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Summary:  

 

In this thesis an automatic seizure detection is proposed. For features extraction, 

more than 20 linear and nonlinear features are software implemented and tested to 

measure their efficiency in seizure detection. For classification block, two different 

algorithms are implemented: Artificial Neural Network (ANN) and Support Vector 

Machine (SVM). Support Vector Machine (SVM) training accelerators are also 

implemented using two different techniques: Gradient Ascent (GA) and Sequential 

Minimal Optimization (SMO). Finally, a new EEG dataset is extracted from rats in 

collaboration with a research team from the Faculty of Science, Cairo university and 

ONE lab. 
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Abstract 

Epilepsy is one of the most common neurological disorders that affects lives of 

millions of people around the world. Therefore, automatic seizure detection systems has 

been introduced.  

 

The proposed work in the thesis aims to design and implement an implantable chip 

that helps in seizure detection. The system of automatic seizure detection consists of 4 

stages: preprocessing, feature extraction, feature selection and classification. For 

features extraction, more than 20 linear and nonlinear features are software 

implemented and tested to measure their efficiency in seizure detection. Then, an 

exhaustive search is performed to choose the best features. 

 

For the classification block, different machine learning techniques are hardware 

implemented to classify seizure and non-seizure epochs. The classifier block is 

implemented using Artificial Neural Network (ANN) and Support Vector Machine 

(SVM). A comparison is performed between the two classifiers on the performance, area 

and energy consumption. A modification is proposed on ANN to improve performance.  

 

As the neural seizure detection is a very complex problem, support vector machine 

(SVM) training accelerators are implemented to speed up the training phase. The 

implementation of the accelerator is done using two different algorithms: Gradient 

Ascent (GA) and Sequential Minimal Optimization (SMO). 

 

 

Moreover, a new EEG dataset is extracted in collaboration with a research team from 

the Faculty of Science, Cairo University and ONE lab. The new dataset is extracted from 

rats before, during and after seizures. This dataset is extracted using commercial 

industrial amplifier and a BioBench based software.  
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Chapter 1 : Introduction 

Human brain is the main part of the central neural system (CNS). It is a very complex 

system that consists of billions of neurons organized in a huge network. It is responsible 

on receiving and collecting measurements from sensors all over the body and taking 

decisions to make humans behave as they do. This great system –the human brain- is 

divided into multiple regions. Each region is responsible on a specific task. 

Understanding how human brain works is a very interested research topic that has been 

studied at different spatial scales: microscopic and macroscopic. It is found that different 

neurons and regions communicate with each other through this network. Many Disorders 

affect human brain and consequently cause malfunction in human behavior. 

1.1. Motivation 

Epilepsy is a central nervous system (CNS) disorder resulting from abnormal 

activities. It is one of the chronic diseases the affects people from all ages. According to 

World Health Organization (WHO), more than 50 millions around the world have 

epilepsy [1]. Epilepsy causes seizures on infrequent basis. Epileptic seizures vary in type, 

strength and duration. People who have epilepsy face many obstacles in their daily life 

such as driving a car and cooking. Epileptic seizure is a large-scale phenomenon in which 

a large portion of the brain is involved in the abnormal activity not only one neuron. 

Thus, having a very large number of neurons and a dense network among these neurons 

are the main conditions for epileptic seizures. These conditions are satisfied in the human 

brain in the normal activity [2].  

 

Epilepsy is classified into some generalized categories: focal seizures, non-focal 

seizures and continuous seizures. In focal epilepsy, a specific part of the brain is the main 

source of the seizures due to some damaged neurons. These damaged neurons start the 

abnormal activity then this activity spreads to a large portion of the brain. 

 

In non-focal seizures, sometimes called generalized seizures, the epileptic activity 

starts at the whole brain simultaneously. Scientists suggests that the cause of generalized 

seizures is due to brain properties rather than some damaged neurons [2]. 

 

In continuous seizures, there is almost no recovery between the seizures. It is the 

most dangerous type of seizures as it might threat patient’s life. 

 

1.2. Proposed Work 

In this thesis proposal, an automatic seizure detection system is proposed to measure 

the EEG signal of a seizure patient. The system extracts some discriminating features 

from the EEG. Then, different classification techniques are proposed to classify the 

seizure and non- seizure time epochs. Hardware implementations of support vector 
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machine (SVM) classifier and artificial neural network (ANN) are proposed and 

compared. Moreover, a hardware implementation of an accelerator of support vector 

machine learning is implemented using two different techniques. The two techniques are: 

gradient ascent (GA) and sequential minimal optimization (SMO). 

1.3. Organization of the thesis 

The reminder of the thesis is organized as follows: Chapter 2 introduces basic 

concepts for the epilepsy treatment techniques, the EEG signal, automatic seizure 

detection system and machine learning techniques. It also introduces a literature review 

of the previous work done on the literature. Chapter 3 presents detailed analysis of the 

proposed feature extraction and selection process. It also tabulates the results of the 

feature extraction and selection and the best features found. Chapter 4 presents a detailed 

analysis of the SVM training procedure and two different algorithms are presented and 

hardware implemented. Chapter 5 presented a detailed analysis of different classifiers 

techniques and their proposed hardware implementations. Chapter 6 shows the work 

done to generate a new EEG dataset from rats to be used in testing. Finally, appendices 

illustrates the MATLAB codes used for software simulations and the detailed results of 

feature selection process. 
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Chapter 2 : Literature Review. 

2.1. Diagnosis and Treatment of Epilepsy 

The presence of abnormal or damaged neurons in the brain does not necessarily 

cause seizures. To diagnose an epileptic seizure, many imaging of the brain should be 

taken. Also, medical history of the patient should be reviewed.  

 

After diagnosis an epilepsy and determining its type, different treatment techniques 

such as Anti-Epileptic Drugs, Surgical resection and Electrical stimulation are used. 

 

Anti-epileptic drugs (AEDs) is one of the most common methods to treat epilepsy. 

AEDs attempt to treat epilepsy by changing the chemistry of the brain. Hence, AEDs aim 

to control seizures and they work well with almost two-thirds of epilepsy patients. On 

the other hand, they have many side effects as they affect the whole brain. Another 

drawback of the AEDs is that they are totally experimental. Doctors start to try a 

combination of drugs that shows good results with other patients who have the same age, 

gender and medical history. Then, they try different combinations and doses till they get 

the right combination that gives the best result with that patient. That best mixture of 

drugs should balance between controlling the seizures and minimizing the side effects as 

much as possible. A great research is being done on AEDs and is achieving good results 

[3]. 

 

The second technique that is used in epilepsy treatment is surgical resection [4]. This 

solution is used specially for focal seizures and when a mixture of more than 3 AEDs 

could not control seizures [2]. A surgery of removing the damaged neurons and resection 

it from the brain network is performed. This surgery causes that the abnormal activity of 

the damaged neurons could not be transferred to the whole brain. Hence, no seizures 

occur. Many tests should be done on the brain before starting the surgery to determine 

the portion of the brain that causes seizures. Also, the removed portion should not be 

responsible of one of the main functions of the patient like memory, vision, hearing, 

speaking or moving. The large amount of redundancy in human brain neurons made it 

possible to remove a small portion without facing a great effects on human’s daily life. 

 

When the first two techniques could not help in epilepsy treatment, Doctors think of 

alternative ways to control and limit seizures for this patient. One of these ways is 

electrical stimulation. Many people may think that electrical stimulation for neurons may 

cause more seizures not reducing them. However, it is proven that electrical stimulation 

causes a reduction in seizures in many cases [5]. 

 

Vagal nerve stimulation (VNS) is one of the most common treatments of epilepsy 

based on electrical stimulation [6]. VNS includes implanting stimulating electrodes on 

the brain cortex and an electrical battery on the chest cavity. These electrodes are used to 

give electrical stimulation to specific regions in the brain lobe to reduce seizures [7]. The 

clinical experiments of VNS have showed a reduction by 50% of the total number of 

seizures. Also, the implanted device stays working for years after activation [2]. VNS 

also has the advantage of not having the side effects caused by AEDs. However, VNS 
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has some drawbacks. First, it is a way to reduce seizures not eliminate them. Second, 

VNS affects a large portion of the brain not the required portion only. 

 

The way the electrical is applied to the brain is under great research. Traditionally, 

the electrical stimulation was used continuously on an on-off modes. In slow on-off 

mode, the stimulation is used for 30 seconds. Then, it is being off for 5 minutes. While 

in fast mode the stimulation is used for 7 seconds and then being off for 12 seconds [8]. 

The choice of a specific mode, period and shape of an electrical stimulation used for a 

specific patient is usually empirical.  

 

Nowadays, research is done to detect seizures and apply electrical stimulation once 

a seizure has begun instead of applying it continuously. This will minimize the side 

effects greatly. Moreover, the battery life will be extended greatly. However, many 

challenges face researchers. Automatic seizure detection is very challengeable and many 

research is being done for the automatic detection and prediction of epileptic seizures 

with different approaches. One approach is to analyze the muscles movement to detect 

epileptic seizures [9]. Another approach is studying the electrocardiogram (ECG) signal 

of the heart [10]. A third approach is electroencephalogram (EEG) analysis. 

 

2.2. Electroencephalogram (EEG) signal 

As mentioned above, Analysis of EEG signal is one of the most common approaches 

used for seizure detection and prediction. EEG is an electrical record of what is 

happening inside the brain. Traditionally, Electrical voltage was first measured from 

monkeys on 1875. However, there was almost no meaningful benefit from it until 1920s 

[11].  

 

EEG signal is the electrical signals generated by human brain. These electrical 

signals’ amplitude are less than 300μV. The frequency response of these signals are 

spanned to 100Hz. Because of the very low amplitude of the EEG signals, the process of 

EEG measurement is a very challengeable task. 

 

EEG measurements are made at various scales. First type is scalp EEG where 

measurement electrodes are added on the skull. The scalp electrodes can be easily 

attached. However, recordings from scalp EEG are highly attenuated as the skull acts as 

a filter so a very large portion of the brain should be involved in the seizure to be able to 

detect seizures from EEG. However, the performance of EEG measurement using scalp 

electrodes can be enhanced by using more electrodes. In practice, more than 20 electrodes 

are used and placed on patient’s skull. However, some research has proposed more 

electrodes up to 256 electrodes to increase measurement performance [12]. The 

placement of the electrodes on the skull follows many standards as 10-10 and 10-20 

system. A typical EEG signal measured from 4 different scalp electrodes are shown in 

Figure 1. 

 

The second type of EEG measurement is intra-cranial EEG where electrodes are 

implanted on the cortex in a surgery. This type of measurement is more accurate and can 

record measurement of a smaller scale of neurons [13].  
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The EEG signal frequency domain is divided into multiple frequency bands: 

-  The Delta bands contains signals with frequencies less than 4 Hz.  

- The Theta band contains signals with frequencies between 4-7 Hz.  

- The Alpha band contains signals with frequencies between 8-12 Hz 

- The Beta band contains signals with frequencies between 12-30 Hz 

- The Gamma band contains signals with frequencies between 30-100 Hz 

These bands are shown in Figure 2. 

 

Each frequency band contains a specific kind of information. Research is performed 

to extract information from each frequency band. Cantero et al. proved that the Theta 

band contains information about the transition from sleeping to waking up [14]. Palva et 

al. proved that the Alpha band contains information about making a calculation [15]. The 

second type of information that can be extracted from EEG signals is the transient 

information. In transient analysis, different spikes are measured and analyzed. These 

spikes can be caused due to a neurological disease like epilepsy or due to other artifacts. 

These artifacts exist due to different causes like biological or environmental reasons. It 

is so important to remove such artifacts before processing the EEG signal to detect 

seizure. 

 

2.3. Seizure Detection 

One of the main problems that is obstructing the research for epilepsy treatment is 

the absence of a perfect way to detect seizure. In the pre-computer era the reading of 

EEG was performed by experienced encephalographers who, based on their experience, 

decided whether the recording was a seizure or not. Nowadays, even with the great 

computational power, the EEG analysis by expert encephalographers remains one of the 

most powerful approaches for seizure detection. However, the EEG analysis by experts 

are very subjective and very time-consuming. The purpose of seizure detection 

algorithms (SDA) is to replace this old-fashioned way of EEG analysis by another 

process that automatically detect seizures. In order to compare the performance of 

different detection methods some of the following important performance measures can 

be used. The first measure is the percentage of missed seizures in 24h. However, as noted 

by P. Buteneers [12], it is probably more relevant to look at the false negatives per seizure 

(FNPS), as this measure allows a fair comparison between different EEG recordings. The 

same applies for another measure, namely the number of false positives, where the false 

positives per seizure (FPPS) can replace the number of false positives during 24h. From 

a more practical point of view the time necessary for the detection of the seizure, also 

called the detection delay, is an important parameter as well. 
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Figure 1 Typical EEG signal measured from 4 different electrodes 
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  Figure 2 - EEG frequency spectrum bands. 
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2.4. Automatic seizure detection system 

 

Figure 3 - Automatic seizure detection system block diagram. 

Figure 3 shows the block diagram of the automatic seizure detection system. The 

system mainly consists of 4 stages. 

2.4.1. EEG Acquisition 

The first stage is the Multi-channel EEG signal acquisition. In this stage, Different 

electrodes are used to sense and measure EEG signals from different spatial positions on 

the skull or the cortex. The efficiency of the electrodes affects the overall performance 

of seizure detection greatly. The positioning of the measurement electrodes on the skull 

follows different standards. One of these standards are the 10-20 system shown in Figure 

4. 
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Figure 4 - 10-20 system for EEG measurement. 

2.4.2. Preprocessing 

The second stage is preprocessing. In preprocessing stage, the raw EEG data 

measured by electrodes are prepared for analysis and processing. The preprocessing stage 

includes filtering the signal and only keeping the frequency range of interest. The 

preprocessing also includes removing artifacts. It also includes normalizing the EEG data 

to be at the same level of the other signals measured by other equipment or from other 

patients.  

Normalization means that data are converted to a form that is compared to all the 

other data measured using different measurement equipment or from different patients. 

For instance, if two different measurement systems are used, the EEG signal of each 

system would be different. The first system’s EEG amplitude may vary from 0 to 15 𝜇𝑉. 

While the second system’s EEG amplitude may vary from -10 to 10 𝜇𝑉. These different 

EEG signals cannot be directly compared. Hence, all measured EEG data are normalized 

to the same range from -1 to 1. Then, all EEG signals from different measurement devices 

and different patients can be compared.  The normalization process is done through two 

steps. First, removing the mean value of the EEG signal. Then, scaling the EEG signal 
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by dividing it by its standard deviation. This normalization techniques should be done 

again after feature extraction phase.  

Artifacts are generated due to different sources. Some artifacts are originated due to 

movement like eye blinks. Other artifacts are originated due to errors and noise in the 

measurement devices. Moreover, power line artefacts reside between 50 and 60 Hz 

depending on the power frequency used in the country. Dealing with the artifacts 

is performed using several methods. First, some artifacts are ignored as their effect 

on the features extracted are minor. Second, some artifacts are rejected. The time 

epoch or frequency domain of this artifacts are excluded from the analysis. Finally, 

some artifacts are removed from the signal using filters to eliminate specific 

frequencies using different types of filters: high-pass, low-pass, band-pass and 

band-stop filters. As many research has proved that most brain EEG power 

spectral is found between 3 and 30 Hz as shown in   Figure 2. Libenson 

et al. proved that the EEG signals do not exceed 40 Hz [16]. Hence, Blanco et al. 

proposed using a low pass filter with a cut-off frequency equals to 40 Hz [17]. 

Preprocessing is the process in which the EEG is prepared for analysis. The signal 

processing in this area involves the removal of unwanted aspects, such as artifact 

and high frequency content, and normalizing the EEG data so that it is comparable 

to all other data (e.g., normalize the amplitude range, sampling frequency, etc). 

2.4.3. Feature extraction 

The third block is feature extraction and selection. In this stage, different 

discriminating features are extracted from the EEG signal to differentiate between 

seizure and non-seizure intervals. Multiple features are used together as an input 

to the classifier. The appropriate choice of the discriminating features is the key 

of the classifier performance. 

The features are extracted from different domains: time domain, frequency 

domain and time-frequency domain. The EEG signal is divided in time into 

several time epochs as shown in Figure 5. In each time epoch, the values of the 

features used are extracted. If the feature used is a time domain feature, the feature 

is extracted directly from the EEG signal. If the feature used is a frequency domain 

feature, FFT is adopted first to get the frequency domain of the EEG signal. Then, 

the used feature is extracted from the frequency domain of the EEG signal. Finally, 

if the feature used is a time-frequency domain feature, a Wavelet transform is 

adopted first on the EEG signal. Then, the feature is extracted from the calculated 

time-frequency domain.  
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Figure 5 - EEG signal divided into time epochs= 4 secs. 

 A wavelet transform (WT) is used to represent any signal in multiple wavelets. It 

helps to represent the signal in time-frequency representation.  

 

 

2.4.4. Classification 

After discriminating features are extracted from the EEG signal, these features need 

to be judged to detect the existence of seizure. Taking a decision of seizure existence is 

made based on several methods.  

The old-fashioned method is comparing each feature value to a pre-determined 

threshold. If the value of the feature in a time epoch exceeds the threshold, the system 

detects a seizure in this time epoch. This method did not achieve an acceptable 

performance for many reasons. First, choosing the threshold value for each feature is a 

very challenging task as this value is the main key of the overall performance. Second, 

the chosen value of the threshold is not constant for all patients and in all conditions. This 

is due to the fact that the range of normal EEG signal changes from patient to another. 

Also, the EEG signal range changes with the status of the person. For example, the EEG 

for the same person varies during sleeping, eye blinking or doing sports.  

 

To overcome this problem, many researches proposed to use machine learning 

techniques that will be discussed in the next section. 
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2.5. Machine learning 

Machine learning (ML) is the science of making the computers able to learn 

themselves by their own from observing large number of examples. Machine learning is 

not a newly invented science. ML has been proposed by Arthur Samuel from 1949 

through late 1960s [18]. He explicitly defined ML as it is known today at 1959 [19]. In 

ML, many statistical studies are performed on a very large amount of data. Recently, 

machine learning and artificial intelligence become very hot topics for all software and 

hardware researchers. This is due to the great growth in the computational capabilities.  

Nowadays, ML is playing a great role in many fields. 

 

ML techniques are classified into different categories as follows: 

- Supervised learning 

In supervised learning, the task is to find a function to map any new input to the 

corresponding output based on some training points. Each of the training points is 

described by their input value and their associated labels or outputs. The input-output 

relation is deduced from the training example. Then, this relation is used to find the 

output of any new input test point even if this new point is totally unseen in the 

training examples. Figure 6 shows an example of the supervised learning problems. 

In this example, multiple training points from two different groups are given. One 

group is represented by the red circle while the other group is represented by the blue 

circle. For each training example, a point is drawn on the x-y plane based on its 

corresponding label (group). The task of the problem is to find the separable line. 

After finding the line, any new point is represented on the x-y plane. Then, the type 

(group) of this point is determined based on its location relative to the line. 

 

Figure 6 - Supervised learning example. 

 

 

-  Unsupervised learning 

In unsupervised learning, the task is to find a function to map any new input to 

the corresponding group based on some training points. In other words, the task of 

the unsupervised learning is clustering and categorizing. Each of the training points 
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is described by their input value only and all the points are unlabeled. Hence, in the 

training phase only the similar training points are clustered in one group. Then, any 

new testing point is attached to one of these groups. Figure 7 shows an example of 

the unsupervised learning. In this example, multiple training points are given. All the 

training points are unlabeled; only their input value are given but their outputs are 

not. All the points are represented by the same symbol on the x-y plane. The task of 

the unsupervised learning is to cluster these points into two groups based on their 

values. After finalizing training and finding the separable line between the two 

groups, any new test point can be classified into one of the two groups. 

 

 

Figure 7 - Unsupervised learning example. 

 

 

-  Reinforcement learning 

In the reinforcement learning, the computer interacts with a changing 

environment, its behavior towards this environment is assessed by some 

reinforcements. These reinforcements are either rewards or punishments.  

 

For the work proposed in this thesis, supervised learning is the type used as the EEG 

data is labeled. Different supervised learning techniques are used and compared.  

 

Consider a supervised problem is formulated as follows:  

A training data set is given as pairs of input-output points 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … . , (𝑥𝑛−1, 𝑦𝑛−1), (𝑥𝑛, 𝑦𝑛)} 
 

The supervised learning’s task is to fit a function that maps the inputs 𝑥𝑖  to their 

corresponding outputs 𝑦𝑖 . The supervised learning problems are classified into 2 

categories based on the range of 𝑦𝑖 . If 𝑦𝑖  is a real number, the problem is called a 

regression problem. For example, having a database of prices of different apartments 

with different areas and predict the price of any apartment of a specific area is a 

regression problem as the price may take any real number. The second group of 

supervised learning problems is classification problem where 𝑦𝑖 may take only one of 

discrete set of values. In both groups of problems, the task is the same; finding a function 

that relates the output to the input. If the performance achieved by a specific function is 
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too low when tested on the training examples, a higher order function should be used. 

However, the performance may be great on the training data only and is very low for any 

new testing data point. This problem is a well-known problem in machine learning which 

is called over-fitting. The problem of over fitting is caused due to: 

1- Very complex model: in this case a very complex function is used to fit simple 

data. The solution in this case is to use a lower order function. 

2- Few training examples: the second reason of the over-fitting problem is using a 

few number of training examples. Hence, adding more training examples to the 

dataset may solve the problem of over-fitting. 

 

The proposed work is in the field of seizure detection. Hence, supervised learning is 

the most important machine learning type used. The problem of seizure detection is a 

classification problem as the output is only one of 2 groups: seizure and non-seizure. 

2.6. Dataset 

The database used in this work was collected at the Children’s Hospital Boston 

(CHB) by a team of researchers from the Massachusetts Institute of Technology (MIT). 

The dataset consists of EEG recordings from subjects with intractable seizures. The 

AEDs doses are stopped for several days. Then, the researchers monitored the patients 

for multiple days. The signals are recorded from different patients with different age and 

sex as shown in Table 1. Noting that Chb01 and Chb21 are the same female patient but 

after 1.5 years. 

 

Each case of the 23 case has 9 up to 42 .edf files. These .edf files are almost 

continuous with a very limited cuts up to 10 seconds when the EEG signals are not 

recorded due to some hardware limitations. Moreover, all the protected health 

information of the patients are preserved and deleted from the .edf files. Even the absolute 

date of each record has been changed with another one but the relative time and date of 

the same patient remained constant.  Each .edf file contains the data of almost one hour 

for the patient. Beside the .edf files, a .txt file is available for each patient. This .txt file 

contains information about the different epileptic seizures of this patient that happened 

during recording and the specific time of start and end of each seizure.  

 

 

2.7. Performance Metrics 

The performance of the system is measured through different performance metrics 

that are widely used especially in neural seizure detection. These metrics are accuracy, 

specificity and sensitivity of the classifier. The sensitivity is the true positive rate or the 

percentage of seizure that could be detected successfully by the classifier and could be 

calculated as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

The specificity is the true negative rate or the number of non-seizure epochs detected 

successfully by the classifier and could be calculated as follows: 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Where TP denotes true positives, 

 TN denotes true negatives, 

 FP denotes false positives, 

 FN denotes false negatives. 

 

There is always a trade-off between sensitivity and specificity. As sensitivity 

increases, specificity decreases and vice versa. Hence, a combining performance metric 

is defined which is called accuracy. Accuracy means the percentage of the right decisions 

to the total decisions made by the classifier. Accuracy can be calculated as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

 

 

Table 1 - CHB MIT patients. 

Case Gender Age 

Chb01 Female 11 

Chb02 Male 11 

Chb03 Female 14 

Chb04 Male 22 

Chb05 Female 7 

Chb06 Female 1.5 

Chb07 Female 14.5 

Chb08 Male 3.5 

Chb09 Female 10 

Chb10 Male 3 

Chb11 Female 12 

Chb12 Female 2 

Chb13 Female 3 

Chb14 Female 9 

Chb15 Male 16 

Chb16 Female 7 

Chb17 Female 12 

Chb18 Female 18 

Chb19 Female 19 

Chb20 Female 6 

Chb21 Female 13 

Chb22 Female 9 

Chb23 Female 6 
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2.8. Previous Work 

As explained in the introduction, Epilepsy is a very dangerous disease that affects 

quality of life of its patients. Due to the large number of epilepsy patients, a great effort 

is done in treatment of the epilepsy especially using electrical stimulation. The work done 

to detect seizure using EEG includes many methods: single channel or multi-channel 

[20]. In single channel based seizure detection systems, it is required to choose the 

appropriate channel that is the nearest to the seizure focus. This type is mainly used in 

focal seizures. The process of choosing the channel is performed by measurement of 

different channels and choose the best performance channel. Another solution is to use 

all the measured and available signals, and detect seizure based on the EEG signals from 

multi-channel [21]. 

After the EEG measurement is done, many research is done on preprocessing. 

Wackermann et al. used several EEG analysis methods to characterize the sleeping effect 

of EEG [22]. Another source of artifacts is the eye movement and blinks. The electrical 

activity accompanied with the eye movement is strong enough to be recorded with EEG. 

The amplitude of the eye movement artifact is larger than that of the background EEG 

activity so many research is done in the area of removing eye movement effects [23]. 

Moreover, many work is done to remove muscles moving artifacts such as that done by 

Van Boxtel et al. [24]. 

2.8.1. Feature extraction and selection 

Many work is done on the analysis of EEG signals for seizure detection in the 

literature. Features extracted from EEG along with different machine learning algorithms 

are used to detect seizure. Yuan Q. et al. used nonlinear feature extraction strategies such 

as approximate entropy and Hurst exponent and got 93.75% and 79.75% sensitivity 

respectively [25]. Also, nonlinear feature extraction strategies were used in multiple 

papers [26], [27], [6]. Li. et al. got a sensitivity ranging from 82.75% to 97% based on 

the combination used [26]. Panda. et al. got 91.2% classification accuracy [27] and 

Kolekar et al. got 81.67%, 91.25% and 82.22% accuracy for different classification 

strategies [28]. Support vector machine (SVM) is used in many of these papers with 

Radial Basis function (RBF) kernel for classification [25], [26], [27], [28]. Generally, the 

results obtained through SVM with RBF kernel are usually more accurate, however a 

hardware implementation for an RBF kernel consumes much more power than linear and 

polynomial kernels. 

2.8.2. Hardware implementation of SVM training 

accelerators 

Many research has been done in implementing hardware implementations and 

accelerators for SVM training [29]. Keerthiet al. proposed a parallel implementation of 

multiple CPUs for processing partitioned data sets [30]. The use of multiple CPUs leads 

to increase the overall performance. One the other hand, it greatly increases the power 

consumption. Caoet et al. developed a hardware implementation of SVM training circuit 

using MATLAB HDL coder [31]. The performance degraded due to the lack of 

optimizations. Chih-Hsiang et al. proposed a re-configurable chip with SMO-based SVM 

training [32]. The proposed architecture decreased the routing overhead, accelerated 

kernel function update and used pipelining. However, some hardware usage and training 
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speed problems have appeared. Lazaro et al. proposed a hardware-software architecture 

to speed up SVM training using SMO. As the dot product takes most of calculation time 

in SMO, it is chosen to be implemented on hardware [33]. 

 

Jhing-Fa et al also proposed a HW/SW co-design solution for multiclass SMO 

training [34]. A hardware-software co-design system for accelerating the SVM learning 

phase was presented based on another decomposition algorithm instead of the common 

SMO algorithm [35]. M. Rabieah et al proposed a complete FPGA-based system for 

nonlinear SVM learning using ensemble learning [36]. S. Wang et al proposed a FPGA-

based reconfiguration framework to speed up the online LS-SVM training [37]. 

However, the block RAM usage and reconfiguration efficiency are the main challenges. 

In this paper, more work is done in the area of training the SVM classifier to have better 

results without the need to have complex transformations or complex kernel functions 

like those proposed in [38], [39], [40]. 
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Chapter 3 : Design of Feature Extraction and Selection 

The feature extraction step is a very important step in automatic seizure detection 

systems. In feature extraction step the discriminating features are extracted from the EEG 

signal. These features should differentiate between different phases of the EEG signal. 

Several features are proposed and used in literature to detect seizure. The extracted 

features are extracted can be categorized depending on the domain from which they are 

extracted as follows:  

1- Time domain features 

2- Frequency domain features 

3- Time-frequency domain features (Wavelet) 

 

The features extracted from EEG signals can also be categorized into 2 different 

groups: linear and non-linear features. 

3.1. Linear Features 

Different linear features are implemented, extracted and tested. The 11 linear features 

are as follows: 

 Mean Absolute Value (MAV) 

𝑀𝐴𝑉 =  
1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

  

 Root Mean Square (RMS) 

RMS was used combined with other features for seizure prediction in [41]. RMS is 

calculated as follows: 

𝑅𝑀𝑆 = √
1

𝑁
 ∑𝑥𝑖

2

𝑁

𝑖=1

 

 

 Standard Deviation (SD) 

Standard Deviation is a measure of the average deviation from the mean. It was used in 

[42] and achieved high performance. SD can be calculated as follows: 

𝑆𝐷 = √
∑ (𝑥𝑖 −𝑚𝑒𝑎𝑛(𝑥))
𝑁
𝑖=1

𝑁 − 1
 

Where 𝑚𝑒𝑎𝑛(𝑥) =
∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
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 Variance 

Variance is the standard deviation raised to the power of two. It is easier to calculate the 

variance rather than calculate SD. Hence, both SD and variance are tested to check if 

easier calculation would reflect on the performance or not. 

 Maximum Absolute Value 

Calculating the maximum absolute value for every epoch of time. It was used in [42] 

with other features achieving performance more than 98%. 

 Minimum Absolute Value 

Calculating the minimum absolute value for every epoch of time. 

 Average Energy 

In epileptic seizures, the amplitude and frequency of the EEG signal increases. This 

was a motivation to include the average energy of the epoch as a feature. It is defined as 

follows: 

𝐸 =∑𝑥𝑖
2

𝑁

𝑖=1

 

 Fluctuation Index (Coastline) 

Fluctuation Index (FI) measures the fluctuation in the signal. During seizure periods, it 

is found that EEG exhibits high fluctuations relative to non-seizure periods. FI is 

defined as follows: 

𝐹𝐼 =∑|𝑥𝑖+1 − 𝑥𝑖|

𝑁

𝑖=1

 

 Hjorth parameters: Mobility 

Mobility is the square root of the variance of the first derivative divided over the 

variance of the signal. 

 Hjorth paramteres: Complexity 

Complexity represents the change in frequency with respect to a pure sine wave 

 Skew 

Skew measures how non symmetric the data is. It was used with other features for 

classification by Zhang [42]. It is calculated as follows: 

𝑆𝑘𝑒𝑤 =
1

𝑀
∑(

𝑋(𝑤) − 𝜇𝑤
𝜎𝑤

)

3𝑁

𝑖=1
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Where 𝑋(𝑤) is the sample value at frequency domain, 

𝜇𝑤 is the mean value of the samples at frequency domain, 

𝜎𝑤 is the standard deviation of the samples at frequency domain. 

 Kurtosis 

Kurtosis is the same as skew but raised to power 4 as follows: 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑀
∑(

𝑋(𝑤) − 𝜇𝑤
𝜎𝑤

)

4𝑁

𝑖=1

 

 

3.2. Nonlinear Features 

Non-linear analysis of EEG signal exhibit description of the non-stationary nature of 

the signals. Different features are used by different researchers in the literature. They 

used many features from information theory, nonlinear dynamical analysis, and 

stochastic processes analysis. Non-linear features showed promising results in both 

detection and prediction for epileptic seizures [43]. In this study, different nonlinear 

features are examined as follows: 

 

 Approximate Entropy (ApEn) 

Approximate entropy is a probabilistic method developed by Steve M. Pincus [44]. 

It measures how ordered or disordered a given EEG signal is. A small output value 

indicates regularity in the input EEG signal, and on the contrary, as the EEG gets more 

irregular, the higher the output value becomes [45]. The dataset is divided into 

overlapping subsequences.  

𝑆(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 1), …… , 𝑥(𝑖 + 𝑚 − 1)] 

 Where 𝑖 = 1,2, … . , 𝑁 − 𝑚 + 1, 

𝑚 is the length of each subsequent. 

Then, the algorithm searches for matched patterns by calculating the distance 

between each subsequent and all other subsequences. Finally, it compares this distance 

with a certain tolerance r. If the distance is less than the tolerance, the patterns are 

considered matched which supports the decision of having a regular predictable EEG 

and vice versa. A distance function 𝑑[ 𝑥( 𝑖 ) , 𝑥( 𝑗 ) ] between each subsequent and 

every other subsequent is calculated first. Then, the correlation 𝑙𝑜𝑔 𝐶𝑖
𝑚  ( 𝑟 ) is 

calculated by counting the distances that are smaller than a tolerance r and then divided 

by the number of subsequences 𝑁 − 𝑚 +  1. Finally, the logs of these values are 

summed together and formulating approximate entropy as follows: 



 

21 
 

𝜑𝑚(𝑟) =  
1

𝑁 −𝑚 + !
∑log (𝐶(𝑟))

𝑁

𝑖=1

 

Finally the approximate entropy can be calculated as follows: 

𝐴𝑝𝐸𝑛 = 𝜑𝑚(𝑟) − 𝜑𝑚−1(𝑟) 

 Shannon Entropy 

Shannon entropy is a measure for information that the system exhibits. It estimates 

the number of bits required to encode a string of symbols based on their frequencies 

[46]. Continuous values of EEG signals are quantized. Then, the frequency of each 

symbol is calculated to get Shannon Entropy as follows: 

𝐻(𝑥) = −∑𝑃(𝑥𝑖). log (𝑃(𝑥𝑖))

𝑁

𝑖=1

 

Where 𝑃(𝑥𝑖) is the probability of the symbol  𝑥𝑖 . 

 Permutation Entropy 

Permutation entropy, as other entropies, measures how disordered the EEG signal is. 

However, it is computed independent of the values of the samples. First, a mapping 

function is applied to generate windows of length n. Probability of a given permutation 

is given as:  

𝑃(𝜋) =
# 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝜋

𝑇 − 𝑛 + 1
 

𝐻𝑛
∗ = −∑𝑃(𝜋). log(𝑃(𝜋)) 

 

 Renyie Entropy 

Renyie entropy generalizes Shannon entropy as the parameter 𝛼 gives an extra degree 

of freedom for the distributions. It is calculated as follows: 

𝐻(𝑥) = −
1

1 − 𝛼
log (∑𝑃𝑖

𝛼

𝑁

𝑖=1

) 

 Hurst Exponent 

Hurst Exponent is a measure of whether the data is pure white noise or it contains 

information. If H is equal to 0.5, then the time series is purely random. However, if it is 

larger than 0.5, then it contains some trends. It is calculated for a given time series with 

length t from the rescaled range series (R/S) which is calculated from the standard 

deviation S and the range series R. Finally, a line fitting is done between 𝑙𝑜𝑔(𝑅/𝑆) and 

𝑙𝑜𝑔(𝑇) to get the Hurst exponent value [47]. 
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Where R is the maximum deviation from the mean and the minimum deviation from 

the mean, S is the standard deviation, 
𝑅

𝑆
 is the rescaled value and 𝑇 is the sample 

duration. 

 

 

 Modified Hurst Exponent 

The Hurst exponent is the slope of the linear fit of the log-log graph. Another simpler 

implementation for the Hurst Exponent was using the below equation. 

𝐻 =
log (

𝑅

𝑆
)

log (𝑇)
 

In this implementation it is assumed that this linear fit will always pass through the 

origin.  

 

 Fractal Dimension 

Fractal Dimension (FD) is based on fractal geometry. Higuchi’s algorithm with k= 5 is 

used to calculate the fractal dimension [48]. 

 

 

3.3. Simulation Setup 

A software implementation of all proposed features discussed is done using 

MATLAB2016a. Different combinations of the 20 proposed features are used and tested 

along with linear kernel SVM. The performance metrics -sensitivity, specificity and 

accuracy- are extracted from each combination and compared. 

 

The procedure to get the best performing combination could be built using two 

methods 

1- All-in then backward elimination according to p-value:  

This method is done by extracting all the proposed features and 

testing the performance. Then, a trial to eliminate one of the 

features is performed. The task is to choose the first features that 

will be eliminated. The features that will be eliminated is the one 

that has the minimum effect on the performance metrics. Then, 

this step is repeated until having the minimum number of features 

that achieve an acceptable performance. 

 

2- Trying all possible combinations for a fixed number of features: 

This method is done by choosing constant number of features in 

each combination. Then, all the combinations between the 

proposed features are tested and for each combination the 

performance metrics are calculated. Then, the best performance 

combination is chosen. 
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In this work, the second solution was adopted. The decision was made to use three 

features in each combination based on many work done in the literature [25], [27], [28]. 

A total of 1140 combinations are tested and compared. 

 

A MATLAB script is developed to test the combinations between the features one 

by one. Each combination consists of 3 features. The code chooses one of these 

combinations and extract the corresponding features from all training and testing data. 

Then, the code trains a linear kernel SVM using the extracted features. Then, the test data 

points are tested on the resultant hyperplane. Finally, the performance metrics are 

calculated and written to the output file. For each combination a line is written to the 

output file containing the features of this combination, the resulting sensitivity, 

specificity and accuracy.  

 

The output needed from the simulation is to find a combination of 3 features that 

make the data points linearly separable. If such combination of feature is found, it will 

achieve a very high performance using linear kernel SVM. That will save great punch of 

energy as the linear kernel consumes energy less than any other type of kernel functions 

such as polynomial and RBF kernel. 

 

 

3.4. Simulation Results 

The visualization of data points with different extracted features can give a good 

evidence of the great effect of feature selection on the performance of the classifier. 

Figure 8 shows the training data points when the selected features are Hjorth mobility, 

Hjorth complexity and maximum absolute value. The figure shows the objection of the 

data points on the plane of each 2 features where feature 1 is the Hjorth mobility, feature 

2 is Hjorth complexity and feature 3 is the maximum absolute value. It is clear from the 

figure that these features are not linearly separable. When trying these features with linear 

kernel SVM, the performance achieved is 0 % sensitivity, 100% specificity and 99.7% 

accuracy which means that the classifier classify all points into non-seizure. 

 

Figure 9 shows the training data points when the selected features are Hurst 

exponent, average energy and minimum absolute value. In this figure, feature 1 is Hurst 

exponent, feature 2 is average energy and feature 3 is the minimum absolute value. Some 

data points can be linearly separable especially in the plane of Hurst exponent and 

average energy. The performance achieved by these features is: 62.9% sensitivity, 98.8% 

specificity and 98.7% accuracy.  

 

Figure 10 shows the training data points when the selected features are Fractal 

Dimension, Hurst Exponent and Coastline features where feature 1 is fractal dimension, 

feature 2 is Hurst exponent and feature 3 is coastline. It is clear that all the data points 

are almost separable in all planes. That’s why the achieved performance becomes: 

96.77% sensitivity, 97.9% specificity and 97.9% accuracy. 

 

After finalizing the simulations of the all 1140 combinations and by analyzing the 

detailed results shown in Appendix B, it is noticeable that the minimum specificity 

achieved is 96.4% and the maximum specificity is 100%. Hence, the specificity achieved 
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from all features’ combinations are acceptable. So, the specificity is not the key 

performance metric to choose the best combination. On the other hand, the sensitivity 

ranges from 0% to 96.77%. To be able to analysis and visualize these results, the 

combinations are grouped into multiple groups based on their sensitivity value. The 

number of features of each group are shown in Figure 11. 

 

The combinations of interest are those which have sensitivity more than 90%. To 

analyze these combinations, the number of repetition of each feature in these 

combinations are counted. Then, the features are sorted by their repetition counts from 

largest to smallest as shown in Figure 12.  

 

It is found that fractual dimension is a very important feature as it exists in all the 

features’ combinations that have sensitivity more than 90%. Moreover, the best 

combination –the one that gives the maximum performance- is the combination of 

fractual dimension, Hurst exponent and coastline. This combination achieves sensitivity 

equals to 96.77%.  
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Figure 8 - Training points for Hjorth mobility, Hjorth complexity and 

Maximum absolute value features. 
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Figure 9 - Training points for Hurst exponent, average energy and minimum 

absolute value features. 
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Figure 10 - Training data points of Fractal Dimension, Hurst Exponent and 

Coastline features. 
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Figure 11 - Number of features' combinations in each range of sensitivity. 
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Figure 12 - number of incidence of each feature in the combinations with 

sensitivity >90%. 
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Chapter 4 : Design of Support Vector Machine Training 

Accelerators 

4.1. Support Vector Machine 

Support Vector Machine (SVM) is a supervised machine learning and classification 

model that is gaining much attention of researchers in statistical classification and 

regression analysis problems. SVM is widely used in many applications such as face 

detection, handwriting detection and bioinformatics [49]. SVM was first introduced by 

Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 1963 [50]. SVM uses a set of 

training examples categorized into 2 or more groups. SVM works in two main phases: 

training phase and classification phase. 

 

Training in SVM is a process in which a hyperplane that separates two labeled sets 

of training examples is determined. SVM searches for the hyperplane that gives the 

largest margin between the two sets. The subsequent step is to classify unlabeled testing 

examples into one of two classes. Finding the hyperplane is a problem of solving a 

quadratic programming (QP) problem subject to constraints [51].  

 

The optimization problem has infinite number of solutions. Hence, different 

hyperplanes can perfectly separate the two different groups in the case of binary 

classification as shown in Figure 13. All the three hyperplanes in (A), (B), (C) separates 

the two groups with zero errors. SVM defines the best hyperplane is the one the 

hyperplane that gives the largest margin between the two sets. Hence, SVM chooses the 

hyperplane shown in Figure 13-C. 

 

  
(A) (B) 
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(C) 

Figure 13- Different classification hyperplanes 

 

As mentioned earlier, SVM learns from a training set of N dimensional vectors 𝑥𝑖 
and their associated classes (labels)𝑦𝑖 . In case of binary classification, 𝑦𝑖 ∈ {0,1} , 

i=1,2,…,n.  SVM deals with linearly separable data points directly. For the non-linearly 

separable data points, the non-linearly separable dataset is mapped into a higher 

dimensional domain in which the mapped data points are linearly separable. As this 

mapping may contain heavy computing especially with the large number of data points 

another approach called Kernel trick is used. Kernel methods uses kernel functions to 

operate in a high-dimensional feature space without the need of calculating the mapping 

of each data point. Then, SVM finds the hyperplane that gives the largest margin in the 

new feature space. This hyper plan is defined as follows: 

𝑤.𝜑(𝑥) + 𝑏 = 0    (1) 
Where 𝑤 is the normal to the hyperplane, 𝜑(𝑥) is the mapping function used to map 

each input vector to the feature space and b is the bias. 

 

The distance from the nearest points to the hyperplane from each side equals to  
2

||𝑤||
. 

Therefore, to choose the hyperplane that maximize the margin, the optimization problem 

is formulated as follows: 

𝑚𝑖𝑛𝑤,𝑏
||𝑤||2

2
   (2) 

Subject to 𝑦𝑖(𝑤. 𝜑(𝑥) + 𝑏) ≥ 1 

 

This is denoted by hard margin SVM, where the hyperplane perfectly separates the 

two sets according to eqn.(1). A modified version of SVM introduces a trade-off between 

the size of the margin and the number of errors in the classification process is given in 

eqn.(3). This is performed by defining a penalty parameter C. The optimization problem 

is formulated as: 

𝑚𝑖𝑛𝑤,𝑏
||𝑤||2

2
  + 𝐶 ∑𝜉𝑖    (3)

𝑛

𝑖=1

 

Subject to: 

𝑦𝑖(𝑤. 𝜑(𝑥) + 𝑏) ≥ 1 − 𝜉𝑖, 
𝜉𝑖 ≥ 0  

Where 𝜉𝑖 is the slack for the 𝑖𝑡ℎ training point as shown in Figure 14. 
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The penalty parameter C should be selected carefully for each data set. If C is 

selected large, the weight of any wrong classified point is very large so the convergence 

of the problem takes large number of iterations. If C is selected small, some errors are 

allowed to maximize the margin and get the solution in fewer number of iterations than 

the large C scenario. 

 

 

Figure 14- Soft Margin SVM. 

 

The modeled problem is solved using Lagrange multiplier as follows: 

min
𝛼
𝜓(𝛼) =

1

2
∑𝑦𝑖. 𝑦𝑗 . 𝐾(𝑥𝑖 , 𝑥𝑗). 𝛼𝑖 . 𝛼𝑗

𝑛

𝑖=1

− ∑𝛼𝑖

𝑛

𝑖=1

   (4) 

Subject to: 

∑ 𝑦𝑖. 𝛼𝑖
𝑛
𝑖=1 = 0, 

0 ≤  𝛼𝑖 ≤ 𝐶,                        𝑖 = 1,2, … , 𝑛 

 

Where 𝛼 is Lagrange multiplier, Kernel functions K. Different Kernel functions are 

widely used in SVM applications as follows: 

Linear Kernel: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖. 𝑥𝑗 

Polynomial Kernel: 

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖. 𝑥𝑗 + 1)
𝑑

 

 Where d is the polynomial degree 

 

Exponential Kernel: 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒
−𝛾 ||𝑥𝑖−𝑥𝑗||

2

 

 

By solving the problem formulated in eqn.(4), the values of 𝛼𝑖′𝑠 are obtained. The 

values of each 𝛼 is classified into one of the three following classes: 

1) 𝛼𝑖 = 0 represents the correctly classified points outside the margin 

2) 0 <  𝛼𝑖 < 𝐶 represents the training data points that define the margin 
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3) 𝛼𝑖 = 𝐶 represents the wrongly classified points and the points that violated the 

margin (where 𝜉𝑖  ≠ 0) 
  

Many techniques are used to solve this QP problem. In this thesis, two training 

techniques of SVM are tested, hardware implemented and compared. The two techniques 

are Gradient Ascent (GA) and Sequential Minimal Optimization (SMO). The two 

techniques’ algorithms and hardware implementations are discussed in details in the 

following sections. 

4.2. Gradient Ascent (GA) 

4.2.1. Algorithm 

Gradient ascent is an iterative optimization algorithm that solves minimization 

problems. It depends on taking steps towards the minimum point proportional to the slope 

of the function at the current point. By applying the algorithm of gradient ascent on the 

SVM optimization problem in eqn.(4), the following formula is used to update 𝛼𝑖 in each 

iteration: 

𝛼𝑖
𝑛𝑒𝑤 = 𝛼𝑖 − 𝑠𝑡𝑒𝑝 ∗ 𝑦𝑖 ∗ (𝛼𝑖 . 𝑦𝑖, 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏) 

Constrained to  

0 ≤  𝛼𝑖
𝑛𝑒𝑤 ≤ 𝐶 

Where b is the bias of the training set points.  

 

After calculating all 𝛼′𝑠, the hyper plane is calculated as follows: 

𝑤 =∑𝛼𝑖. 𝑥𝑖 . 𝑦𝑖

𝑛

𝑖=1

 

 

To get the new bias 𝑏𝑛𝑒𝑤, substitute in the following formula by 𝑥𝑖 , 𝑦𝑖 of any of the 

support vector points (those with 0 < 𝛼𝑖 < 𝐶) 
𝑏𝑛𝑒𝑤 = 𝑦𝑖 − 𝑤.𝐾(𝑥𝑖 , 𝑥𝑗) 

 

Table I shows the detailed GA algorithm using a pseudo code. First, all Lagrange 

multipliers 𝛼′𝑠  and bias 𝑏  are initialized to zero. In each iteration, two loops are 

performed: the outer loop in which the input vector 𝑥𝑖 is read from the memory, and the 

inner loop in which the Kernel function value is calculated between 𝑥𝑗 and all other input 

vectors. Then, 𝛼𝑖 is updated with the new value and passed to the outer loop with the 

next 𝛼  till all Lagrange multipliers are updated. Then, the bias is updated and a 

convergence check is applied. One important note on the training and testing data sets is 

that they should be normalized to make all data point components mapped to the range 

(-1; 1). This is conducted easily by subtracting the mean value of the components from 

each component, then dividing the resultant value by their standard deviation. 
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Table 2- Psuedo code of Gradient Ascent algorithm. 

Initial   

 𝑤 = 0, 𝛼 = 0, 𝑏 = 0  

Iterate till convergence   

 Loop1  

 Read 𝑥𝑖 from memory  

  Loop2  

  Read 𝑥𝑗 , 𝛼𝑗 , 𝑦𝑗  from 

memory 

  Calculate 𝐾(𝑥𝑖 , 𝑥𝑗) 
  Multiply 

𝐾(𝑥𝑖, 𝑥𝑗). 𝛼𝑗 . 𝑦𝑗 

  End loop2 

 Update 𝛼𝑖
𝑛𝑒𝑤  

 Check 𝛼𝑖
𝑛𝑒𝑤 satisfies constraint  

 End loop1  

 Update bias  

Check for convergence   

 

 

 

 

Figure 15 - Gradient Ascent training circuit block diagram. 
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4.2.2. Hardware Implementation 

Figure 15 shows the architecture of the top level design of the Gradient Ascent (GA) 

algorithm which consists of three main blocks: memory, controller and bias calculator. 

 

 

Figure 16 - GA controller finite state machine. 

 

Figure 17 - GA kernel calculation phases finite state machine. 

The memory contains the values of 𝑦𝑖 , 𝛼𝑖  , 𝑥𝑖  , 𝑏, 𝛼𝑖
𝑛𝑒𝑤 and has separate input 

data, output data, read address and write address ports. All these ports are drived by the 

controller module. The memory is designed carefully and the data is arranged in it to 

achieve minimum memory access times. 

 

The controller is the main block in the architecture. It contains the main finite 

state machine (FSM) that controls the flow of the data and the memory interface. Figure 

16 shows the controller FSM noting that some states in the FSM contain other 

embedded FSMs as will be explained later.  

In INIT state, all variables are initialized and the memory read address is set. In 

the Kernel calculation state, the value of the kernel function is calculated through many 

phases as depicted in Figure 17.  

 

In READ_I phase, the input vector  𝑥𝑖 is read from the memory. In READ_J, the 

input vector 𝑥𝑗  is read form the memory. Then, the kernel function is calculated in 

KERNEL_CALC phase. After the kernel calculation is conducted, the main controller 

FSM is moved to the Kernel finalization state. 

 

In the Kernel finalization state, the expression 𝑥𝑗 . 𝛼𝑗 is calculated and is 

multiplied by the kernel function value and then the output is sent to be accumulated at 

the bias calculator. The FSM of different phases of the Kernel finalization state is 

portrayed in Figure 18. IN ADDRESS_YJ phase, the FSM generates the address of  𝑦𝑗 . 

IN WAIT_FOR_MEM phase, the FSM generates the address of 𝛼𝑗 . Then the controller 

reads the values of 𝑦𝑗 and 𝛼𝑗 in READ_YJ and READ_ALPHA respectively. IN 

CALC_ALPHA_Y phase, the value 𝛼𝑗 . 𝑦𝑗 is calculated using an XOR gate. The value 
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𝛼𝑗 . 𝑦𝑗 .( 𝑥𝑖 . 𝑥𝑗 ) is calculated in CALC_OUT phase using a multiplier. This vale is 

passed to the top level module to be accumulated for different i's. In this phase, the 

address of b is generated and sent to memory. 

 

In WAIT_FOR_MEM2, READ_B,READ_YI and SEND_X phases, the FSM 

reads the values of 𝛼𝑖, 𝑦_𝑖, b and passes them to the top level to be used in bias 

calculation as the controller is the only unit that interfaces with the memory.  

 

Different approximate computing techniques are used in implementing the 

proposed GA training accelerators to reduce power consumption. First of all, fixed 

point is used instead of the computationally expensive floating point. Using software 

simulation results, a 16-bit word length is enough for achieving the same performance 

(i.e., accuracy). Reducing the word length less than 16 bits achieves more power saving 

with the cost of performance degradation. At a certain word length, the full dynamic 

range of the bits should be used in order to achieve the highest accuracy for this 

configuration. This requires a smart selection of the integer and fraction portions of the 

fixed point word length. 

 

Second, Computation skipping is used in different steps in the two algorithms 

(i.e., multiplying by zero is skipped). As 𝛼 = 0  for all non support vector points, many 

multiplication operations are skipped. 

 

Finally, inaccurate arithmetic techniques are adopted in the hardware 

accelerator implementations. Using inaccurate arithmetic operations introduces some 

errors which are acceptable in a specific range. However, using this inaccurate 

arithmetic operations saves a big chunk of energy. As multiplier are one of the most 

power hungry blocks, the signed truncated multiplier proposed in [52] is utilized. The 

signed truncated multiplier consumes less power than accurate multipliers by summing 

an optimized partial products matrix (PPM). A truncated accumulation is used then 

accumulating the whole output of the multiplier (i.e., the output of the multiplier is 

truncated to the specified word length, than the accumulation operation is performed). 

This also reduces the size/power of the needed accumulator and has a small impact on 

accuracy. Sign and magnitude representation is used for negative numbers to facilitate 

the multiplication by -1 which appears in the algorithm several times, therefore an XOR 

implementation is utilized. Moreover, the step size is chosen to be multiples of 2 to use 

an add-shift multiplier to reduce the power consumption. 
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Figure 18 - GA kernel finalization phases finite state machine. 

 

4.3. Sequential Minimal Optimization (SMO) 

4.3.1. Algorithm 

The SMO algorithm was introduced and comprehensively explained by John Platt 

[51]. The main idea of the SMO technique is to break any large QP problem into multiple 

smaller ones. It solves the constrained quadratic programming problem efficiently as it 

iteratively narrows the optimization problem to just two Lagrange multipliers in each 

iteration. The selection of the two Lagrange multipliers to optimize the function value in 

each iteration is performed heuristically. However, depending on the application, the 

SMO algorithm scales somewhere between linear and quadratic with the number of the 

data training set.  

 

The SMO algorithm optimizes the objective function by jointly optimizing two 

Lagrange multipliers. The fact that optimizing two Lagrange multipliers is performed 

analytically makes the SMO algorithm advantageous. The SMO algorithm is summarized 

in Table 3. 

 

The SMO algorithm starts by selecting two Lagrange multipliers to optimize the 

objective function and calculates the bounding values of the two Lagrange multipliers. 
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The bounding values of only two Lagrange multipliers are depicted in a 2-D square as in 

Figure 19. On the left, the bounding square when 𝑦1  ≠ 𝑦2. Hence, 𝛼1 − 𝛼2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
On the right, the bounding square when 𝑦1 = 𝑦2 . Hence, 𝛼1 + 𝛼2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . The 

square sides represent the maximum and the minimum values of the Lagrange multipliers 

while the diagonal line represents the values the two Lagrange multipliers are allowed to 

take. 

 

Table 3 - PSUEDO code of Sequential Minimal Optimization algorithm. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙  

 𝑤 = 0, 𝛼 = 0, 𝑏 = 0 

𝐼𝑡𝑒𝑟𝑎𝑡𝑒 𝑡𝑖𝑙𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒  

 𝑆𝑒𝑙𝑒𝑐𝑡 𝑖 𝑎𝑛𝑑 𝑗 
 𝑟𝑒𝑎𝑑  𝑥𝑖𝑎𝑛𝑑 𝑥𝑗𝑓𝑟𝑜𝑚 𝑚𝑒𝑚𝑜𝑟𝑦 

 𝑐𝑎𝑘𝑐𝑢𝑙𝑎𝑡𝑒 𝑘𝑒𝑟𝑛𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝐾𝑖𝑖, 𝐾𝑖𝑗, 𝐾𝑗𝑗 
 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟𝑠 𝐸𝑖, 𝐸𝑗  
 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡𝑠 𝐿 𝑎𝑛𝑑 𝐻 
 𝜂 = 2𝐾𝑖𝑗 − 𝐾𝑖𝑖 − 𝐾𝑖𝑗 

 
𝛼𝑗
𝑛𝑒𝑤 = 𝛼𝑗

𝑜𝑙𝑑 +
𝑦𝑗(𝐸𝑗

𝑜𝑙𝑑 − 𝐸𝑗
𝑛𝑒𝑤)

𝜂
 

 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑖𝑎𝑠 𝑏 

𝑐ℎ𝑒𝑐𝑘 𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑎𝑛𝑐𝑒  

 

 

 

 

Figure 19 - The bounding values of two Lagrange multipliers. 

Denoting the two Lagrange multipliers by: 𝛼
1
 𝑎𝑛𝑑 𝛼2, it is required to get the 

new values for the two Lagrange multipliers 𝛼1
𝑛𝑒𝑤, 𝛼2

𝑛𝑒𝑤 from the old set of all 

Lagrange multipliers  {𝛼1
𝑜𝑙𝑑, 𝛼2

𝑜𝑙𝑑, 𝛼3, 𝛼4, … , 𝛼𝑁}, where 𝛼1
𝑜𝑙𝑑 , 𝛼2

𝑜𝑙𝑑 have the initial value 

zero.  

Given the constraint equation ∑ 𝛼𝑖. 𝑦𝑖 = 0𝑁
𝑖=1 , the following condition is derived: 
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𝑦1𝛼1
𝑛𝑒𝑤 + 𝑦2𝛼2

𝑛𝑒𝑤 = 𝑦1𝛼1
𝑜𝑙𝑑 + 𝑦2𝛼2

𝑜𝑙𝑑 

 

Following the derivations in [51], 𝛼
𝑗

𝑛𝑒𝑤
 is obtained by the following equation: 

𝛼
𝑗

𝑛𝑒𝑤
= 𝛼𝑗

𝑜𝑙𝑑 +
𝑦𝑗(𝐸𝑗

𝑜𝑙𝑑 − 𝐸𝑗
𝑛𝑒𝑤)

𝜂
 

Where 𝐾𝑖𝑖 = 𝑥𝑖
𝑇 . 𝑥𝑖, 

𝐾𝑗𝑗 = 𝑥𝑗
𝑇 . 𝑥𝑗 , 

𝐾𝑖𝑗 = 𝑥𝑖
𝑇 . 𝑥𝑗 , 

𝜂 = 2𝐾𝑖𝑗 − 𝐾𝑖𝑖 − 𝐾𝑗𝑗 , 

𝐸𝑖 = 𝑤𝑇𝑥𝑖 − 𝑏 − 𝑦𝑖. 

 

Referring to the constraints depicted in Figure 19, 𝛼
𝑗

𝑛𝑒𝑤
 is clipped to be in the feasible 

range. Therefore, 𝛼
𝑗

𝑛𝑒𝑤,𝑐𝑙𝑖𝑝𝑝𝑒𝑑
 is obtained by: 

𝛼
𝑗

𝑛𝑒𝑤,𝑐𝑙𝑖𝑝𝑝𝑒𝑑
=

{
 
 

 
 

𝐻, 𝛼 ≥ 𝐻

𝛼𝑗
𝑛𝑒𝑤, 𝐿 ≤ 𝛼𝑗

𝑛𝑒𝑤 ≤ 𝐻
 

𝐿, 𝛼 ≤ 𝐿 }
 
 

 
 

 

 

And therefore, 𝛼
𝑖

𝑛𝑒𝑤
 is calculated as follows: 

𝛼
𝑖

𝑛𝑒𝑤
= 𝛼𝑖

𝑜𝑙𝑑 + 𝑡(𝛼𝑗
𝑜𝑙𝑑 − 𝛼𝑗

𝑜𝑙𝑑,𝑐𝑙𝑖𝑝𝑝𝑒𝑑) 

Where 𝑡 = 𝑦𝑖. 𝑦𝑗 

4.3.2. Hardware implementation 

 In order to keep the architecture generalized for any heuristic model of selecting 

Lagrange multiplier, the SMO training architecture is divided into three main blocks; 

the SMO processing unit, the SMO controller and the main memory as shown in  
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Figure 20 - Sequential Minimal Optimization training circuit block diagram. 

4.3.2.1. The SMO Processing Unit 

The SMO processing unit is responsible for calculating the new values of the two 

previously selected Lagrange multiplier. Figure 21 shows the building blocks of the SMO 

processing unit. 

 

1- Register file 

In order to speed up the processing and avoid the repeated memory access, 

some variables are cached in a register file to be processed later by the other SMO 

processing unit blocks. The variables chosen to be cached in the register file are 

𝛼𝑖, 𝛼𝑗 , 𝑦𝑖 , 𝑦𝑗 , 𝐵, 𝛼𝑖
𝑛𝑒𝑤, 𝛼𝑗

𝑛𝑒𝑤, 𝐸𝑖 , 𝐸𝑗  .  

 

2- Kernel function 

The calculation of η requires the calculation of the two Lagrange multiplier self 

and cross kernel. Hence, the kernel function unit calculates the value of the 

𝑘𝑖𝑖 , 𝑘𝑗𝑗  , 𝑘𝑖𝑗 simultaneously. After receiving the index of current Lagrange 

multipliers, the kernel function unit reads from the memory the value of the two 

Lagrange multipliers and pass them to three multiply-add units as shown in Figure 

22. In the case of polynomial kernel instead of the linear one, the design also have 

an adder to add 1 to each K then use a multiplier to raise the value to the 

polynomial degree in multiple clocks. The kernel function unit includes an internal 

controller to manage the iterative process of reading the Lagrange multiplier and 

updating the kernels value. 
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Figure 21 - SMO processing unit block diagram. 
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Figure 22 - kernel function block diagram. 

3- Learned function 

Learned function is used to calculate 𝑤𝑇𝑥 or ∑ 𝛼𝑖 . 𝑦𝑖. 𝐾(𝑥𝑖 , 𝑥𝑗)
𝑛
𝑖=1   which is used 

in calculating the error E. By expanding the equation ∑ 𝛼𝑖. 𝑦𝑖. 𝐾(𝑥𝑖 , 𝑥𝑗)
𝑛
𝑖=1 , the 

pseudo in Table 2 is obtained. 

Table 4 - Learned function PSUEDO code. 

𝑓𝑜𝑟 𝑗 = 1:𝑁 
       𝑓𝑜𝑟 𝑑 = 1: 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 
                  𝑘 = 𝑘 + 𝑥𝑖,𝑑𝑥𝑗,𝑑 

       𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝛼𝑖𝑦𝑖𝑘 
𝑓𝑢𝑛𝑐 = 𝑠𝑢𝑚 

 

The implementation requires two multiply-add units; one to calculate the kernel 

and the other to update the learned function. However, since the two calculation is 

dependent, one multiply-add unit is shared to calculate both values.  



 

43 
 

The FSM of the learned function is shown clearly in Figure 23. In the 

first state, 𝛼𝑖 is read. If 𝛼𝑖 ≠ 0 , the FSM is moved to the kernel calculation 

state. Then, 𝑦𝑗 is read to update the learned function value. 

 

 

Figure 23 - Learned function FSM. 

 

4- Bias calculator 

The change in the threshold is computed by forcing 𝐸𝑖
𝑛𝑒𝑤  to be zero if              

0 <  𝛼𝑖
𝑛𝑒𝑤  < 𝐶 and then  

 

𝑏1 = 𝐸𝑖 + 𝑦𝑖 . ∆𝛼𝑖 . 𝑘𝑖𝑖 + 𝑦𝑗 . ∆𝛼𝑗. 𝑘𝑖𝑗 + 𝑏 

 

Where  ∆𝛼𝑖 = 𝛼𝑖
𝑛𝑒𝑤 − 𝛼𝑖 , 

∆𝛼𝑗 = 𝛼𝑗
𝑛𝑒𝑤 − 𝛼𝑗  

 

Otherwise, the threshold is computed by forcing  𝐸𝑗
𝑛𝑒𝑤  to be zero if                    

0 < 𝛼𝑖
𝑛𝑒𝑤 < 𝐶 and then  

𝑏2 = 𝐸𝑗 + 𝑦𝑖 . ∆𝛼𝑖 . 𝑘𝑖𝑗 + 𝑦𝑗 . ∆𝛼𝑗 . 𝑘𝑗𝑗 + 𝑏 

 

Finally, the new bias is calculated as follows: 

𝑏 =

{
 

 
𝑏1, 0 < 𝛼𝑖

𝑛𝑒𝑤 < 𝐶 

𝑏2, 0 < 𝛼𝑗
𝑛𝑒𝑤 < 𝐶

𝑏! + 𝑏2
2

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}
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Figure 24 shows clearly the FSM of bias calculator which consists of different 

states: calculate b1, calculate b2 then choose one of them or their average.  

Figure 25 illustrates the implementation of the bias calculator unit. The unit is 

implemented using only two multipliers, four adders, and three intermediate registers 

A, B, and b1.  

 

Figure 24 - Bias calculator FSM. 

 

To exploit the similarities between equations of calculating 𝑏1𝑎𝑛𝑑 𝑏2, they can be 

rewritten as: 

𝑏1 = 𝐸1 + 𝑇1 + 𝑇2 + 𝑏 

𝑏2 = 𝐸2 + 𝑇3 + 𝑇4 + 𝑏 

Where 𝑇1 = 𝑦𝑖. ∆𝛼𝑖. 𝐾𝑖𝑖, 
𝑇2 = 𝑦𝑗 . ∆𝛼𝑗 . 𝐾𝑖𝑗, 

𝑇3 = 𝑦𝑖. ∆𝛼𝑖. 𝐾𝑖𝑗, 

and 𝑇4 = 𝑦𝑗 . ∆𝛼𝑗 . 𝐾𝑗𝑗 . 
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Figure 25 - Bias calculator hardware implementation block diagram. 

Noticing the similarity between T1 and T3, only one multiplier is used to calculate 

∆𝛼𝑖. 𝑘𝑖𝑖 and ∆𝛼𝑖. 𝑘𝑖𝑗, and therefore the values of 𝑇1 and 𝑇3. Based on the condition 0 <

 𝛼𝑖
𝑛𝑒𝑤  < 𝐶 and the condition 0 <  𝛼𝑗

𝑛𝑒𝑤  < 𝐶 , either 𝑘𝑖𝑖  or 𝑘𝑖𝑗 is selected to be an 

input to the multiplier. If both conditions are satisfied, both 𝑏1 and 𝑏2 gives the same 

value. In the proposed hardware implementation, the priority is given to 𝑏1 to reduce 

the hardware complexity. Therefore, the value of register A is calculated. The fact that 

y has a unity value, with positive or negative sign, and adopting the sign and magnitude 

representation, results in reducing the multiplication of y to a single XOR gate between 

y sign and the multiplicand sign. Similarly, 𝑇2 and 𝑇4 calculations require only one 

multiplier and then the value of B register is obtained in parallel with the calculation of 

the register A. If both conditions are not satisfied, the calculation is carried out to 

determine the value of 𝑏1 , then the process is repeated to determine the value of 𝑏2 and 

finally the value of 𝑏! and 𝑏2 are averaged. 

 

5- Limits calculator 

The value of the lower band L and the upper band H depends on the slope in 

Figure 19. Therefore the value of the limits is obtained as follows:  

𝑖𝑓 𝑦𝑖 ≠ 𝑦𝑗 → 𝐿 = max(0, 𝛼𝑗 − 𝛼𝑖) , 𝐻 = min (𝐶, 𝐶 + 𝛼𝑗 − 𝛼𝑖) 

𝑖𝑓 𝑦𝑖 = 𝑦𝑗 → 𝐿 = max(0, 𝛼𝑗 + 𝛼𝑖 − 𝐶) ,𝐻 = min (𝐶, 𝛼𝑗 + 𝛼𝑖) 

Again, comparing 𝑦𝑖 and 𝑦𝑗 is done using a single XOR gate. From the previous 

equations of L and H, L and H take on the values 0, C , 𝛼𝑗  ±  𝛼𝑖 , or 𝛼𝑗  ±  𝛼𝑖  ± 𝐶 . 

Therefore, only two adders are required to calculate L and H, while the signs are 
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determined using XOR gates. To further understand the implementation, the limits 

calculation process is described using the pseudo code in Table 5. 

In the first part, the first adder is adjusted to add 𝛼𝑗  – 𝛼𝑖 and the second adder is 

adjusted to add C to the output of the first adder, (i.e., + 𝛼𝑗  – 𝛼𝑖 ) . Then a multiplexer 

is used to select between the values 0 and 𝛼𝑗  – 𝛼𝑖 for L, and the values C and 𝐶 +

 𝛼𝑗  – 𝛼𝑖 for H.  

 

In the second part, the first adder is adjusted to add 𝛼𝑗  +  𝛼𝑖 and the second adder 

is adjusted to add −𝐶 to the output of the first adder, (i.e., 𝛼𝑗  +  𝛼𝑖  − 𝐶) . Then a 

multiplexer is used to select between the values 0 and 𝛼𝑗  +  𝛼𝑖  − 𝐶 for L, and the 

values C and 𝛼𝑗  +  𝛼𝑖 for H. The sign adjustment of 𝛼𝑖 and C is controlled by 

examining if 𝑦𝑖  ≠  𝑦𝑗 . This examine is performed using an XOR gate. Accordingly, 

the sign of 𝛼𝑖 and C is altered by another two XOR gates. Noting that the cases when 𝛼𝑖 
is required to be negative is the same cases when C is required to be positive. That is 

why a NOT gate is added to the sign of C as shown in Figure 26.  

 

Table 5 - Limits calculator PSUEDO code. 

 𝑖𝑓 𝑦𝑖 ≠ 𝑦𝑗  𝑡ℎ𝑒𝑛 

        𝑖𝑓 𝛼𝑗 − 𝛼𝑖𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡ℎ𝑒𝑛 

                𝐿 = 𝛼𝑗 − 𝛼𝑖 

                𝐻 = 𝐶 

        𝑒𝑙𝑠𝑒 𝑡ℎ𝑒𝑛 

                𝐿 = 0 

                𝐻 = 𝛼𝑗 − 𝛼𝑖 + 𝐶 

        𝑒𝑛𝑑 𝑖𝑓 

𝑒𝑙𝑠𝑒 𝑡ℎ𝑒𝑛 

        𝑖𝑓 𝛼𝑗 + 𝛼𝑖 − 𝐶 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡ℎ𝑒𝑛 

                𝐿 = 𝛼𝑗 + 𝛼𝑖 − 𝐶 

                𝐻 = 𝐶 

        𝑒𝑙𝑠𝑒 𝑡ℎ𝑒𝑛 

                𝐿 = 0 

                𝐻 = 𝛼𝑖 + 𝛼𝑗 

        𝑒𝑛𝑑 𝑖𝑓 

𝑒𝑛𝑑 𝑖𝑓 
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Figure 26 - Limits calculator block diagram. 

6- Memory interface 

The memory interface is responsible for receiving the requests for the memory 

read and write operations and handling the memory access separately by different 

blocks, which increases the memory access parallelism. 

 

7- Controller 

This unit controls the other units by initiating a triggering signal for each unit 

and manages the data flow between them. Figure 27 summarizes the control state 

machine of the control unit.  

4.3.2.2. The SMO controller 

The SMO controller is responsible for selecting the two Lagrange multipliers and 

controls the SMO processing unit. The SMO controller keeps iterating over Lagrange 

multipliers till conversion happens or the maximum number of iterations is exceeded. 

Compared to the SMO processing unit, the SMO controller hardware is simpler and 

consumes less area. 

 

The same approximate computing techniques used in the hardware implementation 

of the GA accelerator are also adopted in the hardware implementation of the SMO 

accelerator. Fixed point arithmetic, computation skipping, inaccurate arithmetic and 

sign/ magnitude implementation is used in the proposed implementation. 
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Figure 27 - SMO processing unit FSM. 

4.4. Simulation Setup 

The SVM training accelerators techniques implemented in this paper are tested first 

on MATLAB2016a. EEG signals of patients are first processed, then the features that 

give the best performance are extracted. Then, the training and testing data are used to 

verify the performance of the training algorithms. The proposed training techniques are 

software implemented on MATLAB to measure the performance. Xilinx ISE 14.2 is 

utilized to design and develop the VLSI architecture of the algorithms. The design is 

synthesized on Xilinx Spartan-6 FPGA. For the implementation on ASIC, Synopsys 

DesignCompiler (DC) B-2008.09 with UMC 130nm library is adopted.  

 

Results are collected in two main phases. The first phase is evaluating the 

performance simulation results. The second phase is calculating the hardware 

implementation metrics such as area, power and maximum frequency for both ASIC and 

FPGA implementations. 

 

4.5. Simulation Results 

After implementing both SVM training algorithms –GA and SMO- on MATLAB 

2016a, both algorithms are tested with linear kernel and their results are shown in Table 

6. The performance of both algorithms are almost the same. They both achieve sensitivity 

equals to 96%. 
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The performance obtained by the proposed architectures is also compared to the 

performance achieved by prior work as shown in Table 7. It is obvious that the sensitivity 

obtained by the proposed architectures is equal to and exceeds that achieved by the prior 

work. This results obtained despite using linear kernel while most of the prior work used 

Radial Basis Function (RBF) kernel. This saves much energy as the linear function kernel 

is less complex than the RBF kernel and needs less computations.  

 

Table 6 - Performance measurement for seizure detection using different SVM 

training techniques. 

Algorithm Sensitivity Specificity Accuracy 

GA 95.8 92.34 92.35 

SMO 96.0 97.9 97.9 

 

 

Table 7 - Performance comparison to prior work. 

Method Kernel Type Sensitivity 

[25] RBF 95% 

[26] RBF 97% 

[53] RBF 94.5% 

Proposed Linear 96.7% 

 

 

4.6. Hardware Implementation Results 

The hardware implementations of SVM learning circuit are presented on both FPGA 

and ASIC platforms.  Table 8 shows the ASIC implementation results using UMC 130nm 

where both techniques use a clock frequency equals to 100 𝑀𝐻𝑧. Table 8 shows area, 

power and the number of clock cycles that each algorithm takes to finish training. As 

power consumption is not a good comparison metric, power delay product is calculated 

as the product of power consumption of each technique and the number of clock cycles 

needed to finalize training. 

 

Table 9 lists the resources used in Xilinx Spartan-6 FPGA such as LUTs and registers 

slices. Table 9 also tabulates the dynamic power consumption of each algorithm and the 

power delay product (PDP). PDP is calculated as the multiplication of dynamic power 

with the number of clock cycles needed to finish training. 
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Table 8 - Hardware implementation results of SVM training algorithms on UMC 

130nm platform. 

Algorithm Area (𝒏𝒎𝟐) Power (𝝁𝑾) # training 

cycle 

PDP 

GA 18143 463 150K 69.45 

SMO 43259 910 30K 27.3 

 

Table 9 - Hardware implementation results of SVM training algorithms on 

Spartan-6 FPGA platform. 

Algorithm Utilization Power 

(𝒎𝑾) 
PDP   

LUTs Registers 

GA 661 535 6 900 

SMO 3360 566 17.2 516 

 

Table 8 shows the comparison between the implementation of both algorithms on 

ASIC platform in area and power consumption. It is obvious that the GA implementation 

consumes less area and instantaneous power than that consumed by the SMO 

implementation. However, the large number of clock cycles needed for the GA algorithm 

to finalize training makes the energy consumed by the GA algorithm is more than that 

consumed by the SMO algorithm. It is so clear that the time required by the GA algorithm 

to finalize training is 5x the time required by the SMO algorithm. 

 

In Table 9, it is obvious that the GA algorithm has the advantage of less utilization, 

higher maximum frequency and less power consumption than the SMO algorithm. 

However, the main disadvantage of the GA algorithm is the large required number of 

clock cycles for training, which reaches up to 150,000 compared to 30,000 clock cycles 

only for the SMO algorithm. The utilization used by the SMO accelerator is less than that 

achieved by [34]. 
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Chapter 5 : Design of Classifiers 

As mentioned in the introduction and literature review, many machine learning 

techniques are used to detect seizure. Two different techniques are proposed and 

hardware implemented for classification and their performance for neural seizure 

detection is measured. The two techniques are Support Vector Machine (SVM) and 

Artificial Neural Networks (ANN). Both algorithms are discussed in details in the 

following to sections. 

 

5.1. Support Vector Machine (SVM) Classifier 

5.1.1. Algorithm 

After the completion of training phase, the classification phase starts. For any input 

vector 𝑥𝑡𝑒𝑠𝑡 , by substituting in the following formula using the final value of 𝛼's and b , 

the corresponding class 𝑦𝑡𝑒𝑠𝑡 is calculated as follows: 

𝑦𝑡𝑒𝑠𝑡 =∑𝛼𝑗𝑦𝑗𝑥𝑡𝑒𝑠𝑡𝑥𝑗 + 𝑏

𝑛

𝑗=1

 

5.1.2. Hardware implementation 

The training of SVM is done offline or using the hardware accelerator proposed 

in Chapter 4. Hence, only the SVM classifier needs to be hardware implemented. Figure 

28 shows the architecture of the top level design of the SVM classifier which consists of 

6 main block: three ROM blocks, classifier block and inner product block. 

 

The first ROM block is used to save the input vectors of the support vector points. 

The width of this ROM is the same as the data width, while the depth equals to the 

number of support vectors multiplied by the number of the classification problem 

dimensions.  

 

The second ROM block is used to save the values of non-zero  's. The width of this 

ROM is the same as the data width, while the depth equals to the number of support 

vectors. 

 

The third ROM block is used to save the values of the true labels of the support 

vector points. The width of this ROM is one bit, while the depth is the number of 

support vectors. 

 

The finite state machine (FSM) is responsible for generating the addresses of the 

three ROMs and the enable signal of classifier block.  

 

The classifier block is the main block of the architecture. First, each 𝛼 is multiplied 

by its corresponding label 𝑦. As the implementation used for negative numbers is sign-
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magnitude implementation, the multiplication is performed using an XOR gate instead 

of a multiplier. The value of 𝛼𝑖. 𝑦𝑖 is saved in a register. An inner product block of size 

equal to the number of dimensions is used to multiply the input test vector with the 

input vector of the 𝑖𝑡ℎ  support vector point. The output of the classifier block is fed to 

the inner product block to calculate the class.  

 

The inner product block is a multiple-add block with only one adder and one 

multiplier that multiply two vectors of size equal to the number of non-zero 𝛼's. The 

output of this block is the class and a valid out signal. 

 

In the hardware implementation of SVM classifier, fixed point simulation is used. 

Using software simulation results, it is found that a 16-bit word length is enough for 

achieving the same performance (i.e., accuracy). Same as that used in the training 

accelerators, computation skipping is adopted to save more power/ area. 

 

 

 

Figure 28 - Top level SVM classifier block diagram. 

5.2. Artificial Neural Network (ANN) 

5.2.1. Algorithm 

Over the past twenty years, many methods inspired by the understanding of the 

structure and function of the biological neural networks are evolved. One of these 

methods is the artificial neural network (ANN) [54]. Neural networks are used in various 

applications such as classification, pattern recognition, and data analysis [55]. ANN 

mainly consists of an input layer, one or more hidden layers and one output layer as 

shown in Figure 29. Each layer consists of multiple neurons and different weights are 

given to the connections among these neurons. Each neuron in the input layer takes in 
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one data source. The output of each input layer neuron is the input for each of the hidden 

layer neurons [56].  

 

Finding the weight of each neuron is performed in the training phase. After the neural 

network is trained, any new input vector is fed to the input layer. The value of each node 

is calculated by multiplying the input node value by the connection weight and adding 

all the values entering this node. To detect seizure and differentiate between seizure and 

non-seizure epochs, the architecture of the ANN used is a single hidden layer with 10 

neurons. The activation function used is the Sigmoid function. 

 

For any new data point, the data point is submitted to the input layer. The value of 

each node in the first hidden layer thorough add-multiply operation. This procedure is 

performed with all nodes in all hidden layer until the value of output layer node is 

calculated. 

 

Figure 29 - Three layer feedforward network architecture. 

5.3. Hardware implementation 

The architecture of the ANN classifier consists of ROM block, two RAM blocks, 

four counters, neuron block and finite state machine as shown in Figure 30. 

 

A ROM block is used to save the weights of each connection. A single data port 

RAM is used to save the values of each node (neuron) of the hidden layer. A double data 

port RAM is used to save the values of each node of the input layer. Four counters are 

used to generate the addresses of the ROM, single data port RAM and double data port 

RAM. The neuron block is a multiply-accumulate block that consists of multiplier, adder, 

register and activation function block. The activation function used is the Sigmoid 

function and is implemented as a combinational circuit. The FSM is responsible for 

controlling the overall system. 
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Different approximate computing techniques are used in implementing the proposed 

ANN. First of all, fixed point is used instead of the computationally expensive floating 

point. Using software simulation results, a 16-bit word length is enough for achieving the 

same performance (i.e., accuracy, in ANNs). Reducing the word length less than 16 bits 

achieves more power saving with the cost of performance degradation. Another 

technique for energy saving is the adoption of approximate implementation of the 

activation functions. For example, instead of implementing the exponential function for 

calculating the Sigmoid function, a Piece-Wise Linear (PWL) approximation is used to 

reduce the power consumption. 

 

 

 

 

Figure 30 - Top level ANN classifier block diagram. 

 

5.4. Modified ANN  

The ANN can achieve a good performance. However, the problem of the ANN is 

that the decision made in each time epoch is an instantaneous decision. Only the features’ 

values at this time epoch affect the classification output. The task of seizure detection is 

an accumulative task. The history of the features’ values in the previous time epochs can 

affect the classification. To do so, the single hidden layer used can be a recurrent layer. 

Recurrent layer has a backward connection. This backward connection means that the 

output of the nodes in the hidden layer serves as input for the same hidden layer on the 

next time epoch as shown in Figure 31 and Figure 32. This sort of feedback serves as 

memory to save the output of the hidden layer in the previous time epochs.  
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The weight of the backward connection from the hidden layer to the input of the 

same layer is constant through different time epochs. This weight (𝑊ℎℎ) can take one of 

three different values: 

1- 𝑊ℎℎ < 1 

2- 𝑊ℎℎ ≈ 1 

3- 𝑊ℎℎ > 1 

In this case, the 𝑊ℎℎ is chosen less than <1; the memory of the network is limited 

over time. Hence, the oldest neuron value vanishes over time. 

 

 

 

Figure 31 - ANN feadforward architecture. 

 

Figure 32 - RNN architecture. 

The only difference in hardware implementation is adding a FIFO to the hidden layer 

to save the output of the hidden layer for the last n outputs to serve as an input in this 

timestamp.  

 

5.5. Simulation Setup 

Both classifiers are software implemented using MATLAB 2016a to measure the 

performance of each algorithm. The design is synthesized on Xilinx Spartan-6 FPGA. 

For the implementation on ASIC, Synopsys Design Compiler (DC) B-2008.09 with 

UMC 130nm library is adopted.  

 

Results are collected in two main phases. The first phase is evaluating the 

performance simulation results. The second phase is calculating the hardware 

implementation metrics such as area, power and maximum frequency for both ASIC and 

FPGA implementations.  

 



 

56 
 

5.6. Simulation Results 

 

As shown in Table 10, a comparison between SVM and ANN classifier is performed. 

The SVM chosen is a linear kernel SVM. The ANN is designed with only one hidden 

layer with 10 neurons. The two algorithms with the chosen parameters give almost the 

same performance. This makes the comparison of the power, area and energy as fair as 

possible.  

 

The appropriate choice of the applied features helps in achieving very high 

sensitivity using linear kernel in the SVM and using only one hidden layer with only 10 

neurons in the hidden layer. This performance exceeds that obtained by Yuan et al. by 

using SVM with radial basis function (RBF). Yuan et al. got sensitivity ranging from 

73.5% to 95% using different features [25]. 

Table 10 - Performance measurement for seizure detection using different 

classification techniques. 

Algorithm Sensitivity Specificity Accuracy 

SVM 96.23 92.90 97.89 

ANN 96.5 97.88 97.88 

 

 

5.7. Hardware Implementation Results 

Table 11 shows the hardware implementation results of SVM and ANN 

classification techniques on ASIC platform. The library UMC 130nm is adopted. In Table 

11, it is obvious that the SVM algorithm has the advantage of less utilization, higher 

maximum frequency and less power consumption than the ANN algorithm. However, 

the main disadvantage of the SVM algorithm is the large required number of clock cycles 

to classify every new data point, which reaches up to 1020 clock cycle compared to 30 

clock cycle only for the ANN algorithm. This very large number of clock cycle is due to 

the fact that neural seizure detection problem is a very complex one. Hence, the SVM 

technique has many support vectors and the inner product occurs for every testing point 

is very large. However in the case of ANN, only the output of each node is calculated 

through an add-multiply block. As the throughput of each algorithm is different, power 

consumption is not a good comparison metric. Hence, power delay product is calculated. 

Although SVM algorithms consumes less power than the ANN algorithm, the power 

delay product is much larger. 

 

Table 12 shows the same comparison between the implementation of SVM and ANN 

classifiers on Spartan-6 FPGA platform. The instantaneous power consumption of the 

GA algorithm is less than that consumed by the SMO algorithm. However, the energy 

consumption of the GA is much larger than that consumed by the SMO algorithm due to 

the large number of clock cycles needed by SVM to finalize classification of each testing 

point. 
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Table 11 - Hardware implementation results of different classification techniques 

on UMC 130nm platform. 

Algorithm Area (𝒏𝒎𝟐) Power (𝝁𝑾) # cycles PDP 

SVM 3963 2.15 1020 2193 

ANN 16040 8.08 30 242.4 

 

 

Table 12 - Hardware implementation results of different classification techniques 

on Spartan-6 FPGA platform. 

Algorithm Utilization Power 

(𝒎𝑾) 
PDP   

LUTs Registers 

SVM 293 137 1 1020 

ANN 401 256 3 90 
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Chapter 6 : Rats Dataset Generation 

The PhysioNet data set used in this work has some drawbacks. The first drawback 

is the limited number of seizures recorded for each patient which makes the training 

process very difficult. To enhance the overall performance of the seizure detection, more 

seizure epochs should be recorded for each patient. The second drawback is the 

unbalanced data. The number of time epochs which have seizure are much less than those 

which do not have seizure. To solve this problem, a new dataset is measured from rats.  

 

This dataset collected in collaboration with the Faculty of Science, Cairo 

University and ONE lab. The dataset consists of EEG recordings from rats during ictal 

and inter-ictal periods. Subjects were injected with drugs that cause temporary seizures. 

Subjects were monitored for one hour: before, during and after the ictal seizure.  

 

Recordings are measured from 13 different rats. Weights of the rats varies from 90 

to 150 gm.  Each animal data is exported to an excel sheet that contains the value of the 

EEG signal in each time sample.  

 

A surgery was performed for each rat to implant 3 electrodes on the cortex lobe. 

The surgery performed is shown in Figure 33. 

 

After implanting the electrodes in the rats’ cortex as shown in Figure 33-j, the 

measurement equipment is set up. A commercial EEG instrumentation amplifier is 

used. The amplifier used is Colbourn instruments’ LabLinc V system shown in Figure 

34. This system consists of power base, signal acquisition unit, signal processing unit, 

power amplifier and computer interface module. The system is so modular, as it 

consists of different modules. Each module has multiple channels and different number 

of modules can be connected vertically. In this experiment, only one module is used as 

2 only channels are adopted. The module used is V75-08 module which consists of 4-

channel EEG amplifier. A National Instruments NI 6030E interface card is used to 

interface the LAbLinc V amplifier with the pc. The card has up to 16 analog input 

channels, only 2 of them are used. The resolution of the acquisition, measurement, 

amplification and interfacing modules are 12 bits. 

 

The software used for acquisition of the measured EEG signal, record it and export 

it in excel sheet is a BioBench based software. The software reads the data from each 

channel of the NI card and stores them in an excel sheet with the corresponding time 

frame. 

 

Figure 35 shows a life experiment for EEG signal recording from one of the rats. 

The recorded EEG signals from the all 13 rats are preprocessed and organized in 13 

different excel sheet, a different one for each rat. 
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(i) 

 

(j) 

Figure 33 - Electrodes implantation surgery on rats. 
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Figure 34 - LabLinc V system 

 

 
(a) 
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(b) 

Figure 35 - EEG reading experiment. 

The EEG is recorded for the 13 rats in both ictal and inter-ictal periods. These EEG 

signals are the start of the new rats’ dataset as shown in Figure 36. 
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Figure 36 - Sample of the recorded rats EEG. 
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Conclusions and Future work 

In this research, the problem of neural seizure detection problem is addressed. An 

automatic seizure detection system is proposed with a very-high efficiency.  

 

As Feature extraction and selection is a key metric in enhancing the performance of 

classifier. More than 1100 combinations are tested with linear kernel SVM. Each 

combination consists of 3 features. 126 combinations of them give sensitivity between 

90 and 95%. 25 combinations of them give sensitivity more than 95%, while the 

specificity and accuracy are more than 96% for all combinations. This result equals to 

and exceeds that achieved by prior work however using linear kernel function instead of 

the RBF kernel used in these prior work [25], [26], [53]. After exhaustive search, it is 

found that fractal dimension, Hurst exponent and coastline combination is the best 

combination that achieved sensitivity up to 96.77 % using linear kernel SVM classifier. 

 

As the SVM learning process is a very complex process especially with the large 

problems like neural seizure detection, a hardware accelerator for SVM training is 

proposed. The training is accelerator using two different algorithms: Gradient ascent and 

Sequential Minimal Optimization. The implemented hardware are proposed to be used 

as accelerators IP especially in the problems with large training examples. The proposed 

accelerators achieved a sensitivity up to 96% using linear kernel function. It is found that 

the GA accelerator consumes less power and area than the SMO accelerator. However, 

the GA accelerator takes 5x clock cycles to finish training more than the SMO 

accelerator. That makes the GA accelerator more energy hungry than the SMO 

accelerator. 

 

Then, a hardware implementation of different classifiers techniques are proposed. 

The proposed techniques are support vector machine (SVM) and artificial neural network 

(ANN). The proposed SVM is chosen with linear kernel function. On the other hand, the 

ANN classifier is designed with single hidden layer with 10 neurons in the hidden layer. 

The ANN and SVM classifiers parameters are chosen to achieve the same performance 

from both classifiers. For the same performance, the ANN classifier consumes less 

energy than the SVM classifier for each input vector. However, the instantaneous power 

consumed in the ANN classifier is more than that of the SVM classifier. This is due to 

the very large number of clock cycles needed by the SVM classifier to finalize classifying 

for any input vector compared to the ANN classifier. 

 

Moreover, an effort was done to generate a new EEG dataset for rats that can be used 

to detect seizures in collaboration with the Faculty of Science, Cairo University and ONE 

lab. A DBS surgery was performed for 13 rats and depth electrodes were implanted on 

their cortex. The rats are injected with a specific dose of drugs that cause the rats to have 

a temporarily epileptic seizure. Some commercial EEG amplifiers were used to measure, 

amplify and record these EEG signals. The signals measured from the different rats 

before, during and after the seizure periods are shown in Figure 36. 

 

As extension to this work, the following points are recommended for the future work: 

- More optimizations can be done on the proposed hardware implementations to 

save more energy 
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- The dataset extracted from rats should be tested against the proposed system. 

- Using the DPR capabilities of the FPGA to enhance the utilization and 

performance of the system. 
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Appendix A : MATLAB Simulation Codes 

Main.m 
Clc 
clear 
close all 

  
% change the paths to add chb01, functions, helpfunctions in your 

machine. 
addpath D:\Communications\Research\New_Research\New_tools\chb01 
addpath D:\Communications\Research\2018\nonlinear_features\functions 
addpath 

D:\Communications\Research\2018\nonlinear_features\helpFunctions 
warning('off','MATLAB:legend:IgnoringExtraEntries') 

  

  
%% Code for calculating different combinations of both linear and 

non-linear fatures then classify the data according to the 

combinations. 

  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    Loading the data of CHB-MIT Scalp EEG Database 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
samplePerSecond = 921600/60/60; 
seconds = 4;              %The number of seconds in each window 
N = samplePerSecond*seconds;        % window interval 

  
[files_names,seizure_start,seizure_ending,s_starts] = dataLoading(); 

  

  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Locating the first patient data for classification 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
patient = 1;        % the first patient 
file_name=files_names{patient}; 
start = seizure_start{patient}; 
ending = seizure_ending{patient}; 
hour = s_starts{patient}; 
hour = 15; 
%  h=3,4,15,16,18,21,26 => contain seizures for the first patient 
clear all_data 
all_data=ReadEDF(file_name(hour,:));    % hour that contain seizure 

over 23 channels 

  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%           Actual Seizure Locations Vector 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
sez_true_train=zeros(floor(length(all_data{1})/N),1); 
for j=1:3 
    if start(hour,j)~=0 
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sez_true_train(floor(start(hour,j)/seconds):floor(ending(hour,j)/sec

onds),1) = ... 
            

ones(length(floor(start(hour,j)/seconds):floor(ending(hour,j)/second

s)),1); 
    end 
end 

  

  
% try different cominations (10C3 = 120 combinations) 
c = combnk(1:20,3); 
%feature1= 2; 
%feature2= 12; 
%feature3= 14; 

  
 for i = 886:-1:1 
 all_data=ReadEDF(file_name(hour,:));    % hour that contain seizure 

over 23 channels 

  
 temp = c(i,:); 

  
 feature1=temp(1); 
 feature2=temp(2); 
 feature3=temp(3); 

  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%            Feature extraction and Ploting 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
fprintf('\nTraining ..\n'); 

  
[trainingData] = features_detection(all_data, 

N,feature1,feature2,feature3); 

  
visualize_trainingdata(trainingData,sez_true_train,'True class of 

training examples',patient,hour) 

  

  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%            SVM Linear Classification 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%svmTrain = 

fitcsvm(trainingData,sez_true_train,'KernelFunction','RBF');   % 

classes to be 1, 0 
%svmTrain = 

fitcsvm(trainingData,sez_true_train,'KernelFunction','polynomial','P

olynomialOrder',2);   % classes to be 1, 0 
svmTrain = 

svmtrain(trainingData,sez_true_train,'kernel_function','linear');   

% classes to be 1, 0 

  
fprintf('\nDone.\n'); 

  
%% 
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%svmClassification = predict(svmTrain,trainingData); 

  
%visualize_trainingdata(trainingData,svmClassification,'Training Set 

Classification',patient,hour) 

  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%              Testing data generation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
SVM_TP=0; 
SVM_TN=0; 
SVM_FP=0; 
SVM_FN=0; 

  
for h = hour+1:size(file_name,1) 
    if(h==20|| h==26) 
        continue; 
    end 

     
    tic 
    clear all_data 
    all_data=ReadEDF(file_name(h,:)); 

     
    % Actual Seizure Locations Vector 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    sez_true_test=zeros(1,floor(length(all_data{1})/N)); 
    for j=1:3 
        if start(h,j)~=0 
            

sez_true_test(1,floor(start(h,j)/seconds):floor(ending(h,j)/seconds)

)= ... 
                

ones(1,length(floor(start(h,j)/seconds):floor(ending(h,j)/seconds)))

; 
        end 
    end 

     
    fprintf(' \nFor h = %i: \n',h); 
    [testingData] = features_detection(all_data, 

N,feature1,feature2,feature3); 

  
    svmClassification = svmclassify(svmTrain,testingData); 

     
    % plot ictal hours to see the classification on each hour 
%    if(h==4||h==15||h==16||h==18||h==21||h==26) 
%     

visualize_testingdata(testingData,svmClassification,sez_true_test,'C

lassification of testing examples',patient,hour) 
%    end 

  
    % Performance 
    %%%%%%%%%%%%% 
    

[TP,TN,FP,FN]=detection_performance(svmClassification,sez_true_test)

; 
    SVM_TP=SVM_TP+TP; 
    SVM_TN=SVM_TN+TN; 
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    SVM_FP=SVM_FP+FP; 
    SVM_FN=SVM_FN+FN;    
    toc 
end 

  
SVM_sensitivity=SVM_TP/(SVM_TP+SVM_FN)*100; 
SVM_specificity=SVM_TN/(SVM_TN+SVM_FP)*100; 
SVM_accuracy=(SVM_TP+SVM_TN)/(SVM_TP+SVM_TN+SVM_FP+SVM_FN)*100; 
results=[patient,hour,SVM_sensitivity,SVM_specificity,SVM_accuracy]; 
confusion_matrix = [SVM_TP SVM_FP; SVM_FN SVM_TN]; 
fprintf('--------\nResults:\n--------\n'); 

  
% print to the results file each iteration to record the results: 

  
fileID = fopen('results.txt','a'); 

  
fprintf(fileID, 'Patient %i trained at hour = %i with Sensitivity = 

%f , Specificity = %f and Accuracy = %f with features = [%i,%i,%i]  

%s\n',... 
                                        patient,hour, 

SVM_sensitivity,SVM_specificity, 

SVM_accuracy,feature1,feature2,feature3,datestr(now,'HH:MM:SS')); 
fclose(fileID); 

  
clearvars -except sez_true_train all_data hour patient c 

samplePerSecond N seconds file_name start i ending 

  
end 

Feature_detection.m 
function [trainingData] = features_detection(all_data, 

N,featureNum1,featureNum2, featureNum3) 

  
numberOfchannels=23; 
for channel=1:numberOfchannels        % loop on each channel 

     
    data=cell2mat(all_data(:,channel)); 

  
%%%%%%%%%%%%%%%%%%%%%%%% Window is 1024 samples 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
new_data = reshape(data,N,floor(length(data)/N)); 

  
% %   1.  Standard Deviation 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==1 || featureNum2 ==1 || featureNum3 ==1) 
      omar=reshape(data,N,(length(data)/N)); 
    for i=1:(length(data)/N) 
        oahmed(1,i)=STD(omar(:,i)); 
    end 
    standardeviation(channel,:)=oahmed;   
end 

  
% %   2.  Fractual Dimension 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==2 || featureNum2 ==2 || featureNum3 ==2) 
      omar=reshape(data,N,(length(data)/N)); 
    for i=1:(length(data)/N) 
        oahmed(1,i)=FD(omar(:,i)); 
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    end 
    fractualdimension(channel,:)=oahmed;   
end 

  
% %   3.  Hurst Exponent 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==3 || featureNum2 ==3 || featureNum3 ==3) 
      omar=reshape(data,N,(length(data)/N)); 
    for i=1:(length(data)/N) 
        oahmed(1,i)=hurstcomponent(omar(:,i),1/256); 
    end 
    hurstexp(channel,:)=oahmed;   
end 

  

  
% %   4.  Kurtosis 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==4 || featureNum2 ==4 || featureNum3 ==4) 
      omar=reshape(data,N,(length(data)/N)); 
    for i=1:(length(data)/N) 
        oahmed(1,i)=Pkurt(omar(:,i)); 
    end 
    Kurtos(channel,:)=oahmed;   
end 

  
% %   5.  Skew 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==5 || featureNum2 ==5 || featureNum3 ==5) 
      omar=reshape(data,N,(length(data)/N)); 
    for i=1:(length(data)/N) 
        oahmed(1,i)=Pskew(omar(:,i)); 
    end 
    skew(channel,:)=oahmed;   
end 

  
% %   6.  variance 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==6 || featureNum2 ==6 || featureNum3 ==6) 
      omar=reshape(data,N,(length(data)/N)); 
    for i=1:(length(data)/N) 
        oahmed(1,i)=VAR(omar(:,i)); 
    end 
    variance(channel,:)=oahmed;   
end 

  

  

  

  

  
% %   7.  Permutation Entropy 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==7 || featureNum2 ==7 || featureNum3 ==7) 
    for i=1:length(data)/N 
    perEnt(channel,i)  = per_entropy(downsample(new_data(i,:),5),3); 
    end 
end 

  
%   8.  Approximate Entropy 
%   %%%%%%%%%%%%%%%%%%% 
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if(featureNum1 ==8 || featureNum2 ==8 || featureNum3 ==8) 
    for i=1:length(data)/N 
    approxEntropy(channel,i)  = 

approxEnt(2,0.5,downsample(new_data(i,:),5));     
    end 
end 

  
if(featureNum1 ==9 || featureNum2 ==9 || featureNum3 ==9) 
%   9.  Shannon Entropy 
    %%%%%%%%%%%%%% 
    for i=1:length(data)/N 
    ShannonEnt(channel,i) = 

ShannonEntropy(new_data(i,:),max(new_data(i,:)),4); 
    end 
end 
%   10.  Spectral Entropy 
    %%%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==10 || featureNum2 ==10 || featureNum3 ==10) 
    for i=1:length(data)/N 
    SpectralEnt(channel, i) = SpectralEntropy(new_data(i,:),8); 
    end 
end 
%   11.  Renyie Entropy 
    %%%%%%%%%%%%%%%%%% 
if(featureNum1 ==11 || featureNum2 ==11 || featureNum3 ==11) 
    for i=1:length(data)/N 
    renyient(channel,i) = 

renyientropy(new_data(i,:),2,max(new_data(i,:)),8); 
    end 
end 
%   12.  Hurst Exponent 
%   %%%%%%%%%%%%%%%%%% 
if(featureNum1 ==12 || featureNum2 ==12 || featureNum3 ==12) 
    for i=1:length(data)/N 
    hurstExpo(channel,i)  =  

estimate_hurst_exponent(new_data(i,:),3); 
    end 
end 
%   13.  Average Energy 
% % %%%%%%%%%%%%%%%%%% 
if(featureNum1 ==13 || featureNum2 ==13 || featureNum3 ==13) 
    E=data.^2; 
    E=E(1:floor(length(E)/N)*N,1); 
    Eavg(channel,:)=1/N*sum(reshape(E,N,length(E)/N),1);%coastline 

vector 
end 
%   14.  Coastline Feature (Fluctuation Index) 
%   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==14 || featureNum2 ==14 || featureNum3 ==14) 
    abs_bet_2_succsessive=abs([data(2:length(data));0]-data);%This 

vector will have the absolute difference between two successive EEG 

data points 
    

abs_bet_2_succsessive=abs_bet_2_succsessive(1:floor(length(abs_bet_2

_succsessive)/N)*N,1); 
    

CL(channel,:)=sum(reshape(abs_bet_2_succsessive,N,length(abs_bet_2_s

uccsessive)/N),1);%coastline vector 
end 
%   15.  Hjorth Parameters: Mobility 
%   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 

80 
 

if(featureNum1 ==15 || featureNum2 ==15 || featureNum3 ==15) 
    for i=1:length(data)/N 
    [mobility(channel,i),~] = HjorthParameters(new_data(i,:)'); 
    end 
end 

  
%   16.  Hjorth Parameters: Complexity 
%   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==16 || featureNum2 ==16 || featureNum3 ==16) 
    for i=1:length(data)/N 
    [~,complexity(channel,i)] = HjorthParameters(new_data(i,:)'); 
    end 
end 

  
% %   17.  Mean absolute value 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==17 || featureNum2 ==17 || featureNum3 ==17) 
      omar=reshape(data,N,(length(data)/N)); 
    for i=1:(length(data)/N) 
        oahmed(1,i)=MAV(omar(:,i)); 
    end 
    meanabs(channel,:)=oahmed;   
end 

  
% %   18.  Max absolute value 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==18 || featureNum2 ==18 || featureNum3 ==18) 
      omar=reshape(data,N,(length(data)/N)); 
    for i=1:(length(data)/N) 
        oahmed(1,i)=MAX(omar(:,i)); 
    end 
    maxabs(channel,:)=oahmed;   
end 

  
% %   19.  Min absolute value 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==19 || featureNum2 ==19 || featureNum3 ==19) 
      omar=reshape(data,N,(length(data)/N)); 
    for i=1:(length(data)/N) 
        oahmed(1,i)=MIN(omar(:,i)); 
    end 
    minabs(channel,:)=oahmed;   
end 

  
% %   20.  root mean square 
%   %%%%%%%%%%%%%%%%%%% 
if(featureNum1 ==20 || featureNum2 ==20 || featureNum3 ==20) 
      omar=reshape(data,N,(length(data)/N)); 
    for i=1:(length(data)/N) 
        oahmed(1,i)=RMS(omar(:,i)); 
    end 
    rootmeansqua(channel,:)=oahmed;   
end 

  

  
    fprintf('%i ',channel); 
end 
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%% constructing features: 
features = zeros(numberOfchannels,floor(length(data)/N),3); 
i=1; 
if(featureNum1 ==1 || featureNum2 ==1 || featureNum3 ==1) 
    features(:,:,i) = standardeviation; 
    i= i+1; 
end 

  
if(featureNum1 ==2 || featureNum2 ==2 || featureNum3 ==2) 
    features(:,:,i) = fractualdimension; 
    i= i+1; 
end 

  
if(featureNum1 ==3 || featureNum2 ==3 || featureNum3 ==3) 
    features(:,:,i) = hurstexp; 
    i= i+1; 
end 

  
if(featureNum1 ==4 || featureNum2 ==4 || featureNum3 ==4) 
    features(:,:,i) = Kurtos; 
    i= i+1; 
end 

  
if(featureNum1 ==5 || featureNum2 ==5 || featureNum3 ==5) 
    features(:,:,i) = skew; 
    i= i+1; 
end 

  
if(featureNum1 ==6 || featureNum2 ==6 || featureNum3 ==6) 
    features(:,:,i) = variance; 
    i= i+1; 
end 

  

  

  
if(featureNum1 ==7 || featureNum2 ==7 || featureNum3 ==7) 
    features(:,:,i) = perEnt; 
    i= i+1; 
end 
if (featureNum1 ==8 || featureNum2 ==8 || featureNum3 ==8) 
     features(:,:,i) = approxEntropy; 
    i= i+1; 
end 
if (featureNum1 ==9 || featureNum2 ==9 || featureNum3 ==9) 
     features(:,:,i) = ShannonEnt; 
     i = i +1; 
end 
if (featureNum1 ==10 || featureNum2 ==10 || featureNum3 ==10) 
     features(:,:,i) = SpectralEnt; 
     i = i +1; 
end 
if (featureNum1 ==11 || featureNum2 ==11 || featureNum3 ==11) 
    features(:,:,i) = renyient; 
    i = i +1; 
end 
if (featureNum1 ==12 || featureNum2 ==12 || featureNum3 ==12) 
     features(:,:,i) = hurstExpo; 
     i = i +1; 
end 
if (featureNum1 ==13 || featureNum2 ==13 || featureNum3 ==13) 
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     features(:,:,i) = Eavg; 
     i = i +1; 
end 
if (featureNum1 ==14 || featureNum2 ==14 || featureNum3 ==14) 
     features(:,:,i) = CL; 
     i = i +1; 
end 
if (featureNum1 ==15 || featureNum2 ==15 || featureNum3 ==15) 
    features(:,:,i) =  mobility; 
    i = i +1; 
end 
if (featureNum1 ==16 || featureNum2 ==16 || featureNum3 ==16) 
     features(:,:,i) = complexity; 
     i = i +1; 
end 
if (featureNum1 ==17 || featureNum2 ==17 || featureNum3 ==17) 
     features(:,:,i) = meanabs; 
     i = i +1; 
end 
if (featureNum1 ==18 || featureNum2 ==18 || featureNum3 ==18) 
     features(:,:,i) = maxabs; 
     i = i +1; 
end 

     
if (featureNum1 ==19 || featureNum2 ==19 || featureNum3 ==19) 
     features(:,:,i) = minabs; 
     i = i +1; 
end 

     
if (featureNum1 ==20 || featureNum2 ==20 || featureNum3 ==20) 
     features(:,:,i) = rootmeansqua; 
     i = i +1; 
end 

  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    Combine the channels into an average channel 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
feature1 = features(:,:,1); 
feature2 = features(:,:,2); 
feature3 = features(:,:,3); 

  
feature1_train=sum(feature1,1)/numberOfchannels; 
feature2_train=sum(feature2,1)/numberOfchannels; 
feature3_train=sum(feature3,1)/numberOfchannels; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%          Features Normalization & Training 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
trainingData=[feature1_train' feature2_train' feature3_train']; 

  
mean1=nanmean(trainingData(:,1)); 
mean2=nanmean(trainingData(:,2)); 
mean3=nanmean(trainingData(:,3)); 

  

  
var1=nanvar(trainingData(:,1)); 
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var2=nanvar(trainingData(:,2)); 
var3=nanvar(trainingData(:,3)); 

  
trainingData(:,1)=(trainingData(:,1)-mean1)/sqrt(var1); 
trainingData(:,2)=(trainingData(:,2)-mean2)/sqrt(var2); 
trainingData(:,3)=(trainingData(:,3)-mean3)/sqrt(var3); 

  
end 

 

approxEnt.m 
function [apen] = approxEnt(window_length,r,data) 

  

  
%% Code for computing approximate entropy for a time series: 

Approximate 

  
% To run this function- type: approx_entropy('window 

length','similarity measure','data set') 
% i.e  approx_entropy(5,0.5,data) 
% Author: Avinash Parnandi, parnandi@usc.edu, 

http://robotics.usc.edu/~parnandi/ 

  
%% 

  

  
for m=window_length:window_length+1     % to be able to calculate 

the phi(r)^m - phi(r)^(m+1) 

  
set = 0; 
count = 0; 
counter = 0; 

  
for i=1:(length(data))-m+1 
    current_window = data(i:i+m-1); % current window stores the 

sequence to be compared with other sequences 

     
    for j=1:length(data)-m+1 
    sliding_window = data(j:j+m-1); % get a window for comparision 

with the current_window 

     
    % compare two windows, element by element 
    % can also use some kind of norm measure; that will perform 

better 
    for k=1:m 
        if((abs(current_window(k)-sliding_window(k))>r) && set == 0) 
            set = 1; % i.e. the difference between the two sequence 

is greater than the given value 
        end 
    end 
    if(set==0)  
         count = count+1; % this measures how many sliding_windows 

are similar to the current_window 
    end 
    set = 0; % reseting 'set' 

     
    end 
   counter(i)=count/(length(data)-m+1); % need the number of similar 

windows for every cuurent_window 
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   count=0; 

  
end 

  
correlation(m-window_length+1) = ((sum(counter))/(length(data)-

m+1)); 

  

  
end 

  
apen = log(correlation(1)/correlation(2)); 
end 

 

Estimate_hurst_exponent.m 
function [hurst] = estimate_hurst_exponent(data,no_iterations) 

  
[~,npoints]=size(data); 
yvals = zeros(1,no_iterations); 
xvals = zeros(1,no_iterations); 

  
k=1; 
for i = 10:(npoints/no_iterations):npoints 

  
original_signal= data(1:i); 

  
signal_mean = sum(original_signal)/npoints; 
X = original_signal - signal_mean; 
Y = cumsum(X); 

  
Rn = max(Y) - min(Y); 
original_std = std(original_signal); 

  
yvals(k) = log(Rn/original_std); 
xvals(k) = log(i); 
k = k+1; 

  
end 

  
p2=polyfit(xvals,yvals,1); 
hurst=p2(1);                        % Hurst exponent is the slope of 

the linear fit of log-log plot 

  
end 

 

HjorthParameters.m 
function [mobility,complexity] = HjorthParameters(xV) 

  
n = length(xV); 
dxV = diff([0;xV]); 
ddxV = diff([0;dxV]); 
mx2 = mean(xV.^2); 
mdx2 = mean(dxV.^2); 
mddx2 = mean(ddxV.^2); 

  
mob = mdx2 / mx2; 
complexity = sqrt(mddx2 / mdx2 - mob); 
mobility = sqrt(mob); 
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end 

 

Per_entropy.m 
function perEnt = per_entropy(data,win) 

  

  
for i = 1:length(data)-floor(win/2)-1 

     
[~,I(i,:)] = sort(data(i:i+win-1)); 

  
end 

  
[~,jj,kk]=unique(I,'rows','stable'); 
f=histc(kk,1:numel(jj)); % Frequency 
P = f/length(data); 

  
perEnt= -sum(P.*log(P)); 
end 

 

Quantizer.m 
function [quantized_signal] = quantizer(sampled_signal,varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Sample of input for quantizer funtion: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% ts = 0.1; 
%%% nLevels = 5; 
%%% mp = 5; 
%%% m_law=2; 
%%% [binary_signal,level_signal,quantized_signal] = 

quantizer(sampled_sig,'NLevels', nLevels, 
%%%                                                      'SigMax', 

mp, 'QuantizerType', 0,'MeuValue',m_law); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%% Input Oarsing Handeling 
quantizationType = 1; 
mp = max(sampled_signal); 
nLevels = 4; 
meu = 1; 

  
p = inputParser(); 
addOptional(p, 'QuantizerType', quantizationType, @isnumeric);    
addOptional(p, 'NLevels', nLevels, @isnumeric);    
addOptional(p, 'MeuValue', meu, @isnumeric);    
addOptional(p, 'SigMax', mp, @isnumeric);    
parse(p, varargin{:}); 

  
nLevels = p.Results.NLevels; 
mp = p.Results.SigMax; 

  

  
if (2^(ceil(log2(nLevels))) > nLevels) 
    disp('Number of Levels must be multiple of 2');   
    nLevels = 2^(ceil(log2(nLevels))); 
    fprintf('A %d number of levels was chosen instead \n',nLevels); 
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end 

  
%% Uniform mid-rise quantizer 

  
quantized_signal = zeros(size(sampled_signal)); 
level_signal= zeros(size(sampled_signal)); 
detla = 2*mp/(nLevels-1); 

  
for n =1:length(sampled_signal) 
    current_level = -mp; 
    level_number = 0; 
    for k= 1:nLevels 

   
        if((sampled_signal(n) <= current_level && sampled_signal(n) 

>= current_level - detla/2) || (sampled_signal(n) >= current_level 

&& sampled_signal(n) <= current_level + detla/2)) 
            quantized_signal(n) = current_level; 
            level_signal(n) = level_number; 
            break; 
        end 

  
        level_number = level_number + 1; 
        current_level = current_level + detla; 

         
    end 
end 
end 

 

Renyientropy.m 
function RENYI = renyientropy(X,alpha,sig_Max,levels) 

  
    % Number of levels for quantization and the signal maximum value 
    [quantized] = quantizer(X,'NLevels', levels,'SigMax', sig_Max); 

  
    unique_values = unique(quantized); 

     
    Frequency = zeros(size(unique_values)); 

     
    % Calculate sample frequencies     
    for level = 1:length(unique_values) 
        Frequency(level) = sum(quantized == unique_values(level)); 
    end 

     
    % Calculate sample class probabilities 
    P = Frequency / sum(Frequency); 

  
    % Calculate Shannon Entropy 
    RENYI=(1/1-alpha).* log2(sum(P .^alpha)); 
end 

 

 

sampEntropy.m 
function [ApEn] = sampEntropy(window_length,r,data) 

  

  
%% Code for computing approximate entropy for a time series: Sample 
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% To run this function- type: approx_entropy('window 

length','similarity measure','data set') 
% i.e  approx_entropy(5,0.5,data) 
% Author: Avinash Parnandi, parnandi@usc.edu, 

http://robotics.usc.edu/~parnandi/ 

  
%% 

  

  
for m=window_length:window_length+1     % to be able to calculate 

the phi(r)^m - phi(r)^(m+1) 

  
set = 0; 
count = 0; 
counter = 0; 

  
for i=1:(length(data))-m+1 
    current_window = data(i:i+m-1); % current window stores the 

sequence to be compared with other sequences 

     
    for j=1:length(data)-m+1 

     
        if i==j 
            continue; 
        end 

     
    sliding_window = data(j:j+m-1); % get a window for comparision 

with the current_window 

     
    % compare two windows, element by element 
    % can also use some kind of norm measure; that will perform 

better 
    for k=1:m 
        if((abs(current_window(k)-sliding_window(k))>r) && set == 0) 
            set = 1; % i.e. the difference between the two sequence 

is greater than the given value 
        end 
    end 
    if(set==0)  
         count = count+1; % this measures how many sliding_windows 

are similar to the current_window 
    end 
    set = 0; % reseting 'set' 

     
    end 
   counter(i)=count/(length(data)-m+1); % need the number of similar 

windows for every cuurent_window 
   count=0; 

  
end 

  
correlation(m-window_length+1) = ((sum(counter))/(length(data)-

m+1)); 

  

  
end 

  
ApEn = log(correlation(1)/correlation(2)); 
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end 

 

ShannonEntropy.m 
function H = ShannonEntropy(X,sig_Max,levels) 

  
    % Number of levels for quantization and the signal maximum value 
    [quantized] = quantizer(X,'NLevels', levels,'SigMax', sig_Max); 

  
    unique_values = unique(quantized); 

     
    Frequency = zeros(size(unique_values)); 

     
    % Calculate sample frequencies     
    for level = 1:length(unique_values) 
        Frequency(level) = sum(quantized == unique_values(level)); 
    end 

     
    % Calculate sample class probabilities 
    P = Frequency / sum(Frequency); 

  
    % Calculate Shannon Entropy 
    H = -sum(P .* log(P)); 

     
end 

 

 

SpectralEntropy.m 
function Entropy = SpectralEntropy(y,levels) 

  
Fs = 100; 

  
Y = fft(y); 
Y = Y(1:floor(length(y)/2)+1); 
Y = 1/(length(y)*Fs)*(Y.*conj(Y)); 
df = 1000/length(y); 
freq = 0:df:500; 

  
PSD = Y.^2/length(y); 
Normalized_PSD = PSD/sum(PSD); 

  
quantized_PSD = quantizer(Normalized_PSD,'NLevels', levels,'SigMax', 

max(Normalized_PSD)); 

  

  
% Sampling in Frequency: 

  
Entropy = -sum(Normalized_PSD.*log(Normalized_PSD)); 

  
end 

 

ACF.m 
function y=ACF(x,k) 
ck=0; 
xbar=MAV(x); 
for i=1:(length(x)-k) 
    ck=ck+((x(i)-xbar)*(x(i+k)-xbar)); 
end 
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ck=ck/length(x); 
c0=VAR(x); 
y=ck/c0; 
end 

 

FD.m 
function p=FD(x) 
x1=x(1); 
x2=x(2); 
x3=x(3); 
x4=x(4); 
x5=x(5); 

  
for i=1:((length(x)-1)/5) %m? 
    x1=[x1 x(1+(5*i))]; 
end 

    
for i=1:((length(x)-2)/5) 
    x2=[x2 x(2+(5*i))]; 
end 

  
for i=1:((length(x)-3)/5) 
    x3=[x3 x(3+(5*i))]; 
end 

  
for i=1:((length(x)-4)/5) 
    x4=[x4 x(4+(5*i))]; 
end 

  
for i=1:((length(x)-5)/5) 
    x5=[x5 x(5+(5*i))]; 
end 
a1=(length(x)-1)/5; 
a2=(length(x)-2)/5; 
a3=(length(x)-3)/5; 
a4=(length(x)-4)/5; 
a5=(length(x)-5)/5; 

  

     
L1=0; 
for i=1:a1 
   L1=L1+(abs(x(1+(i*5))-x(1+((i-1)*5)))/(length(x)-1)); 
end 
L1=L1/(a1*5); 

  

  
L2=0; 
for i=1:a2 
   L2=L2+(abs(x(2+(i*5))-x(2+((i-1)*5)))/(length(x)-1)); 
end 
L2=L2/(a2*5); 

  

  
L3=0; 
for i=1:a3 
   L3=L3+(abs(x(3+(i*5))-x(3+((i-1)*5)))/(length(x)-1)); 
end 
L3=L3/(a3*5); 
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L4=0; 
for i=1:a4 
   L4=L4+(abs(x(4+(i*5))-x(4+((i-1)*5)))/(length(x)-1)); 
end 
L4=L4/(a4*5); 

  

  
L5=0; 
for i=1:a5 
   L5=L5+(abs(x(5+(i*5))-x(5+((i-1)*5)))/(length(x)-1)); 
end 
L5=L5/(a5*5); 

  
k=(log(L1)/log(1/5)); 
q=(log(L2)/log(1/5)); 
r=(log(L3)/log(1/5)); 
s=(log(L4)/log(1/5)); 
u=(log(L5)/log(1/5)); 
p=(k+q+r+s+u)/5; 
end 

 

Hurstcomponent.m 
function H=hurstcomponent(x,T) 
data=x; %adding input in internal variable 
average=MAV(data); 
differences=data-average; 
maxdevfrommean=MAX(differences); 
mindevfrommean=MIN(differences); 
R=abs(abs(maxdevfrommean)-abs(mindevfrommean)); 
S=STD(data); 
H=log(R/S)/log(T); 
end 

 

MAV.m 
function y=MAV(x) 
temp=abs(x); 
y=sum(temp)/length(x); 
end 

 

MAX.m 
function y=MAX(x) 
temp1=x(1); 
for i=1:length(x); 
    if(abs(x(i))>abs(temp1)) 
        temp1=x(i); 
    elseif(abs(x(i))==abs(temp1)) 
        if(angle(x(i))>angle(temp1)) 
            temp1=x(i); 
        else 
            temp1=temp1; 
        end 
    else 
        temp1=temp1; 
    end 
end 
y=temp1; 
end 
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Min.m 
function y=MIN(x) 
temp1=x(1); 
for i=1:length(x); 
    if(abs(x(i))<abs(temp1)) 
        temp1=x(i); 
    elseif(abs(x(i))==abs(temp1)) 
        if(angle(x(i))<angle(temp1)) 
            temp1=x(i); 
        else 
            temp1=temp1; 
        end 
    else 
        temp1=temp1; 
    end 
end 
y=temp1; 

 

Pkurt.m 
function y=Pkurt(x) 
X=x; 
averageofX=sum(X)/length(X); 
stdofX=STD(x); 
y=sum((((X-averageofX)/stdofX).^4))/length(X); 
end 

 

Pmax.m 
function y=Pmax(x) 
y=MAX(fft(x)); 
max(x) 
end 

 

Pskew.m 
function y=Pskew(x) 
X=x; 
averageofX=sum(X)/length(X); 
stdofX=STD(x); 
y=sum((((X-averageofX)/stdofX).^3))/length(X); 
end 

 

RMS.m 
function y=RMS(x) 
temp=x.*x; 
y=sqrt(sum(temp)/length(x)); 
end 

 

STD.m 

function y=STD(x) 
averageofX=sum(x)/length(x); 
y=sqrt(sum(((x-averageofX).*(x-averageofX)))/(length(x)-1)); 
end 
 

VAR.m 
function y=VAR(x) 
averageofX=sum(x)/length(x); 
y=(sum(((x-averageofX).*(x-averageofX)))/(length(x)-1)); 
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end 
 

dataLoading.m 
function [files_names,seizure_start,seizure_ending,s_starts] = 

dataLoading() 

  
  file_1=['chb01_01.edf'; 'chb01_02.edf'; 'chb01_03.edf'; 

'chb01_04.edf'; 'chb01_05.edf'; 'chb01_06.edf'; 'chb01_07.edf'; 

'chb01_08.edf'; 'chb01_09.edf'; 'chb01_10.edf'; 'chb01_11.edf'; 

'chb01_12.edf'; 'chb01_13.edf'; 'chb01_14.edf'; 'chb01_15.edf'; 

'chb01_16.edf'; 'chb01_17.edf'; 'chb01_18.edf'; 'chb01_19.edf'; 

'chb01_20.edf'; 'chb01_21.edf'; 'chb01_22.edf'; 'chb01_23.edf'; 

'chb01_24.edf'; 'chb01_25.edf'; 'chb01_26.edf'; 'chb01_27.edf'; 

'chb01_29.edf'; 'chb01_30.edf'; 'chb01_31.edf'; 'chb01_32.edf'; 

'chb01_33.edf'; 'chb01_34.edf'; 'chb01_36.edf'; 'chb01_37.edf'; 

'chb01_38.edf'; 'chb01_39.edf'; 'chb01_40.edf'; 'chb01_41.edf'; 

'chb01_42.edf'; 'chb01_43.edf'; 'chb01_46.edf'];  
 start_1=[0    0 0; 0    0 0; 2996 0 0; 1467 0 0; 0    0 0; 0    0 

0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 1732 0 0; 1015 0 0; 0    0 0; 1720 0 0; 0    0 0; 0    

0 0; 327  0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 1862 0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0];  
ending_1=[0    0 0; 0    0 0; 3036 0 0; 1494 0 0; 0    0 0; 0    0 

0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 1772 0 0; 1066 0 0; 0    0 0; 1810 0 0; 0    0 0; 0    

0 0; 420  0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 1963 0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0];  
s_start_1=3; 

  
  file_2=['chb02_01.edf'; 'chb02_02.edf'; 'chb02_03.edf'; 

'chb02_04.edf'; 'chb02_05.edf'; 'chb02_06.edf'; 'chb02_07.edf'; 

'chb02_08.edf'; 'chb02_09.edf'; 'chb02_10.edf'; 'chb02_11.edf'; 

'chb02_12.edf'; 'chb02_13.edf'; 'chb02_14.edf'; 'chb02_15.edf'; 

'chb02_16.edf'; 'chb02_17.edf'; 'chb02_18.edf'; 'chb02_19.edf'; 

'chb02_20.edf'; 'chb02_22.edf'; 'chb02_23.edf'; 'chb02_24.edf'; 

'chb02_25.edf'; 'chb02_26.edf'; 'chb02_27.edf'; 'chb02_28.edf'; 

'chb02_29.edf'; 'chb02_30.edf'; 'chb02_31.edf'; 'chb02_32.edf'; 

'chb02_33.edf'; 'chb02_34.edf'; 'chb02_35.edf'];  
 start_2=[0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 

0; 0    0 0; 0    0 0; 0    0 0; 0    0 0                                                            

; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0                              

; 130  0 0;   0    0 0; 0    0 0; 3369 0 0;  0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0];  
ending_2=[0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 

0; 0    0 0; 0    0 0; 0    0 0; 0    0 0                                                            

; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0                              

; 212  0 0;  0    0 0; 0    0 0; 3378 0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0];  
s_start_2=16; 
  file_3=['chb03_01.edf'; 'chb03_02.edf'; 'chb03_03.edf'; 

'chb03_04.edf'; 'chb03_05.edf'; 'chb03_06.edf'; 'chb03_07.edf'; 

'chb03_08.edf'; 'chb03_09.edf'; 'chb03_10.edf'; 'chb03_11.edf'; 

'chb03_12.edf'; 'chb03_13.edf'; 'chb03_14.edf'; 'chb03_15.edf'; 

'chb03_16.edf'; 'chb03_17.edf'; 'chb03_18.edf'; 'chb03_19.edf'; 
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'chb03_20.edf'; 'chb03_21.edf'; 'chb03_22.edf'; 'chb03_23.edf'; 

'chb03_24.edf'; 'chb03_25.edf'; 'chb03_26.edf'; 'chb03_27.edf'; 

'chb03_28.edf'; 'chb03_29.edf'; 'chb03_30.edf'; 'chb03_31.edf'; 

'chb03_32.edf'; 'chb03_33.edf'; 'chb03_34.edf'; 'chb03_35.edf'; 

'chb03_36.edf'; 'chb03_37.edf'; 'chb03_38.edf'];  
 start_3=[362  0 0; 731  0 0; 432  0 0; 2162 0 0;  0    0 0; 0    0 

0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 

1982 0 0;  2592 0 0;  1725 0 0;  0    0 0; 0    0 0];  
ending_3=[414  0 0; 796  0 0; 501  0 0; 2214 0 0;  0    0 0; 0    0 

0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 

2029 0 0;  2656 0 0;  1778 0 0;  0    0 0; 0    0 0];  
s_start_3=4; 
  file_4=['chb04_01.edf'; 'chb04_02.edf'; 'chb04_03.edf'; 

'chb04_04.edf'; 'chb04_05.edf'; 'chb04_06.edf'; 'chb04_07.edf'; 

'chb04_08.edf'; 'chb04_09.edf'; 'chb04_10.edf'; 'chb04_11.edf'; 

'chb04_12.edf'; 'chb04_13.edf'; 'chb04_14.edf'; 'chb04_15.edf'; 

'chb04_16.edf'; 'chb04_17.edf'; 'chb04_18.edf'; 'chb04_19.edf'; 

'chb04_21.edf'; 'chb04_22.edf'; 'chb04_23.edf'; 'chb04_24.edf'; 

'chb04_25.edf'; 'chb04_26.edf'; 'chb04_27.edf'; 'chb04_28.edf'; 

'chb04_29.edf'; 'chb04_30.edf'; 'chb04_31.edf'; 'chb04_32.edf'; 

'chb04_33.edf'; 'chb04_34.edf'; 'chb04_35.edf'; 'chb04_36.edf'; 

'chb04_37.edf'; 'chb04_38.edf'; 'chb04_39.edf'; 'chb04_40.edf'; 

'chb04_41.edf'; 'chb04_42.edf'; 'chb04_43.edf'];  
 start_4=[0    0 0; 0    0 0; 0    0 0; 0    0 0; 7804 0 0; 0    0 

0; 0    0 0; 6446 0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 

1679 3782 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0];  
ending_4=[0    0 0; 0    0 0; 0    0 0; 0    0 0; 7853 0 0; 0    0 

0; 0    0 0; 6557 0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 

1781 3898 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    0 0; 0    

0 0; 0    0 0; 0    0 0];  
s_start_4=8; 
  file_5=['chb05_01.edf'; 'chb05_02.edf'; 'chb05_03.edf'; 

'chb05_04.edf'; 'chb05_05.edf'; 'chb05_06.edf'; 'chb05_07.edf'; 

'chb05_08.edf'; 'chb05_09.edf'; 'chb05_10.edf'; 'chb05_11.edf'; 

'chb05_12.edf'; 'chb05_13.edf'; 'chb05_14.edf'; 'chb05_15.edf'; 

'chb05_16.edf'; 'chb05_17.edf'; 'chb05_18.edf'; 'chb05_19.edf'; 

'chb05_20.edf'; 'chb05_21.edf'; 'chb05_22.edf'; 'chb05_23.edf'; 

'chb05_24.edf'; 'chb05_25.edf'; 'chb05_26.edf'; 'chb05_27.edf'; 

'chb05_28.edf'; 'chb05_29.edf'; 'chb05_30.edf'; 'chb05_31.edf'; 

'chb05_32.edf'; 'chb05_33.edf'; 'chb05_34.edf'; 'chb05_35.edf'; 

'chb05_36.edf'; 'chb05_37.edf'; 'chb05_38.edf'; 'chb05_39.edf'];  
 start_5=[0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;417 0 0;0 0 0;0 0 0;0 0 0;0 

0 0;0 0 0;0 0 0;1086 0 0;0 0 0;0 0 0;2317 0 0;2451 0 0;0 0 0;0 0 0;0 

0 0;0 0 0;2348 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 

0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0]; 
ending_5=[0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;532 0 0;0 0 0;0 0 0;0 0 0;0 

0 0;0 0 0;0 0 0;1196 0 0;0 0 0;0 0 0;2413 0 0;2571 0 0;0 0 0;0 0 0;0 
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0 0;0 0 0;2465 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 

0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0];   
s_start_5=6; 
  file_6=['chb06_01.edf'; 'chb06_02.edf'; 'chb06_03.edf'; 

'chb06_04.edf'; 'chb06_05.edf'; 'chb06_06.edf'; 'chb06_07.edf'; 

'chb06_08.edf'; 'chb06_09.edf'; 'chb06_10.edf'; 'chb06_12.edf'; 

'chb06_13.edf'; 'chb06_14.edf'; 'chb06_15.edf'; 'chb06_16.edf'; 

'chb06_17.edf'; 'chb06_18.edf'; 'chb06_24.edf'];  
 start_6=[ 1724   7461   13525  ;  0   0   0  ;  0   0   0  ;  327   

6211   0  ;  0   0   0  ;  0   0   0  ;  0   0   0  ;  0   0   0  ;  

12500   0   0  ;  10833   0   0  ;  0   0   0  ;  506   0   0  ;  0   

0   0  ;  0   0   0  ;  0   0   0  ;  0   0   0  ;  7799   0   0  ;  

9387   0   0 ]; 
ending_6=[ 1738  7476  13540 ; 0  0  0 ; 0  0  0 ; 347  6231  0 ; 0  

0  0 ; 0  0  0 ; 0  0  0 ; 0  0  0 ; 12516  0  0 ; 10845  0  0 ; 0  

0  0 ; 519  0  0 ; 0  0  0 ; 0  0  0 ; 0  0  0 ; 0  0  0 ; 7811  0  

0 ; 9403  0  0 ];   
s_start_6=10; 
  file_7=['chb07_01.edf'; 'chb07_02.edf'; 'chb07_03.edf'; 

'chb07_04.edf'; 'chb07_05.edf'; 'chb07_06.edf'; 'chb07_07.edf'; 

'chb07_08.edf'; 'chb07_09.edf'; 'chb07_10.edf'; 'chb07_11.edf'; 

'chb07_12.edf'; 'chb07_13.edf'; 'chb07_14.edf'; 'chb07_15.edf'; 

'chb07_16.edf'; 'chb07_17.edf'; 'chb07_18.edf'; 'chb07_19.edf'];  
 start_7=[ 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 

0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 4920 0 0 ; 3285 0 0 ; 0 0 0 ; 0 0 0 ; 

0 0 0 ; 0 0 0 ; 0 0 0 ; 13688 0 0 ]; 
ending_7=[ 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 

0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 5006 0 0 ; 3381 0 0 ; 0 0 0 ; 0 0 0 ; 

0 0 0 ; 0 0 0 ; 0 0 0 ; 13831 0 0 ];   
s_start_7=12; 
  file_8=['chb08_02.edf'; 'chb08_03.edf'; 'chb08_04.edf'; 

'chb08_05.edf'; 'chb08_10.edf'; 'chb08_11.edf'; 'chb08_12.edf'; 

'chb08_13.edf'; 'chb08_14.edf'; 'chb08_15.edf'; 'chb08_16.edf'; 

'chb08_17.edf'; 'chb08_18.edf'; 'chb08_19.edf'; 'chb08_20.edf'; 

'chb08_21.edf'; 'chb08_22.edf'; 'chb08_23.edf'; 'chb08_24.edf'; 

'chb08_29.edf']; 
 start_8=[ 2670 0 0 ; 0 0 0 ; 0 0 0 ; 2856 0 0 ; 0 0 0 ; 2988 0 0 ; 

0 0 0 ; 2417 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 

0 0 ; 2083 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ]; 
ending_8=[  2841 0 0 ; 0 0 0 ; 0 0 0 ; 3046 0 0 ; 0 0 0 ; 3122 0 0 ; 

0 0 0 ; 2577 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 

0 0 ; 2347 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ];   
s_start_8=4; 
  file_9=['chb09_01.edf'; 'chb09_02.edf'; 'chb09_03.edf'; 

'chb09_04.edf'; 'chb09_05.edf'; 'chb09_06.edf'; 'chb09_07.edf'; 

'chb09_08.edf'; 'chb09_09.edf'; 'chb09_10.edf'; 'chb09_11.edf'; 

'chb09_12.edf'; 'chb09_13.edf'; 'chb09_14.edf'; 'chb09_15.edf'; 

'chb09_16.edf'; 'chb09_17.edf'; 'chb09_18.edf'; 'chb09_19.edf']; 
 start_9=[0  0  0 ; 0  0  0 ; 0  0  0 ; 0  0  0 ; 0  0  0 ; 12231  0  

0 ; 0  0  0 ; 2951  9196  0 ; 0  0  0 ; 0  0  0 ;                                                  

0  0  0 ; 0  0  0 ; 0  0  0 ; 0  0  0 ; 0  0  0 ; 0  0  0 ; 0  0  0 

; 0  0  0 ; 5299  0 0]; 
ending_9=[0 0  0 ;0 0  0 ;0 0  0 ;0 0  0 ;0 0  0 ;12295 0  0 ;0 0  0 

;3030 9267  0 ;0 0  0 ;0 0  0 ;0 0  0 ;0 0  0 ;0 0  0 ;0 0  0 ;0 0  

0 ;0 0  0 ;0 0  0 ;0 0  0 ;5361 0 0]; 
s_start_9=6; 
  file_10=['chb10_01.edf'; 'chb10_02.edf'; 'chb10_03.edf'; 

'chb10_04.edf'; 'chb10_05.edf'; 'chb10_06.edf'; 'chb10_07.edf'; 

'chb10_08.edf'; 'chb10_12.edf'; 'chb10_13.edf'; 'chb10_14.edf'; 

'chb10_15.edf'; 'chb10_16.edf'; 'chb10_17.edf'; 'chb10_18.edf'; 

'chb10_19.edf'; 'chb10_20.edf'; 'chb10_21.edf'; 'chb10_22.edf'; 
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'chb10_27.edf'; 'chb10_28.edf'; 'chb10_30.edf'; 'chb10_31.edf'; 

'chb10_38.edf'; 'chb10_89.edf']; 
 start_10=[ 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  

0 0 ; 0  0 0 ; 6313  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 

0 ; 0  0 0 ; 0  0 0 ; 6888  0 0 ; 0  0 0 ; 0  0 0 ; 2382  0 0 ; 0  0 

0 ; 3021  0 0 ; 3801  0 0 ; 4618  0 0 ; 1383  0 0 ]; 
ending_10=[ 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  

0 0 ; 0  0 0 ; 6348  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 0 ; 0  0 

0 ; 0  0 0 ; 0  0 0 ; 6958  0 0 ; 0  0 0 ; 0  0 0 ; 2447  0 0 ; 0  0 

0 ; 3079  0 0 ; 3877  0 0 ; 4707  0 0 ; 1437  0 0]; 
s_start_10=23; 

  
files_names = {file_1, file_2, file_3, file_4, file_5, file_6, 

file_7, file_8, file_9, file_10}; 
seizure_start = {start_1, start_2, start_3, start_4, start_5, 

start_6, start_7, start_8, start_9, start_10}; 
seizure_ending = {ending_1, ending_2, ending_3, ending_4, ending_5, 

ending_6, ending_7, ending_8, ending_9, ending_10}; 
s_starts = {s_start_1, s_start_2, s_start_3, s_start_4, s_start_5, 

s_start_6, s_start_7, s_start_8, s_start_9, s_start_10}; 
 

Detection_Performance.m 
function 

[TP,TN,FP,FN]=detection_performance(Classification,seizure_true) 
TP=0;TN=0;FP=0;FN=0; 

  
for i=1:length(Classification) 
    if(Classification(i)==1)&&(seizure_true(1,i)==1) 
        TP=TP+1; 
    elseif(Classification(i)==0)&&(seizure_true(1,i)==0) 
        TN=TN+1; 
    elseif(Classification(i)==1)&&(seizure_true(1,i)==0) 
        FP=FP+1; 
    elseif(Classification(i)==0)&&(seizure_true(1,i)==1) 
        FN=FN+1; 
    end 
end 
 

ReadEDF.m 

function [data, header] = ReadEDF(filename) 

  
% Author:  Shapkin Andrey,  
% 15-OCT-2012 

  
% filename - File name 
% data - Contains a signals in structure of cells 
% header  - Contains header 

  
fid = fopen(filename,'r','ieee-le'); 

  
%%% HEADER LOAD 
% PART1: (GENERAL)  
hdr = char(fread(fid,256,'uchar')');  
header.ver=str2num(hdr(1:8));            % 8 ascii : version of this 

data format (0) 
header.patientID  = char(hdr(9:88));     % 80 ascii : local patient 

identification 
header.recordID  = char(hdr(89:168));    % 80 ascii : local 

recording identification 
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header.startdate=char(hdr(169:176));     % 8 ascii : startdate of 

recording (dd.mm.yy) 
header.starttime  = char(hdr(177:184));  % 8 ascii : starttime of 

recording (hh.mm.ss) 
header.length = str2num (hdr(185:192));  % 8 ascii : number of bytes 

in header record 
reserved = hdr(193:236); % [EDF+C       ] % 44 ascii : reserved 
header.records = str2num (hdr(237:244)); % 8 ascii : number of data 

records (-1 if unknown) 
header.duration = str2num (hdr(245:252)); % 8 ascii : duration of a 

data record, in seconds 
header.channels = str2num (hdr(253:256));% 4 ascii : number of 

signals (ns) in data record 

  
%%%% PART2 (DEPENDS ON QUANTITY OF CHANNELS) 

  
header.labels=cellstr(char(fread(fid,[16,header.channels],'char')'))

; % ns * 16 ascii : ns * label (e.g. EEG FpzCz or Body temp) 
header.transducer 

=cellstr(char(fread(fid,[80,header.channels],'char')')); % ns * 80 

ascii : ns * transducer type (e.g. AgAgCl electrode) 
header.units = 

cellstr(char(fread(fid,[8,header.channels],'char')')); % ns * 8 

ascii : ns * physical dimension (e.g. uV or degreeC) 
header.physmin = 

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8 

ascii : ns * physical minimum (e.g. -500 or 34) 
header.physmax = 

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8 

ascii : ns * physical maximum (e.g. 500 or 40) 
header.digmin = 

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8 

ascii : ns * digital minimum (e.g. -2048) 
header.digmax = 

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8 

ascii : ns * digital maximum (e.g. 2047) 
header.prefilt 

=cellstr(char(fread(fid,[80,header.channels],'char')')); % ns * 80 

ascii : ns * prefiltering (e.g. HP:0.1Hz LP:75Hz) 
header.samplerate = 

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8 

ascii : ns * nr of samples in each data record 
reserved = char(fread(fid,[32,header.channels],'char')'); % ns * 32 

ascii : ns * reserved 

  

  
f1=find(cellfun('isempty', regexp(header.labels, 'EDF Annotations', 

'once'))==0); % Channels number with the EDF Annotations 
f2=find(cellfun('isempty', regexp(header.labels, 'Status', 

'once'))==0); % Channels number with the EDF Annotations 
f=[f1(:); f2(:)]; 
%%%%%% PART 3: Loading of signals 

  
%Structure of the data in format EDF: 

  
%[block1 block2 .. , block N], where N=header.records 
% Block structure: 
% [(d seconds of 1 channel) (d seconds of 2 channel) ... (d seconds 

of ï¿½h channel)], Where ï¿½h - quantity of channels, d - duration 

of the block 
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% Ch = header.channels 
% d = header.duration 

  
Ch_data = fread(fid,'int16'); % Loading of signals 

  

  
fclose(fid); % close a file 

  
%%%%% PART 4: Transformation of the data 
if header.records<0, % If the quantity of blocks is not known 
R=sum(header.duration*header.samplerate); % Length of one block 
header.records=fix(length(Ch_data)./R); % Quantity of written down 

blocks 
end 

  
% Separating a read signal into blocks 
Ch_data=reshape(Ch_data, [], header.records); 

  
% establishing calibration parametres 

  

  

  
sf = (header.physmax - header.physmin)./(header.digmax - 

header.digmin); 
dc = header.physmax - sf.* header.digmax; 

  
data=cell(1, header.channels); 
Rs=cumsum([1; header.duration*header.samplerate]); % 

ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 

ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ Rs(k):Rs(k+1)-1 

  

  
% separating of signals of everyone the channel from blocks  
% and recording of signals in structure of cells 

  
for k=1:header.channels 

  
data{k}=reshape(Ch_data(Rs(k):Rs(k+1)-1, :), [], 1); 
if sum(k==f)==0 % non ï¿½nnotation 
% Calibration of the data 
data{k}=data{k}.*sf(k)+dc(k); 
end 
end 

  
% PART 5: ANNOTATION READ 
    header.annotation.event={}; 
    header.annotation.starttime=[]; 
    header.annotation.duration=[]; 
    header.annotation.data={}; 

     
if sum(f)>0 

     
try 

   
for p1=1:length(f) 
Annt=char(typecast(int16(data{f(p1)}), 'uint8'))';    
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% separate of annotation on blocks 
Annt=buffer(Annt, header.samplerate(f(p1)).*2, 0)'; 
ANsize=size(Annt); 
    for p2=1:ANsize(1) 
   % search TALs starttime 
    Annt1=Annt(p2, :);  
    Tstart=regexp(Annt1, '+'); 
    Tstart=[Tstart(2:end) ANsize(2)]; 

    
    for p3=1:length(Tstart)-1 
   A=Annt1(Tstart(p3):Tstart(p3+1)-1); % TALs block  
   header.annotation.data={header.annotation.data{:} A};  

  
      % duration and starttime TALs 
       Tds=find(A==20 | A==21);  
        if length(Tds)>2 
            td=str2num(A(Tds(1)+1:Tds(2)-1));  
            if isempty(td), td=0; end 
           

header.annotation.duration=[header.annotation.duration(:); td]; 
           

header.annotation.starttime=[header.annotation.starttime(:); 

str2num(A(2:Tds(1)-1))]; 
           header.annotation.event={header.annotation.event{:} 

A(Tds(2)+1:Tds(end)-1)}; 
          else 
           

header.annotation.duration=[header.annotation.duration(:); 0]; 
           

header.annotation.starttime=[header.annotation.starttime(:); 

str2num(A(2:Tds(1)-1))]; 
           header.annotation.event={header.annotation.event{:} 

A(Tds(1)+1:Tds(end)-1)}; 
        end 
    end 
    end 
end 

  
% delete annotation 
a=find(cell2mat(cellfun(@length, header.annotation.event, 

'UniformOutput', false))==0); 
header.annotation.event(a)=[]; 
header.annotation.starttime(a)=[]; 
header.annotation.duration(a)=[]; 

  
end 

  
end 

  
header.samplerate(f)=[]; 
header.channels=header.channels-length(f); 
header.labels(f)=[]; 
header.transducer(f)=[]; 
header.units(f)=[]; 
header.physmin(f)=[]; 
header.physmax(f)=[]; 
header.digmin(f)=[]; 
header.digmax(f)=[]; 
header.prefilt(f)=[]; 
data(f)=[]; 



 

99 
 

end 
 

Visualize_testingData.m 

function 

visualize_testingdata(testingData,svmClassification,sez_true_test,te

xt,patient,h) 

  
figure 
subplot(3,1,1) 

  
gscatter(testingData(:,1),testingData(:,2), 

svmClassification,'br','x+') 
hold on 
gscatter(testingData(:,1),testingData(:,2), sez_true_test,'kb','oo') 
legend('Predicted Non-ictal','Predicted Ictal','Actual Non-

ictal','Actual Ictal') 
% title(text + ' for h = '+ string(h) + ' from patient #'+ 

string(patient)) 
xlabel('feature 1'); 
ylabel('feature 2'); 
hold off 

  

  
subplot(3,1,2) 

  
gscatter(testingData(:,1),testingData(:,3), 

svmClassification,'br','x+') 
hold on 
gscatter(testingData(:,1),testingData(:,3), sez_true_test,'kb','oo') 
legend('Predicted Non-ictal','Predicted Ictal','Actual Non-

ictal','Actual Ictal') 
% title(text + ' for h = '+string(h) + ' from patient 

#'+string(patient)) 
xlabel('feature 1'); 
ylabel('feature 3'); 
hold off 

  

  
subplot(3,1,3) 

  
gscatter(testingData(:,2),testingData(:,3), 

svmClassification,'br','x+') 
hold on 
gscatter(testingData(:,2),testingData(:,3), sez_true_test,'kb','oo') 
legend('Predicted Non-ictal','Predicted Ictal','Actual Non-

ictal','Actual Ictal') 
% title(text + ' for h = '+string(h) + ' from patient 

#'+string(patient)) 
xlabel('feature 2'); 
ylabel('feature 3'); 
hold off 

  

  
end 
 

visualize_trainingdata.m 
function 

visualize_trainingdata(trainingData,sez_true_train,text,patient,hour

) 
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figure 
gscatter((trainingData(:,1)),(trainingData(:,2)), 

sez_true_train,'br','xo') 

  
hold on 
legend('Non-ictal','Ictal') 
%title(string(text) + ' for h = '+string(hour) + ' from patient 

#'+string(patient)) 
%xlabel('Mean Absolute Value'); 
%ylabel('RMS'); 

  
hold off 
figure; 
figure 
subplot(3,1,1) 
gscatter((trainingData(:,1)),(trainingData(:,2)), 

sez_true_train,'br','xo') 

  
hold on 
legend('Non-ictal','Ictal') 
%title(string(text) + ' for h = '+string(hour) + ' from patient 

#'+string(patient)) 
xlabel('feature 1'); 
ylabel('feature 2'); 

  
hold off 

  
subplot(3,1,2) 
gscatter((trainingData(:,1)),(trainingData(:,3)), 

sez_true_train,'br','xo') 
hold on 
legend('Non-ictal','Ictal') 
%title(string(text) + ' for h = '+string(hour) + ' from patient 

#'+string(patient)) 
xlabel('feature 1'); 
ylabel('feature 3'); 

  
hold off 

  
subplot(3,1,3) 
gscatter((trainingData(:,2)),(trainingData(:,3)), 

sez_true_train,'br','xo') 
hold on 
legend('Non-ictal','Ictal') 
%title(string(text) + ' for h = '+string(hour) + ' from patient 

#'+string(patient)) 
xlabel('feature 2'); 
ylabel('feature 3'); 

  
hold off 
end 
 

Linear_grad_svm.m 

function [model] = linear_grad_svm(xt,y,Q) 

  

  
N=length(xt); 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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alpha=zeros(N,1); 
b=0; 
alpha_new=zeros(N,1); 
skip=zeros(N,1); 
C=1; 
margin=1.5*1e-7; 
%step=1e-10; 
step=1e-7; 
%step=0.0016; 
keep_search=1; 
alpha_hist=zeros(100000,15); 
k=1; 

  
while(keep_search && k<1000) 
%for k=1:100000  
        %acc_w=zeros(1,size(xt,2)); 
        acc_w=0; 
    for i=1:N 
        acc=0; 
        for j=1:N 
                 

acc=acc+alpha(j,:)*y(j,:)*((xt(i,:)*xt(j,:)'+1).^Q); 
                 %acc=acc+alpha(j,:)*y(j,:)*((xt(i,:)*xt(j,:)')); 
        end 
        alpha_new(i,1)= alpha(i,1)-(step*((y(i,:)*(acc+b))-1)); 
        %             alpha_new(i,1)= 1-step*(y(i,:)*acc); 
        if alpha_new(i,1)>C 
            alpha_new(i,1) = C; 
            skip(i,1)=1; 
        elseif alpha_new(i,1) < 0 
            alpha_new(i,1) = 0; 
            skip(i,1)=1; 
        end 
        %acc_w=acc_w+alpha(i)*y(i)*xt(i,:); 
        %acc_w=acc_w+alpha(i)*y(i); 
        %acc_w=acc_w + ((xt(i,:)*xt(2,:)' +1)^Q); 
%         alpha_new(i,1)=min(C,max(0, alpha(i,1)-

step*(y(i,:)*(acc+b)-1))); 
    end 
    %b_new=b-step*(alpha'*y); 
    W=(alpha_new.*y)'; 
    SV=1; 
    for l=1:N 
        if(alpha_new(l)~=0) 
            SV=l; 
            break; 
        end 
    end 
    b_new=y(SV) - (alpha_new.*y)'*((xt*xt(SV,:)'+1).^Q); 
    %b_new=y(3) - W*xt*xt(3,:)'; 
%MA 
     %b_new=y(3)-acc_w*xt(3,:)'; 
     %b_new = y(2) -acc_w 
     %b_new=y(1)- (alpha.*y)'*((xt*(xt(1,:)') +1).^Q) 
%MA_end 

    

     
    comp=sum(abs([alpha;b]-[alpha_new;b_new]))>margin; 
    alpha=alpha_new; 
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    b=b_new; 
    %alpha_hist(k,:)=alpha;    
    %keep_search=sum(comp); 
    keep_search=comp; 

     
    k=k+1 

     
    %plot_svm(x1,x2,W,b); 
    %pause; 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
W=(alpha.*y)'*xt; 
model.w=W; 
model.b=b; 
model.alpha=alpha(alpha~=0); 
model.xt=xt(alpha~=0,:); 
model.y=y(alpha~=0); 
sum(model.y) 
size(model.y) 
end 
 

Smo_training_fn.m 
function [model]=smo_train_fn(X,Y,Q) 

  
tol = 1e-23; 
max_passes = 100; 
% Data parameters 
m = size(X, 1); 
n = size(X, 2); 
% Map 0 to -1 
Y(Y==0) = -1; 
% Variables 
alphas = zeros(m, 1); 
b = 0; 
E = zeros(m, 1); 
passes = 0; 
eta = 0; 
L = 0; 
H = 0; 
C = 50; 
K = (X*X'+1).^Q; 
% K = X*X'; 
% Train 
dots = 12; 
while passes < max_passes, 
    num_changed_alphas = 0; 
    for i = 1:m, 
        % Calculate Ei = f(x(i)) - y(i) using (2).  
        % E(i) = b + sum (X(i, :) * (repmat(alphas.*Y,1,n).*X)') - 

Y(i); 
        E(i) = b + sum (alphas.*Y.*K(:,i)) - Y(i); 
        if ((Y(i)*E(i) < -tol && alphas(i) < C) || (Y(i)*E(i) > tol 

&& alphas(i) > 0)), 
            % In practice, there are many heuristics one can use to 

select 
            % the i and j. In this simplified code, select them 

randomly. 
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%             j = ceil(m * rand()); 
%             while j == i,  % Make sure i \neq j 
%                 j = ceil(m * rand()); 
%             end 
         for j=[1:i-1,i+1:m] 
            % Calculate Ej = f(x(j)) - y(j) using (2). 
            E(j) = b + sum (alphas.*Y.*K(:,j)) - Y(j); 
            % Save old alphas 
            alpha_i_old = alphas(i); 
            alpha_j_old = alphas(j); 
            % Compute L and H by (10) or (11).  
            if (Y(i) == Y(j)), 
                L = max(0, alphas(j) + alphas(i) - C); 
                H = min(C, alphas(j) + alphas(i)); 
            else 
                L = max(0, alphas(j) - alphas(i)); 
                H = min(C, C + alphas(j) - alphas(i)); 
            end 
            if (L == H), 
                % continue to next i.  
                continue; 
            end 
            % Compute eta by (14). 
            eta = 2 * K(i,j) - K(i,i) - K(j,j); 
            if (eta >= 0), 
                % continue to next i.  
                continue; 
            end 
            % Compute and clip new value for alpha j using (12) and 

(15). 
            alphas(j) = alphas(j) - (Y(j) * (E(i) - E(j))) / eta; 
            % Clip 
            alphas(j) = min (H, alphas(j)); 
            alphas(j) = max (L, alphas(j)); 
            % Check if change in alpha is significant 
            if (abs(alphas(j) - alpha_j_old) < tol), 
                % continue to next i.  
                % replace anyway 
                alphas(j) = alpha_j_old; 
                continue; 
            end 
            % Determine value for alpha i using (16).  
            alphas(i) = alphas(i) + Y(i)*Y(j)*(alpha_j_old - 

alphas(j)); 
            % Compute b1 and b2 using (17) and (18) respectively.  
            b1 = b - E(i) ... 
                 - Y(i) * (alphas(i) - alpha_i_old) *  K(i,i)' ... 
                 - Y(j) * (alphas(j) - alpha_j_old) *  K(i,j)'; 
            b2 = b - E(j) ... 
                 - Y(i) * (alphas(i) - alpha_i_old) *  K(i,j)' ... 
                 - Y(j) * (alphas(j) - alpha_j_old) *  K(j,j)'; 
            % Compute b by (19).  
            if (0 < alphas(i) && alphas(i) < C), 
                b = b1; 
            elseif (0 < alphas(j) && alphas(j) < C), 
                b = b2; 
            else 
                b = (b1+b2)/2; 
            end 
            num_changed_alphas = num_changed_alphas + 1; 
         end 
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        end 
    end 
%     if (num_changed_alphas == 0), 
        passes = passes + 1; 
%     else 
%         passes = 0; 
%     end 

  
%     X=X((find(alphas~=0)),:); 
%     Y=Y((find(alphas~=0)),:); 
%     alphas=alphas((find(alphas~=0)),:); 
%     K = (X*X'+1).^Q; 
%     m = size(X, 1); 

     
    fprintf('.'); 
    dots = dots + 1; 
    if dots > 78 
        dots = 0; 
        fprintf('\n'); 
    end 
end 
fprintf(' Done! \n\n'); 
% Save the model 
idx = alphas > 0; 
model.X= X(idx,:); 
model.Y= Y(idx); 
model.b= b; 
model.alphas= alphas(idx); 
model.w = ((alphas.*Y)'*X)'; 
end 
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Appendix B - Detailed feature selection results 

Feature1 Feature2 Feature3 Sensitivity Specificity Accuracy 

Max Absolute 
Value 

Min Absolute 
Value 

Root Mean 
Square 82.25807 98.22944 98.18391 

Mean Absolute 
Value 

Min Absolute 
Value 

Root Mean 
Square 87.09677 97.86057 97.82989 

Mean Absolute 
Value 

Max Absolute 
Value 

Root Mean 
Square 83.87097 98.2156 98.17471 

Mean Absolute 
Value 

Max Absolute 
Value 

Min Absolute 
Value 87.09677 97.91129 97.88046 

Hjorth 
Complexity 

Mean Absolute 
Value 

Max Absolute 
Value 83.87097 98.3862 98.34483 

Hjorth 
Complexity 

Mean Absolute 
Value 

Min Absolute 
Value 85.48387 98.12339 98.08736 

Hjorth 
Complexity 

Mean Absolute 
Value 

Root Mean 
Square 83.87097 98.28938 98.24828 

Hjorth 
Complexity 

Max Absolute 
Value 

Min Absolute 
Value 0 100 99.71494 

Hjorth 
Complexity 

Max Absolute 
Value 

Root Mean 
Square 80.64516 98.50148 98.45058 

Hjorth 
Complexity 

Min Absolute 
Value 

Root Mean 
Square 83.87097 98.20177 98.16092 

Hjorth Mobility 
Hjorth 

Complexity 
Mean Absolute 

Value 85.48387 98.17872 98.14253 

Hjorth Mobility 
Hjorth 

Complexity 
Max Absolute 

Value 0 100 99.71494 

Hjorth Mobility 
Hjorth 

Complexity 
Min Absolute 

Value 0 100 99.71494 

Hjorth Mobility 
Hjorth 

Complexity 
Root Mean 

Square 82.25807 98.2986 98.25287 

Hjorth Mobility 
Mean Absolute 

Value 
Max Absolute 

Value 83.87097 98.48303 98.44138 

Hjorth Mobility 
Mean Absolute 

Value 
Min Absolute 

Value 85.48387 98.07728 98.04138 

Hjorth Mobility 
Mean Absolute 

Value 
Root Mean 

Square 82.25807 98.31243 98.26667 

Hjorth Mobility 
Max Absolute 

Value 
Min Absolute 

Value 0 100 99.71494 

Hjorth Mobility 
Max Absolute 

Value 
Root Mean 

Square 80.64516 98.48764 98.43678 

Hjorth Mobility 
Min Absolute 

Value 
Root Mean 

Square 83.87097 98.22944 98.18851 

Coastline 
Min Absolute 

Value 
Root Mean 

Square 85.48387 97.98967 97.95402 

Coastline 
Max Absolute 

Value 
Root Mean 

Square 80.64516 98.33087 98.28046 
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Coastline 
Max Absolute 

Value 
Min Absolute 

Value 0 100 99.71494 

Coastline 
Mean Absolute 

Value 
Root Mean 

Square 83.87097 98.06806 98.02759 

Coastline 
Mean Absolute 

Value 
Min Absolute 

Value 87.09677 97.81907 97.78851 

Coastline 
Mean Absolute 

Value 
Max Absolute 

Value 83.87097 98.23405 98.1931 

Coastline 
Hjorth 

Complexity 
Root Mean 

Square 80.64516 98.3862 98.33563 

Coastline 
Hjorth 

Complexity 
Min Absolute 

Value 0 100 99.71494 

Coastline 
Hjorth 

Complexity 
Max Absolute 

Value 0 100 99.71494 

Coastline 
Hjorth 

Complexity 
Mean Absolute 

Value 85.48387 98.22021 98.18391 

Coastline Hjorth Mobility 
Root Mean 

Square 83.87097 98.34471 98.30345 

Coastline Hjorth Mobility 
Min Absolute 

Value 0 100 99.71494 

Coastline Hjorth Mobility 
Max Absolute 

Value 0 100 99.71494 

Coastline Hjorth Mobility 
Mean Absolute 

Value 85.48387 98.25249 98.21609 

Coastline Hjorth Mobility 
Hjorth 

Complexity 0 100 99.71494 

Average Energy 
Min Absolute 

Value 
Root Mean 

Square 72.58065 98.61214 98.53793 

Average Energy 
Max Absolute 

Value 
Root Mean 

Square 67.74194 98.99023 98.90115 

Average Energy 
Max Absolute 

Value 
Min Absolute 

Value 56.45161 98.80579 98.68506 

Average Energy 
Mean Absolute 

Value 
Root Mean 

Square 74.19355 98.72741 98.65747 

Average Energy 
Mean Absolute 

Value 
Min Absolute 

Value 75.80645 98.51531 98.45058 

Average Energy 
Mean Absolute 

Value 
Max Absolute 

Value 75.80645 98.79657 98.73103 

Average Energy 
Hjorth 

Complexity 
Root Mean 

Square 67.74194 98.981 98.89195 

Average Energy 
Hjorth 

Complexity 
Min Absolute 

Value 61.29032 99.02711 98.91954 

Average Energy 
Hjorth 

Complexity 
Max Absolute 

Value 62.90323 99.18388 99.08046 

Average Energy 
Hjorth 

Complexity 
Mean Absolute 

Value 69.35484 98.94412 98.85977 

Average Energy Hjorth Mobility 
Root Mean 

Square 67.74194 98.95334 98.86437 

Average Energy Hjorth Mobility 
Min Absolute 

Value 61.29032 98.98561 98.87816 
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Average Energy Hjorth Mobility 
Max Absolute 

Value 61.29032 99.15161 99.04368 

Average Energy Hjorth Mobility 
Mean Absolute 

Value 67.74194 98.9349 98.84598 

Average Energy Hjorth Mobility 
Hjorth 

Complexity 62.90323 99.07322 98.97012 

Average Energy Coastline 
Root Mean 

Square 61.29032 98.8519 98.74483 

Average Energy Coastline 
Min Absolute 

Value 61.29032 98.79196 98.68506 

Average Energy Coastline 
Max Absolute 

Value 58.06452 99.064 98.94713 

Average Energy Coastline 
Mean Absolute 

Value 70.96774 98.7689 98.68966 

Average Energy Coastline 
Hjorth 

Complexity 62.90323 99.06861 98.96552 

Average Energy Coastline Hjorth Mobility 62.90323 99.0225 98.91954 

Hurst Exponent 
Min Absolute 

Value 
Root Mean 

Square 83.87097 97.90668 97.86667 

Hurst Exponent 
Max Absolute 

Value 
Root Mean 

Square 83.87097 98.17872 98.13793 

Hurst Exponent 
Max Absolute 

Value 
Min Absolute 

Value 0 100 99.71494 

Hurst Exponent 
Mean Absolute 

Value 
Root Mean 

Square 85.48387 97.80524 97.77012 

Hurst Exponent 
Mean Absolute 

Value 
Min Absolute 

Value 87.09677 97.74069 97.71035 

Hurst Exponent 
Mean Absolute 

Value 
Max Absolute 

Value 87.09677 98.07728 98.04598 

Hurst Exponent 
Hjorth 

Complexity 
Root Mean 

Square 83.87097 98.17872 98.13793 

Hurst Exponent 
Hjorth 

Complexity 
Min Absolute 

Value 0 100 99.71494 

Hurst Exponent 
Hjorth 

Complexity 
Max Absolute 

Value 0 100 99.71494 

Hurst Exponent 
Hjorth 

Complexity 
Mean Absolute 

Value 85.48387 97.92051 97.88506 

Hurst Exponent Hjorth Mobility 
Root Mean 

Square 85.48387 97.63003 97.5954 

Hurst Exponent Hjorth Mobility 
Min Absolute 

Value 0 100 99.71494 

Hurst Exponent Hjorth Mobility 
Max Absolute 

Value 0 100 99.71494 

Hurst Exponent Hjorth Mobility 
Mean Absolute 

Value 85.48387 97.47787 97.44368 

Hurst Exponent Hjorth Mobility 
Hjorth 

Complexity 0 100 99.71494 

Hurst Exponent Coastline 
Root Mean 

Square 85.48387 97.87901 97.84368 
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Hurst Exponent Coastline 
Min Absolute 

Value 0 100 99.71494 

Hurst Exponent Coastline 
Max Absolute 

Value 0 100 99.71494 

Hurst Exponent Coastline 
Mean Absolute 

Value 87.09677 97.73146 97.70115 

Hurst Exponent Coastline 
Hjorth 

Complexity 0 100 99.71494 

Hurst Exponent Coastline Hjorth Mobility 0 100 99.71494 

Hurst Exponent Average Energy 
Root Mean 

Square 72.58065 98.69974 98.62529 

Hurst Exponent Average Energy 
Min Absolute 

Value 62.90323 98.82424 98.72184 

Hurst Exponent Average Energy 
Max Absolute 

Value 59.67742 99.17466 99.06207 

Hurst Exponent Average Energy 
Mean Absolute 

Value 74.19355 98.59369 98.52414 

Hurst Exponent Average Energy 
Hjorth 

Complexity 72.58065 98.47842 98.4046 

Hurst Exponent Average Energy Hjorth Mobility 82.25807 97.81907 97.77471 

Hurst Exponent Average Energy Coastline 62.90323 98.9349 98.83218 

Renyie Entropy 
Min Absolute 

Value 
Root Mean 

Square 82.25807 97.7868 97.74253 

Renyie Entropy 
Max Absolute 

Value 
Root Mean 

Square 82.25807 98.5107 98.46437 

Renyie Entropy 
Max Absolute 

Value 
Min Absolute 

Value 0 100 99.71494 

Renyie Entropy 
Mean Absolute 

Value 
Root Mean 

Square 82.25807 98.16488 98.11954 

Renyie Entropy 
Mean Absolute 

Value 
Min Absolute 

Value 87.09677 97.74991 97.71954 

Renyie Entropy 
Mean Absolute 

Value 
Max Absolute 

Value 83.87097 98.34932 98.30805 

Renyie Entropy 
Hjorth 

Complexity 
Root Mean 

Square 80.64516 98.33549 98.28506 

Renyie Entropy 
Hjorth 

Complexity 
Min Absolute 

Value 0 100 99.71494 

Renyie Entropy 
Hjorth 

Complexity 
Max Absolute 

Value 0 100 99.71494 

Renyie Entropy 
Hjorth 

Complexity 
Mean Absolute 

Value 85.48387 98.22944 98.1931 

Renyie Entropy Hjorth Mobility 
Root Mean 

Square 82.25807 98.3401 98.29425 

Renyie Entropy Hjorth Mobility 
Min Absolute 

Value 0 100 99.71494 

Renyie Entropy Hjorth Mobility 
Max Absolute 

Value 0 100 99.71494 

Renyie Entropy Hjorth Mobility 
Mean Absolute 

Value 85.48387 98.19716 98.16092 



 

109 
 

Renyie Entropy Hjorth Mobility 
Hjorth 

Complexity 0 100 99.71494 

Renyie Entropy Coastline 
Root Mean 

Square 77.41936 98.12339 98.06437 

Renyie Entropy Coastline 
Min Absolute 

Value 0 100 99.71494 

Renyie Entropy Coastline 
Max Absolute 

Value 0 100 99.71494 

Renyie Entropy Coastline 
Mean Absolute 

Value 79.03226 98.11417 98.05977 

Renyie Entropy Coastline 
Hjorth 

Complexity 0 100 99.71494 

Renyie Entropy Coastline Hjorth Mobility 0 100 99.71494 

Renyie Entropy Average Energy 
Root Mean 

Square 72.58065 98.62597 98.55172 

Renyie Entropy Average Energy 
Min Absolute 

Value 56.45161 98.86573 98.74483 

Renyie Entropy Average Energy 
Max Absolute 

Value 64.51613 99.0225 98.92414 

Renyie Entropy Average Energy 
Mean Absolute 

Value 75.80645 98.52914 98.46437 

Renyie Entropy Average Energy 
Hjorth 

Complexity 62.90323 99.064 98.96092 

Renyie Entropy Average Energy Hjorth Mobility 62.90323 99.07783 98.97471 

Renyie Entropy Average Energy Coastline 58.06452 98.8104 98.69425 

Renyie Entropy Hurst Exponent 
Root Mean 

Square 85.48387 97.80985 97.77471 

Renyie Entropy Hurst Exponent 
Min Absolute 

Value 0 100 99.71494 

Renyie Entropy Hurst Exponent 
Max Absolute 

Value 0 100 99.71494 

Renyie Entropy Hurst Exponent 
Mean Absolute 

Value 87.09677 97.72685 97.69655 

Renyie Entropy Hurst Exponent 
Hjorth 

Complexity 0 100 99.71494 

Renyie Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494 

Renyie Entropy Hurst Exponent Coastline 0 100 99.71494 

Renyie Entropy Hurst Exponent Average Energy 62.90323 98.90262 98.8 

Spectral Entropy 
Min Absolute 

Value 
Root Mean 

Square 85.48387 97.81446 97.77931 

Spectral Entropy 
Max Absolute 

Value 
Root Mean 

Square 83.87097 98.40926 98.36782 

Spectral Entropy 
Max Absolute 

Value 
Min Absolute 

Value 0 100 99.71494 

Spectral Entropy 
Mean Absolute 

Value 
Root Mean 

Square 87.09677 98.06806 98.03678 

Spectral Entropy 
Mean Absolute 

Value 
Min Absolute 

Value 87.09677 97.80524 97.77471 

Spectral Entropy 
Mean Absolute 

Value 
Max Absolute 

Value 83.87097 98.24327 98.2023 
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Spectral Entropy 
Hjorth 

Complexity 
Root Mean 

Square 80.64516 98.22021 98.17012 

Spectral Entropy 
Hjorth 

Complexity 
Min Absolute 

Value 0 100 99.71494 

Spectral Entropy 
Hjorth 

Complexity 
Max Absolute 

Value 0 100 99.71494 

Spectral Entropy 
Hjorth 

Complexity 
Mean Absolute 

Value 85.48387 98.13261 98.09655 

Spectral Entropy Hjorth Mobility 
Root Mean 

Square 83.87097 98.1695 98.12874 

Spectral Entropy Hjorth Mobility 
Min Absolute 

Value 0 100 99.71494 

Spectral Entropy Hjorth Mobility 
Max Absolute 

Value 0 100 99.71494 

Spectral Entropy Hjorth Mobility 
Mean Absolute 

Value 83.87097 98.20177 98.16092 

Spectral Entropy Hjorth Mobility 
Hjorth 

Complexity 0 100 99.71494 

Spectral Entropy Coastline 
Root Mean 

Square 82.25807 98.0035 97.95862 

Spectral Entropy Coastline 
Min Absolute 

Value 0 100 99.71494 

Spectral Entropy Coastline 
Max Absolute 

Value 0 100 99.71494 

Spectral Entropy Coastline 
Mean Absolute 

Value 85.48387 98.04961 98.01379 

Spectral Entropy Coastline 
Hjorth 

Complexity 0 100 99.71494 

Spectral Entropy Coastline Hjorth Mobility 0 100 99.71494 

Spectral Entropy Average Energy 
Root Mean 

Square 67.74194 98.86573 98.77701 

Spectral Entropy Average Energy 
Min Absolute 

Value 62.90323 98.80579 98.70345 

Spectral Entropy Average Energy 
Max Absolute 

Value 62.90323 99.08244 98.97931 

Spectral Entropy Average Energy 
Mean Absolute 

Value 72.58065 98.75046 98.67586 

Spectral Entropy Average Energy 
Hjorth 

Complexity 62.90323 99.08244 98.97931 

Spectral Entropy Average Energy Hjorth Mobility 62.90323 99.00867 98.90575 

Spectral Entropy Average Energy Coastline 67.74194 98.86112 98.77241 

Spectral Entropy Hurst Exponent 
Root Mean 

Square 83.87097 97.80524 97.76552 

Spectral Entropy Hurst Exponent 
Min Absolute 

Value 0 100 99.71494 

Spectral Entropy Hurst Exponent 
Max Absolute 

Value 0 100 99.71494 

Spectral Entropy Hurst Exponent 
Mean Absolute 

Value 87.09677 97.68536 97.65517 
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Spectral Entropy Hurst Exponent 
Hjorth 

Complexity 0 100 99.71494 

Spectral Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494 

Spectral Entropy Hurst Exponent Coastline 0 100 99.71494 

Spectral Entropy Hurst Exponent Average Energy 61.29032 98.93951 98.83218 

Spectral Entropy Renyie Entropy 
Root Mean 

Square 82.25807 98.20638 98.16092 

Spectral Entropy Renyie Entropy 
Min Absolute 

Value 0 100 99.71494 

Spectral Entropy Renyie Entropy 
Max Absolute 

Value 0 100 99.71494 

Spectral Entropy Renyie Entropy 
Mean Absolute 

Value 82.25807 98.1695 98.12414 

Spectral Entropy Renyie Entropy 
Hjorth 

Complexity 0 100 99.71494 

Spectral Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494 

Spectral Entropy Renyie Entropy Coastline 0 100 99.71494 

Spectral Entropy Renyie Entropy Average Energy 66.12903 98.8934 98.8 

Spectral Entropy Renyie Entropy Hurst Exponent 0 100 99.71494 

Shannon Entropy 
Min Absolute 

Value 
Root Mean 

Square 83.87097 97.66691 97.62759 

Shannon Entropy 
Max Absolute 

Value 
Root Mean 

Square 82.25807 98.3862 98.34023 

Shannon Entropy 
Max Absolute 

Value 
Min Absolute 

Value 0 100 99.71494 

Shannon Entropy 
Mean Absolute 

Value 
Root Mean 

Square 83.87097 97.98967 97.94943 

Shannon Entropy 
Mean Absolute 

Value 
Min Absolute 

Value 87.09677 97.67613 97.64598 

Shannon Entropy 
Mean Absolute 

Value 
Max Absolute 

Value 85.48387 98.22483 98.18851 

Shannon Entropy 
Hjorth 

Complexity 
Root Mean 

Square 82.25807 98.31243 98.26667 

Shannon Entropy 
Hjorth 

Complexity 
Min Absolute 

Value 0 100 99.71494 

Shannon Entropy 
Hjorth 

Complexity 
Max Absolute 

Value 0 100 99.71494 

Shannon Entropy 
Hjorth 

Complexity 
Mean Absolute 

Value 85.48387 98.20638 98.17012 

Shannon Entropy Hjorth Mobility 
Root Mean 

Square 82.25807 98.31704 98.27126 

Shannon Entropy Hjorth Mobility 
Min Absolute 

Value 0 100 99.71494 

Shannon Entropy Hjorth Mobility 
Max Absolute 

Value 0 100 99.71494 

Shannon Entropy Hjorth Mobility 
Mean Absolute 

Value 85.48387 98.22483 98.18851 

Shannon Entropy Hjorth Mobility 
Hjorth 

Complexity 0 100 99.71494 
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Shannon Entropy Coastline 
Root Mean 

Square 82.25807 98.04039 97.9954 

Shannon Entropy Coastline 
Min Absolute 

Value 0 100 99.71494 

Shannon Entropy Coastline 
Max Absolute 

Value 0 100 99.71494 

Shannon Entropy Coastline 
Mean Absolute 

Value 82.25807 98.0865 98.04138 

Shannon Entropy Coastline 
Hjorth 

Complexity 0 100 99.71494 

Shannon Entropy Coastline Hjorth Mobility 0 100 99.71494 

Shannon Entropy Average Energy 
Root Mean 

Square 72.58065 98.57525 98.50115 

Shannon Entropy Average Energy 
Min Absolute 

Value 58.06452 98.78274 98.66667 

Shannon Entropy Average Energy 
Max Absolute 

Value 64.51613 99.00867 98.91035 

Shannon Entropy Average Energy 
Mean Absolute 

Value 79.03226 98.43231 98.37701 

Shannon Entropy Average Energy 
Hjorth 

Complexity 62.90323 99.064 98.96092 

Shannon Entropy Average Energy Hjorth Mobility 62.90323 99.06861 98.96552 

Shannon Entropy Average Energy Coastline 61.29032 98.78274 98.67586 

Shannon Entropy Hurst Exponent 
Root Mean 

Square 85.48387 97.86518 97.82989 

Shannon Entropy Hurst Exponent 
Min Absolute 

Value 0 100 99.71494 

Shannon Entropy Hurst Exponent 
Max Absolute 

Value 0 100 99.71494 

Shannon Entropy Hurst Exponent 
Mean Absolute 

Value 87.09677 97.69919 97.66897 

Shannon Entropy Hurst Exponent 
Hjorth 

Complexity 0 100 99.71494 

Shannon Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494 

Shannon Entropy Hurst Exponent Coastline 0 100 99.71494 

Shannon Entropy Hurst Exponent Average Energy 62.90323 98.90262 98.8 

Shannon Entropy Renyie Entropy 
Root Mean 

Square 83.87097 98.04039 98 

Shannon Entropy Renyie Entropy 
Min Absolute 

Value 0 100 99.71494 

Shannon Entropy Renyie Entropy 
Max Absolute 

Value 0 100 99.71494 

Shannon Entropy Renyie Entropy 
Mean Absolute 

Value 83.87097 98.0035 97.96322 

Shannon Entropy Renyie Entropy 
Hjorth 

Complexity 0 100 99.71494 

Shannon Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494 

Shannon Entropy Renyie Entropy Coastline 0 100 99.71494 

Shannon Entropy Renyie Entropy Average Energy 67.74194 98.8104 98.72184 
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Shannon Entropy Renyie Entropy Hurst Exponent 0 100 99.71494 

Shannon Entropy Spectral Entropy 
Root Mean 

Square 83.87097 98.03578 97.9954 

Shannon Entropy Spectral Entropy 
Min Absolute 

Value 0 100 99.71494 

Shannon Entropy Spectral Entropy 
Max Absolute 

Value 0 100 99.71494 

Shannon Entropy Spectral Entropy 
Mean Absolute 

Value 83.87097 97.98506 97.94483 

Shannon Entropy Spectral Entropy 
Hjorth 

Complexity 0 100 99.71494 

Shannon Entropy Spectral Entropy Hjorth Mobility 0 100 99.71494 

Shannon Entropy Spectral Entropy Coastline 0 100 99.71494 

Shannon Entropy Spectral Entropy Average Energy 66.12903 98.83346 98.74023 

Shannon Entropy Spectral Entropy Hurst Exponent 0 100 99.71494 

Shannon Entropy Spectral Entropy Renyie Entropy 0 100 99.71494 

Approximate 
Entropy 

Min Absolute 
Value 

Root Mean 
Square 85.48387 97.82368 97.78851 

Approximate 
Entropy 

Max Absolute 
Value 

Root Mean 
Square 83.87097 98.29399 98.25287 

Approximate 
Entropy 

Max Absolute 
Value 

Min Absolute 
Value 0 100 99.71494 

Approximate 
Entropy 

Mean Absolute 
Value 

Root Mean 
Square 87.09677 98.05883 98.02759 

Approximate 
Entropy 

Mean Absolute 
Value 

Min Absolute 
Value 87.09677 97.80063 97.77012 

Approximate 
Entropy 

Mean Absolute 
Value 

Max Absolute 
Value 85.48387 98.16488 98.12874 

Approximate 
Entropy 

Hjorth 
Complexity 

Root Mean 
Square 82.25807 98.15566 98.11035 

Approximate 
Entropy 

Hjorth 
Complexity 

Min Absolute 
Value 0 100 99.71494 

Approximate 
Entropy 

Hjorth 
Complexity 

Max Absolute 
Value 0 100 99.71494 

Approximate 
Entropy 

Hjorth 
Complexity 

Mean Absolute 
Value 85.48387 98.11417 98.07816 

Approximate 
Entropy Hjorth Mobility 

Root Mean 
Square 83.87097 98.13722 98.09655 

Approximate 
Entropy Hjorth Mobility 

Min Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Hjorth Mobility 

Max Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Hjorth Mobility 

Mean Absolute 
Value 85.48387 98.0865 98.05058 

Approximate 
Entropy Hjorth Mobility 

Hjorth 
Complexity 0 100 99.71494 

Approximate 
Entropy Coastline 

Root Mean 
Square 82.25807 98.01273 97.96782 

Approximate 
Entropy Coastline 

Min Absolute 
Value 0 100 99.71494 
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Approximate 
Entropy Coastline 

Max Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Coastline 

Mean Absolute 
Value 85.48387 98.00812 97.97241 

Approximate 
Entropy Coastline 

Hjorth 
Complexity 0 100 99.71494 

Approximate 
Entropy Coastline Hjorth Mobility 0 100 99.71494 

Approximate 
Entropy Average Energy 

Root Mean 
Square 70.96774 98.73202 98.65287 

Approximate 
Entropy Average Energy 

Min Absolute 
Value 64.51613 98.75507 98.65747 

Approximate 
Entropy Average Energy 

Max Absolute 
Value 64.51613 99.04556 98.94713 

Approximate 
Entropy Average Energy 

Mean Absolute 
Value 75.80645 98.60291 98.53793 

Approximate 
Entropy Average Energy 

Hjorth 
Complexity 64.51613 99.02711 98.92874 

Approximate 
Entropy Average Energy Hjorth Mobility 62.90323 98.97178 98.86897 

Approximate 
Entropy Average Energy Coastline 64.51613 98.86112 98.76322 

Approximate 
Entropy Hurst Exponent 

Root Mean 
Square 85.48387 97.82368 97.78851 

Approximate 
Entropy Hurst Exponent 

Min Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Hurst Exponent 

Max Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Hurst Exponent 

Mean Absolute 
Value 85.48387 97.78218 97.74713 

Approximate 
Entropy Hurst Exponent 

Hjorth 
Complexity 0 100 99.71494 

Approximate 
Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494 

Approximate 
Entropy Hurst Exponent Coastline 0 100 99.71494 

Approximate 
Entropy Hurst Exponent Average Energy 62.90323 98.91645 98.81379 

Approximate 
Entropy Renyie Entropy 

Root Mean 
Square 82.25807 98.13261 98.08736 

Approximate 
Entropy Renyie Entropy 

Min Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Renyie Entropy 

Max Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Renyie Entropy 

Mean Absolute 
Value 85.48387 98.15105 98.11494 

Approximate 
Entropy Renyie Entropy 

Hjorth 
Complexity 0 100 99.71494 

Approximate 
Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494 



 

115 
 

Approximate 
Entropy Renyie Entropy Coastline 0 100 99.71494 

Approximate 
Entropy Renyie Entropy Average Energy 69.35484 98.84729 98.76322 

Approximate 
Entropy Renyie Entropy Hurst Exponent 0 100 99.71494 

Approximate 
Entropy Spectral Entropy 

Root Mean 
Square 85.48387 98.06345 98.02759 

Approximate 
Entropy Spectral Entropy 

Min Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Spectral Entropy 

Max Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Spectral Entropy 

Mean Absolute 
Value 87.09677 98.04961 98.01839 

Approximate 
Entropy Spectral Entropy 

Hjorth 
Complexity 0 100 99.71494 

Approximate 
Entropy Spectral Entropy Hjorth Mobility 0 100 99.71494 

Approximate 
Entropy Spectral Entropy Coastline 0 100 99.71494 

Approximate 
Entropy Spectral Entropy Average Energy 67.74194 98.88418 98.7954 

Approximate 
Entropy Spectral Entropy Hurst Exponent 0 100 99.71494 

Approximate 
Entropy Spectral Entropy Renyie Entropy 0 100 99.71494 

Approximate 
Entropy Shannon Entropy 

Root Mean 
Square 83.87097 98.04961 98.0092 

Approximate 
Entropy Shannon Entropy 

Min Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Shannon Entropy 

Max Absolute 
Value 0 100 99.71494 

Approximate 
Entropy Shannon Entropy 

Mean Absolute 
Value 87.09677 98.04039 98.0092 

Approximate 
Entropy Shannon Entropy 

Hjorth 
Complexity 0 100 99.71494 

Approximate 
Entropy Shannon Entropy Hjorth Mobility 0 100 99.71494 

Approximate 
Entropy Shannon Entropy Coastline 0 100 99.71494 

Approximate 
Entropy Shannon Entropy Average Energy 67.74194 98.75046 98.66207 

Approximate 
Entropy Shannon Entropy Hurst Exponent 0 100 99.71494 

Approximate 
Entropy Shannon Entropy Renyie Entropy 0 100 99.71494 

Approximate 
Entropy Shannon Entropy Spectral Entropy 0 100 99.71494 

Permutation 
Entropy 

Min Absolute 
Value 

Root Mean 
Square 83.87097 97.90207 97.86207 
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Permutation 
Entropy 

Max Absolute 
Value 

Root Mean 
Square 82.25807 98.23866 98.1931 

Permutation 
Entropy 

Max Absolute 
Value 

Min Absolute 
Value 0 100 99.71494 

Permutation 
Entropy 

Mean Absolute 
Value 

Root Mean 
Square 82.25807 98.02195 97.97701 

Permutation 
Entropy 

Mean Absolute 
Value 

Min Absolute 
Value 87.09677 97.89746 97.86667 

Permutation 
Entropy 

Mean Absolute 
Value 

Max Absolute 
Value 83.87097 98.2156 98.17471 

Permutation 
Entropy 

Hjorth 
Complexity 

Root Mean 
Square 82.25807 98.34471 98.29885 

Permutation 
Entropy 

Hjorth 
Complexity 

Min Absolute 
Value 0 100 99.71494 

Permutation 
Entropy 

Hjorth 
Complexity 

Max Absolute 
Value 0 100 99.71494 

Permutation 
Entropy 

Hjorth 
Complexity 

Mean Absolute 
Value 85.48387 98.16488 98.12874 

Permutation 
Entropy Hjorth Mobility 

Root Mean 
Square 80.64516 98.3401 98.28966 

Permutation 
Entropy Hjorth Mobility 

Min Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Hjorth Mobility 

Max Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Hjorth Mobility 

Mean Absolute 
Value 83.87097 98.14644 98.10575 

Permutation 
Entropy Hjorth Mobility 

Hjorth 
Complexity 0 100 99.71494 

Permutation 
Entropy Coastline 

Root Mean 
Square 82.25807 98.06806 98.02299 

Permutation 
Entropy Coastline 

Min Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Coastline 

Max Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Coastline 

Mean Absolute 
Value 83.87097 98.01273 97.97241 

Permutation 
Entropy Coastline 

Hjorth 
Complexity 0 100 99.71494 

Permutation 
Entropy Coastline Hjorth Mobility 0 100 99.71494 

Permutation 
Entropy Average Energy 

Root Mean 
Square 67.74194 98.83807 98.74943 

Permutation 
Entropy Average Energy 

Min Absolute 
Value 62.90323 98.85651 98.75402 

Permutation 
Entropy Average Energy 

Max Absolute 
Value 61.29032 99.21155 99.10345 

Permutation 
Entropy Average Energy 

Mean Absolute 
Value 70.96774 98.7689 98.68966 

Permutation 
Entropy Average Energy 

Hjorth 
Complexity 64.51613 99.05939 98.96092 
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Permutation 
Entropy Average Energy Hjorth Mobility 62.90323 99.02711 98.92414 

Permutation 
Entropy Average Energy Coastline 62.90323 98.91645 98.81379 

Permutation 
Entropy Hurst Exponent 

Root Mean 
Square 83.87097 97.93434 97.89425 

Permutation 
Entropy Hurst Exponent 

Min Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Hurst Exponent 

Max Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Hurst Exponent 

Mean Absolute 
Value 85.48387 97.82368 97.78851 

Permutation 
Entropy Hurst Exponent 

Hjorth 
Complexity 0 100 99.71494 

Permutation 
Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494 

Permutation 
Entropy Hurst Exponent Coastline 0 100 99.71494 

Permutation 
Entropy Hurst Exponent Average Energy 62.90323 98.92106 98.81839 

Permutation 
Entropy Renyie Entropy 

Root Mean 
Square 80.64516 98.13722 98.08736 

Permutation 
Entropy Renyie Entropy 

Min Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Renyie Entropy 

Max Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Renyie Entropy 

Mean Absolute 
Value 82.25807 98.08189 98.03678 

Permutation 
Entropy Renyie Entropy 

Hjorth 
Complexity 0 100 99.71494 

Permutation 
Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494 

Permutation 
Entropy Renyie Entropy Coastline 0 100 99.71494 

Permutation 
Entropy Renyie Entropy Average Energy 64.51613 98.90262 98.8046 

Permutation 
Entropy Renyie Entropy Hurst Exponent 0 100 99.71494 

Permutation 
Entropy Spectral Entropy 

Root Mean 
Square 83.87097 97.96662 97.92644 

Permutation 
Entropy Spectral Entropy 

Min Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Spectral Entropy 

Max Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Spectral Entropy 

Mean Absolute 
Value 87.09677 97.99428 97.96322 

Permutation 
Entropy Spectral Entropy 

Hjorth 
Complexity 0 100 99.71494 

Permutation 
Entropy Spectral Entropy Hjorth Mobility 0 100 99.71494 
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Permutation 
Entropy Spectral Entropy Coastline 0 100 99.71494 

Permutation 
Entropy Spectral Entropy Average Energy 64.51613 98.91645 98.81839 

Permutation 
Entropy Spectral Entropy Hurst Exponent 0 100 99.71494 

Permutation 
Entropy Spectral Entropy Renyie Entropy 0 100 99.71494 

Permutation 
Entropy Shannon Entropy 

Root Mean 
Square 83.87097 98.05422 98.01379 

Permutation 
Entropy Shannon Entropy 

Min Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Shannon Entropy 

Max Absolute 
Value 0 100 99.71494 

Permutation 
Entropy Shannon Entropy 

Mean Absolute 
Value 83.87097 98.01273 97.97241 

Permutation 
Entropy Shannon Entropy 

Hjorth 
Complexity 0 100 99.71494 

Permutation 
Entropy Shannon Entropy Hjorth Mobility 0 100 99.71494 

Permutation 
Entropy Shannon Entropy Coastline 0 100 99.71494 

Permutation 
Entropy Shannon Entropy Average Energy 64.51613 98.92106 98.82299 

Permutation 
Entropy Shannon Entropy Hurst Exponent 0 100 99.71494 

Permutation 
Entropy Shannon Entropy Renyie Entropy 0 100 99.71494 

Permutation 
Entropy Shannon Entropy Spectral Entropy 0 100 99.71494 

Permutation 
Entropy 

Approximate 
Entropy 

Root Mean 
Square 82.25807 98.05422 98.0092 

Permutation 
Entropy 

Approximate 
Entropy 

Min Absolute 
Value 0 100 99.71494 

Permutation 
Entropy 

Approximate 
Entropy 

Max Absolute 
Value 0 100 99.71494 

Permutation 
Entropy 

Approximate 
Entropy 

Mean Absolute 
Value 83.87097 98.08189 98.04138 

Permutation 
Entropy 

Approximate 
Entropy 

Hjorth 
Complexity 0 100 99.71494 

Permutation 
Entropy 

Approximate 
Entropy Hjorth Mobility 0 100 99.71494 

Permutation 
Entropy 

Approximate 
Entropy Coastline 0 100 99.71494 

Permutation 
Entropy 

Approximate 
Entropy Average Energy 64.51613 98.88879 98.79081 

Permutation 
Entropy 

Approximate 
Entropy Hurst Exponent 0 100 99.71494 

Permutation 
Entropy 

Approximate 
Entropy Renyie Entropy 0 100 99.71494 
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Permutation 
Entropy 

Approximate 
Entropy Spectral Entropy 0 100 99.71494 

Permutation 
Entropy 

Approximate 
Entropy Shannon Entropy 0 100 99.71494 

Variance 
Min Absolute 

Value 
Root Mean 

Square 70.96774 98.61214 98.53333 

Variance 
Max Absolute 

Value 
Root Mean 

Square 66.12903 99.00867 98.91494 

Variance 
Max Absolute 

Value 
Min Absolute 

Value 59.67742 98.86112 98.74943 

Variance 
Mean Absolute 

Value 
Root Mean 

Square 74.19355 98.73663 98.66667 

Variance 
Mean Absolute 

Value 
Min Absolute 

Value 74.19355 98.5522 98.48276 

Variance 
Mean Absolute 

Value 
Max Absolute 

Value 75.80645 98.8104 98.74483 

Variance 
Hjorth 

Complexity 
Root Mean 

Square 67.74194 98.97178 98.88276 

Variance 
Hjorth 

Complexity 
Min Absolute 

Value 61.29032 99.04556 98.93793 

Variance 
Hjorth 

Complexity 
Max Absolute 

Value 62.90323 99.19771 99.09425 

Variance 
Hjorth 

Complexity 
Mean Absolute 

Value 69.35484 98.95334 98.86897 

Variance Hjorth Mobility 
Root Mean 

Square 66.12903 99.01789 98.92414 

Variance Hjorth Mobility 
Min Absolute 

Value 61.29032 99.00406 98.89655 

Variance Hjorth Mobility 
Max Absolute 

Value 61.29032 99.14699 99.03908 

Variance Hjorth Mobility 
Mean Absolute 

Value 67.74194 98.95795 98.86897 

Variance Hjorth Mobility 
Hjorth 

Complexity 62.90323 99.07783 98.97471 

Variance Coastline 
Root Mean 

Square 62.90323 98.84729 98.74483 

Variance Coastline 
Min Absolute 

Value 61.29032 98.79657 98.68966 

Variance Coastline 
Max Absolute 

Value 58.06452 99.07783 98.96092 

Variance Coastline 
Mean Absolute 

Value 70.96774 98.75968 98.68046 

Variance Coastline 
Hjorth 

Complexity 62.90323 99.09166 98.98851 

Variance Coastline Hjorth Mobility 64.51613 99.04556 98.94713 

Variance Average Energy 
Root Mean 

Square 69.35484 98.90262 98.81839 

Variance Average Energy 
Min Absolute 

Value 64.51613 98.78274 98.68506 
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Variance Average Energy 
Max Absolute 

Value 64.51613 99.14238 99.04368 

Variance Average Energy 
Mean Absolute 

Value 72.58065 98.82424 98.74943 

Variance Average Energy 
Hjorth 

Complexity 62.90323 99.08244 98.97931 

Variance Average Energy Hjorth Mobility 62.90323 99.02711 98.92414 

Variance Average Energy Coastline 62.90323 98.8519 98.74943 

Variance Hurst Exponent 
Root Mean 

Square 72.58065 98.71819 98.64368 

Variance Hurst Exponent 
Min Absolute 

Value 62.90323 98.87034 98.76782 

Variance Hurst Exponent 
Max Absolute 

Value 61.29032 99.16544 99.05747 

Variance Hurst Exponent 
Mean Absolute 

Value 74.19355 98.58447 98.51494 

Variance Hurst Exponent 
Hjorth 

Complexity 74.19355 98.47842 98.4092 

Variance Hurst Exponent Hjorth Mobility 82.25807 97.86518 97.82069 

Variance Hurst Exponent Coastline 62.90323 98.95334 98.85058 

Variance Hurst Exponent Average Energy 62.90323 98.91645 98.81379 

Variance Renyie Entropy 
Root Mean 

Square 72.58065 98.6398 98.56552 

Variance Renyie Entropy 
Min Absolute 

Value 56.45161 98.87495 98.75402 

Variance Renyie Entropy 
Max Absolute 

Value 62.90323 99.05939 98.95632 

Variance Renyie Entropy 
Mean Absolute 

Value 75.80645 98.55681 98.49195 

Variance Renyie Entropy 
Hjorth 

Complexity 62.90323 99.09166 98.98851 

Variance Renyie Entropy Hjorth Mobility 62.90323 99.08244 98.97931 

Variance Renyie Entropy Coastline 58.06452 98.84268 98.72644 

Variance Renyie Entropy Average Energy 66.12903 98.8104 98.71724 

Variance Renyie Entropy Hurst Exponent 62.90323 98.93028 98.82759 

Variance Spectral Entropy 
Root Mean 

Square 69.35484 98.87957 98.7954 

Variance Spectral Entropy 
Min Absolute 

Value 62.90323 98.8104 98.70805 

Variance Spectral Entropy 
Max Absolute 

Value 62.90323 99.07322 98.97012 

Variance Spectral Entropy 
Mean Absolute 

Value 72.58065 98.78735 98.71264 

Variance Spectral Entropy 
Hjorth 

Complexity 62.90323 99.08705 98.98391 

Variance Spectral Entropy Hjorth Mobility 64.51613 99.05017 98.95172 

Variance Spectral Entropy Coastline 69.35484 98.87495 98.79081 

Variance Spectral Entropy Average Energy 69.35484 98.86112 98.77701 

Variance Spectral Entropy Hurst Exponent 61.29032 98.95795 98.85058 



 

121 
 

Variance Spectral Entropy Renyie Entropy 66.12903 98.88879 98.7954 

Variance Shannon Entropy 
Root Mean 

Square 72.58065 98.59369 98.51954 

Variance Shannon Entropy 
Min Absolute 

Value 58.06452 98.80118 98.68506 

Variance Shannon Entropy 
Max Absolute 

Value 61.29032 99.00406 98.89655 

Variance Shannon Entropy 
Mean Absolute 

Value 77.41936 98.4692 98.4092 

Variance Shannon Entropy 
Hjorth 

Complexity 62.90323 99.08705 98.98391 

Variance Shannon Entropy Hjorth Mobility 62.90323 99.09627 98.9931 

Variance Shannon Entropy Coastline 61.29032 98.79657 98.68966 

Variance Shannon Entropy Average Energy 67.74194 98.82424 98.73563 

Variance Shannon Entropy Hurst Exponent 62.90323 98.93028 98.82759 

Variance Shannon Entropy Renyie Entropy 67.74194 98.84268 98.75402 

Variance Shannon Entropy Spectral Entropy 66.12903 98.84729 98.75402 

Variance 
Approximate 

Entropy 
Root Mean 

Square 70.96774 98.74124 98.66207 

Variance 
Approximate 

Entropy 
Min Absolute 

Value 64.51613 98.74585 98.64828 

Variance 
Approximate 

Entropy 
Max Absolute 

Value 64.51613 99.08244 98.98391 

Variance 
Approximate 

Entropy 
Mean Absolute 

Value 75.80645 98.60753 98.54253 

Variance 
Approximate 

Entropy 
Hjorth 

Complexity 64.51613 99.05939 98.96092 

Variance 
Approximate 

Entropy Hjorth Mobility 62.90323 99.0225 98.91954 

Variance 
Approximate 

Entropy Coastline 62.90323 98.84729 98.74483 

Variance 
Approximate 

Entropy Average Energy 69.35484 98.84268 98.75862 

Variance 
Approximate 

Entropy Hurst Exponent 62.90323 98.93951 98.83678 

Variance 
Approximate 

Entropy Renyie Entropy 69.35484 98.84729 98.76322 

Variance 
Approximate 

Entropy Spectral Entropy 67.74194 98.88879 98.8 

Variance 
Approximate 

Entropy Shannon Entropy 67.74194 98.75507 98.66667 

Variance 
Permutation 

Entropy 
Root Mean 

Square 69.35484 98.84729 98.76322 

Variance 
Permutation 

Entropy 
Min Absolute 

Value 62.90323 98.87495 98.77241 

Variance 
Permutation 

Entropy 
Max Absolute 

Value 61.29032 99.20232 99.09425 

Variance 
Permutation 

Entropy 
Mean Absolute 

Value 72.58065 98.77352 98.69885 
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Variance 
Permutation 

Entropy 
Hjorth 

Complexity 64.51613 99.07322 98.97471 

Variance 
Permutation 

Entropy Hjorth Mobility 62.90323 99.05017 98.94713 

Variance 
Permutation 

Entropy Coastline 62.90323 98.90262 98.8 

Variance 
Permutation 

Entropy Average Energy 64.51613 98.90723 98.8092 

Variance 
Permutation 

Entropy Hurst Exponent 62.90323 98.94412 98.84138 

Variance 
Permutation 

Entropy Renyie Entropy 64.51613 98.8934 98.7954 

Variance 
Permutation 

Entropy Spectral Entropy 64.51613 98.91645 98.81839 

Variance 
Permutation 

Entropy Shannon Entropy 64.51613 98.92106 98.82299 

Variance 
Permutation 

Entropy 
Approximate 

Entropy 66.12903 98.88418 98.79081 

Skew 
Min Absolute 

Value 
Root Mean 

Square 85.48387 97.88823 97.85287 

Skew 
Max Absolute 

Value 
Root Mean 

Square 82.25807 98.26632 98.22069 

Skew 
Max Absolute 

Value 
Min Absolute 

Value 0 100 99.71494 

Skew 
Mean Absolute 

Value 
Root Mean 

Square 87.09677 98.11878 98.08736 

Skew 
Mean Absolute 

Value 
Min Absolute 

Value 87.09677 97.79141 97.76092 

Skew 
Mean Absolute 

Value 
Max Absolute 

Value 87.09677 98.128 98.09655 

Skew 
Hjorth 

Complexity 
Root Mean 

Square 80.64516 98.43692 98.38621 

Skew 
Hjorth 

Complexity 
Min Absolute 

Value 0 100 99.71494 

Skew 
Hjorth 

Complexity 
Max Absolute 

Value 0 100 99.71494 

Skew 
Hjorth 

Complexity 
Mean Absolute 

Value 83.87097 98.24327 98.2023 

Skew Hjorth Mobility 
Root Mean 

Square 83.87097 98.42309 98.38161 

Skew Hjorth Mobility 
Min Absolute 

Value 0 100 99.71494 

Skew Hjorth Mobility 
Max Absolute 

Value 0 100 99.71494 

Skew Hjorth Mobility 
Mean Absolute 

Value 85.48387 98.32626 98.28966 

Skew Hjorth Mobility 
Hjorth 

Complexity 0 100 99.71494 

Skew Coastline 
Root Mean 

Square 80.64516 98.24327 98.1931 
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Skew Coastline 
Min Absolute 

Value 0 100 99.71494 

Skew Coastline 
Max Absolute 

Value 0 100 99.71494 

Skew Coastline 
Mean Absolute 

Value 85.48387 98.11417 98.07816 

Skew Coastline 
Hjorth 

Complexity 0 100 99.71494 

Skew Coastline Hjorth Mobility 0 100 99.71494 

Skew Average Energy 
Root Mean 

Square 74.19355 98.81962 98.74943 

Skew Average Energy 
Min Absolute 

Value 61.29032 98.79657 98.68966 

Skew Average Energy 
Max Absolute 

Value 64.51613 98.99484 98.89655 

Skew Average Energy 
Mean Absolute 

Value 77.41936 98.62597 98.56552 

Skew Average Energy 
Hjorth 

Complexity 66.12903 99.01789 98.92414 

Skew Average Energy Hjorth Mobility 64.51613 99.04094 98.94253 

Skew Average Energy Coastline 56.45161 98.95334 98.83218 

Skew Hurst Exponent 
Root Mean 

Square 85.48387 97.99428 97.95862 

Skew Hurst Exponent 
Min Absolute 

Value 0 100 99.71494 

Skew Hurst Exponent 
Max Absolute 

Value 0 100 99.71494 

Skew Hurst Exponent 
Mean Absolute 

Value 87.09677 97.8744 97.84368 

Skew Hurst Exponent 
Hjorth 

Complexity 0 100 99.71494 

Skew Hurst Exponent Hjorth Mobility 0 100 99.71494 

Skew Hurst Exponent Coastline 0 100 99.71494 

Skew Hurst Exponent Average Energy 62.90323 98.86112 98.75862 

Skew Renyie Entropy 
Root Mean 

Square 82.25807 98.26632 98.22069 

Skew Renyie Entropy 
Min Absolute 

Value 0 100 99.71494 

Skew Renyie Entropy 
Max Absolute 

Value 0 100 99.71494 

Skew Renyie Entropy 
Mean Absolute 

Value 87.09677 98.13261 98.10115 

Skew Renyie Entropy 
Hjorth 

Complexity 0 100 99.71494 

Skew Renyie Entropy Hjorth Mobility 0 100 99.71494 

Skew Renyie Entropy Coastline 0 100 99.71494 

Skew Renyie Entropy Average Energy 67.74194 98.9349 98.84598 

Skew Renyie Entropy Hurst Exponent 0 100 99.71494 
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Skew Spectral Entropy 
Root Mean 

Square 83.87097 98.22944 98.18851 

Skew Spectral Entropy 
Min Absolute 

Value 0 100 99.71494 

Skew Spectral Entropy 
Max Absolute 

Value 0 100 99.71494 

Skew Spectral Entropy 
Mean Absolute 

Value 87.09677 98.06345 98.03218 

Skew Spectral Entropy 
Hjorth 

Complexity 0 100 99.71494 

Skew Spectral Entropy Hjorth Mobility 0 100 99.71494 

Skew Spectral Entropy Coastline 0 100 99.71494 

Skew Spectral Entropy Average Energy 66.12903 99.00867 98.91494 

Skew Spectral Entropy Hurst Exponent 0 100 99.71494 

Skew Spectral Entropy Renyie Entropy 0 100 99.71494 

Skew Shannon Entropy 
Root Mean 

Square 82.25807 98.2571 98.21149 

Skew Shannon Entropy 
Min Absolute 

Value 0 100 99.71494 

Skew Shannon Entropy 
Max Absolute 

Value 0 100 99.71494 

Skew Shannon Entropy 
Mean Absolute 

Value 87.09677 98.10033 98.06897 

Skew Shannon Entropy 
Hjorth 

Complexity 0 100 99.71494 

Skew Shannon Entropy Hjorth Mobility 0 100 99.71494 

Skew Shannon Entropy Coastline 0 100 99.71494 

Skew Shannon Entropy Average Energy 67.74194 98.90262 98.81379 

Skew Shannon Entropy Hurst Exponent 0 100 99.71494 

Skew Shannon Entropy Renyie Entropy 0 100 99.71494 

Skew Shannon Entropy Spectral Entropy 0 100 99.71494 

Skew 
Approximate 

Entropy 
Root Mean 

Square 82.25807 98.21099 98.16552 

Skew 
Approximate 

Entropy 
Min Absolute 

Value 0 100 99.71494 

Skew 
Approximate 

Entropy 
Max Absolute 

Value 0 100 99.71494 

Skew 
Approximate 

Entropy 
Mean Absolute 

Value 87.09677 98.11417 98.08276 

Skew 
Approximate 

Entropy 
Hjorth 

Complexity 0 100 99.71494 

Skew 
Approximate 

Entropy Hjorth Mobility 0 100 99.71494 

Skew 
Approximate 

Entropy Coastline 0 100 99.71494 

Skew 
Approximate 

Entropy Average Energy 67.74194 98.9349 98.84598 

Skew 
Approximate 

Entropy Hurst Exponent 0 100 99.71494 
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Skew 
Approximate 

Entropy Renyie Entropy 0 100 99.71494 

Skew 
Approximate 

Entropy Spectral Entropy 0 100 99.71494 

Skew 
Approximate 

Entropy Shannon Entropy 0 100 99.71494 

Skew 
Permutation 

Entropy 
Root Mean 

Square 83.87097 98.23405 98.1931 

Skew 
Permutation 

Entropy 
Min Absolute 

Value 0 100 99.71494 

Skew 
Permutation 

Entropy 
Max Absolute 

Value 0 100 99.71494 

Skew 
Permutation 

Entropy 
Mean Absolute 

Value 87.09677 98.12339 98.09195 

Skew 
Permutation 

Entropy 
Hjorth 

Complexity 0 100 99.71494 

Skew 
Permutation 

Entropy Hjorth Mobility 0 100 99.71494 

Skew 
Permutation 

Entropy Coastline 0 100 99.71494 

Skew 
Permutation 

Entropy Average Energy 67.74194 98.92106 98.83218 

Skew 
Permutation 

Entropy Hurst Exponent 0 100 99.71494 

Skew 
Permutation 

Entropy Renyie Entropy 0 100 99.71494 

Skew 
Permutation 

Entropy Spectral Entropy 0 100 99.71494 

Skew 
Permutation 

Entropy Shannon Entropy 0 100 99.71494 

Skew 
Permutation 

Entropy 
Approximate 

Entropy 0 100 99.71494 

Skew Variance 
Root Mean 

Square 74.19355 98.81962 98.74943 

Skew Variance 
Min Absolute 

Value 62.90323 98.80579 98.70345 

Skew Variance 
Max Absolute 

Value 64.51613 99.01328 98.91494 

Skew Variance 
Mean Absolute 

Value 77.41936 98.63058 98.57012 

Skew Variance 
Hjorth 

Complexity 66.12903 99.0225 98.92874 

Skew Variance Hjorth Mobility 64.51613 99.05939 98.96092 

Skew Variance Coastline 58.06452 98.97178 98.85517 

Skew Variance Average Energy 67.74194 98.94412 98.85517 

Skew Variance Hurst Exponent 66.12903 98.82424 98.73103 

Skew Variance Renyie Entropy 67.74194 98.9349 98.84598 

Skew Variance Spectral Entropy 66.12903 99.01328 98.91954 

Skew Variance Shannon Entropy 67.74194 98.91645 98.82759 
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Skew Variance 
Approximate 

Entropy 67.74194 98.93951 98.85058 

Skew Variance 
Permutation 

Entropy 67.74194 98.9349 98.84598 

Kurtosis 
Min Absolute 

Value 
Root Mean 

Square 85.48387 98.16027 98.12414 

Kurtosis 
Max Absolute 

Value 
Root Mean 

Square 85.48387 98.81962 98.78161 

Kurtosis 
Max Absolute 

Value 
Min Absolute 

Value 0 100 99.71494 

Kurtosis 
Mean Absolute 

Value 
Root Mean 

Square 85.48387 98.39082 98.35402 

Kurtosis 
Mean Absolute 

Value 
Min Absolute 

Value 87.09677 97.76374 97.73333 

Kurtosis 
Mean Absolute 

Value 
Max Absolute 

Value 85.48387 98.6398 98.6023 

Kurtosis 
Hjorth 

Complexity 
Root Mean 

Square 82.25807 98.54297 98.49655 

Kurtosis 
Hjorth 

Complexity 
Min Absolute 

Value 0 100 99.71494 

Kurtosis 
Hjorth 

Complexity 
Max Absolute 

Value 0 100 99.71494 

Kurtosis 
Hjorth 

Complexity 
Mean Absolute 

Value 85.48387 98.19255 98.15632 

Kurtosis Hjorth Mobility 
Root Mean 

Square 83.87097 98.56603 98.52414 

Kurtosis Hjorth Mobility 
Min Absolute 

Value 0 100 99.71494 

Kurtosis Hjorth Mobility 
Max Absolute 

Value 0 100 99.71494 

Kurtosis Hjorth Mobility 
Mean Absolute 

Value 85.48387 98.27554 98.23908 

Kurtosis Hjorth Mobility 
Hjorth 

Complexity 0 100 99.71494 

Kurtosis Coastline 
Root Mean 

Square 82.25807 98.58447 98.53793 

Kurtosis Coastline 
Min Absolute 

Value 0 100 99.71494 

Kurtosis Coastline 
Max Absolute 

Value 0 100 99.71494 

Kurtosis Coastline 
Mean Absolute 

Value 85.48387 98.27554 98.23908 

Kurtosis Coastline 
Hjorth 

Complexity 0 100 99.71494 

Kurtosis Coastline Hjorth Mobility 0 100 99.71494 

Kurtosis Average Energy 
Root Mean 

Square 70.96774 98.88418 98.8046 

Kurtosis Average Energy 
Min Absolute 

Value 62.90323 99.16544 99.06207 
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Kurtosis Average Energy 
Max Absolute 

Value 66.12903 99.42364 99.32874 

Kurtosis Average Energy 
Mean Absolute 

Value 77.41936 98.71357 98.65287 

Kurtosis Average Energy 
Hjorth 

Complexity 62.90323 99.13777 99.03448 

Kurtosis Average Energy Hjorth Mobility 62.90323 99.30376 99.2 

Kurtosis Average Energy Coastline 66.12903 99.20232 99.10805 

Kurtosis Hurst Exponent 
Root Mean 

Square 85.48387 98.128 98.09195 

Kurtosis Hurst Exponent 
Min Absolute 

Value 0 100 99.71494 

Kurtosis Hurst Exponent 
Max Absolute 

Value 0 100 99.71494 

Kurtosis Hurst Exponent 
Mean Absolute 

Value 87.09677 97.80524 97.77471 

Kurtosis Hurst Exponent 
Hjorth 

Complexity 0 100 99.71494 

Kurtosis Hurst Exponent Hjorth Mobility 0 100 99.71494 

Kurtosis Hurst Exponent Coastline 0 100 99.71494 

Kurtosis Hurst Exponent Average Energy 62.90323 99.30376 99.2 

Kurtosis Renyie Entropy 
Root Mean 

Square 82.25807 98.37698 98.33103 

Kurtosis Renyie Entropy 
Min Absolute 

Value 0 100 99.71494 

Kurtosis Renyie Entropy 
Max Absolute 

Value 0 100 99.71494 

Kurtosis Renyie Entropy 
Mean Absolute 

Value 82.25807 98.26171 98.21609 

Kurtosis Renyie Entropy 
Hjorth 

Complexity 0 100 99.71494 

Kurtosis Renyie Entropy Hjorth Mobility 0 100 99.71494 

Kurtosis Renyie Entropy Coastline 0 100 99.71494 

Kurtosis Renyie Entropy Average Energy 66.12903 98.87495 98.78161 

Kurtosis Renyie Entropy Hurst Exponent 0 100 99.71494 

Kurtosis Spectral Entropy 
Root Mean 

Square 83.87097 98.61214 98.57012 

Kurtosis Spectral Entropy 
Min Absolute 

Value 0 100 99.71494 

Kurtosis Spectral Entropy 
Max Absolute 

Value 0 100 99.71494 

Kurtosis Spectral Entropy 
Mean Absolute 

Value 87.09677 98.31704 98.28506 

Kurtosis Spectral Entropy 
Hjorth 

Complexity 0 100 99.71494 

Kurtosis Spectral Entropy Hjorth Mobility 0 100 99.71494 

Kurtosis Spectral Entropy Coastline 0 100 99.71494 

Kurtosis Spectral Entropy Average Energy 69.35484 99.22077 99.13563 

Kurtosis Spectral Entropy Hurst Exponent 0 100 99.71494 
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Kurtosis Spectral Entropy Renyie Entropy 0 100 99.71494 

Kurtosis Shannon Entropy 
Root Mean 

Square 83.87097 98.37698 98.33563 

Kurtosis Shannon Entropy 
Min Absolute 

Value 0 100 99.71494 

Kurtosis Shannon Entropy 
Max Absolute 

Value 0 100 99.71494 

Kurtosis Shannon Entropy 
Mean Absolute 

Value 83.87097 98.2156 98.17471 

Kurtosis Shannon Entropy 
Hjorth 

Complexity 0 100 99.71494 

Kurtosis Shannon Entropy Hjorth Mobility 0 100 99.71494 

Kurtosis Shannon Entropy Coastline 0 100 99.71494 

Kurtosis Shannon Entropy Average Energy 67.74194 98.84268 98.75402 

Kurtosis Shannon Entropy Hurst Exponent 0 100 99.71494 

Kurtosis Shannon Entropy Renyie Entropy 0 100 99.71494 

Kurtosis Shannon Entropy Spectral Entropy 0 100 99.71494 

Kurtosis 
Approximate 

Entropy 
Root Mean 

Square 83.87097 98.45076 98.4092 

Kurtosis 
Approximate 

Entropy 
Min Absolute 

Value 0 100 99.71494 

Kurtosis 
Approximate 

Entropy 
Max Absolute 

Value 0 100 99.71494 

Kurtosis 
Approximate 

Entropy 
Mean Absolute 

Value 85.48387 98.04039 98.0046 

Kurtosis 
Approximate 

Entropy 
Hjorth 

Complexity 0 100 99.71494 

Kurtosis 
Approximate 

Entropy Hjorth Mobility 0 100 99.71494 

Kurtosis 
Approximate 

Entropy Coastline 0 100 99.71494 

Kurtosis 
Approximate 

Entropy Average Energy 69.35484 98.84729 98.76322 

Kurtosis 
Approximate 

Entropy Hurst Exponent 0 100 99.71494 

Kurtosis 
Approximate 

Entropy Renyie Entropy 0 100 99.71494 

Kurtosis 
Approximate 

Entropy Spectral Entropy 0 100 99.71494 

Kurtosis 
Approximate 

Entropy Shannon Entropy 0 100 99.71494 

Kurtosis 
Permutation 

Entropy 
Root Mean 

Square 83.87097 98.2571 98.21609 

Kurtosis 
Permutation 

Entropy 
Min Absolute 

Value 0 100 99.71494 

Kurtosis 
Permutation 

Entropy 
Max Absolute 

Value 0 100 99.71494 

Kurtosis 
Permutation 

Entropy 
Mean Absolute 

Value 87.09677 98.0035 97.97241 
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Kurtosis 
Permutation 

Entropy 
Hjorth 

Complexity 0 100 99.71494 

Kurtosis 
Permutation 

Entropy Hjorth Mobility 0 100 99.71494 

Kurtosis 
Permutation 

Entropy Coastline 0 100 99.71494 

Kurtosis 
Permutation 

Entropy Average Energy 66.12903 99.11011 99.01609 

Kurtosis 
Permutation 

Entropy Hurst Exponent 0 100 99.71494 

Kurtosis 
Permutation 

Entropy Renyie Entropy 0 100 99.71494 

Kurtosis 
Permutation 

Entropy Spectral Entropy 0 100 99.71494 

Kurtosis 
Permutation 

Entropy Shannon Entropy 0 100 99.71494 

Kurtosis 
Permutation 

Entropy 
Approximate 

Entropy 0 100 99.71494 

Kurtosis Variance 
Root Mean 

Square 70.96774 98.89801 98.81839 

Kurtosis Variance 
Min Absolute 

Value 64.51613 99.17927 99.08046 

Kurtosis Variance 
Max Absolute 

Value 66.12903 99.43287 99.33793 

Kurtosis Variance 
Mean Absolute 

Value 77.41936 98.70435 98.64368 

Kurtosis Variance 
Hjorth 

Complexity 64.51613 99.17927 99.08046 

Kurtosis Variance Hjorth Mobility 62.90323 99.3176 99.21379 

Kurtosis Variance Coastline 64.51613 99.21155 99.11264 

Kurtosis Variance Average Energy 69.35484 98.9349 98.85058 

Kurtosis Variance Hurst Exponent 62.90323 99.26227 99.15862 

Kurtosis Variance Renyie Entropy 66.12903 98.87034 98.77701 

Kurtosis Variance Spectral Entropy 69.35484 99.2346 99.14943 

Kurtosis Variance Shannon Entropy 67.74194 98.86112 98.77241 

Kurtosis Variance 
Approximate 

Entropy 69.35484 98.84729 98.76322 

Kurtosis Variance 
Permutation 

Entropy 66.12903 99.11933 99.02529 

Kurtosis Skew 
Root Mean 

Square 82.25807 98.53375 98.48736 

Kurtosis Skew 
Min Absolute 

Value 0 100 99.71494 

Kurtosis Skew 
Max Absolute 

Value 0 100 99.71494 

Kurtosis Skew 
Mean Absolute 

Value 87.09677 98.18794 98.15632 

Kurtosis Skew 
Hjorth 

Complexity 0 100 99.71494 
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Kurtosis Skew Hjorth Mobility 0 100 99.71494 

Kurtosis Skew Coastline 0 100 99.71494 

Kurtosis Skew Average Energy 67.74194 99.03633 98.94713 

Kurtosis Skew Hurst Exponent 0 100 99.71494 

Kurtosis Skew Renyie Entropy 0 100 99.71494 

Kurtosis Skew Spectral Entropy 0 100 99.71494 

Kurtosis Skew Shannon Entropy 0 100 99.71494 

Kurtosis Skew 
Approximate 

Entropy 0 100 99.71494 

Kurtosis Skew 
Permutation 

Entropy 0 100 99.71494 

Kurtosis Skew Variance 67.74194 99.04556 98.95632 

Modified Hurst 
Exponent 

Min Absolute 
Value 

Root Mean 
Square 83.87097 96.43121 96.3954 

Modified Hurst 
Exponent 

Max Absolute 
Value 

Root Mean 
Square 80.64516 98.8104 98.75862 

Modified Hurst 
Exponent 

Max Absolute 
Value 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent 

Mean Absolute 
Value 

Root Mean 
Square 87.09677 97.04445 97.01609 

Modified Hurst 
Exponent 

Mean Absolute 
Value 

Min Absolute 
Value 88.70968 96.54648 96.52414 

Modified Hurst 
Exponent 

Mean Absolute 
Value 

Max Absolute 
Value 82.25807 98.45076 98.4046 

Modified Hurst 
Exponent 

Hjorth 
Complexity 

Root Mean 
Square 85.48387 97.84213 97.8069 

Modified Hurst 
Exponent 

Hjorth 
Complexity 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent 

Hjorth 
Complexity 

Max Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent 

Hjorth 
Complexity 

Mean Absolute 
Value 85.48387 97.65769 97.62299 

Modified Hurst 
Exponent Hjorth Mobility 

Root Mean 
Square 85.48387 97.82829 97.7931 

Modified Hurst 
Exponent Hjorth Mobility 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Hjorth Mobility 

Max Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Hjorth Mobility 

Mean Absolute 
Value 87.09677 97.69458 97.66437 

Modified Hurst 
Exponent Hjorth Mobility 

Hjorth 
Complexity 0 100 99.71494 

Modified Hurst 
Exponent Coastline 

Root Mean 
Square 85.48387 97.2381 97.2046 

Modified Hurst 
Exponent Coastline 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Coastline 

Max Absolute 
Value 0 100 99.71494 
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Modified Hurst 
Exponent Coastline 

Mean Absolute 
Value 87.09677 96.92918 96.90115 

Modified Hurst 
Exponent Coastline 

Hjorth 
Complexity 0 100 99.71494 

Modified Hurst 
Exponent Coastline Hjorth Mobility 0 100 99.71494 

Modified Hurst 
Exponent Average Energy 

Root Mean 
Square 74.19355 98.37237 98.30345 

Modified Hurst 
Exponent Average Energy 

Min Absolute 
Value 56.45161 98.23866 98.11954 

Modified Hurst 
Exponent Average Energy 

Max Absolute 
Value 62.90323 99.28532 99.18161 

Modified Hurst 
Exponent Average Energy 

Mean Absolute 
Value 79.03226 98.28477 98.22989 

Modified Hurst 
Exponent Average Energy 

Hjorth 
Complexity 62.90323 98.71357 98.61149 

Modified Hurst 
Exponent Average Energy Hjorth Mobility 62.90323 98.79196 98.68966 

Modified Hurst 
Exponent Average Energy Coastline 56.45161 98.74585 98.62529 

Modified Hurst 
Exponent Hurst Exponent 

Root Mean 
Square 87.09677 97.51937 97.48966 

Modified Hurst 
Exponent Hurst Exponent 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Hurst Exponent 

Max Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Hurst Exponent 

Mean Absolute 
Value 88.70968 97.31188 97.28736 

Modified Hurst 
Exponent Hurst Exponent 

Hjorth 
Complexity 0 100 99.71494 

Modified Hurst 
Exponent Hurst Exponent Hjorth Mobility 0 100 99.71494 

Modified Hurst 
Exponent Hurst Exponent Coastline 0 100 99.71494 

Modified Hurst 
Exponent Hurst Exponent Average Energy 62.90323 98.97639 98.87356 

Modified Hurst 
Exponent Renyie Entropy 

Root Mean 
Square 82.25807 97.4502 97.4069 

Modified Hurst 
Exponent Renyie Entropy 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Renyie Entropy 

Max Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Renyie Entropy 

Mean Absolute 
Value 87.09677 97.49631 97.46667 

Modified Hurst 
Exponent Renyie Entropy 

Hjorth 
Complexity 0 100 99.71494 

Modified Hurst 
Exponent Renyie Entropy Hjorth Mobility 0 100 99.71494 

Modified Hurst 
Exponent Renyie Entropy Coastline 0 100 99.71494 
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Modified Hurst 
Exponent Renyie Entropy Average Energy 62.90323 98.78735 98.68506 

Modified Hurst 
Exponent Renyie Entropy Hurst Exponent 0 100 99.71494 

Modified Hurst 
Exponent Spectral Entropy 

Root Mean 
Square 87.09677 97.22888 97.2 

Modified Hurst 
Exponent Spectral Entropy 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Spectral Entropy 

Max Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Spectral Entropy 

Mean Absolute 
Value 87.09677 97.13667 97.10805 

Modified Hurst 
Exponent Spectral Entropy 

Hjorth 
Complexity 0 100 99.71494 

Modified Hurst 
Exponent Spectral Entropy Hjorth Mobility 0 100 99.71494 

Modified Hurst 
Exponent Spectral Entropy Coastline 0 100 99.71494 

Modified Hurst 
Exponent Spectral Entropy Average Energy 64.51613 98.86112 98.76322 

Modified Hurst 
Exponent Spectral Entropy Hurst Exponent 0 100 99.71494 

Modified Hurst 
Exponent Spectral Entropy Renyie Entropy 0 100 99.71494 

Modified Hurst 
Exponent Shannon Entropy 

Root Mean 
Square 83.87097 97.66691 97.62759 

Modified Hurst 
Exponent Shannon Entropy 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Shannon Entropy 

Max Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Shannon Entropy 

Mean Absolute 
Value 87.09677 97.5332 97.50345 

Modified Hurst 
Exponent Shannon Entropy 

Hjorth 
Complexity 0 100 99.71494 

Modified Hurst 
Exponent Shannon Entropy Hjorth Mobility 0 100 99.71494 

Modified Hurst 
Exponent Shannon Entropy Coastline 0 100 99.71494 

Modified Hurst 
Exponent Shannon Entropy Average Energy 66.12903 98.78274 98.68966 

Modified Hurst 
Exponent Shannon Entropy Hurst Exponent 0 100 99.71494 

Modified Hurst 
Exponent Shannon Entropy Renyie Entropy 0 100 99.71494 

Modified Hurst 
Exponent Shannon Entropy Spectral Entropy 0 100 99.71494 

Modified Hurst 
Exponent 

Approximate 
Entropy 

Root Mean 
Square 88.70968 97.43176 97.4069 

Modified Hurst 
Exponent 

Approximate 
Entropy 

Min Absolute 
Value 0 100 99.71494 
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Modified Hurst 
Exponent 

Approximate 
Entropy 

Max Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent 

Approximate 
Entropy 

Mean Absolute 
Value 88.70968 97.45943 97.43448 

Modified Hurst 
Exponent 

Approximate 
Entropy 

Hjorth 
Complexity 0 100 99.71494 

Modified Hurst 
Exponent 

Approximate 
Entropy Hjorth Mobility 0 100 99.71494 

Modified Hurst 
Exponent 

Approximate 
Entropy Coastline 0 100 99.71494 

Modified Hurst 
Exponent 

Approximate 
Entropy Average Energy 66.12903 98.80118 98.70805 

Modified Hurst 
Exponent 

Approximate 
Entropy Hurst Exponent 0 100 99.71494 

Modified Hurst 
Exponent 

Approximate 
Entropy Renyie Entropy 0 100 99.71494 

Modified Hurst 
Exponent 

Approximate 
Entropy Spectral Entropy 0 100 99.71494 

Modified Hurst 
Exponent 

Approximate 
Entropy Shannon Entropy 0 100 99.71494 

Modified Hurst 
Exponent 

Permutation 
Entropy 

Root Mean 
Square 85.48387 97.25655 97.22299 

Modified Hurst 
Exponent 

Permutation 
Entropy 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent 

Permutation 
Entropy 

Max Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent 

Permutation 
Entropy 

Mean Absolute 
Value 87.09677 97.24733 97.21839 

Modified Hurst 
Exponent 

Permutation 
Entropy 

Hjorth 
Complexity 0 100 99.71494 

Modified Hurst 
Exponent 

Permutation 
Entropy Hjorth Mobility 0 100 99.71494 

Modified Hurst 
Exponent 

Permutation 
Entropy Coastline 0 100 99.71494 

Modified Hurst 
Exponent 

Permutation 
Entropy Average Energy 64.51613 98.91645 98.81839 

Modified Hurst 
Exponent 

Permutation 
Entropy Hurst Exponent 0 100 99.71494 

Modified Hurst 
Exponent 

Permutation 
Entropy Renyie Entropy 0 100 99.71494 

Modified Hurst 
Exponent 

Permutation 
Entropy Spectral Entropy 0 100 99.71494 

Modified Hurst 
Exponent 

Permutation 
Entropy Shannon Entropy 0 100 99.71494 

Modified Hurst 
Exponent 

Permutation 
Entropy 

Approximate 
Entropy 0 100 99.71494 

Modified Hurst 
Exponent Variance 

Root Mean 
Square 74.19355 98.40926 98.34023 

Modified Hurst 
Exponent Variance 

Min Absolute 
Value 58.06452 98.27093 98.15632 
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Modified Hurst 
Exponent Variance 

Max Absolute 
Value 64.51613 99.26227 99.16322 

Modified Hurst 
Exponent Variance 

Mean Absolute 
Value 79.03226 98.30782 98.25287 

Modified Hurst 
Exponent Variance 

Hjorth 
Complexity 61.29032 98.74585 98.63908 

Modified Hurst 
Exponent Variance Hjorth Mobility 62.90323 98.79196 98.68966 

Modified Hurst 
Exponent Variance Coastline 56.45161 98.74585 98.62529 

Modified Hurst 
Exponent Variance Average Energy 64.51613 98.81501 98.71724 

Modified Hurst 
Exponent Variance Hurst Exponent 62.90323 98.99023 98.88736 

Modified Hurst 
Exponent Variance Renyie Entropy 64.51613 98.79196 98.69425 

Modified Hurst 
Exponent Variance Spectral Entropy 64.51613 98.86112 98.76322 

Modified Hurst 
Exponent Variance Shannon Entropy 66.12903 98.79657 98.70345 

Modified Hurst 
Exponent Variance 

Approximate 
Entropy 66.12903 98.77813 98.68506 

Modified Hurst 
Exponent Variance 

Permutation 
Entropy 64.51613 98.8934 98.7954 

Modified Hurst 
Exponent Skew 

Root Mean 
Square 80.64516 98.37698 98.32644 

Modified Hurst 
Exponent Skew 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Skew 

Max Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Skew 

Mean Absolute 
Value 87.09677 98.13722 98.10575 

Modified Hurst 
Exponent Skew 

Hjorth 
Complexity 0 100 99.71494 

Modified Hurst 
Exponent Skew Hjorth Mobility 0 100 99.71494 

Modified Hurst 
Exponent Skew Coastline 0 100 99.71494 

Modified Hurst 
Exponent Skew Average Energy 67.74194 98.97178 98.88276 

Modified Hurst 
Exponent Skew Hurst Exponent 0 100 99.71494 

Modified Hurst 
Exponent Skew Renyie Entropy 0 100 99.71494 

Modified Hurst 
Exponent Skew Spectral Entropy 0 100 99.71494 

Modified Hurst 
Exponent Skew Shannon Entropy 0 100 99.71494 

Modified Hurst 
Exponent Skew 

Approximate 
Entropy 0 100 99.71494 
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Modified Hurst 
Exponent Skew 

Permutation 
Entropy 0 100 99.71494 

Modified Hurst 
Exponent Skew Variance 67.74194 98.97639 98.88736 

Modified Hurst 
Exponent Kurtosis 

Root Mean 
Square 87.09677 98.19716 98.16552 

Modified Hurst 
Exponent Kurtosis 

Min Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis 

Max Absolute 
Value 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis 

Mean Absolute 
Value 88.70968 97.95279 97.92644 

Modified Hurst 
Exponent Kurtosis 

Hjorth 
Complexity 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis Hjorth Mobility 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis Coastline 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis Average Energy 66.12903 99.00406 98.91035 

Modified Hurst 
Exponent Kurtosis Hurst Exponent 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis Renyie Entropy 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis Spectral Entropy 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis Shannon Entropy 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis 

Approximate 
Entropy 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis 

Permutation 
Entropy 0 100 99.71494 

Modified Hurst 
Exponent Kurtosis Variance 66.12903 99.02711 98.93333 

Modified Hurst 
Exponent Kurtosis Skew 0 100 99.71494 

Fractal 
Dimension 

Min Absolute 
Value 

Root Mean 
Square 93.54839 98.03578 98.02299 

Fractal 
Dimension 

Max Absolute 
Value 

Root Mean 
Square 91.93548 98.44153 98.42299 

Fractal 
Dimension 

Max Absolute 
Value 

Min Absolute 
Value 83.87097 98.58447 98.54253 

Fractal 
Dimension 

Mean Absolute 
Value 

Root Mean 
Square 93.54839 98.28016 98.26667 

Fractal 
Dimension 

Mean Absolute 
Value 

Min Absolute 
Value 91.93548 98.07728 98.05977 

Fractal 
Dimension 

Mean Absolute 
Value 

Max Absolute 
Value 91.93548 98.43692 98.41839 

Fractal 
Dimension 

Hjorth 
Complexity 

Root Mean 
Square 93.54839 98.22021 98.2069 
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Fractal 
Dimension 

Hjorth 
Complexity 

Min Absolute 
Value 91.93548 98.41848 98.4 

Fractal 
Dimension 

Hjorth 
Complexity 

Max Absolute 
Value 85.48387 98.74124 98.70345 

Fractal 
Dimension 

Hjorth 
Complexity 

Mean Absolute 
Value 91.93548 98.15105 98.13333 

Fractal 
Dimension Hjorth Mobility 

Root Mean 
Square 91.93548 98.14644 98.12874 

Fractal 
Dimension Hjorth Mobility 

Min Absolute 
Value 95.16129 98.24788 98.23908 

Fractal 
Dimension Hjorth Mobility 

Max Absolute 
Value 88.70968 98.67208 98.64368 

Fractal 
Dimension Hjorth Mobility 

Mean Absolute 
Value 93.54839 98.06806 98.05517 

Fractal 
Dimension Hjorth Mobility 

Hjorth 
Complexity 91.93548 98.37237 98.35402 

Fractal 
Dimension Coastline 

Root Mean 
Square 93.54839 98.16027 98.14713 

Fractal 
Dimension Coastline 

Min Absolute 
Value 95.16129 98.13261 98.12414 

Fractal 
Dimension Coastline 

Max Absolute 
Value 93.54839 98.31243 98.29885 

Fractal 
Dimension Coastline 

Mean Absolute 
Value 93.54839 98.11417 98.10115 

Fractal 
Dimension Coastline 

Hjorth 
Complexity 95.16129 98.29399 98.28506 

Fractal 
Dimension Coastline Hjorth Mobility 95.16129 98.22483 98.21609 

Fractal 
Dimension Average Energy 

Root Mean 
Square 93.54839 98.52453 98.51035 

Fractal 
Dimension Average Energy 

Min Absolute 
Value 83.87097 98.51531 98.47356 

Fractal 
Dimension Average Energy 

Max Absolute 
Value 90.32258 98.7228 98.69885 

Fractal 
Dimension Average Energy 

Mean Absolute 
Value 93.54839 98.46459 98.45058 

Fractal 
Dimension Average Energy 

Hjorth 
Complexity 88.70968 98.82424 98.7954 

Fractal 
Dimension Average Energy Hjorth Mobility 87.09677 98.74585 98.71264 

Fractal 
Dimension Average Energy Coastline 93.54839 98.49225 98.47816 

Fractal 
Dimension Hurst Exponent 

Root Mean 
Square 93.54839 97.79602 97.78391 

Fractal 
Dimension Hurst Exponent 

Min Absolute 
Value 95.16129 97.5747 97.56782 

Fractal 
Dimension Hurst Exponent 

Max Absolute 
Value 91.93548 98.15566 98.13793 

Fractal 
Dimension Hurst Exponent 

Mean Absolute 
Value 93.54839 97.6623 97.65058 
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Fractal 
Dimension Hurst Exponent 

Hjorth 
Complexity 93.54839 97.95279 97.94023 

Fractal 
Dimension Hurst Exponent Hjorth Mobility 95.16129 97.96662 97.95862 

Fractal 
Dimension Hurst Exponent Coastline 96.77419 97.89746 97.89425 

Fractal 
Dimension Hurst Exponent Average Energy 91.93548 98.24788 98.22989 

Fractal 
Dimension Renyie Entropy 

Root Mean 
Square 93.54839 98.18794 98.17471 

Fractal 
Dimension Renyie Entropy 

Min Absolute 
Value 93.54839 98.07267 98.05977 

Fractal 
Dimension Renyie Entropy 

Max Absolute 
Value 87.09677 98.5107 98.47816 

Fractal 
Dimension Renyie Entropy 

Mean Absolute 
Value 93.54839 98.1695 98.15632 

Fractal 
Dimension Renyie Entropy 

Hjorth 
Complexity 91.93548 98.35854 98.34023 

Fractal 
Dimension Renyie Entropy Hjorth Mobility 93.54839 98.36776 98.35402 

Fractal 
Dimension Renyie Entropy Coastline 95.16129 98.12339 98.11494 

Fractal 
Dimension Renyie Entropy Average Energy 93.54839 98.64902 98.63448 

Fractal 
Dimension Renyie Entropy Hurst Exponent 95.16129 97.59314 97.58621 

Fractal 
Dimension Spectral Entropy 

Root Mean 
Square 93.54839 98.27554 98.26207 

Fractal 
Dimension Spectral Entropy 

Min Absolute 
Value 93.54839 98.03117 98.01839 

Fractal 
Dimension Spectral Entropy 

Max Absolute 
Value 87.09677 98.49687 98.46437 

Fractal 
Dimension Spectral Entropy 

Mean Absolute 
Value 93.54839 98.23405 98.22069 

Fractal 
Dimension Spectral Entropy 

Hjorth 
Complexity 91.93548 98.33549 98.31724 

Fractal 
Dimension Spectral Entropy Hjorth Mobility 95.16129 98.28477 98.27586 

Fractal 
Dimension Spectral Entropy Coastline 95.16129 97.98967 97.98161 

Fractal 
Dimension Spectral Entropy Average Energy 91.93548 98.88879 98.86897 

Fractal 
Dimension Spectral Entropy Hurst Exponent 95.16129 97.69919 97.69195 

Fractal 
Dimension Spectral Entropy Renyie Entropy 93.54839 98.06806 98.05517 

Fractal 
Dimension Shannon Entropy 

Root Mean 
Square 93.54839 98.3401 98.32644 

Fractal 
Dimension Shannon Entropy 

Min Absolute 
Value 93.54839 98.03117 98.01839 
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Fractal 
Dimension Shannon Entropy 

Max Absolute 
Value 87.09677 98.39543 98.36322 

Fractal 
Dimension Shannon Entropy 

Mean Absolute 
Value 93.54839 98.26171 98.24828 

Fractal 
Dimension Shannon Entropy 

Hjorth 
Complexity 91.93548 98.34471 98.32644 

Fractal 
Dimension Shannon Entropy Hjorth Mobility 93.54839 98.26632 98.25287 

Fractal 
Dimension Shannon Entropy Coastline 95.16129 98.09572 98.08736 

Fractal 
Dimension Shannon Entropy Average Energy 93.54839 98.8519 98.83678 

Fractal 
Dimension Shannon Entropy Hurst Exponent 95.16129 97.61158 97.6046 

Fractal 
Dimension Shannon Entropy Renyie Entropy 93.54839 97.96662 97.95402 

Fractal 
Dimension Shannon Entropy Spectral Entropy 93.54839 98.045 98.03218 

Fractal 
Dimension 

Approximate 
Entropy 

Root Mean 
Square 93.54839 98.26171 98.24828 

Fractal 
Dimension 

Approximate 
Entropy 

Min Absolute 
Value 93.54839 97.90207 97.88966 

Fractal 
Dimension 

Approximate 
Entropy 

Max Absolute 
Value 87.09677 98.61214 98.57931 

Fractal 
Dimension 

Approximate 
Entropy 

Mean Absolute 
Value 93.54839 98.23405 98.22069 

Fractal 
Dimension 

Approximate 
Entropy 

Hjorth 
Complexity 91.93548 98.41848 98.4 

Fractal 
Dimension 

Approximate 
Entropy Hjorth Mobility 95.16129 98.43231 98.42299 

Fractal 
Dimension 

Approximate 
Entropy Coastline 95.16129 98.10494 98.09655 

Fractal 
Dimension 

Approximate 
Entropy Average Energy 93.54839 98.79657 98.78161 

Fractal 
Dimension 

Approximate 
Entropy Hurst Exponent 95.16129 97.79602 97.78851 

Fractal 
Dimension 

Approximate 
Entropy Renyie Entropy 93.54839 98.04039 98.02759 

Fractal 
Dimension 

Approximate 
Entropy Spectral Entropy 93.54839 98.04039 98.02759 

Fractal 
Dimension 

Approximate 
Entropy Shannon Entropy 93.54839 98.03117 98.01839 

Fractal 
Dimension 

Permutation 
Entropy 

Root Mean 
Square 93.54839 98.01273 98 

Fractal 
Dimension 

Permutation 
Entropy 

Min Absolute 
Value 93.54839 97.88362 97.87126 

Fractal 
Dimension 

Permutation 
Entropy 

Max Absolute 
Value 87.09677 98.49225 98.45977 

Fractal 
Dimension 

Permutation 
Entropy 

Mean Absolute 
Value 93.54839 97.90207 97.88966 
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Fractal 
Dimension 

Permutation 
Entropy 

Hjorth 
Complexity 91.93548 98.34471 98.32644 

Fractal 
Dimension 

Permutation 
Entropy Hjorth Mobility 93.54839 98.31704 98.30345 

Fractal 
Dimension 

Permutation 
Entropy Coastline 95.16129 98.14183 98.13333 

Fractal 
Dimension 

Permutation 
Entropy Average Energy 93.54839 98.33549 98.32184 

Fractal 
Dimension 

Permutation 
Entropy Hurst Exponent 95.16129 97.77757 97.77012 

Fractal 
Dimension 

Permutation 
Entropy Renyie Entropy 93.54839 97.84674 97.83448 

Fractal 
Dimension 

Permutation 
Entropy Spectral Entropy 93.54839 97.91129 97.89885 

Fractal 
Dimension 

Permutation 
Entropy Shannon Entropy 93.54839 97.8744 97.86207 

      
Fractal 

Dimension Variance 
Min Absolute 

Value 83.87097 98.51992 98.47816 

Fractal 
Dimension Variance 

Max Absolute 
Value 90.32258 98.7228 98.69885 

Fractal 
Dimension Variance 

Mean Absolute 
Value 93.54839 98.48303 98.46897 

Fractal 
Dimension Variance 

Hjorth 
Complexity 87.09677 98.83346 98.8 

Fractal 
Dimension Variance Hjorth Mobility 87.09677 98.74585 98.71264 

Fractal 
Dimension Variance Coastline 93.54839 98.48764 98.47356 

Fractal 
Dimension Variance Average Energy 93.54839 98.7689 98.75402 

Fractal 
Dimension Variance Hurst Exponent 91.93548 98.24788 98.22989 

Fractal 
Dimension Variance Renyie Entropy 93.54839 98.66286 98.64828 

Fractal 
Dimension Variance Spectral Entropy 90.32258 98.8934 98.86897 

Fractal 
Dimension Variance Shannon Entropy 93.54839 98.87495 98.85977 

Fractal 
Dimension Variance 

Min Absolute 
Value 83.87097 98.51992 98.47816 

Fractal 
Dimension Variance 

Max Absolute 
Value 90.32258 98.7228 98.69885 

Fractal 
Dimension Variance 

Mean Absolute 
Value 93.54839 98.48303 98.46897 

Fractal 
Dimension Variance 

Hjorth 
Complexity 87.09677 98.83346 98.8 

Fractal 
Dimension Variance Hjorth Mobility 87.09677 98.74585 98.71264 
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Fractal 
Dimension Variance Coastline 93.54839 98.48764 98.47356 

Fractal 
Dimension Variance Average Energy 93.54839 98.7689 98.75402 

Fractal 
Dimension Variance Hurst Exponent 91.93548 98.24788 98.22989 

Fractal 
Dimension Variance Renyie Entropy 93.54839 98.66286 98.64828 

Fractal 
Dimension Variance Spectral Entropy 90.32258 98.8934 98.86897 

Fractal 
Dimension Variance Shannon Entropy 93.54839 98.87495 98.85977 

Fractal 
Dimension Skew Renyie Entropy 91.93548 97.98045 97.96322 

Fractal 
Dimension Skew Spectral Entropy 91.93548 98.05883 98.04138 

Fractal 
Dimension Skew Shannon Entropy 91.93548 97.97584 97.95862 

Fractal 
Dimension Skew 

Approximate 
Entropy 91.93548 97.91129 97.89425 

Fractal 
Dimension Skew 

Permutation 
Entropy 91.93548 98.00812 97.99081 

Fractal 
Dimension Skew Variance 90.32258 98.56603 98.54253 

Fractal 
Dimension Kurtosis 

Root Mean 
Square 93.54839 98.62136 98.6069 

Fractal 
Dimension Kurtosis 

Min Absolute 
Value 93.54839 97.9574 97.94483 

Fractal 
Dimension Kurtosis 

Max Absolute 
Value 87.09677 98.49225 98.45977 

Fractal 
Dimension Kurtosis 

Mean Absolute 
Value 91.93548 98.45076 98.43218 

Fractal 
Dimension Kurtosis 

Hjorth 
Complexity 91.93548 98.51531 98.49655 

Fractal 
Dimension Kurtosis Hjorth Mobility 95.16129 98.45998 98.45058 

Fractal 
Dimension Kurtosis Coastline 95.16129 98.32626 98.31724 

Fractal 
Dimension Kurtosis Average Energy 93.54839 98.95334 98.93793 

Fractal 
Dimension Kurtosis Hurst Exponent 95.16129 97.79602 97.78851 

Fractal 
Dimension Kurtosis Renyie Entropy 93.54839 98.01734 98.0046 

Fractal 
Dimension Kurtosis Spectral Entropy 93.54839 98.14183 98.12874 

Fractal 
Dimension Kurtosis Shannon Entropy 93.54839 98.01273 98 

Fractal 
Dimension Kurtosis 

Approximate 
Entropy 93.54839 97.9574 97.94483 
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Fractal 
Dimension Kurtosis 

Permutation 
Entropy 93.54839 97.94356 97.93103 

Fractal 
Dimension Kurtosis Variance 91.93548 98.95795 98.93793 

Fractal 
Dimension Kurtosis Skew 91.93548 98.128 98.11035 

Fractal 
Dimension 

Modified Hurst 
Exponent 

Root Mean 
Square 93.54839 97.65308 97.64138 

Fractal 
Dimension 

Modified Hurst 
Exponent 

Min Absolute 
Value 93.54839 97.96201 97.94943 

Fractal 
Dimension 

Modified Hurst 
Exponent 

Max Absolute 
Value 90.32258 99.30376 99.27816 

Fractal 
Dimension 

Modified Hurst 
Exponent 

Mean Absolute 
Value 93.54839 97.66691 97.65517 

Fractal 
Dimension 

Modified Hurst 
Exponent 

Hjorth 
Complexity 91.93548 98.17872 98.16092 

Fractal 
Dimension 

Modified Hurst 
Exponent Hjorth Mobility 95.16129 98.26632 98.25747 

Fractal 
Dimension 

Modified Hurst 
Exponent Coastline 95.16129 97.71763 97.71035 

Fractal 
Dimension 

Modified Hurst 
Exponent Average Energy 93.54839 98.49687 98.48276 

Fractal 
Dimension 

Modified Hurst 
Exponent Hurst Exponent 95.16129 97.80985 97.8023 

Fractal 
Dimension 

Modified Hurst 
Exponent Renyie Entropy 93.54839 97.98506 97.97241 

Fractal 
Dimension 

Modified Hurst 
Exponent Spectral Entropy 93.54839 98.0035 97.99081 

Fractal 
Dimension 

Modified Hurst 
Exponent Shannon Entropy 93.54839 97.96201 97.94943 

Fractal 
Dimension 

Modified Hurst 
Exponent 

Approximate 
Entropy 93.54839 97.97123 97.95862 

Fractal 
Dimension 

Modified Hurst 
Exponent 

Permutation 
Entropy 93.54839 98.045 98.03218 

Fractal 
Dimension 

Modified Hurst 
Exponent Variance 93.54839 98.48764 98.47356 

Fractal 
Dimension 

Modified Hurst 
Exponent Skew 90.32258 98.82424 98.8 

Fractal 
Dimension 

Modified Hurst 
Exponent Kurtosis 93.54839 97.90668 97.89425 

Standard 
Deviation 

Min Absolute 
Value 

Root Mean 
Square 85.48387 97.92973 97.89425 

Standard 
Deviation 

Max Absolute 
Value 

Root Mean 
Square 83.87097 98.27554 98.23448 

Standard 
Deviation 

Max Absolute 
Value 

Min Absolute 
Value 82.25807 98.27554 98.22989 

Standard 
Deviation 

Mean Absolute 
Value 

Root Mean 
Square 87.09677 98.04961 98.01839 

Standard 
Deviation 

Mean Absolute 
Value 

Min Absolute 
Value 87.09677 97.86979 97.83908 
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Standard 
Deviation 

Mean Absolute 
Value 

Max Absolute 
Value 83.87097 98.23405 98.1931 

Standard 
Deviation 

Hjorth 
Complexity 

Root Mean 
Square 80.64516 98.36315 98.31264 

Standard 
Deviation 

Hjorth 
Complexity 

Min Absolute 
Value 82.25807 98.22483 98.17931 

Standard 
Deviation 

Hjorth 
Complexity 

Max Absolute 
Value 80.64516 98.50148 98.45058 

Standard 
Deviation 

Hjorth 
Complexity 

Mean Absolute 
Value 83.87097 98.33087 98.28966 

Standard 
Deviation Hjorth Mobility 

Root Mean 
Square 83.87097 98.35393 98.31264 

Standard 
Deviation Hjorth Mobility 

Min Absolute 
Value 83.87097 98.26171 98.22069 

Standard 
Deviation Hjorth Mobility 

Max Absolute 
Value 80.64516 98.5107 98.45977 

Standard 
Deviation Hjorth Mobility 

Mean Absolute 
Value 82.25807 98.33087 98.28506 

Standard 
Deviation Hjorth Mobility 

Hjorth 
Complexity 82.25807 98.3401 98.29425 

Standard 
Deviation Coastline 

Root Mean 
Square 82.25807 98.09111 98.04598 

Standard 
Deviation Coastline 

Min Absolute 
Value 85.48387 98.00812 97.97241 

Standard 
Deviation Coastline 

Max Absolute 
Value 80.64516 98.35393 98.30345 

Standard 
Deviation Coastline 

Mean Absolute 
Value 85.48387 98.08189 98.04598 

Standard 
Deviation Coastline 

Hjorth 
Complexity 80.64516 98.40926 98.35862 

Standard 
Deviation Coastline Hjorth Mobility 83.87097 98.36776 98.32644 

Standard 
Deviation Average Energy 

Root Mean 
Square 69.35484 98.87034 98.78621 

Standard 
Deviation Average Energy 

Min Absolute 
Value 70.96774 98.61675 98.53793 

Standard 
Deviation Average Energy 

Max Absolute 
Value 67.74194 98.99484 98.90575 

Standard 
Deviation Average Energy 

Mean Absolute 
Value 74.19355 98.72741 98.65747 

Standard 
Deviation Average Energy 

Hjorth 
Complexity 66.12903 98.99023 98.89655 

Standard 
Deviation Average Energy Hjorth Mobility 67.74194 98.94873 98.85977 

Standard 
Deviation Average Energy Coastline 59.67742 98.87957 98.76782 

Standard 
Deviation Hurst Exponent 

Root Mean 
Square 83.87097 97.94817 97.90805 

Standard 
Deviation Hurst Exponent 

Min Absolute 
Value 83.87097 97.89746 97.85747 
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Standard 
Deviation Hurst Exponent 

Max Absolute 
Value 83.87097 98.20638 98.16552 

Standard 
Deviation Hurst Exponent 

Mean Absolute 
Value 85.48387 97.82829 97.7931 

Standard 
Deviation Hurst Exponent 

Hjorth 
Complexity 83.87097 98.2156 98.17471 

Standard 
Deviation Hurst Exponent Hjorth Mobility 85.48387 97.7038 97.66897 

Standard 
Deviation Hurst Exponent Coastline 85.48387 97.87901 97.84368 

Standard 
Deviation Hurst Exponent Average Energy 72.58065 98.69974 98.62529 

Standard 
Deviation Renyie Entropy 

Root Mean 
Square 82.25807 98.20177 98.15632 

Standard 
Deviation Renyie Entropy 

Min Absolute 
Value 82.25807 97.82829 97.78391 

Standard 
Deviation Renyie Entropy 

Max Absolute 
Value 82.25807 98.51992 98.47356 

Standard 
Deviation Renyie Entropy 

Mean Absolute 
Value 82.25807 98.17411 98.12874 

Standard 
Deviation Renyie Entropy 

Hjorth 
Complexity 80.64516 98.37237 98.32184 

Standard 
Deviation Renyie Entropy Hjorth Mobility 83.87097 98.35393 98.31264 

Standard 
Deviation Renyie Entropy Coastline 79.03226 98.14183 98.08736 

Standard 
Deviation Renyie Entropy Average Energy 72.58065 98.6398 98.56552 

Standard 
Deviation Renyie Entropy Hurst Exponent 85.48387 97.8329 97.7977 

Standard 
Deviation Spectral Entropy 

Root Mean 
Square 83.87097 98.09572 98.05517 

Standard 
Deviation Spectral Entropy 

Min Absolute 
Value 85.48387 97.85135 97.81609 

Standard 
Deviation Spectral Entropy 

Max Absolute 
Value 83.87097 98.42309 98.38161 

Standard 
Deviation Spectral Entropy 

Mean Absolute 
Value 87.09677 98.08189 98.05058 

Standard 
Deviation Spectral Entropy 

Hjorth 
Complexity 80.64516 98.23405 98.18391 

Standard 
Deviation Spectral Entropy Hjorth Mobility 83.87097 98.18794 98.14713 

Standard 
Deviation Spectral Entropy Coastline 82.25807 98.05422 98.0092 

Standard 
Deviation Spectral Entropy Average Energy 67.74194 98.86573 98.77701 

Standard 
Deviation Spectral Entropy Hurst Exponent 83.87097 97.84213 97.8023 

Standard 
Deviation Spectral Entropy Renyie Entropy 82.25807 98.22944 98.18391 
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Standard 
Deviation Shannon Entropy 

Root Mean 
Square 83.87097 98.04961 98.0092 

Standard 
Deviation Shannon Entropy 

Min Absolute 
Value 85.48387 97.7038 97.66897 

Standard 
Deviation Shannon Entropy 

Max Absolute 
Value 82.25807 98.41387 98.36782 

Standard 
Deviation Shannon Entropy 

Mean Absolute 
Value 83.87097 97.99428 97.95402 

Standard 
Deviation Shannon Entropy 

Hjorth 
Complexity 82.25807 98.34932 98.30345 

Standard 
Deviation Shannon Entropy Hjorth Mobility 83.87097 98.34471 98.30345 

Standard 
Deviation Shannon Entropy Coastline 82.25807 98.03578 97.99081 

Standard 
Deviation Shannon Entropy Average Energy 72.58065 98.57525 98.50115 

Standard 
Deviation Shannon Entropy Hurst Exponent 85.48387 97.90207 97.86667 

Standard 
Deviation Shannon Entropy Renyie Entropy 83.87097 98.045 98.0046 

Standard 
Deviation Shannon Entropy Spectral Entropy 83.87097 98.045 98.0046 

Standard 
Deviation 

Approximate 
Entropy 

Root Mean 
Square 83.87097 98.08189 98.04138 

Standard 
Deviation 

Approximate 
Entropy 

Min Absolute 
Value 85.48387 97.88823 97.85287 

Standard 
Deviation 

Approximate 
Entropy 

Max Absolute 
Value 83.87097 98.30782 98.26667 

Standard 
Deviation 

Approximate 
Entropy 

Mean Absolute 
Value 85.48387 98.06345 98.02759 

Standard 
Deviation 

Approximate 
Entropy 

Hjorth 
Complexity 82.25807 98.15105 98.10575 

Standard 
Deviation 

Approximate 
Entropy Hjorth Mobility 83.87097 98.18333 98.14253 

Standard 
Deviation 

Approximate 
Entropy Coastline 83.87097 98.03117 97.99081 

Standard 
Deviation 

Approximate 
Entropy Average Energy 70.96774 98.74585 98.66667 

Standard 
Deviation 

Approximate 
Entropy Hurst Exponent 85.48387 97.83751 97.8023 

Standard 
Deviation 

Approximate 
Entropy Renyie Entropy 82.25807 98.14644 98.10115 

Standard 
Deviation 

Approximate 
Entropy Spectral Entropy 85.48387 98.07267 98.03678 

Standard 
Deviation 

Approximate 
Entropy Shannon Entropy 83.87097 98.05883 98.01839 

Standard 
Deviation 

Permutation 
Entropy 

Root Mean 
Square 82.25807 98.045 98 

Standard 
Deviation 

Permutation 
Entropy 

Min Absolute 
Value 85.48387 97.93434 97.89885 
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Standard 
Deviation 

Permutation 
Entropy 

Max Absolute 
Value 82.25807 98.26632 98.22069 

Standard 
Deviation 

Permutation 
Entropy 

Mean Absolute 
Value 82.25807 98.03117 97.98621 

Standard 
Deviation 

Permutation 
Entropy 

Hjorth 
Complexity 82.25807 98.36776 98.32184 

Standard 
Deviation 

Permutation 
Entropy Hjorth Mobility 80.64516 98.34932 98.29885 

Standard 
Deviation 

Permutation 
Entropy Coastline 82.25807 98.10955 98.06437 

Standard 
Deviation 

Permutation 
Entropy Average Energy 67.74194 98.83807 98.74943 

Standard 
Deviation 

Permutation 
Entropy Hurst Exponent 83.87097 97.94817 97.90805 

Standard 
Deviation 

Permutation 
Entropy Renyie Entropy 80.64516 98.19255 98.14253 

Standard 
Deviation 

Permutation 
Entropy Spectral Entropy 82.25807 97.97123 97.92644 

Standard 
Deviation 

Permutation 
Entropy Shannon Entropy 83.87097 98.07267 98.03218 

Standard 
Deviation 

Permutation 
Entropy 

Approximate 
Entropy 82.25807 98.04039 97.9954 

Standard 
Deviation Variance 

Root Mean 
Square 69.35484 98.90262 98.81839 

Standard 
Deviation Variance 

Min Absolute 
Value 70.96774 98.61675 98.53793 

Standard 
Deviation Variance 

Max Absolute 
Value 67.74194 99.00867 98.91954 

Standard 
Deviation Variance 

Mean Absolute 
Value 74.19355 98.73663 98.66667 

Standard 
Deviation Variance 

Hjorth 
Complexity 66.12903 98.99484 98.90115 

Standard 
Deviation Variance Hjorth Mobility 64.51613 99.0225 98.92414 

Standard 
Deviation Variance Coastline 62.90323 98.87034 98.76782 

Standard 
Deviation Variance Average Energy 69.35484 98.90262 98.81839 

Standard 
Deviation Variance Hurst Exponent 72.58065 98.72741 98.65287 

Standard 
Deviation Variance Renyie Entropy 72.58065 98.64902 98.57471 

Standard 
Deviation Variance Spectral Entropy 69.35484 98.88418 98.8 

Standard 
Deviation Variance Shannon Entropy 72.58065 98.60753 98.53333 

Standard 
Deviation Variance 

Approximate 
Entropy 70.96774 98.74585 98.66667 

Standard 
Deviation Variance 

Permutation 
Entropy 69.35484 98.84729 98.76322 
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Standard 
Deviation Skew 

Root Mean 
Square 83.87097 98.19255 98.15172 

Standard 
Deviation Skew 

Min Absolute 
Value 85.48387 98.01273 97.97701 

Standard 
Deviation Skew 

Max Absolute 
Value 82.25807 98.27554 98.22989 

Standard 
Deviation Skew 

Mean Absolute 
Value 87.09677 98.128 98.09655 

Standard 
Deviation Skew 

Hjorth 
Complexity 80.64516 98.45076 98.4 

Standard 
Deviation Skew Hjorth Mobility 83.87097 98.4277 98.38621 

Standard 
Deviation Skew Coastline 80.64516 98.26632 98.21609 

Standard 
Deviation Skew Average Energy 74.19355 98.82424 98.75402 

Standard 
Deviation Skew Hurst Exponent 85.48387 98.03578 98 

Standard 
Deviation Skew Renyie Entropy 82.25807 98.29399 98.24828 

Standard 
Deviation Skew Spectral Entropy 83.87097 98.23866 98.1977 

Standard 
Deviation Skew Shannon Entropy 82.25807 98.28016 98.23448 

Standard 
Deviation Skew 

Approximate 
Entropy 82.25807 98.24327 98.1977 

Standard 
Deviation Skew 

Permutation 
Entropy 83.87097 98.24327 98.2023 

Standard 
Deviation Skew Variance 74.19355 98.81501 98.74483 

Standard 
Deviation Kurtosis 

Root Mean 
Square 83.87097 98.51531 98.47356 

Standard 
Deviation Kurtosis 

Min Absolute 
Value 87.09677 98.17872 98.14713 

Standard 
Deviation Kurtosis 

Max Absolute 
Value 85.48387 98.80579 98.76782 

Standard 
Deviation Kurtosis 

Mean Absolute 
Value 87.09677 98.40926 98.37701 

Standard 
Deviation Kurtosis 

Hjorth 
Complexity 82.25807 98.54758 98.50115 

Standard 
Deviation Kurtosis Hjorth Mobility 83.87097 98.57986 98.53793 

Standard 
Deviation Kurtosis Coastline 82.25807 98.62136 98.57471 

Standard 
Deviation Kurtosis Average Energy 70.96774 98.8934 98.81379 

Standard 
Deviation Kurtosis Hurst Exponent 85.48387 98.16027 98.12414 

Standard 
Deviation Kurtosis Renyie Entropy 82.25807 98.39543 98.34943 
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Standard 
Deviation Kurtosis Spectral Entropy 82.25807 98.64441 98.5977 

Standard 
Deviation Kurtosis Shannon Entropy 83.87097 98.39082 98.34943 

Standard 
Deviation 

Modified Hurst 
Exponent 

Approximate 
Entropy 88.70968 97.42715 97.4023 

Standard 
Deviation 

Modified Hurst 
Exponent 

Permutation 
Entropy 85.48387 97.29805 97.26437 

Standard 
Deviation 

Modified Hurst 
Exponent Variance 74.19355 98.41387 98.34483 

Standard 
Deviation 

Modified Hurst 
Exponent Skew 80.64516 98.37698 98.32644 

Standard 
Deviation 

Modified Hurst 
Exponent Kurtosis 87.09677 98.21099 98.17931 

Standard 
Deviation 

Fractal 
Dimension 

Root Mean 
Square 93.54839 98.27093 98.25747 

Standard 
Deviation 

Fractal 
Dimension 

Min Absolute 
Value 93.54839 98.04039 98.02759 

Standard 
Deviation 

Fractal 
Dimension 

Max Absolute 
Value 91.93548 98.43692 98.41839 

Standard 
Deviation 

Fractal 
Dimension 

Mean Absolute 
Value 93.54839 98.28016 98.26667 

Standard 
Deviation 

Fractal 
Dimension 

Hjorth 
Complexity 93.54839 98.24788 98.23448 

Standard 
Deviation 

Fractal 
Dimension Hjorth Mobility 91.93548 98.15105 98.13333 

Standard 
Deviation 

Fractal 
Dimension Coastline 93.54839 98.16027 98.14713 

Standard 
Deviation 

Fractal 
Dimension Average Energy 93.54839 98.53836 98.52414 

Standard 
Deviation 

Fractal 
Dimension Hurst Exponent 91.93548 97.80524 97.78851 

Standard 
Deviation 

Fractal 
Dimension Renyie Entropy 93.54839 98.18333 98.17012 

Standard 
Deviation 

Fractal 
Dimension Spectral Entropy 93.54839 98.28477 98.27126 

Standard 
Deviation 

Fractal 
Dimension Shannon Entropy 93.54839 98.36315 98.34943 

Standard 
Deviation 

Fractal 
Dimension 

Approximate 
Entropy 93.54839 98.28016 98.26667 

Standard 
Deviation 

Fractal 
Dimension 

Permutation 
Entropy 93.54839 98.02656 98.01379 

Standard 
Deviation 

Fractal 
Dimension Variance 93.54839 98.5522 98.53793 

Standard 
Deviation 

Fractal 
Dimension Skew 91.93548 98.1695 98.15172 

Standard 
Deviation 

Fractal 
Dimension Kurtosis 93.54839 98.63519 98.62069 

Standard 
Deviation 

Fractal 
Dimension 

Modified Hurst 
Exponent 93.54839 97.6623 97.65058 
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 ملخصال
 

مرض الصرع هو أحد أكثر الأمراض العصبية انتشارا حيث أنه يؤثر على حياة الملايين من  
 البشر حول العالم ولهذا السبب فقد عمل الكثير على تقديم أنظمة للكشف آليا عن نوبات الصرع.

  
العمل المقترح في هذه الأطروحة يهدف الى  تصميم وتنفيذ دائرة الكترونية مدمجة يمكن  

زرعها داخل المخ لتعمل على الكشف عن نوبات الصرع. هذه النظام المتكامل القادر على الكشف 
عن الصرع يجب أن يتكون من أربع مراحل: تجهيز البيانات, استخلاص الخصائص, اختيار 

 20أخيرا التصنيف. بالنسبة لمرحلة استخراج الخصائص فقد قمت باستخراج أفضل الخضائص و 
قمنا  كشف عن الصرع. وبعد ذلكخاصية خطية وغير خطية  واختبارهم لقياس مدى كفائتهم في ال

حث عن افضل  مزيج من هذه الخصائص يمكننا من الوصول لأفضل أداء بأقل عدد ممكن بالب
 من الخصائص.

 
لمرحلة التصنييف فقد قمنا باستخدام اكثر من تقنية لتعليم الآلة لتصنيف لحظات أما بالنسبة  

الصرع وهذه التقنيات هى: الشبكات العصبية الاصطناعية و الات متجه الدعم وبعد ذلك قمنا 
إضافة إلى ذلك  بمقارنة أداء كل من التقنيتين وكذلك المساحة والطاقة المستهلكة في كل منهما.

 عديل على تصميم الشبكات العصبية الاصطناعية لزيادة كفائتها.فقد قمنا بت
 

وبما إن الكشف عن الصرع هو مشكلة معقدة وتدريب آلات متجهات الدعم تصبح عملية  
صعبة جدا في مثل هذه المشاكل فقد قمنا بتصميم دائرة مسرع لتساعد في تدريب الات متجهات 

 .صعود المتدرج و التحسين المتتالىالالدعم باستخدام اكثر من خوارزمية وهم: 
 

مل على بالعلاب وأخيرا قمنا بالتعاون مع فريق بحثى من كلية العلوم جامعة القاهرة و وان  
دامها في لاستخ قاعدة بيانات جديدة تحتوى على اشارات كهربية للمخ لعدد من الفئراناستخراج 

تقييم أنظمة الكشف عن الصرع.
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