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Abstract—Recently, electrical stimulation has been widely used
for biomedical applications, such as cardiac pacemaker, cochlear
implant, muscle exercising, vision restoration, and seizure sup-
pression. This paper presents two compact and power-efficient
optimized neural stimulators for seizure suppression. These
neural stimulators compromise between various design trade-offs
such as adaptability with the load variations, multi-waveform
generation for different seizures suppression, power efficiency,
and linearity issues. The first design is an adaptable closed-
loop current stimulator with a bipolar electrode, while the other
design is a multi-waveform open-loop current stimulator with a
unipolar electrode. Finally, the first design optimizes the power
consumption to 429.68 µW and occupies 0.11 mm2. However,
the second design achieves a high-power efficiency equals 96.47
% and occupies 0.015 mm2. Both stimulators are implemented
using UMC 0.13 µm CMOS technology.

Index Terms—neural stimulator, current stimulator, seizure
suppression, adaptable stimulator, multi-waveform generation,
exponential stimulator.

I. INTRODUCTION

Nowadays, electrical stimulation attracts a lot of researchers,
since it provides a safe treatment option for people with neu-
rological conditions such as Parkinson’s disease and Epilepsy
[1], [2]. Typically, an implantable neural recording and stim-
ulation system-on-chip (SoC) consists of three main blocks
as follows: 1) a detector for neural recording, 2) a signal
processor for detection and prediction, and 3) a stimulator to
stimulate neurons with the proper current waveform [3]. The
basic stimulator circuit consists of a digital-to-analog converter
(DAC) and an output driver for generating the stimulus current.

In current-mode stimulation (CMS), the DAC output is con-
verted into a stimulus current via a voltage-to-current converter
(V/I). The V/I circuit requires a high output impedance, to
resist any variations in the load impedance [4]. Moreover, the
amount of charge supplied per stimulus is easily manipulated.
Since the injected charge (Q) in tissue is expressed as follows:

Q = I × T (1)

Where I is the current amplitude which lasts for a period
T. Moreover, controlling the injected charge amount with
linear steps makes the neural stimulation safer. However, the
degradation of the power efficiency is the major drawback
of the CMS [4]. The stimulus current waveform can be

either monophasic or biphasic [5], [6]. The monophasic is
a unidirectional pulse that can be either positive or negative
while the biphasic is a bidirectional pulse. This biphasic pulse
is formed of an anodic pulse followed by a cathodic pulse
with definite intervals of time. Based on the time intervals,
the stimulation pulses can be either charge balanced [7] or
charge imbalanced [5].

This paper aims to design an on-chip electrical stimulator
that compromises between the output linearity and the power
efficiency while maintaining the minimum power consump-
tion. Moreover, two different design approaches are presented.
The first design is an adaptable high-voltage stimulator with
wide load impedance variations using standard CMOS technol-
ogy and an updated version of Pelliconi charge pump to reduce
the implementation area. However, the second design is a
low-power multi-waveform current stimulator that multiplexes
between the most common waveforms (rising exponential,
falling exponential, and rectangular) while achieving a high-
power efficiency.

The rest of the paper is organized as follows. Design and
analysis for both stimulator designs are discussed in Section
II, while the simulation results as well as the circuit layout
are presented in Section III. Finally, a conclusion is drawn in
Section IV.

II. NEURAL STIMULATOR ARCHITECTURES
A. Adaptable High-Voltage Current Stimulator

The proposed stimulator design adapts the supply voltage
(VDD) based on the load impedance variations. Fig. 1 portrays
the proposed closed-loop stimulator that adopts an H-bridge
circuit topology similar to [8], [9], [10]. This adaptable stim-
ulator uses a current controller (Anodic/Cathodic) to generate
the control signals for a digitally controlled oscillator (DCO).
Based on the DCO output frequency, the supply voltage for
both the anodic and cathodic high-voltage output driver varies
to adapt with the electrode impedance variations. When the
electrode impedance increases, the output current decrease
compared to a reference value. Therefore, the current con-
troller enables DCO to increase the output frequency of the
proposed charge pump circuit.

The charge pump circuit is used to step-up the input voltage
to generate higher supply voltages. This enables the stimulator
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Fig. 1. Proposed Adaptable High-Voltage Current Stimulator

to cope with the load impedance variations while maintaining
a constant output current. Fig. 2 (a) shows a Pelliconi charge
pump [11], [12]that is implemented using NMOS and PMOS
switches utilizing two non-overlapping clock signals (CLK and
CLKB). Moreover, Pelliconi charge pump achieves a high-
power efficiency, but it requires a large layout area to eliminate
the source-body effect. Hence, a modified version of Pellconi
charge pump is proposed in Fig. 2 (b), where the PMOS
devices are replaced by diode-connected NMOS transistors
which have less threshold voltage (VT ) to achieve a better
efficiency [13].
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Fig. 2. (a) One Stage Pelliconi Charge Pump (b) Proposed NMOS-Based
Charge Pump

The charge pump control circuit consists of two main
parts: the current controller and DCO circuit. The current
controller is highlighted in Fig. 1 by a red box consisting
of a current mirror and simple I/V converter circuit with a
low-power comparator [14]. The DCO circuit varies frequency
based on the output of the current controller. Correspondingly,
the charge pump efficiency varies with the load impedance
variations from 44% to 67%.

B. A Low-Power Multi-Waveform Current Stimulator

This low-power current stimulator generates different wave-
forms (i.e., rising exponential, falling exponential, and rect-
angular) for different seizures suppression with emphasis on
achieving a high-power efficiency. The proposed stimulator,
shown in Fig. 3, operates in the subthreshold region to achieve
high-power efficiency with low-power consumption. A new
switching scheme technique is proposed between rising and
falling ramp generators to reduce area, hence decrease power
consumption. Moreover, the stimulator circuit utilizes a 4-bit
binary weighted DAC to control the output current amplitude
with gain boosting to increase the output resistance [15].
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Fig. 3. Proposed Low-Power Multi-Waveform Current Stimulator

Starting from the I-V characteristics of the NMOS transistor
operating in the subthreshold domain where VGS < VT , the
output exponential stimulus current is achieved through the
following equation [16]:

IDS = IDo
W

L
e

(
VG
ηVT

)
(2)

Where IDo is a technology parameter, η is a slope factor
approximately equals to unity, VT is the threshold voltage of
NMOS transistor, VG is the gate voltage, and W

L is the aspect
ratio of the transistor. Moreover, the rising exponential wave-
form is produced by applying the rising ramp voltage to the
gate of an NMOS transistor biased in the subthreshold region.
The achieved rising exponential current is more efficient than
other design in [17].

Based on the control signals of the transistors (M1, M2,
M3, and M4): the stimulator output current amplitude varies.
The following equations explain the different waveforms gen-
eration as follows [15]:

Istim = IDo[M1 + 2M2 + 4M3 + 8M4]
W

L
e
Vrise
ηVT ×

[u(t)− u(t− Trise)] (3)

Istim = IDo[M1 + 2M2 + 4M3 + 8M4]
W

L
e
Vfall
ηVT ×

[u(t)− u(t− Trise)] (4)
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Istim = IDo[M1 + 2M2 + 4M3 + 8M4]
W

L
e
Vrect
ηVT ×

[u(t)− u(t− Trect)] (5)

Where Trise, Tfall, and Trect are the time duration of the
rising, falling, and rectangular stimulation current waveforms,
respectively.

For a rising ramp generator, shown in Fig. 3 (a), a simple
current integrator is designed with buffered single ended OTA
to maintain a stable output voltage during the required cycle
duration that is given by the following equation:

Vrise = Voffset +
Ibias
C

t (6)

Where Vrise is the rising ramp voltage, Voffset is the offset
voltage, Ibias is the biasing current, and C is the charging ca-
pacitor. The circuit mechanism works as follows: first, Ø_rise
is high so the biasing current will charge the capacitor at time
t. Then, Ø_rise is low. Hence, the capacitor will have an offset
voltage till next cycle. Similarly, the falling ramp generator,
shown in Fig. 3 (b), follows the same circuit mechanism as
the rising ramp generator where Ø_fall is low, the capacitor
is floating and has an offset voltage. Then, Ø_fall turns high,
so the capacitor discharges where the output voltage of the
falling ramp voltage (Vfall) is expressed as follows:

Vfall = Vfall −
Ibias
C

t (7)

Finally, the offset voltage is maintained to be lower than the
threshold voltage to ensure that the transistors are operating
in the subthreshold region. Also, the charging/discharging
duration depends on the required pulse width of the output
current.

As shown in Fig. 3 (c), the proposed stimulator shares the
same OTA circuit for both the rising ramp and the falling ramp
to reduce the static power hence increase the circuit efficiency.
Moreover, the output stage is formed by V/I converter biased
in the subthreshold region as described before. In addition,
the designed OTA is based on a simple current-based single-
ended topology. The proposed stimulator reduces the power
consumption through the discontinuous switching between the
multiple input waveforms.

III. CIRCUIT LAYOUT AND POST-LAYOUT
SIMULATION RESULTS

In this section, both neural stimulators are implemented and
simulated using UMC 0.13 µm CMOS technology. The circuit
layout, shown in Fig. 4, shows the proposed neural stimulators
with highlighting on the main design blocks. Here are brief
highlights of the proposed neural stimulator designs:

• Both designs are optimized on gate level through setting
a more accurate aspect ratio to achieve a lower power
consumption.

• For the adaptable high-voltage current stimulator, a new
charge pump circuit is proposed for higher power effi-
ciency with less implementation area based on NMOS

switches only. Besides, the proposed circuit layout
doesn’t require a triple-well technology like other designs
introduced in [8], [9].

• For the low-power multi-waveform current stimulator, a
new architecture is proposed based on OTA sharing be-
tween multiple inputs (rising/falling ramps) for reducing
the power consumption as well as the layout area.

Fig. 4. Chip Layout for Both Stimulators

In Fig. 5, the biphasic output current of the adaptable high-
voltage current stimulator versus the electrode impedance is
shown. Based on the DCO output frequency, the adaptable
stimulator copes with the electrode impedance variations from
24 KΩ till 150 KΩ while the output current varies at the
worst case by ±13% with ±10% supply variations and the
temperature varies from -40°C till 85 °C.

20 40 60 80 100 120 140 160
-40

-20

0

20

40

Anodic
Cathodic

I s
tim
(µ
A
)

Fig. 5. Output Stimulation Current Versus Electrode Impedance Variations
of Proposed Adaptable Stimulator

In Fig. 6 (a), the output current of the proposed low-power
multi-waveform current stimulator is shown with different
amplitudes. Besides, the output current amplitude varies from
0.001 mA till 1mA with an input pulse frequency equals 10
KHz. Moreover, the stimulator power efficiency (PE) of the
proposed stimulator equals to 96.47 % where it is calculated
based on the classical law of efficiency for a single current
channel given by the following equation [18]:
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TABLE I
PERFORMANCE SUMMARY BETWEEN THIS WORK AND DIFFERENT NEURAL STIMULATORS

[8] [9] [10] [15] Adaptable Multi-Wave
Technology (µm) 0.35 0.35 0.065 0.18 0.13 0.13

Area (mm2) 0.7 0.3 2 N/A 0.11 0.015
Supply Voltage (V) 3.3V 3.3V 2.5 1.8/3.3 3.3 1.8/3.3

Current Range (mA) 0.04 0.03 0.05-2 0-1 0.03 0.001-1
Stimulation Type Biphasic Biphasic Biphasic Monophasic Biphasic Monophasic
Load Impedance (10-300)KΩ + 1µF (24-200)KΩ 20KΩ + 0.02µF 1KΩ + 1µF (24-150)KΩ + 0.2µF 1KΩ + 1µF

Static Power (mW) ≤ 1.4 ≤ 0.56 0.3 0.0232 ≤ 0.43 0.0124
Efficiency (%) N/A N/A N/A 94.7 N/A 96.47

PE =
Istim × Vload

Pstatic + Istim × VDDH
(8)

(a) Output Stimulation Current Waveforms
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Fig. 6. Transient Simulation Waveforms of Proposed Multi-Waveform Stim-
ulator

In Fig. 6 (b), the control signals (rise ramp, rectangular, fall
ramp, and shared OTA control) for the proposed low-power
multi-waveform current stimulator are shown. The output
changes its rate every 100 μsec.

A Monte-Carlo analysis, shown in Fig. 7, is performed over
1000 samples on biasing current source to ensure the proper
operation of the multi-waveform stimulator. The mean value
(µ) equals 477 nA, while the standard deviation (σ) corre-
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Fig. 7. Monte-Carlo Analysis for Generated Ibias

sponds to 6%. Moreover, the output current of the stimulator
varies by ±15% across PVT.

Finally, Table I shows a detailed comparison between this
work and the recently published work presented in [9], [8],
[10], and [15]. The proposed stimulator circuits provide good
results compared to other work in the literature, especially
for the power consumption reduction. It is obvious from
Table I that the power consumption of the proposed adaptable
stimulator circuit is lower than that in [8] and [9] by factors
of 1.3X and 3X, respectively. Moreover, the multi-waveform
stimulator reduces power consumption by 1.9X with slight PE
improvement of 2%.

IV. CONCLUSION

In this paper, two compact designs for neural stimulation
with a high-power efficiency are presented. Both stimulators
address the different design trade-offs (i.e., linearity, power
efficiency, electrode polarity, load adaptability, and multi-
waveform). A biphasic adaptable high-voltage neural stimula-
tor that operates at 3.3V and occupies 0.11 mm2 is introduced
as well as a unipolar high-efficiency multi-waveform that
operates at 1.8/3.3V and occupies 0.015 mm2.
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