
Implementation of a Hardware Accelerator for a
Real-time Encryption System

Islam Mohamed Shaher1, Moustafa Mahmoud2, Hassan Ibrahim 1, Moustafa Ali 3, Hassan Mostafa 1,4

1Electronics and Communications Engineering Department, Cairo University, Giza 12613, Egypt.
2Electronics and Communications Engineering Department, Alexandria University, Alexandria 11432, Egypt.

3Electronics and Communications Engineering Department, Ain Shams University,Cairo, 11566, Egypt.
4Nanotechnology Department at Zewail City for Science and Technology, Cairo, Egypt.
{islam.shaher@gmail.com, e.moustafa2@gmail.com, hassan.ibrahim98@hotmail.com

eng.moustafa.ali.2015@gmail.com, hmostafa@uwaterloo.ca}

Abstract—IoT devices are spreading everywhere and its
progress increases day by day. The security of these devices must
be the biggest concern. This paper is describing a complete system
of a surveillance camera transceiver using two PYNQ Boards
connected through Ethernet cable. On one side there is a camera,
on the other side there is an HDMI screen and in between is the
proposed software image processing and encryption/decryption
using the Ascon algorithm (one of the winners of CAESAR
Competition for the lightweight category). The aim is to get low
power, low area, and low-cost design implementation.

Index Terms—IoT (internet of things), CAESAR Competition,
PYNQ Board, ZYNQ (Zynq-7000 SoC).

I. INTRODUCTION

IoT Applications spread rapidly, and it is expected that there
will be more than 50 billion ‘things’ connected to IoT [1]. on
the other side, The manufactures of IoT devices have not taken
the security implementation seriously in the devices. In 2013,
Doctors disabled wireless in Former US Vice President Dick
Cheney’s pacemaker to thwart hacking [2]. Also, there are a lot
of examples of unsecured IoT devices that can make disastrous
problems [3]. Besides, the software technique to secure IoT
devices is not sufficient:

• It requires too much disk space which is not practical for
IoT applications [4].

• The operating systems trusted the hardware devices so
the need for identifying the device IDs is so important.

• It can’t be updated in most cases.
The traditional Hardware techniques consume large power
and its area will decrease the device resources. Hardware
security requires a small area and low power consumption to
be applied for IoT devices. CAESAR competition is targeting
lightweight encryption algorithms as a first aim. A lot of
implementations have been done addressing energy-limited
applications [8] [9] . The winners in the final portfolio are
Ascon and ACORN for lightweight applications [5]. In this
paper, an accelerator for the ascon encryption algorithm [6]
[7] for software interfaces is implemented . The algorithm

is chosen based on analysis done in [15] and [10]. VHDL
language is used in the implementation using an improved
high-speed implementation with a lot of modifications on
the control and datapath modules to suit axi4 protocol. This
study is to implement a complete system using a modified
Ascon algorithm on PYNQ Board [11], this board can be
programmed using python. Python is used for interactions with
the PS (Processing Subsystem) part of Zynq. In our system,
the transmitter is used to compress and encrypt the image
for fast and secure communication with the receiver. At the
receiving end, the reverse process occurs, where decryption
then image decompression occurs. The last step is to display
the image on a monitor. Two PYNQ Boards are used for a
full demonstration of the complete hardware secured system.

II. METHODS

The image is captured using a webcam, there are no con-
straints on the used webcam, however, the lower the resolution
the faster the system will get. The previous point introduces
a trade-off between image quality, speed, and power, as the
resolution increases, speed degrades and the power increases.
In this implementation, the used resolution is (640, 480).
The second stage is image compression. In this stage, the same
trade-off appears.
The next stage is to encrypt the compressed image. The
encryption algorithm used is Ascon which is symmetric (the
encryption and decryption are done using the same hardware).
Therefore, this stage is identical to the decryption stage. There
are various implementations of the Ascon algorithm [12]. The
two implementations tested are:

• Iterated implementation (without any optimizations).
• Loop unrolling implementation.

The preceding step is to send the compressed and encrypted
image to the receiving side. There are numerous protocols and
techniques to send data. In our case, the Ethernet protocol is
used. The advantages of Ethernet are:

• Simple implementation

• Relatively fast speed
However, the main drawback of Ethernet is that it is a wired
connection.
Finally, when the data is received, it is decrypted (using
the same hardware of encryption) then decompressed and
displayed on the monitor using HDMI.

A. IMAGE PROCESSING using Python OpenCV

Encrypting images with their original sizes captured from
a webcam takes a long time. Since the system is required to
be a real-time one, The time taken is required to be reduced.
The method used to do so is to compress the captured images
before encryption and sending them to the receiver.

B. Image compression before encryption and sending

OpenCV imencode function is used to compress the image
and store it in the memory buffer, this compression process is
done according to image type then the imencode function will
choose the codec according to the extension [13].
JPEG typically achieves 10:1 compression with perceptible
loss in image quality. On the other hand, the PNG format
sustains its quality when it is compressed and decompressed.
The compression function reduces the image size by nearly
15% of its original one.

C. TRANSMITTING ENCRYPTED IMAGE BETWEEN TWO
FPGA Boards

The encrypted data is transmitted using TCP/IP proto-
col (Transmission Control Protocol/Internet Protocol). PYNQ
framework facilitates using TCP protocol using python that
already has the built-in function (Socket) to build network
programs and scripts to transfer data between transmitter and
receiver using TCP protocol [14].

D. ASCON ALGORITHM IMPLEMENTATION

The following figure Fig. 1 shows the hierarchy of our
FPGA implementation of hardware acceleration using the
Ascon algorithm. This acceleration is applied to a real-time
video surveillance application between two SOC PYNQ FPGA
Boards.

Fig. 1. FPGA Implementation Hierarchy

The implementation was divided into separate blocks using
the Vivado design tool it consists of:

• The cipher core IP using programmable logic.
• Dual arm a9 processors.
• DMA between DRAM and PL (Programmable logic).
• HDMI IP to show final results.

Zynq processing unit has GP0 which is a general-purpose AXI
master port so that it can configure the DMA using AXI lite to
set up the transfers and trigger them. The other interface is the
HP0 port is a high-performance AXI slave port that is needed
to access the DDR controller to allow the DMA to read and
write from the DDR. DMA is used to pass the data directly
between the DRAM and the programmable logic through the
input and output FIFO using AXI4 Stream where the cipher
core makes synchronization with the two FIFO modules using
the three signals (valid, ready, tlast) where tlast denotes the
end of plaintext and is used in the output side to free the
bus and make it ready for a new reception. AXI Lite was
used to sending initialization to the core such as the key, pub,
and associated data. AXIS label in the diagram represents an
AXI stream bus while the AXI label denotes an AXI lite bus.
MM2S represents the data directly from a memory mapped
device to the streaming side which is the cipher core.

1) Summary of the encryption algorithm: The following
describes the encryption flow from the beginning to the
production of ciphertext and authentication tag:

• The state is initialized using key and npub and passes by
12 round transformation, then the final result is xor-ed
with the key.

• The state is XORed with the 64 bits of npub data and
passes by 6 round transformations this process is repeated
“m” / 8 times where m is the length of npub in bytes.

• The state is XORed with the 64 bits of plaintext and
passes by 6 round transformations this process is repeated
“m” / 8 times where m is the length of plaintext in bytes.
The last chunk of data is not transformed after being
XORed.

• In the finalization state, the state is XORed with the key
and passes by 12 round transformations. The least bit of
the final result is XORed with the key and is sent as an
authentication tag.

In each round transformation, the input data (if exist in the
stage) is xor-ed with the first 64-bit of the state and the output
is fed into the round transformation with the remaining 256
bits of the state without being changed. The first layer is doing
xor to the input with around constant which changes according
to the round order.
The second substitution layer is called the S-box stage where
the state is divided into 5 64-bit chunks. Each nth bit of every
chunk is entered into the S-Box transformation where each
possible input of the 32 is mapped to a different output. The
third layer is called the linear diffusion layer where the 320-
bit output of the S-box layer is being xor-ed with two rotated
versions of itself. This process is non-invertible. Rotation is
more secure than shifting operation as Xor operation with two
shifted versions is invertible hence any known intermediate
state can be used to get the older state which may leak secret

information.

2) hardware implementation: The Ascon algorithm has
a higher LUTs utilization than ACORN, The comparison led
us to choose Ascon since it has a better data processing rate
that suits our application with a close power consumption
compared to ACORN [15] .
The proposed implementation design the control and data-path
modules of the cipher core so that it can be easily integrated
with AXI4 Streaming FIFO for high data rate transmission.
The encryption process does not wait for the end of filling
the FIFO but is processing the data as long as the FIFO is
not empty, so parallel processing is done. the investigating
started by the possible implementations can be made to get
the maximum performance. There are three main stages in
every round transformation.

These stages can’t be pipelined since the first stage which is
adding around constant can’t process new data at the same time
while the second stage S-box is working which is a necessary
condition for pipe-lining. This is because it must wait for the
output of the third stage.

Hence, another type of optimization shows up as unrolling
the loop can be helpful. The investigation was in two modes
of unrolling using 3 and 6 unrolling factors. It is found that
the length of the critical path does not increase by a factor of
3 (or 6) since the synthesis tool makes further simplification
and optimization producing a better input-output relation and
using higher-order n-input LUTs.

The ratio between the new and old maximum frequency is
higher than 1/3 (or 1/6) so the throughput increase for higher
unrolling factor where all are compared at the maximum
frequency for each of them. The gain in the throughput can
be determined by the following equation:

Throughput Gain =
NewFreq

OldFreq
∗ UnrollingFactor (1)

Which is always greater than 1.
The increase in throughput by increasing the unrolling factor
is clear in the next figures Fig. 2 and Fig. 3. where the increase
in the gain decreases for higher unrolling factors which can
be noticed in the transition of the factor from 3 to 6. The
comparison between the 4 implementations in terms of power,
maximum frequency, utilization, and throughput are made.
The throughput mentioned in the figure is the throughput of
the encryption core using the programmable logic before the
integration with the ZYNQ processing block.
There is a lot of possible requirements that determine the best
implementations to choose according to the type of applica-
tion, this study choosing the high throughput implementation
with an unrolling factor of 3 since the application requires real-
time processing of video frames. the implementation with a
factor of 6 increases the utilization without a noticeable rise
in the throughput.

Fig. 2. Maximum Throughput and Utilization for iterated, 3-Unrolled,
6-unrolled, serialized

Fig. 3. Maximum Frequency and Power Usage for iterated, 3-Unrolled,
6-unrolled, serialized

III. RESULTS

A. Image Encryption Results

Fig. 4 is the encrypted image where the complete image
is encrypted as one block of data without reentering the
initialization state. Figure Fig. 5 shows the encrypted image by
repeating the encryption from the beginning of the initializa-
tion state for every 8 bytes. This means that if two consecutive
8 pixels are exactly the same, the ciphered pixels will be
the same. This leaks some information about the original
image which is clear in the figure. Security requirements of
the algorithm stated that encryption of the same data should
be accompanied by changing the public number which will
obviously resolve the problem due to changing the state xor-
ed with the plain-text as a result of changing some content of
the initialization state.

Fig. 4. Encrypted image

Fig. 5. Encrypted image without changing public number and repeating
every 8 bytes

1) Performance parameters of the system : This Section
includes the performance parameters in Table. I.

TABLE I
PERFORMANCE PARAMETERS

Throughput of the encryption core 488 MBYTES/Second
Throughput of AXI4 linkage
between the processor and PL

133 Mbytes/Second

Length of the original image 695 KBytes
Size of the image after jpeg
compression

24 KBytes

Throughput of the encryption
system including latencies resulted
from image processing
,compression and linkage between
the two boards

455.779 KBYTES/Second

Overall throughput of a video
surveillance system

299.118 KBYTES/Second

FPS 13 FPS

2) Comparison with a fully software implementation:
In this section, it is assumed that the Ciphertext is required
to exist in a Linux environment for many purposes like file
encryption or being sent over a network between a server and
a client. The full software implementation is to be compared
with the SoC one. Hence, the SoC implementation throughput
to be mentioned is the one including the overhead produced
due to the bus speed connecting the encryption core IP and
the ZYNQ processing unit. Both implementations were tested
on the same ARM Cortex A9 processor. The results are shown
in Table. II.

TABLE II
COMPARISON WITH SOFTWARE IMPLEMENTATION

Software implementation
throughput

33.646 KBYTES/Second

SoC implementation throughput 455.779 KBYTES/Second

IV. CONCLUSION

In this study, a proposed complete IoT system for surveil-
lance applications. The application includes image processing
to reduce the image size using the OpenCV library. The en-
cryption module is a modified version of the Ascon algorithm
to fit in this application. PYNQ board is a cheap resource

helps us to use all python facilities. The comparisons between
the software implementation and the one with a hardware
accelerator show that the hardware-accelerated design can
perform many times better than the pure software one. Future
work will be improving the speed of the system by using
an optimized software interface to avoid affecting the high
throughput gained from the hardware accelerator.

V. ACKNOWLEDGMENT

This work was supported by the Egyptian Information Tech-
nology Industry Development Agency (ITIDA) under ITAC
Program PRP2018.R25.23.

REFERENCES

[1] CompTIA, “Sizing Up the Internet of Things”, https://www.comptia.org
/resources/sizing-up-the-internet-of-things, 2015.

[2] BBC News, ”Dick Cheney: Heart implant attack was credible, ”
https://www.bbc.com/news/technology-24608435, 2013.

[3] CNN, ”FDA confirms that St. Jude’s cardiac devices can be hacked, ”
https://money.cnn.com/2017/01/09/technology/fda-st-jude-cardiac-hack/

[4] H. Suo, J. Wan, C. Zou and J. Liu, ”Security in the Internet of Things:
A Review,” 2012 International Conference on Computer Science and
Electronics Engineering, Hangzhou, 2012, pp. 648-651.

[5] Bernstein, ”Cryptographic competitions, ” https://competitions.cr.yp.to/
caesar-submissions.html, 2019.

[6] Dobraunig, Christoph, et al. ”Ascon v1. 2. submission to the CAESAR
competition.” CAESAR First Round Submission, 2014.

[7] Gross, Hannes, et al. ”Ascon hardware implementations and side-
channel evaluation.” Microprocessors and Microsystems, 2017.

[8] A. Abbas, H. Mostafa, and A. N. Mohieldin, “Low Area and Low Power
Implementation for CAESAR Authenticated Ciphers”, Journal of Low
Power Electronics (JLOPE), vol. 15, no. 1, pp. 104-114, 2019.

[9] S. Soliman, M. A. Jaela, A. M. Abotaleb, Y. Hassan, M. A. Abdel-
ghany, A. T. Abdel-Hamid, K. N. Salama, and H. Mostafa, ”FPGA
Implementation of Dynamically Reconfigurable IoT Security Module
Using Algorithm Hopping”, Elsevier Integration VLSI Journal, vol. 68,
pp. 108-121, 2019.

[10] S. Sharaf, and H. Mostafa, “A Study of Authentication Encryption
Algorithms(POET, Deoxys, AEZ, MORUS, ACORN, AEGIS, AES-
GCM) For Automotive Security”, IEEE International Conference on
Microelectronics (ICM 2018), Sousse, Tunisia, pp. 315-318, 2018.

[11] PYNQ , ”What is PYNQ?, ” http://www.pynq.io/.
[12] Groß, Hannes, et al. ”Made-to-Measure Hardware Implementations of

ASCON.” 2015 Euromicro Conference on Digital System Design. IEEE,
2015.

[13] OpenCV,”Open Source Computer Vision, ” https://docs.opencv.org/3.4/.
[14] Python, ”Low-level networking interface, ” https://docs.python.org/3

/library/socket.html.
[15] N. Samir, A. S. Hussein, M. Khaled, A. N. ElZeiny, M. Osama, H.

Yassin, A. Abdelbaky, O. Mahmoud, A. Shawky, and H. Mostafa, “ASIC
and FPGA Comparative Study for IoT Lightweight Hardware Security
Algorithms”, Journal of Circuits, Systems, and Computers (JCSC), vol.
28, no. 12, pp. 1-13, 2019.

