
Comparative Study of Hardware Accelerated

Convolution Neural Network on PYNQ Board

Alaa M. Salman2,*, Ahmed S. Tulan1,*, Rana Y. Mohamed2,*, Michael H. Zakhari1,*, and Hassan Mostafa1, 3

Electronics and Communication Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt

Electronics and Communication Department, Faculty of Engineering ,Alexandria University, Egypt

University of Science and technology Nanotechnology Department Zewail, October Gardens, 6th of

October, Giza 12578, Egypt City

Abstract— In recent years convolutional neural networks

(CNNs) have been remarkably used in many applications, and
they are the heart of many intelligent systems. The
advancements in both new electronic design automation
(EDA) tools and in new hardware development boards such as
Python Productivity for Zynq (PYNQ) have significantly
decreased the development time of CNNs. However, the short
time-to-market is at the cost of implementation area,
performance and power consumption. Over the last period,
CNNs’ energy consumption needs have skyrocketed
dramatically. Thus, In this work, the authors conduct a
comprehensive study on the power consumption of hardware
accelerated CNN whether implemented using new EDAs High
Level Synthesis (HLS) or the basic design abstraction of
Register Transfer Level (RTL). Both methods are
implemented on modern development boards from Xilinx (as
PYNQ). Modern EDAs flow such as HLS does not represent
the best environment for a good power consumption. The
power consumption of the HLS implementation is six times
more power than the RTL one. It is concluded that the new
EDAs method have a deficiency to deliver highly efficient
CNNs but it has the ability to deliver sufficient results within
a very short period of time.

 Keywords — CNN, LeNet, PYNQ, ZYNQ, HLS.

I. INTRODUCTION

Convolutional Neural Network is an artificial deep

learning neural network with a history of research that can

be traced back to the second half of the 20th century [1].

CNN consists of many layers that operates on the input

image. The convolution layers identify the features of the

image, an activation function increase the non-linearity of

the image, pooling layers reduce the number of parameters

of the input, fully connected layer that is a final straight line

before the finish line where all the things are already here,

output layer outputs an array of probabilities for the

corresponding classes.

CNNs are now occupying a huge role in developing new

Artificial Intelligence (AI) applications, in everything

from industry to business. Within the increasingly

extensively range of applications, industry is eager to find

new ways to develop optimized CNN in a very short time-

to-market. Now it is possible to develop CNN with C++

using High Level Synthesis. This has led to rapid decrease

in the development time of hardware accelerated CNNs.

Section II discusses the CNN architecture for the proposed

case. Section III discusses the implementation of the CNN

architecture using RTL. Section IV discusses PYNQ

capabilities to run CNN architectures using Jupyter

Notebook framework. Section V discusses the

implementation of the CNN architecture using Vivado

HLS tools. Section VI discusses the comparative case

study between the RTL and HLS from power aspect. And

finally in Section VII discusses the optimizations that can

be done based on the results in Section VI.

II. Proposed CNN Architecture

 The proposed CNN architecture is LeNet-5 shown in

figure 1. This section describes more details about the

architecture, LeNet-5 consists of 7 layers each layer contains

trainable parameters(weights). The input is a 32x32 pixel

image.

 Layer C1 is a convolutional layer with 6 feature maps.

Each unit in each feature map is connected to 5x5

neighborhood in the input. The size of the feature maps is

28x28. C1 contains 156 trainable parameters and 122,304

connections.

 Layer S2 is a sub-sampling with 6 feature maps of size

14x14. Each unit in each feature map is connected to a 2x2

neighborhood in the corresponding feature map in C1. The

 Figure 1. Depicts LeNet-5 layers

four inputs to a unit in S2 are added to a trainable bias. The

result is passed through a sigmoid function.

 Layer C3 is a convolutional layer with 16 feature maps.

Each unit in each feature map in connected to several 5x5

neighborhoods at identical locations in a subset of S2’s

feature maps. Layer C3 has 1,516 trainable parameters and

151,600 connections.

 Layer S4 is a sub-sampling layer with 16 feature maps of

size 5x5. Each unit in each feature map is connected to a 2x2

neighborhood in the corresponding feature map in C3, in a

way as C1 and S2. Layer S4 has 32 trainable parameters and

2,000 connections.

Layer C5 is a convolutional layer with 120 feature maps.

Each unit is connected to a 5x5 neighborhood on all 16 of

S4’s feature maps. The size of C5’s feature maps is 1x1 as

the size of s4 is also 5x5. Layer C5 has 48,120 trainable

connections.

 Layer F6, contains 84 units this number is dependent on

the design of the output layer and is fully connected to C5. It

has 10,164 trainable parameters.

III. Register Transfer Level

 RTL is commonly used in Hardware Description

languages (HDL) like Verilog and VHDL to create high

level representations of circuits. This is an attempt to

implement a hardware CNN architecture with RTL to

compare with HLS one. The code is written with Verilog

and synthesized on Xilinx FPGA using Vivado. The code

is experimental for function and not fully optimized.

However, it is sufficient to compare RTL and HLS.

 The LeNet is constructed using elementary modules. The

weights and biases are hard coded in an external read-only

memory (ROM). Four elementary modules are

implemented: conv, max-pool, rectified linear unit (Relu)

and iterator. The conv performs the convolution

computing and works also as the fully connected layer

with kernel size equal to the input data size. The iterator is

responsible for jogging around the input data and feeding

the computing units.

 The difficulties come out from the fact that the weights

and intermediate results need to be stored in an external

memory and the data iterator will become more and more

complex with scaling the network.

IV. PYNQ DEVELOPMENT BOARD

AI is changing the fundamental nature of hardware

development. Xilinx developed PYNQ System on Chip

(SoC) which is shown in Figure 2. PYNQ ease the use of

FPGAs for embedded systems development. PYNQ

architecture - ZYNQ architecture in general consists of

two main parts: Programmable system (PS), which

consists of ARM processors- which can run Linux OS.

Programmable logic (PL) circuits are presented as

hardware libraries called overlays. The Advanced

Extensible Interface (AXI) interconnections provide

high sharing of data between the PS and PL in designing

the complete system; contains the data movement,

consumes less time and is easier to program. PYNQ uses

Python language and libraries to exploit the benefits of

FPGA and microprocessors in ZYNQ to build more

productive applications. PYNQ can be used as a software

development tools to take advantage of the hardware

capabilities, thanks to the integrated python

environment. Also the PYNQ board can be used for rapid

prototyping.

.Building and controlling the interface between the

ARM processor and the FPGA on PYNQ is not as easy

as it sounds. Xilinx produces an Intellectual Property

(IP) that aids in the implementation of the

ARM/FPGA interface as well as the FPGA/Memory

interface. AXI with Direct Memory Access (DMA)

[2] will be used in transmitting a stream of data

between FPGA and DDR memory. AXI DMA

focuses on boosting the throughput of transmitting a

large stream of data and can support a throughput of

one data word per clock cycle. Hardware. CNN

requires transmission of large amount of data at very

high speed between FPGA and DDR memory, so a

combination of AXI4-streaming protocol and DMA

can provide high data transmission throughput.

PYNQ is the first project to combine the following

elements to simplify and improve All Programmable

System-On-chip (APSoC) design:

1. A high-level productivity language (Python in this

case)

2. FPGA overlays with extensive Application

Programming Interfaces (APIs) exposed as

Python libraries

3. A web-based architecture served from the

embedded processors.

4. The Jupyter Notebook framework deployed in an

embedded context

Training CNN is done by applying numerous tiny

changes to different filter weights, and these tiny

changes needs floating point precision [3] to obtain high

accuracy, but running inference is different. One of the

advantages of deep neural networks such as CNNs is that

they tend to operate very well with high levels of noise

in their inputs. For example during recognizing an object

in a photo, the network has to ignore all the CCD noise

[4], lighting changes, and other non-essential differences

between the input photo and the training examples, and

Table 1: the hardware resources usage using 32-bit floating point

Convolution layer

focus on the important features instead. This ability

means that they seem to treat low-precision calculations

as just another source of noise, and still produce accurate

results even with numerical formats that hold less

information.

Neural networks can consume a lot of space on disk, for

example AlexNet [16] consumes 200MB in float format,

when implementing CNN layers using 32-bit floating-

point data format. However, the hardware resources

usage is found to be too large to implement on PYNQ’s

Zynq FPGA, in the convolution operation shown, with

input feature map of dimension (1, 3, 32, and 32) and

kernel of dimension (32, 3, 5, 5) the convolution can be

converted into matrix multiplication of size (1024x75) x

(75x32), and one forward-propagation of this layer

contains 2.4576 MMACCs. Table 1 shows the resource

usage for this layer.

Quantization can significantly reduce the resource

usage, ensuring better scalability and more parallelism.

It can be concluded that 8-bit and 16-bit fixed-point data

formats [5], [6] provide the most optimal resource-

accuracy trade-off. In order to reduce BRAM usage, 8-

bit instead of 16-bit fixed point format will be used for

LeNet [7], [8] deployment.

Figure 2. High Level Synthesis design cycle

Figure 3: High Synthesis vs RTL

V. HIGH LEVEL SYNTHESIS

It is traditional to design FPGA IPs using component

modules in RTL, despite of its efficiency and its

optimum results has low readability, high difficulty to be

modified and requires a lot of development time. HLS

has been used to eliminate these drawbacks and make

hardware development faster and easier. Vivado HLS [9]

enabled Creation of IPs using C, C++ and System C

codes to be directly converted to RTL without the need

to create RTL manually. More and more are starting to

use HLS as HLS IPs are spreading,

High-level Synthesis generates satisfying optimizations in a short-

term design cycle as viewed in Figure 2. However, optimizations

from HLS aren’t as high as those obtained from other methods as

RTL [10]. As it can imagined that by writing python vs writing

assembly on a microcontroller. Of course, Assembly will take

much time and effort, and as the level of abstraction get deeper in

implementation the more time and effort will be consumed, but a

more efficient design will be created. The fact that you are relying

on a software tool to generate your design increases your

productivity and cut the time to market significantly. Figure 3

shows a comparison between different implementation of different

topics using VHDL and higher abstraction C vs the lines of codes

which corresponds directly to the time spent on the

Figure 4. SDF of the whole architecture

implementation showing that developing RTL can take

almost up to 16 times the effort vs the developing using

HLS (smith-waterman)

RTL is a mature technology with a well-experienced

developers and wide range of maintained IPs that you can

use [11], [12]. In contrary, HLS is a new technology that

is not very popular among Hardware Engineers, and

Software Programming in C++/C is an extra headache for

any Hardware Engineer. As there is a mad push toward

accuracy of AI devices the world put much efforts in

making bigger and more efficient accelerators for

AI. In adoption of more and more accelerators in big

tech and business there is a lot of concerns about their

power consumption and its effect on climate change.

The architecture is built using synchronous data flow

(SDF) paradigm. A network is represented as a direct

graph named synchronous data flow graph (SDFG). In

SDFG shown in figure 4, nodes represent computations

and lines represent data streams. Basically, the principle

of SDF is that whenever input data are available for a

node, the node will immediately start processing and

generating the output. When the entire network is

constructed using SDF, each component IP on the graph

can independently drive the data streaming, forming a

heterogeneous streaming architecture. With streaming IO,

output data immediately streams out instead of being

buffered in on-chip memory, hence saving memory

footprint of the entire network [13]. The used FPGA Ips

including convolution layer, pooling layer, fully-

connected layer and Relu layer. These layers all employ

the SDF model of computation as its bias.[13] Complete

networks can be constructed as chains of these three layers

Ips. With Vivado block diagram utility, engineers can

build CNNs graphically.

VI. COMPARISON ON LENET – PYNQ

 Over the last period, CNNs’ energy needs have

skyrocketed dramatically. Thus, in this work, the authors

conduct a comprehensive comparison on the power

consumption of hardware accelerated CNN on the two

presented methods on modern development boards from

Xilinx e.g. PYNQ.

1. New EDAs as Vivado HLS in which its complete

flow can be seen in Figure 5

2. The basic design abstraction as RTL.

LeNet architecture was first introduced by LeCun in

1998 [7], Gradient-Based Learning Applied to Document

Recognition. The author implemented LeNet to be used

primarily in recognition in documents. LeNet architecture

is straightforward and small in terms of memory footprint

making it a perfect match for a comparative study as it will be

significantly easier to develop its RTL, to manage its data stream,

and can be handled on different FPGAs scales. Also, the MNIST

dataset is the most well-studied, understood dataset in machine

learning history that makes it the most suitable dataset to be used

in our work. In this experiment that took almost two month to

develop, the authors ran hardware accelerated LeNet on PYNQ

twice. In the first time, the LeNet was developed using RTL, and

the second time, the LeNet was developed with HLS.

 The results showed that the power consumption of RTL

LeNet is 0.291 WATT and the HLS consumes six times more

power than RTL LeNet with 1.981 WATT as shown in Figure

6. While the utilization of both HLS and RTL developed is

shown in table 2.

Fig. 5 PYNQ Board complete flow

Fig. 6 High Level Synthesis vs RTL Power Consumption in Watt.

Resource HLS RTL

LUTs 38304 18467

Registers - 7311

BRAMs 139 19

Table 2: the hardware resources utilization of both RTL

and HLS development methods

VII. CONCLUSIONS AND FUTURE WORK

The High-Level Synthesis model has unique

features to decrease time-to-market and give

developers a number of advantages and flexibility to

maintain and edit their CNNs. In addition, it give

an acceptable result [13] comparing to the developing

efforts. At least for now HLS software cannot be

depended on to get the optimum results. However,

RTL is not the solution because of the very long time-

to-market, efforts and expertise needed to finish the

design.

In this paper, the authors comprehensively

corroborate the deficiency of new EDAs method to

deliver highly efficient CNNs with short time-to-

market and emphasized that we still in need to

develop more optimized way for fast CNN

implementations.

VIII. Acknowledgement

This work was partially funded by ONE Lab at Zewail

City of Science and Technology and at Cairo University,

NTRA, ITIDA, ASRT, and NSERC.

REFERENCES

[1] Sanjay B Ankali, Dr. D V Ashoka, "Detection Architecture

of Application Layer DDoS Attack for Internet," The

International Journal of Advanced Networking and

Applications (Int. J. Advanced Networking and

Applications) 2011, vol. 03, no. 01, pp. 984-990

[2] Alaa M. Salman, “AXI Direct Memory Access” lauri.xn--

vsandi-pxa.com. https://lauri.xn--vsandi-

pxa.com/hdl/zynq/xilinx-dma.html (accessed Aug. 1, 2019).

[3] Daniele Bagni, A. Di Fresco, J. Noguera, F. M. Vallina, "A

Zynq Accelerator for Floating Point Matrix Multiplication

Designed with Vivado HLS", XAPP1170 (v2.0), January

21, 2016. [Online]. Available:

https://www.xilinx.com/support/documentation/application_

notes/xapp1170-zynq-hls.pdf

[4] Ahmed S. Tulan, “How to Quantize Neural Networks with

TensorFlow” petewarden.com/.

https://petewarden.com/2016/05/03/how-to-quantize-neural-

networks-with-tensorflow/ (accessed Oct. 1, 2019).

[5] Yao Fu, Ephrem Wu, Ashish Sirasao, Sedny Attia, Kamran Khan, and
Ralph Wittig, "Deep Learning with INT8 Optimization on Xilinx
Devices," Xilinx WP486 (v1.0.1) Apr. 24, 2017. [Online]. Available:
https://www.xilinx.com/support/documentation/white_papers/wp486-
deep-learning-int8.pdf

[6] Tim Dettmers, "8-BIT APPROXIMATIONS FOR PARALLELISM
IN DEEP LEARNING," The International Conference on Learning
Representations (ICLR). arXiv preprint arXiv:1511.04561v4, 2016

[7] Yann LeCun, Lé on Bottou, Yoshua Bengio, and Patrick Haffner, "GradientBased
Learning Applied to Document Recognition," Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[8] Ahmed S. Tulan, “THE MNIST DATABASE.” yann.lecun.com/.

http://yann.lecun.com/exdb/mnist/ (accessed Oct. 10, 2019).

[9] Rana Y. Mohamed, "Vivado High-Level Synthesis." xilinx.com/.

https://www.xilinx.com/products/design-tools/vivado/integration/esl-

design.html#:~:text=Vivado%C2%AE%20High%2DLevel%20Synth

esis,need%20to%20manually%20create%20RTL (accessed Aug. 10,

2019).

[10] Sina Ghaffari, Saeed Sharifian, "FPGA-based convolutional neural
network accelerator design using high level synthesize," 2016 2nd
International Conference of Signal Processing and Intelligent Systems
(ICSPIS), pp. 1–6.

[11] S. Hareth, H. Mostafa, and K. A. Shehata, “Low power CNN
hardware FPGA implementation”, IEEE International Conference on
Microelectronics (ICM 2019), Cairo, Egypt, pp. 162-165, 2019.

[12] Cl´ement Farabet, Cyril Poulet, Jefferson Y. Han, Yann LeCun, "CNP:

AN FPGA-BASED PROCESSOR FOR CONVOLUTIONAL

NETWORKS." FPL 09: 19th Inter- national Conference on Field

Programmable Logic and Applications, 1:32 37, 2009.

[13] E. Adel, R. Magdy, S. Mohamed, M. Mamdouh, and H.
Mostafa, “Accelerating Deep Neural Networks Using FPGA “, IEEE
International Conference on Microelectronics (ICM 2018), Sousse,
Tunisia, pp. 180-183, 2018.

[14] Magnus Halvorsen, "Hardware Acceleration of Convolutional Neural
Networks." M.S. thesis, Dept. Computer and Information Science
Univ. Norwegian University of Science and Technology (NTNU),
Trondheim, Norway, 2015. [Online]. Available:
https://ntnuopen.ntnu.no/ntnu-
xmlui/bitstream/handle/11250/2353511/13656_FULLTEXT.pdf?sequ
ence=1&isAllowed=y.

[15] R. Osama and Hassan Mostafa, ” Implementation of Deep Neural
Networks on FPGA-CPU platform Using Xilinx SDSOC, ” Springer
Analog Integrated Circuits and Signal Processing, In Press-
Whitepaper-FPGA-Accelerated-CNN-003TR.pdf.

[16] Song Han, HuiziMao, and William J Dally, "Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding." The International Conference on
Learning Representations (ICLR), arXiv preprint
arXiv:1510.00149v5, 2016

[17] Chen Zhang, Yijin Guan, Peng Li, Bingjun Xiao, Guangyu Sun, and
Jason Cong. "Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks." Proceedings of the 2015
Association for Computing Machinery/Special Interest Group on
Design Automation (ACM/SIGDA) International Symposium on
Field-Programmable Gate Arrays, pp. 161-170

[18] M. Elgammal, O. A. Elkhouly, H. Elhosary, M. E. Sayed, A.
Mohieldin, K. N. Salama, and H. Mostafa, “Linear and Nonlinear
Feature Extraction for Neural Seizure Detection”, IEEE International
Midwest Symposium on Circuits and Systems (MWSCAS 2018),
Windsor, Ontario, Canada, pp. 795-798, 2018.

https://www.xilinx.com/support/documentation/application_notes/xapp1170-zynq-hls.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1170-zynq-hls.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2353511/13656_FULLTEXT.pdf?sequence=1&isAllowed=y
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2353511/13656_FULLTEXT.pdf?sequence=1&isAllowed=y
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2353511/13656_FULLTEXT.pdf?sequence=1&isAllowed=y

