
Dynamically Reconfigurable Resource Efficient
AES Implementation for IoT applications

Abdelrahman M. Ruby1, Shady M. Soliman1, and Hassan Mostafa2,3

1B.sc of Electronics Engineering, German University in Cairo, Cairo, Egypt.
2Electronics and Communications Engineering Department, Cairo University, Giza 12613, Egypt

3Nanotechnology Department at Zewail City for Science and Technology, 6th of October, Giza 12578, Egypt
abdelrahmanroubi@hotmail.com, shady soliman2002@yahoo.com, hmostafa@uwaterloo.ca

Abstract—Internet of Things (IoT) is the ability of things to
share useful data among each other. It is becoming one of the
most crucial technologies of our generation, however, one of its
biggest challenges is security. In this paper, a design is proposed
using Advanced Encryption Standard (AES) and the Dynamic
Partial Reconfiguration (DPR) feature of the FPGA to tackle
the security problem. AES-128 is used with 128-bit input data
and 128-bit key. DPR is a new feature that allows utilizing the
same hardware for different functions, which minimizes area and
power needed by a system. The variants of the DPR are one round
of encryption and one round of decryption. The proposed design
offers low hardware and low power consuming cryptographic
algorithm. The average reduction in resources consumed is 33%
for encryption and 29% for decryption and energy utilization is
decreased by 43.75%. The proposed work is tested on ZC702
evaluation board, synthesized and implemented using Vivado
2015.2.

Index Terms—AES, DPR, Encryption, Decryption, IoT, FPGA

I. INTRODUCTION

IoT according to IEEE is “A network of items—each
embedded with sensors—which are connected to the Internet”
[1]. It is rapidly imposing itself in today’s world empowering
each device with the needed sensors, microcontrollers and
communication capabilities to share useful data among each
other. This novel paradigm is expected to ease our lives with
applications such as domotics, e-health, enhanced learning, au-
tomation, intelligent transportation, and many other industrial
systems [2] [3].

IoT technologies and applications are still in their infancy.
This implies the existence of many challenges for its commer-
cial use, such as: technology, standardization, area, power, and
security [3]. Since the size of an IoT device is usually very
small, limited number of resources can be equipped, confining
the hardware resources. The power constraint of IoT devices
stems from the fact that a large percentage of IoT devices
are powered from either small batteries, or renewable energy
sources. Considering that a device with low power is more
significant than a secure one, sometimes security and ciphering
are sacrificed for power saving modes. Resulting in a security
challenge epitomized in the demanded low power cipher [4].

These challenges could be parleyed by using a FPGA. Field
Programmable Gate Array (FPGA) are widely used nowadays
in many applications that previously needed Application Spec-
ific Integrated Circuit (ASIC) prototyping [5]. Besides the

simplicity of implementation, it provides a set of tools that
optimizes designing an application on it. Dynamic reconfigu-
ration supported by modern FPGA families, is among those
tools. Most of the IoT security challenges can be overcame
by using dynamic reconfiguration, as it permit the use of the
same hardware resources for different functions, which in its
turn reduce the area and power resources consumed.

The objective of this paper is to deliver a highly se-
cure and less resource (area and power) consuming encryp-
tion/decryption algorithm to be deployed on IoT devices. To
achieve this, a technique for implementing Rijndael cipher
algorithm (also known as AES) through Dynamic Partial Re-
configuration (DPR) of an FPGA is developed. Non-pipelined,
looped (unrolled) architecture AES-128 (128-bit key length)
with small area is implemented. While DPR variants are one
round of encryption and one round of decryption.

Relatable techniques and approaches were discussed in
other papers. In [5], Burman et al. deployed DPR on AES,
while the key size (128-bit, 192-bit, or 256-bit) is the reconfig-
uration parameter. Khatib et al. [4] proposed a power adaptive
encryption design that chooses -using DPR- a suitable cipher
depending on the available power.

This paper is organized as follows: Section II describes
the AES algorithm, the DPR, and the Linear Feedback Shift
Register (LFSR). Section III presents the proposed work and
elucidate the implementation. Section IV presents the results
and discussion followed by the conclusion in section V.

II. BACKGROUND

This section explains the AES algorithm, the DPR of an
FPGA, and the LFSR.

A. Advanced Encryption Standard

Rijndael algorithm is a symmetric encryption algorithm,
chosen by the National institute of Standards and Technology
(NIST) on 2001 to be used as the Advanced Encryption
Standard [6]. Symmetric means that encryption and decryption
uses the same cipher key. It takes a 128-bit plain/cipher text
as its input, that is sorted in a 4x4 matrix of bytes (called
the state), and output a 128-bit cipher/plain text. The cipher
key used can vary in size between 128-bit, 192-bit, and 256-
bit (longer key length indicates higher security), resembling

978-1-7281-3320-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on October 10,2020 at 09:34:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The transformation flow of encryption and decryption of the AES
algorithm.

different versions of AES, namely AES-128, AES-192, and
AES-256. The state undergo N rounds depending on the key
length used. N is 10, 12, and 14 rounds for key sizes of 128-bit,
192-bit, and 256-bit respectively. These rounds have functions
(transformations) that causes the diffusion, each with a 4x4
matrix (of bytes) as its input and output. Figure 1 elaborates
the flow of the AES algorithm, first the state goes through
the initial round that has a single transformation (AddRound-
Key). The state then undergoes N-1 identical rounds that has
the same 4 transformations ((inv)SubBytes, (inv)ShiftRows,
(inv)MixColumns, and AddRoundKey). The final round is the
same but for the (inv)MixColumns.

B. Dynamic Partial Reconfiguration

Reconfiguration is the ability of an FPGA to be repro-
grammed through changing the resources (CLBs, intercon-
nects, and IO pins) functionality. Reconfiguration can either be
static; where the device has to be reset to be reprogrammed, or
dynamic; that allows the device to be reconfigured at runtime.
Dynamic reconfiguration can be classified into total; where
the whole design is replaced with a new one. And partial;
that enables changing the functionality of a preselected area
(module) of an FPGA during runtime, without interrupting
the rest of the FPGA’s operation. The design is partitioned ac-
cording to the DPR design flow to a static part and a dynamic
part. The dynamic part accommodate a set of Reconfigurable
Partitions (RPs). Each RP has a set of substitute modules
called Reconfigurable Modules (RMs) that can be swapped
during runtime, while the static part remains unchanged.

PR controllers are used to control the DPR by provid-
ing an interface for transferring partial BIT files from an
external or internal memory to the FPGA internal configu-
ration port (ICAP or PCAP). That in its turn transfer data

Fig. 2. Comparison between different PR controllers [8].

to the FPGA configuration memory for reconfiguration [7].
It aims to decrease the reconfiguration time to enhance the
reconfiguration throughput. In [8], four PR controllers namely
HWICAP, Xilinx Partial Reconfiguration Controller (PRC),
ZYCAP, and PCAP are compared with respect to resource
utilization, reconfiguration throughput, and power consump-
tion. The comparison results are shown in Figure 2. Since in
IoT, the consumed hardware and power resources are the most
important aspects, AXI-HWICAP is used in this paper for
better resource utilization. It is an ICAP controller that enables
the configuration memory to be accessed by an embedded
microprocessor.

C. Linear Feedback Shift Register

A LFSR is a simple shift register acting as a Pseudo Random
Number Generator (PRNG), with an initial value called the
seed. The value to be shifted in is a linear function of the
current value. Usually the linear function is an exclusive-or
(XOR) of some specific bits of the current value as shown in
figure 3.

Now, that we have briefly explained each of the techniques
used in this paper, the next section discusses the proposed
work.

III. PROPOSED WORK

The proposed work intends to offer a security solution for
IoT applications. This is done through providing low power
and low area consuming, highly secure cryptography algo-
rithm. IoT devices are usually small and operated by limited
energy sources, so area and power are their main challenges.
On the contrary, the data exchanged among IoT devices are

Fig. 3. Operation of the LFSR.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on October 10,2020 at 09:34:23 UTC from IEEE Xplore. Restrictions apply.

usually small of size, hence, high throughput is not much
needed. In order to have a significant decrease in resource
consumption, in this paper, Dynamic Partial Reconfiguration
(DPR) is utilized with the AES algorithm using the AXI-
HWICAP PR controller. The next subsections discuss the
implementation of the project.

A. AES with LFSR

The top module contains three main modules that are
responsible for ciphering/deciphering. The first is the Key
Scheduling module, in charge of generating the 10 sub-
keys used in the AddRoundKey transformation. The Key
Scheduling module does the same function for encryption and
decryption. The second is the Encryption module, it performs
one round of the encryption process of the AES algorithm. The
Decryption module that performs one round of the decryption
process of the AES algorithm comes in as the last module. A
diagram for the system is shown in figure 4.

The top module first triggers the Key Scheduling module
and saves the 10 generated sub-keys to a DRAM, while the
other two modules are halted to save energy. Once it finished
generating the keys, the module is stopped to save energy.
On the fly calculation of sub-keys were not used as power is
targeted, not throughput. The top module then selects whether
to encrypt or decrypt, depending on an input from the user.

Initially, the first round of encryption or decryption is
done separately (AddRoundKey only). The top module then
nearly performs the same sequence for the encryption and
decryption module. It manipulates the input to the encryption
or decryption module by re-feeding its output to it with a new
sub-key, to yield the right round’s output. When it’s the last
round, a signal is triggered that skips the (inv)MixColumns
transformation. After displaying the 128-bit output, if a new
input is present, and the key is changed, the Key Scheduling
operation is reset. If the key is not changed, the algorithm
generates sub-keys for a key generated by the LFSR with the
initial key as its seed.

A LFSR is used to enhance the security of the AES
algorithm, by generating pseudo random versions of the input
key. First, it XOR the input key with a NONCE defined in
the LFSR module, then it performs the LFSR function. As
long as the key is the same, this operation keeps repeating
by feeding the previously generated random key to the LFSR.

Fig. 4. System diagram showing the static and dynamic parts of reconfigu-
ration.

Fig. 5. Block diagram explaining the AES with LFSR module.

Fig. 6. Detailed block diagram of the system.

The generated random key is then fed to the Key Scheduling
module to generate different random sub-keys for each round.
An explanotary block diagram for the AES with LFSR module
is shown in figure 5.

B. DPR

An IP core of the AES with LFSR module explained above
is used with the DPR feature of the FPGA to decrease the
resources utilization. The encryption or decryption module
(that performs one round of encryption or decryption) is the
reconfiguration parameter. This means that only one module
of the two reconfigurable modules is loaded on the FPGA at a
time, the other can replace it during runtime if required. Hence,
the FPGA’s resources used are not the sum of the modules’
resources, rather the number of resources of the bigger module.

The system is implemented with the DPR flow using
Vivado 2015.2. ZC702 evaluation board Processing System
(PS) and Programmable Logic (PL) partitions are used. The PS
(ZYNQ7) is composed of an ARM Cortex A9 processor and a
UART. While the PL has the AES with LFSR IP core, the AXI-
HWICAP, and the configuration memory as shown in figure 6.
UART of the PS is used to input the values serially to the AES
with LFSR IP core and display the output. AXI4-Lite interface
is used to connect the system, with the PS as the master, and
our IP core and the HWICAP as the slaves. The PS is the
master as the user chooses to reconfigure through it (using
UART) and it performs the reconfiguration automatically. Also
as it is used to input the values to our IP core.

A full BIT file is initially programmed on the FPGA with
one default RM. If a change is requested, a partial BIT file
is loaded from an SD card that stores the partial BIT files.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on October 10,2020 at 09:34:23 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RESOURE UTILIZATION CONSUMED BY DIFFERENT ALGORITHMS.

Algorithm Slice LUTs Slice REGs F7 muxes F8 muxes

AES with LFSR with Enc and Dec Round (no DPR) 3585 2580 310 72

AES with LFSR with Encryption Round (DPR) 1949 2051 104 40

AES with LFSR with Decryption Round (DPR) 2683 1731 168 8

Burman DPR on AES encryption [5] 4369 1512 not specified not specified

The PS fetches the targeted partial BIT file from an external
memory (SD card), then send it to the AXI-HWICAP. In its
turn it sends the data to the ICAP which saves the data in the
FPGA’s configuration memory for reconfiguration.

Now, that the system implementation is discussed, the
results are presented in the following section.

IV. RESULTS

The number of clock cycles taken vary for each process.
The key scheduling process takes 55 clock cycles to finish
saving all the 10 sub-keys of its input key to the DRAM.
While the total encryption process with LFSR consumes 129
clock cycles. For the decryption process with LFSR, it takes
78 clock cycles.

When the processor is ready, and the required partial BIT
file is installed on the FPGA, the process begins. Inputs are
fed to the system and outputs are displayed serially using
UART, through the terminal emulator of the Xilinx SDK. The
terminal interact with the UART through the port connected
to the FPGA, with a baud rate of 115200K Symbols/sec. The
following subsections discuss the results.

A. Resource utilization

The resources utilized are shown in table I. Using DPR
decreased the Slice LUTs utilization by 45.6% when encrypt-
ing, and 25.1% when decrypting when compared with our
design of both encryption and decryption modules loaded (No
DPR). While the Slice REGISTERs utilization was decreased
by 20.5% when encrypting, and 32.9% when decrypting.
F7 multiplexers’ consumption was decreased by 66.45% for
encryption, and 45.8% for decryption. 44.4% and 88.8%
consumption decrease of F8 multiplexers for encryption and
decryption respectively. When comparing with other papers,
Burman [5] used the same device as ours (XC7Z020) for
implementing DPR on AES encryption. A 55% reduction in
slice LUTs utilization is achieved when comparing it with our
AES with LFSR with encryption module.

B. Energy utilization and throughput

When a 30 ns clock is assumed, the energy per bit for
the AES with LFSR with Encryption Round is 3.6 nJ/bit,
while with decryption round is 2.19 nJ/bit. Rao et al. [9]
consumed 6.4 nJ/bit for encryption when using a 30 ns clock
with a virtex-7 FPGA. Our algorithm has 43.75% less energy
consumption for encrypting one bit when compared to [9].

The encryption throughput is 33.07 Mbps, and the decryp-
tion is 54.7 Mbps when the same clock is used. While the
operational frequency of the encryption is 0.258 MHz, and
of decryption is 0.427 MHz. It can be calculated using the
formula below.

1

no.ofclockcyclestaken× clockperiod

C. Reconfiguration time
The main drawback of the DPR is the reconfiguration time,

that is the time taken to reconfigure a new RM in the specified
RP other than the one currently loaded. The size of the partial
bit file and the bandwidth of the configuration port (ICAP for
this paper) are directly related to the speed of configuration
[7]. The reconfiguration time can be approximately calculated
by dividing the size of the BIT file by the throughput of the
ICAP [10]. The reconfiguration time elapsed for the proposed
design is 9.8775 ms for the three RMs as they all occupy
the same RP having the same resources of the FPGA. The
three RMs are: the encryption round, the decryption round, and
blank(a module that does nothing). The reconfiguration time
is relatively much longer than the encryption and decryption
process, however, it is not much affecting in the iot platform
as speed is not much targeted rather the area and power which
were significantly decreased.

V. CONCLUSION

This paper proposed a low area and power cryptographic
algorithm using AES-128. DPR feature of an FPGA was used
to decrease the resources utilized. As this feature permits
reconfiguring selected parts of the system while the rest of the
system is still functioning. The parameter of reconfiguration
was one round of encryption and one round of decryption.
The system altered between encryption and decryption modes
of AES-128 during runtime using DPR to save resources.
The hardware resources consumed decreased by an average of
33% for encryption and 29% for decryption when comparing
with the same system without using DPR. While the energy
consumption was decreased by 43.75% when comparing with
a conventional design. Hence, DPR can be used in the IoT
platform with a cryptographic algorithm to decrease the hard-
ware and power resources utilized by the system.

ACKNOWLEDGEMENT

This work was supported by the Egyptian Information Tech-
nology Industry Development Agency (ITIDA) under ITAC
Program CFP #96 and #158.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on October 10,2020 at 09:34:23 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Roberto Minerva, Abyi Biru, and Domenico Rotondi. Towards a
definition of the internet of things (iot). IEEE Internet Initiative, 1:1–86,
2015.

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of
things: A survey. Computer networks, 54(15):2787–2805, 2010.

[3] Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A
survey. IEEE Transactions on industrial informatics, 10(4):2233–2243,
2014.

[4] Khaled Khatib, Mostafa Ahmed, Ahmed Kamaleldin, Mohamed Ab-
delghany, and Hassan Mostafa. Dynamically reconfigurable power
efficient security for internet of things devices. In 2018 7th International
Conference on Modern Circuits and Systems Technologies (MOCAST),
pages 1–4. IEEE, 2018.

[5] Shuchishman Burman, P Rangababu, and Kamalika Datta. Development
of dynamic reconfiguration implementation of aes on fpga platform.
In 2017 Devices for Integrated Circuit (DevIC), pages 247–251. IEEE,
2017.

[6] Snehal Wankhade and Rashmi Mahajan. Dynamic partial reconfiguration
implementation of aes algorithm. International Journal of Computer
Applications, 97(3), 2014.

[7] Xilinx Inc. Vivado design suite partial reconfiguration user guide ug909.
[8] Ahmed Kamaleldin, Ahmed Mohamed, Ahmed Nagy, Youssef Gamal,

Ahmed Shalash, Yehea Ismail, and Hassan Mostafa. Design guide-
lines for the high-speed dynamic partial reconfiguration based software
defined radio implementations on xilinx zynq fpga. In 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–4.
IEEE, 2017.

[9] Muzaffar Rao, Thomas Newe, and Ian Grout. Aes implementation on
xilinx fpgas suitable for fpga based wbsns. 2015 9th International
Conference on Sensing Technology (ICST), 2015.

[10] Shady Soliman, Mohammed A Jaela, Abdelrhman M Abotaleb, Youssef
Hassan, Mohamed A Abdelghany, Amr T Abdel-Hamid, Khaled N
Salama, and Hassan Mostafa. Fpga implementation of dynamically
reconfigurable iot security module using algorithm hopping. Integration,
2019.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on October 10,2020 at 09:34:23 UTC from IEEE Xplore. Restrictions apply.

