Cairo University

HARDWARE IMPLEMENTATIONS OF MACHINE
LEARNING TECHNIQUES FOR NEURAL SEIZURE
DETECTION

By

Mohamed Adel Attia Elhady Elgammal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

e *The Student must Return to the Postgraduate Office

HARDWARE IMPLEMENTATIONS OF MACHINE
LEARNING TECHNIQUES FOR NEURAL
SEIZURE DETECTION

By
Mohamed Adel Attia Elhady Elgammal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Under the Supervision of

Dr. Ahmed Nader Mohieldien Dr. Hassan Mostafa Hassan
Associate Professor Assistant Professor
Department of Electronics and Electrical Department of Electronics and Electrical
Communications Communications
Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

e *The Student must Return to the Postgraduate Office

HARDWARE IMPLEMENTATIONS OF MACHINE
LEARNING TECHNIQUES FOR NEURAL SEIZURE
DETECTION

By
Mohamed Adel Attia Elhady Elgammal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Approved by the
Examining Committee

Prof. Dr. Ahmed Nader Mohieldein, Thesis Main Advisor

Prof. Dr. Mohamed Fathy Abu-Elyazeed, Internal Examiner

Prof. Dr. Yehya Hassan Ghallab, External Examiner
- Associate professor, Faculty of Engineering Helwan University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

e *The Student must Return to the Postgraduate Office

Engineer’s Name: Mohamed Adel Attia Elhady Elgammal

Date of B_irth: 05/12/_1993 o o)

Nationality: Egyptian -_

E-mail: Mohamed.adel567@gmail.com

Phone: 01067780710

Address: Faisel st., Giza, 11443

Registration Date: 1/10/2016

Awarding Date: S Y

Degree: Master of Science

Department: Electronics and Electrical Communications
Engineering

Supervisors:
Prof. Ahmed Nader Mohieldin
Dr. Hassan Mostafa Hassan

Examiners:
Prof. Yehya H. Ghallab (External examiner)
Prof. Mohamed F. Abu-Elyazeed (Internal examiner)
Prof. Ahmed N. Mohieldein (Thesis main advisor)
Title of Thesis:

HARDWARE IMPLEMENTATIONS OF MACHINE LEARNING TECHNIQUES
FOR NEURAL SEIZURE DETECTION

Key Words:
Seizure Detection; Machine Learning; Support Vector Machine; Artificial Neural
Network; Accelerator.

Summary:

In this thesis an automatic seizure detection is proposed. For features extraction,
more than 20 linear and nonlinear features are software implemented and tested to
measure their efficiency in seizure detection. For classification block, two different
algorithms are implemented: Artificial Neural Network (ANN) and Support Vector
Machine (SVM). Support Vector Machine (SVM) training accelerators are also
implemented using two different techniques: Gradient Ascent (GA) and Sequential
Minimal Optimization (SMO). Finally, a new EEG dataset is extracted from rats in
collaboration with a research team from the Faculty of Science, Cairo university and
ONE lab.

Acknowledgments

In the beginning of this thesis, | would like to thank many people who supported me
and encouraged me to give more effort to reach that output.

First, to my advisors, Dr. Ahmed Nader Mohieldein and Dr. Hassan Mostafa, | would
like to express my sincere gratefulness and appreciation for their excellent guidance,
caring, patience, and immense help in planning and executing the work in a timely
manner. Their great personality and creativity provided me with an excellent
atmosphere for work, while their technical insight and experience helped me a lot in my
research. Their support at the time of crisis will always be remembered.

Of course, | cannot find words enough to express the gratitude and appreciation that |
owe to my family. My father, my mother, my sisters and my brother Mahmoud are my
main supporters and they owe everything | reach. Their tender love and support have
always been the cementing force for building what was achieved.

Dedication

This thesis is dedicated to my father and my mother.

Table of Contents

ACKNOW LED GMENT S ... |
DEDICATION ..o, 11
T ABLE OF CON T EN T S .ttt e e e e e e e e e e e e eaaeean 11
LIST OF TABLES, V
LIST OF FIGURES.ttt et e e e e et e e e e e eeeeenns VI
NOMENCLATURE ..ottt ettt tete e eee e et eeseeeeeseseseseseseseseseeeseeenees VI
B S T R A CT ittt ettt ettt et et eeeeeeeeeeeeeeeeeeerereeeeeeeeeeeeeeeenenenees VI
CHAPTER 1 : INTRODUGCTION ...ttt 1
1.1. IVIOTIV ATION ..ttt nnan 1
1.2. PROPOSED WORK ... ettt et e e 1
1.3. ORGANIZATION OF THE THESIS ettt et e e e eeeeeeeeeeeeeeeeeeeeeeeeaneeeeeeeeeennnaanens 2
CHAPTER 2 : LITERATURE REVIEW. ...t 3
2.1. DIAGNOSIS AND TREATMENT OF EPILEPSY .ccvuieieee e 3
2.2. ELECTROENCEPHALOGRAM (EEG) SIGNAL......c.coovevieiieiieie e 4
2.3. SEIZURE DETECTION .etitititeieeieeieeeeeeeeeeeeeeeeeeeeeeeeeseseseeseessseseeeeseseeeneneeees 5
2.4. AUTOMATIC SEIZURE DETECTION SYSTEM ...ieeiieieirtiiieeeeeeeeeiniinneneeees 8
24.1. EEG ACQUISITIONcuiiiiciecice sttt 8
2.4.2. PrEPIOCESSING ..eovviivi ettt sttt re st sbeera e beare s 9
2.4.3. FRATUIE EXIrACTION ... eeeeiee e ettt ettt e e e e e e e e e e e e e e nan 10
244, (O - 1Y) 0% L[PO 11
2.5. MACHINE LEARNING ...ceeve e et e e e e e e e e e e e e e e 12
2.6. D) XS] = TR 14
2.7. PERFORMANGCE IMETRICS .ovvtvtiieieeeeeteeeiie s e e e e e eeeeeesseseesneessennnneeeeeees 14
2.8. PREVIOUS WORK ..ttt ettt et e e e e et eee s e e e e e s e eeranneeeeeees 16
2.8.1. Feature extraction and SEIECHION..........coooueeeeeeeeeeeeeee et 16
2.8.2. Hardware implementation of SVM training accelerators 16
CHAPTER 3 : DESIGN OF FEATURE EXTRACTION AND SELECTION...... 18
3.1. LINEAR FEATURES ...ttt e e e e e e 18
3.2. NONLINEAR FEATURES ... coeeee ettt e et e et e e e 20
3.3. SIMULATION SETUP «oeevtiee e et ettt e e e e e e e e e e e eaaaaseeeesseeennnaasesesereennnnns 22
3.4. SIMULATION RESULTS vttt eeeteeeeeiees e e e eee e eeaaesseeeesseesssnnnnsesesssesennnns 23
CHAPTER 4 : DESIGN OF SUPPORT VECTOR MACHINE TRAINING
A C CELER AT ORS ...t eeeeeeeeneees 30
4.1. SUPPORT VECTOR IMACHINEceeetieeee et e e e e e eeeeen e e e e e enenannnns 30
4.2. GRADIENT ASCENT (GA) .ttt ettt 33

4.2.1. AlGOTTENM .. 33

4.2.2. Hardware Implementation............cccoeiiiinineneneeeeee e 35

4.3. SEQUENTIAL MINIMAL OPTIMIZATION (SMO)covviieiiercie e 37
4.3.1. AlGOTTTNM e 37
4.3.2. Hardware implementation............cccccovveveie i 39
4.3.2.1. The SMO Processing UNitccceviioiiiieeiicise ettt 40

43.2.2. LTSRS\ (@ I To a1 o] I T RS 47

4.4, SIMULATION SETUP ooiiiii ittt ettt sabbaae e e s saabbaaee s 48
4.5, SIMULATION RESULTS ..ottt s e nbrraee e 48
4.6. HARDWARE IMPLEMENTATION RESULTS ...uvvtiiiiiieeiiiiiirieeee e 49
CHAPTER 5 : DESIGN OF CLASSIFIERS ..o 51
5.1. SUPPORT VECTOR MACHINE (SVM) CLASSIFIER........cccveruriierirenennes 51
5.1.1. AlGOTTTNM s 51
5.1.2. Hardware implementation............ccccovvieeii i 51

5.2. ARTIFICIAL NEURAL NETWORK (ANN)c.coiiiiiiiiinenieniseseeeeees 52
5.2.1. AlGOTTTNM . 52

5.3. HARDWARE IMPLEMENTATIONuuuuuuuutataiiianssisasasssssnsnsnnnssssnnsnsnnssananes 53
5.4, MODIFIED ANN L..uiiiiiiiiiiiiiiiiiiiiiiiiiirirarerarsesrarararsrassssrsrarssseeeaaaraaaaaaa—es 54
5.5. SIMULATION SETUP ooiiii ittt e s s bbb are e e s e e s s sesaabbaeee e 55
5.6. SIMULATION RESULTS ...ttt ettt e breen s 56
5.7. HARDWARE IMPLEMENTATION RESULTS ...uvvviiiiiieiiiiiiiiieeee e 56
CHAPTER 6 : RATS DATASET GENERATION ..o 58
CONCLUSIONS AND FUTURE WORK ...ttt 67
APPENDIX A: MATLAB SIMULATION CODES........ccoiiii e, 74
APPENDIX B: DETAILED FEATURE SELECTION RESULTS..........ccoovvnnne. 105

List of Tables

Table 1 - CHB MIT PAIENTS.ooviiiiiiiiiieieice e 15
Table 2- Psuedo code of Gradient Ascent algorithm.............cccoveiv i, 34
Table 3 - PSUEDO code of Sequential Minimal Optimization algorithm..................... 38
Table 4 - Learned function PSUEDQ COUE.cocceiiiiiiiininiene e 42
Table 5 - Limits calculator PSUEDQO COUE.ccoiiiiiiieriieiesiesieeie e 46
Table 6 - Performance measurement for seizure detection using different SVM training
TECIINIGUES. ...ttt bbbt 49
Table 7 - Performance comparison t0 Prior WOIK.cccccvevveieeieiiesie e see s 49
Table 8 - Hardware implementation results of SVM training algorithms on UMC
130NM PIALFOIM. .o e nre e 50
Table 9 - Hardware implementation results of SVM training algorithms on Spartan-6

e O AN o] P> U 0] 3 AU S 50
Table 10 - Performance measurement for seizure detection using different classification
L0 0] 110 [0TSRSO 56
Table 11 - Hardware implementation results of different classification techniques on
1 L@ e 0] Ty oI o] = 0] 1 1 RSOSSN 57
Table 12 - Hardware implementation results of different classification techniques on
Spartan-6 FPGA PIatfOrm.........coooiiiiece e 57

List of Figures

Figure 1 Typical EEG signal measured from 4 different electrodes.............cccceeveienenn. 6
Figure 2 - EEG frequency SPectrum DandS..........ccceveiieiveieiiee s 7
Figure 3 - Automatic seizure detection system block diagram.ccccoovviiiiiiiicnenn. 8
Figure 4 - 10-20 system for EEG mMeasurement.cccovevevieeieeresiese e esie e 9
Figure 5 - EEG signal divided into time epoChS= 4 SECS.........cccccereriieriiiniiiceee, 11
Figure 6 - Supervised learning eXample.cccovoeiieiecie s 12
Figure 7 - Unsupervised learning eXample. ..., 13
Figure 8 - Training points for Hjorth mobility, Hjorth complexity and Maximum
ADSOIULE ValUE TEALUIES.cveiieieiiee ettt nre s 25
Figure 9 - Training points for Hurst exponent, average energy and minimum absolute
VAIUB TRALUIES. ... ettt ettt e s reenteeneeeneenreeneeanes 26
Figure 10 - Training data points of Fractal Dimension, Hurst Exponent and Coastline
L2 LT (=SOSR 27
Figure 11 - Number of features' combinations in each range of sensitivity................... 28
Figure 12 - number of incidence of each feature in the combinations with sensitivity
30000, vttt bbbt b e R b e b e R e e Rt e e bbb EeeRe e ne e nes 29
Figure 13- Different classification NYperplanescccooveieienenienineceeee, 31
Figure 14- Soft Margin SVM. ..o 32
Figure 15 - Gradient Ascent training circuit block diagram............c.ccocoviiiiiiicienn, 34
Figure 16 - GA controller finite state machine............cccoocevveiii i 35
Figure 17 - GA kernel calculation phases finite state machine.ccccocvvviiieiennn, 35
Figure 18 - GA kernel finalization phases finite state machine.cccccocoveviivenenne. 37
Figure 19 - The bounding values of two Lagrange multipliers.ccccooviiiiienennn, 38
Figure 20 - Sequential Minimal Optimization training circuit block diagram................ 40
Figure 21 - SMO processing unit block diagram.ccccooeieiiiininceee, 41
Figure 22 - kernel function block diagram.cccccveveiiiieiie s 42
Figure 23 - Learned fUNCLION FSM.oooiiiiiiiieee e 43
Figure 24 - Bias calculator FSM.cocooiiiiiii e 44
Figure 25 - Bias calculator hardware implementation block diagram.ccccevenee. 45
Figure 26 - Limits calculator block diagram.cccccceeieieeie i 47
Figure 27 - SMO processing UNIt FSIM.cccooiiiiiiiiiiinicee e 48
Figure 28 - Top level SVM classifier block diagram.ccccocevveiiiiciiccecc e 52
Figure 29 - Three layer feedforward network architeCture.ccccoeevininviicienennn, 53
Figure 30 - Top level ANN classifier block diagram.ccccocovveiiiieiiccece e 54
Figure 31 - ANN feadforward architeCture.ccccoovviiiininie e, 55
Figure 32 - RNN @rChiteCLUIE.ccvviiiieciie ittt 55
Figure 33 - Electrodes implantation SUrgery 0N rats.c.ccooevereneiencneseseeeeee e, 63
Figure 34 - LabLiNC V SYSEIMciiiiiieiie ittt 64
Figure 35 - EEG reading eXPeriment.........coeieieieieneniseseeeee e 65
Figure 36 - Sample of the recorded rats EEG..........cccccooviiiiiiiccie e 66

Vi

file:///D:/Communications/Research/2018/thesis/FECU%20Thesis%20template9.docx%23_Toc514623285

Nomenclature

Abbreviation Description
AED Anti-Epileptic Drugs
ANN Artificial Neural Network
CNS Central Nervous System
ECG Electrocardiogram
FD Fractal Dimension
FFT Fast Fourier Transform
FNPS False Negatives Per Seizure
FPPS False Positives Per Seizure
GA Gradient Ascent
MAV Mean Absolute Value
ML Machine Learning
PPM Partial Products Matrix
QP Quadratic Programming
RBF Radial Basis function
RMS Root Mean Square
SD Standard Deviation
SDA Seizure Detection Algorithm
SMO Sequential Minimal Optimization
SVM Support Vector Machine
VNS Vagal Nerve Stimulations
WHO World Health Organization

WT Wavelet Transform

Vii

Abstract

Epilepsy is one of the most common neurological disorders that affects lives of
millions of people around the world. Therefore, automatic seizure detection systems has
been introduced.

The proposed work in the thesis aims to design and implement an implantable chip
that helps in seizure detection. The system of automatic seizure detection consists of 4
stages: preprocessing, feature extraction, feature selection and classification. For
features extraction, more than 20 linear and nonlinear features are software
implemented and tested to measure their efficiency in seizure detection. Then, an
exhaustive search is performed to choose the best features.

For the classification block, different machine learning techniques are hardware
implemented to classify seizure and non-seizure epochs. The classifier block is
implemented using Artificial Neural Network (ANN) and Support Vector Machine
(SVM). A comparison is performed between the two classifiers on the performance, area
and energy consumption. A modification is proposed on ANN to improve performance.

As the neural seizure detection is a very complex problem, support vector machine
(SVM) training accelerators are implemented to speed up the training phase. The
implementation of the accelerator is done using two different algorithms: Gradient
Ascent (GA) and Sequential Minimal Optimization (SMO).

Moreover, a new EEG dataset is extracted in collaboration with a research team from
the Faculty of Science, Cairo University and ONE lab. The new dataset is extracted from
rats before, during and after seizures. This dataset is extracted using commercial
industrial amplifier and a BioBench based software.

viii

Chapter 1 : Introduction

Human brain is the main part of the central neural system (CNS). It is a very complex
system that consists of billions of neurons organized in a huge network. It is responsible
on receiving and collecting measurements from sensors all over the body and taking
decisions to make humans behave as they do. This great system —the human brain- is
divided into multiple regions. Each region is responsible on a specific task.
Understanding how human brain works is a very interested research topic that has been
studied at different spatial scales: microscopic and macroscopic. It is found that different
neurons and regions communicate with each other through this network. Many Disorders
affect human brain and consequently cause malfunction in human behavior.

1.1. Motivation

Epilepsy is a central nervous system (CNS) disorder resulting from abnormal
activities. It is one of the chronic diseases the affects people from all ages. According to
World Health Organization (WHO), more than 50 millions around the world have
epilepsy [1]. Epilepsy causes seizures on infrequent basis. Epileptic seizures vary in type,
strength and duration. People who have epilepsy face many obstacles in their daily life
such as driving a car and cooking. Epileptic seizure is a large-scale phenomenon in which
a large portion of the brain is involved in the abnormal activity not only one neuron.
Thus, having a very large number of neurons and a dense network among these neurons
are the main conditions for epileptic seizures. These conditions are satisfied in the human
brain in the normal activity [2].

Epilepsy is classified into some generalized categories: focal seizures, non-focal
seizures and continuous seizures. In focal epilepsy, a specific part of the brain is the main
source of the seizures due to some damaged neurons. These damaged neurons start the
abnormal activity then this activity spreads to a large portion of the brain.

In non-focal seizures, sometimes called generalized seizures, the epileptic activity
starts at the whole brain simultaneously. Scientists suggests that the cause of generalized
seizures is due to brain properties rather than some damaged neurons [2].

In continuous seizures, there is almost no recovery between the seizures. It is the
most dangerous type of seizures as it might threat patient’s life.

1.2. Proposed Work

In this thesis proposal, an automatic seizure detection system is proposed to measure
the EEG signal of a seizure patient. The system extracts some discriminating features
from the EEG. Then, different classification techniques are proposed to classify the
seizure and non- seizure time epochs. Hardware implementations of support vector

machine (SVM) classifier and artificial neural network (ANN) are proposed and
compared. Moreover, a hardware implementation of an accelerator of support vector
machine learning is implemented using two different techniques. The two techniques are:
gradient ascent (GA) and sequential minimal optimization (SMO).

1.3. Organization of the thesis

The reminder of the thesis is organized as follows: Chapter 2 introduces basic
concepts for the epilepsy treatment techniques, the EEG signal, automatic seizure
detection system and machine learning techniques. It also introduces a literature review
of the previous work done on the literature. Chapter 3 presents detailed analysis of the
proposed feature extraction and selection process. It also tabulates the results of the
feature extraction and selection and the best features found. Chapter 4 presents a detailed
analysis of the SVM training procedure and two different algorithms are presented and
hardware implemented. Chapter 5 presented a detailed analysis of different classifiers
techniques and their proposed hardware implementations. Chapter 6 shows the work
done to generate a new EEG dataset from rats to be used in testing. Finally, appendices
illustrates the MATLAB codes used for software simulations and the detailed results of
feature selection process.

Chapter 2 : Literature Review.

2.1. Diagnosis and Treatment of Epilepsy

The presence of abnormal or damaged neurons in the brain does not necessarily
cause seizures. To diagnose an epileptic seizure, many imaging of the brain should be
taken. Also, medical history of the patient should be reviewed.

After diagnosis an epilepsy and determining its type, different treatment techniques
such as Anti-Epileptic Drugs, Surgical resection and Electrical stimulation are used.

Anti-epileptic drugs (AEDSs) is one of the most common methods to treat epilepsy.
AEDs attempt to treat epilepsy by changing the chemistry of the brain. Hence, AEDs aim
to control seizures and they work well with almost two-thirds of epilepsy patients. On
the other hand, they have many side effects as they affect the whole brain. Another
drawback of the AEDs is that they are totally experimental. Doctors start to try a
combination of drugs that shows good results with other patients who have the same age,
gender and medical history. Then, they try different combinations and doses till they get
the right combination that gives the best result with that patient. That best mixture of
drugs should balance between controlling the seizures and minimizing the side effects as
much as possible. A great research is being done on AEDs and is achieving good results

[3].

The second technique that is used in epilepsy treatment is surgical resection [4]. This
solution is used specially for focal seizures and when a mixture of more than 3 AEDs
could not control seizures [2]. A surgery of removing the damaged neurons and resection
it from the brain network is performed. This surgery causes that the abnormal activity of
the damaged neurons could not be transferred to the whole brain. Hence, no seizures
occur. Many tests should be done on the brain before starting the surgery to determine
the portion of the brain that causes seizures. Also, the removed portion should not be
responsible of one of the main functions of the patient like memory, vision, hearing,
speaking or moving. The large amount of redundancy in human brain neurons made it
possible to remove a small portion without facing a great effects on human’s daily life.

When the first two techniques could not help in epilepsy treatment, Doctors think of
alternative ways to control and limit seizures for this patient. One of these ways is
electrical stimulation. Many people may think that electrical stimulation for neurons may
cause more seizures not reducing them. However, it is proven that electrical stimulation
causes a reduction in seizures in many cases [5].

Vagal nerve stimulation (VNS) is one of the most common treatments of epilepsy
based on electrical stimulation [6]. VNS includes implanting stimulating electrodes on
the brain cortex and an electrical battery on the chest cavity. These electrodes are used to
give electrical stimulation to specific regions in the brain lobe to reduce seizures [7]. The
clinical experiments of VNS have showed a reduction by 50% of the total number of
seizures. Also, the implanted device stays working for years after activation [2]. VNS
also has the advantage of not having the side effects caused by AEDs. However, VNS

has some drawbacks. First, it is a way to reduce seizures not eliminate them. Second,
VNS affects a large portion of the brain not the required portion only.

The way the electrical is applied to the brain is under great research. Traditionally,
the electrical stimulation was used continuously on an on-off modes. In slow on-off
mode, the stimulation is used for 30 seconds. Then, it is being off for 5 minutes. While
in fast mode the stimulation is used for 7 seconds and then being off for 12 seconds [8].
The choice of a specific mode, period and shape of an electrical stimulation used for a
specific patient is usually empirical.

Nowadays, research is done to detect seizures and apply electrical stimulation once
a seizure has begun instead of applying it continuously. This will minimize the side
effects greatly. Moreover, the battery life will be extended greatly. However, many
challenges face researchers. Automatic seizure detection is very challengeable and many
research is being done for the automatic detection and prediction of epileptic seizures
with different approaches. One approach is to analyze the muscles movement to detect
epileptic seizures [9]. Another approach is studying the electrocardiogram (ECG) signal
of the heart [10]. A third approach is electroencephalogram (EEG) analysis.

2.2. Electroencephalogram (EEG) signal

As mentioned above, Analysis of EEG signal is one of the most common approaches
used for seizure detection and prediction. EEG is an electrical record of what is
happening inside the brain. Traditionally, Electrical voltage was first measured from
monkeys on 1875. However, there was almost no meaningful benefit from it until 1920s
[11].

EEG signal is the electrical signals generated by human brain. These electrical
signals’ amplitude are less than 300uV. The frequency response of these signals are
spanned to 100Hz. Because of the very low amplitude of the EEG signals, the process of
EEG measurement is a very challengeable task.

EEG measurements are made at various scales. First type is scalp EEG where
measurement electrodes are added on the skull. The scalp electrodes can be easily
attached. However, recordings from scalp EEG are highly attenuated as the skull acts as
a filter so a very large portion of the brain should be involved in the seizure to be able to
detect seizures from EEG. However, the performance of EEG measurement using scalp
electrodes can be enhanced by using more electrodes. In practice, more than 20 electrodes
are used and placed on patient’s skull. However, some research has proposed more
electrodes up to 256 electrodes to increase measurement performance [12]. The
placement of the electrodes on the skull follows many standards as 10-10 and 10-20
system. A typical EEG signal measured from 4 different scalp electrodes are shown in
Figure 1.

The second type of EEG measurement is intra-cranial EEG where electrodes are
implanted on the cortex in a surgery. This type of measurement is more accurate and can
record measurement of a smaller scale of neurons [13].

The EEG signal frequency domain is divided into multiple frequency bands:
- The Delta bands contains signals with frequencies less than 4 Hz.

- The Theta band contains signals with frequencies between 4-7 Hz.

- The Alpha band contains signals with frequencies between 8-12 Hz

The Beta band contains signals with frequencies between 12-30 Hz

- The Gamma band contains signals with frequencies between 30-100 Hz
These bands are shown in Figure 2.

Each frequency band contains a specific kind of information. Research is performed
to extract information from each frequency band. Cantero et al. proved that the Theta
band contains information about the transition from sleeping to waking up [14]. Palva et
al. proved that the Alpha band contains information about making a calculation [15]. The
second type of information that can be extracted from EEG signals is the transient
information. In transient analysis, different spikes are measured and analyzed. These
spikes can be caused due to a neurological disease like epilepsy or due to other artifacts.
These artifacts exist due to different causes like biological or environmental reasons. It
IS so important to remove such artifacts before processing the EEG signal to detect
seizure.

2.3. Seizure Detection

One of the main problems that is obstructing the research for epilepsy treatment is
the absence of a perfect way to detect seizure. In the pre-computer era the reading of
EEG was performed by experienced encephalographers who, based on their experience,
decided whether the recording was a seizure or not. Nowadays, even with the great
computational power, the EEG analysis by expert encephalographers remains one of the
most powerful approaches for seizure detection. However, the EEG analysis by experts
are very subjective and very time-consuming. The purpose of seizure detection
algorithms (SDA) is to replace this old-fashioned way of EEG analysis by another
process that automatically detect seizures. In order to compare the performance of
different detection methods some of the following important performance measures can
be used. The first measure is the percentage of missed seizures in 24h. However, as noted
by P. Buteneers [12], it is probably more relevant to look at the false negatives per seizure
(FNPS), as this measure allows a fair comparison between different EEG recordings. The
same applies for another measure, namely the number of false positives, where the false
positives per seizure (FPPS) can replace the number of false positives during 24h. From
a more practical point of view the time necessary for the detection of the seizure, also
called the detection delay, is an important parameter as well.

EEG amplitude (u%)

{s288) }

e

&%
|

EEG amplitude [u%)

EEG amplitude (L)

.
[T e |

=
= =
i
[N
=
[
L]
w W
o f1:3
o Ly}
BaR Rl

&%

e
|

EEG amplitude (u%)

. e [
= o= =
= — T — 1
[—
[

| |

R

=

o

o

o

e
|

&%
|

or

or

v

or

Figure 1 Typical EEG signal measured from 4 different electrodes

Power density(u V2/Hz)
o

—_
o
|

107

f (Hz)

Figure 2 - EEG frequency spectrum bands.

2.4. Automatic seizure detection system

!

EEG Acquisition

Preprocessing

Feature Extraction &
Selection

Classification

Figure 3 - Automatic seizure detection system block diagram.

Figure 3 shows the block diagram of the automatic seizure detection system. The
system mainly consists of 4 stages.

2.4.1. EEG Acquisition

The first stage is the Multi-channel EEG signal acquisition. In this stage, Different
electrodes are used to sense and measure EEG signals from different spatial positions on
the skull or the cortex. The efficiency of the electrodes affects the overall performance
of seizure detection greatly. The positioning of the measurement electrodes on the skull
follows different standards. One of these standards are the 10-20 system shown in Figure
4.

NASION

/’.ﬂiu. .
Yoot
@ (- @--Q 0
@ .

INION

Figure 4 - 10-20 system for EEG measurement.

2.4.2. Preprocessing

The second stage is preprocessing. In preprocessing stage, the raw EEG data
measured by electrodes are prepared for analysis and processing. The preprocessing stage
includes filtering the signal and only keeping the frequency range of interest. The
preprocessing also includes removing artifacts. It also includes normalizing the EEG data
to be at the same level of the other signals measured by other equipment or from other
patients.

Normalization means that data are converted to a form that is compared to all the
other data measured using different measurement equipment or from different patients.
For instance, if two different measurement systems are used, the EEG signal of each
system would be different. The first system’s EEG amplitude may vary from 0 to 15 uV.
While the second system’s EEG amplitude may vary from -10 to 10 uV/. These different
EEG signals cannot be directly compared. Hence, all measured EEG data are normalized
to the same range from -1 to 1. Then, all EEG signals from different measurement devices
and different patients can be compared. The normalization process is done through two
steps. First, removing the mean value of the EEG signal. Then, scaling the EEG signal

9

by dividing it by its standard deviation. This normalization techniques should be done
again after feature extraction phase.

Artifacts are generated due to different sources. Some artifacts are originated due to
movement like eye blinks. Other artifacts are originated due to errors and noise in the
measurement devices. Moreover, power line artefacts reside between 50 and 60 Hz
depending on the power frequency used in the country. Dealing with the artifacts
is performed using several methods. First, some artifacts are ignored as their effect
on the features extracted are minor. Second, some artifacts are rejected. The time
epoch or frequency domain of this artifacts are excluded from the analysis. Finally,
some artifacts are removed from the signal using filters to eliminate specific
frequencies using different types of filters: high-pass, low-pass, band-pass and
band-stop filters. As many research has proved that most brain EEG power
spectral is found between 3 and 30 Hz as shown in Figure 2. Libenson
et al. proved that the EEG signals do not exceed 40 Hz [16]. Hence, Blanco et al.
proposed using a low pass filter with a cut-off frequency equals to 40 Hz [17].
Preprocessing is the process in which the EEG is prepared for analysis. The signal
processing in this area involves the removal of unwanted aspects, such as artifact
and high frequency content, and normalizing the EEG data so that it is comparable
to all other data (e.g., normalize the amplitude range, sampling frequency, etc).

2.4.3. Feature extraction

The third block is feature extraction and selection. In this stage, different
discriminating features are extracted from the EEG signal to differentiate between
seizure and non-seizure intervals. Multiple features are used together as an input
to the classifier. The appropriate choice of the discriminating features is the key
of the classifier performance.

The features are extracted from different domains: time domain, frequency
domain and time-frequency domain. The EEG signal is divided in time into
several time epochs as shown in Figure 5. In each time epoch, the values of the
features used are extracted. If the feature used is a time domain feature, the feature
is extracted directly from the EEG signal. If the feature used is a frequency domain
feature, FFT is adopted first to get the frequency domain of the EEG signal. Then,
the used feature is extracted from the frequency domain of the EEG signal. Finally,
if the feature used is a time-frequency domain feature, a Wavelet transform is
adopted first on the EEG signal. Then, the feature is extracted from the calculated
time-frequency domain.

10

EI:II:I T T T T T T

150 .

W |

=0 m

EEG amplitude (%))

-100 .

-150 4

-200 .

_25'] 1 1 1 1 1 1
0

t (secs)

Figure 5 - EEG signal divided into time epochs= 4 secs.

A wavelet transform (WT) is used to represent any signal in multiple wavelets. It
helps to represent the signal in time-frequency representation.

2.4.4. Classification

After discriminating features are extracted from the EEG signal, these features need
to be judged to detect the existence of seizure. Taking a decision of seizure existence is
made based on several methods.

The old-fashioned method is comparing each feature value to a pre-determined
threshold. If the value of the feature in a time epoch exceeds the threshold, the system
detects a seizure in this time epoch. This method did not achieve an acceptable
performance for many reasons. First, choosing the threshold value for each feature is a
very challenging task as this value is the main key of the overall performance. Second,
the chosen value of the threshold is not constant for all patients and in all conditions. This
is due to the fact that the range of normal EEG signal changes from patient to another.
Also, the EEG signal range changes with the status of the person. For example, the EEG
for the same person varies during sleeping, eye blinking or doing sports.

To overcome this problem, many researches proposed to use machine learning
techniques that will be discussed in the next section.

11

2.5. Machine learning

Machine learning (ML) is the science of making the computers able to learn
themselves by their own from observing large number of examples. Machine learning is
not a newly invented science. ML has been proposed by Arthur Samuel from 1949
through late 1960s [18]. He explicitly defined ML as it is known today at 1959 [19]. In
ML, many statistical studies are performed on a very large amount of data. Recently,
machine learning and artificial intelligence become very hot topics for all software and
hardware researchers. This is due to the great growth in the computational capabilities.
Nowadays, ML is playing a great role in many fields.

ML techniques are classified into different categories as follows:
- Supervised learning

In supervised learning, the task is to find a function to map any new input to the
corresponding output based on some training points. Each of the training points is
described by their input value and their associated labels or outputs. The input-output
relation is deduced from the training example. Then, this relation is used to find the
output of any new input test point even if this new point is totally unseen in the
training examples. Figure 6 shows an example of the supervised learning problems.
In this example, multiple training points from two different groups are given. One
group is represented by the red circle while the other group is represented by the blue
circle. For each training example, a point is drawn on the x-y plane based on its
corresponding label (group). The task of the problem is to find the separable line.
After finding the line, any new point is represented on the x-y plane. Then, the type
(group) of this point is determined based on its location relative to the line.

10 =}
at Q -
s
o] o o] -
al -~
o oo g
-
7 ~
o e
B // @]
o] // “
5 -
//
al o © s
] // 2
o] - Y
3 // o}
- 8]
2 - Lo}
o] e
re o] o]
1 P o]
o o o o
D 1 1 1 1 1 1 1 O 1]
0 1 2 3 4 5 5 v a 9

Figure 6 - Supervised learning example.

- Unsupervised learning

In unsupervised learning, the task is to find a function to map any new input to
the corresponding group based on some training points. In other words, the task of
the unsupervised learning is clustering and categorizing. Each of the training points

12

is described by their input value only and all the points are unlabeled. Hence, in the
training phase only the similar training points are clustered in one group. Then, any
new testing point is attached to one of these groups. Figure 7 shows an example of
the unsupervised learning. In this example, multiple training points are given. All the
training points are unlabeled; only their input value are given but their outputs are
not. All the points are represented by the same symbol on the x-y plane. The task of
the unsupervised learning is to cluster these points into two groups based on their
values. After finalizing training and finding the separable line between the two
groups, any new test point can be classified into one of the two groups.

Figure 7 - Unsupervised learning example.

- Reinforcement learning

In the reinforcement learning, the computer interacts with a changing
environment, its behavior towards this environment is assessed by some
reinforcements. These reinforcements are either rewards or punishments.

For the work proposed in this thesis, supervised learning is the type used as the EEG
data is labeled. Different supervised learning techniques are used and compared.

Consider a supervised problem is formulated as follows:
A training data set is given as pairs of input-output points
{(x1,¥1), (x2,¥2), (x3,¥3), e, (Xp—1, Yn—1), (K, Y}

The supervised learning’s task is to fit a function that maps the inputs x; to their
corresponding outputs y; . The supervised learning problems are classified into 2
categories based on the range of y;. If y; is a real number, the problem is called a
regression problem. For example, having a database of prices of different apartments
with different areas and predict the price of any apartment of a specific area is a
regression problem as the price may take any real number. The second group of
supervised learning problems is classification problem where y; may take only one of
discrete set of values. In both groups of problems, the task is the same; finding a function
that relates the output to the input. If the performance achieved by a specific function is

13

too low when tested on the training examples, a higher order function should be used.
However, the performance may be great on the training data only and is very low for any
new testing data point. This problem is a well-known problem in machine learning which
is called over-fitting. The problem of over fitting is caused due to:
1- Very complex model: in this case a very complex function is used to fit simple
data. The solution in this case is to use a lower order function.
2- Few training examples: the second reason of the over-fitting problem is using a
few number of training examples. Hence, adding more training examples to the
dataset may solve the problem of over-fitting.

The proposed work is in the field of seizure detection. Hence, supervised learning is
the most important machine learning type used. The problem of seizure detection is a
classification problem as the output is only one of 2 groups: seizure and non-seizure.

2.6. Dataset

The database used in this work was collected at the Children’s Hospital Boston
(CHB) by a team of researchers from the Massachusetts Institute of Technology (MIT).
The dataset consists of EEG recordings from subjects with intractable seizures. The
AEDs doses are stopped for several days. Then, the researchers monitored the patients
for multiple days. The signals are recorded from different patients with different age and
sex as shown in Table 1. Noting that Chb01 and Chb21 are the same female patient but
after 1.5 years.

Each case of the 23 case has 9 up to 42 .edf files. These .edf files are almost
continuous with a very limited cuts up to 10 seconds when the EEG signals are not
recorded due to some hardware limitations. Moreover, all the protected health
information of the patients are preserved and deleted from the .edf files. Even the absolute
date of each record has been changed with another one but the relative time and date of
the same patient remained constant. Each .edf file contains the data of almost one hour
for the patient. Beside the .edf files, a .txt file is available for each patient. This .txt file
contains information about the different epileptic seizures of this patient that happened
during recording and the specific time of start and end of each seizure.

2.7. Performance Metrics

The performance of the system is measured through different performance metrics
that are widely used especially in neural seizure detection. These metrics are accuracy,
specificity and sensitivity of the classifier. The sensitivity is the true positive rate or the
percentage of seizure that could be detected successfully by the classifier and could be

The specificity is the true negative rate or the number of non-seizure epochs detected
successfully by the classifier and could be calculated as follows:

14

Specifici TN
pecificity = TN T FP
Where TP denotes true positives,

TN denotes true negatives,

FP denotes false positives,

FN denotes false negatives.

There is always a trade-off between sensitivity and specificity. As sensitivity
increases, specificity decreases and vice versa. Hence, a combining performance metric
is defined which is called accuracy. Accuracy means the percentage of the right decisions
to the total decisions made by the classifier. Accuracy can be calculated as follows:

TP+TN
TP+ FP+TN+FN

Accuracy =

Table 1 - CHB MIT patients.

Case Gender Age
Chb01 Female 11
Chb02 Male 11
Chb03 Female 14
Chb04 Male 22
Chb05 Female 7
Chb06 Female 15
Chb07 Female 14.5
Chb08 Male 3.5
Chb09 Female 10
Chb10 Male 3
Chb11 Female 12
Chb12 Female 2
Chb13 Female 3
Chb14 Female 9
Chb15 Male 16
Chb16 Female 7
Chb17 Female 12
Chb18 Female 18
Chb19 Female 19
Chb20 Female 6
Chb21 Female 13
Chb22 Female 9
Chb23 Female 6

15

2.8. Previous Work

As explained in the introduction, Epilepsy is a very dangerous disease that affects
quality of life of its patients. Due to the large number of epilepsy patients, a great effort
is done in treatment of the epilepsy especially using electrical stimulation. The work done
to detect seizure using EEG includes many methods: single channel or multi-channel
[20]. In single channel based seizure detection systems, it is required to choose the
appropriate channel that is the nearest to the seizure focus. This type is mainly used in
focal seizures. The process of choosing the channel is performed by measurement of
different channels and choose the best performance channel. Another solution is to use
all the measured and available signals, and detect seizure based on the EEG signals from
multi-channel [21].

After the EEG measurement is done, many research is done on preprocessing.
Wackermann et al. used several EEG analysis methods to characterize the sleeping effect
of EEG [22]. Another source of artifacts is the eye movement and blinks. The electrical
activity accompanied with the eye movement is strong enough to be recorded with EEG.
The amplitude of the eye movement artifact is larger than that of the background EEG
activity so many research is done in the area of removing eye movement effects [23].
Moreover, many work is done to remove muscles moving artifacts such as that done by
Van Boxtel et al. [24].

2.8.1. Feature extraction and selection

Many work is done on the analysis of EEG signals for seizure detection in the
literature. Features extracted from EEG along with different machine learning algorithms
are used to detect seizure. Yuan Q. et al. used nonlinear feature extraction strategies such
as approximate entropy and Hurst exponent and got 93.75% and 79.75% sensitivity
respectively [25]. Also, nonlinear feature extraction strategies were used in multiple
papers [26], [27], [6]. Li. et al. got a sensitivity ranging from 82.75% to 97% based on
the combination used [26]. Panda. et al. got 91.2% classification accuracy [27] and
Kolekar et al. got 81.67%, 91.25% and 82.22% accuracy for different classification
strategies [28]. Support vector machine (SVM) is used in many of these papers with
Radial Basis function (RBF) kernel for classification [25], [26], [27], [28]. Generally, the
results obtained through SVM with RBF kernel are usually more accurate, however a
hardware implementation for an RBF kernel consumes much more power than linear and
polynomial kernels.

2.8.2. Hardware implementation of SVM training
accelerators

Many research has been done in implementing hardware implementations and
accelerators for SVM training [29]. Keerthiet al. proposed a parallel implementation of
multiple CPUs for processing partitioned data sets [30]. The use of multiple CPUs leads
to increase the overall performance. One the other hand, it greatly increases the power
consumption. Caoet et al. developed a hardware implementation of SVM training circuit
using MATLAB HDL coder [31]. The performance degraded due to the lack of
optimizations. Chih-Hsiang et al. proposed a re-configurable chip with SMO-based SVM
training [32]. The proposed architecture decreased the routing overhead, accelerated
kernel function update and used pipelining. However, some hardware usage and training

16

speed problems have appeared. Lazaro et al. proposed a hardware-software architecture
to speed up SVM training using SMO. As the dot product takes most of calculation time
in SMO, it is chosen to be implemented on hardware [33].

Jhing-Fa et al also proposed a HW/SW co-design solution for multiclass SMO
training [34]. A hardware-software co-design system for accelerating the SVM learning
phase was presented based on another decomposition algorithm instead of the common
SMO algorithm [35]. M. Rabieah et al proposed a complete FPGA-based system for
nonlinear SVM learning using ensemble learning [36]. S. Wang et al proposed a FPGA-
based reconfiguration framework to speed up the online LS-SVM training [37].
However, the block RAM usage and reconfiguration efficiency are the main challenges.
In this paper, more work is done in the area of training the SVM classifier to have better
results without the need to have complex transformations or complex kernel functions
like those proposed in [38], [39], [40].

17

Chapter 3 : Design of Feature Extraction and Selection

The feature extraction step is a very important step in automatic seizure detection
systems. In feature extraction step the discriminating features are extracted from the EEG
signal. These features should differentiate between different phases of the EEG signal.
Several features are proposed and used in literature to detect seizure. The extracted
features are extracted can be categorized depending on the domain from which they are
extracted as follows:

1- Time domain features

2- Frequency domain features

3- Time-frequency domain features (Wavelet)

The features extracted from EEG signals can also be categorized into 2 different
groups: linear and non-linear features.

3.1. Linear Features

Different linear features are implemented, extracted and tested. The 11 linear features
are as follows:

e Mean Absolute Value (MAV)

1 N
MAV = NZW
=1

e Root Mean Square (RMS)

RMS was used combined with other features for seizure prediction in [41]. RMS is

calculated as follows:
N
1 2
RMS = \/; Z x;
i=1

Standard Deviation is a measure of the average deviation from the mean. It was used in
[42] and achieved high performance. SD can be calculated as follows:

« Standard Deviation (SD)

_ Xt (i — mean(x))
D= j N-1

N
Yiz1Xi

Where mean(x) = ~

18

e Variance

Variance is the standard deviation raised to the power of two. It is easier to calculate the
variance rather than calculate SD. Hence, both SD and variance are tested to check if
easier calculation would reflect on the performance or not.

¢ Maximum Absolute Value

Calculating the maximum absolute value for every epoch of time. It was used in [42]
with other features achieving performance more than 98%.

e Minimum Absolute Value

Calculating the minimum absolute value for every epoch of time.

o Average Energy

In epileptic seizures, the amplitude and frequency of the EEG signal increases. This

was a motivation to include the average energy of the epoch as a feature. It is defined as
follows:

e Fluctuation Index (Coastline)
Fluctuation Index (FI) measures the fluctuation in the signal. During seizure periods, it

is found that EEG exhibits high fluctuations relative to non-seizure periods. Fl is

defined as follows:
N

FI = | —

i=1
« Hjorth parameters: Mobility

Mobility is the square root of the variance of the first derivative divided over the
variance of the signal.

e Hjorth paramteres: Complexity
Complexity represents the change in frequency with respect to a pure sine wave
e Skew

Skew measures how non symmetric the data is. It was used with other features for
classification by Zhang [42]. It is calculated as follows:

180 (XW) —)’
SkGW:—Z _—
ML\ o,
i=

19

Where X (w) is the sample value at frequency domain,
U, 1S the mean value of the samples at frequency domain,
o, 1S the standard deviation of the samples at frequency domain.

e Kurtosis

Kurtosis is the same as skew but raised to power 4 as follows:

N 4
1 2 <X(W) —uw>
Kurtosis = — _—
M ¢ - Ow
=

3.2. Nonlinear Features

Non-linear analysis of EEG signal exhibit description of the non-stationary nature of
the signals. Different features are used by different researchers in the literature. They
used many features from information theory, nonlinear dynamical analysis, and
stochastic processes analysis. Non-linear features showed promising results in both
detection and prediction for epileptic seizures [43]. In this study, different nonlinear
features are examined as follows:

o Approximate Entropy (ApEn)

Approximate entropy is a probabilistic method developed by Steve M. Pincus [44].
It measures how ordered or disordered a given EEG signal is. A small output value
indicates regularity in the input EEG signal, and on the contrary, as the EEG gets more
irregular, the higher the output value becomes [45]. The dataset is divided into
overlapping subsequences.

SA) =[x, x({+ 1), ... ,x((+m—1)]

Wherei =1,2,.....,N—m+ 1,
m is the length of each subsequent.

Then, the algorithm searches for matched patterns by calculating the distance
between each subsequent and all other subsequences. Finally, it compares this distance
with a certain tolerance r. If the distance is less than the tolerance, the patterns are
considered matched which supports the decision of having a regular predictable EEG
and vice versa. A distance function d[x(i),x(j)] between each subsequent and
every other subsequent is calculated first. Then, the correlation log C/™ () is
calculated by counting the distances that are smaller than a tolerance r and then divided
by the number of subsequences N —m + 1. Finally, the logs of these values are
summed together and formulating approximate entropy as follows:

20

N
1
P = 7 > 1og(C()

Finally the approximate entropy can be calculated as follows:
ApEn = @™(r) — o™ 1(r)
e Shannon Entropy

Shannon entropy is a measure for information that the system exhibits. It estimates
the number of bits required to encode a string of symbols based on their frequencies
[46]. Continuous values of EEG signals are quantized. Then, the frequency of each
symbol is calculated to get Shannon Entropy as follows:

N
H(x) ==) P(x).log(P(x)
i=1
Where P(x;) is the probability of the symbol x; .

e Permutation Entropy

Permutation entropy, as other entropies, measures how disordered the EEG signal is.
However, it is computed independent of the values of the samples. First, a mapping
function is applied to generate windows of length n. Probability of a given permutation
is given as:
of windows permutation

T—-n+1

H; = — z P(r). log(P(n))

P(m) =

« Renyie Entropy

Renyie entropy generalizes Shannon entropy as the parameter a gives an extra degree
of freedom for the distributions. It is calculated as follows:

1 N
H() = ——log() P&

1—«a

e Hurst Exponent

Hurst Exponent is a measure of whether the data is pure white noise or it contains
information. If H is equal to 0.5, then the time series is purely random. However, if it is
larger than 0.5, then it contains some trends. It is calculated for a given time series with
length t from the rescaled range series (R/S) which is calculated from the standard
deviation S and the range series R. Finally, a line fitting is done between log(R/S) and
log(T) to get the Hurst exponent value [47].

21

Where R is the maximum deviation from the mean and the minimum deviation from
the mean, S is the standard deviation, % is the rescaled value and T is the sample
duration.

o Modified Hurst Exponent

The Hurst exponent is the slope of the linear fit of the log-log graph. Another simpler
implementation for the Hurst Exponent was using the below equation.

log(5)

~Tog(T)
In this implementation it is assumed that this linear fit will always pass through the
origin.

e Fractal Dimension

Fractal Dimension (FD) is based on fractal geometry. Higuchi’s algorithm with k=5 is
used to calculate the fractal dimension [48].

3.3. Simulation Setup

A software implementation of all proposed features discussed is done using
MATLAB2016a. Different combinations of the 20 proposed features are used and tested
along with linear kernel SVM. The performance metrics -sensitivity, specificity and
accuracy- are extracted from each combination and compared.

The procedure to get the best performing combination could be built using two
methods

1- All-in then backward elimination according to p-value:

This method is done by extracting all the proposed features and

testing the performance. Then, a trial to eliminate one of the

features is performed. The task is to choose the first features that

will be eliminated. The features that will be eliminated is the one

that has the minimum effect on the performance metrics. Then,

this step is repeated until having the minimum number of features

that achieve an acceptable performance.

2- Trying all possible combinations for a fixed number of features:
This method is done by choosing constant number of features in
each combination. Then, all the combinations between the
proposed features are tested and for each combination the
performance metrics are calculated. Then, the best performance
combination is chosen.

22

In this work, the second solution was adopted. The decision was made to use three
features in each combination based on many work done in the literature [25], [27], [28].
A total of 1140 combinations are tested and compared.

A MATLAB script is developed to test the combinations between the features one
by one. Each combination consists of 3 features. The code chooses one of these
combinations and extract the corresponding features from all training and testing data.
Then, the code trains a linear kernel SVM using the extracted features. Then, the test data
points are tested on the resultant hyperplane. Finally, the performance metrics are
calculated and written to the output file. For each combination a line is written to the
output file containing the features of this combination, the resulting sensitivity,
specificity and accuracy.

The output needed from the simulation is to find a combination of 3 features that
make the data points linearly separable. If such combination of feature is found, it will
achieve a very high performance using linear kernel SVM. That will save great punch of
energy as the linear kernel consumes energy less than any other type of kernel functions
such as polynomial and RBF kernel.

3.4. Simulation Results

The visualization of data points with different extracted features can give a good
evidence of the great effect of feature selection on the performance of the classifier.
Figure 8 shows the training data points when the selected features are Hjorth mobility,
Hjorth complexity and maximum absolute value. The figure shows the objection of the
data points on the plane of each 2 features where feature 1 is the Hjorth mobility, feature
2 is Hjorth complexity and feature 3 is the maximum absolute value. It is clear from the
figure that these features are not linearly separable. When trying these features with linear
kernel SVM, the performance achieved is 0 % sensitivity, 100% specificity and 99.7%
accuracy which means that the classifier classify all points into non-seizure.

Figure 9 shows the training data points when the selected features are Hurst
exponent, average energy and minimum absolute value. In this figure, feature 1 is Hurst
exponent, feature 2 is average energy and feature 3 is the minimum absolute value. Some
data points can be linearly separable especially in the plane of Hurst exponent and
average energy. The performance achieved by these features is: 62.9% sensitivity, 98.8%
specificity and 98.7% accuracy.

Figure 10 shows the training data points when the selected features are Fractal
Dimension, Hurst Exponent and Coastline features where feature 1 is fractal dimension,
feature 2 is Hurst exponent and feature 3 is coastline. It is clear that all the data points
are almost separable in all planes. That’s why the achieved performance becomes:
96.77% sensitivity, 97.9% specificity and 97.9% accuracy.

After finalizing the simulations of the all 1140 combinations and by analyzing the

detailed results shown in Appendix B, it is noticeable that the minimum specificity
achieved is 96.4% and the maximum specificity is 100%. Hence, the specificity achieved

23

from all features’ combinations are acceptable. So, the specificity is not the key
performance metric to choose the best combination. On the other hand, the sensitivity
ranges from 0% to 96.77%. To be able to analysis and visualize these results, the
combinations are grouped into multiple groups based on their sensitivity value. The
number of features of each group are shown in Figure 11.

The combinations of interest are those which have sensitivity more than 90%. To
analyze these combinations, the number of repetition of each feature in these
combinations are counted. Then, the features are sorted by their repetition counts from
largest to smallest as shown in Figure 12.

It is found that fractual dimension is a very important feature as it exists in all the
features’ combinations that have sensitivity more than 90%. Moreover, the best
combination —the one that gives the maximum performance- is the combination of
fractual dimension, Hurst exponent and coastline. This combination achieves sensitivity
equals to 96.77%.

24

feature 2

feature 3

feature 3

h —

Mon-ictal
2 ® ® Ictal

e

D —

i E

e
4 | _
4 3 3
h —

Mon-ictal
2= Ictal
- P ®

« e

2 .

4 | _
4 3 3
4— ®

Wowow * Plor-ictal

2= o

§ P § WMWM xxxxvymx xmw v& y) Ictal
o x o o o ﬁw%
iy o
x £ u 27 ®

2= o OOO y

4 | |
-4 -3 -2 -1

faatura 2

Figure 8 - Training points for Hjorth mobility, Hjorth complexity and
Maximum absolute value features.

25

feature 2

o * Mon-ictal
&)
Ty o ctal

®

wx%
X
g@&x&%@& wmxxxx x
£ Hadhod Wi R R P ® ¥

e
#K %&m%xwﬁ&&m&&ﬂ.
| | | | | |

feature 3

feature 3

absolute value features.
26

-2 -1 0 1 2 3
feature 1
kS
Y ® S E S ® Mon-ictal
FO Y B OMESE HO X 900K i i WOOC MEOCHE N HMH K H X # Io) Ictal
4 b3 B0 CER0 O0OMEDN 800 BBE B D00 NDC M MMM 0OMM M M Wmom M
K oM MK X K XX »OHH X o® S
= * L8] 4
kS
| | | | | |
-2 -1 0 1 2 3
faatura 1
*
x WOE K M MM M 4 Mon-ictal
© g ®3 w0 RO o] o T ctal
* * MMM NEOMCHIMCEMOL X IO0H M MKMW X ® oK [o]
k4 M 00U W ki N
¥ MMM [
b
| | | | | | | | |
-1 1] 1 2 3 4 5 B 7
faature 2

Figure 9 - Training points for Hurst exponent, average energy and minimum

feature 3

feature 3

. — —
m [} m m [} m m [} bk E=Y
' = E
T I I I
3
#
b ®
' L] ()
ra | —
g o
o o
o]
8 OO #
o] o
k3 *
* & w ®
L % # b %,
kS
x "
><
- ¥
£ .
g k3
Hy
o E
T T T
5h 5 5h
= = =
= = =
@ ® L @
P —_— —_—
ra— §><
%
#*
%
b
3
4
x
*
b4
= ks
O o= [O
@ 5 @ 5 @ 5
o o o
= = —
o o =
b L

featura 2

Figure 10 - Training data points of Fractal Dimension, Hurst Exponent and
Coastline features.

27

700

600

500
400
300
200
100 .
0 25
- 70%

70% - 80% 80% - 90% 90% - 95% 95% - 100%

Figure 11 - Number of features' combinations in each range of sensitivity.

28

NS

0
0¢
o
09
08
00T
0ctT
or1
0ST

)
Q)
,3‘3‘\"%

Figure 12 - number of incidence of each feature in the combinations with
sensitivity >90%.

29

Chapter 4 : Design of Support Vector Machine Training
Accelerators

4.1. Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning and classification
model that is gaining much attention of researchers in statistical classification and
regression analysis problems. SVM is widely used in many applications such as face
detection, handwriting detection and bioinformatics [49]. SVM was first introduced by
Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 1963 [50]. SVM uses a set of
training examples categorized into 2 or more groups. SVM works in two main phases:
training phase and classification phase.

Training in SVM is a process in which a hyperplane that separates two labeled sets
of training examples is determined. SVM searches for the hyperplane that gives the
largest margin between the two sets. The subsequent step is to classify unlabeled testing
examples into one of two classes. Finding the hyperplane is a problem of solving a
quadratic programming (QP) problem subject to constraints [51].

The optimization problem has infinite number of solutions. Hence, different
hyperplanes can perfectly separate the two different groups in the case of binary
classification as shown in Figure 13. All the three hyperplanes in (A), (B), (C) separates
the two groups with zero errors. SVM defines the best hyperplane is the one the
hyperplane that gives the largest margin between the two sets. Hence, SVM chooses the
hyperplane shown in Figure 13-C.

X1 X1
e O
© o
® O
.. O ©
® o O ®)
® ® ®
¥2 X2
(A) (B)

30

X1

X2

(€

Figure 13- Different classification hyperplanes

As mentioned earlier, SVM learns from a training set of N dimensional vectors x;
and their associated classes (labels)y;. In case of binary classification, y; € {0,1},
i=1,2,...,n. SVM deals with linearly separable data points directly. For the non-linearly
separable data points, the non-linearly separable dataset is mapped into a higher
dimensional domain in which the mapped data points are linearly separable. As this
mapping may contain heavy computing especially with the large number of data points
another approach called Kernel trick is used. Kernel methods uses kernel functions to
operate in a high-dimensional feature space without the need of calculating the mapping
of each data point. Then, SVM finds the hyperplane that gives the largest margin in the
new feature space. This hyper plan is defined as follows:

w.p(x)+b=0 (1)

Where w is the normal to the hyperplane, ¢ (x) is the mapping function used to map

each input vector to the feature space and b is the bias.

2
Therefore, to choose the hyperplane that maximize the margin, the optimization problem
is formulated as follows:

The distance from the nearest points to the hyperplane from each side equals to

|Iwl]?
2

(2)

min,, p

Subjectto y;(w.@(x) + b) =1

This is denoted by hard margin SVM, where the hyperplane perfectly separates the
two sets according to egn.(1). A modified version of SVM introduces a trade-off between
the size of the margin and the number of errors in the classification process is given in
eqn.(3). This is performed by defining a penalty parameter C. The optimization problem
is formulated as:

n
. llwl|?
mmw,bT +C & (3)
i=1

Subject to:

yiw.o(x) +b) 21§,
§i=20
Where &; is the slack for the i*" training point as shown in Figure 14.

31

The penalty parameter C should be selected carefully for each data set. If C is
selected large, the weight of any wrong classified point is very large so the convergence
of the problem takes large number of iterations. If C is selected small, some errors are
allowed to maximize the margin and get the solution in fewer number of iterations than
the large C scenario.

X1

¥

X2

Figure 14- Soft Margin SVM.

The modeled problem is solved usmg Lagrange multiplier as follows:

mlnlp(a) = Zyl Vj- K(xl,x]) a. o — Zal- (4)
i=1
Subject to: l

?=1yi'ai = 01
0< a;<C, i=12..,n

Where « is Lagrange multiplier, Kernel functions K. Different Kernel functions are
widely used in SVM applications as follows:
Linear Kernel:

K(xi,xj) = xlxj
Polynomial Kernel:
d
K(xi,xj) = (Xi.Xj + 1)
Where d is the polynomial degree

Exponential Kernel:
2
K(xi, x]) = e-)’ “xi_xj”

By solving the problem formulated in eqn.(4), the values of «;'s are obtained. The
values of each « is classified into one of the three following classes:

1) a; = 0 represents the correctly classified points outside the margin

2) 0 < a; < C represents the training data points that define the margin

32

3) a; = C represents the wrongly classified points and the points that violated the
margin (where §; # 0)

Many techniques are used to solve this QP problem. In this thesis, two training
techniques of SVM are tested, hardware implemented and compared. The two techniques
are Gradient Ascent (GA) and Sequential Minimal Optimization (SMQO). The two
techniques’ algorithms and hardware implementations are discussed in details in the
following sections.

4.2. Gradient Ascent (GA)

4.2.1. Algorithm

Gradient ascent is an iterative optimization algorithm that solves minimization
problems. It depends on taking steps towards the minimum point proportional to the slope
of the function at the current point. By applying the algorithm of gradient ascent on the
SVM optimization problem in eqn.(4), the following formula is used to update «; in each
iteration:

al®™ = a; — step x y; * (ai.yi,K(xi,xj) + b)

Constrained to

0< o <C
Where b is the bias of the training set points.

After calculating all a's, the hyper plane is calculated as follows:
n
w = z a;. xX;.Y;
i=1

To get the new bias b,,,,,, substitute in the following formula by x;, y; of any of the
support vector points (those with 0 < a; < C)
brew = yi — w. K(xi'xj)

Table I shows the detailed GA algorithm using a pseudo code. First, all Lagrange
multipliers a's and bias b are initialized to zero. In each iteration, two loops are
performed: the outer loop in which the input vector x; is read from the memory, and the
inner loop in which the Kernel function value is calculated between x; and all other input
vectors. Then, a; is updated with the new value and passed to the outer loop with the
next « till all Lagrange multipliers are updated. Then, the bias is updated and a
convergence check is applied. One important note on the training and testing data sets is
that they should be normalized to make all data point components mapped to the range
(-1; 1). This is conducted easily by subtracting the mean value of the components from
each component, then dividing the resultant value by their standard deviation.

33

Table 2- Psuedo code of Gradient Ascent algorithm.

Initial

Iterate till convergence

Loopl
Read x; from memory

Loop2

Read Xj, aj, y]
memory

Calculate K (x;, x;)
Multiply

K(x;, %) a;.y;
End loop2

from

Update a;**"

Check a**" satisfies constraint

End loopl
Update bias
Check for convergence
. A \
i :
I 1
. [
1 Data from mem :
1 >
CIk] read address |
_... = 1
I Memory Data to mem :
I “ controller | ,
1
I _ write address Valid out
I 1 "
reset | :
I _ X.Alpha.y 1
! Bias ‘ I
I |Claculator| Accumelator :
[>
. [
. [
3 [

Figure 15 - Gradient Ascent training circuit block diagram.

34

4.2.2. Hardware Implementation

Figure 15 shows the architecture of the top level design of the Gradient Ascent (GA)
algorithm which consists of three main blocks: memory, controller and bias calculator.

Kernel
Finalization

Kernel
calculation

INIT

Figure 16 - GA controller finite state machine.

READ | READ_J).

Figure 17 - GA kernel calculation phases finite state machine.

The memory contains the values of y; , a; , x; , b, a**™ and has separate input
data, output data, read address and write address ports. All these ports are drived by the
controller module. The memory is designed carefully and the data is arranged in it to
achieve minimum memory access times.

The controller is the main block in the architecture. It contains the main finite
state machine (FSM) that controls the flow of the data and the memory interface. Figure
16 shows the controller FSM noting that some states in the FSM contain other
embedded FSMs as will be explained later.

In INIT state, all variables are initialized and the memory read address is set. In
the Kernel calculation state, the value of the kernel function is calculated through many
phases as depicted in Figure 17.

In READ_I phase, the input vector x; is read from the memory. In READ_J, the
input vector x; is read form the memory. Then, the kernel function is calculated in
KERNEL_CALC phase. After the kernel calculation is conducted, the main controller
FSM is moved to the Kernel finalization state.

In the Kernel finalization state, the expression x;. ; is calculated and is
multiplied by the kernel function value and then the output is sent to be accumulated at
the bias calculator. The FSM of different phases of the Kernel finalization state is
portrayed in Figure 18. IN ADDRESS_YJ phase, the FSM generates the address of y; .
IN WAIT_FOR_MEM phase, the FSM generates the address of a; . Then the controller
reads the values of y; and a; in READ_YJ and READ_ALPHA respectively. IN
CALC_ALPHA_Y phase, the value a; . y; is calculated using an XOR gate. The value

35

a;.yj .(x; . x;)is calculated in CALC_OUT phase using a multiplier. This vale is
passed to the top level module to be accumulated for different i's. In this phase, the
address of b is generated and sent to memory.

In WAIT_FOR_MEM2, READ_B,READ_Y| and SEND_X phases, the FSM
reads the values of «;, y_i, b and passes them to the top level to be used in bias
calculation as the controller is the only unit that interfaces with the memory.

Different approximate computing techniques are used in implementing the
proposed GA training accelerators to reduce power consumption. First of all, fixed
point is used instead of the computationally expensive floating point. Using software
simulation results, a 16-bit word length is enough for achieving the same performance
(i.e., accuracy). Reducing the word length less than 16 bits achieves more power saving
with the cost of performance degradation. At a certain word length, the full dynamic
range of the bits should be used in order to achieve the highest accuracy for this
configuration. This requires a smart selection of the integer and fraction portions of the
fixed point word length.

Second, Computation skipping is used in different steps in the two algorithms
(i.e., multiplying by zero is skipped). As @ = 0 for all non support vector points, many
multiplication operations are skipped.

Finally, inaccurate arithmetic techniques are adopted in the hardware
accelerator implementations. Using inaccurate arithmetic operations introduces some
errors which are acceptable in a specific range. However, using this inaccurate
arithmetic operations saves a big chunk of energy. As multiplier are one of the most
power hungry blocks, the signed truncated multiplier proposed in [52] is utilized. The
signed truncated multiplier consumes less power than accurate multipliers by summing
an optimized partial products matrix (PPM). A truncated accumulation is used then
accumulating the whole output of the multiplier (i.e., the output of the multiplier is
truncated to the specified word length, than the accumulation operation is performed).
This also reduces the size/power of the needed accumulator and has a small impact on
accuracy. Sign and magnitude representation is used for negative numbers to facilitate
the multiplication by -1 which appears in the algorithm several times, therefore an XOR
implementation is utilized. Moreover, the step size is chosen to be multiples of 2 to use
an add-shift multiplier to reduce the power consumption.

36

AEAD_ALFHA

Figure 18 - GA kernel finalization phases finite state machine.

4.3. Sequential Minimal Optimization (SMO)

4.3.1. Algorithm

The SMO algorithm was introduced and comprehensively explained by John Platt
[51]. The main idea of the SMO technique is to break any large QP problem into multiple
smaller ones. It solves the constrained quadratic programming problem efficiently as it
iteratively narrows the optimization problem to just two Lagrange multipliers in each
iteration. The selection of the two Lagrange multipliers to optimize the function value in
each iteration is performed heuristically. However, depending on the application, the
SMO algorithm scales somewhere between linear and quadratic with the number of the
data training set.

The SMO algorithm optimizes the objective function by jointly optimizing two
Lagrange multipliers. The fact that optimizing two Lagrange multipliers is performed
analytically makes the SMO algorithm advantageous. The SMO algorithm is summarized
in Table 3.

The SMO algorithm starts by selecting two Lagrange multipliers to optimize the
objective function and calculates the bounding values of the two Lagrange multipliers.

37

The bounding values of only two Lagrange multipliers are depicted in a 2-D square as in
Figure 19. On the left, the bounding square when y; # y,.Hence, a; — a, = constant.
On the right, the bounding square when y; = y,. Hence, a; + a, = constant. The
square sides represent the maximum and the minimum values of the Lagrange multipliers
while the diagonal line represents the values the two Lagrange multipliers are allowed to
take.

Table 3 - PSUEDO code of Sequential Minimal Optimization algorithm.

Initial
w=0,a=0b=0
Iterate till convergence
Selectiand j
read x;and x;from memory
cakculate kernel functions Ky;, K;j, Kj;
calculate the errors E;, E;
calculate the limits L and H
n = 2K;; — Ki; — Kj;
y_(Epld _ EneW)
_ old o ZJ\7J J
a " =a + .
calculate the bias b
check for convergance
(O,C) oz = C (CIC) (OIC) az = C (C,C)
/
/ N\
a; = 0 / ;= C a; = 0 N\ (0 4}
N\
»)
/ AN

Z AN

(010) a; = 0 (CIO) (010) ay = 0 (CIO)

Figure 19 - The bounding values of two Lagrange multipliers.

Denoting the two Lagrange multipliers by: a, and «,, it is required to get the
new values for the two Lagrange multipliers ai*®", a2 from the old set of all
Lagrange multipliers {a?'%, a9'?, a3, ay, ..., ay}, where af'?, a3'® have the initial value

Zero.

Given the constraint equation Y, a;.y; = 0, the following condition is derived:

38

new new __ old old
yiai "t Y077 = yi01 0 + Y0,

Following the derivations in [51], a?ew is obtained by the following equation:

new aold N yj(Ejold _ EanW)
] J n

Where Kii = xiT.xi,

K:

— T o
]j—Xj.X,

j
Kij = xl-T.xj,
n = 2K;j — Ki; — Kjj,

Ei = WTxl' —b — Y-

Referring to the constraints depicted in Figure 19, a}ww is clipped to be in the feasible

new,clippe

range. Therefore, a; ¢ is obtained by:

(H, a=H \
new,clipped
a; ={a'¥, L<a*<H

J
L L, a<lL J

new .
And therefore, a, s calculated as follows:

new

— old old _ . oldclipped
a, =aj +t(aj @)

Where t = y;.y;

4.3.2. Hardware implementation

In order to keep the architecture generalized for any heuristic model of selecting
Lagrange multiplier, the SMO training architecture is divided into three main blocks;
the SMO processing unit, the SMO controller and the main memory as shown in

39

I \
I [
1 Data from mem :
I >
1 Data to 1
mem
1 ¢ 1
1
Clk ! Memory read address .
l _
g ¢ SMO :
: P write address PrOCESSing I
- I .
: Unit 1 Valid out
1 —
reset 1
a Acknowledge :
| smo |
1 [Controller i, j, control | :
1
I 1
I 1
\ 1

Figure 20 - Sequential Minimal Optimization training circuit block diagram.

4.3.2.1. The SMO Processing Unit

The SMO processing unit is responsible for calculating the new values of the two
previously selected Lagrange multiplier. Figure 21 shows the building blocks of the SMO
processing unit.

1- Register file

In order to speed up the processing and avoid the repeated memory access,
some variables are cached in a register file to be processed later by the other SMO
processing unit blocks. The variables chosen to be cached in the register file are

new new
ai; aj;yi:ylei al laj)EUE] .

2- Kernel function
The calculation of n requires the calculation of the two Lagrange multiplier self

and cross kernel. Hence, the kernel function unit calculates the value of the

kii , kj; , kij simultaneously. After receiving the index of current Lagrange
multipliers, the kernel function unit reads from the memory the value of the two
Lagrange multipliers and pass them to three multiply-add units as shown in Figure
22. In the case of polynomial kernel instead of the linear one, the design also have
an adder to add 1 to each K then use a multiplier to raise the value to the
polynomial degree in multiple clocks. The kernel function unit includes an internal
controller to manage the iterative process of reading the Lagrange multiplier and
updating the kernels value.

40

Control | Controller
I
i
_ 4
| () Ll
, Kernel
_ Mem_Read F .
w » Mem_Data unction
_ ® Mem_Address
3
Data _:l_l' ° _
Data Out ——— <
Read .I_| 3 4
Write .I_l o i
> Mem_Read Learned
_ _.nw »| Mem_Data Function
Mem_Address
-
—

Register File

Q;, Q_... 4.‘. , ,Q, m_mm.

A new » % new- Eis Ej

a;_ﬂ_“ . [

——

Div

L R] .
LLLLILLLY
MO ARARR << @bB>D ¥ o
= ”w = g.a e 0 L&H H H
ias
Yi Calculator L L
Calculator Biasnew Y;
m_mmamE

Figure 21 - SMO processing unit block diagram.

41

i >]
] Controller
j > |
Read «+— I
Memory < L
Address — 3= K;i N K;i
>
> X i H L I
Memory q % |— +—K; I" Kij
Data In > JAN
W — ==
J
A > | — .. I.- .
x
——_

)

Figure 22 - kernel function block diagram.

3- Learned function
Learned function is used to calculate w”x or Y7 @;. ;. K (x;, x;) which is used

in calculating the error E. By expanding the equation }.i_; a;.y;. K (x;, x;), the
pseudo in Table 2 is obtained.

Table 4 - Learned function PSUEDO code.

forj=1:N
for d = 1:dimensions
k=k+ Xi,de,d
sum = sum + a;y;k
func = sum

The implementation requires two multiply-add units; one to calculate the kernel
and the other to update the learned function. However, since the two calculation is
dependent, one multiply-add unit is shared to calculate both values.

42

The FSM of the learned function is shown clearly in Figure 23. In the
first state, «; is read. If a; # 0, the FSM is moved to the kernel calculation
state. Then, y; is read to update the learned function value.

Calculate
Kernel

Figure 23 - Learned function FSM.

4- Bias calculator
The change in the threshold is computed by forcing E{**" to be zero if
0 < a**™ < C and then

b1 = Ei + yi.Aai 'kii + y}Aa}kU + b

Where Aa; = af**" —«a;,
Aaj = af"®" —a;
Otherwise, the threshold is computed by forcing E;*** to be zero if
0 < a**" < C and then

Finally, the new bias is calculated as follows:
by, 0<al*™ <C
b:{bz' 0<a’™<C

kb! -|2- b, , otherwise)

43

Figure 24 shows clearly the FSM of bias calculator which consists of different
states: calculate b1, calculate b2 then choose one of them or their average.

Figure 25 illustrates the implementation of the bias calculator unit. The unit is
implemented using only two multipliers, four adders, and three intermediate registers
A, B, and bl.

Calculate 0<Qlj<C | | 0<Qj<C

bl

1(0<Q<C || 0<Qj<C)

Calculate
b2

Figure 24 - Bias calculator FSM.

To exploit the similarities between equations of calculating b;and b,, they can be
rewritten as:

by=E +T,+T, +b
by=E, +T;+T, +b
Where Tl = yi.Aai. Kiiv
TZ = y]Aa]KU,
T3 = yi.Aai.Kij,

44

E; =\| bl
E;j 7)

|
Kiji =} N b1l
. \

K:: >
A ”_ R x ™ > Bias

& LJDJ g —_— Out
Vi ->+ << 1-bit
K .. > B

1] }L, +J
Kjj > X n

Au,- I
Yij l j
)

Figure 25 - Bias calculator hardware implementation block diagram.

A A

A 4

v

> >

A A

h A

> m

Noticing the similarity between T1 and T3, only one multiplier is used to calculate
Aa;. k;; and Aa;. k;;, and therefore the values of T; and T5. Based on the condition 0 <

;" < C and the condition 0 < ;' < C, either k;; or k;; is selected to be an

input to the multiplier. If both conditions are satisfied, both b; and b, gives the same
value. In the proposed hardware implementation, the priority is given to b, to reduce
the hardware complexity. Therefore, the value of register A is calculated. The fact that
y has a unity value, with positive or negative sign, and adopting the sign and magnitude
representation, results in reducing the multiplication of y to a single XOR gate between
y sign and the multiplicand sign. Similarly, T, and T, calculations require only one
multiplier and then the value of B register is obtained in parallel with the calculation of
the register A. If both conditions are not satisfied, the calculation is carried out to
determine the value of b, , then the process is repeated to determine the value of b, and
finally the value of b, and b, are averaged.

5- Limits calculator
The value of the lower band L and the upper band H depends on the slope in

Figure 19. Therefore the value of the limits is obtained as follows:
if yi #y; » L =max(0,¢j — a;),H = min(C,C + a; — a;)
if i =y; » L =max(0,a; + a; — C),H = min(C, a; + a;)

Again, comparing y; and y; is done using a single XOR gate. From the previous
equations of L and H, L and H take on the values 0, C , a; + a; ,0ra; + a; £C.
Therefore, only two adders are required to calculate L and H, while the signs are

45

determined using XOR gates. To further understand the implementation, the limits
calculation process is described using the pseudo code in Table 5.

In the first part, the first adder is adjusted to add a; - a; and the second adder is
adjusted to add C to the output of the first adder, (i.e., + a; - ;) . Then a multiplexer
is used to select between the values 0 and a; - «; for L, and the values C and C +
a; - a; for H.

In the second part, the first adder is adjusted to add «; + «; and the second adder
is adjusted to add —C to the output of the first adder, (i.e., a; + a; —C).Thena
multiplexer is used to select between the values 0 and a; + a; — C for L, and the
values C and a; + a; for H. The sign adjustment of a; and C is controlled by
examining if y; # y; . This examine is performed using an XOR gate. Accordingly,

the sign of a; and C is altered by another two XOR gates. Noting that the cases when «;
is required to be negative is the same cases when C is required to be positive. That is
why a NOT gate is added to the sign of C as shown in Figure 26.

Table 5 - Limits calculator PSUEDO code.

if y; # yj then
if aj — a;is positive then

L= aj — a;
H=C
else then
L=0
H = ij — a; +C
end if
else then

if aj + a; — C is positive then
L= aj + a; — c
H=C

else then
L=0
H = a; + a:j

end if

end if

46

T T 7 TN

Controller

Y
L/

Yj \
JD“
C >

+

it |

0—>

+_|

g

.] I I
—

>
00—

~

I

|
L
|
I

-l

Figure 26 - Limits calculator block diagram.

6- Memory interface

)

The memory interface is responsible for receiving the requests for the memory
read and write operations and handling the memory access separately by different
blocks, which increases the memory access parallelism.

7- Controller

This unit controls the other units by initiating a triggering signal for each unit
and manages the data flow between them. Figure 27 summarizes the control state

machine of the control unit.

43.2.2. The SMO controller

The SMO controller is responsible for selecting the two Lagrange multipliers and
controls the SMO processing unit. The SMO controller keeps iterating over Lagrange
multipliers till conversion happens or the maximum number of iterations is exceeded.
Compared to the SMO processing unit, the SMO controller hardware is simpler and

consumes less area.

The same approximate computing techniques used in the hardware implementation
of the GA accelerator are also adopted in the hardware implementation of the SMO
accelerator. Fixed point arithmetic, computation skipping, inaccurate arithmetic and
sign/ magnitude implementation is used in the proposed implementation.

47

initial
State
. ot update i
Read xj,
yi-aj

calcu.late Calculat
aj LH

Figure 27 - SMO processing unit FSM.

4.4. Simulation Setup

The SVM training accelerators techniques implemented in this paper are tested first
on MATLAB2016a. EEG signals of patients are first processed, then the features that
give the best performance are extracted. Then, the training and testing data are used to
verify the performance of the training algorithms. The proposed training techniques are
software implemented on MATLAB to measure the performance. Xilinx ISE 14.2 is
utilized to design and develop the VLSI architecture of the algorithms. The design is
synthesized on Xilinx Spartan-6 FPGA. For the implementation on ASIC, Synopsys
DesignCompiler (DC) B-2008.09 with UMC 130nm library is adopted.

Results are collected in two main phases. The first phase is evaluating the
performance simulation results. The second phase is calculating the hardware
implementation metrics such as area, power and maximum frequency for both ASIC and
FPGA implementations.

4.5. Simulation Results

After implementing both SVM training algorithms —GA and SMO- on MATLAB
20164, both algorithms are tested with linear kernel and their results are shown in Table
6. The performance of both algorithms are almost the same. They both achieve sensitivity
equals to 96%.

48

The performance obtained by the proposed architectures is also compared to the
performance achieved by prior work as shown in Table 7. It is obvious that the sensitivity
obtained by the proposed architectures is equal to and exceeds that achieved by the prior
work. This results obtained despite using linear kernel while most of the prior work used
Radial Basis Function (RBF) kernel. This saves much energy as the linear function kernel
is less complex than the RBF kernel and needs less computations.

Table 6 - Performance measurement for seizure detection using different SVM
training techniques.

Algorithm Sensitivity Specificity Accuracy
GA 95.8 92.34 92.35
SMO 96.0 97.9 97.9
Table 7 - Performance comparison to prior work.
Method Kernel Type Sensitivity
[25] RBF 95%
[26] RBF 97%
[53] RBF 94.5%
Proposed Linear 96.7%

4.6. Hardware Implementation Results

The hardware implementations of SVM learning circuit are presented on both FPGA
and ASIC platforms. Table 8 shows the ASIC implementation results using UMC 130nm
where both techniques use a clock frequency equals to 100 MHz. Table 8 shows area,
power and the number of clock cycles that each algorithm takes to finish training. As
power consumption is not a good comparison metric, power delay product is calculated
as the product of power consumption of each technique and the number of clock cycles
needed to finalize training.

Table 9 lists the resources used in Xilinx Spartan-6 FPGA such as LUTs and registers
slices. Table 9 also tabulates the dynamic power consumption of each algorithm and the
power delay product (PDP). PDP is calculated as the multiplication of dynamic power
with the number of clock cycles needed to finish training.

49

Table 8 - Hardware implementation results of SVM training algorithms on UMC

130nm platform.

Algorithm Area (nm?) | Power (uW) # training PDP
cycle

GA 18143 463 150K 69.45

SMO 43259 910 30K 27.3

Table 9 - Hardware implementation results of SVM training algorithms on
Spartan-6 FPGA platform.

Algorithm Utilization Power PDP
LUTs Registers (mWw)

GA 661 535 6 900

SMO 3360 566 17.2 516

Table 8 shows the comparison between the implementation of both algorithms on
ASIC platform in area and power consumption. It is obvious that the GA implementation
consumes less area and instantaneous power than that consumed by the SMO
implementation. However, the large number of clock cycles needed for the GA algorithm
to finalize training makes the energy consumed by the GA algorithm is more than that
consumed by the SMO algorithm. It is so clear that the time required by the GA algorithm
to finalize training is 5x the time required by the SMO algorithm.

In Table 9, it is obvious that the GA algorithm has the advantage of less utilization,
higher maximum frequency and less power consumption than the SMO algorithm.
However, the main disadvantage of the GA algorithm is the large required number of
clock cycles for training, which reaches up to 150,000 compared to 30,000 clock cycles
only for the SMO algorithm. The utilization used by the SMO accelerator is less than that
achieved by [34].

50

Chapter 5 : Design of Classifiers

As mentioned in the introduction and literature review, many machine learning
techniques are used to detect seizure. Two different techniques are proposed and
hardware implemented for classification and their performance for neural seizure
detection is measured. The two techniques are Support Vector Machine (SVM) and
Artificial Neural Networks (ANN). Both algorithms are discussed in details in the
following to sections.

5.1. Support Vector Machine (SVM) Classifier

5.1.1. Algorithm

After the completion of training phase, the classification phase starts. For any input
vector x,.g; , by substituting in the following formula using the final value of a's and b,
the corresponding class y;.; is calculated as follows:

n
Veest = z QAjYjXtestXj T b

j=1

5.1.2. Hardware implementation

The training of SVM is done offline or using the hardware accelerator proposed
in Chapter 4. Hence, only the SVM classifier needs to be hardware implemented. Figure
28 shows the architecture of the top level design of the SVM classifier which consists of
6 main block: three ROM blocks, classifier block and inner product block.

The first ROM block is used to save the input vectors of the support vector points.
The width of this ROM is the same as the data width, while the depth equals to the
number of support vectors multiplied by the number of the classification problem
dimensions.

The second ROM block is used to save the values of non-zero 's. The width of this
ROM is the same as the data width, while the depth equals to the number of support
vectors.

The third ROM block is used to save the values of the true labels of the support
vector points. The width of this ROM is one bit, while the depth is the number of
support vectors.

The finite state machine (FSM) is responsible for generating the addresses of the
three ROMSs and the enable signal of classifier block.

The classifier block is the main block of the architecture. First, each a is multiplied
by its corresponding label y. As the implementation used for negative numbers is sign-

51

magnitude implementation, the multiplication is performed using an XOR gate instead
of a multiplier. The value of «;. y; is saved in a register. An inner product block of size
equal to the number of dimensions is used to multiply the input test vector with the
input vector of the i*" support vector point. The output of the classifier block is fed to
the inner product block to calculate the class.

The inner product block is a multiple-add block with only one adder and one
multiplier that multiply two vectors of size equal to the number of non-zero a's. The
output of this block is the class and a valid out signal.

In the hardware implementation of SVM classifier, fixed point simulation is used.
Using software simulation results, it is found that a 16-bit word length is enough for
achieving the same performance (i.e., accuracy). Same as that used in the training
accelerators, computation skipping is adopted to save more power/ area.

-
clk [
3 clk l 3
rst »lrst rst
X ;x clk
A
»|en alpha_y_reg X out Class>
f————3»add ROMdata—)mOdELX ags NEXH - Inner
FSM X Classifier »{en
] product
ROM) valid_o
add data | alpha valid_outj >
alpha x_modelx N
~ly
add RgMdata >y

Figure 28 - Top level SVM classifier block diagram.

5.2. Artificial Neural Network (ANN)

5.2.1. Algorithm

Over the past twenty years, many methods inspired by the understanding of the
structure and function of the biological neural networks are evolved. One of these
methods is the artificial neural network (ANN) [54]. Neural networks are used in various
applications such as classification, pattern recognition, and data analysis [55]. ANN
mainly consists of an input layer, one or more hidden layers and one output layer as
shown in Figure 29. Each layer consists of multiple neurons and different weights are
given to the connections among these neurons. Each neuron in the input layer takes in

52

one data source. The output of each input layer neuron is the input for each of the hidden
layer neurons [56].

Finding the weight of each neuron is performed in the training phase. After the neural
network is trained, any new input vector is fed to the input layer. The value of each node
is calculated by multiplying the input node value by the connection weight and adding
all the values entering this node. To detect seizure and differentiate between seizure and
non-seizure epochs, the architecture of the ANN used is a single hidden layer with 10
neurons. The activation function used is the Sigmoid function.

For any new data point, the data point is submitted to the input layer. The value of
each node in the first hidden layer thorough add-multiply operation. This procedure is
performed with all nodes in all hidden layer until the value of output layer node is
calculated.

Figure 29 - Three layer feedforward network architecture.

5.3. Hardware implementation

The architecture of the ANN classifier consists of ROM block, two RAM blocks,
four counters, neuron block and finite state machine as shown in Figure 30.

A ROM block is used to save the weights of each connection. A single data port
RAM is used to save the values of each node (neuron) of the hidden layer. A double data
port RAM is used to save the values of each node of the input layer. Four counters are
used to generate the addresses of the ROM, single data port RAM and double data port
RAM. The neuron block is a multiply-accumulate block that consists of multiplier, adder,
register and activation function block. The activation function used is the Sigmoid
function and is implemented as a combinational circuit. The FSM is responsible for
controlling the overall system.

53

Different approximate computing techniques are used in implementing the proposed
ANN. First of all, fixed point is used instead of the computationally expensive floating
point. Using software simulation results, a 16-bit word length is enough for achieving the
same performance (i.e., accuracy, in ANNSs). Reducing the word length less than 16 bits
achieves more power saving with the cost of performance degradation. Another
technique for energy saving is the adoption of approximate implementation of the
activation functions. For example, instead of implementing the exponential function for
calculating the Sigmoid function, a Piece-Wise Linear (PWL) approximation is used to
reduce the power consumption.

Counter > dd ROM dat
wrom_counter i Weights y
Counter 3lraddr weight
raddr_counter Arediction
friput output >
e RAM e,
P Neuron
unit
Counter > waddr
waddr_counter
> input valid_out f=——3p
Counter »| addr
addr_counter
RAM dats 3
hidden out
flata
in
FSM
J

Figure 30 - Top level ANN classifier block diagram.

5.4. Modified ANN

The ANN can achieve a good performance. However, the problem of the ANN is
that the decision made in each time epoch is an instantaneous decision. Only the features’
values at this time epoch affect the classification output. The task of seizure detection is
an accumulative task. The history of the features’ values in the previous time epochs can
affect the classification. To do so, the single hidden layer used can be a recurrent layer.
Recurrent layer has a backward connection. This backward connection means that the
output of the nodes in the hidden layer serves as input for the same hidden layer on the
next time epoch as shown in Figure 31 and Figure 32. This sort of feedback serves as
memory to save the output of the hidden layer in the previous time epochs.

54

The weight of the backward connection from the hidden layer to the input of the
same layer is constant through different time epochs. This weight (W) can take one of
three different values:

2- Whh =~ 1

In this case, the W, is chosen less than <1; the memory of the network is limited

over time. Hence, the oldest neuron value vanishes over time.

Hidden Layer Output Layer

S Dl

Figure 31 - ANN feadforward architecture.

Inputit) =
- i

Figure 32 - RNN architecture.

The only difference in hardware implementation is adding a FIFO to the hidden layer
to save the output of the hidden layer for the last n outputs to serve as an input in this
timestamp.

5.5. Simulation Setup

Both classifiers are software implemented using MATLAB 2016a to measure the
performance of each algorithm. The design is synthesized on Xilinx Spartan-6 FPGA.
For the implementation on ASIC, Synopsys Design Compiler (DC) B-2008.09 with
UMC 130nm library is adopted.

Results are collected in two main phases. The first phase is evaluating the
performance simulation results. The second phase is calculating the hardware
implementation metrics such as area, power and maximum frequency for both ASIC and
FPGA implementations.

55

5.6. Simulation Results

As shown in Table 10, a comparison between SVM and ANN classifier is performed.
The SVM chosen is a linear kernel SVM. The ANN is designed with only one hidden
layer with 10 neurons. The two algorithms with the chosen parameters give almost the
same performance. This makes the comparison of the power, area and energy as fair as
possible.

The appropriate choice of the applied features helps in achieving very high
sensitivity using linear kernel in the SVM and using only one hidden layer with only 10
neurons in the hidden layer. This performance exceeds that obtained by Yuan et al. by
using SVM with radial basis function (RBF). Yuan et al. got sensitivity ranging from
73.5% to 95% using different features [25].

Table 10 - Performance measurement for seizure detection using different
classification techniques.

Algorithm Sensitivity Specificity Accuracy
SVM 96.23 92.90 97.89
ANN 96.5 97.88 97.88

5.7. Hardware Implementation Results

Table 11 shows the hardware implementation results of SVM and ANN
classification techniques on ASIC platform. The library UMC 130nm is adopted. In Table
11, it is obvious that the SVM algorithm has the advantage of less utilization, higher
maximum frequency and less power consumption than the ANN algorithm. However,
the main disadvantage of the SVM algorithm is the large required number of clock cycles
to classify every new data point, which reaches up to 1020 clock cycle compared to 30
clock cycle only for the ANN algorithm. This very large number of clock cycle is due to
the fact that neural seizure detection problem is a very complex one. Hence, the SVM
technique has many support vectors and the inner product occurs for every testing point
is very large. However in the case of ANN, only the output of each node is calculated
through an add-multiply block. As the throughput of each algorithm is different, power
consumption is not a good comparison metric. Hence, power delay product is calculated.
Although SVM algorithms consumes less power than the ANN algorithm, the power
delay product is much larger.

Table 12 shows the same comparison between the implementation of SVM and ANN
classifiers on Spartan-6 FPGA platform. The instantaneous power consumption of the
GA algorithm is less than that consumed by the SMO algorithm. However, the energy
consumption of the GA is much larger than that consumed by the SMO algorithm due to
the large number of clock cycles needed by SVM to finalize classification of each testing
point.

56

Table 11 - Hardware implementation results of different classification techniques
on UMC 130nm platform.

Algorithm Area (nm?) | Power (uW) # cycles PDP
SVM 3963 2.15 1020 2193
ANN 16040 8.08 30 242.4

Table 12 - Hardware implementation results of different classification techniques
on Spartan-6 FPGA platform.

Algorithm Utilization Power PDP
LUTs Registers (mw)
SVM 293 137 1 1020
ANN 401 256 3 90

57

Chapter 6 : Rats Dataset Generation

The PhysioNet data set used in this work has some drawbacks. The first drawback
is the limited number of seizures recorded for each patient which makes the training
process very difficult. To enhance the overall performance of the seizure detection, more
seizure epochs should be recorded for each patient. The second drawback is the
unbalanced data. The number of time epochs which have seizure are much less than those
which do not have seizure. To solve this problem, a new dataset is measured from rats.

This dataset collected in collaboration with the Faculty of Science, Cairo
University and ONE lab. The dataset consists of EEG recordings from rats during ictal
and inter-ictal periods. Subjects were injected with drugs that cause temporary seizures.
Subjects were monitored for one hour: before, during and after the ictal seizure.

Recordings are measured from 13 different rats. Weights of the rats varies from 90
to 150 gm. Each animal data is exported to an excel sheet that contains the value of the
EEG signal in each time sample.

A surgery was performed for each rat to implant 3 electrodes on the cortex lobe.
The surgery performed is shown in Figure 33.

After implanting the electrodes in the rats’ cortex as shown in Figure 33-j, the
measurement equipment is set up. A commercial EEG instrumentation amplifier is
used. The amplifier used is Colbourn instruments’ LabLinc V system shown in Figure
34. This system consists of power base, signal acquisition unit, signal processing unit,
power amplifier and computer interface module. The system is so modular, as it
consists of different modules. Each module has multiple channels and different number
of modules can be connected vertically. In this experiment, only one module is used as
2 only channels are adopted. The module used is VV75-08 module which consists of 4-
channel EEG amplifier. A National Instruments NI 6030E interface card is used to
interface the LAbLinc V amplifier with the pc. The card has up to 16 analog input
channels, only 2 of them are used. The resolution of the acquisition, measurement,
amplification and interfacing modules are 12 bits.

The software used for acquisition of the measured EEG signal, record it and export
it in excel sheet is a BioBench based software. The software reads the data from each
channel of the NI card and stores them in an excel sheet with the corresponding time
frame.

Figure 35 shows a life experiment for EEG signal recording from one of the rats.

The recorded EEG signals from the all 13 rats are preprocessed and organized in 13
different excel sheet, a different one for each rat.

58

59

60

61

62

()
Figure 33 - Electrodes implantation surgery on rats.

63

Figure 34 - LabLinc V system

7 -
*

64

(b)
Figure 35 - EEG reading experiment.

The EEG is recorded for the 13 rats in both ictal and inter-ictal periods. These EEG
signals are the start of the new rats’ dataset as shown in Figure 36.

65

EEG {v)

EEG ()

EEG (v)

EEG ()

rat #1

time (sec)

w100
5 T T
0 b= Fs
| | | | |
i 10 12 14 15 18 20
¥ 100 rat #4 time (sec)
2
I I I I I
0
| | | | |
0 10 12 14 16 18 20
10 rat 9 time (sec)
5 _ _ _
0
5 | | | | |
0 10 12 14 16 18 20
time (sec)
w10 rat #12
5
I I I
oA
5 | | | | |
0 10 12 14 16 18 20

Figure 36 - Sample of the recorded rats EEG.

66

Conclusions and Future work

In this research, the problem of neural seizure detection problem is addressed. An
automatic seizure detection system is proposed with a very-high efficiency.

As Feature extraction and selection is a key metric in enhancing the performance of
classifier. More than 1100 combinations are tested with linear kernel SVM. Each
combination consists of 3 features. 126 combinations of them give sensitivity between
90 and 95%. 25 combinations of them give sensitivity more than 95%, while the
specificity and accuracy are more than 96% for all combinations. This result equals to
and exceeds that achieved by prior work however using linear kernel function instead of
the RBF kernel used in these prior work [25], [26], [53]. After exhaustive search, it is
found that fractal dimension, Hurst exponent and coastline combination is the best
combination that achieved sensitivity up to 96.77 % using linear kernel SVM classifier.

As the SVM learning process is a very complex process especially with the large
problems like neural seizure detection, a hardware accelerator for SVM training is
proposed. The training is accelerator using two different algorithms: Gradient ascent and
Sequential Minimal Optimization. The implemented hardware are proposed to be used
as accelerators IP especially in the problems with large training examples. The proposed
accelerators achieved a sensitivity up to 96% using linear kernel function. It is found that
the GA accelerator consumes less power and area than the SMO accelerator. However,
the GA accelerator takes 5x clock cycles to finish training more than the SMO
accelerator. That makes the GA accelerator more energy hungry than the SMO
accelerator.

Then, a hardware implementation of different classifiers techniques are proposed.
The proposed techniques are support vector machine (SVM) and artificial neural network
(ANN). The proposed SVM is chosen with linear kernel function. On the other hand, the
ANN classifier is designed with single hidden layer with 10 neurons in the hidden layer.
The ANN and SVM classifiers parameters are chosen to achieve the same performance
from both classifiers. For the same performance, the ANN classifier consumes less
energy than the SVM classifier for each input vector. However, the instantaneous power
consumed in the ANN classifier is more than that of the SVM classifier. This is due to
the very large number of clock cycles needed by the SVM classifier to finalize classifying
for any input vector compared to the ANN classifier.

Moreover, an effort was done to generate a new EEG dataset for rats that can be used
to detect seizures in collaboration with the Faculty of Science, Cairo University and ONE
lab. A DBS surgery was performed for 13 rats and depth electrodes were implanted on
their cortex. The rats are injected with a specific dose of drugs that cause the rats to have
a temporarily epileptic seizure. Some commercial EEG amplifiers were used to measure,
amplify and record these EEG signals. The signals measured from the different rats
before, during and after the seizure periods are shown in Figure 36.

As extension to this work, the following points are recommended for the future work:

- More optimizations can be done on the proposed hardware implementations to
save more energy

67

- The dataset extracted from rats should be tested against the proposed system.
- Using the DPR capabilities of the FPGA to enhance the utilization and
performance of the system.

68

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

D. Pfaff and N. VVolkow, Neuroscience in the 21st century: from basic to clinical,
Springer, 2016.

A. Varsavsky, M. Iven and C. Mark, Epileptic seizures and the EEG:
measurement, models, detection and prediction, CRC Press, 2016.

T. A. Ketter, R. M. Post and W. H. Theodore., "Positive and negative psychiatric
effects of antiepileptic drugs in patients with seizure disorders," Neurology, vol.
53, pp. S53--67, 1999.

M. S. Berger, J. Kincaid, G. A. Ojemann and E. Lettich, "Brain mapping
techniques to maximize resection, safety, and seizure control in children with
brain tumors,” Neurosurgery, vol. 25, pp. 786-792, 1989.

F. L. da Silva, W. Kamphuis, M. Titulaer, M. Vreugdenhil and W. Wadman, "An
experimental model of progressive epilepsy: the development of kindling of the
hippocampus of the rat,” The Italian Journal of Neurological Sciences, vol. 16,
pp. 45-57, 1995.

P. Boon, R. Raedt, V. De Herdt, T. Wyckhuys and K. Vonck, "Electrical
stimulation for the treatment of epilepsy,” Neurotherapeutics, vol. 6, pp. 218-227,
2009.

S. C. Schachter and C. B. Saper, "Vagus nerve stimulation,” Epilepsia, vol. 39,
pp. 677-686, 1998.

J. V. Murphy and A. A. Patil, "Stimulation of the nervous system for the
management of seizures,” CNS drugs, vol. 17, pp. 101-115, 2003.

A. Marquez, M. Dunn, J. Ciriaco and F. Farahmand, "iSeiz: A low-cost real-time
seizure detection system utilizing cloud computing,” in Global Humanitarian
Technology Conference (GHTC), 2017.

[10] A. Ghosh, A. Sarkar, T. Das and P. Basak, "Pre-ictal epileptic seizure prediction

based on ECG signal analysis," in Convergence in Technology (12CT), 2017.

[11] J. a. P. R. Malmivuo, Bioelectromagnetism: principles and applications of

bioelectric and biomagnetic fields, Oxford University Press, USA, 1995.

69

[12] C. J. Chu, "High density EEG—What do we have to lose?," Clinical
neurophysiology: official journal of the International Federation of Clinical
Neurophysiology, vol. 126, p. 433, 2015.

[13] S. V. Pacia and J. S. Ebersole, "Intracranial EEG substrates of scalp ictal patterns
from temporal lobe foci,” Epilepsia, vol. 38, pp. 642-654, 1997.

[14] J. L. Cantero, M. Atienza, R. Stickgold, M. J. Kahana, J. R. Madsen and B.
Kocsis, "Sleep-dependent θ oscillations in the human hippocampus and
neocortex," Journal of Neuroscience, vol. 23, pp. 10897-10903, 2003.

[15] S. Palva and J. M. Palva, "New vistas for a-frequency band oscillations,” Trends
in neurosciences, vol. 30, pp. 150-158, 2007.

[16] M. H. Libenson, Practical Approach to Electroencephalography E-Book, 2012.

[17] S. Blanco, S. Kochen, O. Rosso and P. Salgado, "Applying time-frequency
analysis to seizure EEG activity," IEEE Engineering in medicine and biology
magazine, vol. 16, pp. 64-71, 1997.

[18] J. McCarthy and E. A. Feigenbaum, "In memoriam: Arthur samuel: Pioneer in
machine learning,” Al Magazine, vol. 11, p. 10, 1990.

[19] A. L. Samuel, "Some studies in machine learning using the game of checkers,"”
IBM Journal of research and development, vol. 3, pp. 210-229, 1959.

[20] U. R. Acharya, S. V. Sree, G. Swapna, R. J. Martis and J. S. Suri, "Automated
EEG analysis of epilepsy: a review," Knowledge-Based Systems, vol. 45, pp.
147-165, 2013.

[21] B. Hunyadi, M. Signoretto, W. Van Paesschen, J. A. Suykens, S. Van Huffel and
M. De Vos, "Incorporating structural information from the multichannel EEG
improves patient-specific seizure detection,” Clinical Neurophysiology, vol. 123,
pp. 2352-2361, 2012.

[22] J. Wackermann, "Beyond mapping: estimating complexity of multichannel EEG
recordings.,”" Acta neurobiologiae experimentalis, vol. 56, pp. 197-208, 1996.

[23] R. J. Croft and R. J. Barry, "Removal of ocular artifact from the EEG: a review,"
Neurophysiologie Clinique/Clinical Neurophysiology, vol. 30, pp. 5-19, 2000.

[24] A. Van Boxtel, "Optimal signal bandwidth for the recording of surface EMG
activity of facial, jaw, oral, and neck muscles,” Psychophysiology, vol. 38, pp.
22-34, 2001.

70

[25] Q. Yuan, W. Zhou, S. Li and D. Cai, "Epileptic EEG classification based on
extreme learning machine and nonlinear features,” Epilepsy research, vol. 96, pp.
29-38, 2011.

[26] S. Li, W. Zhou, Q. Yuan, S. Geng and D. Cai, "Feature extraction and recognition
of ictal EEG using EMD and SVM," Computers in biology and medicine, vol. 43,
pp. 807-816, 2013.

[27] R. Panda, P. Khobragade, P. Jambhule, S. Jengthe, P. Pal and T. Gandbhi,
"Classification of EEG signal using wavelet transform and support vector
machine for epileptic seizure diction," in International Conference on Systems in
Medicine and Biology (ICSMB), 2010.

[28] Kolekar, M. H, Dash and D. Prasad, "A nonlinear feature based epileptic seizure
detection using least square support vector machine classifier,” in TENCON
2015-2015 IEEE Region 10 Conference, 2015.

[29] S. M. Afifi, H. GholamHosseini and S. Poopak, "Hardware implementations of
SVM on FPGA: A state-of-the-art review of current practice,” International
Journal of Innovative Science Engineering and Technology (IJISET), 2015.

[30] L. J. Cao, S. S. Keerthi, C. J. Ong, J. Q. Zhang, U. Periyathamby, X. J. Fu and H.
Lee, "Parallel sequential minimal optimization for the training of support vector
machines," IEEE Trans. Neural Networks, vol. 17, pp. 1039-1049, 2006.

[31] Cao, Kui-kang, S. Hai-bin and C. Hua-feng, "A parallel and scalable digital
architecture for training support vector machines,” Journal of Zhejiang University
SCIENCE C, vol. 11, pp. 620-628, 2010.

[32] C.-H. Peng, B.-W. Chen, T.-W. Kuan, P.-C. Lin, J.-F. Wang and N.-S. Shih,
"REC-STA: Reconfigurable and efficient chip design with SMO-based training
accelerator,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 22, pp. 1791-1802, 2014.

[33] L. Bustio-Mart{\\i}nez, R. Cumplido, J. Hern{\'a}ndez-Palancar and C.
Feregrino-Uribe, "On the Design of a Hardware-Software Architecture for
Acceleration of SVM’s Training Phase," in Mexican Conference on Pattern
Recognition, 2010.

[34] J.-F. Wang, J.-S. Peng, J.-C. Wang, P.-C. Lin and T.-W. Kuan,
"Hardware/software co-design for fast-trainable speaker identification system
based on SMO," in IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2011.

71

[35] S. Venkateshan, A. Patel and K. Varghese, "Hybrid working set algorithm for
SVM learning with a kernel coprocessor on FPGA," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 23, pp. 2221-2232, 2015.

[36] M. B. Rabieah and C.-S. Bouganis, "FPGA based nonlinear support vector
machine training using an ensemble learning,"” in 25th International Conference
on Field Programmable Logic and Applications (FPL), 2015.

[37] W. Shaojun, P. Yu, Z. Guangquan and P. Xiyuan, "Accelerating on-line training
of LS-SVM with run-time reconfiguration,” in International Conference on Field-
Programmable Technology (FPT), 2011.

[38] A. Bhattacharyya and B. R. Pachori, "A multivariate approach for patient-specific
EEG seizure detection using empirical wavelet transform," IEEE Transactions on
Biomedical Engineering, vol. 64, pp. 2003-2015, 2017.

[39] M. Sharma, B. Pachori, A. Ram and U. Rajendra, "A new approach to
characterize epileptic seizures using analytic time-frequency flexible wavelet
transform and fractal dimension,” Pattern Recognition Letters, vol. 94, pp. 172-
179, 2017.

[40] R. R. Sharma and R. B. Pachori, "Time-frequency representation using
IEVDHM-HT with application to classification of epileptic EEG signals,” IET
Science, Measurement & Technology, vol. 12, pp. 72-82, 2017.

[41] T. Das, A. Ghosh, S. Guha and P. Basak, "Classification of EEG Signals for
Prediction of Seizure using Multi-Feature Extraction,” 1st International
Conference on Electronics, Materials Engineering and Nano-Technology
(IEMENTech), pp. 1-4, 2017.

[42] T. Zhang and W. Chen, "LMD based features for the automatic seizure detection
of EEG signals using SVM," IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 25, pp. 1100-1108, 2017.

[43] V. Sakkalis, Modern Electroencephalographic Assessment Techniques, 2015.

[44] S. Pincus, "Approximate entropy as an irregularity measure for financial data,"”
Econometric Reviews, vol. 27, pp. 4-6, 2008.

[45] S. M. Pincus, "Approximate entropy as a measure of system complexity.,"”
Proceedings of the National Academy of Sciences, vol. 88, pp. 2297-2301, 1991.

[46] P. R. Pal, N. P. Mohanty and T. Gandhi, "ENTROPY BASED DETECTION \&
EVALUATION OF EPILEPTIC SEIZURE," International Journal of Applied,
vol. 4, pp. 73-77, 2011.

72

[47] V. Vijith, J. E. Jacob, T. lype, K. Gopakumar and D. G. Yohannan, "Epileptic
seizure detection using non linear analysis of EEG," International Conference on
Inventive Computation Technologies (ICICT), pp. 1-6, 2016.

[48] T. Higuchi, "Approach to an irregular time series on the basis of the fractal
theory,” Physica D: Nonlinear Phenomena, vol. 31, pp. 277-283, 1988.

[49] P. Bhuvaneswari and J. S. Kumar, "Support vector machine technique for EEG
signals,” International Journal of Computer Applications, vol. 63, 2013.

[50] A. Gammerman and V. Vovk, "Alexey Chervonenkis's bibliography: introductory
comments.," Journal of Machine Learning Research, vol. 16, pp. 2051-2066,
2015.

[51] J. Platt, "Sequential minimal optimization: A fast algorithm for training support
vector machines,” 1998.

[52] N. Petra, D. De Caro, V. Garofalo, E. Napoli and A. G. Strollo, "Truncated binary
multipliers with variable correction and minimum mean square error," IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp. 1312-1325,
2010.

[53] Y. Liu, W. Zhou, Q. Yuan and S. Chen, "Automatic seizure detection using
wavelet transform and SVM in long-term intracranial EEG," IEEE transactions on
neural systems and rehabilitation engineering, vol. 20, no. IEEE, pp. 749-755,
2012,

[54] B. Yegnanarayana, Artificial neural networks, PHI Learning Pvt. Ltd., 2009.

[55] A. Krizhevsky, 1. Sutskever and G. E. Hinton, "Imagenet classification with deep
convolutional neural networks," Advances in neural information processing
systems, pp. 1097-1105, 2012.

[56] D. O’Leary and J. Kubby, "Feature Selection and ANN Solar Power Prediction,"
Journal of Renewable Energy, 2017.

73

Codes

ion

\Communications\Research\2018\nonlinear features\functions

Imu

helpfunctions in your

functions,
IgnoringExtrgEntries')

MATLAB S

legend

Appendix A

\Communications\Research\New Research\New tools\chb01l

\Communications\Research\2018\nonlinear features\helpFunctions

change the paths to add chbO01l,

machine.

]

%% Code for calculating different combinations of both linear and
non-linear fatures then classify the data according to the

warning('off', 'MATLAB
combinations.

Main.m
Clc

clear
close all
addpath D
addpath D
addpath

D

o

’

o\
o\
o\
o\
o
o

oo o\ o o\ oe

o\

o
]

o\ o o\ oe

oo o\ o o\ oe

o\

o\ o o\ oe

))

oo o\ o o\ oe

oo o\ o o\ oe

’

— Q
~ I
o =]
a N
= - -—
©] T Q
Ke; ©)
o o
- — [«
= © -
Ee o]
< [} L
o° o\© O o} o\ o° [o\ o°
o\ oo @ o\ o\ O o\ oe
o\ oo O — Il o\ o\ O o\ oe
o\ oo @ o\ o\ o\ oe
oo oo a o> oe oo i) oe o
o\ oo oY o\ o\ © o\ oe
o\ oo Q o\ o\ i o\ o\
o\ oo n P o\ o\ iR} o\ oe
o\ oo T o o\ o\ o\ o\
o\ oo c - o\ o\ ~ o\ oe
o\ oo O o\ o\ 3 o\ o\
oe o° 0 = | oe oo (@] oe o
o° o\© o O o° o° e o o°
o\ oo n T o© o o\ oe
o° o\© o o\ o\ o° o o°
o\ oo - o\ o\ o\ o\
oe o° o = oe o oe oo
o
(0]
Q
=
n]
a
0]
<
(=

the first patient
3,4,15,16,18,21,26 => contain seizures for the first patient

Loading the data of CHB-MIT Scalp EEG Database
Locating the first patient data for classification

]
is)
G
[0}
i)
n
9] o
~ ¢]
o L
a O
- O
m >
0] (]
o
0] @]
o -
oo oe 3 o° oo —~ ~ o P oo
o° SCIIIN N o o\ S ~ o0 @ oe
oe o O - oe o _——~— 3 e U oe
o° oo O [0] o\ o° PP o O o0 O oe
oo 00 IS n oo o o oa oA < o g oe
o° o0 O d0 0 ~ o o\ [ORNORES] ~ o\ o°
o° oo O o} S o\ o\ -~ -+ © [} o0 O oe
o o0 a “ o o PRSI e o° o oo
o° o0 O o) [0} o\ o° T © —~ —~] o0 3 oo
oe e O O i o° oe o0 O P a o° N o°
o° o° O [0] 0 o° o° — -~ g | o° - o°
o\° e 9] | o° o\© 0w P -H O [0} o0 O oe
o° o0 N * [0] o\ o° QO 4 O - — o0 U2 oe
o a0 O ieo] “ o o £ © g P - o° oe
oo oo [s oo o o P O ®© 4y o0 —f oo
o oe |l O N o oe (@0} | Q ~ o° @ o
o\ oo @] -~ o° o\ | 1O —~ o 0 o0 3 oo
o° o° T [0] [0] o\ o° n o0 4 n o - o0 P oe
oﬁo oe m nv\u_v n o° oﬁo .m_v m] Lvl._, .m ﬂ M_U\, oo ﬂhnv oﬁo
o o\ ~ o° o\° N oe o\
o° 0 U ~ O 9] o o° -4 N -4 @© T © < o\ o\©
o° o0 O < My [0] o\ o\ — H -4 O P T O © o\ o\©
o o° n (0] e o o I O 0 0 -~ |l < o° oe
o oe Y |l .MH._ m o oe Il m 9] | [T — F @] o° oe
o\ o QO o\ o 0 — o\ oe
o\ N g | o\ o\ P @ | T P M o\ o\©
o° d° O T @©] o o\ a a oIl @ N o\ o\©
o\° 04 g n [0] o\ o\ [0] |9 o I 44 3T o\ o\©
o o O, O — o oe H O H-H Y Y O ® |~ o° oe
oo a0 £ O |l - oe o P H ©OT 33 O~ O oe oo
o° oo o0 @ O 4 oo oo o© o -4 P 4 O O — — > o0 oo o©
AdC 0 o 0 W 0 =F — o o° o° oo OH n O .8 o U m® O o° o° o° o°

74

0

zeros (floor (length (all data{l})/N),1);

3

1

if start (hour, j)~

sez true train
for J

sez_true train(floor(start (hour,j)/seconds) :floor (ending (hour, Jj)/sec
onds),1l) = ...

ones (length (floor (start (hour, j) /seconds) : floor (ending (hour, j) /second
s)),1);

end
end

% try different cominations (10C3 = 120 combinations)
c = combnk(1:20,3);

$featurel= 2;

$feature2= 12;

$feature3= 14;

for 1 = 886:-1:1
all data=ReadEDF (file name (hour,:)); % hour that contain seizure
over 23 channels

temp = c(i,:);

featurel=temp (1) ;
feature2=temp (2) ;
feature3=temp (3) ;

o
o
©9900
OO0OO0OOO0OO0OOODOOODODOOODODOOODOOODOOODODOOODODOODODODOODODOODODODOODODOOODODOODO©OODO™©
. . .
% Feature extraction and Ploting
55%%55%5%%%%555%5%5%5%%5%5%5%5%5%%5%5%5%5%5%5%%5%5%5%5%5%5%%5%5%5%5%5%5%%5%5%5%5%5%5%%5%%
clc

3] 4 4 ' .
fprintf ('\nTraining ..\n");
[trainingData] = features detection(all data,

N, featurel, feature?2, feature3ld) ;

visualize trainingdata(trainingData,sez true train, 'True class of
training examples',patient,hour)

(oo}

°0

©09999000000000000000009900000000099000000000990090000000909000
OO0OOO0OO0OOOOOOOOOOOOODOOODOOOOOOOODOOOOOOOOOOODOOODOOOOOOOOOOOO™O

% SVM Linear Classification
99000
OO0OO0OOO0ODOOOODOOODODOOODOOODODODOODODOODODOOODODOODODODOODODOODODOOODODOOODOOODOOODO™
%svmTrain =

fitcsvm(trainingData, sez true train, 'KernelFunction', 'RBF'); %
classes to be 1, O

$svmTrain =

fitcsvm(trainingData, sez true train, 'KernelFunction', 'polynomial','P
olynomialOrder',2); % classes to be 1, 0

svmTrain =

svmtrain (trainingData, sez true train, 'kernel function', 'linear');
% classes to be 1, 0

fprintf ("\nDone.\n");

oe
o

75

$svmClassification = predict (svmTrain, trainingData);

$visualize trainingdata (trainingData,svmClassification, 'Training Set
Classification',patient, hour)

SVM_TP=0;
SVM_TN=0;
SVM_FP=0;
SVM_FN=0;

for h = hour+l:size(file name, 1)
if (h==20|| h==26)
continue;
end

tic
clear all data
all data=ReadEDF (file name (h,:));

0000000000000000000000000000000000000

sez_true test(l,floor (start(h,j)/seconds):floor (ending(h,j)/seconds)

):

ones (1,length (floor (start (h,j)/seconds) :floor (ending(h,j)/seconds)))
end
end

fprintf (' \nFor h = %i: \n',h);
[testingData] = features detection(all data,

N, featurel, feature2, feature3l) ;
svmClassification = svmclassify(svmTrain,testingData) ;

% plot ictal hours to see the classification on each hour
if (h==4||h==15]| |h==16]| |h==18| |h==21| |h==26)

o o

visualize testingdata (testingData,svmClassification,sez true test,'C
lassification of testing examples', patient, hour)
% end

[TP, TN, FP,FN]=detection performance (svmClassification,sez true test)

’

SVM_TP=SVM_TP+TP;
SVM_TN=SVM_TN+TN;

76

SVM_ FP=SVM_FP+FP;
SVM_ FN=SVM_ FN+FN;
toc

end

SVM_sensitivity=SVM_TP/(SVM_TP+SVM_FN)*100;

SVM specificity=SVM TN/ (SVM TN+SVM FP)*100;
SVM_accuracy=(SVM_TP+SVM_TN) / (SVM_TP+SVM TN+SVM FP+SVM FN) *100;
results=[patient,hour, SVM sensitivity,SVM specificity, SVM accuracy];
confusion matrix = [SVM TP SVM FP; SVM FN SVM TN];

fprintf ('-———-—-—- \nResults:\n-——————-- \n"') ;

% print to the results file each iteration to record the results:

fileID = fopen('results.txt','a');

fprintf (fileID, 'Patient %i trained at hour = %$i with Sensitivity =
$f , Specificity = %$f and Accuracy = %f with features = [%1,%i,%1]
$s\n'

patient, hour,
SVM sensitivity, SVM specificity,
SVM accuracy, featurel, feature2, feature3, datestr (now, "HH:MM:SS")) ;
fclose (filelID) ;

clearvars -except sez true train all data hour patient c
samplePerSecond N seconds file name start i ending

end
Feature detection.m
function [trainingData] = features detection(all data,

N, featureNuml, featureNum2, featureNum3)

numberOfchannels=23;
for channel=1:numberOfchannels % loop on each channel

data=cellZmat (all data(:,channel));

% % 1 Standard Deviation
if (featureNuml ==l | | featureNum2 ==l || featureNum3 ==1)
omar=reshape (data,N, (length (data) /N)) ;
for i=1:(length (data) /N)
oahmed (1,i)=STD(omar (:,1i));
end
standardeviation (channel, :)=o0ahmed;
end
% % 2 Fractual Dimension
if (featureNuml ==2 || featureNumZ ==2 || featureNum3 ==2)
omar=reshape (data, N, (length (data) /N))
for i=l:(length(data)/N)

oahmed (1,i)=FD(omar(:,1i));

77

end

fractualdimension (channel, :)=o0ahmed;
end
% % 3 Hurst Exponent
if (featureNuml ==3 || featureNum2 ==3 || featureNum3 ==3)
omar=reshape (data, N, (length (data) /N)) ;

for i=1: (length(data) /N)
oahmed (1, 1)=hurstcomponent (omar (:,1),1/256);

end
hurstexp (channel, :)=o0ahmed;
end
% % 4 Kurtosis
if (featureNuml ==4 || featureNum2 ==4 || featureNum3 ==4)
omar=reshape (data,N, (length (data) /N)) ;
for i=1: (length (data) /N)
oahmed (1, 1)=Pkurt (omar(:,1));
end
Kurtos (channel, :)=ocahmed;
end
% % 5 Skew
if (featureNuml ==5 || featureNum2 ==5 | | featureNum3 ==5)
omar=reshape (data, N, (length (data) /N))
for i=1:(length (data) /N)
oahmed (1, i)=Pskew (omar(:,1i));
end
skew (channel, :)=oahmed;
end
% 6 variance
if (featureNuml ==6 featureNum2 == featureNum3 ==6)

| |
omar=reshape (data,N, (length (data) /N)) ;
for i=1: (length (data) /N)

oahmed (1,i)=VAR (omar (:,1));

end
variance (channel, :)=ocahmed;
end
5 % 7 Permutation Entropy
o ©990000000000000000
o OO0OO0OO0OO0OO0OOODOOOODOOODODOOO

if (featureNuml ==7 || featureNum2 ==7 || featureNum3 ==7)
for i=l:length(data) /N

perEnt (channel,i) =

end

78

per entropy (downsample (new data (i,

if (featureNuml ==8 || featureNum2 ==8 || featureNum3 ==8)
for i=1:1length(data) /N
approxEntropy (channel, i) =

approxEnt (2,0.5,downsample (new_data (i, :),5));

end
end
if (featureNuml ==9 || featureNum2 ==9 || featureNum3 ==9)
% 9. Shannon Entropy

for i=1l:length(data) /N

ShannonkEnt (channel, i)
ShannonEntropy (new _data (i, :),max(new _data(i,:)),4);

end

if (featureNuml ==10 || featureNum2 ==10 || featureNum3 ==10)
for i=1:length(data) /N
SpectralEnt (channel, i) = SpectralEntropy(new data(i,:),8);
end

end

% 11. Renyie Entropy

if (featureNuml ==11 || featureNum2 ==11 || featureNum3 ==11)

for i=1:length(data) /N

renyient (channel, i) =
renyientropy(new data (i, :),2,max(new _data(i,:)),8);

end

if (featureNuml ==12 | featureNum2 ==12 || featureNum3 ==12)
for i=1l:length (data) /N
hurstExpo (channel,i) =

estimate hurst exponent (new data(i,:),3);
end

13. Average Energy
featureNuml ==13
E=data.”2;

E=E (l:floor (length(E) /N)*N, 1) ;

Eavg (channel, :)=1/N*sum(reshape (E,N, length (E) /N), 1) ; $coastline
vector

featureNum?2 ==13 || featureNum3 ==13)

end

% 14 Coastline Feature (Fluctuation Index)

o 9900

o OO0OO0OO0OOOOOOOOODOOODOOOODOOODOOODODOOODOOOODOOODOOODO™©

if (featureNuml ==14 || featureNum2 ==14 featureNum3 ==14)

abs bet 2 succsessive=abs([data(2:length(data));0]-data);%This
vector will have the absolute difference between two successive EEG
data points

abs bet 2 succsessive=abs bet 2 succsessive(l:floor (length (abs bet 2
_succsessive) /N)*N,1);

CL(channel, :)=sum(reshape (abs_bet 2 succsessive,N, length(abs bet 2 s
uccsessive) /N),1);%coastline vector
end

if (featureNuml ==15 || featureNum2?2 ==15 || featureNum3 ==15)
for i=1:1length(data) /N

[mobility(channel,i),~] = HjorthParameters (new data(i,:)");
end
end
% 16. Hjorth Parameters: Complexity
if (featureNuml ==16 || featureNum2?2 ==16 || featureNum3 ==16)
for i=1:1length(data) /N
[~,complexity(channel,i)] = HjorthParameters (new data(i,:)");
end
end
% % 17. Mean absolute value
if (featureNuml ==1 | | featureNum?2 ==17 || featureNum3 ==17)
omar=reshape (data, N, (length (data) /N)) ;
for i=1:(length (data) /N)
oahmed (1, 1)=MAV (omar (:,1));
end
meanabs (channel, :)=cahmed;
end
3 % 18. Max absolute value
if (featureNuml ==18 || featureNum2 ==18 || featureNum3 ==18)
omar=reshape (data, N, (length (data) /N)) ;
for i=1: (length (data) /N)
oahmed (1, i)=MAX (omar (:,1));
end
maxabs (channel, :)=ocahmed;
end
% % 19. Min absolute value

if (featureNuml ==19 featureNum2 ==19 || featureNum3 ==19)
omar=reshape (data,N, (length (data) /N)) ;
for i=1:(length (data) /N)
oahmed (1, 1)=MIN(omar (:,1));

end
minabs (channel, :)=ocahmed;
end
% % 20. root mean square
if (featureNuml ==20 || featureNum2?2 ==20 || featureNum3 ==20)
omar=reshape (data, N, (length (data) /N)) ;
for i=1: (length (data) /N)
oahmed (1, 1i)=RMS (omar (:,1));
end
rootmeansqua (channel, :) =ocahmed;
end
fporintf ('%1i ', channel);
end

80

%% constructing features:

features

i=1

’

if (featureNuml

features(:,:,1)
i= i+1;

end

if (featureNuml ==2 |
features(:,:,1)

end

if (featureNuml

end

i= i+1;

==3 |
features(:,:,1)
i= i+1;

if (featureNuml ==4 |

end

if (featureNuml

end

if (featureNuml

end

if (featureNuml

end
if

end
if

end
if

end
if

end
if

end
if

features(:,:,1)
i= 1i+1;

features (:,:,1)

i= i+1;

features(:,:,1)
i= i+1;

features (:,:,1)
i= i+1;
(featureNuml ==

features (:,:,1)
i= i+1;

(featureNuml ==
features (:,:,1)
i =1 +1;

(featureNuml ==10
features(:,:,1)
i =1 +1;

(featureNuml ==11

features(:,:,1)

i =1 +1;

(featureNuml ==12
features(:,:,1)
i =1 +1;

(featureNuml ==13

| featureNum2

| featureNum2 ==2

| featureNum?2
hurstexp;

| featureNum2
Kurtos;

| featureNum2
skew;

| featureNum?2
variance;

| featureNum2
perEnt;

featureNum2
approxEntropy;

featureNum2
ShannonEnt;

featureNum2
SpectralEnt;

| | featureNum2
= renyient;

featureNum2
hurstExpo;

featureNum2

81

9

standardeviation;

fractualdimension;

13

zeros (numberOfchannels, floor (length (data) /N), 3) ;

featureNum3 ==1)

featureNum3

featureNum3

featureNum3

featureNum3

featureNum3

featureNum3

featureNum3

==8)

featureNum3 ==9)

featureNum3

featureNum3

featureNum3

featureNum3

features(:,:,1) = Eavg;
i=1+1;

end
if (featureNuml ==14 || featureNum2 ==14 || featureNum3 ==14)
features(:,:,1) = CL;
i =1 +1;
end
if (featureNuml ==15 || featureNum2 ==15 || featureNum3 ==15)
features(:,:,1) = mobility;
i =1 +1;
end
if (featureNuml ==16 || featureNum2 ==16 || featureNum3 ==16)
features(:,:,1) = complexity;
i =1 +1;
end
if (featureNuml ==17 || featureNum2 ==17 || featureNum3 ==17)
features(:,:,1) = meanabs;
i =1 +1;
end
if (featureNuml ==18 || featureNum?2 ==18 || featureNum3 ==18)
features(:, :,1) = maxabs;
i =1 +1;
end
if (featureNuml ==19 || featureNum2 ==19 || featureNum3 ==109)
features(:, :,1) = minabs;
i =1 +1;
end
if (featureNuml ==20 || featureNum2 ==20 || featureNum3 ==20)
features(:,:,1) = rootmeansqua;
i =1 +1;
end
% Combine the channels into an average channel

featurel = features(:,:,1);
feature2 = features(:,:,2);
feature3 = features(:,:,3);

featurel train=sum(featurel,l)/numberOfchannels;
feature2 train=sum(feature2,l)/numberOfchannels;
feature3 train=sum(feature3,l)/numberOfchannels;

9990909009000 009000000900000000000000000000000000000000000000090
OO0OOO0OOO0OOOOOOOOOOOODOOODOOOOOOOODOOODOOODOOOOODOOODOOODOOOOOOOOO™©
N . . .

% Features Normalization & Training
000

trainingData=[featurel train' featureZ train' feature3 train'];

meanl=nanmean (trainingData(:,1));
mean2=nanmean (trainingData (:,2));
mean3=nanmean (trainingData (:,3));

varl=nanvar (trainingData(:,1));

82

var2=nanvar (trainingData (:,2));
var3=nanvar (trainingData(:,3));

trainingData (:,1)=(trainingData(:,1)-meanl) /sqrt (varl);
trainingData (:,2)=(trainingData(:,2)-mean2) /sqrt (var2);
trainingData(:,3)=(trainingbData(:,3)-mean3) /sqrt (var3);

end

approxEnt.m

function [apen] = approxEnt (window length, r,data)

%% Code for computing approximate entropy for a time series:
Approximate

% To run this function- type: approx entropy ('window
ength', 'similarity measure', 'data set')

i.e approx entropy(5,0.5,data)

% Author: Avinash Parnandi, parnandi@usc.edu,
http://robotics.usc.edu/~parnandi/

e

o\
o\

for m=window length:window length+l % to be able to calculate
the phi(r)”m - phi(r)” (m+l)

set = 0;
count =

0;
counter =

0;

for i=1:(length (data))-m+1
current window = data(i:i+m-1); % current window stores the
sequence to be compared with other sequences

for j=1l:1length(data) -m+1
sliding window = data(j:j+m-1); % get a window for comparision
with the current window

% compare two windows, element by element
o

s can also use some kind of norm measure; that will perform
better

for k=1:m
if ((abs (current window(k)-sliding window (k))>r) && set == 0)
set = 1; $ i.e. the difference between the two sequence
is greater than the given value
end
end
if (set==0)
count = count+l; % this measures how many sliding windows
are similar to the current window
end
set = 0; % reseting 'set'
end

counter (i)=count/ (length (data) -m+1); % need the number of similar
windows for every cuurent window

83

count=0;
end
correlation(m-window length+l) = ((sum(counter))/ (length(data)-
m+1l));
end

apen = log(correlation(l)/correlation(2));
end

Estimate hurst exponent.m
function [hurst] = estimate hurst exponent(data,no iterations)

[~,npoints]=size (data);

yvals = zeros(l,no_iterations);

xvals = zeros(l,no_iterations);

k=1;

for i = 10: (npoints/no_iterations) :npoints

original signal= data(l:i);

signal mean = sum(original signal)/npoints;
X = original signal - signal mean;

Y = cumsum(X) ;

Rn = max(Y) - min(Y);

original std = std(original signal);

yvals (k) = log(Rn/original std);
xvals (k) = log(i);

k = k+1;

end

p2=polyfit (xvals,yvals,1);
hurst=p2 (1) ; % Hurst exponent is the slope of
the linear fit of log-log plot

end

HjorthParameters.m
function [mobility,complexity] = HjorthParameters (xV)

n = length (xV);

dxV = diff ([0;xV]);
ddxV = diff ([0;dxV]);
mx2 = mean (xV."2);
mdx2 = mean (dxV."2);
mddx2 = mean (ddxV."2);

mob = mdx2 / mx2;

complexity = sqrt(mddx2 / mdx2 - mob) ;
mobility = sqgrt (mob) ;

84

end

Per_entropy.m
function perEnt = per entropy(data,win)

for i = 1l:length(data)-floor (win/2)-1
[~,I(i,:)] = sort(data(i:i+win-1));
end
[~,73],kk]=unique (I, 'rows', 'stable');
f=histc (kk,l:numel (jj)); % Frequency

P = f/length(data);

perEnt= -sum(P.*1log(P));
end

Quantizer.m

function [quantized signal] = quantizer (sampled signal,varargin)
9909000
OO0OOO0OOO0OOOOOOOOODOOODOOODOODOOODODOODOOODOODOOODODOODODOODODODODOODODOODODOOOODODOODOOODOOOOO©O™O
©9900090000000000090000000000

OO0OO0OO0OO0OOOOOOOOOOOOOOOOOOOOO©

%%% Sample of input for quantizer funtion
9909000000000000000000000000000000000000000
OO0OO0OO0OOO0OOOOOOOOOOOODODOODOOOOOOOODOOODOOODOOOOODOODO

$%% ts = 0.1;

%%% nLevels = 5;

$%% mp = 5;

$%% m_law=2;

%%% [binary signal,level signal,quantized signal] =

quantizer (sampled sig, 'NLevels', nLevels,

%% 'SigMax',
mp, 'QuantizerType', 0, 'MeuValue',m law);
©90000000000009000000990000009000000900000090000009000000900000090000
OO0OO0OODOOOOOOOOOOOOOOOOO™O

%% Input Oarsing Handeling
quantizationType = 1;

mp = max (sampled signal);
nlLevels = 4;

meu = 1;

p = inputParser();

addOptional (p, 'QuantizerType', quantizationType, @isnumeric);
addOptional (p, 'NLevels', nLevels, @isnumeric);

addOptional (p, 'MeuValue', meu, @isnumeric);

addOptional (p, 'SigMax', mp, @isnumeric);

parse (p, varargin{:});

nLevels = p.Results.NLevels;
mp = p.Results.SigMax;

if (2" (ceil(log2(nLevels))) > nLevels)
disp ('Number of Levels must be multiple of 2');
nLevels = 2" (ceil (log2 (nLevels)));
fprintf ('A %$d number of levels was chosen instead \n',nLevels);

85

end
%% Uniform mid-rise quantizer

quantized signal = zeros(size(sampled signal));
level signal= zeros(size(sampled signal));
detla = 2*mp/ (nLevels-1);

for n =l:length(sampled signal)
current level = -mp;
level number = 0;
for k= l:nlevels

if ((sampled signal (n) <= current level && sampled signal (n)

>= current level - detla/2) || (sampled signal(n) >= current level
&& sampled signal(n) <= current level + detla/2))
quantized signal(n) = current level;
level signal(n) = level number;
break;
end
level number = level number + 1;
current level = current level + detla;
end
end
end

Renyientropy.m
function RENYI = renyientropy (X, alpha,sig Max, levels)

% Number of levels for quantization and the signal maximum value
[

quantized] = quantizer (X, 'NLevels',6 levels,'SigMax', sig Max);
unique values = unique (quantized);
Frequency = zeros (size(unique values));

o)

% Calculate sample frequencies
for level = 1l:length(unique_ values)

Frequency (level) = sum(quantized == unique values(level));
end

% Calculate sample class probabilities

P = Frequency / sum(Frequency) ;

% Calculate Shannon Entropy
RENYI=(1/1-alpha).* log2(sum(P .”alpha));

end

sampEntropy.m
function [ApEn] = sampEntropy(window length, r,data)

%% Code for computing approximate entropy for a time series: Sample

86

% To run this function- type: approx entropy ('window
length', 'similarity measure', 'data set')

% 1.e approx entropy(5,0.5,data)

% Author: Avinash Parnandi, parnandi@usc.edu,
http://robotics.usc.edu/~parnandi/

o°
oe

for m=window length:window length+l % to be able to calculate
the phi(r)”m - phi(r)” (m+l)

set = 0;
count =

0;
counter =

0;

for i=1: (length(data))-m+1l
current window = data(i:i+m-1); % current window stores the
sequence to be compared with other sequences

for j=l:length(data)-m+1

if i==j
continue;
end

Q

sliding window = data(j:j+m-1); % get a window for comparision
with the current window

% compare two windows, element by element

o

s can also use some kind of norm measure; that will perform
better

for k=1:m
if ((abs (current window (k)-sliding window (k))>r) && set == 0)
set = 1; % i.e. the difference between the two sequence
is greater than the given value
end
end
if (set==0)
count = count+l; % this measures how many sliding windows
are similar to the current window
end
set = 0; % reseting 'set'
end

counter (i)=count/ (length (data) -m+1); % need the number of similar
windows for every cuurent window

count=0;
end
correlation (m-window length+l) = ((sum(counter))/ (length (data) -
m+l));
end
ApEn = log(correlation(l)/correlation(2));

87

end

ShannonEntropy.m
function H = ShannonEntropy (X, sig Max, levels)

% Number of levels for quantization and the signal maximum value
[

quantized] = quantizer (X, 'NLevels', levels,'SigMax', sig Max);
unique values = unique (quantized);

Frequency = zeros (size(unique values));

% Calculate sample frequencies

for level = l:length(unique_values)

Frequency (level) = sum(quantized == unique values (level));
end

o\°

Calculate sample class probabilities
= Frequency / sum(Frequency) ;

av]

o\°

Calculate Shannon Entropy
= —sum(P .* log(P));

T

end

SpectralEntropy.m
function Entropy = SpectralEntropy(y,levels)

Fs = 100;

Y = fft(y);

Y Y (l:floor (length(y)/2)+1);

Y = 1/ (length(y)*Fs)*(Y.*con]j (Y));
d

f

f = 1000/length(y);
req = 0:df:500;

PSD = Y."2/length (y);
Normalized PSD = PSD/sum(PSD);

quantized PSD = quantizer (Normalized PSD, 'NLevels', levels,'SigMax',
max (Normalized PSD));

% Sampling in Frequency:

Entropy = -sum(Normalized PSD.*log(Normalized PSD));
end

ACF.m

function y=ACF (x, k)

ck=0;

xbar=MAV (x) ;
for i=1: (length (x)-k)

ck=ck+ ((x (i) -xbar) * (x (i+k) -xbar)) ;
end

88

ck=ck/length (x) ;
c0=VAR (x) ;
y=ck/cO0;

end

FD.m
function p=FD (x)
x1=x(1);

for i=1:((length(x)-1)/5) %m?
x1=[x1 x(1+(5*i))];
end

for i=1:((length(x)-2)/5)
xX2=[x2 x(2+(5*1))];
end

for i=1:((length(x)-3)/5)
xX3=[x3 x(3+(5*1))];
end

for i=1:((length(x)-4)/5)
x4=[x4 x(4+(5*1))];
end

for i=1:((length(x)-5)/5)
x5=[x5 x(5+(5*1))];
end
=(length(x)-1)/5;
=(length(x)-2)/5;
=(length(x)-3)/5;
=(length(x)-4)/5;
=(length(x)-5)/5;

L1=0;
for i=1l:al
L1=L1+ (abs(x (1+(i*5))-x(1+((1i-1)*5)))/ (length(x)-1));
end
L1=L1/ (al*5);

L2=0;
for i=1:a2
L2=L2+ (abs (x (2+ (1*5)) -x (2+ ((1-1)*5))) / (length(x)-1));
end
L2=L2/ (a2*5) ;

L3=0;
for i=1:a3
L3=L3+ (abs (x (3+ (i*5))-x(3+((1i-1)*5)))/ (length(x)-1));
end
L3=L3/ (a3*5);

89

L4=0;
for i=1:a4
L4=L4+ (abs (x (4+ (1*5))-x (4+ ((1-1)*5)))/ (length(x)-1));
end
L4=L4/ (ad*5);

L5=0;
for i=1:a5
L5=L5+ (abs (x (5+ (1i*5)) -x (5+ ((1-1)*5)))/ (length(x)-1));
end
L5=L5/ (a5*5) ;

k=(log(Ll) /log(1/5));
g=(log(L2)/1log(1/5));
r=(log(L3)/1log(1/5));
s=(log(L4)/log(1/5));
u=(log (L5) /log(1/5));
p=(k+tgtr+s+u) /5;

end

Hurstcomponent.m

function H=hurstcomponent (x,T)

data=x; %adding input in internal variable
average=MAV (data) ;
differences=data-average;
maxdevfrommean=MAX (differences) ;
mindevfrommean=MIN (differences);

R=abs (abs (maxdevfrommean) —abs (mindevfrommean)) ;
S=STD (data) ;

H=log (R/S) /log(T);

end

MAV.m

function y=MAV (x)
temp=abs (x) ;

y=sum (temp) /length (x) ;
end

MAX.m
function y=MAX (x)
templ=x(1);
for i=l:length(x);
if (abs (x (1)) >abs (templ))
templ=x(1i);
elseif (abs(x(i))==abs (templ))
if (angle(x(i))>angle (templ))
templ=x(1i);
else
templ=templ;
end
else
templ=templ;
end
end
y=templ;
end

90

Min.m
function y=MIN (x)
templ=x(1);
for i=l:1length(x);
if (abs (x(1))<abs (templ))
templ=x(1i);
elseif (abs(x (1))
if (angle (x (i
templ=x (
else
templ=templ;
end
else
templ=templ;
end
end
y=templ;

abs (templ))

)) <angle (templ))
i);

Pkurt.m

function y=Pkurt (x)

X=x;

averageofX=sum (X) /length (X) ;

stdofX=STD (x) ;

y=sum ((((X—averageofX) /stdofX) .”4)) /length (X);
end

Pmax.m

function y=Pmax (x)
y=MAX (fft (x));

max (x)

end

Pskew.m

function y=Pskew (x)

X=x;

averageofX=sum (X) /length (X) ;

stdofX=STD (x) ;

y=sum ((((X—averageofX) /stdofX) .”3))/length (X);
end

RMS.m

function y=RMS (x)

temp=x.*x;

y=sgrt (sum(temp) /length (x)) ;
end

STD.m

function y=STD (x)

averageofX=sum(x) /length (x) ;

y=sgrt (sum(((x—averageofX) .* (x—averageofX)))/ (length(x)-1));
end

VAR.M

function y=VAR (x)

averageofX=sum(x) /length (x) ;

y=(sum(((x—averageofX) .* (x—averageofX)))/ (length(x)-1));

91

end

datalLoading.m
function
datalLoading ()

file 1=["'chb0l 0l.edf';

'chb0l 04.edf';
'chb01l 08.edf';
'chb01l 12.edf';
'chb0l 16.edf’';
'chb0l 20.edf';
'chb0l 24.edf';
'chb01l 29.edf';
'chb01l 33.edf';
'chb01l 38.edf';
'chb01l 42.edf';
start 1=[0

0 0 0; 0
0
327

~.
0 OO O oo
Ne Ne N N

‘
o k-~
o]
o rQ o oo
—
Il

VN eoNeoNoNoNoNoN(NoNoNoNolNolNo]
- 3

'chb01 05
'chb01 09.
'chb01 13
'chb01l 17
'chb01 21
'chb01 25
'chb01 30
'chb01 34
'chb01l 39.
'chb01 43
0 0; O 0
0 0; O

’

O O O O o
O O O O
~.

1
; 0
0
0

. N

O O O O oo
O O O o

~
o O O

~.

file 2=['chb02 0l.edf';

'chb02 04.edf';
'chb02 08.edf';
'chb02 12.edf';
'chb02 16.edf’';
'chb02 20.edf';
'chb02 25.edf';
'chb02 29.edf';
'chb02 33.edf’';
start 2=[0

0; O

0
0 0; 0
s _start 2=16;

'chb02 05
'chb02 09.
"chb02 13
"chb02 17
'chb02 22
'chb02 26.
'chb02 30.
'chb02 34
0 0; O 0
0 0; O

file 3=['chb03 0l.edf';

edf’';
edf’';
edf';
edf';

'chb03_ 04.
'chb03_08.
'chb03 12.
'chb03 16.

"chb03 05.
'chb03_09.
'chb03 13.
'chb03 17.

.edf’

.edf’';
0
O .

'chb01 02.edf';

.edf';

edf';

.edf’';
.edf’';
.edf';
.edf';
.edf’';
.edf’';

edf';

0;

O O O O O N~

(@]
(&)
(&)
O O OO OoOWw

'chb02 02.edf';

.edf';

edf';

.edf’';
.edf’';
.edf';

edf';
edf';

0;
0

~

0
0

"chb02_ 06.
'chb02 10
'chb02_ 14
'chb02_18
'chb02 23
'chb02 27
'chb02 31
'chb02_35

0 0

'chb03 02.edf';

edf';
edf';
edf';
edf';

"chb03 06.
'chb03_10.
'chb03 14.
'chb03 18.

92

[files names, seizure_ start,seizure ending,s starts]

'chb01 03.edf';

'chb01 06.edf'; 'chb0l 07
'chb01l 10.edf'; 'chb01l 11
'chb01l 14.edf'; 'chb0l 15.
'chb01l 18.edf'; 'chb0l 19.
'chb01 22.edf'; 'chb0l 23.
'chb01 26.edf'; 'chb0l 27
'chb01l 31.edf'; 'chb0l 32
'chb01l 36.edf'; 'chb0l 37
'chb01 40.edf'; 'chb01l 41
'chb01 46.edf'];
996 0 0O, 1467 0 O0; O 0
0 0 0; O 0 0; O
0; O 0 0; 1720 0 0; O
0; O 0 0; O 0 0; 18
0, O 0 0; O 0 0; O
0, O 0 0; O 0 0; O
36 0 0; 1494 0 0; O 0
0 0 0; O 0 0; O
0, O 0 0; 1810 0 0; O
0, O 0 0; O 0 0; 19
0; O 0 0; O 0 0; O
0; O 0 0; O 0 0; O

'chb02 03.edf';

edf'; 'chb02 07
.edf'; 'chb02 11
.edf'; 'chb02 15.
.edf'; 'chb02 19.
.edf'; 'chb02 24
.edf'; 'chb02 28
.edf'; 'chb02 32
.edf'];

0 0; O 0
0 00
;O 0 0; O
0; O 0 0; O
0; 0O 0 0]

0 0; O 0
0 00

0 0 0; O

0; O 0 0; O
0; O 0 01,

'chb03 03.edf';

edf'; 'chb03 07
edf'; 'chb03 11
edf'; 'chb03 15
edf'; 'chb03 19

.edf';
.edf';
edf';
edf';
edf';
.edf';
.edf';
.edf';
.edf';

~e

[©)}

N
O O O O O o
O O OO

~

[eoNeoNeNoNoNe)
~.

[oNeNeNe)

Ne Ne N O

~.

.edf';
.edf';
edf';
edf';
.edf';
.edf';
.edf';

.edf';
.edf';
.edf';
.edf';

(@} O O OO

O O O o

'chb03 20.edf'; 'chb03 21.edf'; 'chb03 22.edf'; 'chb03 23.edf';
'chb03 24.edf'; 'chb03 25.edf'; 'chb03 26.edf'; 'chb03 27.edf';
'chb03 28.edf'; 'chb03 29.edf'; 'chb03 30.edf'; 'chb03 31l.edf';
'chb03 32.edf'; 'chb03 33.edf'; 'chb03 34.edf'; 'chb03 35.edf’;
'chb03 36.edf'; 'chb03 37.edf'; 'chb03 38.edf'];

start 3=[362 0 0; 731 0 0; 432 0 0; 2162 0 0; O 0; O 0
0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O
0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O
0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O
0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0;
1982 0 0; 2592 0 0; 1725 0 0; O 0 0; O 0 01;
ending 3=[414 0 0; 796 0 0; 501 0 O; 2214 0 0; O 0; O 0
0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O

0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O
0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O
0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0;
2029 0 0; 2656 0 0; 1778 0 0; 0 0 0; O 0 01;

s _start 3=4;

file 4=['chb04 0l.edf'; 'chb04 02.edf'; 'chb04 03.edf';

'chb04 04.edf'; 'chb04 05.edf'; 'chb04 06.edf'; 'chb04 07.edf';
'chb04 08.edf'; 'chb04 09.edf'; 'chb04 10.edf'; 'chb04 1l.edf';
'chb04 12.edf'; 'chb04 13.edf'; 'chb04 14.edf'; 'chb04 15.edf';
'chb04 16.edf'; 'chb04 17.edf'; 'chb04 18.edf'; 'chb04 19.edf';
'chb04 21.edf'; 'chb04 22.edf'; 'chb04 23.edf'; 'chb04 24.edf’;
'chb04 25.edf'; 'chb04 26.edf'; 'chb04 27.edf'; 'chb04 28.edf';
'chb04 29.edf'; 'chb04 30.edf'; 'chb04 31.edf'; 'chb04 32.edf';
'chb04 33.edf'; 'chb04 34.edf'; 'chb04 35.edf'; 'chb04 36.edf';
'chb04 37.edf'; 'chb04 38.edf'; 'chb04 39.edf'; 'chb04 40.edf';
'chb04 41.edf'; 'chb04 42.edf'; 'chb04 43.edf'];

start 4=[0 0 0; O 0 0; O 0 0; O 0 0; 7804 0 0; O 0
0; 0 0 0; 6446 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O

0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O
0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0;
1679 3782 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O

0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O
0 0; O 0 0; O 0 01,
ending 4=[0 0 0; O 0 0; O 0 0; O 0 0; 7853 0 0; O 0
0; 0O 0 0; 6557 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O

0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O
0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0;
1781 3898 0; 0 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O

0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O 0 0; O
0 0; O 0 0; O 0 01;

s _start 4=8;

file 5=['chb05 0l.edf'; 'chb05 02.edf'; 'chb05 03.edf’';

'chb05 04.edf'; 'chb05 05.edf'; 'chb05 06.edf'; 'chb05 07.edf';
'chb05 08.edf'; 'chb05 09.edf'; 'chb05 10.edf'; 'chb05 1l.edf';
'chb05 12.edf'; 'chb05 13.edf'; 'chb05 14.edf'; 'chb05 15.edf’';
'chb05 16.edf'; 'chb05 17.edf'; 'chb05 18.edf'; 'chb05 19.edf’';
'chb05 20.edf'; 'chb05 21.edf'; 'chb05 22.edf'; 'chb05 23.edf';
'chb05 24.edf'; 'chb05 25.edf'; 'chb05 26.edf'; 'chb05 27.edf';
'chb05 28.edf'; 'chb05 29.edf'; 'chb05 30.edf'; 'chb05 31.edf';
'chb05 32.edf'; 'chb05 33.edf'; 'chb05 34.edf'; 'chb05 35.edf’';
'chb05 36.edf'; 'chb05 37.edf'; 'chb05 38.edf'; 'chb05 39.edf'];
start 5=[0 0 0;0 0 0;0 O 0;0 0 0;0 O 0;417 0 0;0 0 0;0 0 0;0 0 0;0
0 0;0 0 0;0 O 0;1086 0 0;0 O 0;0 O 0;2317 0 0;2451 0 0;0 0 0;0 0 00
0 0;0 0 0;2348 0 0;0 0 0;0 O 0;0 O 0;0 O 0;0 O 0;0 O 0;0 O 0;0 0 00
0 0;0 0 0;0 0 0;0 0 0;0 O 0;0 O 0;0 O 0;0 O 0;0 O 01+

ending 5=[0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;532 0 0;0 0 0;0 0 0;0 0 0;0
0 0;0 0 0;0 0 0;1196 0 0;0 O 0;0 O 0;2413 0 0;2571 0 0;0 0 0;0 0 00

93

0 0;0 0 0;2465 0 0;0 0 0;0 0 0;0 O 0;0 O 0;0 0 0;0 O 0;0 O 0;0 0 0;0
0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 O 0;0 O 0;0 O 0;0 0 017
s start 5=6;

file 6=["'chb06 0l.edf'; 'chb06 02.edf'; 'chb06 03.edf';

'chb06 04.edf'; 'chb06 05.edf'; 'chb06 06.edf'; 'chb06 07.edf';
'chb06 08.edf'; 'chb06 09.edf'; 'chb06 10.edf'; 'chb06 12.edf';
'chb06 13.edf'; 'chb06 14.edf'; 'chb06 15.edf'; 'chb06 16.edf';
'chb06 17.edf'; 'chb06 18.edf'; 'chb06 24.edf'];

start _6=[1724 7461 13525 ; O 0 0 ; 0 0 o 327
6211 0 ; O 0 0 ; O 0 0 ; O 0 0 ; O 0 o
12500 0 0 ; 10833 0 0 ; O 0 0 ; 506 0 0
0 0 ; O 0 0 ; O 0 0 ; O 0 0 ; 7799 0
9387 0 0 1;
ending 6=[1738 7476 13540 ; 0 O O ; O O O ; 347 6231 0 ; O
c 06,0 0O 0;0 O O;O O 07, 12516 0O O ; 10845 0 0 ; O
6 0;51% 0 0,0 0O 0;0 O O;O0O O O0;O0 O O0; 7811 O
0 ; 9403 0 0 1;
s_start 6=10;

file 7=["'chb07 0l.edf'; 'chb07 02.edf'; 'chb07 03.edf';
'chb07 04.edf'; 'chb07 05.edf'; 'chb07 06.edf'; 'chb07 07.edf';
'chb07 08.edf'; 'chb07 09.edf'; 'chb07 10.edf'; 'chb07 1l.edf';
'chb07 12.edf'; 'chb07 13.edf'; 'chb07 1l4.edf'; 'chb07 15.edf';
'chb07 16.edf'; 'chb07 17.edf'; 'chb07 18.edf'; 'chb07 19.edf'];
start 7= 000 ; 000 ; 00O0;00O0;0O0O0; 00O ; O0O0O0;O

O ~e
~

00; 000; 00O0O7; OO O ; 492000 ; 328500 ; 000 ; O0O0O ;
000; 00O07; O0OO ; 13688 0 0 1;
ending 7=[000 ; 000 ;000 ; 0O0O0; 000; 000; 000O0;O
coo0;000;00O0; O0OOGO; 500600 ; 3383100; 0003; 000 ;
06000;000; 0O0O ; 13831 00 1;
s _start 7=12;

file 8=['chb08 02.edf'; 'chb08 03.edf'; 'chb08 04.edf';

'chb08 05.edf'; 'chb08 10.edf'; 'chb08 1l.edf'; 'chb08 12.edf';
'chb08 13.edf'; 'chb08 14.edf'; 'chb08 15.edf'; 'chb08 16.edf’';
'chb08 17.edf'; 'chb08 18.edf'; 'chb08 19.edf'; 'chb08 20.edf';
'chb08 21.edf'; 'chb08 22.edf'; 'chb08 23.edf'; 'chb08 24.edf';
'chb08 29.edf'];

start 8=[2670 0 0 ; 0 O O ; 0 OO ; 2856 00 ; 00O ; 2988 0 0 ;
000 ; 2412700 ; 000;000;000; 0O0O0;O0O0OO0O;o0O0OO0O ;O
00 ; 208300 ; 000 ;0O0O0;0O0O07;O00O0O071;
ending 8=[2841 0 0 ; 000 ; 00O ; 3046 0 0 ; 0 0 0 ; 3122 0 O ;
000,; 2587700;00O0;00O0;0O0O0; O0OO0O0; O0O0O0; 0O0OO0OF];O
00 ; 2347 00,; 000; 00O0; 0O0O07; 0O0GOT1;

s _start 8=4;
file 9=['chb09 0l.edf'; 'chb09 02.edf'; 'chb09 03.edf';

'chb09 04.edf'; 'chb09 05.edf'; 'chb09 06.edf'; 'chb0S9 07.edf';
'chb09 08.edf'; 'chb09 09.edf'; 'chb09 10.edf'; 'chb09 1l.edf';
'chb09 12.edf'; 'chb09 13.edf'; 'chb09 14.edf'; 'chb09 15.edf’';
'chb09 16.edf'; 'chb09 17.edf'; 'chb09 18.edf'; 'chb09 19.edf'];

start 9=(0 0 0; O O O0O; 0O O O;O O O; O O O 12231 O
0;0 O 0, 2951 91%9% O0; 0 0 O0O; 0O O O0;
0 0

o 0o o0;0 O O0O; O O 0 0O 0; 0 O ;0 0 0; 0 O O
; 0 0 0 ; 5299 0 01;

ending 9=[0 0 0 ;00 0 ;00 0 ;00 0 ;00 0 ;122950 0 ;00 O
;3030 9267 O ;00 O ;0O O;0O O;0OO O;0O0O O;0OO O03;00O

0;00 O0;00 O;0O0 O ;5361 0 01>
s _start 9=6;

file 10=['chbl0 0Ol.edf'; 'chblO 02.edf'; 'chbl0 03.edf';
'chbl0 04.edf'; 'chblO 05.edf'; 'chbl0 06.edf'; 'chblO 07.edf’';
'chbl0 08.edf'; 'chblO 12.edf'; 'chbl0 13.edf'; 'chblO 14.edf';
'chbl0 15.edf'; 'chblO 16.edf'; 'chbl0 17.edf'; 'chblO 18.edf';
'chbl0 19.edf'; 'chblO 20.edf'; 'chbl0 21.edf'; 'chbl0 22.edf';

94

'chbl0 27.edf'; 'chblO 28.edf'; 'chbl0 30.edf'; 'chbl0 31.edf';

'chbl0 38.edf'; 'chblO 89.edf'];

start 10=s[O 00 ; 0O OO0; 0 O0OO;O0O 0O0O;O OO0C;O OO0;O
oo0o; o0 O0OO0; 6313 00; 0 OO0O;O0O OO;O OO;O OO0O; o0 O
0; 0 0O0O0; O OO ; 6888 00; 0 00; O OO0 ;2382 00;o0 O
0 ; 3021 0 0O ; 3801 O O ; 4618 0 0 ; 1383 0 0 71;
ending 10=[O 00 ;0O 0O0O0O; O OO0O; O OO;O O0OO0O;O O0OO0;O
00; 0O OO0 ; 6348 00O; 0O OO0O;O0O OO;O OO;O O0OO0O; o0 O
0; 0 O0O0; O OO0O; 698 00; 0 00; 0 0O ; 2447 0O0; 0 O
0 ; 3079 0 0 ; 3877 0 0 ; 4707 0 0 ; 1437 0 01;

s _start 10=23;

files names = {file 1, file 2, file 3, file 4, file 5, file ¢,
file 7, file 8, file 9, file 10};

seizure_ start = {start 1, start 2, start 3, start 4, start 5,
start 6, start 7, start 8, start 9, start 10};

seizure ending = {ending 1, ending 2, ending 3, ending 4, ending 5,
ending 6, ending 7, ending 8, ending 9, ending 10};

s _starts = {s_start 1, s start 2, s start 3, s start 4, s start 5,

s _start 6, s start 7, s start 8, s start 9, s start 10};

Detection Performance.m

function

[TP, TN, FP,FN]=detection performance (Classification, seizure true)
TP=0; TN=0; FP=0; FN=0;

for i=l:1length(Classification)

if (Classification(i)==1)&&(seizure true(l,i)==1)
TP=TP+1;
elseif (Classification(i)==0)&& (seizure true(l,1i)==0)
TN=TN+1;
elseif (Classification(i)==1)&&(seizure true(l,1i)==0)
FP=FP+1;
elseif (Classification(i)==0)&& (seizure true(l,1i)==1)
FN=FN+1;
end
end
ReadEDF.m
function [data, header] = ReadEDF (filename)

o\

Author: Shapkin Andrey,
15-0CT-2012

o°

% filename - File name
% data - Contains a signals in structure of cells
% header - Contains header

fid = fopen(filename, 'r', 'ieece-le'");

%%% HEADER LOAD
% PART1: (GENERAL)

hdr = char (fread(fid, 256, 'uchar')"');

header.ver=str2num(hdr (1:8)) ; % 8 ascii : version of this
data format (0)

header.patientID = char (hdr(9:88)); % 80 ascii : local patient
identification

header.recordID = char (hdr(89:168)); % 80 ascii : local

recording identification

95

header.startdate=char (hdr (169:176)) ; % 8 ascii : startdate of
recording (dd.mm.yy)

header.starttime = char(hdr(177:184)); % 8 ascii : starttime of
recording (hh.mm.ss)
header.length = str2num (hdr(185:192)); % 8 ascii : number of bytes

in header record
reserved = hdr(193:236); % [EDF+C 1 % 44 ascii : reserved
(

header.records = str2num (hdr(237:244)); % 8 ascii : number of data
records (-1 if unknown)

header.duration = str2num (hdr (245:252)); % 8 ascii : duration of a
data record, in seconds

header.channels = str2num (hdr(253:256));% 4 ascii : number of

signals (ns) in data record
%%%% PART2 (DEPENDS ON QUANTITY OF CHANNELS)

header.labels=cellstr (char (fread(fid, [16, header.channels], 'char') "))

; $ ns * 16 ascii : ns * label (e.g. EEG FpzCz or Body temp)
header.transducer

=cellstr (char (fread(fid, [80, header.channels], 'char')"')); % ns * 80
ascii : ns * transducer type (e.g. AgAgCl electrode)

header.units =

cellstr (char (fread(fid, [8, header.channels], 'char')"')); % ns * 8
ascii : ns * physical dimension (e.g. uV or degreeC)
header.physmin =

str2num(char (fread (fid, [8, header.channels], 'char')')); % ns * 8
ascii : ns * physical minimum (e.g. -500 or 34)

header.physmax =

str2num (char (fread(fid, [8, header.channels], 'char')"')); % ns * 8
ascii : ns * physical maximum (e.g. 500 or 40)

header.digmin =

str2num(char (fread (fid, [8, header.channels], 'char')')); % ns * 8
ascii : ns * digital minimum (e.g. -2048)

header.digmax =

str2num (char (fread (fid, [8, header.channels], 'char')"')); % ns * 8
ascii : ns * digital maximum (e.g. 2047)

header.prefilt

=cellstr (char (fread(fid, [80, header.channels], 'char')"')); % ns * 80
ascii : ns * prefiltering (e.g. HP:0.1Hz LP:75Hz)
header.samplerate =

str2num(char (fread (fid, [8, header.channels], 'char')')); % ns * 8
ascii : ns * nr of samples in each data record

reserved = char (fread(fid, [32,header.channels], 'char')"'); % ns * 32
ascii : ns * reserved

fl=find(cellfun('isempty', regexp (header.labels, 'EDF Annotations',

'once'))==0); % Channels number with the EDF Annotations
f2=find(cellfun('isempty', regexp (header.labels, 'Status',
'once'))==0); % Channels number with the EDF Annotations
f=[£f1(:); £2(:) 1

$%%%%% PART 3: Loading of signals

%$Structure of the data in format EDF:

% [blockl block2 .. , block N], where N=header.records
% Block structure:
% [(d seconds of 1 channel) (d seconds of 2 channel) ... (d seconds

of i;¥h channel)], Where i¢*h - quantity of channels, d - duration
of the block

96

% Ch = header.channels
% d = header.duration

Ch data = fread(fid, 'intl6'); % Loading of signals

fclose(fid); % close a file

%$%%%% PART 4: Transformation of the data

Q

if header.records<0, % If the quantity of blocks is not known
R=sum (header.duration*header.samplerate); % Length of one block
header.records=fix (length(Ch data)./R); % Quantity of written down
blocks

end
% Separating a read signal into blocks
Ch data=reshape (Ch_data, [], header.records);

% establishing calibration parametres

sf = (header.physmax - header.physmin) ./ (header.digmax -
header.digmin) ;
dc = header.physmax - sf.* header.digmax;

data=cell (1, header.channels);
Rs=cumsum([1l; header.duration*header.sampleratel]); %
Terlgleicohelolelicoslots 1ol otel ol otlcteiotslsteicts

Terslicteloteloteloeloeloslicslicts 1o slotel ol ol sl sl s : -
Torlgteliohelolelcbeloteloteliohslcts Totlcteliotslisteictsiotsicts Rs (k) tRs(k+1l) -1

o°

separating of signals of everyone the channel from blocks
and recording of signals in structure of cells

o

for k=1l:header.channels

data{k}=reshape (Ch _data(Rs (k) :Rs(k+1)-1, :), [1, 1);
if sum(k==f)==0 % non i;¥nnotation

% Calibration of the data

data{k}=data{k}.*sf (k)+dc(k);

end

end

% PART 5: ANNOTATION READ
header.annotation.event={};
header.annotation.starttime=[];

header.annotation.duration=[];
header.annotation.data={};

if sum(f)>0
try

for pl=l:length(f)
Annt=char (typecast (intl6 (data{f(pl)}), 'uint8'))';

97

% separate of annotation on blocks
Annt=buffer (Annt, header.samplerate(f(pl)).*2, 0)';
ANsize=size (Annt) ;
for p2=1:ANsize (1)
% search TALs starttime
Anntl=Annt (p2, :);
Tstart=regexp (Anntl, '+'");
Tstart=[Tstart (2:end) ANsize (2)];

for p3=l:length(Tstart)-1
A=Anntl (Tstart (p3) :Tstart (p3+1)-1); % TALs block
header.annotation.data={header.annotation.data{:} A};

% duration and starttime TALs
Tds=find (A==20 | A==21);
if length (Tds)>2
td=str2num (A (Tds (1)+1:Tds (2)-1));
if isempty(td), td=0; end

header.annotation.duration=[header.annotation.duration(:); td];

header.annotation.starttime=[header.annotation.starttime (:);
str2num (A (2:Tds (1)-1))];

header.annotation.event={header.annotation.event{:}
A(Tds (2)+1:Tds (end)-1) };

else
header.annotation.duration=[header.annotation.duration(:); 0];
header.annotation.starttime=[header.annotation.starttime (:);

str2num (A(2:Tds (1)-1))1;
header.annotation.event={header.annotation.event{:}
A(Tds (1)+1:Tds (end)-1) };
end

end

end
end
% delete annotation
a=find(cellZ2mat (cellfun(@length, header.annotation.event,
'UniformOutput’', false))==0);
header.annotation.event(a)=[1];
header.annotation.starttime (a)
header.annotation.duration (a)=

=01
[1;

end
end

header.samplerate (f)=[1];
header.channels=header.channels-length (f);
header.labels (f)=[1];

header.transducer (f)=[1;

header.units (f)=1[]

header.physmin =
header.physmax
header.digmin (
header.digmax (
header.prefilt
data(f)=I[1;

—~ H H ~ ~

98

end

Visualize testingData.m

function

visualize testingdata(testingData,svmClassification,sez true test,te
xt,patient, h)

figure
subplot (3,1,1)

gscatter (testingData(:, 1), testingData(:,2),
svmClassification, "br', "x+")

hold on

gscatter (testingData(:,1),testingbData(:,2), sez true test, 'kb','oo'")
legend ('Predicted Non-ictal', 'Predicted Ictal', '"Actual Non-
ictal', "Actual Ictal')

% title(text + ' for h = '+ string(h) + ' from patient #'+
string (patient))

xlabel ('feature 1');

ylabel ('feature 2');

hold off

subplot (3,1,2)

gscatter (testingData(:,1),testingbata(:,3),
svmClassification, "br', "x+")

hold on

gscatter (testingData(:,1),testingbData(:,3), sez true test, 'kb',6'oo'")
legend ('Predicted Non-ictal', 'Predicted Ictal', '"Actual Non-
ictal', "Actual Ictal')

% title(text + ' for h = "+string(h) + ' from patient
#'+string (patient))

xlabel ('feature 1");

ylabel ('feature 3');

hold off

subplot (3,1, 3)

gscatter (testingData(:,2),testingData(:,3),
svmClassification, 'br', "x+")

hold on

gscatter (testingData(:,2),testingbata(:,3), sez true test, 'kb','oo'")
legend ('Predicted Non-ictal', 'Predicted Ictal', '"Actual Non-
ictal', "Actual Ictal')

% title(text + ' for h = '"+string(h) + ' from patient
#'+string (patient))

xlabel ('feature 2");

ylabel ('feature 3'");

hold off

end

visualize trainingdata.m
function
visualize trainingdata(trainingData,sez true train, text,patient,hour

)

99

figure

gscatter ((trainingData(:,1)), (trainingData (:

sez true train, 'br','xo")

hold on
legend ('Non-ictal', "Ictal')

$title (string(text) + ' for h = '+string (hour)

#'+string (patient))
%$xlabel ("Mean Absolute Value');
sylabel ('RMS"'") ;

hold off
figure;

figure
subplot (3,1,1)

gscatter ((trainingData(:,1)), (trainingData(:

sez_true train, 'br','xo")

hold on

legend ('Non-ictal', "Ictal')

$title (string(text)

#'+string (patient))

xlabel ('feature 1");
) ;

ylabel ('feature 2'

’

’

hold off

subplot (3,1,2)

gscatter ((trainingData(:,1)), (trainingData(:

sez_true train, 'br','xo")

hold on

legend ('Non-ictal', "Ictal')

$title (string (text)

#'+string (patient))

xlabel ('feature 1");
)

ylabel ('feature 3'

’

’

hold off

subplot (3,1, 3)

gscatter ((trainingData(:,2)), (trainingData(:

sez_ true train, 'br','xo")

hold on

legend ('Non-ictal', "Ictal')

stitle (string (text)

#'+string (patient))

xlabel ('feature 2");
)

ylabel ('feature 3'

’

’

hold off
end

Linear grad svm.m
function [model] = linear grad svm(xt,y,Q)

+ ' for h = '"+string (hour)

+ ' for h = '"+string (hour)

+ ' for h = '"+string(hour)

r2))

+

r2))

+

r3))

+

r3))

+

'

L}

L}

from patient

from patient

from patient

from patient

alpha=zeros (N,1);
b=0;

alpha new=zeros(N,1);
skip=zeros (N, 1) ;

C=1;

margin=1.5*1le-7;
$step=1le-10;
step=le-7;
$step=0.0016;

keep search=1;

alpha hist=zeros(100000,15);
k=1;

while (keep search && k<1000)
$for k=1:100000
sacc_w=zeros (l,size(xt,2));

acc_w=0;
for i=1:N
acc=0;
for j=1:N
acc=acc+alpha(j, :)*y(j,) * ((xt(i,:)*xt(J,:)"+1).7Q);
$acc=acc+alpha (J, :) *y (3, 1) * ((xt (i, :)*xt(J,:) "))
end
alpha new(i,1)= alpha(i,1)-(step* ((y(i,:)*(acct+b))-1));
% alpha new(i,1)= l-step*(y(i,:)*acc);
if alpha new(i,1)>C
alpha new(i,1l) = C;

skip(i,1)=1;
elseif alpha new(i,1) < 0
alpha new(i,1) = 0;
skip(i,1)=1;
end
sacc_w=acc_wtalpha (i) *y (1) *xt(i,:);
%acc_w=acc_wtalpha (i) *y (i) ;

Sacc_w=acc_w + ((xt(i,:)*xt(2,:)"' +1)"Q);
% alpha new(i,1)=min(C,max (0, alpha(i,1)-
step* (y(i,:)*(acctb)-1)));

end
$b_new=b-step* (alpha'*y);
W= (alpha new.*y)';

Sv=1;
for 1=1:N
if (alpha new (1)~=0)
Sv=1;
break;
end
end
b new=y(SV) - (alpha new.*y)'* ((xt*xt(SV,:)"'+1).%Q);
%b_new=y (3) - W*xt*xt(3,:)"';
TMA
%b_new=y (3)-acc w*xt(3,:)";
%b new = y(2) -acc w
%b _new=y(1l)- (alpha.*y)'* ((xt*(xt(1l,:)") +1).7Q)
$MA _end
comp=sum (abs ([alpha;b]-[alpha new;b new]))>margin;

alpha=alpha new;

101

b=b new;
%alpha hist (k, :)=alpha;
Skeep search=sum(comp) ;
keep search=comp;

k=k+1

splot svm(x1l,x2,W,b);
%pause;

model . w=W;

model .b=b;

model.alpha=alpha (alpha~=0) ;
model .xt=xt (alpha~=0, :);
model.y=y (alpha~=0) ;

sum (model.y)

size (model.y)

end

Smo_training fn.m
function [model]l=smo_train fn (X,Y,Q)

tol = le-23;
max passes = 100;
Data parameters
= size(X, 1);

= size (X, 2);
Map 0 to -1
(Y==0) = -1;
Variables

lphas = zeros(m, 1);
= 0;

= zeros(m, 1);
asses = 0;
= 0;
= 0;
= 0;
= 50;

(X*X'"+1) .70Q;

K = X*X';

o°

0 K e B3 3

oo oo R) m o g*U Mo w
3}

dots = 12;
while passes < max passes,
num changed alphas = 0;
for 1 = 1:m,
% Calculate Ei = f(x(1)) - vy (i) using (2).
% E(i) = b + sum (X(i, :) * (repmat(alphas.*Y,1,n).*X)"') -
Y(i);
E(i) = b + sum (alphas.*Y.*K(:,1)) - Y(1i);
if ((Y(1)*E (i) < -tol && alphas(i) < C) ||
&& alphas (i) > 0)),

o)

% In practice, there are many heuristics one can use to

(Y(1)*E (i) > tol

select

% the 1 and j. In this simplified code, select them
randomly.

102

o\

J = ceil(m * rand()):;

% while j == i, % Make sure 1 \neq J
% J = ceil(m * rand());
% end
for j=[1:i-1,i+1:m]
% Calculate Ej = £(x(3)) - v(j) using (2).
E(j) = b + sum (alphas.*Y.*K(:,3)) - Y(3);

% Save old alphas
alpha i old = alphas(i);
alpha j old = alphas(j);

(1

% Compute L and H by 0) or (11).
i (Y(1) == Y(3)),
L = max (0, alphas(j) + alphas(i) - C);
H = min(C, alphas(j) + alphas(i)):;
else
L = max (0, alphas(j) - alphas(i));
H = min(C, C + alphas(j) - alphas(i));
end
if (L == H),

% continue to next 1.
continue;

end
% Compute eta by (14).
eta = 2 * K(i,3J) - K(i,1) - K(3,3)7

if (eta >= 0),
% continue to next 1.
continue;

end

Q

% Compute and clip new value for alpha j using (12) and

(15).
alphas(j) = alphas(j) - (Y(3) * (E(i) - E(§))) / eta;
% Clip
alphas(j) = min (H, alphas(j));
alphas (j) = max (L, alphas(j));

)

% Check if change in alpha is significant
if (abs(alphas(j) - alpha j old) < tol),

% continue to next i.
% replace anyway

alphas(j) = alpha j old;
continue;
end
% Determine value for alpha i using (16).
alphas (i) = alphas(i) + Y (i)*Y(J)* (alpha j old -

alphas(3));
% Compute bl and b2 using (17) and (18) respectively.

bl = b - E(1)
- Y(i) * (alphas(i) - alpha i old) * K(i,i)"' ...
- Y(Jj) * (alphas(j) - alpha_j_old) * K(i,3)";

b2 = b - E(J) ...
- Y(i) * (alphas(i) - alpha i old) * K(i,3)"' ...
- Y(3) * (alphas(j) - alpha j old) * K(3j,3)'";

% Compute b by (19).
if (0 < alphas (i) && alphas (i) < C),

b = bl;
elseif (0 < alphas(j) && alphas(j) < C),
b = b2;
else
b = (bl+b2)/2;
end
num changed alphas = num changed alphas + 1;
end

103

end
end
if (num changed alphas == 0),
passes = passes + 1;
else
passes = 0;
end

o° o o°

o\

o\

X=X ((find(alphas~=0)),:);

Y=Y ((find (alphas~=0)), :);
alphas=alphas ((find(alphas~=0)),:);
K

m

o o

o°

= (X*X'+1).70Q;
= size(X, 1);

o\

fprintf('.");
dots = dots + 1;
if dots > 78
dots = 0;
fprintf ('\n'");
end
end
fprintf (' Done! \n\n');
% Save the model
idx = alphas > 0;
model .X= X (idx, :);
model.Y= Y (idx);

model.b= Db;

model.alphas= alphas (idx) ;
model.w = ((alphas.*Y)'*X)"';
end

104

Appendix B - Detailed feature selection results

Featurel Feature2 Feature3 Sensitivity | Specificity | Accuracy
Max Absolute Min Absolute Root Mean
Value Value Square 82.25807 | 98.22944 | 98.18391
Mean Absolute Min Absolute Root Mean
Value Value Square 87.09677 | 97.86057 | 97.82989
Mean Absolute Max Absolute Root Mean
Value Value Square 83.87097 98.2156 | 98.17471
Mean Absolute Max Absolute Min Absolute
Value Value Value 87.09677 | 97.91129 | 97.88046
Hjorth Mean Absolute Max Absolute
Complexity Value Value 83.87097 98.3862 | 98.34483
Hjorth Mean Absolute Min Absolute
Complexity Value Value 85.48387 | 98.12339 | 98.08736
Hjorth Mean Absolute Root Mean
Complexity Value Square 83.87097 | 98.28938 | 98.24828
Hjorth Max Absolute Min Absolute
Complexity Value Value 0 100 99.71494
Hjorth Max Absolute Root Mean
Complexity Value Square 80.64516 | 98.50148 | 98.45058
Hjorth Min Absolute Root Mean
Complexity Value Square 83.87097 | 98.20177 | 98.16092
Hjorth Mean Absolute
Hjorth Mobility Complexity Value 85.48387 | 98.17872 | 98.14253
Hjorth Max Absolute
Hjorth Mobility Complexity Value 0 100 99.71494
Hjorth Min Absolute
Hjorth Mobility Complexity Value 0 100 99.71494
Hjorth Root Mean
Hjorth Mobility Complexity Square 82.25807 98.2986 | 98.25287
Mean Absolute Max Absolute
Hjorth Mobility Value Value 83.87097 | 98.48303 | 98.44138
Mean Absolute Min Absolute
Hjorth Mobility Value Value 85.48387 | 98.07728 | 98.04138
Mean Absolute Root Mean
Hjorth Mobility Value Square 82.25807 | 98.31243 | 98.26667
Max Absolute Min Absolute
Hjorth Mobility Value Value 0 100 99.71494
Max Absolute Root Mean
Hjorth Mobility Value Square 80.64516 | 98.48764 | 98.43678
Min Absolute Root Mean
Hjorth Mobility Value Square 83.87097 | 98.22944 | 98.18851
Min Absolute Root Mean
Coastline Value Square 85.48387 | 97.98967 | 97.95402
Max Absolute Root Mean
Coastline Value Square 80.64516 | 98.33087 | 98.28046

105

Max Absolute Min Absolute
Coastline Value Value 0 100 99.71494
Mean Absolute Root Mean
Coastline Value Square 83.87097 | 98.06806 | 98.02759
Mean Absolute Min Absolute
Coastline Value Value 87.09677 | 97.81907 | 97.78851
Mean Absolute Max Absolute
Coastline Value Value 83.87097 | 98.23405 | 98.1931
Hjorth Root Mean
Coastline Complexity Square 80.64516 98.3862 | 98.33563
Hjorth Min Absolute
Coastline Complexity Value 0 100 99.71494
Hjorth Max Absolute
Coastline Complexity Value 0 100 99.71494
Hjorth Mean Absolute
Coastline Complexity Value 85.48387 | 98.22021 | 98.18391
Root Mean
Coastline Hjorth Mobility Square 83.87097 | 98.34471 | 98.30345
Min Absolute
Coastline Hjorth Mobility Value 0 100 99.71494
Max Absolute
Coastline Hjorth Mobility Value 0 100 99.71494
Mean Absolute
Coastline Hjorth Mobility Value 85.48387 | 98.25249 | 98.21609
Hjorth
Coastline Hjorth Mobility Complexity 0 100 99.71494
Min Absolute Root Mean
Average Energy Value Square 72.58065 | 98.61214 | 98.53793
Max Absolute Root Mean
Average Energy Value Square 67.74194 | 98.99023 | 98.90115
Max Absolute Min Absolute
Average Energy Value Value 56.45161 | 98.80579 | 98.68506
Mean Absolute Root Mean
Average Energy Value Square 74.19355 98.72741 | 98.65747
Mean Absolute Min Absolute
Average Energy Value Value 75.80645 | 98.51531 | 98.45058
Mean Absolute Max Absolute
Average Energy Value Value 75.80645 | 98.79657 | 98.73103
Hjorth Root Mean
Average Energy Complexity Square 67.74194 98.981 98.89195
Hjorth Min Absolute
Average Energy Complexity Value 61.29032 | 99.02711 | 98.91954
Hjorth Max Absolute
Average Energy Complexity Value 62.90323 | 99.18388 | 99.08046
Hjorth Mean Absolute
Average Energy Complexity Value 69.35484 | 98.94412 | 98.85977
Root Mean
Average Energy Hjorth Mobility Square 67.74194 | 98.95334 | 98.86437
Min Absolute
Average Energy Hjorth Mobility Value 61.29032 | 98.98561 | 98.87816

106

Max Absolute

Average Energy Hjorth Mobility Value 61.29032 | 99.15161 | 99.04368
Mean Absolute
Average Energy Hjorth Mobility Value 67.74194 98.9349 | 98.84598
Hjorth
Average Energy Hjorth Mobility Complexity 62.90323 99.07322 | 98.97012
Root Mean
Average Energy Coastline Square 61.29032 98.8519 | 98.74483
Min Absolute
Average Energy Coastline Value 61.29032 98.79196 | 98.68506
Max Absolute
Average Energy Coastline Value 58.06452 99.064 98.94713
Mean Absolute
Average Energy Coastline Value 70.96774 98.7689 | 98.68966
Hjorth
Average Energy Coastline Complexity 62.90323 | 99.06861 | 98.96552
Average Energy Coastline Hjorth Mobility 62.90323 99.0225 | 98.91954
Min Absolute Root Mean
Hurst Exponent Value Square 83.87097 97.90668 | 97.86667
Max Absolute Root Mean
Hurst Exponent Value Square 83.87097 98.17872 | 98.13793
Max Absolute Min Absolute
Hurst Exponent Value Value 0 100 99.71494
Mean Absolute Root Mean
Hurst Exponent Value Square 85.48387 97.80524 | 97.77012
Mean Absolute Min Absolute
Hurst Exponent Value Value 87.09677 | 97.74069 | 97.71035
Mean Absolute Max Absolute
Hurst Exponent Value Value 87.09677 | 98.07728 | 98.04598
Hjorth Root Mean
Hurst Exponent Complexity Square 83.87097 98.17872 | 98.13793
Hjorth Min Absolute
Hurst Exponent Complexity Value 0 100 99.71494
Hjorth Max Absolute
Hurst Exponent Complexity Value 0 100 99.71494
Hjorth Mean Absolute
Hurst Exponent Complexity Value 85.48387 | 97.92051 | 97.88506
Root Mean
Hurst Exponent Hjorth Mobility Square 85.48387 | 97.63003 | 97.5954
Min Absolute
Hurst Exponent Hjorth Mobility Value 0 100 99.71494
Max Absolute
Hurst Exponent Hjorth Mobility Value 0 100 99.71494
Mean Absolute
Hurst Exponent Hjorth Mobility Value 85.48387 | 97.47787 | 97.44368
Hjorth
Hurst Exponent Hjorth Mobility Complexity 0 100 99.71494
Root Mean
Hurst Exponent Coastline Square 85.48387 97.87901 | 97.84368

107

Min Absolute

Hurst Exponent Coastline Value 0 100 99.71494
Max Absolute
Hurst Exponent Coastline Value 0 100 99.71494
Mean Absolute
Hurst Exponent Coastline Value 87.09677 | 97.73146 | 97.70115
Hjorth
Hurst Exponent Coastline Complexity 0 100 99.71494
Hurst Exponent Coastline Hjorth Mobility 0 100 99.71494
Root Mean
Hurst Exponent Average Energy Square 72.58065 98.69974 | 98.62529
Min Absolute
Hurst Exponent Average Energy Value 62.90323 98.82424 | 98.72184
Max Absolute
Hurst Exponent Average Energy Value 59.67742 99.17466 | 99.06207
Mean Absolute
Hurst Exponent Average Energy Value 74.19355 98.59369 | 98.52414
Hjorth
Hurst Exponent Average Energy Complexity 72.58065 98.47842 | 98.4046
Hurst Exponent Average Energy Hjorth Mobility 82.25807 97.81907 | 97.77471
Hurst Exponent Average Energy Coastline 62.90323 98.9349 | 98.83218
Min Absolute Root Mean
Renyie Entropy Value Square 82.25807 97.7868 | 97.74253
Max Absolute Root Mean
Renyie Entropy Value Square 82.25807 98.5107 | 98.46437
Max Absolute Min Absolute
Renyie Entropy Value Value 0 100 99.71494
Mean Absolute Root Mean
Renyie Entropy Value Square 82.25807 98.16488 | 98.11954
Mean Absolute Min Absolute
Renyie Entropy Value Value 87.09677 | 97.74991 | 97.71954
Mean Absolute Max Absolute
Renyie Entropy Value Value 83.87097 | 98.34932 | 98.30805
Hjorth Root Mean
Renyie Entropy Complexity Square 80.64516 98.33549 | 98.28506
Hjorth Min Absolute
Renyie Entropy Complexity Value 0 100 99.71494
Hjorth Max Absolute
Renyie Entropy Complexity Value 0 100 99.71494
Hjorth Mean Absolute
Renyie Entropy Complexity Value 85.48387 | 98.22944 | 98.1931
Root Mean
Renyie Entropy Hjorth Mobility Square 82.25807 98.3401 | 98.29425
Min Absolute
Renyie Entropy Hjorth Mobility Value 0 100 99.71494
Max Absolute
Renyie Entropy Hjorth Mobility Value 0 100 99.71494
Mean Absolute
Renyie Entropy Hjorth Mobility Value 85.48387 | 98.19716 | 98.16092

108

Hjorth

Renyie Entropy Hjorth Mobility Complexity 0 100 99.71494
Root Mean
Renyie Entropy Coastline Square 77.41936 98.12339 | 98.06437
Min Absolute
Renyie Entropy Coastline Value 0 100 99.71494
Max Absolute
Renyie Entropy Coastline Value 0 100 99.71494
Mean Absolute
Renyie Entropy Coastline Value 79.03226 | 98.11417 | 98.05977
Hjorth
Renyie Entropy Coastline Complexity 0 100 99.71494
Renyie Entropy Coastline Hjorth Mobility 0 100 99.71494
Root Mean
Renyie Entropy Average Energy Square 72.58065 98.62597 | 98.55172
Min Absolute
Renyie Entropy Average Energy Value 56.45161 98.86573 | 98.74483
Max Absolute
Renyie Entropy Average Energy Value 64.51613 99.0225 | 98.92414
Mean Absolute
Renyie Entropy Average Energy Value 75.80645 98.52914 | 98.46437
Hjorth
Renyie Entropy Average Energy Complexity 62.90323 99.064 98.96092
Renyie Entropy Average Energy Hjorth Mobility 62.90323 | 99.07783 | 98.97471
Renyie Entropy Average Energy Coastline 58.06452 98.8104 | 98.69425
Root Mean
Renyie Entropy Hurst Exponent Square 85.48387 97.80985 | 97.77471
Min Absolute
Renyie Entropy Hurst Exponent Value 0 100 99.71494
Max Absolute
Renyie Entropy Hurst Exponent Value 0 100 99.71494
Mean Absolute
Renyie Entropy Hurst Exponent Value 87.09677 97.72685 | 97.69655
Hjorth
Renyie Entropy Hurst Exponent Complexity 0 100 99.71494
Renyie Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494
Renyie Entropy Hurst Exponent Coastline 0 100 99.71494
Renyie Entropy Hurst Exponent Average Energy 62.90323 | 98.90262 98.8
Min Absolute Root Mean
Spectral Entropy Value Square 85.48387 | 97.81446 | 97.77931
Max Absolute Root Mean
Spectral Entropy Value Square 83.87097 | 98.40926 | 98.36782
Max Absolute Min Absolute
Spectral Entropy Value Value 0 100 99.71494
Mean Absolute Root Mean
Spectral Entropy Value Square 87.09677 | 98.06806 | 98.03678
Mean Absolute Min Absolute
Spectral Entropy Value Value 87.09677 | 97.80524 | 97.77471
Mean Absolute Max Absolute
Spectral Entropy Value Value 83.87097 | 98.24327 | 98.2023

109

Hjorth Root Mean
Spectral Entropy Complexity Square 80.64516 98.22021 | 98.17012
Hjorth Min Absolute
Spectral Entropy Complexity Value 0 100 99.71494
Hjorth Max Absolute
Spectral Entropy Complexity Value 0 100 99.71494
Hjorth Mean Absolute
Spectral Entropy Complexity Value 85.48387 98.13261 | 98.09655
Root Mean
Spectral Entropy Hjorth Mobility Square 83.87097 98.1695 | 98.12874
Min Absolute
Spectral Entropy Hjorth Mobility Value 0 100 99.71494
Max Absolute
Spectral Entropy Hjorth Mobility Value 0 100 99.71494
Mean Absolute
Spectral Entropy Hjorth Mobility Value 83.87097 | 98.20177 | 98.16092
Hjorth
Spectral Entropy Hjorth Mobility Complexity 0 100 99.71494
Root Mean
Spectral Entropy Coastline Square 82.25807 98.0035 | 97.95862
Min Absolute
Spectral Entropy Coastline Value 0 100 99.71494
Max Absolute
Spectral Entropy Coastline Value 0 100 99.71494
Mean Absolute
Spectral Entropy Coastline Value 85.48387 | 98.04961 | 98.01379
Hjorth
Spectral Entropy Coastline Complexity 0 100 99.71494
Spectral Entropy Coastline Hjorth Mobility 0 100 99.71494
Root Mean
Spectral Entropy Average Energy Square 67.74194 | 98.86573 | 98.77701
Min Absolute
Spectral Entropy | Average Energy Value 62.90323 | 98.80579 | 98.70345
Max Absolute
Spectral Entropy | Average Energy Value 62.90323 | 99.08244 | 98.97931
Mean Absolute
Spectral Entropy | Average Energy Value 72.58065 | 98.75046 | 98.67586
Hjorth
Spectral Entropy Average Energy Complexity 62.90323 99.08244 | 98.97931
Spectral Entropy | Average Energy Hjorth Mobility 62.90323 | 99.00867 | 98.90575
Spectral Entropy Average Energy Coastline 67.74194 | 98.86112 | 98.77241
Root Mean
Spectral Entropy Hurst Exponent Square 83.87097 97.80524 | 97.76552
Min Absolute
Spectral Entropy Hurst Exponent Value 0 100 99.71494
Max Absolute
Spectral Entropy Hurst Exponent Value 0 100 99.71494
Mean Absolute
Spectral Entropy Hurst Exponent Value 87.09677 | 97.68536 | 97.65517

110

Hjorth

Spectral Entropy Hurst Exponent Complexity 0 100 99.71494
Spectral Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494
Spectral Entropy Hurst Exponent Coastline 0 100 99.71494
Spectral Entropy Hurst Exponent Average Energy 61.29032 98.93951 | 98.83218
Root Mean
Spectral Entropy Renyie Entropy Square 82.25807 98.20638 | 98.16092
Min Absolute
Spectral Entropy Renyie Entropy Value 0 100 99.71494
Max Absolute
Spectral Entropy Renyie Entropy Value 0 100 99.71494
Mean Absolute
Spectral Entropy Renyie Entropy Value 82.25807 98.1695 | 98.12414
Hjorth
Spectral Entropy Renyie Entropy Complexity 0 100 99.71494
Spectral Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494
Spectral Entropy Renyie Entropy Coastline 0 100 99.71494
Spectral Entropy Renyie Entropy Average Energy 66.12903 98.8934 98.8
Spectral Entropy Renyie Entropy Hurst Exponent 0 100 99.71494
Min Absolute Root Mean
Shannon Entropy Value Square 83.87097 97.66691 | 97.62759
Max Absolute Root Mean
Shannon Entropy Value Square 82.25807 98.3862 | 98.34023
Max Absolute Min Absolute
Shannon Entropy Value Value 0 100 99.71494
Mean Absolute Root Mean
Shannon Entropy Value Square 83.87097 | 97.98967 | 97.94943
Mean Absolute Min Absolute
Shannon Entropy Value Value 87.09677 | 97.67613 | 97.64598
Mean Absolute Max Absolute
Shannon Entropy Value Value 85.48387 | 98.22483 | 98.18851
Hjorth Root Mean
Shannon Entropy Complexity Square 82.25807 | 98.31243 | 98.26667
Hjorth Min Absolute
Shannon Entropy Complexity Value 0 100 99.71494
Hjorth Max Absolute
Shannon Entropy Complexity Value 0 100 99.71494
Hjorth Mean Absolute
Shannon Entropy Complexity Value 85.48387 | 98.20638 | 98.17012
Root Mean
Shannon Entropy | Hjorth Mobility Square 82.25807 | 98.31704 | 98.27126
Min Absolute
Shannon Entropy | Hjorth Mobility Value 0 100 99.71494
Max Absolute
Shannon Entropy | Hjorth Mobility Value 0 100 99.71494
Mean Absolute
Shannon Entropy | Hjorth Mobility Value 85.48387 | 98.22483 | 98.18851
Hjorth
Shannon Entropy | Hjorth Mobility Complexity 0 100 99.71494

111

Root Mean

Shannon Entropy Coastline Square 82.25807 | 98.04039 | 97.9954
Min Absolute
Shannon Entropy Coastline Value 0 100 99.71494
Max Absolute
Shannon Entropy Coastline Value 0 100 99.71494
Mean Absolute
Shannon Entropy Coastline Value 82.25807 98.0865 | 98.04138
Hjorth
Shannon Entropy Coastline Complexity 0 100 99.71494
Shannon Entropy Coastline Hjorth Mobility 0 100 99.71494
Root Mean
Shannon Entropy | Average Energy Square 72.58065 98.57525 | 98.50115
Min Absolute
Shannon Entropy | Average Energy Value 58.06452 | 98.78274 | 98.66667
Max Absolute
Shannon Entropy | Average Energy Value 64.51613 | 99.00867 | 98.91035
Mean Absolute
Shannon Entropy | Average Energy Value 79.03226 | 98.43231 | 98.37701
Hjorth
Shannon Entropy | Average Energy Complexity 62.90323 99.064 98.96092
Shannon Entropy | Average Energy Hjorth Mobility 62.90323 | 99.06861 | 98.96552
Shannon Entropy | Average Energy Coastline 61.29032 98.78274 | 98.67586
Root Mean
Shannon Entropy | Hurst Exponent Square 85.48387 97.86518 | 97.82989
Min Absolute
Shannon Entropy | Hurst Exponent Value 0 100 99.71494
Max Absolute
Shannon Entropy | Hurst Exponent Value 0 100 99.71494
Mean Absolute
Shannon Entropy | Hurst Exponent Value 87.09677 | 97.69919 | 97.66897
Hjorth
Shannon Entropy | Hurst Exponent Complexity 0 100 99.71494
Shannon Entropy | Hurst Exponent Hjorth Mobility 0 100 99.71494
Shannon Entropy | Hurst Exponent Coastline 0 100 99.71494
Shannon Entropy | Hurst Exponent Average Energy 62.90323 98.90262 98.8
Root Mean
Shannon Entropy | Renyie Entropy Square 83.87097 | 98.04039 98
Min Absolute
Shannon Entropy | Renyie Entropy Value 0 100 99.71494
Max Absolute
Shannon Entropy | Renyie Entropy Value 0 100 99.71494
Mean Absolute
Shannon Entropy Renyie Entropy Value 83.87097 98.0035 | 97.96322
Hjorth
Shannon Entropy | Renyie Entropy Complexity 0 100 99.71494
Shannon Entropy | Renyie Entropy Hjorth Mobility 0 100 99.71494
Shannon Entropy Renyie Entropy Coastline 0 100 99.71494
Shannon Entropy Renyie Entropy Average Energy 67.74194 98.8104 | 98.72184

112

Shannon Entropy Renyie Entropy Hurst Exponent 0 100 99.71494
Root Mean
Shannon Entropy | Spectral Entropy Square 83.87097 | 98.03578 | 97.9954
Min Absolute
Shannon Entropy | Spectral Entropy Value 0 100 99.71494
Max Absolute
Shannon Entropy | Spectral Entropy Value 0 100 99.71494
Mean Absolute
Shannon Entropy | Spectral Entropy Value 83.87097 | 97.98506 | 97.94483
Hjorth
Shannon Entropy | Spectral Entropy Complexity 0 100 99.71494
Shannon Entropy | Spectral Entropy Hjorth Mobility 0 100 99.71494
Shannon Entropy | Spectral Entropy Coastline 0 100 99.71494
Shannon Entropy | Spectral Entropy Average Energy 66.12903 98.83346 | 98.74023
Shannon Entropy | Spectral Entropy | Hurst Exponent 0 100 99.71494
Shannon Entropy | Spectral Entropy Renyie Entropy 0 100 99.71494
Approximate Min Absolute Root Mean
Entropy Value Square 85.48387 97.82368 | 97.78851
Approximate Max Absolute Root Mean
Entropy Value Square 83.87097 98.29399 | 98.25287
Approximate Max Absolute Min Absolute
Entropy Value Value 0 100 99.71494
Approximate Mean Absolute Root Mean
Entropy Value Square 87.09677 98.05883 | 98.02759
Approximate Mean Absolute Min Absolute
Entropy Value Value 87.09677 | 97.80063 | 97.77012
Approximate Mean Absolute Max Absolute
Entropy Value Value 85.48387 | 98.16488 | 98.12874
Approximate Hjorth Root Mean
Entropy Complexity Square 82.25807 98.15566 | 98.11035
Approximate Hjorth Min Absolute
Entropy Complexity Value 0 100 99.71494
Approximate Hjorth Max Absolute
Entropy Complexity Value 0 100 99.71494
Approximate Hjorth Mean Absolute
Entropy Complexity Value 85.48387 | 98.11417 | 98.07816
Approximate Root Mean
Entropy Hjorth Mobility Square 83.87097 | 98.13722 | 98.09655
Approximate Min Absolute
Entropy Hjorth Mobility Value 0 100 99.71494
Approximate Max Absolute
Entropy Hjorth Mobility Value 0 100 99.71494
Approximate Mean Absolute
Entropy Hjorth Mobility Value 85.48387 98.0865 | 98.05058
Approximate Hjorth
Entropy Hjorth Mobility Complexity 0 100 99.71494
Approximate Root Mean
Entropy Coastline Square 82.25807 98.01273 | 97.96782
Approximate Min Absolute
Entropy Coastline Value 0 100 99.71494

113

Approximate

Max Absolute

Entropy Coastline Value 0 100 99.71494
Approximate Mean Absolute

Entropy Coastline Value 85.48387 | 98.00812 | 97.97241
Approximate Hjorth

Entropy Coastline Complexity 0 100 99.71494
Approximate

Entropy Coastline Hjorth Mobility 0 100 99.71494
Approximate Root Mean

Entropy Average Energy Square 70.96774 | 98.73202 | 98.65287
Approximate Min Absolute

Entropy Average Energy Value 64.51613 98.75507 | 98.65747
Approximate Max Absolute

Entropy Average Energy Value 64.51613 99.04556 | 98.94713
Approximate Mean Absolute

Entropy Average Energy Value 75.80645 98.60291 | 98.53793
Approximate Hjorth

Entropy Average Energy Complexity 64.51613 99.02711 | 98.92874
Approximate

Entropy Average Energy Hjorth Mobility 62.90323 | 98.97178 | 98.86897
Approximate

Entropy Average Energy Coastline 64.51613 98.86112 | 98.76322
Approximate Root Mean

Entropy Hurst Exponent Square 85.48387 97.82368 | 97.78851
Approximate Min Absolute

Entropy Hurst Exponent Value 0 100 99.71494
Approximate Max Absolute

Entropy Hurst Exponent Value 0 100 99.71494
Approximate Mean Absolute

Entropy Hurst Exponent Value 85.48387 97.78218 | 97.74713
Approximate Hjorth

Entropy Hurst Exponent Complexity 0 100 99.71494
Approximate

Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494
Approximate

Entropy Hurst Exponent Coastline 0 100 99.71494
Approximate

Entropy Hurst Exponent Average Energy 62.90323 98.91645 | 98.81379
Approximate Root Mean

Entropy Renyie Entropy Square 82.25807 98.13261 | 98.08736
Approximate Min Absolute

Entropy Renyie Entropy Value 0 100 99.71494
Approximate Max Absolute

Entropy Renyie Entropy Value 0 100 99.71494
Approximate Mean Absolute

Entropy Renyie Entropy Value 85.48387 98.15105 | 98.11494
Approximate Hjorth

Entropy Renyie Entropy Complexity 0 100 99.71494
Approximate

Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494

114

Approximate

Entropy Renyie Entropy Coastline 0 100 99.71494
Approximate

Entropy Renyie Entropy Average Energy 69.35484 98.84729 | 98.76322
Approximate

Entropy Renyie Entropy Hurst Exponent 0 100 99.71494
Approximate Root Mean

Entropy Spectral Entropy Square 85.48387 98.06345 | 98.02759
Approximate Min Absolute

Entropy Spectral Entropy Value 0 100 99.71494
Approximate Max Absolute

Entropy Spectral Entropy Value 0 100 99.71494
Approximate Mean Absolute

Entropy Spectral Entropy Value 87.09677 | 98.04961 | 98.01839
Approximate Hjorth

Entropy Spectral Entropy Complexity 0 100 99.71494
Approximate

Entropy Spectral Entropy Hjorth Mobility 0 100 99.71494
Approximate

Entropy Spectral Entropy Coastline 0 100 99.71494
Approximate

Entropy Spectral Entropy Average Energy 67.74194 98.88418 | 98.7954
Approximate

Entropy Spectral Entropy Hurst Exponent 0 100 99.71494
Approximate

Entropy Spectral Entropy Renyie Entropy 0 100 99.71494
Approximate Root Mean

Entropy Shannon Entropy Square 83.87097 98.04961 | 98.0092
Approximate Min Absolute

Entropy Shannon Entropy Value 0 100 99.71494
Approximate Max Absolute

Entropy Shannon Entropy Value 0 100 99.71494
Approximate Mean Absolute

Entropy Shannon Entropy Value 87.09677 | 98.04039 | 98.0092
Approximate Hjorth

Entropy Shannon Entropy Complexity 0 100 99.71494
Approximate

Entropy Shannon Entropy | Hjorth Mobility 0 100 99.71494
Approximate

Entropy Shannon Entropy Coastline 0 100 99.71494
Approximate

Entropy Shannon Entropy | Average Energy 67.74194 | 98.75046 | 98.66207
Approximate

Entropy Shannon Entropy | Hurst Exponent 0 100 99.71494
Approximate

Entropy Shannon Entropy Renyie Entropy 0 100 99.71494
Approximate

Entropy Shannon Entropy | Spectral Entropy 0 100 99.71494
Permutation Min Absolute Root Mean

Entropy Value Square 83.87097 97.90207 | 97.86207

115

Permutation Max Absolute Root Mean

Entropy Value Square 82.25807 98.23866 | 98.1931
Permutation Max Absolute Min Absolute

Entropy Value Value 0 100 99.71494
Permutation Mean Absolute Root Mean

Entropy Value Square 82.25807 98.02195 | 97.97701
Permutation Mean Absolute Min Absolute

Entropy Value Value 87.09677 | 97.89746 | 97.86667
Permutation Mean Absolute Max Absolute

Entropy Value Value 83.87097 98.2156 | 98.17471
Permutation Hjorth Root Mean

Entropy Complexity Square 82.25807 98.34471 | 98.29885
Permutation Hjorth Min Absolute

Entropy Complexity Value 0 100 99.71494
Permutation Hjorth Max Absolute

Entropy Complexity Value 0 100 99.71494
Permutation Hjorth Mean Absolute

Entropy Complexity Value 85.48387 | 98.16488 | 98.12874
Permutation Root Mean

Entropy Hjorth Mobility Square 80.64516 98.3401 | 98.28966
Permutation Min Absolute

Entropy Hjorth Mobility Value 0 100 99.71494
Permutation Max Absolute

Entropy Hjorth Mobility Value 0 100 99.71494
Permutation Mean Absolute

Entropy Hjorth Mobility Value 83.87097 | 98.14644 | 98.10575
Permutation Hjorth

Entropy Hjorth Mobility Complexity 0 100 99.71494
Permutation Root Mean

Entropy Coastline Square 82.25807 98.06806 | 98.02299
Permutation Min Absolute

Entropy Coastline Value 0 100 99.71494
Permutation Max Absolute

Entropy Coastline Value 0 100 99.71494
Permutation Mean Absolute

Entropy Coastline Value 83.87097 | 98.01273 | 97.97241
Permutation Hjorth

Entropy Coastline Complexity 0 100 99.71494
Permutation

Entropy Coastline Hjorth Mobility 0 100 99.71494
Permutation Root Mean

Entropy Average Energy Square 67.74194 | 98.83807 | 98.74943
Permutation Min Absolute

Entropy Average Energy Value 62.90323 98.85651 | 98.75402
Permutation Max Absolute

Entropy Average Energy Value 61.29032 99.21155 | 99.10345
Permutation Mean Absolute

Entropy Average Energy Value 70.96774 98.7689 | 98.68966
Permutation Hjorth

Entropy Average Energy Complexity 64.51613 99.05939 | 98.96092

116

Permutation

Entropy Average Energy Hjorth Mobility 62.90323 | 99.02711 | 98.92414
Permutation

Entropy Average Energy Coastline 62.90323 98.91645 | 98.81379
Permutation Root Mean

Entropy Hurst Exponent Square 83.87097 97.93434 | 97.89425
Permutation Min Absolute

Entropy Hurst Exponent Value 0 100 99.71494
Permutation Max Absolute

Entropy Hurst Exponent Value 0 100 99.71494
Permutation Mean Absolute

Entropy Hurst Exponent Value 85.48387 97.82368 | 97.78851
Permutation Hjorth

Entropy Hurst Exponent Complexity 0 100 99.71494
Permutation

Entropy Hurst Exponent Hjorth Mobility 0 100 99.71494
Permutation

Entropy Hurst Exponent Coastline 0 100 99.71494
Permutation

Entropy Hurst Exponent Average Energy 62.90323 98.92106 | 98.81839
Permutation Root Mean

Entropy Renyie Entropy Square 80.64516 98.13722 | 98.08736
Permutation Min Absolute

Entropy Renyie Entropy Value 0 100 99.71494
Permutation Max Absolute

Entropy Renyie Entropy Value 0 100 99.71494
Permutation Mean Absolute

Entropy Renyie Entropy Value 82.25807 | 98.08189 | 98.03678
Permutation Hjorth

Entropy Renyie Entropy Complexity 0 100 99.71494
Permutation

Entropy Renyie Entropy Hjorth Mobility 0 100 99.71494
Permutation

Entropy Renyie Entropy Coastline 0 100 99.71494
Permutation

Entropy Renyie Entropy Average Energy 64.51613 98.90262 | 98.8046
Permutation

Entropy Renyie Entropy Hurst Exponent 0 100 99.71494
Permutation Root Mean

Entropy Spectral Entropy Square 83.87097 97.96662 | 97.92644
Permutation Min Absolute

Entropy Spectral Entropy Value 0 100 99.71494
Permutation Max Absolute

Entropy Spectral Entropy Value 0 100 99.71494
Permutation Mean Absolute

Entropy Spectral Entropy Value 87.09677 | 97.99428 | 97.96322
Permutation Hjorth

Entropy Spectral Entropy Complexity 0 100 99.71494
Permutation

Entropy Spectral Entropy Hjorth Mobility 0 100 99.71494

117

Permutation

Entropy Spectral Entropy Coastline 0 100 99.71494
Permutation

Entropy Spectral Entropy Average Energy 64.51613 98.91645 | 98.81839
Permutation

Entropy Spectral Entropy Hurst Exponent 0 100 99.71494
Permutation

Entropy Spectral Entropy Renyie Entropy 0 100 99.71494
Permutation Root Mean

Entropy Shannon Entropy Square 83.87097 98.05422 | 98.01379
Permutation Min Absolute

Entropy Shannon Entropy Value 0 100 99.71494
Permutation Max Absolute

Entropy Shannon Entropy Value 0 100 99.71494
Permutation Mean Absolute

Entropy Shannon Entropy Value 83.87097 98.01273 | 97.97241
Permutation Hjorth

Entropy Shannon Entropy Complexity 0 100 99.71494
Permutation

Entropy Shannon Entropy Hjorth Mobility 0 100 99.71494
Permutation

Entropy Shannon Entropy Coastline 0 100 99.71494
Permutation

Entropy Shannon Entropy | Average Energy 64.51613 98.92106 | 98.82299
Permutation

Entropy Shannon Entropy Hurst Exponent 0 100 99.71494
Permutation

Entropy Shannon Entropy Renyie Entropy 0 100 99.71494
Permutation

Entropy Shannon Entropy | Spectral Entropy 0 100 99.71494
Permutation Approximate Root Mean

Entropy Entropy Square 82.25807 98.05422 | 98.0092
Permutation Approximate Min Absolute

Entropy Entropy Value 0 100 99.71494
Permutation Approximate Max Absolute

Entropy Entropy Value 0 100 99.71494
Permutation Approximate Mean Absolute

Entropy Entropy Value 83.87097 98.08189 | 98.04138
Permutation Approximate Hjorth

Entropy Entropy Complexity 0 100 99.71494
Permutation Approximate

Entropy Entropy Hjorth Mobility 0 100 99.71494
Permutation Approximate

Entropy Entropy Coastline 0 100 99.71494
Permutation Approximate

Entropy Entropy Average Energy 64.51613 98.88879 | 98.79081
Permutation Approximate

Entropy Entropy Hurst Exponent 0 100 99.71494
Permutation Approximate

Entropy Entropy Renyie Entropy 0 100 99.71494

118

Permutation

Approximate

Entropy Entropy Spectral Entropy 0 100 99.71494
Permutation Approximate
Entropy Entropy Shannon Entropy 0 100 99.71494
Min Absolute Root Mean
Variance Value Square 70.96774 98.61214 | 98.53333
Max Absolute Root Mean
Variance Value Square 66.12903 99.00867 | 98.91494
Max Absolute Min Absolute
Variance Value Value 59.67742 | 98.86112 | 98.74943
Mean Absolute Root Mean
Variance Value Square 74.19355 98.73663 | 98.66667
Mean Absolute Min Absolute
Variance Value Value 74.19355 98.5522 | 98.48276
Mean Absolute Max Absolute
Variance Value Value 75.80645 98.8104 | 98.74483
Hjorth Root Mean
Variance Complexity Square 67.74194 | 98.97178 | 98.88276
Hjorth Min Absolute
Variance Complexity Value 61.29032 | 99.04556 | 98.93793
Hjorth Max Absolute
Variance Complexity Value 62.90323 | 99.19771 | 99.09425
Hjorth Mean Absolute
Variance Complexity Value 69.35484 | 98.95334 | 98.86897
Root Mean
Variance Hjorth Mobility Square 66.12903 | 99.01789 | 98.92414
Min Absolute
Variance Hjorth Mobility Value 61.29032 | 99.00406 | 98.89655
Max Absolute
Variance Hjorth Mobility Value 61.29032 | 99.14699 | 99.03908
Mean Absolute
Variance Hjorth Mobility Value 67.74194 | 98.95795 | 98.86897
Hjorth
Variance Hjorth Mobility Complexity 62.90323 | 99.07783 | 98.97471
Root Mean
Variance Coastline Square 62.90323 98.84729 | 98.74483
Min Absolute
Variance Coastline Value 61.29032 | 98.79657 | 98.68966
Max Absolute
Variance Coastline Value 58.06452 99.07783 | 98.96092
Mean Absolute
Variance Coastline Value 70.96774 | 98.75968 | 98.68046
Hjorth
Variance Coastline Complexity 62.90323 | 99.09166 | 98.98851
Variance Coastline Hjorth Mobility 64.51613 | 99.04556 | 98.94713
Root Mean
Variance Average Energy Square 69.35484 | 98.90262 | 98.81839
Min Absolute
Variance Average Energy Value 64.51613 98.78274 | 98.68506

119

Max Absolute

Variance Average Energy Value 64.51613 99.14238 | 99.04368
Mean Absolute
Variance Average Energy Value 72.58065 98.82424 | 98.74943
Hjorth
Variance Average Energy Complexity 62.90323 99.08244 | 98.97931
Variance Average Energy Hjorth Mobility 62.90323 | 99.02711 | 98.92414
Variance Average Energy Coastline 62.90323 98.8519 | 98.74943
Root Mean
Variance Hurst Exponent Square 72.58065 98.71819 | 98.64368
Min Absolute
Variance Hurst Exponent Value 62.90323 98.87034 | 98.76782
Max Absolute
Variance Hurst Exponent Value 61.29032 99.16544 | 99.05747
Mean Absolute
Variance Hurst Exponent Value 74.19355 98.58447 | 98.51494
Hjorth
Variance Hurst Exponent Complexity 74.19355 98.47842 | 98.4092
Variance Hurst Exponent Hjorth Mobility 82.25807 | 97.86518 | 97.82069
Variance Hurst Exponent Coastline 62.90323 98.95334 | 98.85058
Variance Hurst Exponent Average Energy 62.90323 98.91645 | 98.81379
Root Mean
Variance Renyie Entropy Square 72.58065 98.6398 | 98.56552
Min Absolute
Variance Renyie Entropy Value 56.45161 98.87495 | 98.75402
Max Absolute
Variance Renyie Entropy Value 62.90323 | 99.05939 | 98.95632
Mean Absolute
Variance Renyie Entropy Value 75.80645 98.55681 | 98.49195
Hjorth
Variance Renyie Entropy Complexity 62.90323 99.09166 | 98.98851
Variance Renyie Entropy Hjorth Mobility 62.90323 | 99.08244 | 98.97931
Variance Renyie Entropy Coastline 58.06452 | 98.84268 | 98.72644
Variance Renyie Entropy Average Energy 66.12903 98.8104 | 98.71724
Variance Renyie Entropy Hurst Exponent 62.90323 | 98.93028 | 98.82759
Root Mean
Variance Spectral Entropy Square 69.35484 | 98.87957 | 98.7954
Min Absolute
Variance Spectral Entropy Value 62.90323 98.8104 | 98.70805
Max Absolute
Variance Spectral Entropy Value 62.90323 99.07322 | 98.97012
Mean Absolute
Variance Spectral Entropy Value 72.58065 98.78735 | 98.71264
Hjorth
Variance Spectral Entropy Complexity 62.90323 99.08705 | 98.98391
Variance Spectral Entropy Hjorth Mobility 64.51613 | 99.05017 | 98.95172
Variance Spectral Entropy Coastline 69.35484 98.87495 | 98.79081
Variance Spectral Entropy Average Energy 69.35484 | 98.86112 | 98.77701
Variance Spectral Entropy Hurst Exponent 61.29032 98.95795 | 98.85058

120

Variance Spectral Entropy Renyie Entropy 66.12903 98.88879 | 98.7954
Root Mean
Variance Shannon Entropy Square 72.58065 98.59369 | 98.51954
Min Absolute
Variance Shannon Entropy Value 58.06452 98.80118 | 98.68506
Max Absolute
Variance Shannon Entropy Value 61.29032 99.00406 | 98.89655
Mean Absolute
Variance Shannon Entropy Value 77.41936 98.4692 98.4092
Hjorth
Variance Shannon Entropy Complexity 62.90323 99.08705 | 98.98391
Variance Shannon Entropy | Hjorth Mobility 62.90323 | 99.09627 | 98.9931
Variance Shannon Entropy Coastline 61.29032 98.79657 | 98.68966
Variance Shannon Entropy | Average Energy 67.74194 | 98.82424 | 98.73563
Variance Shannon Entropy | Hurst Exponent 62.90323 98.93028 | 98.82759
Variance Shannon Entropy Renyie Entropy 67.74194 | 98.84268 | 98.75402
Variance Shannon Entropy | Spectral Entropy | 66.12903 | 98.84729 | 98.75402
Approximate Root Mean
Variance Entropy Square 70.96774 | 98.74124 | 98.66207
Approximate Min Absolute
Variance Entropy Value 64.51613 98.74585 | 98.64828
Approximate Max Absolute
Variance Entropy Value 64.51613 99.08244 | 98.98391
Approximate Mean Absolute
Variance Entropy Value 75.80645 | 98.60753 | 98.54253
Approximate Hjorth
Variance Entropy Complexity 64.51613 | 99.05939 | 98.96092
Approximate
Variance Entropy Hjorth Mobility 62.90323 99.0225 | 98.91954
Approximate
Variance Entropy Coastline 62.90323 | 98.84729 | 98.74483
Approximate
Variance Entropy Average Energy 69.35484 | 98.84268 | 98.75862
Approximate
Variance Entropy Hurst Exponent 62.90323 | 98.93951 | 98.83678
Approximate
Variance Entropy Renyie Entropy 69.35484 | 98.84729 | 98.76322
Approximate
Variance Entropy Spectral Entropy 67.74194 | 98.88879 98.8
Approximate
Variance Entropy Shannon Entropy | 67.74194 | 98.75507 | 98.66667
Permutation Root Mean
Variance Entropy Square 69.35484 | 98.84729 | 98.76322
Permutation Min Absolute
Variance Entropy Value 62.90323 98.87495 | 98.77241
Permutation Max Absolute
Variance Entropy Value 61.29032 99.20232 | 99.09425
Permutation Mean Absolute
Variance Entropy Value 72.58065 98.77352 | 98.69885

121

Permutation

Hjorth

Variance Entropy Complexity 64.51613 99.07322 | 98.97471
Permutation
Variance Entropy Hjorth Mobility 62.90323 | 99.05017 | 98.94713
Permutation
Variance Entropy Coastline 62.90323 98.90262 98.8
Permutation
Variance Entropy Average Energy 64.51613 98.90723 | 98.8092
Permutation
Variance Entropy Hurst Exponent 62.90323 98.94412 | 98.84138
Permutation
Variance Entropy Renyie Entropy 64.51613 98.8934 98.7954
Permutation
Variance Entropy Spectral Entropy 64.51613 98.91645 | 98.81839
Permutation
Variance Entropy Shannon Entropy | 64.51613 98.92106 | 98.82299
Permutation Approximate
Variance Entropy Entropy 66.12903 98.88418 | 98.79081
Min Absolute Root Mean
Skew Value Square 85.48387 | 97.88823 | 97.85287
Max Absolute Root Mean
Skew Value Square 82.25807 | 98.26632 | 98.22069
Max Absolute Min Absolute
Skew Value Value 0 100 99.71494
Mean Absolute Root Mean
Skew Value Square 87.09677 | 98.11878 | 98.08736
Mean Absolute Min Absolute
Skew Value Value 87.09677 | 97.79141 | 97.76092
Mean Absolute Max Absolute
Skew Value Value 87.09677 98.128 98.09655
Hjorth Root Mean
Skew Complexity Square 80.64516 | 98.43692 | 98.38621
Hjorth Min Absolute
Skew Complexity Value 0 100 99.71494
Hjorth Max Absolute
Skew Complexity Value 0 100 99.71494
Hjorth Mean Absolute
Skew Complexity Value 83.87097 | 98.24327 | 98.2023
Root Mean
Skew Hjorth Mobility Square 83.87097 | 98.42309 | 98.38161
Min Absolute
Skew Hjorth Mobility Value 0 100 99.71494
Max Absolute
Skew Hjorth Mobility Value 0 100 99.71494
Mean Absolute
Skew Hjorth Mobility Value 85.48387 | 98.32626 | 98.28966
Hjorth
Skew Hjorth Mobility Complexity 0 100 99.71494
Root Mean
Skew Coastline Square 80.64516 | 98.24327 | 98.1931

122

Min Absolute

Skew Coastline Value 0 100 99.71494
Max Absolute
Skew Coastline Value 0 100 99.71494
Mean Absolute
Skew Coastline Value 85.48387 98.11417 | 98.07816
Hjorth
Skew Coastline Complexity 0 100 99.71494
Skew Coastline Hjorth Mobility 0 100 99.71494
Root Mean
Skew Average Energy Square 74.19355 98.81962 | 98.74943
Min Absolute
Skew Average Energy Value 61.29032 | 98.79657 | 98.68966
Max Absolute
Skew Average Energy Value 64.51613 | 98.99484 | 98.89655
Mean Absolute
Skew Average Energy Value 77.41936 | 98.62597 | 98.56552
Hjorth
Skew Average Energy Complexity 66.12903 | 99.01789 | 98.92414
Skew Average Energy Hjorth Mobility 64.51613 99.04094 | 98.94253
Skew Average Energy Coastline 56.45161 | 98.95334 | 98.83218
Root Mean
Skew Hurst Exponent Square 85.48387 97.99428 | 97.95862
Min Absolute
Skew Hurst Exponent Value 0 100 99.71494
Max Absolute
Skew Hurst Exponent Value 0 100 99.71494
Mean Absolute
Skew Hurst Exponent Value 87.09677 97.8744 | 97.84368
Hjorth
Skew Hurst Exponent Complexity 0 100 99.71494
Skew Hurst Exponent Hjorth Mobility 0 100 99.71494
Skew Hurst Exponent Coastline 0 100 99.71494
Skew Hurst Exponent Average Energy 62.90323 98.86112 | 98.75862
Root Mean
Skew Renyie Entropy Square 82.25807 98.26632 | 98.22069
Min Absolute
Skew Renyie Entropy Value 0 100 99.71494
Max Absolute
Skew Renyie Entropy Value 0 100 99.71494
Mean Absolute
Skew Renyie Entropy Value 87.09677 98.13261 | 98.10115
Hjorth
Skew Renyie Entropy Complexity 0 100 99.71494
Skew Renyie Entropy Hjorth Mobility 0 100 99.71494
Skew Renyie Entropy Coastline 0 100 99.71494
Skew Renyie Entropy Average Energy 67.74194 98.9349 | 98.84598
Skew Renyie Entropy Hurst Exponent 0 100 99.71494

123

Root Mean

Skew Spectral Entropy Square 83.87097 | 98.22944 | 98.18851
Min Absolute
Skew Spectral Entropy Value 0 100 99.71494
Max Absolute
Skew Spectral Entropy Value 0 100 99.71494
Mean Absolute
Skew Spectral Entropy Value 87.09677 | 98.06345 | 98.03218
Hjorth
Skew Spectral Entropy Complexity 0 100 99.71494
Skew Spectral Entropy Hjorth Mobility 0 100 99.71494
Skew Spectral Entropy Coastline 0 100 99.71494
Skew Spectral Entropy Average Energy 66.12903 99.00867 | 98.91494
Skew Spectral Entropy Hurst Exponent 0 100 99.71494
Skew Spectral Entropy Renyie Entropy 0 100 99.71494
Root Mean
Skew Shannon Entropy Square 82.25807 98.2571 | 98.21149
Min Absolute
Skew Shannon Entropy Value 0 100 99.71494
Max Absolute
Skew Shannon Entropy Value 0 100 99.71494
Mean Absolute
Skew Shannon Entropy Value 87.09677 | 98.10033 | 98.06897
Hjorth
Skew Shannon Entropy Complexity 0 100 99.71494
Skew Shannon Entropy | Hjorth Mobility 0 100 99.71494
Skew Shannon Entropy Coastline 0 100 99.71494
Skew Shannon Entropy | Average Energy 67.74194 | 98.90262 | 98.81379
Skew Shannon Entropy | Hurst Exponent 0 100 99.71494
Skew Shannon Entropy | Renyie Entropy 0 100 99.71494
Skew Shannon Entropy | Spectral Entropy 0 100 99.71494
Approximate Root Mean
Skew Entropy Square 82.25807 98.21099 | 98.16552
Approximate Min Absolute
Skew Entropy Value 0 100 99.71494
Approximate Max Absolute
Skew Entropy Value 0 100 99.71494
Approximate Mean Absolute
Skew Entropy Value 87.09677 | 98.11417 | 98.08276
Approximate Hjorth
Skew Entropy Complexity 0 100 99.71494
Approximate
Skew Entropy Hjorth Mobility 0 100 99.71494
Approximate
Skew Entropy Coastline 0 100 99.71494
Approximate
Skew Entropy Average Energy 67.74194 98.9349 | 98.84598
Approximate
Skew Entropy Hurst Exponent 0 100 99.71494

124

Approximate

Skew Entropy Renyie Entropy 0 100 99.71494
Approximate
Skew Entropy Spectral Entropy 0 100 99.71494
Approximate
Skew Entropy Shannon Entropy 0 100 99.71494
Permutation Root Mean
Skew Entropy Square 83.87097 | 98.23405 | 98.1931
Permutation Min Absolute
Skew Entropy Value 0 100 99.71494
Permutation Max Absolute
Skew Entropy Value 0 100 99.71494
Permutation Mean Absolute
Skew Entropy Value 87.09677 | 98.12339 | 98.09195
Permutation Hjorth
Skew Entropy Complexity 0 100 99.71494
Permutation
Skew Entropy Hjorth Mobility 0 100 99.71494
Permutation
Skew Entropy Coastline 0 100 99.71494
Permutation
Skew Entropy Average Energy 67.74194 98.92106 | 98.83218
Permutation
Skew Entropy Hurst Exponent 0 100 99.71494
Permutation
Skew Entropy Renyie Entropy 0 100 99.71494
Permutation
Skew Entropy Spectral Entropy 0 100 99.71494
Permutation
Skew Entropy Shannon Entropy 0 100 99.71494
Permutation Approximate
Skew Entropy Entropy 0 100 99.71494
Root Mean
Skew Variance Square 74.19355 98.81962 | 98.74943
Min Absolute
Skew Variance Value 62.90323 | 98.80579 | 98.70345
Max Absolute
Skew Variance Value 64.51613 | 99.01328 | 98.91494
Mean Absolute
Skew Variance Value 77.41936 | 98.63058 | 98.57012
Hjorth
Skew Variance Complexity 66.12903 99.0225 | 98.92874
Skew Variance Hjorth Mobility 64.51613 | 99.05939 | 98.96092
Skew Variance Coastline 58.06452 98.97178 | 98.85517
Skew Variance Average Energy 67.74194 | 98.94412 | 98.85517
Skew Variance Hurst Exponent 66.12903 98.82424 | 98.73103
Skew Variance Renyie Entropy 67.74194 98.9349 | 98.84598
Skew Variance Spectral Entropy 66.12903 99.01328 | 98.91954
Skew Variance Shannon Entropy | 67.74194 | 98.91645 | 98.82759

125

Approximate

Skew Variance Entropy 67.74194 98.93951 | 98.85058
Permutation
Skew Variance Entropy 67.74194 98.9349 | 98.84598
Min Absolute Root Mean
Kurtosis Value Square 85.48387 98.16027 | 98.12414
Max Absolute Root Mean
Kurtosis Value Square 85.48387 98.81962 | 98.78161
Max Absolute Min Absolute
Kurtosis Value Value 0 100 99.71494
Mean Absolute Root Mean
Kurtosis Value Square 85.48387 98.39082 | 98.35402
Mean Absolute Min Absolute
Kurtosis Value Value 87.09677 | 97.76374 | 97.73333
Mean Absolute Max Absolute
Kurtosis Value Value 85.48387 98.6398 98.6023
Hjorth Root Mean
Kurtosis Complexity Square 82.25807 98.54297 | 98.49655
Hjorth Min Absolute
Kurtosis Complexity Value 0 100 99.71494
Hjorth Max Absolute
Kurtosis Complexity Value 0 100 99.71494
Hjorth Mean Absolute
Kurtosis Complexity Value 85.48387 | 98.19255 | 98.15632
Root Mean
Kurtosis Hjorth Mobility Square 83.87097 | 98.56603 | 98.52414
Min Absolute
Kurtosis Hjorth Mobility Value 0 100 99.71494
Max Absolute
Kurtosis Hjorth Mobility Value 0 100 99.71494
Mean Absolute
Kurtosis Hjorth Mobility Value 85.48387 | 98.27554 | 98.23908
Hjorth
Kurtosis Hjorth Mobility Complexity 0 100 99.71494
Root Mean
Kurtosis Coastline Square 82.25807 98.58447 | 98.53793
Min Absolute
Kurtosis Coastline Value 0 100 99.71494
Max Absolute
Kurtosis Coastline Value 0 100 99.71494
Mean Absolute
Kurtosis Coastline Value 85.48387 98.27554 | 98.23908
Hjorth
Kurtosis Coastline Complexity 0 100 99.71494
Kurtosis Coastline Hjorth Mobility 0 100 99.71494
Root Mean
Kurtosis Average Energy Square 70.96774 | 98.88418 | 98.8046
Min Absolute
Kurtosis Average Energy Value 62.90323 99.16544 | 99.06207

126

Max Absolute

Kurtosis Average Energy Value 66.12903 99.42364 | 99.32874
Mean Absolute
Kurtosis Average Energy Value 77.41936 98.71357 | 98.65287
Hjorth
Kurtosis Average Energy Complexity 62.90323 99.13777 | 99.03448
Kurtosis Average Energy Hjorth Mobility 62.90323 | 99.30376 99.2
Kurtosis Average Energy Coastline 66.12903 99.20232 | 99.10805
Root Mean
Kurtosis Hurst Exponent Square 85.48387 98.128 98.09195
Min Absolute
Kurtosis Hurst Exponent Value 0 100 99.71494
Max Absolute
Kurtosis Hurst Exponent Value 0 100 99.71494
Mean Absolute
Kurtosis Hurst Exponent Value 87.09677 97.80524 | 97.77471
Hjorth
Kurtosis Hurst Exponent Complexity 0 100 99.71494
Kurtosis Hurst Exponent Hjorth Mobility 0 100 99.71494
Kurtosis Hurst Exponent Coastline 0 100 99.71494
Kurtosis Hurst Exponent Average Energy 62.90323 99.30376 99.2
Root Mean
Kurtosis Renyie Entropy Square 82.25807 | 98.37698 | 98.33103
Min Absolute
Kurtosis Renyie Entropy Value 0 100 99.71494
Max Absolute
Kurtosis Renyie Entropy Value 0 100 99.71494
Mean Absolute
Kurtosis Renyie Entropy Value 82.25807 98.26171 | 98.21609
Hjorth
Kurtosis Renyie Entropy Complexity 0 100 99.71494
Kurtosis Renyie Entropy Hjorth Mobility 0 100 99.71494
Kurtosis Renyie Entropy Coastline 0 100 99.71494
Kurtosis Renyie Entropy Average Energy 66.12903 98.87495 | 98.78161
Kurtosis Renyie Entropy Hurst Exponent 0 100 99.71494
Root Mean
Kurtosis Spectral Entropy Square 83.87097 98.61214 | 98.57012
Min Absolute
Kurtosis Spectral Entropy Value 0 100 99.71494
Max Absolute
Kurtosis Spectral Entropy Value 0 100 99.71494
Mean Absolute
Kurtosis Spectral Entropy Value 87.09677 98.31704 | 98.28506
Hjorth
Kurtosis Spectral Entropy Complexity 0 100 99.71494
Kurtosis Spectral Entropy Hjorth Mobility 0 100 99.71494
Kurtosis Spectral Entropy Coastline 0 100 99.71494
Kurtosis Spectral Entropy Average Energy 69.35484 | 99.22077 | 99.13563
Kurtosis Spectral Entropy Hurst Exponent 0 100 99.71494

127

Kurtosis Spectral Entropy Renyie Entropy 0 100 99.71494
Root Mean
Kurtosis Shannon Entropy Square 83.87097 98.37698 | 98.33563
Min Absolute
Kurtosis Shannon Entropy Value 0 100 99.71494
Max Absolute
Kurtosis Shannon Entropy Value 0 100 99.71494
Mean Absolute
Kurtosis Shannon Entropy Value 83.87097 98.2156 | 98.17471
Hjorth
Kurtosis Shannon Entropy Complexity 0 100 99.71494
Kurtosis Shannon Entropy | Hjorth Mobility 0 100 99.71494
Kurtosis Shannon Entropy Coastline 0 100 99.71494
Kurtosis Shannon Entropy | Average Energy 67.74194 | 98.84268 | 98.75402
Kurtosis Shannon Entropy | Hurst Exponent 0 100 99.71494
Kurtosis Shannon Entropy Renyie Entropy 0 100 99.71494
Kurtosis Shannon Entropy | Spectral Entropy 0 100 99.71494
Approximate Root Mean
Kurtosis Entropy Square 83.87097 98.45076 | 98.4092
Approximate Min Absolute
Kurtosis Entropy Value 0 100 99.71494
Approximate Max Absolute
Kurtosis Entropy Value 0 100 99.71494
Approximate Mean Absolute
Kurtosis Entropy Value 85.48387 98.04039 | 98.0046
Approximate Hjorth
Kurtosis Entropy Complexity 0 100 99.71494
Approximate
Kurtosis Entropy Hjorth Mobility 0 100 99.71494
Approximate
Kurtosis Entropy Coastline 0 100 99.71494
Approximate
Kurtosis Entropy Average Energy 69.35484 | 98.84729 | 98.76322
Approximate
Kurtosis Entropy Hurst Exponent 0 100 99.71494
Approximate
Kurtosis Entropy Renyie Entropy 0 100 99.71494
Approximate
Kurtosis Entropy Spectral Entropy 0 100 99.71494
Approximate
Kurtosis Entropy Shannon Entropy 0 100 99.71494
Permutation Root Mean
Kurtosis Entropy Square 83.87097 98.2571 | 98.21609
Permutation Min Absolute
Kurtosis Entropy Value 0 100 99.71494
Permutation Max Absolute
Kurtosis Entropy Value 0 100 99.71494
Permutation Mean Absolute
Kurtosis Entropy Value 87.09677 98.0035 | 97.97241

128

Permutation

Hjorth

Kurtosis Entropy Complexity 0 100 99.71494
Permutation
Kurtosis Entropy Hjorth Mobility 0 100 99.71494
Permutation
Kurtosis Entropy Coastline 0 100 99.71494
Permutation
Kurtosis Entropy Average Energy 66.12903 99.11011 | 99.01609
Permutation
Kurtosis Entropy Hurst Exponent 0 100 99.71494
Permutation
Kurtosis Entropy Renyie Entropy 0 100 99.71494
Permutation
Kurtosis Entropy Spectral Entropy 0 100 99.71494
Permutation
Kurtosis Entropy Shannon Entropy 0 100 99.71494
Permutation Approximate
Kurtosis Entropy Entropy 0 100 99.71494
Root Mean
Kurtosis Variance Square 70.96774 | 98.89801 | 98.81839
Min Absolute
Kurtosis Variance Value 64.51613 99.17927 | 99.08046
Max Absolute
Kurtosis Variance Value 66.12903 99.43287 | 99.33793
Mean Absolute
Kurtosis Variance Value 77.41936 | 98.70435 | 98.64368
Hjorth
Kurtosis Variance Complexity 64.51613 99.17927 | 99.08046
Kurtosis Variance Hjorth Mobility 62.90323 99.3176 | 99.21379
Kurtosis Variance Coastline 64.51613 99.21155 | 99.11264
Kurtosis Variance Average Energy 69.35484 98.9349 | 98.85058
Kurtosis Variance Hurst Exponent 62.90323 | 99.26227 | 99.15862
Kurtosis Variance Renyie Entropy 66.12903 98.87034 | 98.77701
Kurtosis Variance Spectral Entropy 69.35484 99.2346 | 99.14943
Kurtosis Variance Shannon Entropy | 67.74194 | 98.86112 | 98.77241
Approximate
Kurtosis Variance Entropy 69.35484 | 98.84729 | 98.76322
Permutation
Kurtosis Variance Entropy 66.12903 99.11933 | 99.02529
Root Mean
Kurtosis Skew Square 82.25807 98.53375 | 98.48736
Min Absolute
Kurtosis Skew Value 0 100 99.71494
Max Absolute
Kurtosis Skew Value 0 100 99.71494
Mean Absolute
Kurtosis Skew Value 87.09677 | 98.18794 | 98.15632
Hjorth
Kurtosis Skew Complexity 0 100 99.71494

129

Kurtosis Skew Hjorth Mobility 0 100 99.71494

Kurtosis Skew Coastline 0 100 99.71494

Kurtosis Skew Average Energy 67.74194 | 99.03633 | 98.94713

Kurtosis Skew Hurst Exponent 0 100 99.71494

Kurtosis Skew Renyie Entropy 0 100 99.71494

Kurtosis Skew Spectral Entropy 0 100 99.71494

Kurtosis Skew Shannon Entropy 0 100 99.71494

Approximate
Kurtosis Skew Entropy 0 100 99.71494
Permutation

Kurtosis Skew Entropy 0 100 99.71494

Kurtosis Skew Variance 67.74194 99.04556 | 98.95632
Modified Hurst Min Absolute Root Mean

Exponent Value Square 83.87097 96.43121 | 96.3954
Modified Hurst Max Absolute Root Mean

Exponent Value Square 80.64516 98.8104 | 98.75862
Modified Hurst Max Absolute Min Absolute

Exponent Value Value 0 100 99.71494
Modified Hurst Mean Absolute Root Mean

Exponent Value Square 87.09677 97.04445 | 97.01609
Modified Hurst Mean Absolute Min Absolute

Exponent Value Value 88.70968 | 96.54648 | 96.52414
Modified Hurst Mean Absolute Max Absolute

Exponent Value Value 82.25807 | 98.45076 | 98.4046
Modified Hurst Hjorth Root Mean

Exponent Complexity Square 85.48387 97.84213 | 97.8069
Modified Hurst Hjorth Min Absolute

Exponent Complexity Value 0 100 99.71494
Modified Hurst Hjorth Max Absolute

Exponent Complexity Value 0 100 99.71494
Modified Hurst Hjorth Mean Absolute

Exponent Complexity Value 85.48387 | 97.65769 | 97.62299
Modified Hurst Root Mean

Exponent Hjorth Mobility Square 85.48387 | 97.82829 | 97.7931
Modified Hurst Min Absolute

Exponent Hjorth Mobility Value 0 100 99.71494
Modified Hurst Max Absolute

Exponent Hjorth Mobility Value 0 100 99.71494
Modified Hurst Mean Absolute

Exponent Hjorth Mobility Value 87.09677 | 97.69458 | 97.66437
Modified Hurst Hjorth

Exponent Hjorth Mobility Complexity 0 100 99.71494
Modified Hurst Root Mean

Exponent Coastline Square 85.48387 97.2381 97.2046
Modified Hurst Min Absolute

Exponent Coastline Value 0 100 99.71494
Modified Hurst Max Absolute

Exponent Coastline Value 0 100 99.71494

130

Modified Hurst

Mean Absolute

Exponent Coastline Value 87.09677 | 96.92918 | 96.90115
Modified Hurst Hjorth

Exponent Coastline Complexity 0 100 99.71494
Modified Hurst

Exponent Coastline Hjorth Mobility 0 100 99.71494
Modified Hurst Root Mean

Exponent Average Energy Square 74.19355 98.37237 | 98.30345
Modified Hurst Min Absolute

Exponent Average Energy Value 56.45161 98.23866 | 98.11954
Modified Hurst Max Absolute

Exponent Average Energy Value 62.90323 99.28532 | 99.18161
Modified Hurst Mean Absolute

Exponent Average Energy Value 79.03226 98.28477 | 98.22989
Modified Hurst Hjorth

Exponent Average Energy Complexity 62.90323 98.71357 | 98.61149
Modified Hurst

Exponent Average Energy Hjorth Mobility 62.90323 | 98.79196 | 98.68966
Modified Hurst

Exponent Average Energy Coastline 56.45161 98.74585 | 98.62529
Modified Hurst Root Mean

Exponent Hurst Exponent Square 87.09677 | 97.51937 | 97.48966
Modified Hurst Min Absolute

Exponent Hurst Exponent Value 0 100 99.71494
Modified Hurst Max Absolute

Exponent Hurst Exponent Value 0 100 99.71494
Modified Hurst Mean Absolute

Exponent Hurst Exponent Value 88.70968 | 97.31188 | 97.28736
Modified Hurst Hjorth

Exponent Hurst Exponent Complexity 0 100 99.71494
Modified Hurst

Exponent Hurst Exponent Hjorth Mobility 0 100 99.71494
Modified Hurst

Exponent Hurst Exponent Coastline 0 100 99.71494
Modified Hurst

Exponent Hurst Exponent Average Energy 62.90323 98.97639 | 98.87356
Modified Hurst Root Mean

Exponent Renyie Entropy Square 82.25807 97.4502 97.4069
Modified Hurst Min Absolute

Exponent Renyie Entropy Value 0 100 99.71494
Modified Hurst Max Absolute

Exponent Renyie Entropy Value 0 100 99.71494
Modified Hurst Mean Absolute

Exponent Renyie Entropy Value 87.09677 97.49631 | 97.46667
Modified Hurst Hjorth

Exponent Renyie Entropy Complexity 0 100 99.71494
Modified Hurst

Exponent Renyie Entropy Hjorth Mobility 0 100 99.71494
Modified Hurst

Exponent Renyie Entropy Coastline 0 100 99.71494

131

Modified Hurst

Exponent Renyie Entropy Average Energy 62.90323 98.78735 | 98.68506
Modified Hurst

Exponent Renyie Entropy Hurst Exponent 0 100 99.71494
Modified Hurst Root Mean

Exponent Spectral Entropy Square 87.09677 97.22888 97.2
Modified Hurst Min Absolute

Exponent Spectral Entropy Value 0 100 99.71494
Modified Hurst Max Absolute

Exponent Spectral Entropy Value 0 100 99.71494
Modified Hurst Mean Absolute

Exponent Spectral Entropy Value 87.09677 | 97.13667 | 97.10805
Modified Hurst Hjorth

Exponent Spectral Entropy Complexity 0 100 99.71494
Modified Hurst

Exponent Spectral Entropy Hjorth Mobility 0 100 99.71494
Modified Hurst

Exponent Spectral Entropy Coastline 0 100 99.71494
Modified Hurst

Exponent Spectral Entropy Average Energy 64.51613 98.86112 | 98.76322
Modified Hurst

Exponent Spectral Entropy Hurst Exponent 0 100 99.71494
Modified Hurst

Exponent Spectral Entropy Renyie Entropy 0 100 99.71494
Modified Hurst Root Mean

Exponent Shannon Entropy Square 83.87097 97.66691 | 97.62759
Modified Hurst Min Absolute

Exponent Shannon Entropy Value 0 100 99.71494
Modified Hurst Max Absolute

Exponent Shannon Entropy Value 0 100 99.71494
Modified Hurst Mean Absolute

Exponent Shannon Entropy Value 87.09677 97.5332 | 97.50345
Modified Hurst Hjorth

Exponent Shannon Entropy Complexity 0 100 99.71494
Modified Hurst

Exponent Shannon Entropy | Hjorth Mobility 0 100 99.71494
Modified Hurst

Exponent Shannon Entropy Coastline 0 100 99.71494
Modified Hurst

Exponent Shannon Entropy | Average Energy 66.12903 98.78274 | 98.68966
Modified Hurst

Exponent Shannon Entropy | Hurst Exponent 0 100 99.71494
Modified Hurst

Exponent Shannon Entropy Renyie Entropy 0 100 99.71494
Modified Hurst

Exponent Shannon Entropy | Spectral Entropy 0 100 99.71494
Modified Hurst Approximate Root Mean

Exponent Entropy Square 88.70968 97.43176 | 97.4069
Modified Hurst Approximate Min Absolute

Exponent Entropy Value 0 100 99.71494

132

Modified Hurst

Approximate

Max Absolute

Exponent Entropy Value 0 100 99.71494
Modified Hurst Approximate Mean Absolute

Exponent Entropy Value 88.70968 97.45943 | 97.43448
Modified Hurst Approximate Hjorth

Exponent Entropy Complexity 0 100 99.71494
Modified Hurst Approximate

Exponent Entropy Hjorth Mobility 0 100 99.71494
Modified Hurst Approximate

Exponent Entropy Coastline 0 100 99.71494
Modified Hurst Approximate

Exponent Entropy Average Energy 66.12903 98.80118 | 98.70805
Modified Hurst Approximate

Exponent Entropy Hurst Exponent 0 100 99.71494
Modified Hurst Approximate

Exponent Entropy Renyie Entropy 0 100 99.71494
Modified Hurst Approximate

Exponent Entropy Spectral Entropy 0 100 99.71494
Modified Hurst Approximate

Exponent Entropy Shannon Entropy 0 100 99.71494
Modified Hurst Permutation Root Mean

Exponent Entropy Square 85.48387 | 97.25655 | 97.22299
Modified Hurst Permutation Min Absolute

Exponent Entropy Value 0 100 99.71494
Modified Hurst Permutation Max Absolute

Exponent Entropy Value 0 100 99.71494
Modified Hurst Permutation Mean Absolute

Exponent Entropy Value 87.09677 | 97.24733 | 97.21839
Modified Hurst Permutation Hjorth

Exponent Entropy Complexity 0 100 99.71494
Modified Hurst Permutation

Exponent Entropy Hjorth Mobility 0 100 99.71494
Modified Hurst Permutation

Exponent Entropy Coastline 0 100 99.71494
Modified Hurst Permutation

Exponent Entropy Average Energy 64.51613 98.91645 | 98.81839
Modified Hurst Permutation

Exponent Entropy Hurst Exponent 0 100 99.71494
Modified Hurst Permutation

Exponent Entropy Renyie Entropy 0 100 99.71494
Modified Hurst Permutation

Exponent Entropy Spectral Entropy 0 100 99.71494
Modified Hurst Permutation

Exponent Entropy Shannon Entropy 0 100 99.71494
Modified Hurst Permutation Approximate

Exponent Entropy Entropy 0 100 99.71494
Modified Hurst Root Mean

Exponent Variance Square 74.19355 98.40926 | 98.34023
Modified Hurst Min Absolute

Exponent Variance Value 58.06452 98.27093 | 98.15632

133

Modified Hurst

Max Absolute

Exponent Variance Value 64.51613 99.26227 | 99.16322
Modified Hurst Mean Absolute

Exponent Variance Value 79.03226 98.30782 | 98.25287
Modified Hurst Hjorth

Exponent Variance Complexity 61.29032 98.74585 | 98.63908
Modified Hurst

Exponent Variance Hjorth Mobility 62.90323 | 98.79196 | 98.68966
Modified Hurst

Exponent Variance Coastline 56.45161 98.74585 | 98.62529
Modified Hurst

Exponent Variance Average Energy 64.51613 98.81501 | 98.71724
Modified Hurst

Exponent Variance Hurst Exponent 62.90323 98.99023 | 98.88736
Modified Hurst

Exponent Variance Renyie Entropy 64.51613 98.79196 | 98.69425
Modified Hurst

Exponent Variance Spectral Entropy 64.51613 98.86112 | 98.76322
Modified Hurst

Exponent Variance Shannon Entropy | 66.12903 98.79657 | 98.70345
Modified Hurst Approximate

Exponent Variance Entropy 66.12903 98.77813 | 98.68506
Modified Hurst Permutation

Exponent Variance Entropy 64.51613 98.8934 98.7954
Modified Hurst Root Mean

Exponent Skew Square 80.64516 98.37698 | 98.32644
Modified Hurst Min Absolute

Exponent Skew Value 0 100 99.71494
Modified Hurst Max Absolute

Exponent Skew Value 0 100 99.71494
Modified Hurst Mean Absolute

Exponent Skew Value 87.09677 | 98.13722 | 98.10575
Modified Hurst Hjorth

Exponent Skew Complexity 0 100 99.71494
Modified Hurst

Exponent Skew Hjorth Mobility 0 100 99.71494
Modified Hurst

Exponent Skew Coastline 0 100 99.71494
Modified Hurst

Exponent Skew Average Energy 67.74194 | 98.97178 | 98.88276
Modified Hurst

Exponent Skew Hurst Exponent 0 100 99.71494
Modified Hurst

Exponent Skew Renyie Entropy 0 100 99.71494
Modified Hurst

Exponent Skew Spectral Entropy 0 100 99.71494
Modified Hurst

Exponent Skew Shannon Entropy 0 100 99.71494
Modified Hurst Approximate

Exponent Skew Entropy 0 100 99.71494

134

Modified Hurst

Permutation

Exponent Skew Entropy 0 100 99.71494
Modified Hurst
Exponent Skew Variance 67.74194 | 98.97639 | 98.88736
Modified Hurst Root Mean
Exponent Kurtosis Square 87.09677 98.19716 | 98.16552
Modified Hurst Min Absolute
Exponent Kurtosis Value 0 100 99.71494
Modified Hurst Max Absolute
Exponent Kurtosis Value 0 100 99.71494
Modified Hurst Mean Absolute
Exponent Kurtosis Value 88.70968 97.95279 | 97.92644
Modified Hurst Hjorth
Exponent Kurtosis Complexity 0 100 99.71494
Modified Hurst
Exponent Kurtosis Hjorth Mobility 0 100 99.71494
Modified Hurst
Exponent Kurtosis Coastline 0 100 99.71494
Modified Hurst
Exponent Kurtosis Average Energy 66.12903 99.00406 | 98.91035
Modified Hurst
Exponent Kurtosis Hurst Exponent 0 100 99.71494
Modified Hurst
Exponent Kurtosis Renyie Entropy 0 100 99.71494
Modified Hurst
Exponent Kurtosis Spectral Entropy 0 100 99.71494
Modified Hurst
Exponent Kurtosis Shannon Entropy 0 100 99.71494
Modified Hurst Approximate
Exponent Kurtosis Entropy 0 100 99.71494
Modified Hurst Permutation
Exponent Kurtosis Entropy 0 100 99.71494
Modified Hurst
Exponent Kurtosis Variance 66.12903 99.02711 | 98.93333
Modified Hurst
Exponent Kurtosis Skew 0 100 99.71494
Fractal Min Absolute Root Mean
Dimension Value Square 93.54839 98.03578 | 98.02299
Fractal Max Absolute Root Mean
Dimension Value Square 91.93548 98.44153 | 98.42299
Fractal Max Absolute Min Absolute
Dimension Value Value 83.87097 | 98.58447 | 98.54253
Fractal Mean Absolute Root Mean
Dimension Value Square 93.54839 98.28016 | 98.26667
Fractal Mean Absolute Min Absolute
Dimension Value Value 91.93548 | 98.07728 | 98.05977
Fractal Mean Absolute Max Absolute
Dimension Value Value 91.93548 | 98.43692 | 98.41839
Fractal Hjorth Root Mean
Dimension Complexity Square 93.54839 98.22021 | 98.2069

135

Fractal Hjorth Min Absolute

Dimension Complexity Value 91.93548 | 98.41848 98.4
Fractal Hjorth Max Absolute

Dimension Complexity Value 85.48387 | 98.74124 | 98.70345
Fractal Hjorth Mean Absolute

Dimension Complexity Value 91.93548 | 98.15105 | 98.13333
Fractal Root Mean

Dimension Hjorth Mobility Square 91.93548 | 98.14644 | 98.12874
Fractal Min Absolute

Dimension Hjorth Mobility Value 95.16129 | 98.24788 | 98.23908
Fractal Max Absolute

Dimension Hjorth Mobility Value 88.70968 | 98.67208 | 98.64368
Fractal Mean Absolute

Dimension Hjorth Mobility Value 93.54839 | 98.06806 | 98.05517
Fractal Hjorth

Dimension Hjorth Mobility Complexity 91.93548 | 98.37237 | 98.35402
Fractal Root Mean

Dimension Coastline Square 93.54839 98.16027 | 98.14713
Fractal Min Absolute

Dimension Coastline Value 95.16129 | 98.13261 | 98.12414
Fractal Max Absolute

Dimension Coastline Value 93.54839 | 98.31243 | 98.29885
Fractal Mean Absolute

Dimension Coastline Value 93.54839 | 98.11417 | 98.10115
Fractal Hjorth

Dimension Coastline Complexity 95.16129 98.29399 | 98.28506
Fractal

Dimension Coastline Hjorth Mobility 95.16129 | 98.22483 | 98.21609
Fractal Root Mean

Dimension Average Energy Square 93.54839 98.52453 | 98.51035
Fractal Min Absolute

Dimension Average Energy Value 83.87097 98.51531 | 98.47356
Fractal Max Absolute

Dimension Average Energy Value 90.32258 98.7228 | 98.69885
Fractal Mean Absolute

Dimension Average Energy Value 93.54839 98.46459 | 98.45058
Fractal Hjorth

Dimension Average Energy Complexity 88.70968 98.82424 | 98.7954
Fractal

Dimension Average Energy Hjorth Mobility 87.09677 | 98.74585 | 98.71264
Fractal

Dimension Average Energy Coastline 93.54839 98.49225 | 98.47816
Fractal Root Mean

Dimension Hurst Exponent Square 93.54839 97.79602 | 97.78391
Fractal Min Absolute

Dimension Hurst Exponent Value 95.16129 97.5747 | 97.56782
Fractal Max Absolute

Dimension Hurst Exponent Value 91.93548 98.15566 | 98.13793
Fractal Mean Absolute

Dimension Hurst Exponent Value 93.54839 97.6623 | 97.65058

136

Fractal Hjorth

Dimension Hurst Exponent Complexity 93.54839 97.95279 | 97.94023
Fractal

Dimension Hurst Exponent Hjorth Mobility 95.16129 | 97.96662 | 97.95862
Fractal

Dimension Hurst Exponent Coastline 96.77419 97.89746 | 97.89425
Fractal

Dimension Hurst Exponent Average Energy 91.93548 98.24788 | 98.22989
Fractal Root Mean

Dimension Renyie Entropy Square 93.54839 98.18794 | 98.17471
Fractal Min Absolute

Dimension Renyie Entropy Value 93.54839 98.07267 | 98.05977
Fractal Max Absolute

Dimension Renyie Entropy Value 87.09677 98.5107 | 98.47816
Fractal Mean Absolute

Dimension Renyie Entropy Value 93.54839 98.1695 | 98.15632
Fractal Hjorth

Dimension Renyie Entropy Complexity 91.93548 98.35854 | 98.34023
Fractal

Dimension Renyie Entropy Hjorth Mobility 93.54839 | 98.36776 | 98.35402
Fractal

Dimension Renyie Entropy Coastline 95.16129 98.12339 | 98.11494
Fractal

Dimension Renyie Entropy Average Energy 93.54839 98.64902 | 98.63448
Fractal

Dimension Renyie Entropy Hurst Exponent 95.16129 97.59314 | 97.58621
Fractal Root Mean

Dimension Spectral Entropy Square 93.54839 98.27554 | 98.26207
Fractal Min Absolute

Dimension Spectral Entropy Value 93.54839 | 98.03117 | 98.01839
Fractal Max Absolute

Dimension Spectral Entropy Value 87.09677 | 98.49687 | 98.46437
Fractal Mean Absolute

Dimension Spectral Entropy Value 93.54839 | 98.23405 | 98.22069
Fractal Hjorth

Dimension Spectral Entropy Complexity 91.93548 | 98.33549 | 98.31724
Fractal

Dimension Spectral Entropy Hjorth Mobility 95.16129 | 98.28477 | 98.27586
Fractal

Dimension Spectral Entropy Coastline 95.16129 | 97.98967 | 97.98161
Fractal

Dimension Spectral Entropy Average Energy 91.93548 98.88879 | 98.86897
Fractal

Dimension Spectral Entropy Hurst Exponent 95.16129 97.69919 | 97.69195
Fractal

Dimension Spectral Entropy Renyie Entropy 93.54839 98.06806 | 98.05517
Fractal Root Mean

Dimension Shannon Entropy Square 93.54839 98.3401 | 98.32644
Fractal Min Absolute

Dimension Shannon Entropy Value 93.54839 | 98.03117 | 98.01839

137

Fractal Max Absolute

Dimension Shannon Entropy Value 87.09677 | 98.39543 | 98.36322
Fractal Mean Absolute

Dimension Shannon Entropy Value 93.54839 | 98.26171 | 98.24828
Fractal Hjorth

Dimension Shannon Entropy Complexity 91.93548 | 98.34471 | 98.32644
Fractal

Dimension Shannon Entropy | Hjorth Mobility 93.54839 | 98.26632 | 98.25287
Fractal

Dimension Shannon Entropy Coastline 95.16129 | 98.09572 | 98.08736
Fractal

Dimension Shannon Entropy | Average Energy 93.54839 98.8519 | 98.83678
Fractal

Dimension Shannon Entropy | Hurst Exponent 95.16129 97.61158 | 97.6046
Fractal

Dimension Shannon Entropy Renyie Entropy 93.54839 97.96662 | 97.95402
Fractal

Dimension Shannon Entropy | Spectral Entropy 93.54839 98.045 98.03218
Fractal Approximate Root Mean

Dimension Entropy Square 93.54839 98.26171 | 98.24828
Fractal Approximate Min Absolute

Dimension Entropy Value 93.54839 97.90207 | 97.88966
Fractal Approximate Max Absolute

Dimension Entropy Value 87.09677 98.61214 | 98.57931
Fractal Approximate Mean Absolute

Dimension Entropy Value 93.54839 98.23405 | 98.22069
Fractal Approximate Hjorth

Dimension Entropy Complexity 91.93548 | 98.41848 98.4
Fractal Approximate

Dimension Entropy Hjorth Mobility 95.16129 | 98.43231 | 98.42299
Fractal Approximate

Dimension Entropy Coastline 95.16129 98.10494 | 98.09655
Fractal Approximate

Dimension Entropy Average Energy 93.54839 98.79657 | 98.78161
Fractal Approximate

Dimension Entropy Hurst Exponent 95.16129 97.79602 | 97.78851
Fractal Approximate

Dimension Entropy Renyie Entropy 93.54839 98.04039 | 98.02759
Fractal Approximate

Dimension Entropy Spectral Entropy 93.54839 98.04039 | 98.02759
Fractal Approximate

Dimension Entropy Shannon Entropy | 93.54839 98.03117 | 98.01839
Fractal Permutation Root Mean

Dimension Entropy Square 93.54839 98.01273 98
Fractal Permutation Min Absolute

Dimension Entropy Value 93.54839 97.88362 | 97.87126
Fractal Permutation Max Absolute

Dimension Entropy Value 87.09677 98.49225 | 98.45977
Fractal Permutation Mean Absolute

Dimension Entropy Value 93.54839 97.90207 | 97.88966

138

Fractal Permutation Hjorth

Dimension Entropy Complexity 91.93548 98.34471 | 98.32644
Fractal Permutation

Dimension Entropy Hjorth Mobility 93.54839 | 98.31704 | 98.30345
Fractal Permutation

Dimension Entropy Coastline 95.16129 98.14183 | 98.13333
Fractal Permutation

Dimension Entropy Average Energy 93.54839 98.33549 | 98.32184
Fractal Permutation

Dimension Entropy Hurst Exponent 95.16129 97.77757 | 97.77012
Fractal Permutation

Dimension Entropy Renyie Entropy 93.54839 97.84674 | 97.83448
Fractal Permutation

Dimension Entropy Spectral Entropy 93.54839 97.91129 | 97.89885
Fractal Permutation

Dimension Entropy Shannon Entropy | 93.54839 97.8744 | 97.86207
Fractal Min Absolute

Dimension Variance Value 83.87097 98.51992 | 98.47816
Fractal Max Absolute

Dimension Variance Value 90.32258 98.7228 | 98.69885
Fractal Mean Absolute

Dimension Variance Value 93.54839 98.48303 | 98.46897
Fractal Hjorth

Dimension Variance Complexity 87.09677 98.83346 98.8
Fractal

Dimension Variance Hjorth Mobility 87.09677 | 98.74585 | 98.71264
Fractal

Dimension Variance Coastline 93.54839 98.48764 | 98.47356
Fractal

Dimension Variance Average Energy 93.54839 98.7689 | 98.75402
Fractal

Dimension Variance Hurst Exponent 91.93548 98.24788 | 98.22989
Fractal

Dimension Variance Renyie Entropy 93.54839 98.66286 | 98.64828
Fractal

Dimension Variance Spectral Entropy 90.32258 98.8934 | 98.86897
Fractal

Dimension Variance Shannon Entropy | 93.54839 98.87495 | 98.85977
Fractal Min Absolute

Dimension Variance Value 83.87097 98.51992 | 98.47816
Fractal Max Absolute

Dimension Variance Value 90.32258 98.7228 | 98.69885
Fractal Mean Absolute

Dimension Variance Value 93.54839 98.48303 | 98.46897
Fractal Hjorth

Dimension Variance Complexity 87.09677 98.83346 98.8
Fractal

Dimension Variance Hjorth Mobility 87.09677 | 98.74585 | 98.71264

139

Fractal

Dimension Variance Coastline 93.54839 98.48764 | 98.47356
Fractal

Dimension Variance Average Energy 93.54839 98.7689 | 98.75402
Fractal

Dimension Variance Hurst Exponent 91.93548 98.24788 | 98.22989
Fractal

Dimension Variance Renyie Entropy 93.54839 98.66286 | 98.64828
Fractal

Dimension Variance Spectral Entropy 90.32258 98.8934 | 98.86897
Fractal

Dimension Variance Shannon Entropy | 93.54839 98.87495 | 98.85977
Fractal

Dimension Skew Renyie Entropy 91.93548 97.98045 | 97.96322
Fractal

Dimension Skew Spectral Entropy | 91.93548 | 98.05883 | 98.04138
Fractal

Dimension Skew Shannon Entropy | 91.93548 97.97584 | 97.95862
Fractal Approximate

Dimension Skew Entropy 91.93548 97.91129 | 97.89425
Fractal Permutation

Dimension Skew Entropy 91.93548 98.00812 | 97.99081
Fractal

Dimension Skew Variance 90.32258 | 98.56603 | 98.54253
Fractal Root Mean

Dimension Kurtosis Square 93.54839 | 98.62136 | 98.6069
Fractal Min Absolute

Dimension Kurtosis Value 93.54839 97.9574 | 97.94483
Fractal Max Absolute

Dimension Kurtosis Value 87.09677 | 98.49225 | 98.45977
Fractal Mean Absolute

Dimension Kurtosis Value 91.93548 98.45076 | 98.43218
Fractal Hjorth

Dimension Kurtosis Complexity 91.93548 98.51531 | 98.49655
Fractal

Dimension Kurtosis Hjorth Mobility 95.16129 | 98.45998 | 98.45058
Fractal

Dimension Kurtosis Coastline 95.16129 98.32626 | 98.31724
Fractal

Dimension Kurtosis Average Energy 93.54839 98.95334 | 98.93793
Fractal

Dimension Kurtosis Hurst Exponent 95.16129 97.79602 | 97.78851
Fractal

Dimension Kurtosis Renyie Entropy 93.54839 98.01734 | 98.0046
Fractal

Dimension Kurtosis Spectral Entropy 93.54839 98.14183 | 98.12874
Fractal

Dimension Kurtosis Shannon Entropy | 93.54839 98.01273 98
Fractal Approximate

Dimension Kurtosis Entropy 93.54839 97.9574 | 97.94483

140

Fractal

Permutation

Dimension Kurtosis Entropy 93.54839 97.94356 | 97.93103
Fractal

Dimension Kurtosis Variance 91.93548 98.95795 | 98.93793
Fractal

Dimension Kurtosis Skew 91.93548 98.128 98.11035
Fractal Modified Hurst Root Mean

Dimension Exponent Square 93.54839 97.65308 | 97.64138
Fractal Modified Hurst Min Absolute

Dimension Exponent Value 93.54839 97.96201 | 97.94943
Fractal Modified Hurst Max Absolute

Dimension Exponent Value 90.32258 99.30376 | 99.27816
Fractal Modified Hurst Mean Absolute

Dimension Exponent Value 93.54839 97.66691 | 97.65517
Fractal Modified Hurst Hjorth

Dimension Exponent Complexity 91.93548 98.17872 | 98.16092
Fractal Modified Hurst

Dimension Exponent Hjorth Mobility 95.16129 | 98.26632 | 98.25747
Fractal Modified Hurst

Dimension Exponent Coastline 95.16129 97.71763 | 97.71035
Fractal Modified Hurst

Dimension Exponent Average Energy 93.54839 98.49687 | 98.48276
Fractal Modified Hurst

Dimension Exponent Hurst Exponent 95.16129 97.80985 | 97.8023
Fractal Modified Hurst

Dimension Exponent Renyie Entropy 93.54839 97.98506 | 97.97241
Fractal Modified Hurst

Dimension Exponent Spectral Entropy 93.54839 98.0035 | 97.99081
Fractal Modified Hurst

Dimension Exponent Shannon Entropy | 93.54839 97.96201 | 97.94943
Fractal Modified Hurst Approximate

Dimension Exponent Entropy 93.54839 97.97123 | 97.95862
Fractal Modified Hurst Permutation

Dimension Exponent Entropy 93.54839 98.045 98.03218
Fractal Modified Hurst

Dimension Exponent Variance 93.54839 98.48764 | 98.47356
Fractal Modified Hurst

Dimension Exponent Skew 90.32258 98.82424 98.8
Fractal Modified Hurst

Dimension Exponent Kurtosis 93.54839 97.90668 | 97.89425

Standard Min Absolute Root Mean

Deviation Value Square 85.48387 97.92973 | 97.89425

Standard Max Absolute Root Mean

Deviation Value Square 83.87097 98.27554 | 98.23448

Standard Max Absolute Min Absolute

Deviation Value Value 82.25807 | 98.27554 | 98.22989

Standard Mean Absolute Root Mean

Deviation Value Square 87.09677 98.04961 | 98.01839

Standard Mean Absolute Min Absolute

Deviation Value Value 87.09677 | 97.86979 | 97.83908

141

Standard

Mean Absolute

Max Absolute

Deviation Value Value 83.87097 | 98.23405 | 98.1931
Standard Hjorth Root Mean

Deviation Complexity Square 80.64516 | 98.36315 | 98.31264
Standard Hjorth Min Absolute

Deviation Complexity Value 82.25807 | 98.22483 | 98.17931
Standard Hjorth Max Absolute

Deviation Complexity Value 80.64516 | 98.50148 | 98.45058
Standard Hjorth Mean Absolute

Deviation Complexity Value 83.87097 | 98.33087 | 98.28966
Standard Root Mean

Deviation Hjorth Mobility Square 83.87097 | 98.35393 | 98.31264
Standard Min Absolute

Deviation Hjorth Mobility Value 83.87097 | 98.26171 | 98.22069
Standard Max Absolute

Deviation Hjorth Mobility Value 80.64516 98.5107 | 98.45977
Standard Mean Absolute

Deviation Hjorth Mobility Value 82.25807 | 98.33087 | 98.28506
Standard Hjorth

Deviation Hjorth Mobility Complexity 82.25807 98.3401 | 98.29425
Standard Root Mean

Deviation Coastline Square 82.25807 98.09111 | 98.04598
Standard Min Absolute

Deviation Coastline Value 85.48387 | 98.00812 | 97.97241
Standard Max Absolute

Deviation Coastline Value 80.64516 | 98.35393 | 98.30345
Standard Mean Absolute

Deviation Coastline Value 85.48387 | 98.08189 | 98.04598
Standard Hjorth

Deviation Coastline Complexity 80.64516 | 98.40926 | 98.35862
Standard

Deviation Coastline Hjorth Mobility 83.87097 | 98.36776 | 98.32644
Standard Root Mean

Deviation Average Energy Square 69.35484 | 98.87034 | 98.78621
Standard Min Absolute

Deviation Average Energy Value 70.96774 | 98.61675 | 98.53793
Standard Max Absolute

Deviation Average Energy Value 67.74194 | 98.99484 | 98.90575
Standard Mean Absolute

Deviation Average Energy Value 74.19355 98.72741 | 98.65747
Standard Hjorth

Deviation Average Energy Complexity 66.12903 98.99023 | 98.89655
Standard

Deviation Average Energy Hjorth Mobility 67.74194 | 98.94873 | 98.85977
Standard

Deviation Average Energy Coastline 59.67742 98.87957 | 98.76782
Standard Root Mean

Deviation Hurst Exponent Square 83.87097 97.94817 | 97.90805
Standard Min Absolute

Deviation Hurst Exponent Value 83.87097 97.89746 | 97.85747

142

Standard

Max Absolute

Deviation Hurst Exponent Value 83.87097 98.20638 | 98.16552
Standard Mean Absolute

Deviation Hurst Exponent Value 85.48387 97.82829 | 97.7931
Standard Hjorth

Deviation Hurst Exponent Complexity 83.87097 98.2156 | 98.17471
Standard

Deviation Hurst Exponent Hjorth Mobility 85.48387 97.7038 | 97.66897
Standard

Deviation Hurst Exponent Coastline 85.48387 97.87901 | 97.84368
Standard

Deviation Hurst Exponent Average Energy 72.58065 98.69974 | 98.62529
Standard Root Mean

Deviation Renyie Entropy Square 82.25807 98.20177 | 98.15632
Standard Min Absolute

Deviation Renyie Entropy Value 82.25807 97.82829 | 97.78391
Standard Max Absolute

Deviation Renyie Entropy Value 82.25807 98.51992 | 98.47356
Standard Mean Absolute

Deviation Renyie Entropy Value 82.25807 98.17411 | 98.12874
Standard Hjorth

Deviation Renyie Entropy Complexity 80.64516 98.37237 | 98.32184
Standard

Deviation Renyie Entropy Hjorth Mobility 83.87097 | 98.35393 | 98.31264
Standard

Deviation Renyie Entropy Coastline 79.03226 98.14183 | 98.08736
Standard

Deviation Renyie Entropy Average Energy 72.58065 98.6398 | 98.56552
Standard

Deviation Renyie Entropy Hurst Exponent 85.48387 97.8329 97.7977
Standard Root Mean

Deviation Spectral Entropy Square 83.87097 98.09572 | 98.05517
Standard Min Absolute

Deviation Spectral Entropy Value 85.48387 | 97.85135 | 97.81609
Standard Max Absolute

Deviation Spectral Entropy Value 83.87097 | 98.42309 | 98.38161
Standard Mean Absolute

Deviation Spectral Entropy Value 87.09677 | 98.08189 | 98.05058
Standard Hjorth

Deviation Spectral Entropy Complexity 80.64516 | 98.23405 | 98.18391
Standard

Deviation Spectral Entropy Hjorth Mobility 83.87097 | 98.18794 | 98.14713
Standard

Deviation Spectral Entropy Coastline 82.25807 | 98.05422 | 98.0092
Standard

Deviation Spectral Entropy Average Energy 67.74194 | 98.86573 | 98.77701
Standard

Deviation Spectral Entropy Hurst Exponent 83.87097 97.84213 | 97.8023
Standard

Deviation Spectral Entropy Renyie Entropy 82.25807 98.22944 | 98.18391

143

Standard Root Mean

Deviation Shannon Entropy Square 83.87097 98.04961 | 98.0092
Standard Min Absolute

Deviation Shannon Entropy Value 85.48387 97.7038 | 97.66897
Standard Max Absolute

Deviation Shannon Entropy Value 82.25807 | 98.41387 | 98.36782
Standard Mean Absolute

Deviation Shannon Entropy Value 83.87097 | 97.99428 | 97.95402
Standard Hjorth

Deviation Shannon Entropy Complexity 82.25807 | 98.34932 | 98.30345
Standard

Deviation Shannon Entropy | Hjorth Mobility 83.87097 | 98.34471 | 98.30345
Standard

Deviation Shannon Entropy Coastline 82.25807 | 98.03578 | 97.99081
Standard

Deviation Shannon Entropy | Average Energy 72.58065 98.57525 | 98.50115
Standard

Deviation Shannon Entropy | Hurst Exponent 85.48387 97.90207 | 97.86667
Standard

Deviation Shannon Entropy | Renyie Entropy 83.87097 98.045 98.0046
Standard

Deviation Shannon Entropy | Spectral Entropy 83.87097 98.045 98.0046
Standard Approximate Root Mean

Deviation Entropy Square 83.87097 | 98.08189 | 98.04138
Standard Approximate Min Absolute

Deviation Entropy Value 85.48387 | 97.88823 | 97.85287
Standard Approximate Max Absolute

Deviation Entropy Value 83.87097 | 98.30782 | 98.26667
Standard Approximate Mean Absolute

Deviation Entropy Value 85.48387 | 98.06345 | 98.02759
Standard Approximate Hjorth

Deviation Entropy Complexity 82.25807 98.15105 | 98.10575
Standard Approximate

Deviation Entropy Hjorth Mobility 83.87097 | 98.18333 | 98.14253
Standard Approximate

Deviation Entropy Coastline 83.87097 98.03117 | 97.99081
Standard Approximate

Deviation Entropy Average Energy 70.96774 | 98.74585 | 98.66667
Standard Approximate

Deviation Entropy Hurst Exponent 85.48387 97.83751 | 97.8023
Standard Approximate

Deviation Entropy Renyie Entropy 82.25807 98.14644 | 98.10115
Standard Approximate

Deviation Entropy Spectral Entropy 85.48387 98.07267 | 98.03678
Standard Approximate

Deviation Entropy Shannon Entropy | 83.87097 98.05883 | 98.01839
Standard Permutation Root Mean

Deviation Entropy Square 82.25807 98.045 98
Standard Permutation Min Absolute

Deviation Entropy Value 85.48387 97.93434 | 97.89885

144

Standard

Permutation

Max Absolute

Deviation Entropy Value 82.25807 | 98.26632 | 98.22069
Standard Permutation Mean Absolute

Deviation Entropy Value 82.25807 98.03117 | 97.98621
Standard Permutation Hjorth

Deviation Entropy Complexity 82.25807 98.36776 | 98.32184
Standard Permutation

Deviation Entropy Hjorth Mobility 80.64516 | 98.34932 | 98.29885
Standard Permutation

Deviation Entropy Coastline 82.25807 98.10955 | 98.06437
Standard Permutation

Deviation Entropy Average Energy 67.74194 | 98.83807 | 98.74943
Standard Permutation

Deviation Entropy Hurst Exponent 83.87097 97.94817 | 97.90805
Standard Permutation

Deviation Entropy Renyie Entropy 80.64516 98.19255 | 98.14253
Standard Permutation

Deviation Entropy Spectral Entropy | 82.25807 | 97.97123 | 97.92644
Standard Permutation

Deviation Entropy Shannon Entropy | 83.87097 98.07267 | 98.03218
Standard Permutation Approximate

Deviation Entropy Entropy 82.25807 98.04039 | 97.9954
Standard Root Mean

Deviation Variance Square 69.35484 98.90262 | 98.81839
Standard Min Absolute

Deviation Variance Value 70.96774 98.61675 | 98.53793
Standard Max Absolute

Deviation Variance Value 67.74194 99.00867 | 98.91954
Standard Mean Absolute

Deviation Variance Value 74.19355 | 98.73663 | 98.66667
Standard Hjorth

Deviation Variance Complexity 66.12903 98.99484 | 98.90115
Standard

Deviation Variance Hjorth Mobility 64.51613 99.0225 | 98.92414
Standard

Deviation Variance Coastline 62.90323 98.87034 | 98.76782
Standard

Deviation Variance Average Energy 69.35484 | 98.90262 | 98.81839
Standard

Deviation Variance Hurst Exponent 72.58065 98.72741 | 98.65287
Standard

Deviation Variance Renyie Entropy 72.58065 98.64902 | 98.57471
Standard

Deviation Variance Spectral Entropy 69.35484 | 98.88418 98.8
Standard

Deviation Variance Shannon Entropy | 72.58065 98.60753 | 98.53333
Standard Approximate

Deviation Variance Entropy 70.96774 | 98.74585 | 98.66667
Standard Permutation

Deviation Variance Entropy 69.35484 | 98.84729 | 98.76322

145

Standard Root Mean

Deviation Skew Square 83.87097 | 98.19255 | 98.15172
Standard Min Absolute

Deviation Skew Value 85.48387 | 98.01273 | 97.97701
Standard Max Absolute

Deviation Skew Value 82.25807 | 98.27554 | 98.22989
Standard Mean Absolute

Deviation Skew Value 87.09677 98.128 98.09655
Standard Hjorth

Deviation Skew Complexity 80.64516 98.45076 98.4

Standard

Deviation Skew Hjorth Mobility 83.87097 98.4277 | 98.38621
Standard

Deviation Skew Coastline 80.64516 | 98.26632 | 98.21609
Standard

Deviation Skew Average Energy 74.19355 98.82424 | 98.75402
Standard

Deviation Skew Hurst Exponent 85.48387 | 98.03578 98

Standard

Deviation Skew Renyie Entropy 82.25807 | 98.29399 | 98.24828
Standard

Deviation Skew Spectral Entropy | 83.87097 | 98.23866 | 98.1977
Standard

Deviation Skew Shannon Entropy | 82.25807 98.28016 | 98.23448
Standard Approximate

Deviation Skew Entropy 82.25807 | 98.24327 | 98.1977
Standard Permutation

Deviation Skew Entropy 83.87097 | 98.24327 | 98.2023
Standard

Deviation Skew Variance 74.19355 | 98.81501 | 98.74483
Standard Root Mean

Deviation Kurtosis Square 83.87097 98.51531 | 98.47356
Standard Min Absolute

Deviation Kurtosis Value 87.09677 98.17872 | 98.14713
Standard Max Absolute

Deviation Kurtosis Value 85.48387 98.80579 | 98.76782
Standard Mean Absolute

Deviation Kurtosis Value 87.09677 98.40926 | 98.37701
Standard Hjorth

Deviation Kurtosis Complexity 82.25807 98.54758 | 98.50115
Standard

Deviation Kurtosis Hjorth Mobility 83.87097 | 98.57986 | 98.53793
Standard

Deviation Kurtosis Coastline 82.25807 98.62136 | 98.57471
Standard

Deviation Kurtosis Average Energy 70.96774 98.8934 | 98.81379
Standard

Deviation Kurtosis Hurst Exponent 85.48387 98.16027 | 98.12414
Standard

Deviation Kurtosis Renyie Entropy 82.25807 98.39543 | 98.34943

146

Standard

Deviation Kurtosis Spectral Entropy 82.25807 98.64441 | 98.5977
Standard

Deviation Kurtosis Shannon Entropy | 83.87097 | 98.39082 | 98.34943
Standard Modified Hurst Approximate

Deviation Exponent Entropy 88.70968 97.42715 | 97.4023
Standard Modified Hurst Permutation

Deviation Exponent Entropy 85.48387 97.29805 | 97.26437
Standard Modified Hurst

Deviation Exponent Variance 74.19355 98.41387 | 98.34483
Standard Modified Hurst

Deviation Exponent Skew 80.64516 98.37698 | 98.32644
Standard Modified Hurst

Deviation Exponent Kurtosis 87.09677 98.21099 | 98.17931
Standard Fractal Root Mean

Deviation Dimension Square 93.54839 | 98.27093 | 98.25747
Standard Fractal Min Absolute

Deviation Dimension Value 93.54839 98.04039 | 98.02759
Standard Fractal Max Absolute

Deviation Dimension Value 91.93548 98.43692 | 98.41839
Standard Fractal Mean Absolute

Deviation Dimension Value 93.54839 98.28016 | 98.26667
Standard Fractal Hjorth

Deviation Dimension Complexity 93.54839 98.24788 | 98.23448
Standard Fractal

Deviation Dimension Hjorth Mobility 91.93548 | 98.15105 | 98.13333
Standard Fractal

Deviation Dimension Coastline 93.54839 | 98.16027 | 98.14713
Standard Fractal

Deviation Dimension Average Energy 93.54839 98.53836 | 98.52414
Standard Fractal

Deviation Dimension Hurst Exponent 91.93548 97.80524 | 97.78851
Standard Fractal

Deviation Dimension Renyie Entropy 93.54839 98.18333 | 98.17012
Standard Fractal

Deviation Dimension Spectral Entropy 93.54839 98.28477 | 98.27126
Standard Fractal

Deviation Dimension Shannon Entropy | 93.54839 98.36315 | 98.34943
Standard Fractal Approximate

Deviation Dimension Entropy 93.54839 98.28016 | 98.26667
Standard Fractal Permutation

Deviation Dimension Entropy 93.54839 98.02656 | 98.01379
Standard Fractal

Deviation Dimension Variance 93.54839 98.5522 | 98.53793
Standard Fractal

Deviation Dimension Skew 91.93548 98.1695 | 98.15172
Standard Fractal

Deviation Dimension Kurtosis 93.54839 98.63519 | 98.62069
Standard Fractal Modified Hurst

Deviation Dimension Exponent 93.54839 97.6623 | 97.65058

147

148

sadlall

e Oxdall Bl o i 4l Cua HLES) dpsaall aha¥) ST aal o4 gpall (e
ol s e LT oSl Al s e LAS0 Jee 38) Tagly Alladl Jm 2l

(S Anade Ay SN B0 2y ppenai) Chagy AagplaY) o2 A el Jeal)
Gl e alal) JalSial AUl 63 g peall il e KU e Jaatl aall Jaka Lo
okl paibadll padlasiul bl geas tdabe aul e 05 o Gy gaall oo
20 gz haiul cad a8 ailadll 7)) ds el duadly L Capaill haly pailiadll Juadl
Liad clly anyg g puall o RIS 8 agBUS (g2 Gl ap)lidly dphad jue s dplad Lpala
OSan dae Ji ool JuadY Jeasl) (e LiSay paibiadll 02 (g mide Jul e Cndly
coaibadll e

Cilaad Cayieatl AV aleil 40580 (e) aladiualy Liad 288 Capiatl) Al yal Zuilly L

Liad @l ey aeall daie <) 5 dpelilaal) dpael) IS @4 LD odag & puall

Al) Al L lagie 8 & AS0gal) d8Ually daliad) SISy il e JS ol 405l
el 30 dpe llaial) dpasl) GISAN aaal Je Jaaaty Ll e

Adee et pcall Cleatie O iy Sdine ASAn g gpall o S () Luss
uL@A:LAQ\}” wdﬁgmm&fmbjbﬁmhmm&umﬂa&dbuﬁ\hm

o Jaadl Y s 5 5l Anala aglall S (e Jing G pe Osbailly Liad 1yl
& lealaniny Ol (e dael Fall dppeS @hla) Je (ggiat saaa Glily 3aclE &))atul

Jlaall aled) ddae Jole dasa udiga

1993\12\05 t DLl fe)l

s A aial

2016\10\01 sl fo)6

2018\....\.... riall g

A yeSI VLAV lg el g ST dnia :)
astall Hiale sda,al)

ool

u.\.).“ =)JU AA;; LA

O ahias G 2

(el caiadl) COUe (. omy 2]
(312l Caiaall) il sl A% e o
(el pall) Gl me L daaf Lo

ALl lgie
e d&ﬁ’uél.g.nhﬁu\} Iy ﬁ\lﬂ&w e A,)&.ﬁ\gﬁuﬁ
Tl g el il

Ad)al clalsy)

(Al Jadls

oD Ayl Ay Aguanll g puall il g iU JalSie allai ads dag kYl oda b
Gl S (8 lealadin dolad e Lbad pald (e (e JSI Zhadnly L 28 (ailiadl)
Cayail) Llaad Lousilly Wl g pall (o i€l G ailiadl) ods 3eUS Ll lid L g puall
Jeally e lilaal) Lpaall IS 5 acall Ao CT any 48 (e €I aladiuly Ll 068
tsts Apalen e Sh Leapail ¢ e areally i a8 acall 4atie Y1 GapS gl agped o
Slo ssnisana lilysael zhatu) o Jeally lid hal . bl a5 =500l 3l
Ols 5 Bl daals aslell IS o (Finy B8 ae Oslaills QLA o 23ad Fall d3jes DL
Ly

g rall il gl o RES) b Lpaladin AY) anled cilydlil Mlie A5 5 anaual
dvanl)

e

dlac)

Jlaall galgd) dube Jale daaa

5 ,alll Gaala — Lutighl 30K 1) dasie Al
Ga e Jganll clllic (g s jaS

pstall jiuale
o

A 5eSI OYLaiV g b g ySTY) Aaia

ropintaal) Aial (he Adlay
il ol Gl aa 5al aaal 3l siSall Auy)

PAENRIEENTY 5l sl A daaa)z sSall ALY

@J\.&M u;.m.d\ R VN o _.J_e_\ :Jjﬁﬂ\ Aty

5 Al Hnals - duigl) A
Ayl juan A) sean - B 5l
2018

sl Jga ALY Gany CaAY Wlall Glul pall 300 g sl Il e o

g rall il gl o RES) b Lpaladin AY) anled Ll Mlie 3,45 5 anaual
dvanl)

e

dlac)

Jlaall sagll dube Jule dasa

5alal) daels — Auighl A0 1) dadia Al
dan e Jpeas) cilllic (g ¢ 3aS

pstall jiuale
o

A yeSI VLAtV g b g ySIY) Auaia

LJ\J.CI:\ Caal

O Abas a3 Cpdll A AU a3
e ac e A
Sl g ASIY) dria o Sl gAY Axia and
i el YL i el YL
5all) adls — duxigll 4K 5 Al daala — Auigll 448

5 Al Hnals - duigl) A
Ayl juan A) sean - B 5l
2018

sl Jga ALadY) Gany CBAY Wlall Glul pall 500 g sa) Gl e o

g oall cligh o BAS) B Lgaladiny AV anlad LSS alie 1A g avanal
dsanll

“e

Alac
Jlaall sagdl dube Jale dasa

5l daala — duaigl) ALK) dasia AL
ia o sl cilillaia (e ¢ 308
aslall yiicals
o
A yeSI YLtV g b g ySTY) Auaia

5 Al Hnala - Gl 3K
A yad) uan A) sgan - 5 5l
2018

oanaddll Jsa Al (e CaOERY Ulall bl all 5510) g sl Gl e can® e

