Cairo University

DESIGN OF A RECONFIGURABLE NETWORK ON
CHIP FOR NEXT GENERATION FPGA USING
DYNAMIC PARTIAL RECONFIGURATION

By

Ramy Ahmed Ali Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

DESIGN OF A RECONFIGURABLE NETWORK ON
CHIP FOR NEXT GENERATION FPGA USING
DYNAMIC PARTIAL RECONFIGURATION

By

Ramy Ahmed Ali Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Electronics and Communications Engineering

Under the Supervision of

Prof. Ahmed Hussein Mohamed Dr. Hassan Mostafa Hassan
Professor Assistant Professor
Electronics and Communications Electronics and Communications
Engineering Department Engineering Department
Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

DESIGN OF A RECONFIGURABLE NETWORK ON
CHIP FOR NEXT GENERATION FPGA USING
DYNAMIC PARTIAL RECONFIGURATION

By

Ramy Ahmed Ali Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Ahmed Hussein Mohamed

Electronics Professor, Faculty of Engineering, Cairo University

Prof. Amin Mohamed Nassar

(Internal Examiner)

Electronics Professor, Faculty of Engineering, Cairo University

Dr. Amr Talaat Abdel Hamid

Associate Professor, Electronics/Networks Departments, German
University in Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

(Thesis Main Advisor)

(External Examiner)

Engineer’s Name:

Date of Birth:
Nationality:
E-mail:
Phone:
Address:

Registration Date:

Awarding Date:
Degree:
Department:

Supervisors:

Examiners:

Title of Thesis:

Ramy Ahmed Ali Mohamed
23/06/1989
Egyptian
ramy.ahmed.ali@gmail.com
+201007994483
17 Building, 13B street, Maadi,
Cairo, Egypt
1/10/2012

/12019
Master of Science
Electronics and Communications Engineering

Prof. Dr. Ahmed Hussein Mohamed
Dr. Hassan Mostafa Hassan

Prof. Dr. Ahmed Hussein Mohamed (Thesis main advisor)
Electronics Professor, Faculty of Engineering,
Cairo University

Prof. Amin Mohamed Nassar (Internal examiner)
Electronics Professor, Faculty of Engineering,
Cairo University

Dr. Amr Talaat Abdel-Hameed (External examiner)
Associate Professor, Electronics/Networks Departments,
German University in Cairo

Design of a Reconfigurable Network on Chip for next generation FPGA using Dynamic

Partial Reconfiguration

Key Words:

Partial Dynamic Reconfiguration; Network on Chip; FPGA

Summary:

The main goal of this thesis is to present the runtime configurability support to CONNECT
Network-on-Chip (NoC). Additionally, the thesis studies the reconfigurability impact on the
network performance with its different configuration parameters. In comparison with the
fixed NoCs, the runtime configurable NoCs save area by reusing a part of the network when
it is not required during runtime. A reconfiguration tool is developed helping the user to
decide the optimum network structure for every used benchmark.

mailto:ramy.ahmed.ali@gmail.com

Disclaimer

| hereby declare that this thesis is my own original work and that no part of it has
been submitted for a degree qualification at any other university or institute.

| further declare that | have appropriately acknowledged all sources used and have
cited them in the references Section.

Name: Ramy Ahmed Ali Mohamed Date:

Signature:

Acknowledgments

| would like to thank Dr. Hassan Mostafa and Prof. Dr. Ahmed Hussein a lot for the
opportunity to work on such topic under their supervision and allowing me to add to my
skills and experience. Moreover, this work would not have been possible without the
flexible and healthy work environment offered by my manager Haytham Ashour.
Additionally, 1 would like to thank my teammate Ahmed Kamal for his continuous
encouragement and patience. Furthermore, | would like to express my sincere thanks and
gratitude to my workmate Ahmed Akl who helped me a lot with his knowledge. And, |
would like to thank my workmate Maha Beheiry who helped in the thesis work review.
Furthermore, a lot of thanks goes to my fiancée Samah Mamdouh who provided very
helpful comments and has not stopped supporting me till this work is finished. Finally, I
would like to thank my family members for their lifetime support.

Table of Contents

DISCLAIMER ...ttt e e e e e e e e e e e e aaees |
ACKNOW LED GIMENTS ..ottt e e e e e e e e e e s 1|
TABLE OF CON T EN T S .ottt e e e e e e e e e e e teeaseeeeeeeeeenaaaseeeeeeeeens 1]
LIST OF TABLES ...ttt e e et e e e et et ee e e e e e e e ee e eaeeeeeeeeeeennnnn V
LIST OF FIGURES ... oottt ettt e ettt e e e ettt et e e e e e s e eerab s VI
NOMENGCLATURE ...ttt ettt e e et e st e e e e e e e e reeeees IX
A B S T R A T ettt e e ettt et e s e ee et e eee et e eeeeaeeer et arreeeaeeenrranans X
CHAPTER 1 : INTRODUCTION ...ttt ettt et e e s e a e inn s e e s e eneennns 1
1.1. AV [0 3 LY 1 [1
1.2. CONTRIBUTION 11t tttttettttesseeeetteessssasseessssessssssssseesssssssasnsseeesssessrssnnnreeeees 2
1.3. ORGANIZATION OF THE THESIS ovtvtieieeeeeeeeetesseeeeeeeeestnnsssesesesessssnnnsseeeees 2
CHAPTER 2 : LITERATURE REVIEW ...ttt eeea e aneeennn 3
2.1. INTRODUCTION ... ettt ettt e et e e et et e e e et e e e e e e e e e e ees 3
2.2. FPGA ARCHITECTURE AND CAPABILITIEScoteeeeeeeeeeeeeeeeieeeaeeeeeeeeennnns 3
2.2.1. FPGA OVEE ASIC ..ottt as et e e sebae s sebebesesebesnnnnesnnenes 3
2.2.2. FPGA SETUCTUIE ...uvvvvveteitiiiiiereveieteieaebebebebebebebabebebebebabebebebabebebebebebebebeseberebereres 4

2.3. DYNAMIC PARTIAL RECONFIGURATION (DPR)coviiiiiciece e 5
2.3.1. SRAM cells configuration topologiesccceevvevvieeie i 5
2.3.2. Multi context CONFIGUIALIONcovevveiieiiiiireree e 7
2.3.3. Dynamic Partial Reconfiguration Advantagesccccccevvvevieevieeveeveesnennnn, 7

2.4. INETWORK ON CHIPS ... eeeeeeeeee e et eeeeee e e e e e e e eeeaeeaaeseeeeseeennassseseeesennnes 8
24.1. NOC PAIAMEBLEIS ...ttt e e e e e s e e seeean 8

2.5. CHALLENGES OF RECONFIGURABLE NOCS.......ccovviiiiiiiiiieeeieeeeeeeeeeeeeee 11
2.5.1. PrEVIOUS BF OIS ...ttt e e e e e et e e e e e e e e neees 11
2.5.2. D)Y N o RS 12
CHAPTER 3 : PERFORMANCE EVALUATION OF DYNAMIC PARTIAL
RECONFIGURATION TECHNIQUES FOR SDR ON FPGAcccccocoieiieeeiee 19
3.1. XILINX FPGA CONFIGURATION TECHNIQUESovvvviiiieeeiiiiiiiieeeeeeeeenne 20
3.1.1. JTAG 20
3.1.2. Y= =LY o To =TT 21
3.1.3. SBIBCIIMAP ..ottt et e e e e e e ettt e e e e e e s et eereeeranaes 21
3.1.4. L AP 22

3.2. SOFTWARE DEFINED RADIO ..coivivittiiiie ettt ettt s e e e neeeaaba s 23
3.3. RESULTS AND DISCUSSION 1vvuiiieeiiiereriiiiseessetesssssnnsesssssesssssnnseseseseesnn 24
CHAPTER 4 : APPLYING DYNAMIC RECONFIGURATION TO CONNECT

N O e ettt et e e e e et e e reeearr——————— 29

4.1. CONNECT NOC ARCHITECTURE ..ot eeeeeeeeeeeeee e eeeeeeieeae e e e e eeeeeennaaens 29

4.2. RECONFIGURATION CHANGES TO CONNECT ..o 31
4.3. TEST ENVIRONMENT STRUCTURE ..ieveteeerrtiiiiieeeseeessrsinnsseeesseesssninsseeeees 34
4.4, RECONFIGURATION TOOL evtttuiieeeeetesssssnsseessssesssssnnsesesssessssmneeeeeseesnn 35
CHAPTER 5 : IMPACT OF DYNAMIC RECONFIGURATION ON NETWORK
ON CHIP PERFORMANCE ...ttt eee e e e e e e e naeeaees 39
5.1. ENVIRONMENT SETUP. . .oieeiteee e et e e e e e e e et e e e e e e e eeeeeeneaaeeeeeesennnes 39
5.2. NETWORK TOPOLOGY DPR EVALUATION......uiiiiieiieeeeeie e e e eeeeeneeeens 39
5.3. BUFFER DEPTH DPR EVALUATION ...cceeie et e e aeeeens 46
5.4. VIRTUAL CHANNEL DPR EVALUATION ...ctue ettt ee e e eeeieeaneneeees 52
5.5. BUFFER DEPTH VS VIRTUAL CHANNEL......eeeitieeettiinieeeeereesssinnseseesseesnns 58
5.6. FLOW CONTROL DPR EVALUATION .cvvtiiieeeeeeeeetsissseeeeeseesssinnsessseseennes 62
5.7. AREA EVALUATION ...ttt ettt st e e e et eee s s eessaseessssnnseeessseesnes 66
5.7.1. (O 11T (1[0 | S 66

5.8. DESIGN RECOMMENDATIONS ... iteettteetttissseeeseseessssassesssssesssssnnnsessesseesnns 69
(00NN (01 U] 16\ TR 70
FUTURE WO RK .ottt ettt e e e e e e e e et ee e e e e e e e e e e e e e e e e e e eee e e raaaeeees 71
REFERENCES ... oottt et e e ettt e e e et e e e e e e e ere e e e e e e ee e e eraraaaeeees 72
APPENDIX A: RECONFIGURATION TOOL USER MANUALocovvvevvinnnn, 75
APPENDIX B: RECONFIGURATION TOOL SOURCE CODE...........ccccvvvvvnnnnn, 79

List of Tables

Table 3.1: Reconfiguration speed for different Reconfiguration techniques [28].......... 24
Table 4.1: Reconfiguration tool output for different user benchmarks............cccccceeven 35
Table 5.1: Estimated Virtex 5 Xilinx FPGA resource area [26, 27, 33]cccccevvvvvnnnee 66
Table 5.2: Case study benchmarks with Static NoC and Reconfigurable NoC

APPIOACIIES ...ttt 66
Table 5.3: Area resources for different networks corresponding to different benchmarks
.. 68

List of Figures

Figure 2.1: FPGA versus ASIC with respect to Cost and Number of units [1] 3
Figure 2.2: Mesh-based FPGA internal Structure [2]ccccoevveiiieiieiiiieiie e 4
Figure 2.3: SRAM configuration topologies [3]ccccieririniiniiiiieescre e 6
Figure 2.4: Tabula FPGA internal Structure [4]cccoiveiiieiiie e 7
Figure 2.5: Dynamic Partial Reconfiguration iHustration [7]cccccooeveiiienininniicinennns 8
Figure 2.6: Star, Mesh, and Ring network topologies [8]ccccceviriiiiiiiiiiieiie e 9
Figure 2.7: Credit based flow control structure [9]ccooviriniiiiiiieieee, 10
Figure 2.8: Feasible (a) and infeasible (b) component placement [11]........ccccocvevvnenen. 13

Figure 2.9: Obstacle surrounding in the horizontal (a) and vertical (b) directions [12].15
Figure 2.10: Placement leading to extremely long routing path (a); Router guiding in

the DYNOC (10) [12] ..ot 17
Figure 2.11: Merging bit-stream for a 2D partial reconfiguration on Xilinx FPGAs [12]
.. 18
Figure 3.1: Reconfiguration techniques of convolutional encoder inside communication
(010 1 USSR 20
Figure 3.2: SelectMAP structure in Xilinx Virtex 5 FPGAS [24]coocvviveviiiiieiiene, 22
Figure 3.3: 8-bit ICAP and SelectMAP with Serial mode and JTAG [28]cccccveeee. 25
Figure 3.4: 16-bit ICAP and SelectMAP with Serial mode and JTAG [28]c......... 26
Figure 3.5: 32-bit ICAP and SelectMAP with Serial mode and JTAG [28] 27
Figure 4.1: CONNECT NoC RTL configurator [8]cccceivveviieiiiiiie e 30
Figure 4.2: CONNECT NoC router core internal Structureccccooceveneniennneninnnnn. 31
Figure 4.3: Reconfigurable CONNECT NOC StrUCtUIeceevvevivieiieiieesie e 32
Figure 4.4: Reconfigurable examples of CONNECT NoC during runtime [29] 33
Figure 4.5: Environment structure of CONNECT NoC during runtime [29] 34
Figure 4.6: Reconfiguration tool Structure [29].........cccviiiiiiiniiiee e 35
Figure 4.7: Reconfiguration tool interface in Batch mode............ccccccovveviiieiiciv e, 36
Figure 4.8: Reconfiguration tool interface in GUI modecccooeviieiiniieiiiieee, 37
Figure 4.9: Reconfiguration tool output in Batch and GUI modesccccceevevivennnee. 37
Figure 5.1: CONNECT throughput of all PDR configurations — Credit-based flow
CONEIOI — WV C=2 — BDZ4 ...ttt 40
Figure 5.2: CONNECT Performance all PDR configurations — Credit-based flow
CONEIOI — WV C=4 — BDZ4 ...ttt 41
Figure 5.3: CONNECT throughput of all PDR configurations — Credit-based flow
CONEIOI — V=4 — BDZ8 ...ttt 41
Figure 5.4: CONNECT throughput of all PDR configurations — Credit-based flow
CONEIOI — V=4 — BDZL16 ...ttt 42
Figure 5.5: CONNECT throughput of all PDR configurations — Credit-based flow
CONEIOI — V=4 — BDZ32 ...ttt bbbt 42
Figure 5.6: CONNECT throughput of all PDR configurations — Credit-based flow
CONEIOI — V=4 — BDZB4 ...ttt 43
Figure 5.7: CONNECT throughput of all PDR configurations — Peek-based flow
CONEIOI — WV Cm8 — BDZ4 ...ttt bbbt 43
Figure 5.8: CONNECT throughput of all PDR configurations — Peek-based flow
CONEIOI — V=8 — BDE8 ...t 44
Figure 5.9: CONNECT throughput of all PDR configurations — Peek-based flow
CONEIOI — V=8 — BDZL6 ...ttt 44

Vi

Figure 5.10: CONNECT throughput of all PDR configurations — Peek-based flow

CONEIOl — WVC=8 — BDm32 ..t 45
Figure 5.11: CONNECT throughput of all PDR configurations — Peek-based flow
CONEIOl — WVC=8 — BDmB4 ...ttt 45
Figure 5.12: CONNECT throughput of all BD configurations — Mesh 4x3 — Credit-
based fIOW CONIOl — VC=2 ... s 46
Figure 5.13: CONNECT throughput of all BD configurations — Mesh 2x2 — Credit-
based fIOW CONIOl — VC=2 ... s 47
Figure 5.14: CONNECT throughput of all BD configurations — Mesh 2x1 — Credit-
based fIOW CONIOl — VC=2 ... s 48
Figure 5.15: CONNECT throughput of all BD configurations — Mesh 4x4 — Peek-
based fIOW CONIIOl — VC=2 ... s 48
Figure 5.16: CONNECT throughput of all BD configurations — Mesh 4x3 — Peek-
based fIOW CONIOl — VC=2 ... s 49
Figure 5.17: CONNECT throughput of all BD configurations — Mesh 3x3 — Peek-
based fIOW CONIOl — VC=2 ... s 49
Figure 5.18: CONNECT throughput of all BD configurations — Mesh 3x2 — Peek-
based fIOW CONIOl — VC=2 ... s 50
Figure 5.19: CONNECT throughput of all BD configurations — Mesh 2x2 — Peek-
based fIOW CONIOl — VC=2 ... s 50
Figure 5.20: CONNECT throughput of all BD configurations — Mesh 2x1 — Peek-
based fIOW CONIOl — VC=2 ... 51
Figure 5.21: CONNECT throughput of all VC configurations — Mesh 4x4 — Peek-
based fIOW CONIOl — BD=4c.ooiiiectese e 52
Figure 5.22: CONNECT throughput of all VC configurations — Mesh 2x1 — Peek-
based fIOW CONIOl — BD=4c.ooiiiectese e 53
Figure 5.23: CONNECT throughput of all VC configurations — Mesh 4x4 — Peek-
based FlOW CONIOl — BDZB4c..ooveeieeiecie sttt 53
Figure 5.24: CONNECT throughput of all VC configurations — Mesh 4x4 — Credit-
based Flow CONLrOl — BD=8ccvviiiiiee e 54
Figure 5.25: CONNECT throughput of all VC configurations — Mesh 4x3 — Credit-
based Flow CONrOl — BD=8ccvviieiieesie et 55
Figure 5.26: CONNECT throughput of all VC configurations — Mesh 3x3 — Credit-
based Flow CONLrOl — BD=8ccvviiiiiee et 55
Figure 5.27: CONNECT throughput of all VC configurations — Mesh 3x2 — Credit-
based FlOw CONrOl — BD=8ccuviieiicecie ettt 56
Figure 5.28: CONNECT throughput of all VC configurations — Mesh 2x2 — Credit-
based fIOW CONIOl — BD=8c..oiiiiiiiirieseee s 56
Figure 5.29: CONNECT throughput of all VC configurations — Mesh 2x1 — Credit-
based fIOW CONIOl — BD=8c.coiiiiiiiiieseee s 57
Figure 5.30: CONNECT throughput of BD vs VC configurations — Mesh 4x4 — Peek-
based flow control —VC=2, 4,and 8 — BD=4, 8, and 16..........cccceeerrrerieririririreennns 58
Figure 5.31: CONNECT throughput of BD vs VC configurations — Mesh 4x4 — Credit-
based flow control —VC=2, 4,and 8 — BD=4, 8, and 16...........ccceeerrrererieririrerienns 59
Figure 5.32: CONNECT throughput of BD vs VC configurations — Mesh 3x3 — Credit-
based flow control — VC=2, 4, and 8 — BD=8, 16, and 32cccccerererierieririenerennnns 59
Figure 5.33: CONNECT throughput of BD vs VC configurations — Mesh 3x3 — Peek-
based flow control — VC=2, 4, and 8 — BD=8, 16, and 32cccccerererierieriiririrennnns 60
Figure 5.34: CONNECT throughput of BD vs VC configurations — Mesh 2x2 — Credit-
based flow control — VC=2, 4, and 8 — BD=16, 32, and 64cccccererererciriinieennnns 60

vii

Figure 5.35: CONNECT throughput of BD vs VC configurations — Mesh 2x2 — Peek-

based flow control — VC=2, 4, and 8 — BD=16, 32, and 64cccccererereririenieennnns 61
Figure 5.36: CONNECT throughput of Flow Control configurations — Mesh 4x4 —
VCZ2 — BDT4 .ot 62
Figure 5.37: CONNECT throughput of Flow Control configurations — Mesh 2x1 —
VCZ2 — BDT4 ..t 63
Figure 5.38: CONNECT throughput of Flow Control configurations — Mesh 3x3 —
VCT4 — BDZL6 .ottt bbbt bbbt 63
.. 64
Figure 5.39: CONNECT throughput of Flow Control configurations — Mesh 2x2 —
VCZ4 — BDE32 ..ttt ettt bt ne s 64
Figure 5.40: CONNECT throughput of Flow Control configurations — Mesh 4x3 —

VW ECZ8 — BDE8 ..ottt 64
.. 65
Figure 5.41: CONNECT throughput Flow Control configurations — Mesh 2x1 — VC=8
S BDEBA .t bbbt 65
Figure 5.42: Virtex 5 xc5vIx110tff1136-1 Area results of reconfigurable mesh 4x4
CONNECT vs Static mesh 4x4 CONNECTccooiiiiiiiiiiiieee e 67
Figure A.1: The Reconfiguration tool required files and sheetscccocevvvrivinnnne. 75
Figure A.2: The Reconfiguration tool interface and outputc.cccccovevveveicieiecnenne, 77

viii

NRC

ASIC

FPGA

NoC

DPR

CLB

SDR

SoC

JTAG

ICAP

RTL

BD

VC

FC

LUT

Nomenclature

Non Recurring Cost

Application Specific Integrated Circuits
Field-Programmable Gate Array
Network on Chip

Dynamic Partial Reconfiguration
Configurable Logic Block
Software Defined Radio

System on Chip

Joint Test Action Group

Internal Configuration Access Port
Register Transfer Level

Buffer Depth

Virtual Channel

Flow Control

Look-Up Table

Abstract

With the vast increase in the design densities inside System-on-Chips (SoCs) every
year, Network-on-Chip (NoC) design architecture is introduced as a reliable on-chip
communication platform facing the challenges of complex design systems. NoC design
approach is preferred over the conventional bus communication for its scalability,
improved modularity, and better performance.

On the other hand, the advancement in dynamically reconfigurable Field
Programmable Gate Arrays (FPGASs) allows the hardware designs to be reconfigured
during runtime. Dynamic Partial Reconfiguration (DPR) adds more flexibility to
hardware modules and offers better area utilization and more power optimization.
Furthermore, using DPR permits the adaptive hardware algorithms to evolve based on
the different applications.

Introducing the reconfigurability concept into one of the most ramping and trending
design platforms like the NoC is considered a good opportunity for extracting the benefits
out of the two concepts. The high flexibility and full customization of the reconfigurable
NoC could open the door for a completely adaptive NoC that suits a large number of
benchmarks according to the runtime requirements. The importance of reconfigurable
NoCs appears with the designs intended to be dynamically reconfigurable. When the
NoC is part of the design, its re-configurability gives the opportunity to operate with the
best fit network to every user benchmark.

The ability to reconfigure SRAM-based FPGAs is the most powerful feature over
Application Specific Integrated Circuit (ASIC) designs. DPR emphasizes this feature by
increasing flexibility over runtime phase. Xilinx Virtex family of FPGAs provides four
techniques to perform DPR; SelectMAP, Serial mode, JTAG, and ICAP. In this thesis,
each technique is reviewed, evaluated, and tested using convolutional encoder module
which is an essential block from Software Defined Radio (SDR) system. SDR as a system
is chosen as it becomes the most promising application for DPR. Experiments are carried
out using Xilinx Virtex 5 to measure the trade-offs between performance and area-
overhead by adding reconfiguration controller on/off FPGA fabric. It is shown that the
performance of each interface is independent of design resource. However, the
performance is proportional only with partial reconfiguration region selection which had
been chosen at the Place and Route phase.

The main objective of this thesis is to present the runtime configurability support to
CONNECT NoC. Additionally, the thesis studies the impact of this reconfigurability on
the network performance with its different configuration parameters. Runtime
configurability expands the flexibility of NoCs and allows a full customization to the
NoC with the dynamic reconfigurable designs. In comparison with the fixed NoCs, the
runtime configurable NoCs save area by reusing a part of the network when it is not
required during runtime. A reconfiguration tool is developed to assist the user in
constructing the optimal network structure for every used benchmark. The
reconfiguration tool requires the minimum needed throughput and the expected traffic
load as inputs. The tool inputs are required to recommend the best network configuration
according to the minimum area that achieves those requirements.

Chapter 1 : Introduction

This chapter highlights the aim of applying the configurability concept into modern
systems based on Network on Chip architectures. A complete study to the
reconfigurability impact is provided inside this thesis. The following Sections present the
motivation behind this work, the contribution added to this work, and the thesis structure
and organization.

1.1. Motivation

Design area and throughput are among the most important metrics that need to be
considered while planning an architecture for a SoC. With the complexity of designs,
NoC design architecture appeared as an optimal candidate for an on-chip platform that
can be customized according to the application requirements. NoC design approach is
preferred over the conventional bus communication for its scalability, improved
modularity, and better performance.

On the other hand, introducing the reconfigurability concept into the FPGAs unlocks
a lot of capabilities in the hardware designs leading to a full hardware customization
during runtime. The added flexibility to the hardware by the DPR offers better area usage
and more power optimization. In addition, using DPR allows the adaptive hardware
algorithms to evolve based on the different applications.

Studying the reconfigurability techniques offered by FPGA providers (Xilinx and
Altera) would aid in analyzing the strength and weakness of the different methods with
the different design sizes. Besides, taking into consideration the reconfigurability
constraints could help in the design phase of any SoC. This maximizes the gain earned
from targeting reconfigurable architectures.

Introducing the DPR capability to the NoC creates new opportunities for
customizing network topology according to the system requirements during the runtime.
Self-adaptive NoCs during runtime are beneficial when used with configurable hardware
design. The configurable hardware has multiple benchmarks and different performance
requirements, and this flexibility is absent in the fixed NoCs.

1.2. Contribution

This work includes the following contributions:

Presenting a complete review and a comparison for the different DPR
techniques in Xilinx FPGAs including serial and parallel methods. Then,
providing a complete evaluation for the Serial techniques (JTAG and Slave
Serial mode) against the parallel techniques (SelectMAP and ICAP).
Studying the CONNECT NoC with all its capabilities and how they are
implemented. Then, integrating the RTL into a test environment for
evaluation.

Introducing the Configurability to the CONNECT NoC Register Transfer
Level (RTL) to be fully adaptive during runtime. The flexibility is
accompanied with switching into a certain topology and updating all the
routing tables for creating alternative paths to the routed packets.
Implementing a configuration tool for analyzing the different benchmarks’
requirements. The tool is responsible for choosing the most suitable network
topology according to the desired performance. The selection criteria is based
on the minimum area and power overhead of the different user benchmarks.
Providing a complete study for the impact of reconfigurability on the NoC
different parameters. The study includes how those parameters can
emphasize the value of the dynamically adaptive network

1.3. Organization of the thesis

The remainder of this thesis organized as follows. Chapter 2 provides a detailed
survey of the DPR and NoCs with FPGA. Chapter 3 presents a performance evaluation
of the different DPR techniques inside Xilinx FPGAs using SDR as an application.
Chapter 4 offers a detailed description of CONNECT NoC and the contribution made for
adding the reconfiguration capability into it. Chapter 5 shows a complete study for the
impact of introducing the configurability to NoCs. Chapter 6 presents a discussion and
conclusion for the work in addition to the possible future work for this thesis.

Finally, Appendix A contains a user manual for the Reconfiguration tool and
Appendix B contains the Reconfiguration tool source code.

Chapter 2 : Literature Review

2.1. Introduction

This Chapter covers the FPGA technology important concepts like the advantages
and disadvantages of FPGA over ASIC, FPGA internal architecture, the Partial Dynamic
Reconfiguration, and Network-on-Chip concepts. After those concepts being discussed,
the reconfigurable NoCs are reviewed and the related work in this area is presented.

2.2. FPGA architecture and Capabilities

2.2.1. FPGA over ASIC

ASIC and FPGA market constraints and needs are different. The ASIC industry
consumes a lot of cost for fabrication which includes the Non-Recurring Cost (NRC)
with a much more optimized hardware than the FPGAs. Therefore, it is better for the
large number of units or large fabrication volumes. On the other hand, the FPGA’s cost
with low volumes is much more efficient on the expense of design optimization.
Therefore, it is more suitable with the initial prototypes and designs with relaxed
constraints (speed, area, power ...).

In addition to that, with the technology advancement, the cross-over point between
ASIC cost and FPGA cost is moving forward as shown in Figure 2.1. This gives an
advance for the FPGA in the future when it comes to the unit cost, time to market, design
cycle, and design reusability.

-+
(7]
o :
Q :
- Crossover
° i point,
= -7 ;
: generation n+1
Crossover '
NRE < point,

FPGA generation n

Number of Units

Figure 2.1: FPGA versus ASIC with respect to Cost and Number of units [1]

2.2.2. FPGA structure

FPGA is considered as a good alternative for the digital logic implementation. The
FPGA is a pre-fabricated silicon chip that can be programmed multiple of times in order
to implement any digital circuit. A general internal architecture for the mesh-based
FPGASs can be shown in Figure 2.2.

Channel
Width
(W)
T T _ 1T
Islﬁ HCBE ﬁﬁ S CBE El[=3y= ﬁﬁ Vertical Routing
‘ % (Channel
KaRiss R CB CB cB|
[l 1] (1] L[] _
Configurable~ [SBIE{CBIS{SBI={CBI={SBI= CBI={SB| w— S*/CL B*
Logic Block ;ﬂ' il (] g
(CLB) 5|CB CB CB =
11 111
SBECBESBEHCB=SB :
I Il Il R
B: CB CB CB
Horizontal
Routing Channel TR ”” L ;
SB = CBESBECBSB=CBSB

fh do oo

Figure 2.2: Mesh-based FPGA internal structure [2]

FPGA consists mainly of the following component blocks:
e Programmable logic blocks
e Programmable routing
e 1/O blocks

The Programmable logic blocks are responsible for implementing the logic
functions. The programmable routing (interconnects) is used for connecting the logic
functions. Additionally, the I/O blocks are responsible for interfacing with other chips.

The FPGA architecture shown in Figure 2.2 is the most common architecture for the
FPGAs and is known by the island style architecture. The arrangement of the
Configurable Logic Blocks (CLBs) is in a 2D-grid and they are connected to each other
by means of programmable routing networks. Moreover, the Input/Output (1/0) blocks
are connected to the programmable routing network.

Due to the advancement in the design sizes and complexity, an enormous amount of
logic is implemented inside the FPGA chip. This amount leads to the appearance of many
routing and communication issues. These communication issues were challenging the
new FPGA architecture advancements. Ideas like NoCs and DPR are offered by the
FPGA providers as an option for specific design requirements. This thesis reviews the
NoC and DPR concepts and discusses the opportunity of the reconfigurable NoCs in the
next generation FPGAs.

2.3. Dynamic Partial Reconfiguration (DPR)

The configuration of the FPGA is the action of downloading a design into the
programmable blocks of the FPGA. This is achieved by means of electrical pins and
configuration memory. The configuration is categorized into the following different
categories:

e Full reconfiguration vs Partial reconfiguration
The full reconfiguration is reconfiguring the whole design inside the FPGA,
while the partial one is reconfiguring a part of the design maintaining the rest
of the design as it is.

e Static reconfiguration vs Dynamic reconfiguration
The static reconfiguration is the reconfiguration while the design operation
is stalled, while the Dynamic configuration is the configuration while the rest
of the implementation is running (at runtime).

This thesis is mainly concerned with the Partial Dynamic Reconfiguration.

2.3.1. SRAM cells configuration topologies

Programming of SRAM cells in FPGA is achieved through different topologies that
differ in simplicity and optimization. The SRAM configuration is categorized into the
following categories:

e Coarse grained vs Fine grained
The coarse grained configuration requires programming of a large block as
the design is divided into large ones. While in fine grained configuration, the
design is divided into fine elements as the building block of the design
configuration. This makes the coarse grained is better in routing simplicity
and speed while the fine grained is better in area utilization.

Several SRAM cell configuration techniques are used and differ in the method
simplicity, control and programming blocks access. Below is a description of different
SRAM configuration topology with highlighting the advantage and disadvantage of each.

_-config. clock
config. data—

Register chain configuration

The SRAM cells are arranged in a chain and the configuration is performed
through a single configuration pin outside. This requires a certain
configuration data pass by a long chain of cells before reaching its target
SRAM cell. This topology has simple configuration wiring and requires a
simple configuration controller. However, it is very poor in register access,
especially when the number of registers is large. An illustration of the register
chain configuration is shown in Figure 2.3 (a).

Column based configuration

The column based topology provides an access to each column letting a
quicker configuration than the register chain configuration topology.
However, the column based configuration requires a column decoder for
analyzing the target column and cell to be programmed. This way of
decoding increases the wiring complexity. Therefore, the column based
configuration is better in register access yet more complex in wiring and
routing. An illustration of the column based configuration is shown in Figure
2.3 (b).

Mixed configuration

The mixed configuration is based on both topologies, the register chain and
column based ones are merged into this topology. The SRAM cells are
divided into regions, each region is accessed like the column based
configuration. Inside each region, SRAM cells are organized in a register
chain. An illustration of the mixed configuration is shown in Figure 2.3 (c).

column decoder column decoder

LQLQLE__.LQLE

T

TR TR

b3 Hal Ml el el 1

SENENENIENL

gy Py P, P E—'— o

Figure 2.3: SRAM configuration topologies [3]

2.3.2. Multi context configuration

Some modern FPGA architectures go beyond the conventional single context
configuration and investigate new areas in context switching. This context switching is
achieved with a very high speed between different layers of configuration. This criteria
is named as space-time configuration as it allows different plane context switching to be
done in a time multiplexed way.

Figure 2.4 shows an example for Tabula FPGA that uses 12 planes and time
multiplex between them by a high speed clock of 2 Ghz while the user clock is 12 times
slower.

Z
A
1"
10
9 ,
8
4
12 folds ¢
4 X
3
g
0
y

J I 166 MHz
4 user clock

Figure 2.4: Tabula FPGA internal structure [4]

2.3.3. Dynamic Partial Reconfiguration Advantages

DPR is the act of reconfiguring a portion of an FPGA during runtime after its initial
configuration.

The most valuable advantage of DPR is that it presents more flexibility to the
hardware designs. In addition, DPR allows the implementation of complex circuits within
a reasonable area and reduces static power consumption. Thus, it introduces the concept
of virtual hardware [5].

DPR is used with applications that require high level of flexibility like SDR and
some embedded FPGA applications; video processing, cryptography, and genomic
sequence alignment. Moreover, DPR has an important role in implementing adaptive
hardware algorithms and improve FPGA fault tolerance [6].

Most of Xilinx FPGAs (i.e. Virtex series) support DPR. Additionally, Altera FPGAS
support the DPR. Figure 2.5 shows a high level illustration of the DPR within an SDR
system.

Figure 2.5: Dynamic Partial Reconfiguration illustration [7]

2.4. Network on Chips

Network on Chip (NoC) is a communication platform for connecting different apart
elements in the design with each other. NoC is considered as an alternative for the
conventional bus communication systems. Besides, NoC evolves due to the massive size
of designs and its complexity.

The true value of NoC in FPGA appears in its scalability, modularity, and its power
optimization compared to the conventional bus communication. The NoC mainly is
composed of routers, links, and network interface. In general, the NoC is defined with
certain prameters which are described below in the next subsection.

2.4.1. NoC parameters

Any NoC has some parameters that need to be covered as it impacts the network
characteristics differently. Those parameters are as follows:

e NoC topology
The NoC topology is the arrangement and connection of the NoC router
elements. There are a lot of NoC topologies such as Mesh, Ring, Star, Line,
Fat Tree, and others.
The topology selection depends mainly on the application targeted from
using the network. Figure 2.6 shows some examples for the different network
topologies.

Figure 2.6: Star, Mesh, and Ring network topologies [8]

9

Flow control

The flow control mechanism defines the way NoC is handling its own
resources. The flow control is responsible for broadcasting the availability of
the network nodes, buffer space, and virtual channel allocation.

Two main important types of flow control are: Peek flow control and Credit
based flow control.

The peek flow control is a simple communication handshake informing the
neighbors the availability of resource in each node without more detailed
information about the remaining space available. On the other hand, the
credit based flow control is responsible for sending credits with each resource
update available or busy.

Figure 2.7 shows a simple structure for the credit based flow control.

buffer | —
credit
credits -—e =T
5
CZZZZZ7A— 77777 A i T gy B
cell cell W zzzzzzzin
S R b \
flowGr fgCr :
vy credit buffer
0|b] - m 0
11b oolCr 1
2|b] i: flowGr 2 .
.- B-1
F-1lb| cell
Figure 2.7: Credit based flow control structure [9]
o Buffer Depth

The buffer depth is the size of the memory buffer inside each router element.
The buffer depth is reflecting directly how much packets can the router store
from the source. These stored packets then go through the allocation and the
router node pass them to their next station according to the routing path.

Virtual Channel

The virtual channel provides the interface with separate paths for a virtual
parallelization at the transaction level. Each interface port has its own buffer
depth leading to the sense of separate queues which reduce the latency and
enhance throughput. Some virtual channels may have priority over others
according to the requirement and the arbitration sequence.

10

2.5. Challenges of Reconfigurable NoCs

The importance of reconfigurable NoCs appears with the designs intended to be
dynamically reconfigurable. When the NoC is part of the design, its re-configurability
gives the opportunity to operate with the best fit network to every user benchmark.

Many NOC architectures are proposed offering a high level of configurability.
However, most of the work done in configurable NoCs is addressing the design time
configurability not the runtime [31]. However, some configurable NoCs handle dynamic
communication issues like surrounding or bypassing obstacles during runtime and how
routing adaptation could be managed dynamically.

The next subsections discuss the related work in this area with a detailed coverage
to the DyNoC as a good example for a dynamic adaptable NoC.

2.5.1. Previous efforts

In [10], the authors proposed a NoC handling circuit routing for dynamic
reconfigurable devices and how this is better than the bus based communication
architectures. In [11] and [12], DyNoC is proposed offering dynamic capabilities to the
routing mechanism in order to guarantee the reachability to all the blocks and pins.
Consequently, this is achieved by extending the well-known XY routing algorithm to an
S-XY-routing (Surrounding XY routing) which is based on surrounding obstacles during
runtime for a deadlock-free routing mechanism. The DyNoC is discussed in the next
subsection.

Moreover, the authors in [13] proposed a CoNoChi NoC with minimal number of
switches and area overhead with a similar deadlock-free mechanism. Moreover, they
offered two ways of reconfigurations with the NoC stalled and without the NoC stalled.

In [14], the reconfigurability is achieved by placing or removing switches and using
dynamic routing tables to guarantee full connectivity and every switch is accessed by the
neighbors. In addition, network updates are propagated through special packets from a
global control unit.

In [15], the NoC reconfiguration is based on local traffic monitoring and path weight
calculations are passed to a global arbiter for selecting the minimum cost path.

11

2.5.2. DyNoC

The solution proposed by DyNoC is based on the communication between modules
dynamically placed at runtime on a 2D NoC-based reconfigurable device. This is because
of DyNoC advantages in performance, modularity, and structure. An advantage of the
packet-based approach is that changing the network does not block communication,
because packets are always routed in a strongly connected network. A set of components
is strongly connected if and only if, for every pair of components, a path of routers exists
connecting the two components. The DyNoC architecture achieves the packet-based
approach.

DyNoC implementation goal was not only to ensure module reachability. In
addition, the pin reachability was targeted. Therefore, a requirement for the chip
architecture is set: A ring of routers should internally surround the device. Figure 2.8
shows this architecture. Each task is implemented as a component, represented by a
rectangular box and stored in a database. Because the synthesis is time-consuming,
component synthesis must be done during the compile time. A box encapsulates a circuit
implemented with the resources in a given area (router logic and PES).

A component (or pin) at a given time on a reconfigurable device is reachable only if
every packet sent to this component can reach the component. Because the chip’s
configuration is unknown in advance and communications among components are
established during the runtime, all pins and components on the device must be assured to
be reachable at any time during the temporal placement. This condition is met at any time
if the pins and components on the device are strongly connected.

The one way to enforce strong connectivity is to make a ring of routers which always
surrounds each component on the chip as a requirement. This can be achieved by one of
two solutions. The first solution is synthesizing components so that they are always
surrounded by a ring of routers when they are on the device. However, the second
solution is achieved by leaving the job to a temporal placer. Nevertheless, this task
increases the placer’s complexity. Besides the computing free space in which to place a
new component, the module placement must be strongly connected.

Therefore, the first solution is chosen. The following statement holds: If each
component is synthesized in a way that it is only surrounded internally by PEs, then each
placement on the reconfigurable device is strongly connected.

Figure 2.8 (a) and Figure 2.8 (b) show the different component placement types and
how this affects the connectivity and the reachability of each PE.

12

Abutting
component 1

Abutting
component 2

(a)

] PE @ Router cvr Local wire

Q—,Q-o---{..,’/.

K component 1. ; A Component. [

— ‘o - ®
Wad! 5
= S«
@ Component ’? £ ®
3 LN - un S
¢ ———b —
(b)

Figure 2.8: Feasible (a) and infeasible (b) component placement [11]

13

In fact, if a set of components which is developed as required in the preceding
statement and placed on the device is not strongly connected, at least one pair of
components, or a single component, borders the device boundary. Without loss of
generality, if the first case is considered, then either the two components will overlap or
at least one component uses some routers on its internal boundary. The first case is
impossible because only overlapping-free placements are valid.

The second case contradicts the preceding statement’s requirement. Figure 2.8 (a)
shows an impossible placement, in which two components border. Figure 2.8 (b)
illustrates a placement in which all components and pins are reachable.

In the static NoC, each router always has its own four active neighbor routers.
However, this is not always the case in the Dynamic NoC like DyNoC which is presented
here. Whenever a component is placed on the device, it covers the routers in its area.
Those routers are deactivated because they cannot be used. Therefore, the component
sets a deactivation signal to the neighbor routers in order to notify them not to send
packets in its direction. Upon the completion of its execution, the component sets the
deactivated routers back to their default state. Due to the obstacles created by the
components dynamically placed on the chip, a routing algorithm that was used for
common NoCs cannot work on the DyNoC in this case.

Therefore, a routing algorithm is provided to DyNoC (based on the well-known
greedy XY algorithm) that considers network obstacles. As Figure 2.9 shows, the
algorithm treats cases in which packets are blocked in the horizontal direction differently
from cases in which packets are blocked in the vertical direction.

The proposed routing algorithm is called S-XY (Surrounding XY). As it is an
extension of the XY routing algorithm, it still holds the properties of the XY algorithm:
locally decisive and deadlock free. This means that each packet reaches its destination
after a finite number of steps. Each router operates in three different modes:

e Normal XY (N-XY): A normal XY router behavior, the router sends a packet
first horizontally to the right column and then vertically to the right row.

e Surround horizontal XY (SH-XY). The router enters this mode when its left or
right horizontal neighbor is deactivated.

e Surround vertical XY (SV-XY). The router enters this mode when its upper or
lower vertical neighbor is deactivated.

14

Routing path 1

-
-

Obstacle
component

Destination

(a)

Obstacle

component

Routing
pat

Destination |
component |-

(b)

Figure 2.9: Obstacle surrounding in the horizontal (a) and vertical (b) directions
[12]

15

Assume, without loss of generality, that an obstacle blocks a packet moving from
the right to the left. As Figure 2.9 (a) shows, there are two alternative paths by which the
packet is routed to reach its destination. If the Y-coordinate of the packet’s destination is
greater than or equal to the local router’s Y-coordinate, the local router chooses the first
path and sends the packet upwards. Otherwise, the local router chooses the second path
and sends the packet downwards. A problem occurs when, for example, a packet with
destination Ydest traverses upwards and reaches router R whose coordinate Yr which is
greater than Y dest.

According to the previously defined scheme, the packet traverses downwards to the
router with coordinate Yr — 1, which sends it upwards, thus producing a Ping-Pong effect.
To avoid this Ping-Pong behavior, the second router stamps the packet by setting a stamp
bit to 1 to notify router R not to send the packet back. The stamp bit is removed when the
packet reaches the router at the device’s upper right, and the packet traverses left until
reaching its destination column or encountering another obstacle. The algorithm treats
cases in which a packet moving vertically is blocked in the same way, except that all
packets must be stamped. Otherwise, the Ping-Pong effect will always occur between
router 2 and router 4, as shown in Figure 2.9 (b).

Whenever a packet is blocked in a given direction, it takes the perpendicular
direction. This allows the packet to continue until it reaches the last router on the blocking
component boundary at one corner of the module that the packet must surround. From
this point, the N-XY routing algorithm can resume. Therefore, a packet’s looping around
a component is not possible.

Obviously, the algorithm creates a placement sequence in which a packet keeps
moving around in the device and never reaches its destination. This problem is common
at online algorithms. However, only one packet is lost, and all the remaining packets
reach their destinations. A packet’s probability of being blocked is then less significant.
In the S-XY routing, the direction is fixed in advance for all routers in which to send a
packet whenever it encounters an obstacle. This can lead to extremely long routing paths
like that is shown in Figure 2.10 (a), which is caused by placements for which the routers
always choose the right path.

16

Destination

=
Q Component 1
il ==—==—="s
Q Component 2

_———— = —

Component 3
Q. S
Component 4
& F—F——&F—9

Shortest path Source Longest path
(a)

51 01 00 30

01 01
01 01
01 01
00 00
00 00

(b)

Figure 2.10: Placement leading to extremely long routing path (a); Router guiding
in the DyNoc (b) [12]

17

To avoid this problem, the placed component informs each router which direction to
take whenever the component blocks an incoming packet in a given direction. Figure
2.10 (b) illustrates this approach which is called router guiding. Instead of one activation
line code, two lines are used: the first is for activation (1 = activate, 0 = deactivate), and
the second is for direction (0 = east or south, 1 = west or north). This limits the router
complexity considerably and eliminates the need for stamping.

Some component placements lead into making multiple routers has the same

direction of routing and decisions, the algorithm is merging of the bit-stream information
such as the one shown in Figure 2.11.

P Slice Bus macro

Il
3/
O

Figure 2.11: Merging bit-stream for a 2D partial reconfiguration on Xilinx FPGAs
[12]

18

Chapter 3 : Performance Evaluation of Dynamic Partial
Reconfiguration Techniques for SDR on FPGA

DPR presents more flexibility to the hardware designs which are considered as its
most valuable advantage. Additionally, DPR allows the complex circuits implementation
within the constant area and works on reducing the static power consumption, thus it
introduces the concept of virtual hardware [5]. DPR is recommended with applications
that need high level of flexibility like SDR and some embedded FPGA applications;
cryptography, video processing, and genomic sequence alignment. Besides, DPR plays
an important role in implementing adaptive hardware algorithms and improves FPGA
fault tolerance [6].

Many Xilinx FPGAs (i.e. Virtex series) support DPR in a way that allows the user
to specify the reconfigured area while maintaining the static logic unaffected. The
reconfiguration takes place with different reconfiguration methods like JTAG and ICAP.

Since the partial reconfiguration is implemented at FPGAs and has taken place, more
opportunities appeared and take the advantages of dynamic reconfiguration especially in
Software Defined Radio (SDR) implementation. McDonlad [16] presents an overview of
reconfigures Forward Error Correction (FEC) for partial reconfiguration designs on
viertex-4 and comments on the additional overhead necessary for creating this design.

Moreover, Delahaye and Palicot in [17] are targeting the implementation of
Convolutional Coder, FIR filter, and a constellation mapper. They implement
management architecture based on MicroBlaze interconnected with a NoC which is
extended from a 3G wireless communications system.

Tan, DeMara and Ejnioui [18] evaluated (JTAG and SelectMAP) as the only two
interfaces of Virtex Il in terms of design complexity and performance. The conclusion
was that the JTAG design consumes third of the device 1/O pins, and from 3 to 7 times
fewer logic area. However, the poor throughput of JTAG interface degrades the
reconfiguration performance with a factor of 40 than the SelectMAP.

In [19], [20], [21] and [22] the DPR using ICAP interface only is discussed. In these
papers, different versions of ICAP interface are exploited starting from OPB_HWICAP
which is connected to the On-Chip Peripheral Bus (OPB), then XPS_HWICAP which
uses PLB bus, and finally AXI_HWICAP which is connected to AXI bus. All the
previous IPs were experimented with various memory configuration setups to measure
the reconfiguration time from the system side and evaluate the overhead added by
reconfiguring the interconnecting components that are inserted during the
reconfiguration process.

This section covers the different configuration techniques in Xilinx FPGAs and

presents an evaluation of those techniques based on experimental results using an SDR
application.

19

3.1. Xilinx FPGA Configuration Techniques

DPR in FPGA is achieved by loading a partial bitstream along with the static
bitstream. And, this is performed through different interfaces. Xilinx FPGAs offer four
interfaces to program a partial bitstream from nonvolatile memory into reconfiguration
memory [7]. Some of these interfaces need Partial Reconfiguration controller which is
either located externally (in an external device - a PC for example) or internally (inside
the FPGA’s fabric - like MicroBlaze). Figure 3.1 shows the four techniques applied to a
convolution encoder inside a communication system.

Convolutional Encoder

encoder

Reconfiguring - FPGA
FPGA Self
Reconfiguring -
RP A FPGA External RP A
RP A rls
SelectMap (a) JTAG/Serial (c)

ICAP (b)

Figure 3.1: Reconfiguration techniques of convolutional encoder inside
communication chain

The following sub-sections presents a description of the different reconfiguration
techniques in Xilinx FPGAs (JTAG, Serial Mode, SelectMAP, and ICAP) and the
differences across them. Additionally, an evaluation of these techniques and their
preferred usage model.

3.1.1. JTAG

The JTAG is an acronym for Joint Test Action Group, this group is the one that
developed the JTAG standard. JTAG is widely used in testing and as an important
debugging tool as it can communicate data out through 1/O ports for testing board level
connections. In addition, it can internally send signals for testing device behavior, these
tests aim for shorts and opens detection at board and device levels. The JTAG
configuration is achieved by downloading the bit stream file that is stored on the PC using
the IMPACT utility and the Xilinx programming cable as in Figure 3.1 (c). The partial
reconfiguration takes place through downloading the partial bit stream the same way.

20

When JTAG is used for multiple devices configuration, the control signals should
be connected in parallel like the TCK pin which is driven by the Xilinx programming
cable [18].

3.1.2. Serial Mode

Using slave serial configuration mode, loading the configuration data is achieved
one bit per “CCLK” cycle. The “CCLK” in the slave serial mode must be driven
externally from an external control logic. The slave serial mode usually is used in
configuring a single device from an external microprocessor as in Figure 3.1 (c) or
configuring multiple devices in a daisy chain.

The dedicated pins to the slave serial mode that are required for configuration
include PROGRAM_B, CCLK, DONE, INIT_B, Din, DOUT_BUSY, and the mode pins
M[2:0]. The mode pins should be tied high with the slave mode [3011]. In addition, the
single configuration is used to configure multiple devices arranged in a daisy chain. Each
device in the daisy chain receives the configuration data through its D_IN pin and is
required to pass it to the next device in the chain through its DOUT pin till the last device
in the chain is configured and accordingly all the devices release their DONE pins.

3.1.3. SelectMAP

SelectMAP offers an 8-bit, 16-bit, or 32-bit configuration interface with
bidirectional data bus interface to FPGA’s fabrication, this interface is used for both
configuration and read-back. SelectMAP works in two modes; Master mode which drives
the configuration clock, or Slave mode which is driven by an external configuration
clock. Read-back is applicable only in case of Slave SelectMAP mode.

There are various setups for the SelectMAP like a Single-device Slave SelectMAP
which includes a processor which provides data and clock. Alternatively, a CPLD is used
as a configuration manager. Another setup is Multiple-device daisy-chain that is used to
configure multiple number of FPGAs in series with different bit-streams buffered from a
nonvolatile memory or processor [23].

Slave SelectMAP is the only mode that allows performing partial configuration in
all Xilinx FPGA’s as master modes are clearing all FPGA’s configuration memory as in
Figure 3.2.

For carrying out the reconfiguration process using Slave mode SelectMAP, 38 pins
are required including the DATA pins (D0:D31), DONE, CCLK, BUSY, PROG_B,
CS_B, RDWR_B, and INIT_B. Multiple FPGAs are connected to SelectMAP bus and
share some pins with others FPGAs.

Keeping the general propose DATA pins as configuration pins, the persist option of
BitGen need to be set otherwise, the DATA pins in this case become user pins after
configuration. Besides, the SelectMAP is an 8-bit width interface by default unless other
SelectMAP width is selected with the CONFIG_MODE constraint.

21

Address EEEEE—
- —

pre— - |
CPLD FPGA
Data B —

Microprocessor

.| Non-Volatile
Memory

Y

Figure 3.2: SelectMAP structure in Xilinx Virtex 5 FPGAs [24]

3.14. ICAP

Internal Configuration Access Port (ICAP) is a Xilinx interface that provides a direct
access to the configuration logic at the FPGA fabric. During the run-time, ICAP interface
allows the configuration data to be loaded/downloaded into/from the FPGA
configuration memory. Moreover, it permits status registers reading of the configuration
logic.

The ICAP interface is similar to SelectMAP slave mode interface except with a dual
port 8-bit, 16-bit, or 32-bit data bus for reading and writing configuration data. The ICAP
interface uses BUSY, CE, WRITE, and CLK signals [23]. Configuration data is written
to the device at the rising clock edge and if the ICAP port is enabled. Consequently, the
configuration data writing is controlled by the clock as well as by setting the enable signal
while connecting the ICAP primitive to a fixed clock.

Even though, there are two available ICAP primitives starting from Virtex-5, the two
ports cannot be operated simultaneously. The design must start with the top ICAP, then
alternate between the two ports sequentially.

ICAP caches the configuration bits into BRAM before loading to the FPGA
configuration memory Figure 3.1 (b). Xilinx provides an IP core called OPBHWICAP
that is connected to the OPB bus as a slave peripheral, and enables the processor to access
the configuration memory through the ICAP, by using a library and software routines
using EDK toolkit. For the Virtex-4 and Virtex-5 FPGAs, the XPSHWICAP then
AXI_HWICAP was released which works similarly with the OPBHWICAP. However,
it is connected on the PLB and AXI bus respectively. This achieves a lower-latency
reconfiguration.

22

3.2. Software Defined Radio

Software Defined Radio (SDR) is a concept where the different hardware parts can
be replaced and controlled by means of software according to the current requirement.
Recently, the SDR as an application became a trending one for DPR usage. As wireless
technologies gain their growth and development, more advanced standards will be
released, thus the demand to implement these entire standards in one device is obligated.
On the other hand, hardware designs are required to provide compatibility with the
current standards, if even possible, will most likely become obsolete after a short while.
Though, SDR system maintains the flexibility to control the same hardware resources via
software for these multi-communication devices.

The reconfigurability of FPGAs is considered as a good asset to the SDR systems
for loading the desired standard according to the runtime need. Practically, the ability of
reconfiguring a specific block provides an opportunity to create an extremely flexible
and compact design, while all other blocks are working normally. This permits chip area
saving and power reduction.

The advantages of SDR system are noticed clearly after applying DPR techniques
on Convolutional Encoder block. This encoder is responsible of generating FEC coding
schemes. These coding schemes are used for decreasing the channel noise.

Convolutional encoder outputs are affected by the code schemes used in the current
standard, and as well affected by several parameters (n, k, I) which are being used for
describing convolutional codes. Where “n” represents the input encode elements, “k”
represents the output encode elements, and “I” represents the shift register numbers of
convolution encoder.

In the proposed experiment, two encoder schemes; WIFI and 3G communication
systems, are used as a benchmark for DPR as shown in Figure 3.1. Following this
approach is called a Single-Loaded Encoder Module (SLEM) where DPR is used to
implement one encoder at a time on the chip.

23

3.3. Results and Discussion

The experiment is aiming to apply DPR to the implemented SDR design using the
different configuration methods and compare between them with respect to the area and
reconfiguration time. This design has been implemented using XUPV5-LX110T kit
which includes Virtex-5 xc5vIx110tff1136-1 FPGA, System ACE Compact Flash
configuration controller to store bit-stream files of PR regions, and UART interface to
interact with MicroBlaze by sending reconfiguring commands.

As mentioned previously, the reconfiguration time of DPR is not directly related to
design resources. Nevertheless, it is proportional only with PR region which is translated
to number of frames which are the minimum building blocks for PR region.

In the past, in Virtex and Virtex Il families, frames that are consisted of the whole
column of FPGA. Starting form Virtex 4, frames became a complete tile which includes
certain number of CLBs of a whole column, and this number is increasing with each new
Xilinx family. Therefore, the total design size (static and PR region) will be the major
effect on the reconfiguration time.

Consequently, the SDR design size is varied along the experiment in order to check
the variation in performance of each configuration technique. The variation steps are
chosen taking into consideration a significant change in the partial bit stream file size
which reflects directly in the estimated reconfiguration time.

Table 3.1: Reconfiguration speed for different Reconfiguration techniques [28]

Configuration Mode | Data Width | Max. clock rate | Max. Bandwidth
JTAG 1-bit 66 MHz 66 Mbps
Serial Mode 1-bit 100 MHz 100 Mbps
ICAP 8/16/32 bits 100 MHz 0.8/1.6/3.2 Gbps
SelectMAP 8/16/32 bits 100 MHz 0.8/1.6/3.2 Gbps

The figure of merit chosen for the comparison between these different techniques is
the area multiplied by reconfiguration time. This metric is a good indicator to the
performance variation from a certain design size to another. Considering the area
overhead with the speed makes the comparison more fair between the serial and the
parallel techniques.

In addition, the number of occupied LUTS is considered as a significant indicator to
the design area as shown at vertical axis and horizontal axis in Figure 3.3.

The theoretically estimated reconfiguration time is calculated according to (1),
where “Bssize” is the bit-stream file size of the PR region, “Clkmax” is the maximum
clock rate supported by reconfiguration interface, and “Dw” is interface data width.
These values are listed in Table 3.1 for each interface.

Bssize

(1)

R [tion Ti =
econfiguration Time Clomax = Dw

24

The reconfiguration region sizes are chosen in a way to completely occupy a certain
number of frames. This is done in order to make use of the whole area without any change
in the partial bit stream size and without affecting the estimated reconfiguration time.

Figure 3.3 shows the performance of the JTAG, Slave Serial mode, Slave
SelectMAP 8-bit, and ICAP 8-bit data width using the SDR design with different
selections of PR regions. It is obvious that at small designs that need PR regions less than
~400 and ~750 LUTs for JTAG and Serial mode respectively, JTAG and Serial mode are
better in performance than ICAP and SelectMAP which work with 8-bit width at 50 Mhz.

These values are decreased (~150 and ~300 LUTSs) when ICAP and SelectMAP work
at 100 MHz taking into consideration that ICAP, due to the others used resources in
FPGA fabric, allow maximum frequency less than JTAG and Serial mode. This can be
avoided when using SelectMAP as it has external “CCLK” port.

10000 ~

1000 A

100 . . ::::iii::

10 4

0.1 4

total area*reconfiguration time

0.01 -
100 1000 10000

No. of LUTs for PR region

ICAP or SelectMAP at 50 Mhz ICAP or SelectMAP at 100 Mhz
—-Serial Mode —==JTAG

Figure 3.3: 8-bit ICAP and SelectMAP with Serial mode and JTAG [28]

In Figure 3.4, the experiment is repeated with 16-bit data width for ICAP and
SelectMAP. It is noted that the intersection points decreased more (~150 and 300 LUTSs
for JTAG and Serial mode respectively) compared with ICAP working at 50 Mhz. These
values decreased because the comparison becomes unfair for serial interfaces like JTAG
and Serial mode compared to 16/32-bits ICAP and SelectMAP as the parallel
configuration always gives more capability to reach high configuration speed.

25

0.01 -
100 1000 10000

No. of LUTs for PR region

W\

\

total area*reconfiguration time

——|CAP or SelectMAP at 50 Mhz ICAP or SelectMAP at 100 Mhz
- Serial Mode —=JTAG

Figure 3.4: 16-bit ICAP and SelectMAP with Serial mode and JTAG [28]

Designs which are using JTAG and Serial mode can save ~2400 LUTs compared to
ICAP and SelectMap, this overhead is significant with small area designs. However, the
reconfiguration speed of 16-bit ICAP and SelectMap is better with factor of 24.2 and 16
than JTAG and Serial mode respectively.

ICAP and SelectMAP are always recommended if they worked with full data width
32-bit over other reconfiguration techniques as shown in Figure 3.4. However, the
drawback of this scheme is the used 1/O pins. In SelectMAP, these pins have to be
reserved the whole time for reconfiguration purpose only. While in ICAP, these pins are
used as 1/0 general after the reconfiguration has been done.

26

10000 -

1000 -+

A\
L]

100 - - - -

E

S R =g =
% | T
0.1 - %”X I

0.01 -
100 1000 10000

No. of LUTs for PR region

total area*reconfiguration time

—4—ICAP or SelectMAP at 50 Mhz ICAP or SelectMAP at 100 Mhz
—B-Serial Mode —JTAG

Figure 3.5: 32-bit ICAP and SelectMAP with Serial mode and JTAG [28]

27

28

Chapter 4 : Applying Dynamic reconfiguration to
CONNECT NoC

4.1. CONNECT NoC Architecture

Different NoCs are reviewed and compared in [31] while NoC parameters are
reviewed in [32]. However, this work is based on using CONNECT network for NoC-
based FPGA [30]. CONNECT achieves an efficient network performance by means of
its consistent lower latencies for FPGA-based designs. Moreover, CONNECT offers a
fully parameterizable router design and flexible network routing, allocation and flow
control mechanisms. The user generates the desired NoC through an RTL configurator
as in Figure 4.1 where different network configurations are supported, such as network
topology, network size, number of virtual channels, buffer depth, data width, allocation
type, and flow control mechanism.

The internal structure of CONNECT is based on optimized RTL implementation to
different modules in a scalable manner in order to satisfy its customizable requirements.
Figure 4.2 shows the main internal structure for CONNECT router core. Each router core
can communicate with four neighbour routers in addition to the outside user port which
makes them five open communication channels. The core contains input handler for
routing input packets and input queues for internal storage. Additionally, output port
FIFOs are required for dealing with neighbor routers availability [30].

29

Parameter Value

Network Topology

Topology & |Mesh y
Routers per Row (4 _v]

Routers per Column 4 v

Expose Edge Ports | C
Network and Router Options

Router Type i | Virtual Channel (VC) v |
Number of VCs i =)

Flow Control Type | Credit-Based Flow Control v |

Flit Data Width i 64 v|

v Advanced Options (click to expand)

Flit Buffer Depth i 8 _v]

Allocator 1 | Separable Input-First Round-Robin v |

Use Virtual Links 1 O
Debug Symbols & None v |

Figure 4.1: CONNECT NoC RTL configurator [8]

30

S i

Routing table

Tontng bl Register File Load

Register File Load

Input VCQueues

Routing table

Routing table

Register File Load — (—|Register File Load

Allocator

< Out Port FIFOs >

Router Core

Register File Load

U

Routing table

Figure 4.2: CONNECT NoC router core internal structure

The chosen network configuration is a 4x4 mesh network with two virtual channels,
credit-based flow control and buffer depth varying from 4 to 64. The CONNECT 4x4
mesh with two virtual channels is recommended by [25] giving optimal performance with
highest throughput and lowest latency for high injection rates.

The following subsection describes the changes made to CONNECT RTL in order
to introduce the reconfigurability during the runtime. Additionally, it shows how the
reconfiguration improves network flexibility to be adaptive according to the user
benchamrk requirements on the expense of adding a significant area overhead.

4.2. Reconfiguration changes to CONNECT

The reconfiguration of the network during the runtime requires dynamic adaptation
to the routing as each router needs to know if the neighbor router is still active.

Therefore, some changes are applied to the generated fixed CONNECT RTL in order
to introduce the runtime reconfigurablity to each router. The RTL updates are as follows:

31

» A global input configuration is added for indicating the current network status of
each router. Each bit corresponds to a single node whether it is active and normally
functioning with the other nodes or inactive and being bypassed by the other nodes.

» The routing inside all the routers is adapted considering the possibility that the
neighbor is inactive and some packets may need to change route. This change adds
significant area overhead due to preserving the original routing tables. All the routing
combinations are considered covering the four routers possible reconfiguration. The
popular XY routing algorith is modifiedin order to find a substitute routing path when
the neighbor router is getting reconfigured. For example, when the packet needs to be
routed in the horizontal path while it is not available, the router release the packet in the
available vertical path in order to let the packet to go in a surrounding path around the
obstacle.

» Connectivity switches are added around each router to bypass the inactive
neighbor routers in case any of them being reconfigured.

The previous changes implies a limitation to the reconfiguration as it is not allowed
to reconfigure two consequtive routers at the same time, The reason behind this is that
each router has the information of the availability of the first level neighbors only. If the
second level neighbor is also reconfigured at the same time, some packets might be
mistakenly lost. However, the wire delays between routers need tobe considered.

In general, the RTL changes added an area overhead to the CONNECT RTL
implementation. The area overhead is for the added network map module, connectivity
switches, and the routing adapted LUTs. The new structure for the reconfigurable
CONNECT NoC is shown in Figure 4.3. All these RTL changes are described and
discussed in [29].

Reconfigurable CONNECT NoC

- CONNECT Map

Figure 4.3: Reconfigurable CONNECT NoC structure

32

Those changes permitted the network to be fully customizable according to the
desired requirements during the runtime. In Figure 4.4(a), the 4x4 network is fully
functioning and can be reconfigured during the runtime to any network structure such as
the 3x3 network in Figure 4.4(c) by disabling the 7 edge routers, or the 2x3 network as
depicted in Figure 4.4(d) by disabling the 10 edge routers, or even any irregular form as
shown in Figure 4.4(b).

(a) Original NOC 4x4 (b) Irregular form NOC, 2 inactive routers

(c) Regular form NOC 3x3, 7 inactive routers (d) Regular form NOC 3x2, 10 inactive routers

Figure 4.4: Reconfigurable examples of CONNECT NoC during runtime [29]

33

4.3. Test Environment structure

The modified CONNECT RTL is placed inside an environment driven from [25]
with the structure shown in Figure 4.5. Each network node is connected against a packet
generation element and a credit handling element. The main function of the packet
generator is to provide each node with input flits targeting a totally randomized
destinations and virtual channels. The packet generator takes into consideration the
current active nodes, the desired traffic density and the available virtual channels. The
credit element monitors the input and output packets to and from every virtual channel.
This credit is considered as an indication to the available space in each channel buffer.

Network Traffic load
configuration

CONNECT NOC

Input packets

Packet generator

Credit Handling

Output packets

Figure 4.5: Environment structure of CONNECT NoC during runtime [29]

34

4.4. Reconfiguration tool

In general, the aim of all those modifications is to develop a tool providing the
recommended network structures based on the planned benchmarks to be used during the
runtime. The referred tool is developed as shown in Figure 4.6.

The tool requires all the input user benchmarks with their corresponding traffic
densities and performance requirements. The output of the tool is the recommended
network structure for each benchmark to be switched during reconfiguration. Table 4.1
shows an example for how the tool outputs could recommend different network structures
leading to area saving when switching from a benchmark to another.

Table 4.1: Reconfiguration tool output for different user benchmarks

Benchmark Target Expected Network Virtual Buffer
Throughput | Traffic | Configuration | Channel Depth
Benchmark 1 0.68 80% mesh 4x4 2 64
Benchmark 2 0.53 55% mesh 4x3 2 32
Benchmark 3 0.4 40% mesh 3x3 2 16
Benchmark 4 0.1 20% mesh 2x2 2 4
[Traffic load 1 >
Benchmark 1 I\ Nw Config. 1>
| Target throuhputll/
N
[Traffic load 2 :> 0000 \\\
Benchmark 2 N Nw Confie. > O O O O AN
| Target throuhputlz/
. Q000 :
Reconfig. NOC itat]c
ogic
[Traffic load 3 > tool ©0O0 i
Benchmark 3 N Nweonfig.3> O O O ad
| Target throuhputl3/ //
© OO0 _Reconfigurable
/’/K Benchmark
7
| Traffic load 4 :> O O 7
{Benchmark 4 N Nw Config. 4> 27 System Integration
| Target throuhputl4/ O O '/K/
(

Figure 4.6: Reconfiguration tool structure [29]

35

The configuration tool is developed using Python as a scripting language. The
criteria is based on searching for the best fitting network within the evaluation results.
The required throughput and the expected traffic load are the two inputs for the
reconfiguration tool from which the tool use to list all the fitting networks in an output
file.

The reconfiguration tool interface with the user is available in the batch mode and
the GUI mode as well.

In Batch mode, the python script “search.py” is called through the shell passing the
expected traffic and required throughput. Figure 4.7 shows an example on the tool
interface in batch mode with 80% expected traffic and 0.59 pkts/cycle/node required
throughput.

Figure 4.7: Reconfiguration tool interface in Batch mode

In GUI mode, the python script “gui.py” is called through the shell letting a user
interface initiates. Figure 4.8 shows the GUI interface of the tool. The GUI interface lets
the user parse the expected traffic and the required throughput.

7 tk — O X
Traffic load: 80

Target throughput: 0.59

No configuration selected

36

Figure 4.8: Reconfiguration tool interface in GUI mode

The output of the tool in both modes is a list of all network configurations that are
fitting the requirements. The output configuration list of the last example is shown in
Figure 4.9.

Nw= 4, VC= 2, BD= 4, PDR= -, which router= none, Config= ffff
Nw= 4, VC= 2, BD= 8, PDR= -, which router= none, Config= ffff
Nw= 4, VC= 2, BD= 8, PDR= 0, which router= corner, Config= fffe
Nw= 4, VC= 2, BD= 8, PDR= 12, which router= corner, Config= efff
Nw= 4, VC= 2, BD= 8, PDR= 15, which router= corner, Config= 7fff
Nw= 4, VC= 2, BD= 8, PDR= 1, which router= edge, Config= fffd
Nw= 4, vVC= 2, BD= 16, PDR= -, which router= none, Config= ffff
Nw= 4, VC= 2, BD= 16, PDR= 0, which router= corner, Config= fffe
Nw= 4, VC= 2, BD= 16, PDR= 3, which router= corner, Config= fff7
Nw= 4, vVC= 2, BD= 16, PDR= 12, which router= corner, Config= efff
Nw= 4, VC= 2, BD= 16, PDR= 15, which router= corner, Config= 7fff
Nw= 4, vVC= 2, BD= 16, PDR= 1, which router= edge, Config= fffd

Figure 4.9: Reconfiguration tool output in Batch and GUI modes

For the detailed use of the Reconfiguration tool, please refer to Appendix A:
Reconfiguration tool User Manual.

37

38

Chapter 5 : Impact of Dynamic reconfiguration on
Network on Chip performance

5.1. Environment Setup

The previously referred CONNECT environment in the last Chapter is generalized
having the capability to test different network configurations with various traffic
densities ranging from 5% to 100%. The environment handles different virtual channels
ranging from 2 to 8, different buffer depths ranging from 4 to 64. Moreover, the DPR
evaluation is applied to all the possible networks nodes starting from all the 16 nodes
functioning (4x4 mesh) up to disabling 14 nodes and keeping only two nodes functioning
(2x1 mesh).

The network evaluation is based on the throughput as a performance metric and it
plays an important role in deciding the optimal network configuration.

The throughput is calculated after flooding the network with input packets according
to the desired traffic density. Then, monitoring the number of output packets per cycle
per node.

When many routers are disabled during network reconfiguration, the network size
become smaller in size. This leads into area saving on the expense of performance
degradation as the neighbor routers are required to handle higher traffic load. The
network reconfiguration is varying from a full network with highest performance to an
inadequate network with the lowest performance. And the benchmark desired
performance plays an important role in deciding the best configuration that meets this
requirement. The selection criteria is prioritizing the less significant area size which
corresponds to the smallest network possible.

The following subsections discuss the impact of different configurations on the
performance. And, provides an in-depth view on how each configuration works
individually on boosting the network overall performance.

5.2. Network topology DPR Evaluation

From the early evaluation results, the regular forms of the network give better results
than the irregular ones for the same number of routers. For the mesh 3x3 network for
example, it consists of 9 routers and gives better results than any irregular network form
with the same area size (9 routers). Accordingly, the results shown here are mainly
focusing on the regular network forms such as: mesh 4x4, mesh 4x3, mesh 3x3, mesh
3x2, mesh 2x2, and mesh 2x1.

Figure 5.1 shows the performance of the specified networks with credit-based flow
control, two virtual channels, buffer depth of four and under a traffic load ranging from
5% to 100%. It is clear that lowering the network size using reconfiguration leads to less
significant throughput rates. This is because the remaining active nodes after

39

Throughput (# pkts/cycle/node)

i

o
=

w

o
o

reconfiguration are required to compensate the absence of the reconfigured inactive
nodes.

10 15 20 25 30 35 60

Traffic load (%)

——mesh 4x4 (all routers active) mesh 4x3 (4 inactive routers) mesh 3x3 (7 inactive routers)

mesh 3x2 (10 inactive routers)=e—mesh 2x2 (12 inactive routers)—s—mesh 2x1 (14 inactive routers)

Figure 5.1: CONNECT throughput of all PDR configurations —
Credit-based flow control - VC=2 - BD=4

In general, shrinking the network size using DPR into a smaller topology degrades
the network performance. However, DPR saves significant area for other logic to be used.
This is beneficial with the applications that does not require high performance at the
moment and switches into a smaller network topology.

The network topology DPR evaluation result of a network with 4 virtual channels,
Credit-based flow control, and different buffer depths are shown in Figures 5.2, 5.3, 5.4,
5.5,and 5.6. Figures 5.2, 5.3, 5.4, 5.5, and 5.6 correspond to buffer depths of 4, 8, 16, 32,
and 64 respectively.

In addition, the network topology DPR evaluation result of a network with 8 virtual
channels, Peek-based flow control, and different buffer depths are shown in Figures 5.7,
5.8,5.9,5.10, and 5.11. Figures 5.7, 5.8, 5.9, 5.10, and 5.11 correspond to buffer depths
of 4, 8, 16, 32, and 64 respectively.

It is obvious in all the network configurations that shrinking the network size always
results in throughput degradation.

40

Credit-based FC - VC=4 - BD=4

o
oo

o
~

o
o

o
tn

o
W

o
)

Throughput (# pkts / cycle/node)
o o
= =Y

o

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

—mesh 4x4 (all routers active) -®-mesh 4x3 (4 inactive routers) -+~mesh 3x2 (7 inactive routers)

mesh 3x2 (10 inactive routers) -¢-mesh 2x2 (12 inactive routers) —<mesh 2x1 (14 inactive routers)

Figure 5.2: CONNECT Performance all PDR configurations —
Credit-based flow control - VC=4 — BD=4

Credit-based FC - VC=4 - BD=8

o
oo

e

e
~

o
o

o
n

o
w

o
h

Throughput (# pkts / cycle/node)
o o
= E=Y

o

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

—mesh 4x4 (all routers active) -®-mesh 4x3 (4 inactive routers) -~mesh 3x2 (7 inactive routers)

mesh 3x2 (10 inactive routers) -¢-mesh 2x2 (12 inactive routers) -<mesh 2x1 (14 inactive routers)

Figure 5.3: CONNECT throughput of all PDR configurations —
Credit-based flow control - VC=4 — BD=8

41

Credit-based FC - VC=4 - BD=16

o
~

o
o

ot
n

o
w

=
N}

Throughput (# pkts / cycle/node)
o o
= =

(=]

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

—mesh 4x4 (all routers active) -®-mesh 4x3 (4 inactive routers) -Amesh 3x2 (7 inactive routers)

mesh 3x2 (10 inactive routers) -e-mesh 2x2 (12 inactive routers) —-<mesh 2x1 (14 inactive routers)

Figure 5.4: CONNECT throughput of all PDR configurations —
Credit-based flow control — VC=4 — BD=16

Credit-based FC - VC=4 - BD=32

o
o0

o
~

o
o

o
n

o
w

=
o

Throughput (# pkts / cycle/node)
j=)
=y

=
-

(=]

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Traffic Load (%)

—mesh 4x4 (all routers active) -®-mesh 4x3 (4 inactive routers) -+mesh 3x2 (7 inactive routers)

mesh 3x2 (10 inactive routers) -¢-mesh 2x2 (12 inactive routers) —-<mesh 2x1 (14 inactive routers)

Figure 5.5: CONNECT throughput of all PDR configurations —
Credit-based flow control — VC=4 — BD=32

42

Credit-based FC - VC=4 - BD=64

o
oo

o
~

o
o

ot
n

o
w

=
N}

Throughput (# pkts / cycle/node)
o o
= =

(=]

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

—mesh 4x4 (all routers active) -®-mesh 4x3 (4 inactive routers) -Amesh 3x2 (7 inactive routers)

mesh 3x2 (10 inactive routers) -e-mesh 2x2 (12 inactive routers) —-<mesh 2x1 (14 inactive routers)

Figure 5.6: CONNECT throughput of all PDR configurations —
Credit-based flow control — VC=4 — BD=64

Peek-based FC - VC=8 - BD=4

o
o0

|

o
o

o
n

o
w

=
o

Throughput (# pkts / cycle/node)
j=)
=y

=
-

(=]

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Traffic Load (%)

—mesh 4x4 (all routers active) -®-mesh 4x3 (4 inactive routers) -+mesh 3x2 (7 inactive routers)

mesh 3x2 (10 inactive routers) -¢-mesh 2x2 (12 inactive routers) —-<mesh 2x1 (14 inactive routers)

Figure 5.7: CONNECT throughput of all PDR configurations —
Peek-based flow control — VC=8 — BD=4

43

Peek-based FC - VC=8 - BD=8

o
oo

o
~

o
o

ot
n

o
w

=
N}

Throughput (# pkts / cycle/node)
o o
= =

(=]

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

—mesh 4x4 (all routers active) -®-mesh 4x3 (4 inactive routers) -Amesh 3x2 (7 inactive routers)

mesh 3x2 (10 inactive routers) -e-mesh 2x2 (12 inactive routers) —-<mesh 2x1 (14 inactive routers)

Figure 5.8: CONNECT throughput of all PDR configurations —
Peek-based flow control — VC=8 — BD=8

Peek-based FC - VC=8 - BD=16

o
o0

o
~

o
o

o
n

o
w

=
o

Throughput (# pkts / cycle/node)
j=)
=y

=
-

(=]

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Traffic Load (%)

—mesh 4x4 (all routers active) -®-mesh 4x3 (4 inactive routers) -+mesh 3x2 (7 inactive routers)

mesh 3x2 (10 inactive routers) -¢-mesh 2x2 (12 inactive routers) —-<mesh 2x1 (14 inactive routers)

Figure 5.9: CONNECT throughput of all PDR configurations —
Peek-based flow control — VC=8 — BD=16

44

Peek-based FC - VC=8 - BD=32

o
oo

o
~

o
o

o
tn

o
W

o
)

Throughput (# pkts / cycle/node)
o o
= =Y

o

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

—mesh 4x4 (all routers active) -®-mesh 4x3 (4 inactive routers) -+~mesh 3x2 (7 inactive routers)

mesh 3x2 (10 inactive routers) -¢-mesh 2x2 (12 inactive routers) —<mesh 2x1 (14 inactive routers)

Figure 5.10: CONNECT throughput of all PDR configurations —
Peek-based flow control - VC=8 — BD=32

Peek-based FC - VC=8 - BD=64

o
oo

e
~

o
o

o
n

o
w

o
h

Throughput (# pkts / cycle/node)
o o
= E=Y

o

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

—mesh 4x4 (all routers active) -®-mesh 4x3 (4 inactive routers) -~mesh 3x2 (7 inactive routers)

mesh 3x2 (10 inactive routers) -¢-mesh 2x2 (12 inactive routers) -<mesh 2x1 (14 inactive routers)

Figure 5.11: CONNECT throughput of all PDR configurations —
Peek-based flow control - VC=8 — BD=64

45

5.3. Buffer Depth DPR Evaluation

Applying DPR into the buffer depth as a network parameter impacts the network
performance differently. The performance shown here is for the buffer depth of each
router inside the 4x4 specified network with credit-based and peek-based flow controls,
two virtual channels, buffer depth of four and under a traffic load ranging from 5% to
100%.

In general, increasing the buffer depth impacts the performance of all the network
configurations positively. This is because each node become capable of receiving and
handling more packets at the expense of significant area overhead.

Figure 5.12 represents the performance of the buffer depth as a variant on a mesh
4x3 network after reconfiguring 4 nodes from the original mesh 4x4 network. The
network performance is the same with the larger buffer depth at the low traffic densities
and is enhanced with the larger buffer depth at the high traffic densities. The performance
of the buffer depth of 64 for example is more significant than the buffer depth of 32.

Mesh 4x3 - Credit-based FC - VC=2

0.6

<o
n

0.4

<
N

Throughput (# pkts / cycle/node)
o

©
=

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 a0 95 100
Traffic Load (%)

-¢-Buffer Depth 4 Buffer Depth 8 Buffer Depth 16 Buffer Depth 32 —Buffer Depth 64

Figure 5.12: CONNECT throughput of all BD configurations —
Mesh 4x3 — Credit-based flow control — VC=2

46

Throughput (# pkts / cycle/node)

0.25

0.2

0.15

0.1

0.05

In Figure 5.13, switching to a larger buffer depth such as 16, 32, or 64 has a small
impact on the performance of the relatively small networks (such as mesh 2x2 — 12
routers are reconfigured). This is due to the network low latency as the packets don’t
consume much time till reaching the destination.

Additionally, the larger buffer depth with the mesh 2x2 networks results in a bit
different performance impact. The throughput impact is almost the same at the low traffic
densities till the traffic density of 40%. However, the complete mesh 4x4 network has
the same performance till a traffic load of nearly 30% as shown in Figure 5.12.

Mesh 2x2 - Credit-based FC - VC=2

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95
Traffic Load (%)

100

-¢-Buffer Depth 4 Buffer Depth 8 Buffer Depth 16 Buffer Depth 32 —Buffer Depth 64

Figure 5.13: CONNECT throughput of all BD configurations —
Mesh 2x2 — Credit-based flow control — VC=2

Figure 5.14 shows the throughput of mesh 2x1 network using various buffer depths
ranging from four to 64, while keeping the other configurations constant. The buffer
depth impact becomes non-noticeable with shrinking the network size. And, this is
because most of the buffer depth is not used efficiently especially with the mesh 2x2 and
mesh 2x1 network sizes. Using a buffer depth of 64 in this case is a waste of because it
has the same performance of using the buffer depth of four.

The larger buffer depth with the smaller network (14 routers are reconfigured) gives
a very different performance impact from the relatively large networks. All the
throughput values are the same at all traffic densities.

More buffer depth DPR evaluation results are shown are shown in Figures 5.15, 5.16,
5.17, 5.18, 5.19, and 5.20. The results are for a Peek-based flow control, two virtual
channels, and a network topology configurations of (Mesh 4x4, 4x3, 3x3, 3x2, 2x2, and
2x1 respectively).

47

Mesh 2x1 - Credit-based FC - VC=2
0.14

j=4
=
N

o
i

0.08

0.06

0.04

Throughput (# pkts / cycle/node)
o
=

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Traffic Load (%)

-¢-Buffer Depth 4 -=-Buffer Depth 8 -e-Buffer Depth 16 Buffer Depth 32 —Buffer Depth 64

Figure 5.14: CONNECT throughput of all BD configurations —
Mesh 2x1 — Credit-based flow control — VC=2

Mesh 4x4 - Peek-based FC - VC=2

o e
<) ~

o
"

o
w

Throughput (# pkts [cycle/node)
o o
] =

o
=

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Traffic Load (%)

-¢-Buffer Depth4 -m-Buffer Depth 8 -e-Buffer Depth 16 Buffer Depth 32 —Buffer Depth 64

Figure 5.15: CONNECT throughput of all BD configurations —
Mesh 4x4 — Peek-based flow control — VC=2

48

Mesh 4x3 - Peek-based FC - vC=2

0.6

©
53}

©
=

©
N

Throughput (# pkts / cycle/node)

e
=

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

-¢-Buffer Depth 4 -m-Buffer Depth 8 -e-Buffer Depth 16 Buffer Depth 32 —Buffer Depth 64

Figure 5.16: CONNECT throughput of all BD configurations —
Mesh 4x3 — Peek-based flow control — VC=2

Mesh 3x3 - Peek-based FC - vC=2
0.45

o
'S

<
w
vl

o
w

<
i
a

o
8]

o
—
w1

=
=

Throughput (# pkts / cycle/node)

o
o
ul

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

-¢-Buffer Depth 4 -m-Buffer Depth 8 -e-Buffer Depth 16 Buffer Depth 32 —Buffer Depth 64

Figure 5.17: CONNECT throughput of all BD configurations —
Mesh 3x3 — Peek-based flow control — VC=2

49

Mesh 3x2 - Peek-based FC - vC=2

0.35

o
[#%)

0.25

o
[}

0.15

Throughput (# pkts / cycle/node)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

--Buffer Depth 4 -m-Buffer Depth 8 -o-Buffer Depth 16 Buffer Depth 32 —Buffer Depth 64

Figure 5.18: CONNECT throughput of all BD configurations —
Mesh 3x2 — Peek-based flow control - VC=2

Mesh 2x2 - Peek-based FC - vC=2
0.25

0.2

0.15

=4
[

0.05

Throughput (# pkts / cycle/node)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Traffic Load (%)

-o-Buffer Depth 4 -m-Buffer Depth 8 -e-Buffer Depth 16 Buffer Depth 32 —Buffer Depth 64

Figure 5.19: CONNECT throughput of all BD configurations —
Mesh 2x2 — Peek-based flow control — VC=2

50

0.14

o
-
M

=
N

0.08

0.06

0.04

Throughput (# pkts / cycle/node)

o
=}
=

5

Mesh 2x1 - Peek-based FC - vC=2

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Traffic Load (%)

-¢-Buffer Depth 4 -m-Buffer Depth 8 -e-Buffer Depth 16 Buffer Depth 32 —Buffer Depth 64

Figure 5.20: CONNECT throughput of all BD configurations —
Mesh 2x1 — Peek-based flow control — VC=2

51

Throughput (# pkts / cycle/node)

5.4. Virtual Channel DPR Evaluation

Applying DPR into the virtual channel as a network parameter impacts the network
performance in a different way than the buffer depth. The performance shown here is for
the virtual channels inside the mesh 4x4 network with credit-based and peek-based flow
controls, buffer depth of 4, 8, and 64 and under a traffic load ranging from 5% to 100%.

In general, increasing the virtual channels improves the performance of all the
network configurations positively. This is because it creates new routing paths in parallel
with the original network paths. Accordingly, the network capability to handle and
receive packets has increased at the expense of significant area overhead.

Figure 5.21 represents the throughput of a mesh 4x4 network using various virtual
channels varying from two to eight, while keeping the other configurations constant. The
network performance is the same with the four and eight virtual channels at the low traffic
densities till nearly 30% and is enhanced at the high traffic densities above 30%.

Mesh 4x4 - Peek-based FC - BD=4

e
to

\
|
|
\

e o C— —

N

o o o
w = [8,]

o
M

N

o

5 10 15 20 25 30 35 410 415 50 55 60 65 70 75 20 85 90 95 100
Traffic Load (%)

Virtual Channel 2 Virtual Channel 4 -Virtual Channel 8

Figure 5.21: CONNECT throughput of all VC configurations —
Mesh 4x4 — Peek-based flow control — BD=4

Figure 5.22 shows the virtual channel DPR performance with a mesh 2x1 network
using the same other configurations. The virtual channel impact becomes non-noticeable
with the shrinking of the network size. And, this is because the low latency of the small
networks which lowers the probability of congestion even with high injection rates.

The buffer depth of 64 even with the mesh 4x4 network gives the same performance

impact for all virtual channels as in Figure 5.23. With the large buffer depths, increasing
the virtual channels become useless.

52

Mesh 2x1 - Peek-based FC - BD=4

0.14
o 0.12
=]
o
t=
T 01
o
o
[&)
=~ 0.08
v
x
[=
I 0.06
™)
=
£
tm(]‘()il
>
e
i 0.02
0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100
Traffic Load (%)
-®-Virtual Channel 2 “%-Virtual Channel 4 =+\Virtual Channel 8
Figure 5.22: CONNECT throughput of all VC configurations —
Mesh 2x1 — Peek-based flow control — BD=4
Mesh 4x4 - Peek-based FC - BD=64
0.8
—5-0.7
=]
(=]
Los
@
[S)
g os
S
3
=04
ka3
203
Q
®
202
g
L
0.1
0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100

Traffic Load (%)

-@-Virtual Channel 2 -#Virtual Channel 4 -&-Virtual Channel 8

Figure 5.23: CONNECT throughput of all VC configurations —
Mesh 4x4 — Peek-based flow control — BD=64

53

Throughput (# pkts / cycle/node)
© © o o o o o
[\ w E=N w [a)} ~J co

o
=

More results of virtual channel DPR are shown in Figures 5.24, 5.25, 5.26, 5.27,
5.28, and 5.29. The results are for a Credit-based flow control, buffer depth of 8, and a
network topology configurations of (Mesh 4x4, 4x3, 3x3, 3x2, 2x2, and 2x1
respectively).

It is noticeable in all the results that the positive impact of virtual channel DPR is
valuable only with the relatively large networks with small buffer depths. Investing in
virtual channel DPR in the small networks or the large buffer depths results in a waste of
area.

Mesh 4x4 - Credit-based FC - BD=8

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 85 90 95 100
Traffic Load (%)

-®-Virtual Channel 2 -#-Virtual Channel 4 ==\Virtual Channel 8

Figure 5.24: CONNECT throughput of all VC configurations —
Mesh 4x4 — Credit-based flow control — BD=8

54

0.6

o
tn

o
S

o
N

Throughput (# pkts / cycle/node)
o o

Mesh 4x3 - Credit-based FC - BD=8

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90
Traffic Load (%)
-®-Virtual Channel 2 -#-Virtual Channel 4 -+-Virtual Channel 8

100

0.45

o
=

0.35

0.3

0.25

Throughput (# pkts / cycle/node)
5 © o o

o

Figure 5.25: CONNECT throughput of all VC configurations —
Mesh 4x3 — Credit-based flow control — BD=8

Mesh 3x3 - Credit-based FC - BD=8

Traffic Load (%)

-@-Virtual Channel 2 -#-Virtual Channel 4 -+Virtual Channel 8

100

Figure 5.26: CONNECT throughput of all VC configurations —
Mesh 3x3 — Credit-based flow control — BD=8

55

0.35

0.3

0.25

0.2

0.15

0.1

Throughput (# pkts / cycle/node)

0.25

0.2

o
=
w”

o
i

0.05

Throughput (# pkts / cycle/node)

Mesh 3x2 - Credit-based FC - BD=8

Traffic Load (%)

-®-Virtual Channel 2 -#Virtual Channel 4 --Virtual Channel 8

Figure 5.27: CONNECT throughput of all VC configurations —
Mesh 3x2 — Credit-based flow control — BD=8

Mesh 2x2 - Credit-based FC - BD=8

Traffic Load (%)

-®-Virtual Channel 2 -=-Virtual Channel 4 =Virtual Channel 8

Figure 5.28: CONNECT throughput of all VC configurations —
Mesh 2x2 — Credit-based flow control — BD=8

56

100

100

0.14

(=]
=y
N

0.1

o
o
o

o
o
<)

0.04

Throughput (# pkts / cycle/node)

o
=
[~}

Mesh 2x1 - Credit-based FC - BD=8

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Traffic Load (%)

-@-Virtual Channel 2 -“#-Virtual Channel 4 -+-Virtual Channel 8

Figure 5.29: CONNECT throughput of all VC configurations —
Mesh 2x1 — Credit-based flow control — BD=8

57

95

100

o © o
e N oo

e
]

Throughput (# pkts / cycle/node)
o o o
N w sy

e
=

o

5.5. Buffer Depth vs Virtual Channel

Applying DPR into the buffer depth or the virtual channel impacts the network
performance in nearly the same way. The performance shown here is for the buffer depths
vs virtual channels inside the mesh 4x4 network with credit-based and peek-based flow
controls, under a traffic load ranging from 5% to 100%.

Figures 5.30 and 5.31 show how using virtual channel/ buffer depth gives nearly the
same effect with the same network configurations. This is proven using the 4-virtual
channels and a buffer depth of eight compared with the eight virtual channels and a buffer
depth of four.

The same result is highlighted in Figures 5.32 and 5.33 even with using a moderate-
sized network (mesh 3x3). In addition, the flow control type does not change this
conclusion as credit-based flow control in Figure 5.32 and peek-based flow control in
Figure 5.33.

It is obvious that the rule of the small networks effect still applies. This is shown in
Figure 5.34 and 5.35. In those Figures, a small-sized (mesh 2x2) network is used with
credit-based and peek-based flow controls similar to the previous networks.

Mesh 4x4 - Peek-based FC - VC=2,4,8 - BD=4,8,16

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95
Traffic Load (%)

4VC=2, BD=16 VC=4, BD=8 -e-V(C=8, BD=4

Figure 5.30: CONNECT throughput of BD vs VC configurations —
Mesh 4x4 — Peek-based flow control — VC=2, 4, and 8 - BD=4, 8, and 16

58

100

o o
o ~

o
tn

o
W

Throughput (# pkts / cycle/node)

o
N

0.45

<
~

0.35

Throughput (# pkts / cycle/node)
S o oo o o o

o

Mesh 4x4 - Credit-based FC - VC=2,4,8 - BD=4,8,16

Traffic Load (%)
-+\VC=2, BD=16 -=-\VC=4, BD=8 -0-V(C=8, BD=4

Figure 5.31: CONNECT throughput of BD vs VC configurations —
Mesh 4x4 — Credit-based flow control — VC=2, 4, and 8 - BD=4, 8, and 16

Mesh 3x3 - Credit-based FC - VC=2,4,8 - BD=8,16,32

Traffic Load (%)
-«VC=2, BD=32 -#-\VC=4, BD=16 --\V/C=8, BD=38

Figure 5.32: CONNECT throughput of BD vs VC configurations —
Mesh 3x3 — Credit-based flow control — VC=2, 4, and 8 — BD=8, 16, and 32

59

0.5

0.45

0.4

0.35

03

0.25

0.2

0.15

0.1

Throughput (# pkts / cycle/node)

0.05

0.25

0.2

0.15

0.1

0.05

Throughput (# pkts / cycle/node)

Mesh 3x3 - Peek-based FC - VC=2,4,8 - BD=8,16,32

Traffic Load (%)
-4-VC=2, BD=32 -#-VC=4, BD=16 -8-V/C=8, BD=8

Figure 5.33: CONNECT throughput of BD vs VC configurations —
Mesh 3x3 — Peek-based flow control - VC=2, 4, and 8 — BD=8, 16, and 32

Mesh 2x2 - Credit-based FC - VC=2,4,8 - BD=16,32,64

Traffic Load (%)
-4-VC=2, BD=64 “#-VC=4, BD=32 -e-V(C=8, BD=16

Figure 5.34: CONNECT throughput of BD vs VC configurations —
Mesh 2x2 — Credit-based flow control — VC=2, 4, and 8 — BD=16, 32, and 64

60

100

100

0.25

0.2

0.15

o
=

0.05

Throughput (# pkts / cycle/node)

5

Mesh 2x2 - Peek-based FC - VC=2,4,8 - BD=16,32,64

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Traffic Load (%)

-4VC=2, BD=64 -#-VC=4, BD=32 -8-V(C=8, BD=16

Figure 5.35: CONNECT throughput of BD vs VC configurations —
Mesh 2x2 — Peek-based flow control — VC=2, 4, and 8 - BD=16, 32, and 64

61

95

100

Throughput (# pkts / cycle/node)
o o o o o
(] w =3 w o

o
=

5.6. Flow Control DPR Evaluation

The network flow control mechanism defines the feedback technique while
communicating with neighbor routers. The credit-based flow control provides a detailed
feedback when there is a free space in each virtual channel. However, the peek-based
flow control just provides a busy signal indicating the availability of each virtual channel.
Accordingly, The peek-based flow control is much simpler and allows maximizing the
use of network resources. Nevertheless, the credit-based flow control provides more
intelligence to the network in case of choosing different routing paths.

The following Figures show that the impact of Flow control mechanism is very
slight. It is only noticeable with the small buffer depths that the peek-based flow control
is preferred over the credit-based flow control. Note that the rule of the small networks
still applies.

Figure 5.36 corresponds to a 4x4 mesh network with 2 virtual channels and a buffer
depth of four. Figure 5.37 shows a 2x1 mesh network with 2 virtual channels and a buffer
depth of four. Figure 5.38 corresponds to a 3x3 mesh network with four virtual channels
and a buffer depth of 16. Figure 5.39 corresponds to a 2x2 mesh network with four virtual
channels and a buffer depth of 32. Figure 5.40 corresponds to a 4x3 mesh network with
eight virtual channels and a buffer depth of eight. Figure 5.41 corresponds to a 2x1 mesh
network with eight virtual channels and a buffer depth of 64.

Mesh 4x4 - VC=2 - BD=4

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Traffic Load (%)

Credit-based Flow Control Peek-based Flow Control

Figure 5.36: CONNECT throughput of Flow Control configurations —
Mesh 4x4 —VC=2 - BD=4

62

Mesh 2x1 - VC=2 - BD=4
0.14

o
[y
N

o
.

0.08

0.06

0.04

Throughput (# pkts / cycle/node)
o
=

Traffic Load (%)
-®-Credit-based Flow Control -4 Peek-based Flow Control

Figure 5.37: CONNECT throughput of Flow Control configurations —
Mesh 2x1 - VC=2 — BD=4

Mesh 3x3 - VC=4 - BD=16
0.45

Throughput (# pkts / cycle/node)
o o o o

5 © - ©° 5 ©o 5 ©
gl = al () ul w [l S

(=]

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Traffic Load (%)

-®-Credit-based Flow Control -»-Peek-based Flow Control

Figure 5.38: CONNECT throughput of Flow Control configurations —
Mesh 3x3 - VC=4 - BD=16

0.25

0.2

0.15

0.1

0.05

Throughput (# pkts / cycle/node)

0.6

o
ul

e
'

Throughput (# pkts / cycle/node)

©
N

Mesh 2x2 - VC=4 - BD=32

Traffic Load (%)
-®-Credit-based Flow Control -4-Peek-based Flow Control

Figure 5.39: CONNECT throughput of Flow Control configurations —
Mesh 2x2 — VC=4 — BD=32

Mesh 4x3 - VC=8 - BD=8

Traffic Load (%)
-®-Credit-based Flow Control -&-Peek-based Flow Control

Figure 5.40: CONNECT throughput of Flow Control configurations —
Mesh 4x3 - VC=8 — BD=8

0.14

o
=
N

o
=

0.08

0.06

0.04

Throughput (# pkts / cycle/node)

o
o
o

Mesh 2x1 - VC=8 - BD=64

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Traffic Load (%)
-®-Credit-based Flow Control -&-Peek-based Flow Control

Figure 5.41: CONNECT throughput Flow Control configurations —
Mesh 2x1 - VC=8 — BD=64

65

90

95

100

5.7. Area Evaluation

As a different performance metric, the experimental results of the area for the
different networks is considered the most important factor in deciding the most suitable
network with every benchmark. This metric is mainly used by the reconfiguration tool in
order to prevent the throughput from misleading the network selection criteria.

In this subsection, an example highlights how the area is the valuable gain by using
the reconfigurable NoCs over the static NoCs.

The original CONNECT and the reconfigurable CONNECT are implemented on
Virtex-5 xcbvIx110tff1136-1 FPGA. At the implementation level, adding the runtime
reconfigurability to the 4x4 mesh CONNECT increases the area. This overhead is due to
the switches and routing adaptation.

For the area resources in Virtex 5 Xilinx FPGAs, Table 5.1 shows the estimation for
the area for each Virtex 5 resource with respect to the equivalent number of gates and the
absolute area in mm?. These area results are used by the reconfiguration tool as a metric
for the best fitting network. This criteria is used as the main aim of the reconfigurable
NoC is to allow area saving when switching between the different networks.

Table 5.1: Estimated Virtex 5 Xilinx FPGA resource area [26, 27, 33]

Resource Equivalent Number of gates Silicon Area in mm?
Register 7 0.000341
LUT 24 0.001171
10 100 0.004882
BRAM - 0.025436

5.7.1. Case Study

This is a case study highlighting the effect of the reconfigurable NoC. The five
benchmarks listed in Table 5.2 are designed using the Static NoC approach and the
Reconfigurable NoC approach.

The different reconfigurble benchmarks force designing the static NoC with the
highest performance requirements and consuming the biggest area all the time. However,
the reconfigurable NoC offers switching to the best fit configuration satisfying the
benchmark requirement without reserving unnused area.

Table 5.2: Case study benchmarks with Static NoC and Reconfigurable NoC

approaches
Benchmark Static NoC approach Reconfigurable NoC approach
Benchmark 1 Mesh 4x4 Mesh 4x4
Benchmark 2 Mesh 4x4 Mesh 4x3
Benchmark 3 Mesh 4x4 Mesh 3x3
Benchmark 4 Mesh 4x4 Mesh 3x2
Benchmark 5 Mesh 4x4 Mesh 2x2

66

Slice LUTs

Figure 5.42 represents a usage model example of two NoCs switching between the
set of listed bencmarks. These benchmarks are ranging from a 4x4 mesh network down
to a 2x2 mesh network. The first NoC is a static NoC, which shows a constant area
resource usage even with moving from an application to another. However, the second
NoC which is a reconfigurable NoC shows a variable area with each new reconfiguration.
The swiching takes place and hence the current area utilization are determined according
to the current application used. In general, the NoC reconfigurability power appears when
the usage model does not require the high throughput all the time.

HELL

Benchmark1 Benchmark2 Benchmark3 Benchmark4 Benchmark5
mesh 4x4 mesh 4x3 mesh 3x3 mesh 3x2 mesh 2x2

Operating Benchmarks

16000
14000
12000
10000

800

o

600

o

400

o

200

o

B Static mesh 4x4 CONNECT ® ReConfigurable mesh 4x4 CONNECT

Figure 5.42: Virtex 5 xc5vIx110tff1136-1 Area results of reconfigurable mesh 4x4
CONNECT vs Static mesh 4x4 CONNECT

The area resources of all those networks are listed in Table 5.3. The area reduction
is noticed with decreasing the network size when switching between the different
benchmarks.

67

Table 5.3: Area resources for different networks corresponding to different
benchmarks

Network VC | BD | Slice | Slice | LUT-FF | I0s | BUFG
Regs | LUTs pairs

Mesh 4x4 (Static) 2 4 | 3758 | 12644 2287 914 2
Mesh 4x4 (Reconfig.) 2 4 | 3758 | 14696 2276 930 2
Mesh 4x3 (Reconfig.) 2 4 | 2728 | 10660 1668 818 1
Mesh 3x3 (Reconfig.) 2 4 | 1976 | 7202 1231 733 1
Mesh 3x2 (Reconfig.) 2 4 | 1207 | 4145 766 648 1
Mesh 2x2 (Reconfig.) 2 4 726 2238 459 590 1

Assuming that the five benchmarks are operating with equal times, the overall area
saving in this case study is as follows:
e Saving in Slice Registers: 44.67%
Saving in Slice LUTs: 38.4%
Saving in LUT-FF pairs: 44%
Saving in 10s: 18.6%
Saving in BUFG/BUFGCTRL: 40%

68

5.8. Design recommendations

From the previous evaluations, some recommendations should be considered when
planning to use NoCs in the user design and whether static or reconfigurable NoCs are
going to be used. These design recommendations are listed below:

Reconfigurable NoCs are preferred when there are multiple benchmarks are
going to run with different requirements (traffic load, throughput). The
reconfigurable NoCs will give the design the required adaptability to the
runtime requirements with area and power gains.

Static NoCs are preferred when only a single benchmark is running.
Additionally, it is suitable for multiple benchmarks with the same
performance requirements. The adaptability here has no meaning as the
runtime requirements does not need a lot of variations.

The main gain behind applying PDR to the NoC topology is the area and
power saving. Removing a set of routers and changing the network topology
during the runtime degrades the performance while saving the area of the
reconfigured nodes. This area saved is going to be used by the rest of the
design.

Applying DPR to the network buffer depth is beneficial with the high traffic
loads and the relatively large networks. It has its minimal effect with the
small networks or the low traffic loads.

Applying DPR to the network virtual channel has its most effect with high
traffic loads and relatively large networks plus a small buffer depth. Large
buffer depth networks could prevent making the most of the available virtual
channels.

Choosing buffer depth DPR or virtual channel DPR depends mainly on the
usage model of the design specified benchmarks. The virtual channel is
preferred when planning to use the parallel loading and packet injection.
However, the buffer depth is preferred when the internal router storage is
more important than routing resources.

Flow control mechanism DPR could help when fine tuning the network
parameters while DPR selection. The peek flow control is much simpler in
the implementation which means less area and power. However, the credit
flow control gives the router a more detailed information about the traffic
going through the neighbors and gives a more smart insight with the possible
routing paths.

69

Conclusion

In this thesis, four reconfiguration methods for DPR in Xilinx FPGAs are reviewed
and results are discussed.

It is obvious that JTAG and Serial Mode reconfiguration methods are much slower
than the ICAP and SelectMap methods. However, serial reconfiguration methods have
less significant area overhead compared to the parallel methods. Therefore, the
performance with JTAG and Serial methods is better than the parallel methods with small
design areas. With these less significant designs, the area overhead is very noticeable.
Despite that, the performance with JTAG and Serial modes are not recommended with
the more significant design areas. The area overhead is not significant compared to the
large design areas. On the other hand, JTAG allows sending internal signals to the outside
for debugging purposes.

In addition, the methods that use a parallel port support a high speed reconfiguration
compared to the others, especially with large designs.

This work presents a study on the reconfiguration impact on the NoC performance.
Additionally, it focuses on how shrinking the network size during the runtime results in
area saving. This saving is at the expense of degrading the performance. In general, the
low performance is suitable with cerain benchmarks under certain traffic loads.
Moreover, other network configuration parameters are studied and their impact on the
network performance is analyzed.

Since the large network requires hosting the packets for a longer time than the
smaller network, the buffer depth contributes in enhancing the performance with the
larger network sizes. Moreover, the Virtual channel acts as a booster for the performance
especially with the large networks and small buffer depths. In addition, the flow control
mechanism impact is noticeable with the small buffer depths. Finally, the area metric
plays a very important role in the best network selection. The area results are considered
the main advantage that is gained from applying DPR into NoC.

70

Future Work

The reconfigurable mesh 4x4 CONNECT holds a detailed analysis on the throughput
as a performance metric of the network performance. However, this study can be
extended in the future to include the following:

Evaluate larger networks such as 6x6 and 8x8 mesh networks in order to
provide more configuration options to the user and more detailed analysis
on the large scale NoCs.

Evaluate other network topologies such as Ring and Star networks and
providing a detailed analysis and a comparison among them.

Consider the impact of the network latency as a performance metric.
The network latency shall reflect on the best network structure
selection by the reconfiguration tool.

Engage this work with the new NoC simulators and study the opposite
way how the NoC should impact the reconfiguration time and the DPR
performance in general. This should give the user a complete holistic
view on the reconfiguration and its usage with the NoC.

Propose a technique for estimating traffic load for every user
benchmark.

71

References

S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First Thirty Years
of FPGA Technology,” in Proceedings of the IEEE, vol. 103, no. 3, pp. 318-331,
March 2015.

Farooq U, Marrakchi Z, and Mehrez H., “FPGA architectures: An overview. In: Tree-
based Heterogeneous FPGA Architectures,” Springer, New York, pp 748, 2012.

3. Xilinx Inc., “Virtex-4 FPGA Configuration Guide, UG071”, June 2017.

http://www.fpl2012.org/Presentations/Keynote_Steve Teig.pdf. Accessed: 2018-
06-03

M. Liuzy , Z. Luy , W. Kuehnz, and A Jantsch, “Reducing FPGA Reconfiguration
Time Overhead using Virtual Configurations,” in ReCoSoC, 2010.

P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgeford, “Enhanced
architectures, design methodologies and CAD tools for dynamic reconfiguration on
XILINX FPGAS,” in Proceedings of the 16th International Conference on Field
Programmable Logic and Applications, FPL06, Madrid, Spain, August 2006.

Xilinx Inc., “Partial Reconfiguration User Guide, UG702”, 2013.

8. http://users.ece.cmu.edu/~mpapamic/connect/. Accessed: 2018-06-03

10.

11.

12.

13.

14.

15.

M. Katevenis, “Buffer requirements of credit-based flow control when a minimum
draining rate is guaranteed,” The Fourth IEEE Workshop on High-Performance
Communication Systems, Greece, pp. 168-178, 1997.

A. Ahmadinia, C. Bobda, J. Ding, M. Majer, J. Teich, S. P. Fekete, and J. C. van der
Veen, “A Practical Approach for Circuit Routing on Dynamic Reconfigurable
Devices,” in Proceedings of RSP, pp. 84-90, 2005.

C. Bobda and A. Ahmadinia, “Dynamic interconnection of reconfigurable modules
on reconfigurable devices,” Design & Test of Computers, vol. 22, no. 5, pp. 443—
451, 2005.

C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and J. van der Veen,
“DyNoC: A dynamic infrastructure for communication in dynamically
reconfigurable devices,” in Proc. Int. Conf. Field Program. Logic Appl., pp. 153-158,
Aug. 2005.

T. Pionteck, R. Koch, and C. Albrecht, “Applying partial reconfiguration to
networks-on-chips,” in Proc. Int. Conf. Field Programmable Logic and Applications,
FPL, pages 1-6. IEEE, 2006.

T. Pionteck, C. Albrecht, and R. Koch, “A Dynamically Reconfigurable
PacketSwitched Network-on-Chip,” in Proceeding of the conference on Design,
Automation and Test in Europe, DATE'06, vol.1, pp.8-9, March 2006.

M. Modarressi, H. Sarbazi-Azad, and A. Tavakkol, “An efficient dynamically
reconfigurable on-chip network architecture,” Proc. of the 47th Design Automation
Conference, DAC 2010, pp. 310-313, 2010.

72

http://www.fpl2012.org/Presentations/Keynote_Steve_Teig.pdf
http://users.ece.cmu.edu/~mpapamic/connect/

16

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

. E. J. Mcdonald, “Runtime FPGA Partial Reconfiguration,” in Proc. of 2008 IEEE
Aerospace Conference, pp. 1-7, Mar. 2008.

Jean-Philippe Delahaye, Pierre Leray, Christophe Moy, and Jacques Palicot,
“Managing Dynamic Partial Reconfiguration on Heterogeneous SDR Platforms,”
SDR Forum Technical Conference'05, Anaheim, USA, November 2005.

H. Tan, R. F. DeMara, A. J. Thakkar, A. Ejnioui, and J. Sattler, “Complexity and
Performance Evaluation of Two Partial Reconfiguration Interfaces on FPGAs: A
Case Study,” in Proceedings of ERSA'06, Las Vegas, Nevada, USA, pp. 253-256,
June 2006.

Liu, M., Kuehn, W., Lu, Z., and Jantsch, A., “Run-time Partial Reconfiguration Speed
Investigation and Architectural Design Space Exploration,” in Proceedings of FPL,
Prague, Czech Republic, 2009.

K. Vipin and S. Fahmy, “A high speed open source controller for FPGA partial
reconfiguration,” Proc. Int. Conf. Field Programmable Technol., FPT, pp.61 -66,
2012.

K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial reconfiguration
in FPGA systems: A survey and cost model,” ACM Transactions on Reconfigurable
Technology and Systems, TRETS, vol. 4, no. 4, pp. 36:1-36:24, Dec. 2011.

C. Claus, F. Muller, J. Zeppenfeld and W. Stechele, “A new framework to accelerate
Virtex-11 Pro dynamic partial self-reconfiguration,” Proc. IEEE Int. Parallel Distrib.
Process. Symp., pp.1 -7, 2007.

Xilinx Inc., “Virtex-5 FPGA Configuration User Guide, UG191”, 2012.

Xilinx Inc., “Using a Microprocessor to Configure Xilinx FPGAs via Slave Serial or
SelectMAP Mode”, 2009.

Helal, K. A., S. Attia, T. Ismail, and H. Mostafa, “Comparative Review of NoCs in
the Context of ASICs and FPGAs”, ISCAS, pp. 1866- 1869, 2015.

https://www.xilinx.com/training/downloads/what-is-the-difference-between-an-
fpga-and-an-asic.pptx. Accessed: 2018-06-03

F. Arnaud., “A Functional 0.69 Embedded 6T-SRAM bit cell for 65nm CMOS
platform,” the Digest of Technical Papers of the Symposium on VLSI Technology,
pp. 65-66, 2003.

A. Hassan, R. Ahmed, H. Mostafa, H. A. H. Fahmy and A. Hussien, “Performance
evaluation of dynamic partial reconfiguration techniques for software defined radio
implementation on FPGA,” 2015 IEEE International Conference on Electronics,
Circuits, and Systems, ICECS, Cairo, pp. 183-186, 2015.

R. Ahmed, H. Mostafa and A. H. Khalil, “Impact of dynamic partial reconfiguration
on CONNECT Network-on-Chip for FPGAs,” 2018 13th International Conference
on Design & Technology of Integrated Systems In Nanoscale Era DTIS, Taormina,
pp. 1-5, 2018.

Papamichael, M. K., and J. C. Hoe, “CONNECT: Re-examining Conventional
Wisdom for Designing NoCs in the Context of FPGAs,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA’12, New York, NY, USA, pp. 37-46, ACM, 2012.

73

31. Salaheldin, A., K. Abdallah, N. Gamal, and H. Mostafa, “Review of NoC-Based
FPGAs Architectures,” IEEE International Conference on Energy Aware Computing
Systems and Applications, pp. 1-4, 2015.

32.S. Abba and J. A. Lee, “Examining the Performance Impact of NoC Parameters for
Scalable and Adaptive FPGA-Based Network-on-Chips,” in 2013 Fifth International
Conference on Computational Intelligence, Modelling and Simulation, pp. 364-372,
Sept 2013.

33. Gamal, N., H. A. H. Fahmy, Y. Ismail, T. Ismail, M. Mohie-Eldin, and H. Mostafa,
“Design Guidelines for Soft Implementations to Embedded NoCs of FPGAs,” IEEE
International Design and Test Symposium, pp. 1-6, 2016.

74

Appendix A: Reconfiguration tool user manual

This part contains the configuration tool user manual. All the needed steps for the user to

install the tool and use it properly.

A.1 Environment Setup

Before using the tool, the environment need to be ready by installing the required
compilers and placing the needed files and datasheets at their right place.
First, the tool is developed in Python. Therefore, the user need to install python in

order to be able to run the tool successfully.

w i Mw_Figs 3/24/2018 438 PM File folder

@ mwd ved ph £/1/2018 2:49 PM File folder

@ hwd ved ch 5/16/2018 &:27 PM File folder

@ mwd_ved pk £/1/2018 249 PM File folder

@ mwd vel ch 5/16/2018 &:27 PM File folder

@ hwd ved pk 61,2018 2:49 PM File folder

{7 fillsheet_area 72372018 437 PM Python File 5KB
.:':J' fillsheet_area_arrange 772372018 9:24 PM Python File 22 KB
{7 fillsheet_thrpt 72372018 4:36 PM Python File 2 KB
{F get-pip 71472018 1:43 PM Python File 1,604 KB
&# gui T16/2018 210 PM Python File & KB
F qui_new T16/2018 &59 PM Python File 9 KB
(;E none - Copy 72072017 2:35 PM PMG File &0 KB
tﬂ Mone 72072017 2:35 PM PMG File &0 KB
@j PDR_MOC_result 72372018 429 PM Microsoft Excel W... 957 KB
£ PDR_MOC _results_area 8122018 212 PM Microsoft Bxcel W... 1,098 KB
15 PDR_MOC_results_test 5/31,/2018 902 AM Microsoft Excel W... 1,429 KB
|j Python_workspace.code-workspace 716/2018 2412 PM CODE-WORKSPA... 1KB
E randomgenerator 372172018 753 PM Python File 2 KB
|j randomout 714/2018 506 PM Text Document 1KB
[F search 3/10/2018 2:58 PM Python File 4 KB
searchout TAT2018 401 PM Text Document 9 KB
|j searchout_ 5312018 405 AM Text Document 13 KB

Figure A.1: The Reconfiguration tool required files and sheets

75

Second, the Python Scripts “search.py” and “gui_new.py” need to be placed in
the run directory as shown in Figure A.l1. Additionally, the Sheet
“PDR_NOC _result.xlsx” is required beside the python scripts in the same directory as it
contains all the required network information. The tool output appears in the “searchout”

text file.

A.2 Batch mode run

In the Batch mode, the user only needs to run the “search.py” script in the python
terminal passing the expected network traffic and the desired throughput as in Figure A.2
(the terminal part).

>> python .\search.py ExpectedTraffic RequiredThroughput

A.2 GUI mode run

In the GUI mode, the user only needs to run the “gui_new.py” script in the python
terminal. The GUI interface appears letting the user enter the expected network traffic

and the desired throughput as in Figure A.2 (the GUI part).

>> python .\gui new.py

A.3 Tool Output

The tool output in the GUI mode is the best fitting Network structure and
configuration in addition to a list with all the fitting networks as in Figure A.2 (the output

part). The Output list is the only output in the Batch mode run.

76

7 - O X
Traffic load: 80

Target throughput: 0.59
Show

No configuration selected

Nw= 4, VC= 2, BD= 4, PDR= -, which router= none, Config= ffff
NWw= 4, VC= 2, BD= 8, PDR= -, which router= none, Config= ffff
NW= 4, VC= 2, BD= 8, PDR= 0, which router= corner, Config= fffe
Nw= 4, VvVC= 2, BD= 8, PDR= 12, which router= corner, Config= efff
NWw= 4, VC= 2, BD= 8, PDR= 15, which router= corner, Config= 7fff
NWw= 4, VC= 2, BD= 8, PDR= 1, which router= edge, Config= fffd
Nw= 4, VC= 2, BD= 16, PDR= -, which router= none, Config= ffff

= 4, VC= 2, BD= 16, PDR= 0, which router= corner, Config= fffe
NWw= 4, VC= 2, BD= 16, PDR= 3, which router= corner, Config= fff7
NW= 4, VC= 2, BD= 16, PDR= 12, which router= corner, Config= efff
Nw= 4, VC= 2, BD= 16, PDR= 15, which router= corner, Config= T7fff
NWw= 4, VC= 2, BD= 16, PDR= 1, which router= edge, Config= fffd

Figure A.2: The Reconfiguration tool interface and output

77

78

Appendix B: Reconfiguration tool source code

This part contains the python configuration tool source code. The python source code
requires the existence of the Connect NoC results data base for searching among it for
the most suitable Noc structure fitting the desired network requirements.

For more information on how to use the Configuration tool, please refer to Appendix A

which is the user manual for the reconfiguration tool.

The Source code:

from tkinter import *

from PIL import ImageTk, Image
from tkinter import messagebox

from openpyxl import load_workbook
import string

import sys

import random

def calculate(pktrate, thrpt):
column = getPacketRateCol(pktrate)
streamWriter=open('searchout.txt','w")
minarea = -1
which = 'NotFound'
NW = -1
vC=-1
BD=-1
temp =-1
for r in range(4,wsl.max_row+1):
cellval = ws1[column+str(r)].internal_value
if thrpt < cellval:
temp = ws1['AB'+str(r)].internal_value
if minarea == -1 or minarea > temp:
minarea = temp
which = ws1['E'+str(r)].internal_value
NW = ws1['A'+str(r)].internal_value

VC = ws1['B'+str(r)].internal_value

79

BD = ws1['C'+str(r)].internal_value

streamWriter.write("NW= %2d, VC= %2d, BD= %3d, PDR= %4s, which router= %6s,
Config= %4s
\n"%(ws1['A'+str(r)].internal_value,ws1['B'+str(r)].internal_value,ws1['C'+str(r)].internal_value,str
(ws1['D'+str(r)].internal_value),str(ws1['E'+str(r)].internal_value),str(ws1['F'+str(r)].internal_value
)

#print("NW=%2d VC=%2d BD=%3d PDR=%4s which=%6s
Config=%4s"%(ws['A'+str(r)].internal_value,ws['B'+str(r)].internal_value,ws['C'+str(r)].internal_v
alue,str(ws['D'+str(r)].internal_value),str(ws['E'+str(r)].internal_value),str(ws['F'+str(r)].internal_v
alue)))

#print(str(r) + ' NW=" + str(ws[A'tstr(r)].internal_value) + ' VC=' +
str(ws['B'+str(r)].internal_value)+ ' BD=" + str(ws[C'+str(r)].internal_value)+ ' PDR=" +
str(ws['D'+str(r)].internal_value) + ' which=" + str(ws['E'+str(r)].internal_value) + ' Config=" +
str(ws['F'+str(r)].internal_value))

for r in range(4,ws2.max_row+1):

cellval = ws2[column+str(r)].internal_value

if thrpt < cellval:
temp = ws2['AB'+str(r)].internal_value
if minarea == -1 or minarea > temp:
minarea = temp
which = ws2['E'+str(r)].internal_value
NW = ws2['A'+str(r)].internal_value
VC = ws2['B'+str(r)].internal_value

BD = ws2['C'+str(r)].internal_value

streamWriter.write("NW= %2d, VC= %2d, BD= %3d, PDR= %4s, which router= %6s,
Config= %4s
\n"%(ws2['A'+str(r)].internal_value,ws2['B'+str(r)].internal_value,ws2['C'+str(r)].internal_value,str
(ws2['D'+str(r)].internal_value),str(ws2['E'+str(r)].internal_value),str(ws2['F'+str(r)].internal_value
)

#print("NW=%2d VC=%2d BD=%3d PDR=%4s which=%6s
Config=%4s"%(ws['A'+str(r)].internal_value,ws['B'+str(r)].internal_value,ws['C'+str(r)].internal_v
alue,str(ws['D'+str(r)].internal_value),str(ws['E'+str(r)].internal_value),str(ws['F'+str(r)].internal_v
alue)))

#print(str(r) + ' NW=" + str(ws['A'+str(r)].internal_value) + ' VC= +
str(ws['B'+str(r)].internal_value)+ ' BD=" + str(ws['C'+str(r)].internal_value)+ ' PDR=" +
str(ws['D'+str(r)].internal_value) + ' which=" + str(ws['E'+str(r)].internal_value) + ' Config=" +

str(ws['F'+str(r)].internal_value))

80

for r in range(4,ws3.max_row+1):

cellval = ws3[column+str(r)].internal_value

if thrpt < cellval:
temp = ws3['AB'+str(r)].internal_value
if minarea == -1 or minarea > temp:
minarea = temp
which = ws3['E'+str(r)].internal_value
NW = ws3['A'+str(r)].internal_value
VC = ws3['B'+str(r)].internal_value

BD = ws3['C'+str(r)].internal_value

streamWriter.write("NW= %2d, VC= %2d, BD= %3d, PDR= %4s, which router= %6s,
Config= %4s
\n"%(ws3['A'+str(r)].internal_value,ws3['B'+str(r)].internal_value,ws3['C'+str(r)].internal_value,str
(ws3['D'+str(r)].internal_value),str(ws3['E'+str(r)].internal_value),str(ws3['F'+str(r)].internal_value
)

#print("NW=%2d VC=%2d BD=%3d PDR=%4s which=%6s
Config=%4s"%(ws['A'+str(r)].internal_value,ws['B'+str(r)].internal_value,ws['C'+str(r)].internal_v
alue,str(ws['D'+str(r)].internal_value),str(ws['E'+str(r)].internal_value),str(ws['F'+str(r)].internal_v
alue)))

#print(str(r) + ' NW=" + str(ws['A'+str(r)].internal_value) + ' VC= +
str(ws['B'+str(r)].internal_value)+ ' BD='" + str(ws['C'+str(r)].internal_value)+ ' PDR='" +

str(ws['D'+str(r)].internal_value) + ' which=" + str(ws['E'+str(r)].internal_value) + ' Config=" +
str(ws['F'+str(r)].internal_value))
streamWriter.close()

return minarea, which, NW, VC, BD

def getPacketRateCol(val, row=2):

alpha = list(string.ascii_uppercase)

alpha = alpha[6:]

for col in alpha:
curr_cell = wsl[col+str(row)].internal_value
if val > curr_cell:

continue

else:

return col

81

def validate(event=None):
fail = False
try:
trafficLoad = int(entryl.get())
if trafficLoad < O or trafficLoad > 100:
raise ValueError
except ValueError:
if entryl.get() ==":
messagebox.showerror("Traffic load invalid input”, "Traffic load shouldn't be left empty.")
else:
messagebox.showerror("Traffic load input error”, "You should enter value between: 0 and
100")

fail = True

try:
throughput = float(entry2.get())
if throughput < 0 or throughput > 1:
raise ValueError
except ValueError:
if entryl.get() == "
messagebox.showerror("Target throughput invalid input”, "Target throughput shouldn't be
left empty.")
else:
messagebox.showerror("Target throughput input error”, "You should enter value
between: 0 and 1")

fail = True
if fail == True:
return

minarea, which, NW, VC, BD= calculate(trafficLoad, throughput)
if minarea == -1:
panell.config(text="No configuration selected",font="Helvetica 14 bold")
panel2.configure(image=")
fail = True
messagebox.showerror("Configuration not found", "The networks available don't meet the

required configurations")

82

return #TEMP
if not fail:
panell.config(text = "Minimum Area="+str(minarea)+', "+'NW="+str(NW)+,
'+"VC="+str(VC)+', '+"BD="+str(BD), width = "50")
HHEH R mage
identifierfHiHHHHH I
testval = random.randint(1,101)
if testval > 50:
number =2
else:
number =1

path = "test” + str(number) + ".png"

HH TR R R R T R T R R R
HHERHHRHREAIT

image = Image.open(path)

image = image.resize((820, 820), Image.ANTIALIAS) #The (250, 250) is (height, width)
img = ImageTk.Photolmage(image)

#img = ImageTk.Photolmage(Image.open(which))

panel2.configure(image=img)

panel2.image = img # keep a reference!

if _name__=='_main__"
master = Tk()
master title('"Re-Configuration Tool")
master.geometry("850x1000")
master.resizable(0,0)
framel = Frame(master,width=300)
framel.pack(side=TOP, padx=5, pady=>5)
labell = Label(framel, width=10, text="Traffic load:',anchor=W, padx=50)
labell.pack(side=LEFT)
entryl = Entry(framel)
entryl.pack(side=LEFT)
entryl.bind('<Return>',validate)
frame2 = Frame(master,width=300)
frame2.pack(side=TOP, padx=5, pady=>5)
label2 = Label(frame2, width=10, text="Target throughput:',anchor=W,padx=50)

83

label2.pack(side=LEFT)

entry2 = Entry(frame2)

entry2.pack(side=LEFT)

entry2.bind('<Return>',validate)

frame3 = Frame(master)

frame3.pack(side=TOP, fill=X, padx=5, pady=5)

buttonl = Button(frame3,text="Show",command=validate)

buttonl.pack()

buttonl.bind('<Return>',validate)

frame4 = Frame(master,borderwidth=1,relief= GROOVE,padx=10,pady=10)
frame4.pack(side=TOP, fill=BOTH, padx=5, pady=5)

panell = Label(frame4, text="No configuration selected",font="Helvetica 14 bold")
panell.pack()

frame5 = Frame(frame4,borderwidth=1,padx=10,pady=10)
frame5.pack(side=TOP, fill=X, padx=5, pady=5)

panel2 = Label(frame5, text="",font="Helvetica 14 bold")

panel2.pack()

wb = load_workbook(filename = 'PDR_NOC _results.xlsx', data_only=True)
wsl = wb['Bypass 4x4 vc2']

ws2 = wb['Bypass 4x4 vca']

ws3 = wb['Bypass 4x4 vc8]

master.mainloop()

#pip install Pillow

84

Al) Jaidla

el Ay il o ¢ 3381 e alail) JA13 mpenail) S 3 ole (S5 k) al 3l aa
sy izl aracaill dabail it dgal sal 48 45 g0 VLAl A0S Cila slral) Jua 68 4805
LA JaY sl VLAY g o Gl glaadl Jua 58 305 aaal zgd gLl Juads
Jad¥ L 5lal 5 ¢ Al Lgidaai 5 ¢ a3

JSEy Sl sale Y AL g A jull AL b haall b il Gl ¢ g AT dals (g
Saabiall B sale) prany Jarndil) 5 o L daadiivsall avebiaill JiSai sale) ey Saalind
o all s Aalsall Juadl il a5 5 avanail] Aaliaall <l Kall 65 all (e 3y 3ay 53l
el s e skl (5 Jad) (Spalisall JiSl Sale) aladius) pely (IS AB) aladil (s
AR Glagdail) 3 g g Slillaia e Tely 48080 adliail)

aranaill Cilyy ST a Baa 5 (8 el (Sl GG o D) sale) a sde JA)
Logia 5ol ol (CLiSY Basa Hm i yiiny il glaall (o 55 S0 Jia Y8 5 1Ll
gy o o JoKall ALEN il laall Jaa 8 €l &Y Sl sale) 5 dallal) 2 5 yall
8 g bl (e) 508 Tae 233 5 JalS IS CaSall AL e sl Jua 53 Sk Ll I
il o g lllaie s ilaldaY

23 dai g KV 5 SN LA bl e Al daa pull AL Culd sieadd) JiK45S sale)
ol sl sale) 2S5y Badae Clidai) deiiaall 435 5 IV) sall asslad e 5 30 5 58l
(Xilinx) Ak i Jondil) A o ol A5 pall (e 2y Jall ALaly 3 3all 028 o Saalil
SelectMAP 12 3l (Salall Gl sale) 28 sl day)i Ao yull ALEN il siiadll (g
Leani g Cladill a8 (e JS iaje ab L))l 038 A ICAP 5 ¢ JTAG ¢ Serial Mode ¢
(gl ym Baoaall g0 1 adas e bl 6 3 58 g ¢ ANV il seals o aladiiuly s lidl
ol o) a) & ol GSealnall JSall sale Y sael Sl cilapkill ST mual 3
O ol Hlaal) e8¢ vastl daa pll AL Gl aadll (e (Xilinx Virtex 5) 4lile aladiuly
zOa s dals g sale) 5 aSad Bas g Aila) 35k (e Al daluall 4S5y ¢1aY)
¢araall & 51 o aaing YV Gslal JS el o & e cply A ll ALIEN il iiadll
a3 Als ye oL L Hliial 23 il 5 LS slaall 455 jad) dikaiall aaa ae Jath canlity 43S0
eanaill Gl Hlaadl g SLY

A) ol (Saaliall Gl sale) ac s anaii sa da gyl 038 (e i)l Cangll
Saalnall J<iall sale)).u_a e LAA.I\ da g kY sda .(CONNECT) Gle daall Jua 6
Se Juidll ol J<al sale) LE Jaad Ledasa Jal e caliday 403 ¢lal e 5 3all
Ge Glaslaall Jaa o8 lSai] JalSl) JiSEI srand § il slaall Jua o8 SIS0S 45 5 ye B34)
A e glaall Jual 58 S ae 45 laally | Saalipal) Jiil) sale Y AL a3y 5k
Giob oo daludl g) Sadbiall Jil) sale Y AL Cila sleall Joal 55 ClSuE g5
s dall sale) slal i &5 i) 5 £ U1 4g)) dalad) axe i A0 (e o ja Dl
il e Sl sale) Bl Callati | gaadat JSI JeY) ASil) UK oty addiall e
b pealaind o GAAaRl (13a 31O alaaeS A (e Ay sllaall dad) 5 a8 giall Jaall
Aalod) Lali (e oY) ASLED daas

RV jS AAA\ ‘S.A‘J :u.ud.\’.g.n
YAAG\T\YY sl oy

(5 e LIRS

YY)) sl g

Yoray o\ sgeiall fo

A sl el g il g sy dwaia sl
aslal) pfivala da)

1058 el

dada (g daal ,A,i

u.uauibmu«..a.i

5alall aala — Anigll ALK culys 5 Y AL

1O giadiaal)

(AR aliaall) bl dasa cpal o
5alal daala — Auaigll 4K chls ¢ Y AL

3alall ALY daalal) — culKasll g el g iKY oy e bise A5

ALl ol sis
AR e ol AL b ghoadl (po actil) Joall LS Slaa e slae Jual 55 280 aranal
Sl i3l il sale)

A1) clalgl)

g0 ¢ Ay Y 38l e il sheall Jaa 55 S ¢ Saaliall 3 5all Jil) sale)
aqahiall bl gall Cold g8ina

Al Gadla
a5 4803) S 5a)) (Sealisal M\?A\.{;‘\&Aﬁﬁﬁ;\;}ﬁy\ 238 (ja (it)l Caagll
Sl B il sale) 580 (a8 da gyl Y e2a A ALYl (CONNECT) e sheall
AN e glaall) 58 S8 ae &8 Ledarca Jal so Caliday A8l elal e J5al)
Gib oo Aaludl i) Saeliall Bl sale Y AL il sheal) Jal 58 IS0 5 5055
5 JeSll sale] slal a3 el g L 4] Aalal) oo vie A3 a6 S Jain)

et IS0 (J3a Y1 A3 S daaty addiiiall e

ALY b ghuaal) (ra adldl) Jaadl LeliCld Maa cilaglra Jual 58 AL avaial
Saalinall) Jsdal) Bale) aladdiuly dave ull

3 alal) daala - Alaigl) LK Y deaie Al
astd) pfwale ds) e Jsanll Glllaia (a6 JaS
o
A 4l LYY g il g s daia

oiniad) iad (e ading

o) pdial) dana e daal 1 gisal) Ay
3ol daala — g 2K il ¢ iKY ML

AR Cadiaal) Jhal dana Cyral 1 gASAT ALY
3ol daala — g 2K il ¢ iKY ML

AR Caiad) Laall e calh g e e bual) LYY
3alall AulalY) daalall — Gl § el g S ey debise AU

5 alEl) dala - Gl K
Al e 4 sean - 5 5]l
Y14

ALY b ghuaal) (ra addl) Jaadl LebiCls Maa il plra Jual 55 ALY avanal
Saaliadl) i sad) JaSdal) Bale) aladiady da lt

3 alal) daala - Alaigl) LK Y deaie Al
astd) pfwals ds) e Jsanll Glllaia (a6 JaS
o
A 4l LYY g il g s daia

Gl g ST dia and Sl g ST dia and
5 alall dala - dlaigl) 44K 5 el dxala - digll

5 alEl) dala - Gl K
Al e 4 sean - 5 5]l
Y14

ALY b ghuaal) (pa adldl) Jaadl LeliCllh Maa il glra Jual 65 ASLA) ananal
Saaliaal) i ad) JaSdal) Bale) aladiady daw lt

Aac |

s Ao daal)

3ol daala - Auaigl) LK Y daaie Al
pstadl piale ds)y e J panll cilillaia (e 6 3aS
o
Ao sl el g il g sy dwaia

5 alEl) dala - Gl 3K
Al e 4 sean - 8 5]l
Y14

