 83.87097 97.90207 97.86207

116

Permutation
Entropy

Max Absolute
Value

Root Mean
Square 82.25807 98.23866 98.1931

Permutation
Entropy

Max Absolute
Value

Min Absolute
Value 0 100 99.71494

Permutation
Entropy

Mean Absolute
Value

Root Mean
Square 82.25807 98.02195 97.97701

Permutation
Entropy

Mean Absolute
Value

Min Absolute
Value 87.09677 97.89746 97.86667

Permutation
Entropy

Mean Absolute
Value

Max Absolute
Value 83.87097 98.2156 98.17471

Permutation
Entropy

Hjorth
Complexity

Root Mean
Square 82.25807 98.34471 98.29885

Permutation
Entropy

Hjorth
Complexity

Min Absolute
Value 0 100 99.71494

Permutation
Entropy

Hjorth
Complexity

Max Absolute
Value 0 100 99.71494

Permutation
Entropy

Hjorth
Complexity

Mean Absolute
Value 85.48387 98.16488 98.12874

Permutation
Entropy Hjorth Mobility

Root Mean
Square 80.64516 98.3401 98.28966

Permutation
Entropy Hjorth Mobility

Min Absolute
Value 0 100 99.71494

Permutation
Entropy Hjorth Mobility

Max Absolute
Value 0 100 99.71494

Permutation
Entropy Hjorth Mobility

Mean Absolute
Value 83.87097 98.14644 98.10575

Permutation
Entropy Hjorth Mobility

Hjorth
Complexity 0 100 99.71494

Permutation
Entropy Coastline

Root Mean
Square 82.25807 98.06806 98.02299

Permutation
Entropy Coastline

Min Absolute
Value 0 100 99.71494

Permutation
Entropy Coastline

Max Absolute
Value 0 100 99.71494

Permutation
Entropy Coastline

Mean Absolute
Value 83.87097 98.01273 97.97241

Permutation
Entropy Coastline

Hjorth
Complexity 0 100 99.71494

Permutation
Entropy Coastline Hjorth Mobility 0 100 99.71494

Permutation
Entropy Average Energy

Root Mean
Square 67.74194 98.83807 98.74943

Permutation
Entropy Average Energy

Min Absolute
Value 62.90323 98.85651 98.75402

Permutation
Entropy Average Energy

Max Absolute
Value 61.29032 99.21155 99.10345

Permutation
Entropy Average Energy

Mean Absolute
Value 70.96774 98.7689 98.68966

Permutation
Entropy Average Energy

Hjorth
Complexity 64.51613 99.05939 98.96092

117

Permutation
Entropy Average Energy Hjorth Mobility 62.90323 99.02711 98.92414

Permutation
Entropy Average Energy Coastline 62.90323 98.91645 98.81379

Permutation
Entropy Hurst Exponent

Root Mean
Square 83.87097 97.93434 97.89425

Permutation
Entropy Hurst Exponent

Min Absolute
Value 0 100 99.71494

Permutation
Entropy Hurst Exponent

Max Absolute
Value 0 100 99.71494

Permutation
Entropy Hurst Exponent

Mean Absolute
Value 85.48387 97.82368 97.78851

Permutation
Entropy Hurst Exponent

Hjorth
Complexity 0 100 99.71494

Permutation
Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494

Permutation
Entropy Hurst Exponent Coastline 0 100 99.71494

Permutation
Entropy Hurst Exponent Average Energy 62.90323 98.92106 98.81839

Permutation
Entropy Renyie Entropy

Root Mean
Square 80.64516 98.13722 98.08736

Permutation
Entropy Renyie Entropy

Min Absolute
Value 0 100 99.71494

Permutation
Entropy Renyie Entropy

Max Absolute
Value 0 100 99.71494

Permutation
Entropy Renyie Entropy

Mean Absolute
Value 82.25807 98.08189 98.03678

Permutation
Entropy Renyie Entropy

Hjorth
Complexity 0 100 99.71494

Permutation
Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494

Permutation
Entropy Renyie Entropy Coastline 0 100 99.71494

Permutation
Entropy Renyie Entropy Average Energy 64.51613 98.90262 98.8046

Permutation
Entropy Renyie Entropy Hurst Exponent 0 100 99.71494

Permutation
Entropy Spectral Entropy

Root Mean
Square 83.87097 97.96662 97.92644

Permutation
Entropy Spectral Entropy

Min Absolute
Value 0 100 99.71494

Permutation
Entropy Spectral Entropy

Max Absolute
Value 0 100 99.71494

Permutation
Entropy Spectral Entropy

Mean Absolute
Value 87.09677 97.99428 97.96322

Permutation
Entropy Spectral Entropy

Hjorth
Complexity 0 100 99.71494

Permutation
Entropy Spectral Entropy Hjorth Mobility 0 100 99.71494

118

Permutation
Entropy Spectral Entropy Coastline 0 100 99.71494

Permutation
Entropy Spectral Entropy Average Energy 64.51613 98.91645 98.81839

Permutation
Entropy Spectral Entropy Hurst Exponent 0 100 99.71494

Permutation
Entropy Spectral Entropy Renyie Entropy 0 100 99.71494

Permutation
Entropy Shannon Entropy

Root Mean
Square 83.87097 98.05422 98.01379

Permutation
Entropy Shannon Entropy

Min Absolute
Value 0 100 99.71494

Permutation
Entropy Shannon Entropy

Max Absolute
Value 0 100 99.71494

Permutation
Entropy Shannon Entropy

Mean Absolute
Value 83.87097 98.01273 97.97241

Permutation
Entropy Shannon Entropy

Hjorth
Complexity 0 100 99.71494

Permutation
Entropy Shannon Entropy Hjorth Mobility 0 100 99.71494

Permutation
Entropy Shannon Entropy Coastline 0 100 99.71494

Permutation
Entropy Shannon Entropy Average Energy 64.51613 98.92106 98.82299

Permutation
Entropy Shannon Entropy Hurst Exponent 0 100 99.71494

Permutation
Entropy Shannon Entropy Renyie Entropy 0 100 99.71494

Permutation
Entropy Shannon Entropy Spectral Entropy 0 100 99.71494

Permutation
Entropy

Approximate
Entropy

Root Mean
Square 82.25807 98.05422 98.0092

Permutation
Entropy

Approximate
Entropy

Min Absolute
Value 0 100 99.71494

Permutation
Entropy

Approximate
Entropy

Max Absolute
Value 0 100 99.71494

Permutation
Entropy

Approximate
Entropy

Mean Absolute
Value 83.87097 98.08189 98.04138

Permutation
Entropy

Approximate
Entropy

Hjorth
Complexity 0 100 99.71494

Permutation
Entropy

Approximate
Entropy Hjorth Mobility 0 100 99.71494

Permutation
Entropy

Approximate
Entropy Coastline 0 100 99.71494

Permutation
Entropy

Approximate
Entropy Average Energy 64.51613 98.88879 98.79081

Permutation
Entropy

Approximate
Entropy Hurst Exponent 0 100 99.71494

Permutation
Entropy

Approximate
Entropy Renyie Entropy 0 100 99.71494

119

Permutation
Entropy

Approximate
Entropy Spectral Entropy 0 100 99.71494

Permutation
Entropy

Approximate
Entropy Shannon Entropy 0 100 99.71494

Variance
Min Absolute

Value
Root Mean

Square 70.96774 98.61214 98.53333

Variance
Max Absolute

Value
Root Mean

Square 66.12903 99.00867 98.91494

Variance
Max Absolute

Value
Min Absolute

Value 59.67742 98.86112 98.74943

Variance
Mean Absolute

Value
Root Mean

Square 74.19355 98.73663 98.66667

Variance
Mean Absolute

Value
Min Absolute

Value 74.19355 98.5522 98.48276

Variance
Mean Absolute

Value
Max Absolute

Value 75.80645 98.8104 98.74483

Variance
Hjorth

Complexity
Root Mean

Square 67.74194 98.97178 98.88276

Variance
Hjorth

Complexity
Min Absolute

Value 61.29032 99.04556 98.93793

Variance
Hjorth

Complexity
Max Absolute

Value 62.90323 99.19771 99.09425

Variance
Hjorth

Complexity
Mean Absolute

Value 69.35484 98.95334 98.86897

Variance Hjorth Mobility
Root Mean

Square 66.12903 99.01789 98.92414

Variance Hjorth Mobility
Min Absolute

Value 61.29032 99.00406 98.89655

Variance Hjorth Mobility
Max Absolute

Value 61.29032 99.14699 99.03908

Variance Hjorth Mobility
Mean Absolute

Value 67.74194 98.95795 98.86897

Variance Hjorth Mobility
Hjorth

Complexity 62.90323 99.07783 98.97471

Variance Coastline
Root Mean

Square 62.90323 98.84729 98.74483

Variance Coastline
Min Absolute

Value 61.29032 98.79657 98.68966

Variance Coastline
Max Absolute

Value 58.06452 99.07783 98.96092

Variance Coastline
Mean Absolute

Value 70.96774 98.75968 98.68046

Variance Coastline
Hjorth

Complexity 62.90323 99.09166 98.98851

Variance Coastline Hjorth Mobility 64.51613 99.04556 98.94713

Variance Average Energy
Root Mean

Square 69.35484 98.90262 98.81839

Variance Average Energy
Min Absolute

Value 64.51613 98.78274 98.68506

120

Variance Average Energy
Max Absolute

Value 64.51613 99.14238 99.04368

Variance Average Energy
Mean Absolute

Value 72.58065 98.82424 98.74943

Variance Average Energy
Hjorth

Complexity 62.90323 99.08244 98.97931

Variance Average Energy Hjorth Mobility 62.90323 99.02711 98.92414

Variance Average Energy Coastline 62.90323 98.8519 98.74943

Variance Hurst Exponent
Root Mean

Square 72.58065 98.71819 98.64368

Variance Hurst Exponent
Min Absolute

Value 62.90323 98.87034 98.76782

Variance Hurst Exponent
Max Absolute

Value 61.29032 99.16544 99.05747

Variance Hurst Exponent
Mean Absolute

Value 74.19355 98.58447 98.51494

Variance Hurst Exponent
Hjorth

Complexity 74.19355 98.47842 98.4092

Variance Hurst Exponent Hjorth Mobility 82.25807 97.86518 97.82069

Variance Hurst Exponent Coastline 62.90323 98.95334 98.85058

Variance Hurst Exponent Average Energy 62.90323 98.91645 98.81379

Variance Renyie Entropy
Root Mean

Square 72.58065 98.6398 98.56552

Variance Renyie Entropy
Min Absolute

Value 56.45161 98.87495 98.75402

Variance Renyie Entropy
Max Absolute

Value 62.90323 99.05939 98.95632

Variance Renyie Entropy
Mean Absolute

Value 75.80645 98.55681 98.49195

Variance Renyie Entropy
Hjorth

Complexity 62.90323 99.09166 98.98851

Variance Renyie Entropy Hjorth Mobility 62.90323 99.08244 98.97931

Variance Renyie Entropy Coastline 58.06452 98.84268 98.72644

Variance Renyie Entropy Average Energy 66.12903 98.8104 98.71724

Variance Renyie Entropy Hurst Exponent 62.90323 98.93028 98.82759

Variance Spectral Entropy
Root Mean

Square 69.35484 98.87957 98.7954

Variance Spectral Entropy
Min Absolute

Value 62.90323 98.8104 98.70805

Variance Spectral Entropy
Max Absolute

Value 62.90323 99.07322 98.97012

Variance Spectral Entropy
Mean Absolute

Value 72.58065 98.78735 98.71264

Variance Spectral Entropy
Hjorth

Complexity 62.90323 99.08705 98.98391

Variance Spectral Entropy Hjorth Mobility 64.51613 99.05017 98.95172

Variance Spectral Entropy Coastline 69.35484 98.87495 98.79081

Variance Spectral Entropy Average Energy 69.35484 98.86112 98.77701

Variance Spectral Entropy Hurst Exponent 61.29032 98.95795 98.85058

121

Variance Spectral Entropy Renyie Entropy 66.12903 98.88879 98.7954

Variance Shannon Entropy
Root Mean

Square 72.58065 98.59369 98.51954

Variance Shannon Entropy
Min Absolute

Value 58.06452 98.80118 98.68506

Variance Shannon Entropy
Max Absolute

Value 61.29032 99.00406 98.89655

Variance Shannon Entropy
Mean Absolute

Value 77.41936 98.4692 98.4092

Variance Shannon Entropy
Hjorth

Complexity 62.90323 99.08705 98.98391

Variance Shannon Entropy Hjorth Mobility 62.90323 99.09627 98.9931

Variance Shannon Entropy Coastline 61.29032 98.79657 98.68966

Variance Shannon Entropy Average Energy 67.74194 98.82424 98.73563

Variance Shannon Entropy Hurst Exponent 62.90323 98.93028 98.82759

Variance Shannon Entropy Renyie Entropy 67.74194 98.84268 98.75402

Variance Shannon Entropy Spectral Entropy 66.12903 98.84729 98.75402

Variance
Approximate

Entropy
Root Mean

Square 70.96774 98.74124 98.66207

Variance
Approximate

Entropy
Min Absolute

Value 64.51613 98.74585 98.64828

Variance
Approximate

Entropy
Max Absolute

Value 64.51613 99.08244 98.98391

Variance
Approximate

Entropy
Mean Absolute

Value 75.80645 98.60753 98.54253

Variance
Approximate

Entropy
Hjorth

Complexity 64.51613 99.05939 98.96092

Variance
Approximate

Entropy Hjorth Mobility 62.90323 99.0225 98.91954

Variance
Approximate

Entropy Coastline 62.90323 98.84729 98.74483

Variance
Approximate

Entropy Average Energy 69.35484 98.84268 98.75862

Variance
Approximate

Entropy Hurst Exponent 62.90323 98.93951 98.83678

Variance
Approximate

Entropy Renyie Entropy 69.35484 98.84729 98.76322

Variance
Approximate

Entropy Spectral Entropy 67.74194 98.88879 98.8

Variance
Approximate

Entropy Shannon Entropy 67.74194 98.75507 98.66667

Variance
Permutation

Entropy
Root Mean

Square 69.35484 98.84729 98.76322

Variance
Permutation

Entropy
Min Absolute

Value 62.90323 98.87495 98.77241

Variance
Permutation

Entropy
Max Absolute

Value 61.29032 99.20232 99.09425

Variance
Permutation

Entropy
Mean Absolute

Value 72.58065 98.77352 98.69885

122

Variance
Permutation

Entropy
Hjorth

Complexity 64.51613 99.07322 98.97471

Variance
Permutation

Entropy Hjorth Mobility 62.90323 99.05017 98.94713

Variance
Permutation

Entropy Coastline 62.90323 98.90262 98.8

Variance
Permutation

Entropy Average Energy 64.51613 98.90723 98.8092

Variance
Permutation

Entropy Hurst Exponent 62.90323 98.94412 98.84138

Variance
Permutation

Entropy Renyie Entropy 64.51613 98.8934 98.7954

Variance
Permutation

Entropy Spectral Entropy 64.51613 98.91645 98.81839

Variance
Permutation

Entropy Shannon Entropy 64.51613 98.92106 98.82299

Variance
Permutation

Entropy
Approximate

Entropy 66.12903 98.88418 98.79081

Skew
Min Absolute

Value
Root Mean

Square 85.48387 97.88823 97.85287

Skew
Max Absolute

Value
Root Mean

Square 82.25807 98.26632 98.22069

Skew
Max Absolute

Value
Min Absolute

Value 0 100 99.71494

Skew
Mean Absolute

Value
Root Mean

Square 87.09677 98.11878 98.08736

Skew
Mean Absolute

Value
Min Absolute

Value 87.09677 97.79141 97.76092

Skew
Mean Absolute

Value
Max Absolute

Value 87.09677 98.128 98.09655

Skew
Hjorth

Complexity
Root Mean

Square 80.64516 98.43692 98.38621

Skew
Hjorth

Complexity
Min Absolute

Value 0 100 99.71494

Skew
Hjorth

Complexity
Max Absolute

Value 0 100 99.71494

Skew
Hjorth

Complexity
Mean Absolute

Value 83.87097 98.24327 98.2023

Skew Hjorth Mobility
Root Mean

Square 83.87097 98.42309 98.38161

Skew Hjorth Mobility
Min Absolute

Value 0 100 99.71494

Skew Hjorth Mobility
Max Absolute

Value 0 100 99.71494

Skew Hjorth Mobility
Mean Absolute

Value 85.48387 98.32626 98.28966

Skew Hjorth Mobility
Hjorth

Complexity 0 100 99.71494

Skew Coastline
Root Mean

Square 80.64516 98.24327 98.1931

123

Skew Coastline
Min Absolute

Value 0 100 99.71494

Skew Coastline
Max Absolute

Value 0 100 99.71494

Skew Coastline
Mean Absolute

Value 85.48387 98.11417 98.07816

Skew Coastline
Hjorth

Complexity 0 100 99.71494

Skew Coastline Hjorth Mobility 0 100 99.71494

Skew Average Energy
Root Mean

Square 74.19355 98.81962 98.74943

Skew Average Energy
Min Absolute

Value 61.29032 98.79657 98.68966

Skew Average Energy
Max Absolute

Value 64.51613 98.99484 98.89655

Skew Average Energy
Mean Absolute

Value 77.41936 98.62597 98.56552

Skew Average Energy
Hjorth

Complexity 66.12903 99.01789 98.92414

Skew Average Energy Hjorth Mobility 64.51613 99.04094 98.94253

Skew Average Energy Coastline 56.45161 98.95334 98.83218

Skew Hurst Exponent
Root Mean

Square 85.48387 97.99428 97.95862

Skew Hurst Exponent
Min Absolute

Value 0 100 99.71494

Skew Hurst Exponent
Max Absolute

Value 0 100 99.71494

Skew Hurst Exponent
Mean Absolute

Value 87.09677 97.8744 97.84368

Skew Hurst Exponent
Hjorth

Complexity 0 100 99.71494

Skew Hurst Exponent Hjorth Mobility 0 100 99.71494

Skew Hurst Exponent Coastline 0 100 99.71494

Skew Hurst Exponent Average Energy 62.90323 98.86112 98.75862

Skew Renyie Entropy
Root Mean

Square 82.25807 98.26632 98.22069

Skew Renyie Entropy
Min Absolute

Value 0 100 99.71494

Skew Renyie Entropy
Max Absolute

Value 0 100 99.71494

Skew Renyie Entropy
Mean Absolute

Value 87.09677 98.13261 98.10115

Skew Renyie Entropy
Hjorth

Complexity 0 100 99.71494

Skew Renyie Entropy Hjorth Mobility 0 100 99.71494

Skew Renyie Entropy Coastline 0 100 99.71494

Skew Renyie Entropy Average Energy 67.74194 98.9349 98.84598

Skew Renyie Entropy Hurst Exponent 0 100 99.71494

124

Skew Spectral Entropy
Root Mean

Square 83.87097 98.22944 98.18851

Skew Spectral Entropy
Min Absolute

Value 0 100 99.71494

Skew Spectral Entropy
Max Absolute

Value 0 100 99.71494

Skew Spectral Entropy
Mean Absolute

Value 87.09677 98.06345 98.03218

Skew Spectral Entropy
Hjorth

Complexity 0 100 99.71494

Skew Spectral Entropy Hjorth Mobility 0 100 99.71494

Skew Spectral Entropy Coastline 0 100 99.71494

Skew Spectral Entropy Average Energy 66.12903 99.00867 98.91494

Skew Spectral Entropy Hurst Exponent 0 100 99.71494

Skew Spectral Entropy Renyie Entropy 0 100 99.71494

Skew Shannon Entropy
Root Mean

Square 82.25807 98.2571 98.21149

Skew Shannon Entropy
Min Absolute

Value 0 100 99.71494

Skew Shannon Entropy
Max Absolute

Value 0 100 99.71494

Skew Shannon Entropy
Mean Absolute

Value 87.09677 98.10033 98.06897

Skew Shannon Entropy
Hjorth

Complexity 0 100 99.71494

Skew Shannon Entropy Hjorth Mobility 0 100 99.71494

Skew Shannon Entropy Coastline 0 100 99.71494

Skew Shannon Entropy Average Energy 67.74194 98.90262 98.81379

Skew Shannon Entropy Hurst Exponent 0 100 99.71494

Skew Shannon Entropy Renyie Entropy 0 100 99.71494

Skew Shannon Entropy Spectral Entropy 0 100 99.71494

Skew
Approximate

Entropy
Root Mean

Square 82.25807 98.21099 98.16552

Skew
Approximate

Entropy
Min Absolute

Value 0 100 99.71494

Skew
Approximate

Entropy
Max Absolute

Value 0 100 99.71494

Skew
Approximate

Entropy
Mean Absolute

Value 87.09677 98.11417 98.08276

Skew
Approximate

Entropy
Hjorth

Complexity 0 100 99.71494

Skew
Approximate

Entropy Hjorth Mobility 0 100 99.71494

Skew
Approximate

Entropy Coastline 0 100 99.71494

Skew
Approximate

Entropy Average Energy 67.74194 98.9349 98.84598

Skew
Approximate

Entropy Hurst Exponent 0 100 99.71494

125

Skew
Approximate

Entropy Renyie Entropy 0 100 99.71494

Skew
Approximate

Entropy Spectral Entropy 0 100 99.71494

Skew
Approximate

Entropy Shannon Entropy 0 100 99.71494

Skew
Permutation

Entropy
Root Mean

Square 83.87097 98.23405 98.1931

Skew
Permutation

Entropy
Min Absolute

Value 0 100 99.71494

Skew
Permutation

Entropy
Max Absolute

Value 0 100 99.71494

Skew
Permutation

Entropy
Mean Absolute

Value 87.09677 98.12339 98.09195

Skew
Permutation

Entropy
Hjorth

Complexity 0 100 99.71494

Skew
Permutation

Entropy Hjorth Mobility 0 100 99.71494

Skew
Permutation

Entropy Coastline 0 100 99.71494

Skew
Permutation

Entropy Average Energy 67.74194 98.92106 98.83218

Skew
Permutation

Entropy Hurst Exponent 0 100 99.71494

Skew
Permutation

Entropy Renyie Entropy 0 100 99.71494

Skew
Permutation

Entropy Spectral Entropy 0 100 99.71494

Skew
Permutation

Entropy Shannon Entropy 0 100 99.71494

Skew
Permutation

Entropy
Approximate

Entropy 0 100 99.71494

Skew Variance
Root Mean

Square 74.19355 98.81962 98.74943

Skew Variance
Min Absolute

Value 62.90323 98.80579 98.70345

Skew Variance
Max Absolute

Value 64.51613 99.01328 98.91494

Skew Variance
Mean Absolute

Value 77.41936 98.63058 98.57012

Skew Variance
Hjorth

Complexity 66.12903 99.0225 98.92874

Skew Variance Hjorth Mobility 64.51613 99.05939 98.96092

Skew Variance Coastline 58.06452 98.97178 98.85517

Skew Variance Average Energy 67.74194 98.94412 98.85517

Skew Variance Hurst Exponent 66.12903 98.82424 98.73103

Skew Variance Renyie Entropy 67.74194 98.9349 98.84598

Skew Variance Spectral Entropy 66.12903 99.01328 98.91954

Skew Variance Shannon Entropy 67.74194 98.91645 98.82759

126

Skew Variance
Approximate

Entropy 67.74194 98.93951 98.85058

Skew Variance
Permutation

Entropy 67.74194 98.9349 98.84598

Kurtosis
Min Absolute

Value
Root Mean

Square 85.48387 98.16027 98.12414

Kurtosis
Max Absolute

Value
Root Mean

Square 85.48387 98.81962 98.78161

Kurtosis
Max Absolute

Value
Min Absolute

Value 0 100 99.71494

Kurtosis
Mean Absolute

Value
Root Mean

Square 85.48387 98.39082 98.35402

Kurtosis
Mean Absolute

Value
Min Absolute

Value 87.09677 97.76374 97.73333

Kurtosis
Mean Absolute

Value
Max Absolute

Value 85.48387 98.6398 98.6023

Kurtosis
Hjorth

Complexity
Root Mean

Square 82.25807 98.54297 98.49655

Kurtosis
Hjorth

Complexity
Min Absolute

Value 0 100 99.71494

Kurtosis
Hjorth

Complexity
Max Absolute

Value 0 100 99.71494

Kurtosis
Hjorth

Complexity
Mean Absolute

Value 85.48387 98.19255 98.15632

Kurtosis Hjorth Mobility
Root Mean

Square 83.87097 98.56603 98.52414

Kurtosis Hjorth Mobility
Min Absolute

Value 0 100 99.71494

Kurtosis Hjorth Mobility
Max Absolute

Value 0 100 99.71494

Kurtosis Hjorth Mobility
Mean Absolute

Value 85.48387 98.27554 98.23908

Kurtosis Hjorth Mobility
Hjorth

Complexity 0 100 99.71494

Kurtosis Coastline
Root Mean

Square 82.25807 98.58447 98.53793

Kurtosis Coastline
Min Absolute

Value 0 100 99.71494

Kurtosis Coastline
Max Absolute

Value 0 100 99.71494

Kurtosis Coastline
Mean Absolute

Value 85.48387 98.27554 98.23908

Kurtosis Coastline
Hjorth

Complexity 0 100 99.71494

Kurtosis Coastline Hjorth Mobility 0 100 99.71494

Kurtosis Average Energy
Root Mean

Square 70.96774 98.88418 98.8046

Kurtosis Average Energy
Min Absolute

Value 62.90323 99.16544 99.06207

127

Kurtosis Average Energy
Max Absolute

Value 66.12903 99.42364 99.32874

Kurtosis Average Energy
Mean Absolute

Value 77.41936 98.71357 98.65287

Kurtosis Average Energy
Hjorth

Complexity 62.90323 99.13777 99.03448

Kurtosis Average Energy Hjorth Mobility 62.90323 99.30376 99.2

Kurtosis Average Energy Coastline 66.12903 99.20232 99.10805

Kurtosis Hurst Exponent
Root Mean

Square 85.48387 98.128 98.09195

Kurtosis Hurst Exponent
Min Absolute

Value 0 100 99.71494

Kurtosis Hurst Exponent
Max Absolute

Value 0 100 99.71494

Kurtosis Hurst Exponent
Mean Absolute

Value 87.09677 97.80524 97.77471

Kurtosis Hurst Exponent
Hjorth

Complexity 0 100 99.71494

Kurtosis Hurst Exponent Hjorth Mobility 0 100 99.71494

Kurtosis Hurst Exponent Coastline 0 100 99.71494

Kurtosis Hurst Exponent Average Energy 62.90323 99.30376 99.2

Kurtosis Renyie Entropy
Root Mean

Square 82.25807 98.37698 98.33103

Kurtosis Renyie Entropy
Min Absolute

Value 0 100 99.71494

Kurtosis Renyie Entropy
Max Absolute

Value 0 100 99.71494

Kurtosis Renyie Entropy
Mean Absolute

Value 82.25807 98.26171 98.21609

Kurtosis Renyie Entropy
Hjorth

Complexity 0 100 99.71494

Kurtosis Renyie Entropy Hjorth Mobility 0 100 99.71494

Kurtosis Renyie Entropy Coastline 0 100 99.71494

Kurtosis Renyie Entropy Average Energy 66.12903 98.87495 98.78161

Kurtosis Renyie Entropy Hurst Exponent 0 100 99.71494

Kurtosis Spectral Entropy
Root Mean

Square 83.87097 98.61214 98.57012

Kurtosis Spectral Entropy
Min Absolute

Value 0 100 99.71494

Kurtosis Spectral Entropy
Max Absolute

Value 0 100 99.71494

Kurtosis Spectral Entropy
Mean Absolute

Value 87.09677 98.31704 98.28506

Kurtosis Spectral Entropy
Hjorth

Complexity 0 100 99.71494

Kurtosis Spectral Entropy Hjorth Mobility 0 100 99.71494

Kurtosis Spectral Entropy Coastline 0 100 99.71494

Kurtosis Spectral Entropy Average Energy 69.35484 99.22077 99.13563

Kurtosis Spectral Entropy Hurst Exponent 0 100 99.71494

128

Kurtosis Spectral Entropy Renyie Entropy 0 100 99.71494

Kurtosis Shannon Entropy
Root Mean

Square 83.87097 98.37698 98.33563

Kurtosis Shannon Entropy
Min Absolute

Value 0 100 99.71494

Kurtosis Shannon Entropy
Max Absolute

Value 0 100 99.71494

Kurtosis Shannon Entropy
Mean Absolute

Value 83.87097 98.2156 98.17471

Kurtosis Shannon Entropy
Hjorth

Complexity 0 100 99.71494

Kurtosis Shannon Entropy Hjorth Mobility 0 100 99.71494

Kurtosis Shannon Entropy Coastline 0 100 99.71494

Kurtosis Shannon Entropy Average Energy 67.74194 98.84268 98.75402

Kurtosis Shannon Entropy Hurst Exponent 0 100 99.71494

Kurtosis Shannon Entropy Renyie Entropy 0 100 99.71494

Kurtosis Shannon Entropy Spectral Entropy 0 100 99.71494

Kurtosis
Approximate

Entropy
Root Mean

Square 83.87097 98.45076 98.4092

Kurtosis
Approximate

Entropy
Min Absolute

Value 0 100 99.71494

Kurtosis
Approximate

Entropy
Max Absolute

Value 0 100 99.71494

Kurtosis
Approximate

Entropy
Mean Absolute

Value 85.48387 98.04039 98.0046

Kurtosis
Approximate

Entropy
Hjorth

Complexity 0 100 99.71494

Kurtosis
Approximate

Entropy Hjorth Mobility 0 100 99.71494

Kurtosis
Approximate

Entropy Coastline 0 100 99.71494

Kurtosis
Approximate

Entropy Average Energy 69.35484 98.84729 98.76322

Kurtosis
Approximate

Entropy Hurst Exponent 0 100 99.71494

Kurtosis
Approximate

Entropy Renyie Entropy 0 100 99.71494

Kurtosis
Approximate

Entropy Spectral Entropy 0 100 99.71494

Kurtosis
Approximate

Entropy Shannon Entropy 0 100 99.71494

Kurtosis
Permutation

Entropy
Root Mean

Square 83.87097 98.2571 98.21609

Kurtosis
Permutation

Entropy
Min Absolute

Value 0 100 99.71494

Kurtosis
Permutation

Entropy
Max Absolute

Value 0 100 99.71494

Kurtosis
Permutation

Entropy
Mean Absolute

Value 87.09677 98.0035 97.97241

129

Kurtosis
Permutation

Entropy
Hjorth

Complexity 0 100 99.71494

Kurtosis
Permutation

Entropy Hjorth Mobility 0 100 99.71494

Kurtosis
Permutation

Entropy Coastline 0 100 99.71494

Kurtosis
Permutation

Entropy Average Energy 66.12903 99.11011 99.01609

Kurtosis
Permutation

Entropy Hurst Exponent 0 100 99.71494

Kurtosis
Permutation

Entropy Renyie Entropy 0 100 99.71494

Kurtosis
Permutation

Entropy Spectral Entropy 0 100 99.71494

Kurtosis
Permutation

Entropy Shannon Entropy 0 100 99.71494

Kurtosis
Permutation

Entropy
Approximate

Entropy 0 100 99.71494

Kurtosis Variance
Root Mean

Square 70.96774 98.89801 98.81839

Kurtosis Variance
Min Absolute

Value 64.51613 99.17927 99.08046

Kurtosis Variance
Max Absolute

Value 66.12903 99.43287 99.33793

Kurtosis Variance
Mean Absolute

Value 77.41936 98.70435 98.64368

Kurtosis Variance
Hjorth

Complexity 64.51613 99.17927 99.08046

Kurtosis Variance Hjorth Mobility 62.90323 99.3176 99.21379

Kurtosis Variance Coastline 64.51613 99.21155 99.11264

Kurtosis Variance Average Energy 69.35484 98.9349 98.85058

Kurtosis Variance Hurst Exponent 62.90323 99.26227 99.15862

Kurtosis Variance Renyie Entropy 66.12903 98.87034 98.77701

Kurtosis Variance Spectral Entropy 69.35484 99.2346 99.14943

Kurtosis Variance Shannon Entropy 67.74194 98.86112 98.77241

Kurtosis Variance
Approximate

Entropy 69.35484 98.84729 98.76322

Kurtosis Variance
Permutation

Entropy 66.12903 99.11933 99.02529

Kurtosis Skew
Root Mean

Square 82.25807 98.53375 98.48736

Kurtosis Skew
Min Absolute

Value 0 100 99.71494

Kurtosis Skew
Max Absolute

Value 0 100 99.71494

Kurtosis Skew
Mean Absolute

Value 87.09677 98.18794 98.15632

Kurtosis Skew
Hjorth

Complexity 0 100 99.71494

130

Kurtosis Skew Hjorth Mobility 0 100 99.71494

Kurtosis Skew Coastline 0 100 99.71494

Kurtosis Skew Average Energy 67.74194 99.03633 98.94713

Kurtosis Skew Hurst Exponent 0 100 99.71494

Kurtosis Skew Renyie Entropy 0 100 99.71494

Kurtosis Skew Spectral Entropy 0 100 99.71494

Kurtosis Skew Shannon Entropy 0 100 99.71494

Kurtosis Skew
Approximate

Entropy 0 100 99.71494

Kurtosis Skew
Permutation

Entropy 0 100 99.71494

Kurtosis Skew Variance 67.74194 99.04556 98.95632

Modified Hurst
Exponent

Min Absolute
Value

Root Mean
Square 83.87097 96.43121 96.3954

Modified Hurst
Exponent

Max Absolute
Value

Root Mean
Square 80.64516 98.8104 98.75862

Modified Hurst
Exponent

Max Absolute
Value

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent

Mean Absolute
Value

Root Mean
Square 87.09677 97.04445 97.01609

Modified Hurst
Exponent

Mean Absolute
Value

Min Absolute
Value 88.70968 96.54648 96.52414

Modified Hurst
Exponent

Mean Absolute
Value

Max Absolute
Value 82.25807 98.45076 98.4046

Modified Hurst
Exponent

Hjorth
Complexity

Root Mean
Square 85.48387 97.84213 97.8069

Modified Hurst
Exponent

Hjorth
Complexity

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent

Hjorth
Complexity

Max Absolute
Value 0 100 99.71494

Modified Hurst
Exponent

Hjorth
Complexity

Mean Absolute
Value 85.48387 97.65769 97.62299

Modified Hurst
Exponent Hjorth Mobility

Root Mean
Square 85.48387 97.82829 97.7931

Modified Hurst
Exponent Hjorth Mobility

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Hjorth Mobility

Max Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Hjorth Mobility

Mean Absolute
Value 87.09677 97.69458 97.66437

Modified Hurst
Exponent Hjorth Mobility

Hjorth
Complexity 0 100 99.71494

Modified Hurst
Exponent Coastline

Root Mean
Square 85.48387 97.2381 97.2046

Modified Hurst
Exponent Coastline

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Coastline

Max Absolute
Value 0 100 99.71494

131

Modified Hurst
Exponent Coastline

Mean Absolute
Value 87.09677 96.92918 96.90115

Modified Hurst
Exponent Coastline

Hjorth
Complexity 0 100 99.71494

Modified Hurst
Exponent Coastline Hjorth Mobility 0 100 99.71494

Modified Hurst
Exponent Average Energy

Root Mean
Square 74.19355 98.37237 98.30345

Modified Hurst
Exponent Average Energy

Min Absolute
Value 56.45161 98.23866 98.11954

Modified Hurst
Exponent Average Energy

Max Absolute
Value 62.90323 99.28532 99.18161

Modified Hurst
Exponent Average Energy

Mean Absolute
Value 79.03226 98.28477 98.22989

Modified Hurst
Exponent Average Energy

Hjorth
Complexity 62.90323 98.71357 98.61149

Modified Hurst
Exponent Average Energy Hjorth Mobility 62.90323 98.79196 98.68966

Modified Hurst
Exponent Average Energy Coastline 56.45161 98.74585 98.62529

Modified Hurst
Exponent Hurst Exponent

Root Mean
Square 87.09677 97.51937 97.48966

Modified Hurst
Exponent Hurst Exponent

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Hurst Exponent

Max Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Hurst Exponent

Mean Absolute
Value 88.70968 97.31188 97.28736

Modified Hurst
Exponent Hurst Exponent

Hjorth
Complexity 0 100 99.71494

Modified Hurst
Exponent Hurst Exponent Hjorth Mobility 0 100 99.71494

Modified Hurst
Exponent Hurst Exponent Coastline 0 100 99.71494

Modified Hurst
Exponent Hurst Exponent Average Energy 62.90323 98.97639 98.87356

Modified Hurst
Exponent Renyie Entropy

Root Mean
Square 82.25807 97.4502 97.4069

Modified Hurst
Exponent Renyie Entropy

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Renyie Entropy

Max Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Renyie Entropy

Mean Absolute
Value 87.09677 97.49631 97.46667

Modified Hurst
Exponent Renyie Entropy

Hjorth
Complexity 0 100 99.71494

Modified Hurst
Exponent Renyie Entropy Hjorth Mobility 0 100 99.71494

Modified Hurst
Exponent Renyie Entropy Coastline 0 100 99.71494

132

Modified Hurst
Exponent Renyie Entropy Average Energy 62.90323 98.78735 98.68506

Modified Hurst
Exponent Renyie Entropy Hurst Exponent 0 100 99.71494

Modified Hurst
Exponent Spectral Entropy

Root Mean
Square 87.09677 97.22888 97.2

Modified Hurst
Exponent Spectral Entropy

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Spectral Entropy

Max Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Spectral Entropy

Mean Absolute
Value 87.09677 97.13667 97.10805

Modified Hurst
Exponent Spectral Entropy

Hjorth
Complexity 0 100 99.71494

Modified Hurst
Exponent Spectral Entropy Hjorth Mobility 0 100 99.71494

Modified Hurst
Exponent Spectral Entropy Coastline 0 100 99.71494

Modified Hurst
Exponent Spectral Entropy Average Energy 64.51613 98.86112 98.76322

Modified Hurst
Exponent Spectral Entropy Hurst Exponent 0 100 99.71494

Modified Hurst
Exponent Spectral Entropy Renyie Entropy 0 100 99.71494

Modified Hurst
Exponent Shannon Entropy

Root Mean
Square 83.87097 97.66691 97.62759

Modified Hurst
Exponent Shannon Entropy

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Shannon Entropy

Max Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Shannon Entropy

Mean Absolute
Value 87.09677 97.5332 97.50345

Modified Hurst
Exponent Shannon Entropy

Hjorth
Complexity 0 100 99.71494

Modified Hurst
Exponent Shannon Entropy Hjorth Mobility 0 100 99.71494

Modified Hurst
Exponent Shannon Entropy Coastline 0 100 99.71494

Modified Hurst
Exponent Shannon Entropy Average Energy 66.12903 98.78274 98.68966

Modified Hurst
Exponent Shannon Entropy Hurst Exponent 0 100 99.71494

Modified Hurst
Exponent Shannon Entropy Renyie Entropy 0 100 99.71494

Modified Hurst
Exponent Shannon Entropy Spectral Entropy 0 100 99.71494

Modified Hurst
Exponent

Approximate
Entropy

Root Mean
Square 88.70968 97.43176 97.4069

Modified Hurst
Exponent

Approximate
Entropy

Min Absolute
Value 0 100 99.71494

133

Modified Hurst
Exponent

Approximate
Entropy

Max Absolute
Value 0 100 99.71494

Modified Hurst
Exponent

Approximate
Entropy

Mean Absolute
Value 88.70968 97.45943 97.43448

Modified Hurst
Exponent

Approximate
Entropy

Hjorth
Complexity 0 100 99.71494

Modified Hurst
Exponent

Approximate
Entropy Hjorth Mobility 0 100 99.71494

Modified Hurst
Exponent

Approximate
Entropy Coastline 0 100 99.71494

Modified Hurst
Exponent

Approximate
Entropy Average Energy 66.12903 98.80118 98.70805

Modified Hurst
Exponent

Approximate
Entropy Hurst Exponent 0 100 99.71494

Modified Hurst
Exponent

Approximate
Entropy Renyie Entropy 0 100 99.71494

Modified Hurst
Exponent

Approximate
Entropy Spectral Entropy 0 100 99.71494

Modified Hurst
Exponent

Approximate
Entropy Shannon Entropy 0 100 99.71494

Modified Hurst
Exponent

Permutation
Entropy

Root Mean
Square 85.48387 97.25655 97.22299

Modified Hurst
Exponent

Permutation
Entropy

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent

Permutation
Entropy

Max Absolute
Value 0 100 99.71494

Modified Hurst
Exponent

Permutation
Entropy

Mean Absolute
Value 87.09677 97.24733 97.21839

Modified Hurst
Exponent

Permutation
Entropy

Hjorth
Complexity 0 100 99.71494

Modified Hurst
Exponent

Permutation
Entropy Hjorth Mobility 0 100 99.71494

Modified Hurst
Exponent

Permutation
Entropy Coastline 0 100 99.71494

Modified Hurst
Exponent

Permutation
Entropy Average Energy 64.51613 98.91645 98.81839

Modified Hurst
Exponent

Permutation
Entropy Hurst Exponent 0 100 99.71494

Modified Hurst
Exponent

Permutation
Entropy Renyie Entropy 0 100 99.71494

Modified Hurst
Exponent

Permutation
Entropy Spectral Entropy 0 100 99.71494

Modified Hurst
Exponent

Permutation
Entropy Shannon Entropy 0 100 99.71494

Modified Hurst
Exponent

Permutation
Entropy

Approximate
Entropy 0 100 99.71494

Modified Hurst
Exponent Variance

Root Mean
Square 74.19355 98.40926 98.34023

Modified Hurst
Exponent Variance

Min Absolute
Value 58.06452 98.27093 98.15632

134

Modified Hurst
Exponent Variance

Max Absolute
Value 64.51613 99.26227 99.16322

Modified Hurst
Exponent Variance

Mean Absolute
Value 79.03226 98.30782 98.25287

Modified Hurst
Exponent Variance

Hjorth
Complexity 61.29032 98.74585 98.63908

Modified Hurst
Exponent Variance Hjorth Mobility 62.90323 98.79196 98.68966

Modified Hurst
Exponent Variance Coastline 56.45161 98.74585 98.62529

Modified Hurst
Exponent Variance Average Energy 64.51613 98.81501 98.71724

Modified Hurst
Exponent Variance Hurst Exponent 62.90323 98.99023 98.88736

Modified Hurst
Exponent Variance Renyie Entropy 64.51613 98.79196 98.69425

Modified Hurst
Exponent Variance Spectral Entropy 64.51613 98.86112 98.76322

Modified Hurst
Exponent Variance Shannon Entropy 66.12903 98.79657 98.70345

Modified Hurst
Exponent Variance

Approximate
Entropy 66.12903 98.77813 98.68506

Modified Hurst
Exponent Variance

Permutation
Entropy 64.51613 98.8934 98.7954

Modified Hurst
Exponent Skew

Root Mean
Square 80.64516 98.37698 98.32644

Modified Hurst
Exponent Skew

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Skew

Max Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Skew

Mean Absolute
Value 87.09677 98.13722 98.10575

Modified Hurst
Exponent Skew

Hjorth
Complexity 0 100 99.71494

Modified Hurst
Exponent Skew Hjorth Mobility 0 100 99.71494

Modified Hurst
Exponent Skew Coastline 0 100 99.71494

Modified Hurst
Exponent Skew Average Energy 67.74194 98.97178 98.88276

Modified Hurst
Exponent Skew Hurst Exponent 0 100 99.71494

Modified Hurst
Exponent Skew Renyie Entropy 0 100 99.71494

Modified Hurst
Exponent Skew Spectral Entropy 0 100 99.71494

Modified Hurst
Exponent Skew Shannon Entropy 0 100 99.71494

Modified Hurst
Exponent Skew

Approximate
Entropy 0 100 99.71494

135

Modified Hurst
Exponent Skew

Permutation
Entropy 0 100 99.71494

Modified Hurst
Exponent Skew Variance 67.74194 98.97639 98.88736

Modified Hurst
Exponent Kurtosis

Root Mean
Square 87.09677 98.19716 98.16552

Modified Hurst
Exponent Kurtosis

Min Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Kurtosis

Max Absolute
Value 0 100 99.71494

Modified Hurst
Exponent Kurtosis

Mean Absolute
Value 88.70968 97.95279 97.92644

Modified Hurst
Exponent Kurtosis

Hjorth
Complexity 0 100 99.71494

Modified Hurst
Exponent Kurtosis Hjorth Mobility 0 100 99.71494

Modified Hurst
Exponent Kurtosis Coastline 0 100 99.71494

Modified Hurst
Exponent Kurtosis Average Energy 66.12903 99.00406 98.91035

Modified Hurst
Exponent Kurtosis Hurst Exponent 0 100 99.71494

Modified Hurst
Exponent Kurtosis Renyie Entropy 0 100 99.71494

Modified Hurst
Exponent Kurtosis Spectral Entropy 0 100 99.71494

Modified Hurst
Exponent Kurtosis Shannon Entropy 0 100 99.71494

Modified Hurst
Exponent Kurtosis

Approximate
Entropy 0 100 99.71494

Modified Hurst
Exponent Kurtosis

Permutation
Entropy 0 100 99.71494

Modified Hurst
Exponent Kurtosis Variance 66.12903 99.02711 98.93333

Modified Hurst
Exponent Kurtosis Skew 0 100 99.71494

Fractal
Dimension

Min Absolute
Value

Root Mean
Square 93.54839 98.03578 98.02299

Fractal
Dimension

Max Absolute
Value

Root Mean
Square 91.93548 98.44153 98.42299

Fractal
Dimension

Max Absolute
Value

Min Absolute
Value 83.87097 98.58447 98.54253

Fractal
Dimension

Mean Absolute
Value

Root Mean
Square 93.54839 98.28016 98.26667

Fractal
Dimension

Mean Absolute
Value

Min Absolute
Value 91.93548 98.07728 98.05977

Fractal
Dimension

Mean Absolute
Value

Max Absolute
Value 91.93548 98.43692 98.41839

Fractal
Dimension

Hjorth
Complexity

Root Mean
Square 93.54839 98.22021 98.2069

136

Fractal
Dimension

Hjorth
Complexity

Min Absolute
Value 91.93548 98.41848 98.4

Fractal
Dimension

Hjorth
Complexity

Max Absolute
Value 85.48387 98.74124 98.70345

Fractal
Dimension

Hjorth
Complexity

Mean Absolute
Value 91.93548 98.15105 98.13333

Fractal
Dimension Hjorth Mobility

Root Mean
Square 91.93548 98.14644 98.12874

Fractal
Dimension Hjorth Mobility

Min Absolute
Value 95.16129 98.24788 98.23908

Fractal
Dimension Hjorth Mobility

Max Absolute
Value 88.70968 98.67208 98.64368

Fractal
Dimension Hjorth Mobility

Mean Absolute
Value 93.54839 98.06806 98.05517

Fractal
Dimension Hjorth Mobility

Hjorth
Complexity 91.93548 98.37237 98.35402

Fractal
Dimension Coastline

Root Mean
Square 93.54839 98.16027 98.14713

Fractal
Dimension Coastline

Min Absolute
Value 95.16129 98.13261 98.12414

Fractal
Dimension Coastline

Max Absolute
Value 93.54839 98.31243 98.29885

Fractal
Dimension Coastline

Mean Absolute
Value 93.54839 98.11417 98.10115

Fractal
Dimension Coastline

Hjorth
Complexity 95.16129 98.29399 98.28506

Fractal
Dimension Coastline Hjorth Mobility 95.16129 98.22483 98.21609

Fractal
Dimension Average Energy

Root Mean
Square 93.54839 98.52453 98.51035

Fractal
Dimension Average Energy

Min Absolute
Value 83.87097 98.51531 98.47356

Fractal
Dimension Average Energy

Max Absolute
Value 90.32258 98.7228 98.69885

Fractal
Dimension Average Energy

Mean Absolute
Value 93.54839 98.46459 98.45058

Fractal
Dimension Average Energy

Hjorth
Complexity 88.70968 98.82424 98.7954

Fractal
Dimension Average Energy Hjorth Mobility 87.09677 98.74585 98.71264

Fractal
Dimension Average Energy Coastline 93.54839 98.49225 98.47816

Fractal
Dimension Hurst Exponent

Root Mean
Square 93.54839 97.79602 97.78391

Fractal
Dimension Hurst Exponent

Min Absolute
Value 95.16129 97.5747 97.56782

Fractal
Dimension Hurst Exponent

Max Absolute
Value 91.93548 98.15566 98.13793

Fractal
Dimension Hurst Exponent

Mean Absolute
Value 93.54839 97.6623 97.65058

137

Fractal
Dimension Hurst Exponent

Hjorth
Complexity 93.54839 97.95279 97.94023

Fractal
Dimension Hurst Exponent Hjorth Mobility 95.16129 97.96662 97.95862

Fractal
Dimension Hurst Exponent Coastline 96.77419 97.89746 97.89425

Fractal
Dimension Hurst Exponent Average Energy 91.93548 98.24788 98.22989

Fractal
Dimension Renyie Entropy

Root Mean
Square 93.54839 98.18794 98.17471

Fractal
Dimension Renyie Entropy

Min Absolute
Value 93.54839 98.07267 98.05977

Fractal
Dimension Renyie Entropy

Max Absolute
Value 87.09677 98.5107 98.47816

Fractal
Dimension Renyie Entropy

Mean Absolute
Value 93.54839 98.1695 98.15632

Fractal
Dimension Renyie Entropy

Hjorth
Complexity 91.93548 98.35854 98.34023

Fractal
Dimension Renyie Entropy Hjorth Mobility 93.54839 98.36776 98.35402

Fractal
Dimension Renyie Entropy Coastline 95.16129 98.12339 98.11494

Fractal
Dimension Renyie Entropy Average Energy 93.54839 98.64902 98.63448

Fractal
Dimension Renyie Entropy Hurst Exponent 95.16129 97.59314 97.58621

Fractal
Dimension Spectral Entropy

Root Mean
Square 93.54839 98.27554 98.26207

Fractal
Dimension Spectral Entropy

Min Absolute
Value 93.54839 98.03117 98.01839

Fractal
Dimension Spectral Entropy

Max Absolute
Value 87.09677 98.49687 98.46437

Fractal
Dimension Spectral Entropy

Mean Absolute
Value 93.54839 98.23405 98.22069

Fractal
Dimension Spectral Entropy

Hjorth
Complexity 91.93548 98.33549 98.31724

Fractal
Dimension Spectral Entropy Hjorth Mobility 95.16129 98.28477 98.27586

Fractal
Dimension Spectral Entropy Coastline 95.16129 97.98967 97.98161

Fractal
Dimension Spectral Entropy Average Energy 91.93548 98.88879 98.86897

Fractal
Dimension Spectral Entropy Hurst Exponent 95.16129 97.69919 97.69195

Fractal
Dimension Spectral Entropy Renyie Entropy 93.54839 98.06806 98.05517

Fractal
Dimension Shannon Entropy

Root Mean
Square 93.54839 98.3401 98.32644

Fractal
Dimension Shannon Entropy

Min Absolute
Value 93.54839 98.03117 98.01839

138

Fractal
Dimension Shannon Entropy

Max Absolute
Value 87.09677 98.39543 98.36322

Fractal
Dimension Shannon Entropy

Mean Absolute
Value 93.54839 98.26171 98.24828

Fractal
Dimension Shannon Entropy

Hjorth
Complexity 91.93548 98.34471 98.32644

Fractal
Dimension Shannon Entropy Hjorth Mobility 93.54839 98.26632 98.25287

Fractal
Dimension Shannon Entropy Coastline 95.16129 98.09572 98.08736

Fractal
Dimension Shannon Entropy Average Energy 93.54839 98.8519 98.83678

Fractal
Dimension Shannon Entropy Hurst Exponent 95.16129 97.61158 97.6046

Fractal
Dimension Shannon Entropy Renyie Entropy 93.54839 97.96662 97.95402

Fractal
Dimension Shannon Entropy Spectral Entropy 93.54839 98.045 98.03218

Fractal
Dimension

Approximate
Entropy

Root Mean
Square 93.54839 98.26171 98.24828

Fractal
Dimension

Approximate
Entropy

Min Absolute
Value 93.54839 97.90207 97.88966

Fractal
Dimension

Approximate
Entropy

Max Absolute
Value 87.09677 98.61214 98.57931

Fractal
Dimension

Approximate
Entropy

Mean Absolute
Value 93.54839 98.23405 98.22069

Fractal
Dimension

Approximate
Entropy

Hjorth
Complexity 91.93548 98.41848 98.4

Fractal
Dimension

Approximate
Entropy Hjorth Mobility 95.16129 98.43231 98.42299

Fractal
Dimension

Approximate
Entropy Coastline 95.16129 98.10494 98.09655

Fractal
Dimension

Approximate
Entropy Average Energy 93.54839 98.79657 98.78161

Fractal
Dimension

Approximate
Entropy Hurst Exponent 95.16129 97.79602 97.78851

Fractal
Dimension

Approximate
Entropy Renyie Entropy 93.54839 98.04039 98.02759

Fractal
Dimension

Approximate
Entropy Spectral Entropy 93.54839 98.04039 98.02759

Fractal
Dimension

Approximate
Entropy Shannon Entropy 93.54839 98.03117 98.01839

Fractal
Dimension

Permutation
Entropy

Root Mean
Square 93.54839 98.01273 98

Fractal
Dimension

Permutation
Entropy

Min Absolute
Value 93.54839 97.88362 97.87126

Fractal
Dimension

Permutation
Entropy

Max Absolute
Value 87.09677 98.49225 98.45977

Fractal
Dimension

Permutation
Entropy

Mean Absolute
Value 93.54839 97.90207 97.88966

139

Fractal
Dimension

Permutation
Entropy

Hjorth
Complexity 91.93548 98.34471 98.32644

Fractal
Dimension

Permutation
Entropy Hjorth Mobility 93.54839 98.31704 98.30345

Fractal
Dimension

Permutation
Entropy Coastline 95.16129 98.14183 98.13333

Fractal
Dimension

Permutation
Entropy Average Energy 93.54839 98.33549 98.32184

Fractal
Dimension

Permutation
Entropy Hurst Exponent 95.16129 97.77757 97.77012

Fractal
Dimension

Permutation
Entropy Renyie Entropy 93.54839 97.84674 97.83448

Fractal
Dimension

Permutation
Entropy Spectral Entropy 93.54839 97.91129 97.89885

Fractal
Dimension

Permutation
Entropy Shannon Entropy 93.54839 97.8744 97.86207

Fractal

Dimension Variance
Min Absolute

Value 83.87097 98.51992 98.47816

Fractal
Dimension Variance

Max Absolute
Value 90.32258 98.7228 98.69885

Fractal
Dimension Variance

Mean Absolute
Value 93.54839 98.48303 98.46897

Fractal
Dimension Variance

Hjorth
Complexity 87.09677 98.83346 98.8

Fractal
Dimension Variance Hjorth Mobility 87.09677 98.74585 98.71264

Fractal
Dimension Variance Coastline 93.54839 98.48764 98.47356

Fractal
Dimension Variance Average Energy 93.54839 98.7689 98.75402

Fractal
Dimension Variance Hurst Exponent 91.93548 98.24788 98.22989

Fractal
Dimension Variance Renyie Entropy 93.54839 98.66286 98.64828

Fractal
Dimension Variance Spectral Entropy 90.32258 98.8934 98.86897

Fractal
Dimension Variance Shannon Entropy 93.54839 98.87495 98.85977

Fractal
Dimension Variance

Min Absolute
Value 83.87097 98.51992 98.47816

Fractal
Dimension Variance

Max Absolute
Value 90.32258 98.7228 98.69885

Fractal
Dimension Variance

Mean Absolute
Value 93.54839 98.48303 98.46897

Fractal
Dimension Variance

Hjorth
Complexity 87.09677 98.83346 98.8

Fractal
Dimension Variance Hjorth Mobility 87.09677 98.74585 98.71264

140

Fractal
Dimension Variance Coastline 93.54839 98.48764 98.47356

Fractal
Dimension Variance Average Energy 93.54839 98.7689 98.75402

Fractal
Dimension Variance Hurst Exponent 91.93548 98.24788 98.22989

Fractal
Dimension Variance Renyie Entropy 93.54839 98.66286 98.64828

Fractal
Dimension Variance Spectral Entropy 90.32258 98.8934 98.86897

Fractal
Dimension Variance Shannon Entropy 93.54839 98.87495 98.85977

Fractal
Dimension Skew Renyie Entropy 91.93548 97.98045 97.96322

Fractal
Dimension Skew Spectral Entropy 91.93548 98.05883 98.04138

Fractal
Dimension Skew Shannon Entropy 91.93548 97.97584 97.95862

Fractal
Dimension Skew

Approximate
Entropy 91.93548 97.91129 97.89425

Fractal
Dimension Skew

Permutation
Entropy 91.93548 98.00812 97.99081

Fractal
Dimension Skew Variance 90.32258 98.56603 98.54253

Fractal
Dimension Kurtosis

Root Mean
Square 93.54839 98.62136 98.6069

Fractal
Dimension Kurtosis

Min Absolute
Value 93.54839 97.9574 97.94483

Fractal
Dimension Kurtosis

Max Absolute
Value 87.09677 98.49225 98.45977

Fractal
Dimension Kurtosis

Mean Absolute
Value 91.93548 98.45076 98.43218

Fractal
Dimension Kurtosis

Hjorth
Complexity 91.93548 98.51531 98.49655

Fractal
Dimension Kurtosis Hjorth Mobility 95.16129 98.45998 98.45058

Fractal
Dimension Kurtosis Coastline 95.16129 98.32626 98.31724

Fractal
Dimension Kurtosis Average Energy 93.54839 98.95334 98.93793

Fractal
Dimension Kurtosis Hurst Exponent 95.16129 97.79602 97.78851

Fractal
Dimension Kurtosis Renyie Entropy 93.54839 98.01734 98.0046

Fractal
Dimension Kurtosis Spectral Entropy 93.54839 98.14183 98.12874

Fractal
Dimension Kurtosis Shannon Entropy 93.54839 98.01273 98

Fractal
Dimension Kurtosis

Approximate
Entropy 93.54839 97.9574 97.94483

141

Fractal
Dimension Kurtosis

Permutation
Entropy 93.54839 97.94356 97.93103

Fractal
Dimension Kurtosis Variance 91.93548 98.95795 98.93793

Fractal
Dimension Kurtosis Skew 91.93548 98.128 98.11035

Fractal
Dimension

Modified Hurst
Exponent

Root Mean
Square 93.54839 97.65308 97.64138

Fractal
Dimension

Modified Hurst
Exponent

Min Absolute
Value 93.54839 97.96201 97.94943

Fractal
Dimension

Modified Hurst
Exponent

Max Absolute
Value 90.32258 99.30376 99.27816

Fractal
Dimension

Modified Hurst
Exponent

Mean Absolute
Value 93.54839 97.66691 97.65517

Fractal
Dimension

Modified Hurst
Exponent

Hjorth
Complexity 91.93548 98.17872 98.16092

Fractal
Dimension

Modified Hurst
Exponent Hjorth Mobility 95.16129 98.26632 98.25747

Fractal
Dimension

Modified Hurst
Exponent Coastline 95.16129 97.71763 97.71035

Fractal
Dimension

Modified Hurst
Exponent Average Energy 93.54839 98.49687 98.48276

Fractal
Dimension

Modified Hurst
Exponent Hurst Exponent 95.16129 97.80985 97.8023

Fractal
Dimension

Modified Hurst
Exponent Renyie Entropy 93.54839 97.98506 97.97241

Fractal
Dimension

Modified Hurst
Exponent Spectral Entropy 93.54839 98.0035 97.99081

Fractal
Dimension

Modified Hurst
Exponent Shannon Entropy 93.54839 97.96201 97.94943

Fractal
Dimension

Modified Hurst
Exponent

Approximate
Entropy 93.54839 97.97123 97.95862

Fractal
Dimension

Modified Hurst
Exponent

Permutation
Entropy 93.54839 98.045 98.03218

Fractal
Dimension

Modified Hurst
Exponent Variance 93.54839 98.48764 98.47356

Fractal
Dimension

Modified Hurst
Exponent Skew 90.32258 98.82424 98.8

Fractal
Dimension

Modified Hurst
Exponent Kurtosis 93.54839 97.90668 97.89425

Standard
Deviation

Min Absolute
Value

Root Mean
Square 85.48387 97.92973 97.89425

Standard
Deviation

Max Absolute
Value

Root Mean
Square 83.87097 98.27554 98.23448

Standard
Deviation

Max Absolute
Value

Min Absolute
Value 82.25807 98.27554 98.22989

Standard
Deviation

Mean Absolute
Value

Root Mean
Square 87.09677 98.04961 98.01839

Standard
Deviation

Mean Absolute
Value

Min Absolute
Value 87.09677 97.86979 97.83908

142

Standard
Deviation

Mean Absolute
Value

Max Absolute
Value 83.87097 98.23405 98.1931

Standard
Deviation

Hjorth
Complexity

Root Mean
Square 80.64516 98.36315 98.31264

Standard
Deviation

Hjorth
Complexity

Min Absolute
Value 82.25807 98.22483 98.17931

Standard
Deviation

Hjorth
Complexity

Max Absolute
Value 80.64516 98.50148 98.45058

Standard
Deviation

Hjorth
Complexity

Mean Absolute
Value 83.87097 98.33087 98.28966

Standard
Deviation Hjorth Mobility

Root Mean
Square 83.87097 98.35393 98.31264

Standard
Deviation Hjorth Mobility

Min Absolute
Value 83.87097 98.26171 98.22069

Standard
Deviation Hjorth Mobility

Max Absolute
Value 80.64516 98.5107 98.45977

Standard
Deviation Hjorth Mobility

Mean Absolute
Value 82.25807 98.33087 98.28506

Standard
Deviation Hjorth Mobility

Hjorth
Complexity 82.25807 98.3401 98.29425

Standard
Deviation Coastline

Root Mean
Square 82.25807 98.09111 98.04598

Standard
Deviation Coastline

Min Absolute
Value 85.48387 98.00812 97.97241

Standard
Deviation Coastline

Max Absolute
Value 80.64516 98.35393 98.30345

Standard
Deviation Coastline

Mean Absolute
Value 85.48387 98.08189 98.04598

Standard
Deviation Coastline

Hjorth
Complexity 80.64516 98.40926 98.35862

Standard
Deviation Coastline Hjorth Mobility 83.87097 98.36776 98.32644

Standard
Deviation Average Energy

Root Mean
Square 69.35484 98.87034 98.78621

Standard
Deviation Average Energy

Min Absolute
Value 70.96774 98.61675 98.53793

Standard
Deviation Average Energy

Max Absolute
Value 67.74194 98.99484 98.90575

Standard
Deviation Average Energy

Mean Absolute
Value 74.19355 98.72741 98.65747

Standard
Deviation Average Energy

Hjorth
Complexity 66.12903 98.99023 98.89655

Standard
Deviation Average Energy Hjorth Mobility 67.74194 98.94873 98.85977

Standard
Deviation Average Energy Coastline 59.67742 98.87957 98.76782

Standard
Deviation Hurst Exponent

Root Mean
Square 83.87097 97.94817 97.90805

Standard
Deviation Hurst Exponent

Min Absolute
Value 83.87097 97.89746 97.85747

143

Standard
Deviation Hurst Exponent

Max Absolute
Value 83.87097 98.20638 98.16552

Standard
Deviation Hurst Exponent

Mean Absolute
Value 85.48387 97.82829 97.7931

Standard
Deviation Hurst Exponent

Hjorth
Complexity 83.87097 98.2156 98.17471

Standard
Deviation Hurst Exponent Hjorth Mobility 85.48387 97.7038 97.66897

Standard
Deviation Hurst Exponent Coastline 85.48387 97.87901 97.84368

Standard
Deviation Hurst Exponent Average Energy 72.58065 98.69974 98.62529

Standard
Deviation Renyie Entropy

Root Mean
Square 82.25807 98.20177 98.15632

Standard
Deviation Renyie Entropy

Min Absolute
Value 82.25807 97.82829 97.78391

Standard
Deviation Renyie Entropy

Max Absolute
Value 82.25807 98.51992 98.47356

Standard
Deviation Renyie Entropy

Mean Absolute
Value 82.25807 98.17411 98.12874

Standard
Deviation Renyie Entropy

Hjorth
Complexity 80.64516 98.37237 98.32184

Standard
Deviation Renyie Entropy Hjorth Mobility 83.87097 98.35393 98.31264

Standard
Deviation Renyie Entropy Coastline 79.03226 98.14183 98.08736

Standard
Deviation Renyie Entropy Average Energy 72.58065 98.6398 98.56552

Standard
Deviation Renyie Entropy Hurst Exponent 85.48387 97.8329 97.7977

Standard
Deviation Spectral Entropy

Root Mean
Square 83.87097 98.09572 98.05517

Standard
Deviation Spectral Entropy

Min Absolute
Value 85.48387 97.85135 97.81609

Standard
Deviation Spectral Entropy

Max Absolute
Value 83.87097 98.42309 98.38161

Standard
Deviation Spectral Entropy

Mean Absolute
Value 87.09677 98.08189 98.05058

Standard
Deviation Spectral Entropy

Hjorth
Complexity 80.64516 98.23405 98.18391

Standard
Deviation Spectral Entropy Hjorth Mobility 83.87097 98.18794 98.14713

Standard
Deviation Spectral Entropy Coastline 82.25807 98.05422 98.0092

Standard
Deviation Spectral Entropy Average Energy 67.74194 98.86573 98.77701

Standard
Deviation Spectral Entropy Hurst Exponent 83.87097 97.84213 97.8023

Standard
Deviation Spectral Entropy Renyie Entropy 82.25807 98.22944 98.18391

144

Standard
Deviation Shannon Entropy

Root Mean
Square 83.87097 98.04961 98.0092

Standard
Deviation Shannon Entropy

Min Absolute
Value 85.48387 97.7038 97.66897

Standard
Deviation Shannon Entropy

Max Absolute
Value 82.25807 98.41387 98.36782

Standard
Deviation Shannon Entropy

Mean Absolute
Value 83.87097 97.99428 97.95402

Standard
Deviation Shannon Entropy

Hjorth
Complexity 82.25807 98.34932 98.30345

Standard
Deviation Shannon Entropy Hjorth Mobility 83.87097 98.34471 98.30345

Standard
Deviation Shannon Entropy Coastline 82.25807 98.03578 97.99081

Standard
Deviation Shannon Entropy Average Energy 72.58065 98.57525 98.50115

Standard
Deviation Shannon Entropy Hurst Exponent 85.48387 97.90207 97.86667

Standard
Deviation Shannon Entropy Renyie Entropy 83.87097 98.045 98.0046

Standard
Deviation Shannon Entropy Spectral Entropy 83.87097 98.045 98.0046

Standard
Deviation

Approximate
Entropy

Root Mean
Square 83.87097 98.08189 98.04138

Standard
Deviation

Approximate
Entropy

Min Absolute
Value 85.48387 97.88823 97.85287

Standard
Deviation

Approximate
Entropy

Max Absolute
Value 83.87097 98.30782 98.26667

Standard
Deviation

Approximate
Entropy

Mean Absolute
Value 85.48387 98.06345 98.02759

Standard
Deviation

Approximate
Entropy

Hjorth
Complexity 82.25807 98.15105 98.10575

Standard
Deviation

Approximate
Entropy Hjorth Mobility 83.87097 98.18333 98.14253

Standard
Deviation

Approximate
Entropy Coastline 83.87097 98.03117 97.99081

Standard
Deviation

Approximate
Entropy Average Energy 70.96774 98.74585 98.66667

Standard
Deviation

Approximate
Entropy Hurst Exponent 85.48387 97.83751 97.8023

Standard
Deviation

Approximate
Entropy Renyie Entropy 82.25807 98.14644 98.10115

Standard
Deviation

Approximate
Entropy Spectral Entropy 85.48387 98.07267 98.03678

Standard
Deviation

Approximate
Entropy Shannon Entropy 83.87097 98.05883 98.01839

Standard
Deviation

Permutation
Entropy

Root Mean
Square 82.25807 98.045 98

Standard
Deviation

Permutation
Entropy

Min Absolute
Value 85.48387 97.93434 97.89885

145

Standard
Deviation

Permutation
Entropy

Max Absolute
Value 82.25807 98.26632 98.22069

Standard
Deviation

Permutation
Entropy

Mean Absolute
Value 82.25807 98.03117 97.98621

Standard
Deviation

Permutation
Entropy

Hjorth
Complexity 82.25807 98.36776 98.32184

Standard
Deviation

Permutation
Entropy Hjorth Mobility 80.64516 98.34932 98.29885

Standard
Deviation

Permutation
Entropy Coastline 82.25807 98.10955 98.06437

Standard
Deviation

Permutation
Entropy Average Energy 67.74194 98.83807 98.74943

Standard
Deviation

Permutation
Entropy Hurst Exponent 83.87097 97.94817 97.90805

Standard
Deviation

Permutation
Entropy Renyie Entropy 80.64516 98.19255 98.14253

Standard
Deviation

Permutation
Entropy Spectral Entropy 82.25807 97.97123 97.92644

Standard
Deviation

Permutation
Entropy Shannon Entropy 83.87097 98.07267 98.03218

Standard
Deviation

Permutation
Entropy

Approximate
Entropy 82.25807 98.04039 97.9954

Standard
Deviation Variance

Root Mean
Square 69.35484 98.90262 98.81839

Standard
Deviation Variance

Min Absolute
Value 70.96774 98.61675 98.53793

Standard
Deviation Variance

Max Absolute
Value 67.74194 99.00867 98.91954

Standard
Deviation Variance

Mean Absolute
Value 74.19355 98.73663 98.66667

Standard
Deviation Variance

Hjorth
Complexity 66.12903 98.99484 98.90115

Standard
Deviation Variance Hjorth Mobility 64.51613 99.0225 98.92414

Standard
Deviation Variance Coastline 62.90323 98.87034 98.76782

Standard
Deviation Variance Average Energy 69.35484 98.90262 98.81839

Standard
Deviation Variance Hurst Exponent 72.58065 98.72741 98.65287

Standard
Deviation Variance Renyie Entropy 72.58065 98.64902 98.57471

Standard
Deviation Variance Spectral Entropy 69.35484 98.88418 98.8

Standard
Deviation Variance Shannon Entropy 72.58065 98.60753 98.53333

Standard
Deviation Variance

Approximate
Entropy 70.96774 98.74585 98.66667

Standard
Deviation Variance

Permutation
Entropy 69.35484 98.84729 98.76322

146

Standard
Deviation Skew

Root Mean
Square 83.87097 98.19255 98.15172

Standard
Deviation Skew

Min Absolute
Value 85.48387 98.01273 97.97701

Standard
Deviation Skew

Max Absolute
Value 82.25807 98.27554 98.22989

Standard
Deviation Skew

Mean Absolute
Value 87.09677 98.128 98.09655

Standard
Deviation Skew

Hjorth
Complexity 80.64516 98.45076 98.4

Standard
Deviation Skew Hjorth Mobility 83.87097 98.4277 98.38621

Standard
Deviation Skew Coastline 80.64516 98.26632 98.21609

Standard
Deviation Skew Average Energy 74.19355 98.82424 98.75402

Standard
Deviation Skew Hurst Exponent 85.48387 98.03578 98

Standard
Deviation Skew Renyie Entropy 82.25807 98.29399 98.24828

Standard
Deviation Skew Spectral Entropy 83.87097 98.23866 98.1977

Standard
Deviation Skew Shannon Entropy 82.25807 98.28016 98.23448

Standard
Deviation Skew

Approximate
Entropy 82.25807 98.24327 98.1977

Standard
Deviation Skew

Permutation
Entropy 83.87097 98.24327 98.2023

Standard
Deviation Skew Variance 74.19355 98.81501 98.74483

Standard
Deviation Kurtosis

Root Mean
Square 83.87097 98.51531 98.47356

Standard
Deviation Kurtosis

Min Absolute
Value 87.09677 98.17872 98.14713

Standard
Deviation Kurtosis

Max Absolute
Value 85.48387 98.80579 98.76782

Standard
Deviation Kurtosis

Mean Absolute
Value 87.09677 98.40926 98.37701

Standard
Deviation Kurtosis

Hjorth
Complexity 82.25807 98.54758 98.50115

Standard
Deviation Kurtosis Hjorth Mobility 83.87097 98.57986 98.53793

Standard
Deviation Kurtosis Coastline 82.25807 98.62136 98.57471

Standard
Deviation Kurtosis Average Energy 70.96774 98.8934 98.81379

Standard
Deviation Kurtosis Hurst Exponent 85.48387 98.16027 98.12414

Standard
Deviation Kurtosis Renyie Entropy 82.25807 98.39543 98.34943

147

Standard
Deviation Kurtosis Spectral Entropy 82.25807 98.64441 98.5977

Standard
Deviation Kurtosis Shannon Entropy 83.87097 98.39082 98.34943

Standard
Deviation

Modified Hurst
Exponent

Approximate
Entropy 88.70968 97.42715 97.4023

Standard
Deviation

Modified Hurst
Exponent

Permutation
Entropy 85.48387 97.29805 97.26437

Standard
Deviation

Modified Hurst
Exponent Variance 74.19355 98.41387 98.34483

Standard
Deviation

Modified Hurst
Exponent Skew 80.64516 98.37698 98.32644

Standard
Deviation

Modified Hurst
Exponent Kurtosis 87.09677 98.21099 98.17931

Standard
Deviation

Fractal
Dimension

Root Mean
Square 93.54839 98.27093 98.25747

Standard
Deviation

Fractal
Dimension

Min Absolute
Value 93.54839 98.04039 98.02759

Standard
Deviation

Fractal
Dimension

Max Absolute
Value 91.93548 98.43692 98.41839

Standard
Deviation

Fractal
Dimension

Mean Absolute
Value 93.54839 98.28016 98.26667

Standard
Deviation

Fractal
Dimension

Hjorth
Complexity 93.54839 98.24788 98.23448

Standard
Deviation

Fractal
Dimension Hjorth Mobility 91.93548 98.15105 98.13333

Standard
Deviation

Fractal
Dimension Coastline 93.54839 98.16027 98.14713

Standard
Deviation

Fractal
Dimension Average Energy 93.54839 98.53836 98.52414

Standard
Deviation

Fractal
Dimension Hurst Exponent 91.93548 97.80524 97.78851

Standard
Deviation

Fractal
Dimension Renyie Entropy 93.54839 98.18333 98.17012

Standard
Deviation

Fractal
Dimension Spectral Entropy 93.54839 98.28477 98.27126

Standard
Deviation

Fractal
Dimension Shannon Entropy 93.54839 98.36315 98.34943

Standard
Deviation

Fractal
Dimension

Approximate
Entropy 93.54839 98.28016 98.26667

Standard
Deviation

Fractal
Dimension

Permutation
Entropy 93.54839 98.02656 98.01379

Standard
Deviation

Fractal
Dimension Variance 93.54839 98.5522 98.53793

Standard
Deviation

Fractal
Dimension Skew 91.93548 98.1695 98.15172

Standard
Deviation

Fractal
Dimension Kurtosis 93.54839 98.63519 98.62069

Standard
Deviation

Fractal
Dimension

Modified Hurst
Exponent 93.54839 97.6623 97.65058

148

 أ

 ملخصال

مرض الصرع هو أحد أكثر الأمراض العصبية انتشارا حيث أنه يؤثر على حياة الملايين من
 البشر حول العالم ولهذا السبب فقد عمل الكثير على تقديم أنظمة للكشف آليا عن نوبات الصرع.

العمل المقترح في هذه الأطروحة يهدف الى تصميم وتنفيذ دائرة الكترونية مدمجة يمكن

زرعها داخل المخ لتعمل على الكشف عن نوبات الصرع. هذه النظام المتكامل القادر على الكشف
عن الصرع يجب أن يتكون من أربع مراحل: تجهيز البيانات, استخلاص الخصائص, اختيار

 20أخيرا التصنيف. بالنسبة لمرحلة استخراج الخصائص فقد قمت باستخراج أفضل الخضائص و
قمنا كشف عن الصرع. وبعد ذلكخاصية خطية وغير خطية واختبارهم لقياس مدى كفائتهم في ال

حث عن افضل مزيج من هذه الخصائص يمكننا من الوصول لأفضل أداء بأقل عدد ممكن بالب
 من الخصائص.

لمرحلة التصنييف فقد قمنا باستخدام اكثر من تقنية لتعليم الآلة لتصنيف لحظات أما بالنسبة

الصرع وهذه التقنيات هى: الشبكات العصبية الاصطناعية و الات متجه الدعم وبعد ذلك قمنا
إضافة إلى ذلك بمقارنة أداء كل من التقنيتين وكذلك المساحة والطاقة المستهلكة في كل منهما.

 عديل على تصميم الشبكات العصبية الاصطناعية لزيادة كفائتها.فقد قمنا بت

وبما إن الكشف عن الصرع هو مشكلة معقدة وتدريب آلات متجهات الدعم تصبح عملية
صعبة جدا في مثل هذه المشاكل فقد قمنا بتصميم دائرة مسرع لتساعد في تدريب الات متجهات

 .صعود المتدرج و التحسين المتتالىالالدعم باستخدام اكثر من خوارزمية وهم:

مل على بالعلاب وأخيرا قمنا بالتعاون مع فريق بحثى من كلية العلوم جامعة القاهرة و وان
دامها في لاستخ قاعدة بيانات جديدة تحتوى على اشارات كهربية للمخ لعدد من الفئراناستخراج

تقييم أنظمة الكشف عن الصرع.

 محمد عادل عطية الهادى الجمال :دسـمهن
 1993\12\05 تاريخ الميلاد:

 مصرى الجنسية:
 2016\10\01 تاريخ التسجيل:

 2018\....\.... تاريخ المنح:
 لكترونيات والاتصالات الكهربيةهندسة الإ القسم:
 العلوم ماجستير الدرجة:

 المشرفون:
 أحمد نادر محى الدينا.د.
 حسن مصطفى حسن د.

 الممتحنون:

)الممتحن الخارجي(يحيي حسن غلاب أ.د.
)الممتحن الداخلي(. محمد فتحى أبو اليزيدأ.د
)المشرف الرئيسي(أحمد نادر محى الدين أ.د.

 عنوان الرسالة:
تصميم وتنفيذ عتاد لتقنيات تعليم الآلة لاستخدامها فى الكشف عن

 نوبات الصرع العصبية

 الكلمات الدالة:

 آلة متجه الدعم، الشبكات العصبية الاصطناعية، مسرعالكشف عن الصرع، تعليم الآلة،

 :رسالةملخـص ال
فى هذه الأطروحة نقدم نظام متكامل للكشف عن نوبات الصرع العصبية. بالنسبة لمرحلة استخلاص

فقد قمنا باستخراج اكتر من عشرين خاصية خطية وغير خطية لاستخدامها فى تمييز نوبات الخصائص
يف نالصرع. كما قمنا باختبار كفاءة هذه الخصائص ف الكشف عن الصرع. أما بالنسبة لعملية التص

آلات متجه الدعم و الشبكات العصبية الاصطناعية. وللعمل فقد قمنا باستخدام اكتر من تقنية وهم:
على تسريع عمليه تدريب الات متجه الدعم فقد قمنا بتصميم مسرع لتدريبها بأكتر من خوارزمية وهى:

قمنا بالعمل على استخراج قاعدة بيانات جديدة تحتوى على التحسين المتتالى. أخيراالصعود المتدرج و
 وان واشارات كهربية للمخ لعدد من الفئران بالتعاون مع فريق بحثى من كلية العلوم جامعة القاهرة

 .لاب

تصميم وتنفيذ عتاد لتقنيات تعليم الآلة لاستخدامها فى الكشف عن نوبات الصرع

 العصبية

 اعداد

 محمد عادل عطية الهادى الجمال

 القاهرة جامعة – الهندسة كلية إلى مقدمة رسالة

 درجة على الحصول متطلبات من كجزء

 العلوم ماجستير

 في

 هندسة الإلكترونيات والاتصالات الكهربية

 يعتمد من لجنة الممتحنين:

 المشرف الرئيسى ا.م.د. أحمد نادر محى الدين الاستاذ الدكتور:

 الممتحن الداخلي ا.د. محمد فتحى أبو اليزيد الاستاذ الدكتور:

 الممتحن الخارجي م.د. يحيي حسن غلاب ا.الاستاذ الدكتور:

 أستاذ مساعد بكلية الهندسة جامعة حلوان -

 القاهــرة جامعــة - الهندســة كليــة

 مصـرالعربيــة جمهوريـة - الجيـزة

2018

 ضع صورتك هنا

 يجب على الطالب الرجوع الى ادارة الدراسات العليا لأختلاف بعض الأقسام حول التخصص*

تصميم وتنفيذ عتاد لتقنيات تعليم الآلة لاستخدامها فى الكشف عن نوبات الصرع

 العصبية

 اعداد

 الجمالمحمد عادل عطية الهادى

 القاهرة جامعة – الهندسة كلية إلى مقدمة رسالة

 درجة على الحصول متطلبات من كجزء

 العلوم ماجستير

 في

 تصالات الكهربيةهندسة الإلكترونيات والا

 تحت اشراف

 أحمد نادر محى الدين.د. .مأ . حسن مصطفى حسند

 مدرس

قسم هندسة الإلكترونيات

تصالات الكهربية والاا

 جامعة القاهرة –كلية الهندسة

 أستاذ مساعد

قسم هندسة الإلكترونيات

تصالات الكهربية والاا

 جامعة القاهرة –كلية الهندسة

 القاهــرة جامعــة - الهندســة كليــة

 مصـرالعربيــة جمهوريـة - الجيـزة

2018

 يجب على الطالب الرجوع الى ادارة الدراسات العليا لأختلاف بعض الأقسام حول التخصص*

تصميم وتنفيذ عتاد لتقنيات تعليم الآلة لاستخدامها فى الكشف عن نوبات الصرع

 العصبية

 اعداد

 محمد عادل عطية الهادى الجمال

 القاهرة جامعة – الهندسة كلية إلى مقدمة رسالة

 درجة على الحصول متطلبات من كجزء

 العلوم ماجستير

 في

 تصالات الكهربيةهندسة الإلكترونيات والا

 القاهــرة جامعــة - الهندســة كليــة

 مصـرالعربيــة جمهوريـة - الجيـزة

2018

 التخصص*يجب على الطالب الرجوع الى ادارة الدراسات العليا لأختلاف بعض الأقسام حول

