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Abstract— In recent years convolutional neural networks 

(CNNs) have been remarkably used in many applications, and 
they are the heart of many intelligent systems. The 
advancements in both new electronic design automation 
(EDA) tools and in new hardware development boards such as 
Python Productivity for Zynq (PYNQ) have significantly 
decreased the development time of CNNs. However, the short 
time-to-market is at the cost of implementation area, 
performance and power consumption. Over the last period, 
CNNs’ energy consumption needs have skyrocketed 
dramatically. Thus, In this work, the authors conduct a 
comprehensive study on the power consumption of hardware 
accelerated CNN whether implemented using new EDAs High 
Level Synthesis (HLS) or the basic design abstraction of 
Register Transfer Level (RTL). Both methods are 
implemented on modern development boards from Xilinx (as 
PYNQ). Modern EDAs flow such as HLS does not represent 
the best environment for a good power consumption. The 
power consumption of the HLS implementation is six times 
more power than the RTL one.  It is concluded that the new 
EDAs method have a deficiency to deliver highly efficient 
CNNs but it has the ability to deliver sufficient results within 
a very short period of time. 
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I. INTRODUCTION 

 
Convolutional Neural Network is an artificial deep 

learning neural network with a history of research that can 

be traced back to the second half of the 20th century [1]. 

CNN consists of many layers that operates on the input 

image. The convolution layers identify the features of the 

image, an activation function increase the non-linearity of 

the image, pooling layers reduce the number of parameters 

of the input, fully connected layer that is a final straight line 

before the finish line where all the things are already here, 

output layer outputs an array of probabilities for the 

corresponding classes. 

 

CNNs are now occupying a huge role in developing new 

Artificial Intelligence (AI) applications, in everything 

from industry to business. Within the increasingly 

extensively range of applications, industry is eager to find 

new ways to develop optimized CNN in a very short time-

to-market. Now it is possible to develop CNN with C++ 

using High Level Synthesis. This has led to rapid decrease 

in the development time of hardware accelerated CNNs. 

Section II discusses the CNN architecture for the proposed 

case. Section III discusses the implementation of the CNN 

architecture using RTL. Section IV discusses PYNQ 

capabilities to run CNN architectures using Jupyter 

Notebook framework. Section V discusses the 

implementation of the CNN architecture using Vivado 

HLS tools. Section VI discusses the comparative case 

study between the RTL and HLS from power aspect. And 

finally in Section VII discusses the optimizations that can 

be done based on the results in Section VI. 

 

II. Proposed CNN Architecture 

 

     The proposed CNN architecture is LeNet-5 shown in 

figure 1. This section describes more details about the 

architecture, LeNet-5 consists of 7 layers each layer contains 

trainable parameters(weights). The input is a 32x32 pixel 

image.  

     Layer C1 is a convolutional layer with 6 feature maps. 

Each unit in each feature map is connected to 5x5 

neighborhood in the input. The size of the feature maps is 

28x28. C1 contains 156 trainable parameters and 122,304 

connections. 

     Layer S2 is a sub-sampling with 6 feature maps of size 

14x14. Each unit in each feature map is connected to a 2x2 

neighborhood in the corresponding feature map in C1. The  

 Figure 1. Depicts LeNet-5 layers 



four inputs to a unit in S2 are added to a trainable bias. The 

result is passed through a sigmoid function. 

    Layer C3 is a convolutional layer with 16 feature maps. 

Each unit in each feature map in connected to several 5x5 

neighborhoods at identical locations in a subset of S2’s 

feature maps. Layer C3 has 1,516 trainable parameters and 

151,600 connections. 

   Layer S4 is a sub-sampling layer with 16 feature maps of 

size 5x5. Each unit in each feature map is connected to a 2x2 

neighborhood in the corresponding feature map in C3, in a 

way as C1 and S2. Layer S4 has 32 trainable parameters and 

2,000 connections.   

Layer C5 is a convolutional layer with 120 feature maps. 

Each unit is connected to a 5x5 neighborhood on all 16 of 

S4’s feature maps. The size of C5’s feature maps is 1x1 as 

the size of s4 is also 5x5. Layer C5 has 48,120 trainable 

connections. 

     Layer F6, contains 84 units this number is dependent on 

the design of the output layer and is fully connected to C5. It 

has 10,164 trainable parameters. 

 
III. Register Transfer Level 

  RTL is commonly used in Hardware Description 

languages (HDL) like Verilog and VHDL to create high 

level representations of circuits. This is an attempt to 

implement a hardware CNN architecture with RTL to 

compare with HLS one. The code is written with Verilog 

and synthesized on Xilinx FPGA using Vivado. The code 

is experimental for function and not fully optimized. 

However, it is sufficient to compare RTL and HLS. 

  The LeNet is constructed using elementary modules. The 

weights and biases are hard coded in an external read-only 

memory (ROM). Four elementary modules are 

implemented: conv, max-pool, rectified linear unit (Relu) 

and iterator. The conv performs the convolution 

computing and works also as the fully connected layer 

with kernel size equal to the input data size. The iterator is 

responsible for jogging around the input data and feeding 

the computing units. 

  The difficulties come out from the fact that the weights 

and intermediate results need to be stored in an external 

memory and the data iterator will become more and more 

complex with scaling the network.  
 

IV. PYNQ DEVELOPMENT BOARD 

AI is changing the fundamental nature of hardware 

development. Xilinx developed PYNQ System on Chip 

(SoC) which is shown in Figure 2. PYNQ ease the use of 

FPGAs for embedded systems development. PYNQ 

architecture - ZYNQ architecture in general consists of 

two main parts: Programmable system (PS), which 

consists of ARM processors- which can run Linux OS. 

Programmable logic (PL) circuits are presented as 

hardware libraries called overlays. The Advanced 

Extensible Interface (AXI) interconnections provide 

high sharing of data between the PS and PL in designing 

the complete system; contains the data movement, 

consumes less time and is easier to program. PYNQ uses 

Python language and libraries to exploit the benefits of 

FPGA and microprocessors in ZYNQ to build more 

productive applications. PYNQ can be used as a software 

development tools to take advantage of the hardware 

capabilities, thanks to the integrated python 

environment. Also the PYNQ board can be used for rapid 

prototyping.  

.Building and controlling the interface between the 

ARM processor and the FPGA on PYNQ is not as easy 

as it sounds. Xilinx produces an Intellectual Property 

(IP) that aids in the implementation of the 

ARM/FPGA interface as well as the FPGA/Memory 

interface. AXI with Direct Memory Access (DMA) 

[2] will be used in transmitting a stream of data 

between FPGA and DDR memory. AXI DMA 

focuses on boosting the throughput of transmitting a 

large stream of data and can support a throughput of 

one data word per clock cycle. Hardware. CNN 

requires transmission of large amount of data at very 

high speed between FPGA and DDR memory, so a 

combination of AXI4-streaming protocol and DMA 

can provide high data transmission throughput. 

PYNQ is the first project to combine the following 

elements to simplify and improve All Programmable 

System-On-chip (APSoC) design: 

1. A high-level productivity language (Python in this 

case) 

2. FPGA overlays with extensive Application 

Programming Interfaces (APIs) exposed as 

Python libraries 

3. A web-based architecture served from the 

embedded processors. 

4. The Jupyter Notebook framework deployed in an 

embedded context 

Training CNN is done  by  applying  numerous  tiny  

changes  to different  filter  weights, and these tiny 

changes needs floating point precision [3] to obtain high 

accuracy, but running inference is different. One of the 

advantages of deep neural networks such as CNNs is that 

they tend to operate very well with high levels of noise 

in their inputs. For example during  recognizing an object 

in a photo, the network has to ignore all the CCD noise 

[4], lighting changes, and other non-essential differences 

between the input photo and the training examples, and  

Table 1: the hardware resources usage using 32-bit floating point 

Convolution layer 



 

focus on the important features instead. This ability 

means that they seem to treat low-precision calculations 

as just another source of noise, and still produce accurate 

results even with numerical formats that hold less 

information. 

 

Neural networks can consume a lot of space on disk, for 

example AlexNet [16] consumes 200MB in float format, 

when implementing CNN layers using 32-bit floating-

point data format. However, the hardware resources 

usage is found to be too large to implement on PYNQ’s 

Zynq FPGA, in the convolution operation shown, with 

input feature map of dimension (1, 3, 32, and 32) and 

kernel of dimension (32, 3, 5, 5) the convolution can be 

converted into matrix multiplication of size (1024x75) x 

(75x32), and one forward-propagation of this layer 

contains 2.4576 MMACCs. Table 1 shows the resource 

usage for this layer. 

Quantization can significantly reduce the resource 

usage, ensuring better scalability and more parallelism. 

It can be concluded that 8-bit and 16-bit fixed-point data 

formats [5], [6] provide the most optimal resource-

accuracy trade-off. In order to reduce BRAM usage, 8-

bit instead of 16-bit fixed point format will be used for 

LeNet [7], [8] deployment. 

 
Figure 2. High Level Synthesis design cycle 

 
Figure 3: High Synthesis vs RTL 

V. HIGH LEVEL SYNTHESIS 

It is traditional to design FPGA IPs using component 

modules in RTL, despite of its efficiency and its 

optimum results has low readability, high difficulty to be 

modified and requires a lot of development time. HLS 

has been used to eliminate these drawbacks and make 

hardware development faster and easier. Vivado HLS [9] 

enabled Creation of IPs using C, C++ and System C 

codes to be directly converted to RTL without the need 

to create RTL manually. More and more are starting to 

use HLS as HLS IPs are spreading,  

 
 

 

High-level Synthesis generates satisfying optimizations in   a short-

term design cycle as viewed in Figure 2. However, optimizations 

from HLS aren’t as high as those obtained from other methods as 

RTL [10]. As it can imagined that by writing python vs writing 

assembly on a microcontroller. Of course, Assembly will take 

much time and effort, and as the level of abstraction get deeper in 

implementation the more time and effort will be consumed, but a 

more efficient design will be created. The fact that you are relying 

on a software tool to generate your design increases your 

productivity and cut the time to market significantly. Figure 3 

shows a comparison between different implementation of different 

topics using VHDL and higher abstraction C vs the lines of codes 

which corresponds directly to the time spent on the 

Figure 4. SDF of the whole architecture 



implementation showing that developing RTL can take 

almost up to 16 times the effort vs the developing using 

HLS (smith-waterman) 

 

RTL is a mature technology with a well-experienced 

developers and wide range of maintained IPs that you can 

use [11], [12]. In contrary, HLS is a new technology that 

is not very popular among Hardware Engineers, and 

Software Programming in C++/C is an extra headache for 

any Hardware Engineer. As there is a mad push toward 

accuracy of AI devices the world put much efforts in 

making bigger and more efficient accelerators for  

AI. In adoption of more and more accelerators in big 

tech and business there is a lot of concerns about their 

power consumption and its effect on climate change. 

     

The architecture is built using synchronous data flow 

(SDF) paradigm. A network is represented as a direct 

graph named synchronous data flow graph (SDFG). In 

SDFG shown in figure 4, nodes represent computations 

and lines represent data streams. Basically, the principle 

of SDF is that whenever input data are available for a 

node, the node will immediately start processing and 

generating the output. When the entire network is 

constructed using SDF, each component IP on the graph 

can independently drive the data streaming, forming a 

heterogeneous streaming architecture. With streaming IO, 

output data immediately streams out instead of being 

buffered in on-chip memory, hence saving memory 

footprint of the entire network [13]. The used FPGA Ips 

including convolution layer, pooling layer, fully-

connected layer and Relu layer. These layers all employ 

the SDF model of computation as its bias.[13] Complete 

networks can be constructed as chains of these three layers 

Ips. With Vivado block diagram utility, engineers can 

build CNNs graphically. 

 

VI. COMPARISON ON LENET – PYNQ 

 

     Over the last period, CNNs’ energy needs have 

skyrocketed dramatically. Thus, in this work, the authors 

conduct a comprehensive comparison on the power 

consumption of hardware accelerated CNN on the two 

presented methods on modern development boards from 

Xilinx e.g. PYNQ. 

 

1. New EDAs as Vivado HLS in which its complete 

flow can be seen in Figure 5 

2. The basic design abstraction as RTL. 

 

LeNet architecture was first introduced by LeCun in 

1998 [7], Gradient-Based Learning Applied to Document 

Recognition. The author implemented LeNet to be used 

primarily in recognition in documents. LeNet architecture 

is straightforward and small in terms of memory footprint 

making it a perfect match for a comparative study as it will be 

significantly easier to develop its RTL, to manage its data stream, 

and can be handled on different FPGAs scales. Also, the MNIST 

dataset is the most well-studied, understood dataset in machine 

learning history that makes it the most suitable dataset to be used 

in our work. In this experiment that took almost two month to 

develop, the authors ran hardware accelerated LeNet on PYNQ 

twice. In the first time, the LeNet was developed using RTL, and 

the second time, the LeNet was developed with HLS. 

 

 The results showed that the power consumption of RTL 

LeNet is 0.291 WATT and the HLS consumes six times more 

power than RTL LeNet with 1.981 WATT as shown in Figure 

6. While the utilization of both HLS and RTL developed is 

shown in table 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 PYNQ Board complete flow 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 High Level Synthesis vs RTL Power Consumption in Watt. 

 
 

 

 
 

 

 
 

 

 



Resource HLS RTL 

LUTs 38304 18467 

Registers - 7311 

BRAMs 139 19 

Table 2: the hardware resources utilization of both RTL 

and HLS development methods  
 

 

VII. CONCLUSIONS AND FUTURE WORK 

The High-Level Synthesis model has unique 

features to decrease time-to-market and give 

developers a number of advantages and flexibility to 

maintain and edit their CNNs.    In addition, it give 

an acceptable result [13] comparing to the developing 

efforts. At least for now HLS software cannot be 

depended on to get the optimum results. However, 

RTL is not the solution because of the very long time-

to-market, efforts and expertise needed to finish the 

design. 

In this paper, the authors comprehensively 

corroborate the deficiency of new EDAs method to 

deliver highly efficient CNNs with short time-to-

market and emphasized that we still in need to 

develop more optimized way for fast CNN 

implementations. 
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