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ABSTRACT In this paper, a high-sensitivity low-cost power-aware Support Vector Machine (SVM) training
and classification based system, is hardware implemented for a neural seizure detection application. The
training accelerator algorithm, adopted in this work, is the sequential minimal optimization (SMO). System
blocks are implemented to achieve the best trade-off between sensitivity and the consumption of area
and power. The proposed seizure detection system achieves 98.38% sensitivity when tested with the
implemented linear kernel classifier. The system is implemented on different platforms: such as Field
Programmable Gate Array (FPGA)Xilinx Virtex-7 board andApplication Specific Integrated Circuit (ASIC)
using hardware-calibrated UMC 65nm CMOS technology. A power consumption evaluation is performed
on both the ASIC and FPGA platforms showing that the ASIC power consumption is lower by at least 65%
when compared with the FPGA counterpart. A power-aware system is implemented with FPGAs by the
adoption of the Dynamic Partial Reconfiguration (DPR) technique that allows the dynamic operation of the
system based on power level available to the system at the expense of degradation of the system accuracy.
The proposed system exploits the advantages of DPR technology in FPGAs to switch between two proposed
designs providing a decrease of 64% in power consumption.

INDEX TERMS Low power, support vector machine (SVM), sequential minimal optimization (SMO),
accelerator IP, feature extraction, classification, FPGA, dynamic partial reconfiguration (DPR), ASIC.

I. INTRODUCTION
Epilepsy is a brain disorder that is accompanied by uncon-
trolled shaking movements of different body parts with a
chance of losing consciousness. These shaking movements
usually happen as a result of abnormal electrical discharges
in the brain neurons. Epilepsy affects 1% of the popula-
tion worldwide [1]. Many epileptic patients are treated with
a daily medication. Regardless of the intensive efforts to
develop new pharmacotherapies antiepileptic drugs fail to
adequately treat approximately one-third of the patients with
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epilepsy [2], and even responsive subjects often suffer from
side effects as medication are experimental and their con-
centrations are adopted for each patient individually [3].
Surgical removal of epileptic focus, which is the part of the
brain where the seizure is originated, is an option for some
patients with medically-resistant epilepsy, but carries the risk
of irreversible functional impairment. Thus, new therapeutic
approaches are needed to overcome the shortages in other
mentioned techniques.

A promising alternative has become booming in the last
couple of years which is the intracranial electrical stimula-
tion [4] after detecting the seizure onset. However, the detec-
tion of epileptic seizures is usually done by visual observation
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of EEG signals by a trained professional, a process that
has several deficiencies. It is a time-consuming procedure,
sensitive to bias and can affect the accuracy of the result,
consequently, automatic seizure detection algorithms have
evolved [5]. The need for these automatic detection systems
that would alert the patient to take any needed precautions is
now of great importance.

An implantable device that can be inserted in the patient’s
scalp providing an electrical stimulation as soon as a seizure
occurs can be useful for the patient. Recently, machine learn-
ing techniques are exploited in automatic seizure detection
algorithms as reported in [6]–[8]. Machine learning is the
science of teaching computers how to deal with different
situations and to perform some complicated tasks without
being programmed.Machine learning techniques vary in their
complexity.Multiple optimization techniques have evolved to
deal with the machine learning techniques increasing com-
plexity as proposed in [9] and [10]. One of the exploited
machine learning techniques in seizure detection is the super-
vised machine learning algorithm. A supervised machine
learning algorithm SVM (support vector machine) that was
first introduced by Vladimir N. Vapnik et al. in 1963 [11]
is used in the implemented design. SVM is widely used in
statistical classification and regression analysis generally and
as it has produced very promising results in detecting and
predicting seizures onset [7], [12], [13].

Learning in SVM is a process in which a hyperplane that
separates two labeled sets of training examples is determined.
SVM searches for the hyperplane that gives the largest margin
between the two sets. In this paper, a hardware implemented
automatic seizure detection system using supervised machine
learning that utilizes EEG signals is proposed. The proposed
system is consolidated as follows: First, Features Extraction
for training using Sequential Minimal Optimization (SMO)
training accelerators which is used in [13]. Then, Feature
extraction for classification through linear Support Vector
Machine (SVM) classifier, after that a phase of validation
is executed to verify the quality of the implemented system.
The complete flow of training and validating the system of
supervised machine is shown in Figure 1.

The process begins with the training phase in which the
data is inserted through a feature extractor module which
extracts important information from the input signal. These
features in addition to the data and corresponding labels are
inserted to the training algorithm. Following that, a classifier
is used with the extracted features from the unlabeled testing
examples to detect seizures and to classify these inputs into
one of the two classes whether it’s a seizure or not [14].
A power-aware system is implemented in order to maintain
the longevity of the battery life. This power-aware system is
achieved using the new capabilities of Field Programmable
Gate Array (FPGA).

The rest of the paper is organized as follows. Section II
articulates the materials and methods used. Section III pro-
vides the implementation of the classifier. Section IV shows
the results and the comparison with prior work. Section V

FIGURE 1. Supervised learning training and testing structure.

discusses the implementation of a power aware system using
FPGA. Finally, a comparison with prior work is depicted in
section VI, and the conclusion is drawn in Section VII.

II. MATERIALS AND METHODS
CHB (Children Hospital Boston) data set is adopted for
testing [15]. The dataset is collected from 22 patients with
intractable seizures (5 males, and 17 females). From each
patient, 23 channels from different electrodes are recorded.
The data is sampled at a frequency of 256 Hz with a 16-
bit resolution. All signal processing and manipulation are
carried out on MATLAB 2017a before the system hardware
implementation.

The feature extractor is composed of three feature extrac-
tion techniques, namely, fractal dimension, Hurst exponent,
and Coastline. The features selection is based on the best
performing features obtained in [16]. The three features along
with linear Support Vector Machine (SVM) are tested with
sequential minimal optimization (SMO) training that is car-
ried out offline.

In this section the features equations are first illustrated,
then two feature extractors are proposed.

One performs the exact techniques with minor approxi-
mations that does not affect the classification result, while
the other computes approximated features which affects the
sensitivity obtained in the favor of the power consumption
and area utilization of the design.

A. FEATURES’ EQUATIONS
1. Fractal Dimension: It is a measurement for the complex-

ity of the input EEG signal over multiple scales. In other
words, it is a measure of how many times a pattern can
be found in a signal. Higuchi’s algorithm with k = 5 is
used to calculate the fractal dimension.

Lm (k)=

∑N−m
k

i=1 |x (m+ ik)−x (m+(i− 1) ∗ k)|

N
∗

1
mk
(1)
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where x is a time series that consists of N data points,

m is a constant that varies from 1 to k, and M =
n−m
k

N−1 .

FD =
k∑

m=1

ln(Lm(k))

ln( 1k )
(2)

2. Hurst Exponent. It is a technique that quantifies the
meaningfulness of the input signal. If the output value
is in the range from 0.5 to 1 then the input EEG signal
contains meaningful patterns, on the other hand if the
output value equals 0.5 it is considered noise.

MAV =
1
N

N∑
i=1

|xi| (3)

R = | |max (x −MAV )| − |min(x −MAV )|| (4)

S =

√√√√√ N∑
i=1

(xi − mean (x))2

N − 1
(5)

H =
log(RS )

log (T )
(6)

where x is a time series that consists of N data points,
MAV is the mean absolute value, R is the range of the
cumulative deviation from the mean, S is the standard
deviation, and T is the sampling period.

3. Coastline: It quantifies the amount of fluctuations in the
given epoch. Seizures are identified by recurrent dis-
charges in brain neurons, which means higher frequency
of fluctuations than usual.

Coastline =
∑N

i=1
|xi+1 − xi| (7)

where x is a time series that consists of N data points

B. OPTIMIZED FEATURE EXTRACTOR
As observed in the features’ equations, many stages have a
division by a certain constant. For instance, the division by the
constant T in the final stage of calculating the Hurst exponent
depicted in equation (7), or the division by the constantMK in
each of the k loops of the fractal dimension shown in equation
(1), and also the division by ln ( 1k ) in the final stage of calcu-
lating the fractal dimension shown in equation (2). In those
cases, removing the division does not affect the classification
result, because it is just scaling all the points by the same
amount linearly. Same concept applies to multiplication by
a certain constant; all points are scaled by the same value.
In both division andmultiplication by constant removal cases,
the classifier shifts the hyper-plane it draws by the scaling
amount correspondingly. Figure 2 shows the effect of linearly
scaling data points by removing multiplication or division by
a constant.

In other stages, the division by the constant N (total number
of data points in the designated window) as in the mean abso-
lute value (MAV) depicted in equation (3) and the mean in
standard deviation (STD) depicted in equation (6) contributes
in resulting a shorter vector. Since the output of both MAV

FIGURE 2. Linear scaling of data points through multiplication and
division by constants.

FIGURE 3. Effect of removing the multiplication by the constant 2 on the
curve of ln(x).

and the mean are fed to other following stages, a shorter
output vector creates smaller and faster design. If the division
can be done through shifting, the complexities of division
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FIGURE 4. Basic building unit of the hyperbolic CORDIC architecture.

can be avoided. For this matter, the window size (number of
samples in one window) is chosen such that it is a power of 2.

The only division that cannot be removed, without affect-
ing the sensitivity obtained, is the division by the stan-
dard deviation in the Hurst exponent shown in equation (6).
The standard deviation is not a constant, but rather varying
according to the values of the data samples in each window.
However, in order to avoid the complexities of performing
a fractional division (as the length of the vector R is shorter
than the length of the vector S), the value of R is multiplied
by 216. Linearly scaling the value of R by the constant 216

does not affect the classification results as previously stated
in this subsection.

The natural logarithm in the last stages of both fractal
dimension and Hurst exponent is realized by calculating the
inverse hyperbolic tan of the specified value. The adopted
identity for calculating the natural logarithm is ln (x) = 2 ∗
tanh−1

(
x−1
x+1

)
. The multiplication by 2 is, however, not nec-

essarily to be performed as it is only doubling all values and
does not affect the classifier decision. The effect of removing
the multiplication by the constant 2 is depicted in Figure 3.

C. APPROXIMATE FEATURE EXTRACTOR
The approximate feature extractor considers the power
consumption and area utilizationmore than keeping the sensi-
tivity as originally obtained. A performance degradation of 1-
2% in the favor of saving power and area is the objective of
the approximate design. Therefore, all the scaling techniques
performed in the optimized feature extractor are preserved,
and in this section further approximations are adopted.

The inverse hyperbolic tan is a CORDIC design with
range expansion. The CORDIC approach is an iterative
technique that is utilized for evaluating several elementary
mathematical functions that is inverse hyperbolic tan in
the proposed design. The technique presents a relatively

FIGURE 5. The analogy between Ln function and SQRT function.

FIGURE 6. Block diagram of the SVM classifier.

low-cost solution for evaluating the function in question as
it consists of only LUTs, additions, and shifts. The basic
building unit of the hyperbolic CORDIC design is depicted
in Figure 4.

The CORDIC design of the tanh−1 does not only suffer
relatively high latency compared to all other utilizedmodules,
but also has the highest dynamic power consumption in the
design. Taking the natural logarithm of certain value can
be considered as non-linearly scaling this value through a
specific manner which is, in this case, tanh−1. If there exists a
mathematical function that can perform an approximate scal-
ing to the tanh−1, then the tanh−1 can be approximated using
this mathematical function. The closest curve to the tanh−1

is the square root curve. Figure 5 shows that the square root
function presents itself as an approximately scaled version of
the hyperbolic tan function.

A comparison between both inverse hyperbolic tan and
square root functions in terms of power consumption, area
utilization, and latency when implemented on Virtex-7 FPGA
for 24 bit inputs is depicted in Table 1.

The divider exploited in the Hurst exponent to divide the
range of the cumulative deviation from the mean by the stan-
dard deviation is the second highest power consumer in the
proposed feature extractor. Removing this division enhances
both occupied area, and power consumption at the expense of
accuracy degradation.
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TABLE 1. FPGA implementation for 24-bit hyperbolic TAN and SQRT.

TABLE 2. Pseudo code of SMO algorithm.

III. CLASSIFIER
After the execution of the training phase using the fea-
ture extractor discussed earlier, the training can be executed
offline afterwards using software methods or by hardware
accelerated methods as proposed in [14]. Three important
outputs are extracted from the training phase namely: the
support vector points (x j)s, their corresponding labels (yj)s
and the training α’s calculated from the SMO algorithm
depicted in Table 2.

The three outputs are used in the classification process and
the classifier decision for any input vector xtest is obtained as

shown in equation (8).

ytest =
∑

αjyjxtestxj + b (8)

Figure 6 shows the architecture of the top-level design of
the SVM classifier, which consists of the following blocks:
three ROM blocks, classifier block, inner product block and
the finite state machine (FSM) controller. The FSM controller
is responsible for generating the addresses of the three ROMs
and the enable signal of the classifier block. The ROM Sup-
port vectors block is used to save the input vectors of the
support vector points xj. The width of this ROM is the same
as the data width, while the depth equals to the number of
support vectors. The ROM Labels (yj)s block is used to save
the values of the true labels of the support vector points. The
width of this ROM is one bit, while the depth is the number
of support vectors. The ROM Alpha block is used to save the
values of (α)s. The width of this ROM is the same as the data
width, while the depth equals the number of support vectors.
The classifier block in which each α is multiplied by its corre-
sponding label y and then fed to the inner product calculator.
The final block of the SVM classifier is the inner product
block which is mainly a MAC (multiply and accumulate) unit
is used to calculate the class of size equal to the number of
dimensions. The inner product block is used to multiply the
input feature vector xtest by the corresponding support vector
point producing classifier decision ytest

The classifier is designed to achieve the lowest area and
power consumption while achieving an acceptable perfor-
mance. The classifier is implemented to operate with the same
frequency as the feature extractor module which is 100 MHz
and its latency is 16 clock cycles.

Many techniques are used in the implementation of the
classifier in order to achieve the mentioned specification.
To achieve lower power consumption fixed-point represen-
tation is used instead of power hungry floating point based
techniques. MATLAB simulations on different word lengths
was carried out to decide the optimum length, it is found
that a 16-bit word length is enough for achieving the same
performance obtained from floating point based algorithm.
To achieve higher frequency multipliers are replaced by XOR
gates in themultiplication process as the numbering represen-
tation exploited is sign-magnitude representation.

IV. RESULTS AND COMPARISON
The results are divided into two sections; Optimized feature
extractor results, and approximate feature extractor results.
Each section elucidates Software, and Hardware results for
each design. For the software results, three performance
metrics, namely, sensitivity, specificity, and accuracy are
measured for each feature extractor along with Sequential
Minimal Optimization (SMO) training accelerator. While the
Hardware results discuss the Area utilization, and power
consumption of each design on both FPGA and ASIC
platforms.

VOLUME 9, 2021 75075



H. Elhosary et al.: Hardware Acceleration of High Sensitivity Power-Aware Epileptic Seizure Detection System Using DPR

TABLE 3. The effect of changing the window size on the performance
metrics for the optimized feature extractor.

A. OPTIMIZED FEATURE EXTRACTOR
The sensitivity, specificity, and accuracy originally obtained
when the exact features using floating point arithmetic are
exploited along with SMO training and linear SVM classifi-
cation are 98.39%, 92.60%, and 92.61% respectively.

When the discussed divisions and multiplications by
constants are removed, and fixed point representation is
exploited, the sensitivity, specificity, and accuracy are
98.39%, 92.37%, 92.39%, respectively and correspondingly
the metrics degradations due to these approximations are
insignificant.

The performance metrics are not only affected by
the feature extraction strategies, training approaches and
classification techniques, but also affected by changing the
window size. Window size is the number of samples per
single entry; each EEG signal is divided into epochs of either
1024 sample, 512 sample, or 256 sample which corresponds
to 4-second windows, 2-second windows, 1-second windows
respectively.

Table 3 lists the performance metrics obtained in response
to changing the window size. With 4-second window the
specificity significantly increases at the expense of a slight
decrease in the sensitivity.

The proposed feature extractor is generic; by changing the
window size parameter, the whole design is adjusted to be
working with the new window size. The optimized feature
extractor is implemented on Vertix-7 FPGA with 100 MHz
clock. The block diagram of the proposed design is shown
in Figure 7. Figure 7.d depict the standard deviation (STD)
block diagram utilized in the Hurst Exponent (HE) block
diagram shown in Figure 7.a. Fractal dimension (FD) fea-
ture is depicted in Figure 7.c; The inverse hyperbolic tan
is applied to the output of the five accumulate windows
sequentially, the five resulting values are then added up
producing the output. Figure 7.b depicts the coastline (CL)
feature.

The resource utilization, power consumption, and latency
are measured for the proposed design with different window
sizes. Table 4 shows the obtained results. It is clearly shown
that stretching the window size increases the utilization and

FIGURE 7. Block diagram of the optimized feature extractor.

consequently the power consumption and latency. However,
the more stretched the window size, the higher the sensitivity.
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FIGURE 8. ASIC implementation for the optimized feature extractor.

FIGURE 9. ASIC implementation of the approximate feature extractor.

FIGURE 10. Dynamic reconfiguration between optimized and
approximate feature extractor [17].

The ASIC implementation of the optimized feature extrac-
tor is shown in Figure 8. The design is implemented using
UMC65 nmCMOS technology. It utilizes an area of 0.9mm2.
The operating frequency of the design is 91 MHz, and the
power supply is 0.9 V. The total power consumption at the
specified operating frequency and supply is 22.41 mw. Extra
silicon area is added to solve connectivity errors. Detailed
ASIC implementation results are depicted in Table 5.

FIGURE 11. Dynamic reconfiguration of optimized and approximate
feature extractors.

B. APPROXIMATE FEATURE EXTRACTOR
After removing the division by the standard deviation replac-
ing every natural logarithm by square root, the sensitivity
correspondingly drops to 96.77% (a drop by 1.6%).The sen-
sitivity, specificity, and accuracy obtained when the approx-
imate feature extractor along with linear SVM classifier and
SMO training accelerator are utilized for 4-second windows
are 96.77%, 90.43%, and 90.42% respectively.

The effect of changing the window size on the perfor-
mance metrics is studied by testing the design with input
windows that varies in size from 1 second to 4 seconds.
The performance metrics obtained in response to changing
the window size are listed in Table 6. With 4-second window
the specificity significantly increases at the expense of a slight
decrease in the sensitivity.

Similar to the proposed optimized feature extractor,
the proposed approximate feature extractor is generic; by
changing the window-Size parameter, the whole design is
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TABLE 4. FPGA implementation results for different widnow sizes.

TABLE 5. ASIC implementation results of the optimized feature extractor.

TABLE 6. Performance metrics with different input window sizes for the
approximate feature extractor.

adapted to be working with any window size. The proposed
design is implemented on Vertix-7 FPGA with a clock fre-
quency of 100 MHz. The resource utilization, power con-
sumption, and latency associated with each window size are
shown in Table 7. It is clearly shown that increasing the
window size increases the utilization and consequently the
power consumption and latency. As opposed to the opti-
mized feature extractor, the sensitivity increases with smaller

TABLE 7. FPGA implementation results for the approximate feature
extractor.

TABLE 8. ASIC implementation results of the approximate feature
extractor.

TABLE 9. Dynamic reconfiguration results.

window sizes in the approximate feature extractor. However,
the highest specificity is achieved with the widest window
size.

The ASIC implementation of the approximate feature
extractor is shown in Figure 9. The operating frequency
of the design is 91 MHz and the power supply is 0.9V.
The total power consumption at the specified operating fre-
quency is 2.5mW . The design area is 0.057mm2, and detailed
resource utilization and power consumption results are listed
in Table 8.
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TABLE 10. Performance comparision with prior work on different FPGA platforms.

V. DYNAMIC RECONFIGURATION
The tradeoff between the two proposed designs is sensitivity
and specificity achieved versus area utilization and power
consumption of the design.While the approximate design has
significantly less area utilization and power consumption, its
specificity suffers a drop by around 2% in comparison with
the optimized design.

For maximum advantage the two designs can be exploited,
however, When both designs are placed together the dynamic
power consumption is 95 mW and the junction temperature
is 125 (junction temperature exceeded).

The proposed power-aware system is achieved through
Dynamic Partial Reconfiguration (DPR). Dynamic partial
reconfiguration is a technique that allows the exploitation
of certain FPGA resources for more than one design at the
same time. The two designs can be configured to replace each
other depending on the available power and the criticality
of the situation. If the power level is high or the patient is
doing a very critical activity (like driving), the optimized

feature extractor is in control, and when the available power
decrease below certain threshold or the patient is doing a less
critical activity, the approximate feature extractor becomes
responsible for the operation.

Virtex-7 board is used for testing the proposed prototype;
it was found that the most suitable controller for the imple-
mented design using this board is partial reconfiguration
controller (PRC) based on the comparative study done in [15].

Figure 11 shows the implemented dynamic part of the
design. The reconfigurable partition can be reconfigured dur-
ing run time with the two different reconfigurable modules,
the optimized feature extractor and the approximate fea-
ture extractor. The reconfigurable partition size is chosen to
accommodate the optimized feature extractor, or the approx-
imate feature extractor. Resources utilization and power con-
sumption for each of the two reconfigurable modules are
shown in Table 9. It is shown that the power consumption
drops by around 64%, moreover, the junction temperature
remains within the normal margins.
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VI. COMPARISON WITH PRIOR WORK
The two proposed designs achieve a higher sensitivity and
specificity then many work in the literature like [4, 7, 8].
Moreover, an FPGA-system level comparison between the
proposed systems and other seizure detection systems is
depicted in Table 10.

The highest achieved sensitivity by the proposed designs is
higher than that in [19], [20], [21], [22], and [23] and approxi-
mately equals to the sensitivity achieved in [20]. No DSPs are
utilized in the proposed design in opposition to [20], and [21].
Moreover, the utilization of the approximate feature extractor
is less than the mentioned previous work [14], [19]–[21],
while the utilization of the optimized feature extractor has
less utilization than these systems in [14], [20], [21]. Besides
the sensitivity and utilization, the proposed system maxi-
mum latency is significantly less than that in [24] and [25].
The comparison does not include the power consumption
because every work has its own operating frequency, thus
the utilization only is compared which gives an insight that
the power consumed by the approximate feature extractor is
significantly less than other designs. No work in the literature
introduced power-aware systems for seizure detection where
DPR is utilized.

VII. CONCLUSION
A high sensitivity low cost power-aware seizure detection
system that can be exploited in a neural seizure detection
applications is implemented on both FPGA and ASIC plat-
forms. Two designs for the purpose of seizure detection are
presented. Optimized design that has significantly high per-
formance on the expense of area and power consumption,
and approximate design that saves more than 50% the power
and area reserved for the optimized design, but suffers 2%
decrease in the specificity achieved.

A power-aware system is achieved through dynamic partial
reconfiguration between the two designs saving around 64%
of the power consumption to ensure long battery life time
of the implemented chip while keeping the highest possi-
ble performance. The implemented system exploits fractal
dimension, Hurst exponent, and coastline for feature extrac-
tion, in addition to support vector machine training and clas-
sification with linear kernel. The system is tested with SMO
training accelerator through a sliding windows varying from
1 to 4 seconds. The maximum achieved specificity of the
proposed system is 92.14%, while the highest achieved sen-
sitivity obtained is 98.39% at 100 MHz operating frequency.
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