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Abstract
Deep Convolutional Neural Networks (CNNs) are the state-of-the-art systems for image classification due to their high

accuracy but on the other hand their high computational complexity is very costly. The acceleration is the target in this field

nowadays for using these systems in real time applications. The Graphics Processing Units is the solution but its high-

power consumption prevents its utilization in daily-used equipment moreover the Field Programmable Gate Array (FPGA)

has low power consumption and flexible architecture which fits more for CNN implementations. This work discusses this

problem and provides a solution that compromises between the speed of the CNN and the power consumption of the

FPGA. This solution depends on two main techniques for speeding up: parallelism of layers resources and pipelining inside

some layers. On the other hand, we added a new methodology to compromise the area requirements with the speed and

design time by implementing CNN using Xilinx SDSOC tool (including processor and FPGA on the same board).

Implementing design using HW/SW partitioning will enhance time design based on high level language(C or C??) in

Vivado HLS (High Level Synthesis). It also fits for more large designs than using FPGA only and faster in design time.

Keywords Convolutional neural networks (CNNs) � Alex-Net � Accelerating CNNs � FPGA � Virtex � HW/SW co-design

partitioning � SDSOC � HLS

1 Introduction

Artificial intelligence and deep learning have shown their

utility and effectiveness in solving many real- world

problems in the past few years. The need of direct pro-

gramming and create an intelligent system is the motiva-

tion to use deep learning. This intelligent system can

automatically adapt to new situations, learn and develop

itself. The CNNs are the state-of-the-art today as one of

deep learning algorithms, which proved their high accuracy

in solving problems such as face recognition [1] and

autonomous driving [2].

CNNs have significant higher accuracies than traditional

algorithms but they require huge amounts of computational

resources and memory access due to the large number of

parameters in the convolution-operation, which represents

a computational challenge for the General-Purpose Pro-

cessors (CPUs) and consumes large amount of power.

Recently many applications such as embedded systems in

self- driving cars need high energy efficiency and real-time

performance. As a result, hardware accelerators such as

GPU, FPGA, and Application Specific Integrated Circuits

(ASIC) have been utilized to improve the throughput of the

CNN.

GPUs are the most widely used platforms to improve

both training and classification processes of CNNs [3]

therefore, thanks to their high throughput and memory

bandwidth. However, GPUs consume a considerable

amount of power which is another important performance

evaluation metric in the modern digital systems.

& Hassan Mostafa

hmostafa@uwaterloo.ca

Rania O. Hassan

rania.osama2014@gmail.com

1 Electronics and Electrical Communications, Faculty of

Engineering, Cairo University, Giza, Egypt

2 Nanotechnology and Nanoelectronics Program, University of

Science and Technology, Zewail City of Science and

Technology, October Gardens, 6th of October, Giza 12578,

Egypt

123

Analog Integrated Circuits and Signal Processing (2021) 106:399–408
https://doi.org/10.1007/s10470-020-01638-5(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10470-020-01638-5&amp;domain=pdf
https://doi.org/10.1007/s10470-020-01638-5


ASIC design, furthermore, has achieved high throughput

with low power consumption [4, 5], but large development

time and cost compared to other solutions. A new gener-

ation of FPGA increases the capacity of hardware resour-

ces. This provides thousands floating-point computing

units and low power consumption. Hence, FPGA-based

accelerators are efficient alternatives which provide low

power consumption As the ASIC but high throughput and

configurability at a reasonable cost.

Many approaches have been used to implement CNN on

FPGA. A comparison between GPU and FPGA for DNNs

has been made by the authors of [6]. They propose a

detailed case study on accelerating Ternary Res-Net, the

results are very promising; Stratix 10 performance is 10%,

50% and 5.4 9 better in performance (TOP/sec) than Titan

X Pascal GPU, FPGAs may become the platform of choice

for accelerating DNNs as it has been proved by the results.

The work in [4] propose an energy-efficient dataflow called

row stationary to maximize the reuse and accumulation at

the local memory level (RF or caches) for all types of data

(weights, pixels and partial sums). The work in [7] trans-

forms a convolution layer into a regular matrix- multipli-

cation (MM) in the Fully Connected (FC) layer, and

implements an MM-like accelerator for both layers. The

authors have presented in [8] an opposite approach that

transforms a regular MM into a convolution, and imple-

ments a convolution accelerator for both convolution and

FC layers. Furthermore, anew implementation methodol-

ogy is presented to implement design written in high-level

language using Xilinx SDSOC (Software-Defined System

on Chip) for HW/SW implementation with fast design time

and more flexibility to change design implementation

easily.

This work is an extension work to the work in [9] with

adding a new fast implementation technique on Xilinx

ZYNQ ultra scale board and comparison with the accel-

erated implementation proposed in [9]. This proposed

architecture in [9] relays on parallelism for all kernels in

the convolution layer which is flexible for any network size

and uses extensively local memories to store all the data.

These proposed techniques reduce the design time and the

power dissipated in external memory access. Results are

provided for hardware utilization and power consumption,

comparing the results with CPU performance.

Using HLS flow with high level language will be the

state of the art very soon as it gives very important

advantage which is the small design time similar to what

happened to ASIC flow due to FPGA as in the last few

years all works targets FPGA for its fast design time and

reconfigurability and sacrifice by power and delay. HLS

also will defeat FPGA and will be the target to any designer

to fast implement and test his design with losing some of

power, delay, and area.

This paper is organized as follows; Sect. 2 provides

background on CNN. Section 3 discusses the hardware

implementation using the two techniques. Section 4 shows

the hardware utilization results for both techniques and

discussion of these results with comparison. Section 5 is

presenting acknowledgment for people helped to do this

work. Section 6 concludes the proposed work and presents

the future work.

2 Background

CNNs are computational models inspired by the way of the

human brain. CNNs operation has two phases, training

phase and inference phase (feed-forward path). In the

training phase, the CNN is trained on a known data set to

learn its weights to minimize the error. This work focuses

on the feed-forward path of a pre-trained CNN.

A typical CNN feed-forward path consists of a feature

extractor and a classifier. The feature extractor extracts an

input features across the CNN layers which are; Convo-

lution (Conv), Rectified Linear Unit (ReLU), Pooling

(Pool) and Local Response Normalization (LRN). Then the

feature extractor sends these extracted image features to the

classifier which is implemented using fully connected (FC).

In order to understand the proposed hardware implemen-

tation, the CNN detailed layers will be discussed in this

section, also Alex-Net architecture will be discussed,

which is one of the state-of-the-art CNN models will be

presented.

2.1 Convolution layer

The Conv layer is the core building block of a CNN that

does most of the computational heavy lifting. It’s always

the first layer in a CNN. The convolution operation is done

by applying element-wise multiplication and accumulation

between input feature maps and the weight filters (called

also kernels). The Kernels are the Conv operands obtained

from the training phase, then sliding these filters over the

Fig. 1 Convolution operation [4]
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input feature maps as shown in Fig. 1. Each of these weight

filters can be thought of as feature identifiers.

The computation is given in Eq. (1), where M is the

number of output feature maps (number of filters) of size

E 9 E, C is the number of channels in Input feature maps,

and R 9 R is the size of the Filter.

out m½ � h0½ � w0½ � ¼ bi þ
XC

i¼1

XR

kh¼0

XR

kw¼0

IN i½ �½h0

þ kh �Kernel m½ � i½ � kh½ �� ½kw� ð1Þ

2.2 Pooling layer

A key aspect of Convolutional Neural Networks is pooling

layer, typically applied after the convolution layers. Pool-

ing layers (also called sub-sampling or down sampling)

reduces the dimensionality of each feature map but retains

the most important information. Pooling can be of different

types: Max, Average, Sum etc. In practice, Max Pooling

has been shown to work better.

2.3 Rectified linear unit (ReLU)

The ReLU layer is a non-linear operation that performed

after every Conv layer. Its output is given by; max (0,

input). The purpose of ReLU is to introduce non- linearity

in the CNN after linear operation of convolution, since the

network need to learn from real world data which is non-

linear and that for network to generalize or adapt with

variety of data.

2.4 Local response normalization (LRN)

The LRN reduces top-1 and top-5 error rates by 1.4% and

1.2%, respectively [10]. This sort of response normaliza-

tion implements a form of lateral inhibition inspired by the

type found in real human neurons. The LRN layer is

responsible for normalizing the local neighborhood of the

excited neuron and makes it even more sensitive as com-

pared to its neighbors to avoid the saturation in network.

The normalization functionality is given in Eq. (2).

outi ¼ inis;y

,

k þ a
Pj¼min N�1;iþn

2ð Þ
j¼max 0;i�n

2ð Þ inis;y

� �2
� �b

ð2Þ

2.5 Alex-Net

Alex-Net is one of the state-of-the-art CNN; it won the

2012 ILSVRC (Image-Net Large-Scale Visual Recognition

Challenge). It is the first model to achieve top-1 and top-5

error rates of 37.5% and 17.0% respectively on the test data

of Image- Net dataset [11], which is an astounding

improvement compared with the other top models in the

context.

The CNN developed by Krizhevsky, Sutskever, and

Hinton in 2012 [12], consists of five Conv layers, Pool

follows some of them, two LRN layers, and finally three

fully connected layers with a final 1000-way soft-max layer

as shown in Fig. 2.

There are two proposed techniques for hardware

implementing of Alex-Net using RTL design for the whole

system or using high-level synthesis for implementation

beside HW/SW partitioning to some functions for hardware

implementation.

In the Sect. 3, we will discuss the difference between the

two techniques and comparison between their results.

3 Hardware implementation

The two techniques, we presented here one who target to

accelerate with an optimized RTL code and the other one

who targets the fast design time with very high-level lan-

guage (HLS flow).

Our presented contribution is presented in two points:

First, the low power and area RTL implementation for

Alex-Net CNN system is proposed. Secondly, we introduce

the new approach for using HLS flow for Alex-Net with

high-Level input language and controlling the functions

that will be implemented on FPGA and the others will be

executed on SW.

3.1 RTL implementation

The proposed architecture [9] basically depends on paral-

lelism. The parallelism is responsible for reducing the time

needed for image classification in Alex-Net architecture. In

addition, some techniques as pipelining and on chip (local)

memory usage are used for more acceleration which will be

discussed in details showing the effect of the all techniques

on the overall CNN speed.

Fig. 2 Alex-Net neural network architecture
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In this section, each layer hardware-implementation

perspective will be discussed in details.

3.1.1 Convolution layer

MAC operations (multiplication and accumulation) is the

main part in convolution layer within each filter with the

input feature maps;

These MAC operations are done using the smallest basic

unit which is the Parallel Engine (PE) composed of mul-

tiplier and accumulator.

The parallel execution of the weight filters is done by

duplicating these PEs, Executing the Conv1 layer, 96 PEs

are used which is equal to the number of the weight filters

of Conv1 layer, The number of parallel PEs can be cus-

tomized based on the compromise between the number of

available resources on FPGA and the required CNN speed,

the speed is much faster by increasing the number of PEs.

Figure 3 shows the parallel structure of PEs used for

Conv1 layer, each PE is responsible for one weight filter

operations as discussed before. This parallel structure

speeds up the Convl execution by 96 times (number of

filters). This will be further explained in the Sect. 4

showing the time reduction resulted from this parallelism.

3.1.2 Pooling layer

The Pool layer hardware is similar to the Conv layer

hardware from the parallelism technique perspective; the

Pool kernels across the different input feature maps are

executed in parallel. The parallel structure of the Pool layer

is composed of number of parallel PEs equal to the depth of

the input to the Pool layer where each filter is applied on

one depth. The Pool layer operations mainly depend on

max-pooling operations as discussed in Sect. 2, these max-

pooling operations are done using the smallest basic unit.

This unit is a parallel engine composed of a comparator and

a register holding the maximum number compared to its

neighbors in one kernel. The Pool layer execution time is

negligible compared to the Conv layer execution time. The

optimization techniques are mainly concerned with

reducing the execution time of the Conv layer which will

be discussed in details in the later sections.

3.1.3 Local response normalization layer

The LRN functionality is normalizing around the local

neighborhood of the excited neuron as discussed in the

Sect. 2. It makes it even more sensitive as compared to its

neighbors.

The hardware implementation proposed as follows:

• LRN Layer needs multiple input caches to access the

whole input feature maps simultaneously to be able to

implement the summation process. Subsequently the

number of input caches in this design is equal to the

input feature maps of this LRN layer.

• A tree of adders that adds the input squares then

multiply it by a and add k to the result does the

summation of squares of Eq. (2).

• Implementing customized combinational fixed-point

division, the proposed idea is to use two combinational

integer divisions; the first one calculates the integer part

and the second calculates the fraction part. In this CNN,

the divider is always larger than one, so the fixed-point

division is customized to work properly only when the

divider is larger than one and any other values won’t act

properly. Sign bit is considered but actually no need for

it because the Pool and ReLU output is always positive.

• Output storing technique: the output elements are stored

in one cache if the following layer is group one Conv

layer or two caches if the following layer is group two

Conv layer.

3.1.4 Fully connected layer

The Alex-Net architecture consists of 2 main parts as

mentioned in the Background section: feature extractor and

a classifier for improving accuracy. The feature extractor is

enough for classification but adding a classifier improves

the network accuracy which consists of series of FC layers.

The FC layer is mainly based on matrix–vector multipli-

cation, the matrix consists of weights. These weights are

obtained from the training phase and the vector is a group

of features resulting from the feature extractor part in the

CNN. Each element in the output vector is a weighted sum

of the input vector that’s why it’s called fully connected.

The main idea of the proposed design is to guarantee

accelerating this layer more than the software.

There are two main techniques to achieve this:

Fig. 3 Convolution layer architecture

402 Analog Integrated Circuits and Signal Processing (2021) 106:399–408

123



• The main idea of parallelism in this layer is using

parallel engines of the building block which consists of

a multiplier and accumulator the same as Conv layer

corresponding to the number of rows of the weights’

matrix but due to the large number of rows only part of

the rows is taken in parallel and after getting the outputs

corresponding to these rows, other rows are taken.

• Pipelining is used for more speed up. In the layer design

there is a cache for each PE at its weight port and only

one cache for all the PEs at the output. Hence,

pipelining occurs in the weights cache as a weight of

a certain row is used, the weight of the next row

corresponding to the previous weight is being stored in

the cache while computing the next weight, so that the

MAC operations of the rows are done one after the

other without any waste of time between each row and

the preceding one.

3.1.5 Synthesis and pipelining

The synthesis on the first super layer of the design is per-

formed. The layer consists of (Conv, Pool, and LRN layers)

on Virtex-7 VC709 FPGA using Vivado 2015.2 synthesis

tool, Table 1 shows the utilization of the resources. The

results shown in Table 1 are stating that conv1 layers used

96 DSPs which is corresponding to the number of parallel

engines equal to the depth of this layer. The Pool and LRN

are used DSPs for the addressing equations.

The time and the hardware resources between layers are

not utilized. Using the pipelining technique for utilize the

time and reducing hardware resources between the Conv

and Pool layers is very efficient. As typically in Alex-Net

Pool1 parameters are (kernel size = 3 9 3, stride = 2).

Therefore, the Pool layer can start its operation after the

first three rows in conv1 output are completed.

The calculations of the first row of pool1 is based on the

first three rows in conv1 output and then the second row

will be produced after the fourth and fifth rows of conv1

have been completed and so on. Figure 4 shows the

pipelining flow in time. Conv1 can overwrite its output

after pool1 generates the row output that would reduce the

memory storage.

Table 2 shows that the reduction is done in resources

after using pipelining compared to original design. Espe-

cially, BRAMs are decreased from 22 to 9% which is a

significant reduction to save area and power.

3.2 Alex-Net implementation using SDSoC

SDSoC (Software-Defined System on Chip) environment

[13] is an Eclipse-based Integrated Development Envi-

ronment (IDE) for implementing heterogeneous embedded

systems using the Zynq�-7000 All Programmable SoC

(System on Chip) platform. The SDSoC system compilers

(sdscc/sds??) transform C/C? ? programs into complete

hardware/software systems based on command line options

that specify target platform, and functions within the pro-

gram to compile into programmable hardware.

The SDSoC system compilers generate hardware and

software components that preserve program semantics and

ensure synchronization between hardware and software

threads, while enabling pipelined computation and com-

munication. Each hardware function runs as an indepen-

dent thread to achieve high performance with the minimum

design time. The main advantage of using SDSOC is the

ability to implement more large CNNs like VGG, Goo-

gleNet, and Resnet, which has hundreds of layers much

similar to AlexNet. This will give less time for design but

the generated RTL is not optimized so it will take more

area, power, and may be delay too. To explore the design

space for Alex-net, first we choose each function for

hardware acceleration and all other functions for software

to get the power, area, and delay for each function sepa-

rately. Then eliminate the other partitioning possibilities

Table 1 Hardware resources for the first super layer

Layer/Resources DSPs LUTS BRAMs 36 k Registers

Conv1 96 8049 48 5736

Max Pooling1 2 8022 192 3226

Norm1 7 16,897 48 248

Fig. 4 Execution of convolution and pooling stages in pipelining

Table 2 Comparison between hardware resources after pipelining

Point of comparison Original Pipelined design

Utilization: LUTs 11% 13%

Utilization: BRAMs 22% 9%

Power 1.141 W 1.071 W
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based on the parameters of each function. This way guar-

antee that we run the possible partitions only and get the

best among them.

As shown in Fig. 5 the SDSOC environment design

flow, the first step is to identify compute-intensive hot spots

in the application that can be migrated to programmable

logic to achieve higher performance, and to isolate them

into functions that you can compile for hardware.

C/C? ? code compiled for programmable logic with the

SDSoC environment must conform to coding guidelines

and must also conform to Vivado� High-Level Synthesis

(HLS) guidelines.

The remaining flow of SDSOC is selecting the functions

for hardware acceleration and running the code with

choosing estimate performance and generation of SD-Card

image. We then take the SD-Card image to evaluation

board chosen for implementation. After placing and routing

is done on board, the tool generates an estimation report for

speed up for using selected function for hardware imple-

mentation. We do this flow several times until we get the

best optimum solution, which gives us the hardware

functions with their generated RTL code.

The proposed implementation of Alex-Net is done on

the ZYNQ Ultrascale ZCU104 board. The ZYNQ UltraS-

cale family [14] architecture enables multi-hundred giga-

bit-per-second levels of system performance with smart

processing, while efficiently routing and processing data

on-chip. UltraScale architecture-based devices address a

vast spectrum of high-bandwidth, high-utilization system

requirements.

The ZCU104 evaluation board [15] provides a flexible

prototyping platform with high-speed DDR4 memory

interfaces, an FMC expansion port, and multi-gigabit per

second serial transceivers, a variety of peripheral inter-

faces, and FPGA fabric for customized designs. The

ZU7EV device integrates a quad core Arm�CortexTM-A53

processing system (PS) and a dual-core Arm Cortex-R5

real-time processor, which provides application developers

an unprecedented level of heterogeneous multiprocessing.

The input language for SDSoC is a C/C?? code written

according to high level synthesis (HLS) instructions

approved by Vivado HLS tool supported with SDx envi-

ronment tools [13] as shown in Fig. 5.

The Alex-Net is described using C? ? language on

SDx V2018.3 with Vivado HLS 2018.3 based on the

trained forward path in [16] converting their matlab code to

C?? . The system is divided to 8 main C?? functions as

follows: Conv Layer1(C1,P1,N1 as in Fig. 2), Conv Lay-

er2(C2,P2,N2), Conv Layer3(C3), Conv Layer4(C4), Conv

Layer5(C5,P5), Fully Connected Layer6(FC1), FC lay-

er7(FC2), FC layer8(FC3).

The support of CPU and FPGA together on the same

board makes a lot of combinations for implementing design

which function will be executed by CPU and which one

will be implemented on FPGA with HDL code generated to

it. We rewrite Alex-Net in C?? language with the rules fit

with the Vivado HLS manual guidelines. The design has

been simulated on SDx 2018.3 environment using SDSoC,

Vivado, and Vivado HLS. Our methodology is running the

whole system by CPU only (SW solution) then takes each

function to be implemented on FPGA and the other func-

tions SW to get each function specifications (Hardware

Resources, Latency, Power Estimations, Hardware accel-

erated cycles) separately then start to combine between the

functions that can be fit on HW together and see the

improvement in performance then finally decide the best

combination of implementation to be done. This design has

256 different combinations of implementation as we said

we tried the possible implementation with good perfor-

mance as we will see the results in the Sect. 4.

4 Results and discussion

4.1 RTL implementation results

The main purpose is to accelerate Alex-Net architecture for

image classification, the functionality is verified on the

RTL with reasonable accuracy and the timing results are

obtained and compared to the MATLAB R2014a execu-

tion-time to show how much the CNN speed is enhanced.

Table 3 shows the execution time of some layers of the

MATLAB R2014a (CPU) and the one of the acceleratedFig. 5 SDSoC environment flow [13]
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CNN on FPGA. It’s clear that the bottleneck of the CNN is

the Conv layer; therefore it is the first design consideration

to be accelerated as discussed in the previous Sect. 3.2.

Comparative study to the GPU is summarized in

Table 4. The mentioned results show that the FPGA is

faster than the CPU but slower than GPU, but it is still

preferred over the GPU due to the FPGA lower power

consumption which is proved by estimating the dynamic

power consumption of the first three layers (Conv-Pool-

LRN)using Virtex7 FPGA which is 0.785 W and that

estimation is reasonable compared to the power consumed

in [17]which is 7.2 W for the first ten layers which is lower

than the power consumed by the GPU as mentioned in [18]

that Titan X GPU throughput of 3.23 TOP/s comes at a

relatively high-power cost which is 250 W.

4.2 AlexNet implementation using SDSoC

4.2.1 Hardware resources utilization

After performing Debug build for design with choosing

only one hardware function and the other functions are

executed by CPU, we get the detailed reports for synthesis

and implementation of this function to get hardware uti-

lizations (LUT, BRAMs, DSPs, and FFs). The Zynq Ultra

scale 104 contains 1728 DSPs, 624 BRAMs 18 kb, 230,400

LUTs, and 460,800 FFs. Table 5 shows the hardware

resources for some functions of design (The used resources

and the utilization (U)). The Maximum Resources are used

in the first 2 super layers as including convolution, max-

pooling, and LRN. Some of these functions do not fit due to

its large parameters and it needs more BRAMs. As we are

using single precision floating point for all parameters.

The synthesis of design using SDSOC gives over esti-

mate to utilization resources, which is actually much

smaller after implementation. The BRAMs do not fit for

some layers due to the large parallel computational in

convolution operation but it is decreased after the imple-

mentation phase. The pipelining is very important here for

implementing any of conv super layers to decrease time of

computations and resources. We used some of HLS prag-

mas for pipelining in convolution operations.

Vivado HLS supports some pragmas for those functions

will be implemented on FPGA. We used ap_fifo pragma

supported by Vivado HLS for streaming the reading of

inputs and the writing operations of outputs for all func-

tions with using HLS_pipeline pragma inside loops. These

individual results for each function will guide to decrease

the implementation combinations among all 8 functions.

The implementations here is SW or HW for 8 functions

will result in 256 implementation combinations so we will

try some of these combinations depend on these results

later.

4.2.2 Power estimations

Table 6 lists the estimated power (Watt) consumptions for

the hardware partitioned functions including on chip power

consists of dynamic power, programmable logic (PL),

Processing system (PS), and static power (PL and PS).

These numbers based on the automatic generated RTL

from the tool. We get the numbers using Vivado power

estimator for the generated RTL Project. We can see the

benefits of locating conv. layers for hardware acceleration

with less power and less delay.

4.2.3 Hardware accelerated cycles

Hardware acceleration is metric defined by SDSoC tool.

Hardware acceleration is the number of clock cycles

improvement in execution of system if the function is

implemented as hardware function on the programmable

logic.

Table 7 shows the hardware acceleration for the gen-

erated platforms of the synthesized hardware as estimated

by debugging compilers of tool. The used performance

estimation assumes worst-case latency of hardware func-

tions, it also assumes worst-case data transfer size for

arrays so it could be the hardware function latency and data

transfer size at run time is smaller than such assumptions).

As expected, the big super layers that including

Table 3 Simulation time of SW and RTL

Layer MATLAB FPGA

Simulation time(s) Virtual simulation time

Conv1 7.8 11 ms

Pool1 0.37 65.6 ls

Norm1 1.83 700 ls

Conv2 7.9 8.7 ms

Pool2 0.3 1690 ns

Norm2 1 432.64 ls

Table 4 Simulation time of Alex-Net on different GPUs

Hardware accelerator Execution time (ms)(forward path)

Proposed architecture 40.94

Pascal Titan X 5.32

GTX 1080 7.00

Maxwell Titan X 7.09
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convolution or FC6 that contains many Parallel computa-

tions compared to the other layers has the large

enhancements.

4.2.4 Implementation combinations

There are 256 implementation combinations for this design

as we said. We will choose some of them depends on the

results of area of each functions to decide which functions

will implemented on HW and the others on SW. Table 8

shows the utilization of hardware resources for different

implementations focus on fully connected layers combi-

nations. We can see that the large hardware resources used

in the case of FC6 and FC8 implemented in HW (2nd case)

because layers 6 save and sends data to layer 7 which is on

CPU then CPU send output of layer7 to HW for layer8. It is

much better if all the 3layers on HW as in the last case with

the less one in resources if we choose to implement two

consecutives layers on HW together.

As shown in Table 9 the implemented combinations for

HW focus on fully connected layers and show the accel-

erated clock cycles that will improve speed of system.

Furthermore, the dynamic power is the dominant in on-

Chip power so the different solutions have a small effect on

PL power, as it is much smaller than PS power. Hence, the

PS power is the dominant term in dynamic power too.

These results are very useful guide to choose and eliminate

the combinations for implementation.

4.3 Comparison between RTL and SDSoC HW
implementation

Here is a simple comparison based on the previous results

of synthesis phase for both RTL and SDSOC of the first

super layer implementation shown in Table 10. The opti-

mized RTL has better results as SDSOC generates un-op-

timized RTL code RTL takes a lot of LUTs but with

minimum use of BRAMs and FFs but SDSOC goes to use

BRAMs more than LUTs and DSPs. On the other hand, the

SDSOC flow is giving less time for design, more flexible

for any change, the optimized RTL can replace for the

generated RTL from Tool, which will be better comparable

to optimized RTL regular flow, and finally doing part of

Table 5 Hardware resources
HW Func LUTs BRAMs 18 k DSPs FFs

Used U% Used U% Used U% Used U%

Conv layer1 19,260 8 953 152 95 5 11,037 2

Conv layer2 20,696 8 1298 208 93 5 11,232 2

Conv layer3 3232 1 1881 301 5 * 0 1550 \ 1

Conv layer4 2964 1 1580 253 5 * 0 1368 \ 1

Conv layer5 3841 1 1169 187 5 * 0 1701 \ 1

FC layer6 691 * 0 0 0 5 0 663 * 0

FC layer7 690 * 0 0 0 5 * 0 661 * 0

FC layer8 687 * 0 0 0 5 * 0 652 * 0

Table 6 Power estimations

HW function On-chip power Dynamic power

Total PS PL PS

Convlayer1 3.592 2.777 0.221 2.678

Convlayer2 3.605 2.781 0.23 2.682

Convlayer3 3.592 2.781 0.217 2.682

Convlayer4 3.593 2.781 0.218 2.682

Convlayer5 3.598 2.781 0.223 2.682

FClayer6 3.607 2.781 0.231 2.682

FClayer7 3.616 2.781 0.241 2.682

FClayer8 3.611 2.781 0.236 2.682

Table 7 Hardware accelerated clock cycles

HW function Accelerated clock cycles 9 109

Convlayer3 2.147483647

FClayer6 2.147483647

FClayer7 1.649306326

FClayer8 0.403445609

Table 8 Hardware resources utilization

HW function LUT BRAMs FFs DSPs

U% U% U% U%

FC6,FC7 9.73 12.82 6.36 0.58

FC6,FC8 13.38 17.95 8.79 0.58

FC7,FC8 9.73 12.82 6.36 0.58

FC6-8 11.85 15.38 7.72 0.87
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function on software gives more ability to implement large

CNNs on the same evaluation board. This is the main part

of using SDSOC flow for fast design time and fitting more

large designs.

4.4 Design guidelines

The guidelines for implementation using SDSOC.

• Write the input C?? code with optimized techniques

supported by SDSOC tool.

• Divide design into sub-functions considering the func-

tions that will target hardware will be written in a good

way that suits HW implementation.

• Using the useful pragmas that helps to decrease time

and resources.

• After getting the implementation of design try to

replace RTL generated code with another optimized

one that will enhance performance.

• Finally, one of possible work in this area is to using

partial dynamic reconfiguration (PDR).

5 Conclusion and future work

In this paper, the acceleration of the forward path of a pre-

trained Alex-Net on FPGA is demonstrated, introducing

the parallelism and pipeline techniques used to accelerate

the CNN. The proposed architecture is discussed in details

illustrating the achieved high speed and low power per-

formance. Future work concerns deeper analysis of par-

ticular mechanisms, new proposals to try different

methods. The next step is to compromise between the time

required for the image prediction and the number of

resources. In addition, some techniques can be used to

reduce the power consumption as pruning and PDR. Fur-

thermore, a new approach for implementation is proposed

using SDSoC tool for hardware/software partitioning

which improve design performance and increase the

facility to implement more large designs especially for

CNNs systems. Future work for Alex-net on SDSoC will

focus on eliminates number of trials to get best imple-

mentation for design which functions will be implemented

on HW. It is recommended for future work to try partial

dynamic reconfiguration with SDSoC to reduce power

consumption and enhance performance.
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