
1

Abstract— This paper proposes a new CAD tool that
automates the RTL code generation based on the IPXACT
standard (develop RTL code using XML files). Many related
work generates RTL design using C language. In this work,
the generation is based on XML descriptions. The tool is
developed using Python. The generated RTL code can be
synthesized by the synthesis tool like Design Compiler. Several
commercial tools like MATLAB have this capability, but the
proposed tool is faster and more configurable.

Keywords—Register Transfer Level (RTL), IPXACT,
Verilog, Python, XML.

I. INTRODUCTION

In a recent study by Harry Foster, Chief Scientist at

Mentor Graphics, he accentuated that about 20% of the design
projects in the industry have 70% of the project time. As
today’s system on chip (SoC) designs incorporate more IP
components and time-to-market pressures rise, designers are
looking for a way to build and update designs easily [1].
 The IPXACT is a powerful standard developed by the
SPIRIT consortium [2], that gives the ability to write the
electronic components and designs in a standard data exchange
format (XML) file, which is both human readable and
machine processable. The saved data in the XML file can later
be used to generate the RTL design. This method eliminates
the complexity of generating an RTL design using C language.
It also gives the ability to provide a single description of the
components to all customers, regardless of the design language
or tools that they use and enable developers to transfer designs
between environments that use different design languages.

The aim of this work is to move the RTL design to a higher
level by generating RTL code directly from an IPXACT xml
file. This methodology eliminates the need to manually write
the RTL code. Moreover, it can be used to automatically
generate RTL testcases. IPXACT is a simple XML file that
adheres to standards set by the SPIRIT consortium. It describes
in an understandable way, hardware components and the
hardware designs. The proposed methodology will be applied
to many SoC bus protocols to verify it [3].
 The rest of this paper is organized as follows. In section II,
traditional flow versus IPXACT flow is discussed. The detailed
implementation of the proposed approach is discussed in
section III. The experimental results are shown in section IV.
Finally, section V concludes the paper.

II. BACKGROUND: TRADITIONAL FLOW VERSUS

IPXACT FLOW

IPXACT is a standard that specifies how to describe

different types of electronic IPs in the form of an XML
document. It gives the ability to have a standard way to
describe the main features of an IP such that the uses of the IP,
both humans and tools can access the information in a
professional automated fashion [4].

An IP component has several attributes that can be mapped
directly to XML. Memory maps, registers, bus interfaces,
ports, views, parameters, generators and file sets are some of
the attributes that the component contains and can be
mapped to XML. When multiple components are connected
together, it becomes an IPXACT design file.

In the traditional design flow, there is no solid relation
between the design process and the verification process.
This wastes a lot of time and may delay the time to market.
However, the IPXACT flow solves this problem as the
design and the verification processes can be done in one task
instead of two tasks.

III. THE PROPOSED TOOL

A. The Proposed Tool: Methodology

The flowchart of the proposed tool is shown in Fig. 1,
where we have a huge library of the main digital design
building blocks that described in XML files. The user can
configure the specifications of each block such as the initial
value of a register, the type of the FSM either Mealy or
Moore and many more of specs.
 Supported blocks of the tool are computational blocks,
communication blocks, storage blocks, arithmetic and logic
unit, finite state machines, multiplexers, counters, registers,
memories.
 After the selection of the blocks, the user can connect these
blocks in the block diagram window, so he can have a
complete system of his own design. Directly after this step the
user generates the IPXACT XML file for the system. The
stored data in the IPXACT XML contains the blocks of the
systems, specifications of these blocks and how these blocks
are connected together.
 To generate Verilog code, each block in the tool has a
Verilog template which is generated depending on the XML
specifications which had been chosen by the user.

IPXACT-Based RTL Generation Tool
Ahmad El-Shiekh1, Ahmad El-Alfy1, Ahmad Ammar1, Mohamed Gamal1, Mohammed Dessouky1,

Khaled Salah2, Hassan Mostafa3
1Department of electronics and communications, faculty of engineering, Ain Shams University, Egypt.

2Mentor Graphics, Cairo, Egypt.
3Electronics and Communications Engineering Department, Cairo University, Giza.

Email: 2Khaled_mohamed@mentor.com, 3hmostafa@uwaterloo.ca

2

Fig.1 Flowchart of the proposed tool

B. The Proposed Tool: Implementation

 The proposed tool is implemented using python due to its
ease of use when manipulating strings and outputs files, and
when dealing with GUI. It is an open source language; its
libraries are available and can be run on all environments
with no problems.
 A snapshot of the implemented tool is shown in Fig. 2.
The main building blocks window is shown in Fig. 3.

Fig. 2 GUI Interface of the proposed tool.

Fig. 3 Main building blocks window. The user adds from this library the
blocks he needs in order to design his system.

C. The Proposed Tool: An Illustrative Example

 An illustrative example for descripting 7 bits register is
shown in Fig. 4. Firs, wet set the name of the register then
we start to choose how we want to implement our register.
So, we name a sub from the register called the ID and we
set its size to 3 bits. Next, we choose the attribute to be read
only and we can set the initial value to binary, decimal or
hexadecimal. The first three bits represents the ID of the
register, the 4th to the 7th bits represents data value. XML
generated file for the proposed register is shown in listing 1.
 In this generated IPXACT XML, the user can read the
description of his register. It’s a must to generate the XML
file first because the python script will use it to generate the
Verilog code for the block. It first takes the name chosen
by the user to rename the verilog module, then it checks the
attributes so that he can generates the inputs and the outputs
inside the verilog module. After this it sets the initial value
of each sub with the chosen type as well.
 Finally it writes a set of if conditions that expresses the
attribute of the subs whether it’s a read only, write only or
read/write sub register. This method shows that the
implementation of any RTL code almost takes no time
which we will lead to fast time-to-market and eliminates the
necessity to write a complete code for the digital design
blocks. The generated verilog code for the proposed register
is shown in listing 2.

Main Digital Design Blocks

Block specification

Block Diagram & System Connections

IPXACT XML File Generation

RTL Code Generation

3

Fig. 4 Register specifications window.

Listing 1: XML generated file for the proposed register

<Register1>

 <reg_Register>

 <sub>

 <name>ID</name>

 <size>3</size>

 <attribute>Read only</attribute>

 <initial_value>0</initial_value>

 <init_val_type>Binary</init_val_type>

 <start>0</start>

 <end>2</end>

 </sub>

 <sub>

 <name>Data</name>

 <size>4</size>

 <attribute>Read/Write</attribute>

 <initial_value>0</initial_value>

 <init_val_type>Decimal</init_val_type>

 <start>3</start>

 <end>6</end>

 </sub>

 </reg_Register>

</Register1>

Listing 2: Verilog generated file for the proposed register

module reg_Register1 (

input clk,

input wr,

input rst,

input [3:0] Data,

output reg [6:0] data_out

);

always @(posedge clk or posedge rst)

begin

 data_out[2:0] <= 3'b0;

 data_out[6:3] <= 4'h0;

 if (rst)

 begin

 data_out[6:3] <= 0;

 end

 else if (wr)

 begin

 data_out[6:3] <= Data[3:0];

 end

end

endmodule

IV. EVALUATION OF THE PROPOSED TOOL: I2C

AND DDR4 AS A CASE STUDY

A. I2C Protocol Overview

I2C is a two-wire, bi-directional serial bus that provides

a simple and efficient method of data exchange between
devices. It’s very suitable for applications that need
occasional communication over a short distance between
many devices. The I2C standard is a true multi-master bus
including collision detection and arbitration that prevents
data corruption if two or more masters tries to control the
bus simultaneously [7].

I2C has the following features:
 Multi Master Operation.
 Software programmable clock frequency.
 Clock Stretching and Wait state generation.
 Software programmable acknowledge bit.
 Bus busy detection.
 Supports 7 and 10bit addressing mode.
 Static synchronous design.
 Fully synthesizable

4

B. DDR4 Protocol Overview

The DDR4 SDRAM is a high-speed dynamic random-
access memory internally configured as sixteen-banks, 4
bank group with 4 banks for each bank group for x4/x8 and
eight-banks, 2 bank group with 4 banks for each bank-group
for x16 DRAM [5].

The DDR4 protocol has many operations, however the
most important are activation, read and write. The
ACTIVE command is used to open (or activate) a row in a
particular bank for a subsequent access,

The READ command is used to initiate a burst read
access to an active row, and The WRITE command is used
to initiate a burst write access to an active row [6].

C. DDR4 and I2C Implmentation and Verification

We implement them by using the finite state machine
block as depicted in Fig. 5. From the GUI, we determine the
number of states, the type of encoding, the machine type
either it’s mealy or Moore, the reset state number, the
number of both input bits and output bits. After generating
the Verilog code, we create a testbench to verify it as shown
in Fig. 6 and Fig. 7 for I2C and DDR4 respectively.
 It’s obvious that using the proposed tool we save a lot of
time. TABLE I provides a comparison between the hand-
crafted method and the proposed tool in terms of run-time,
where results show that the proposed tool is faster than the
handcrafted one [8]–[10].

Fig. 5 FSM specifications window.

Fig. 6 I2C simulation results.

Fig. 7 DDR4 simulation results: write operation.

TABLE I
 COMPARISON OF THE PROPOSED TOOL AND HAND-CRAFTED

IMPLEMENTATION

Protocol

 Run Time

Hand-Crafted This Work

(Secs)

[11]

I2C 2 days 5 8

DDR4 20 days 3 5

V. CONCLUSIONS

Over the past decade, the increasing hardware design
complexity uncovered the necessity for moving the RTL
design to a higher level by generating RTL code directly
from an IPXACT XML file. The manual implementation of
RTL is a challenging and time-consuming process.
Accordingly, automation of RTL would lead to reduce the
pressure of the time-to-market problem. This paper
proposes a new CAD tool that automates the RTL code
generation based on the IPXACT standard. The tool offers
generating the RTL code to the most important of digital
design blocks through a GUI interface and also can connect
the blocks together to generate an RTL code for a complete
system. Moreover, the generated code is synthesizable.

REFRENCES
[1] Harry Foster, “Trends in functional verification: a 2014 industry

study”, DAC, 2015.
[2] IEEE. (2014). IEEE Standard for IP-XACT, Standard Structure for

Packaging, Integrating, and Reusing IP within Tool Flows.
[3] Timo D. Hämäläinen, & Esko Pekkarinen. (2015). Kactus2: Open

Source IP-XACT tool.
[4] Accellera. (2018). IP-XACT User Guide.
[5] JEDEC. (2012). DDR4 SDRAM.
[6] JEDEC. (2003). Double Data Rate (DDR).
[7] I2C-Master Core Specifications, Richard Herveille, July 3, 2003.
[8] K. Salah, M. AbdelSalam. "IP cores design from specifications to

production: Modeling, verification, optimization, and protection."
25th International Conference on Microelectronics (ICM), 2013.

[9] K. Salah "A UVM-based smart functional verification platform:
Concepts, pros, cons, and opportunities." 9th International Design &
Test Symposium (IDT), 2014.

[10] K. Salah. "A Unified UVM Architecture for Flash-Based Memory."
18th International Workshop on Microprocessor and SOC Test and
Verification (MTV), 2017.

[11] https://www.nutaq.com/matlab-hdl-coder-xilinx-system-generator.

