

DESIGN OF A RECONFIGURABLE NETWORK ON

CHIP FOR NEXT GENERATION FPGA USING

DYNAMIC PARTIAL RECONFIGURATION

By

Ramy Ahmed Ali Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2019

DESIGN OF A RECONFIGURABLE NETWORK ON

CHIP FOR NEXT GENERATION FPGA USING

DYNAMIC PARTIAL RECONFIGURATION

By

Ramy Ahmed Ali Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electronics and Communications Engineering

Under the Supervision of

Prof. Ahmed Hussein Mohamed Dr. Hassan Mostafa Hassan

Professor

Electronics and Communications

Engineering Department

Faculty of Engineering, Cairo University

 Assistant Professor

Electronics and Communications

Engineering Department

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2019

DESIGN OF A RECONFIGURABLE NETWORK ON

CHIP FOR NEXT GENERATION FPGA USING

DYNAMIC PARTIAL RECONFIGURATION

By

Ramy Ahmed Ali Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electronics and Communications Engineering

Approved by the Examining Committee:

__

Prof. Ahmed Hussein Mohamed (Thesis Main Advisor)

Electronics Professor, Faculty of Engineering, Cairo University

__

Prof. Amin Mohamed Nassar (Internal Examiner)

Electronics Professor, Faculty of Engineering, Cairo University

Dr. Amr Talaat Abdel Hamid (External Examiner)

Associate Professor, Electronics/Networks Departments, German

University in Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2019

Engineer’s Name: Ramy Ahmed Ali Mohamed

Date of Birth: 23/06/1989

Nationality: Egyptian

E-mail: ramy.ahmed.ali@gmail.com

Phone: +201007994483

Address: 17 Building, 13B street, Maadi,

Cairo, Egypt

Registration Date: 1/10/2012

Awarding Date: / /2019

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

 Prof. Dr. Ahmed Hussein Mohamed

Dr. Hassan Mostafa Hassan

Examiners:

 Prof. Dr. Ahmed Hussein Mohamed (Thesis main advisor)

Electronics Professor, Faculty of Engineering,

Cairo University

 Prof. Amin Mohamed Nassar (Internal examiner)

Electronics Professor, Faculty of Engineering,

Cairo University

 Dr. Amr Talaat Abdel-Hameed (External examiner)

 Associate Professor, Electronics/Networks Departments,

German University in Cairo

Title of Thesis:

Design of a Reconfigurable Network on Chip for next generation FPGA using Dynamic

Partial Reconfiguration

Key Words:

Partial Dynamic Reconfiguration; Network on Chip; FPGA

Summary:

The main goal of this thesis is to present the runtime configurability support to CONNECT

Network-on-Chip (NoC). Additionally, the thesis studies the reconfigurability impact on the

network performance with its different configuration parameters. In comparison with the

fixed NoCs, the runtime configurable NoCs save area by reusing a part of the network when

it is not required during runtime. A reconfiguration tool is developed helping the user to

decide the optimum network structure for every used benchmark.

mailto:ramy.ahmed.ali@gmail.com

i

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has

been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have

cited them in the references Section.

Name: Ramy Ahmed Ali Mohamed Date:

Signature:

ii

Acknowledgments

I would like to thank Dr. Hassan Mostafa and Prof. Dr. Ahmed Hussein a lot for the

opportunity to work on such topic under their supervision and allowing me to add to my

skills and experience. Moreover, this work would not have been possible without the

flexible and healthy work environment offered by my manager Haytham Ashour.

Additionally, I would like to thank my teammate Ahmed Kamal for his continuous

encouragement and patience. Furthermore, I would like to express my sincere thanks and

gratitude to my workmate Ahmed Akl who helped me a lot with his knowledge. And, I

would like to thank my workmate Maha Beheiry who helped in the thesis work review.

Furthermore, a lot of thanks goes to my fiancée Samah Mamdouh who provided very

helpful comments and has not stopped supporting me till this work is finished. Finally, I

would like to thank my family members for their lifetime support.

iii

Table of Contents

DISCLAIMER .. I

ACKNOWLEDGMENTS .. II

TABLE OF CONTENTS .. III

LIST OF TABLES .. V

LIST OF FIGURES ...VI

NOMENCLATURE ...IX

ABSTRACT ... X

CHAPTER 1 : INTRODUCTION .. 1

1.1. MOTIVATION ... 1

1.2. CONTRIBUTION .. 2

1.3. ORGANIZATION OF THE THESIS .. 2

CHAPTER 2 : LITERATURE REVIEW .. 3

2.1. INTRODUCTION .. 3

2.2. FPGA ARCHITECTURE AND CAPABILITIES ... 3

2.2.1. FPGA over ASIC .. 3

2.2.2. FPGA structure ... 4

2.3. DYNAMIC PARTIAL RECONFIGURATION (DPR) 5

2.3.1. SRAM cells configuration topologies .. 5

2.3.2. Multi context configuration .. 7

2.3.3. Dynamic Partial Reconfiguration Advantages ... 7

2.4. NETWORK ON CHIPS .. 8

2.4.1. NoC parameters .. 8

2.5. CHALLENGES OF RECONFIGURABLE NOCS .. 11

2.5.1. Previous efforts ... 11

2.5.2. DyNoC .. 12

CHAPTER 3 : PERFORMANCE EVALUATION OF DYNAMIC PARTIAL

RECONFIGURATION TECHNIQUES FOR SDR ON FPGA 19

3.1. XILINX FPGA CONFIGURATION TECHNIQUES 20

3.1.1. JTAG .. 20

3.1.2. Serial Mode .. 21

3.1.3. SelectMAP .. 21

3.1.4. ICAP ... 22

3.2. SOFTWARE DEFINED RADIO .. 23

3.3. RESULTS AND DISCUSSION .. 24

CHAPTER 4 : APPLYING DYNAMIC RECONFIGURATION TO CONNECT

NOC ... 29

iv

4.1. CONNECT NOC ARCHITECTURE ... 29

4.2. RECONFIGURATION CHANGES TO CONNECT 31

4.3. TEST ENVIRONMENT STRUCTURE .. 34

4.4. RECONFIGURATION TOOL .. 35

CHAPTER 5 : IMPACT OF DYNAMIC RECONFIGURATION ON NETWORK

ON CHIP PERFORMANCE .. 39

5.1. ENVIRONMENT SETUP .. 39

5.2. NETWORK TOPOLOGY DPR EVALUATION.. 39

5.3. BUFFER DEPTH DPR EVALUATION .. 46

5.4. VIRTUAL CHANNEL DPR EVALUATION ... 52

5.5. BUFFER DEPTH VS VIRTUAL CHANNEL.. 58

5.6. FLOW CONTROL DPR EVALUATION .. 62

5.7. AREA EVALUATION ... 66

5.7.1. Case Study .. 66

5.8. DESIGN RECOMMENDATIONS ... 69

CONCLUSION ... 70

FUTURE WORK ... 71

REFERENCES ... 72

APPENDIX A: RECONFIGURATION TOOL USER MANUAL 75

APPENDIX B: RECONFIGURATION TOOL SOURCE CODE 79

v

List of Tables

Table 3.1: Reconfiguration speed for different Reconfiguration techniques [28] 24

Table 4.1: Reconfiguration tool output for different user benchmarks 35

Table 5.1: Estimated Virtex 5 Xilinx FPGA resource area [26, 27, 33] 66

Table 5.2: Case study benchmarks with Static NoC and Reconfigurable NoC

approaches .. 66

Table 5.3: Area resources for different networks corresponding to different benchmarks

 .. 68

vi

List of Figures

Figure 2.1: FPGA versus ASIC with respect to Cost and Number of units [1] 3

Figure 2.2: Mesh-based FPGA internal structure [2] ... 4

Figure 2.3: SRAM configuration topologies [3] .. 6

Figure 2.4: Tabula FPGA internal structure [4] ... 7

Figure 2.5: Dynamic Partial Reconfiguration illustration [7] .. 8

Figure 2.6: Star, Mesh, and Ring network topologies [8] .. 9

Figure 2.7: Credit based flow control structure [9] .. 10

Figure 2.8: Feasible (a) and infeasible (b) component placement [11] 13

Figure 2.9: Obstacle surrounding in the horizontal (a) and vertical (b) directions [12] . 15

Figure 2.10: Placement leading to extremely long routing path (a); Router guiding in

the DyNoc (b) [12] ... 17

Figure 2.11: Merging bit-stream for a 2D partial reconfiguration on Xilinx FPGAs [12]

 .. 18

Figure 3.1: Reconfiguration techniques of convolutional encoder inside communication

chain ... 20

Figure 3.2: SelectMAP structure in Xilinx Virtex 5 FPGAs [24] 22

Figure 3.3: 8-bit ICAP and SelectMAP with Serial mode and JTAG [28] 25

Figure 3.4: 16-bit ICAP and SelectMAP with Serial mode and JTAG [28] 26

Figure 3.5: 32-bit ICAP and SelectMAP with Serial mode and JTAG [28] 27

Figure 4.1: CONNECT NoC RTL configurator [8] ... 30

Figure 4.2: CONNECT NoC router core internal structure ... 31

Figure 4.3: Reconfigurable CONNECT NoC structure ... 32

Figure 4.4: Reconfigurable examples of CONNECT NoC during runtime [29] 33

Figure 4.5: Environment structure of CONNECT NoC during runtime [29] 34

Figure 4.6: Reconfiguration tool structure [29] .. 35

Figure 4.7: Reconfiguration tool interface in Batch mode ... 36

Figure 4.8: Reconfiguration tool interface in GUI mode ... 37

Figure 4.9: Reconfiguration tool output in Batch and GUI modes 37

Figure 5.1: CONNECT throughput of all PDR configurations – Credit-based flow

control – VC=2 – BD=4 ... 40

Figure 5.2: CONNECT Performance all PDR configurations – Credit-based flow

control – VC=4 – BD=4 ... 41

Figure 5.3: CONNECT throughput of all PDR configurations – Credit-based flow

control – VC=4 – BD=8 ... 41

Figure 5.4: CONNECT throughput of all PDR configurations – Credit-based flow

control – VC=4 – BD=16 ... 42

Figure 5.5: CONNECT throughput of all PDR configurations – Credit-based flow

control – VC=4 – BD=32 ... 42

Figure 5.6: CONNECT throughput of all PDR configurations – Credit-based flow

control – VC=4 – BD=64 ... 43

Figure 5.7: CONNECT throughput of all PDR configurations – Peek-based flow

control – VC=8 – BD=4 ... 43

Figure 5.8: CONNECT throughput of all PDR configurations – Peek-based flow

control – VC=8 – BD=8 ... 44

Figure 5.9: CONNECT throughput of all PDR configurations – Peek-based flow

control – VC=8 – BD=16 ... 44

vii

Figure 5.10: CONNECT throughput of all PDR configurations – Peek-based flow

control – VC=8 – BD=32 ... 45

Figure 5.11: CONNECT throughput of all PDR configurations – Peek-based flow

control – VC=8 – BD=64 ... 45

Figure 5.12: CONNECT throughput of all BD configurations – Mesh 4x3 – Credit-

based flow control – VC=2 .. 46

Figure 5.13: CONNECT throughput of all BD configurations – Mesh 2x2 – Credit-

based flow control – VC=2 .. 47

Figure 5.14: CONNECT throughput of all BD configurations – Mesh 2x1 – Credit-

based flow control – VC=2 .. 48

Figure 5.15: CONNECT throughput of all BD configurations – Mesh 4x4 – Peek-

based flow control – VC=2 .. 48

Figure 5.16: CONNECT throughput of all BD configurations – Mesh 4x3 – Peek-

based flow control – VC=2 .. 49

Figure 5.17: CONNECT throughput of all BD configurations – Mesh 3x3 – Peek-

based flow control – VC=2 .. 49

Figure 5.18: CONNECT throughput of all BD configurations – Mesh 3x2 – Peek-

based flow control – VC=2 .. 50

Figure 5.19: CONNECT throughput of all BD configurations – Mesh 2x2 – Peek-

based flow control – VC=2 .. 50

Figure 5.20: CONNECT throughput of all BD configurations – Mesh 2x1 – Peek-

based flow control – VC=2 .. 51

Figure 5.21: CONNECT throughput of all VC configurations – Mesh 4x4 – Peek-

based flow control – BD=4 .. 52

Figure 5.22: CONNECT throughput of all VC configurations – Mesh 2x1 – Peek-

based flow control – BD=4 .. 53

Figure 5.23: CONNECT throughput of all VC configurations – Mesh 4x4 – Peek-

based flow control – BD=64 .. 53

Figure 5.24: CONNECT throughput of all VC configurations – Mesh 4x4 – Credit-

based flow control – BD=8 .. 54

Figure 5.25: CONNECT throughput of all VC configurations – Mesh 4x3 – Credit-

based flow control – BD=8 .. 55

Figure 5.26: CONNECT throughput of all VC configurations – Mesh 3x3 – Credit-

based flow control – BD=8 .. 55

Figure 5.27: CONNECT throughput of all VC configurations – Mesh 3x2 – Credit-

based flow control – BD=8 .. 56

Figure 5.28: CONNECT throughput of all VC configurations – Mesh 2x2 – Credit-

based flow control – BD=8 .. 56

Figure 5.29: CONNECT throughput of all VC configurations – Mesh 2x1 – Credit-

based flow control – BD=8 .. 57

Figure 5.30: CONNECT throughput of BD vs VC configurations – Mesh 4x4 – Peek-

based flow control – VC=2, 4, and 8 – BD=4, 8, and 16 ... 58

Figure 5.31: CONNECT throughput of BD vs VC configurations – Mesh 4x4 – Credit-

based flow control – VC=2, 4, and 8 – BD=4, 8, and 16 ... 59

Figure 5.32: CONNECT throughput of BD vs VC configurations – Mesh 3x3 – Credit-

based flow control – VC=2, 4, and 8 – BD=8, 16, and 32 ... 59

Figure 5.33: CONNECT throughput of BD vs VC configurations – Mesh 3x3 – Peek-

based flow control – VC=2, 4, and 8 – BD=8, 16, and 32 ... 60

Figure 5.34: CONNECT throughput of BD vs VC configurations – Mesh 2x2 – Credit-

based flow control – VC=2, 4, and 8 – BD=16, 32, and 64 ... 60

viii

Figure 5.35: CONNECT throughput of BD vs VC configurations – Mesh 2x2 – Peek-

based flow control – VC=2, 4, and 8 – BD=16, 32, and 64 ... 61

Figure 5.36: CONNECT throughput of Flow Control configurations – Mesh 4x4 –

VC=2 – BD=4 .. 62

Figure 5.37: CONNECT throughput of Flow Control configurations – Mesh 2x1 –

VC=2 – BD=4 .. 63

Figure 5.38: CONNECT throughput of Flow Control configurations – Mesh 3x3 –

VC=4 – BD=16 .. 63

 .. 64

Figure 5.39: CONNECT throughput of Flow Control configurations – Mesh 2x2 –

VC=4 – BD=32 .. 64

Figure 5.40: CONNECT throughput of Flow Control configurations – Mesh 4x3 –

VC=8 – BD=8 .. 64

 .. 65

Figure 5.41: CONNECT throughput Flow Control configurations – Mesh 2x1 – VC=8

– BD=64 ... 65

Figure 5.42: Virtex 5 xc5vlx110tff1136-1 Area results of reconfigurable mesh 4x4

CONNECT vs Static mesh 4x4 CONNECT .. 67

Figure A.1: The Reconfiguration tool required files and sheets 75

Figure A.2: The Reconfiguration tool interface and output ... 77

ix

Nomenclature

NRC Non Recurring Cost

ASIC Application Specific Integrated Circuits

FPGA Field-Programmable Gate Array

NoC Network on Chip

DPR Dynamic Partial Reconfiguration

CLB Configurable Logic Block

SDR Software Defined Radio

SoC System on Chip

JTAG Joint Test Action Group

ICAP Internal Configuration Access Port

RTL Register Transfer Level

BD Buffer Depth

VC Virtual Channel

FC Flow Control

LUT Look-Up Table

x

Abstract

With the vast increase in the design densities inside System-on-Chips (SoCs) every

year, Network-on-Chip (NoC) design architecture is introduced as a reliable on-chip

communication platform facing the challenges of complex design systems. NoC design

approach is preferred over the conventional bus communication for its scalability,

improved modularity, and better performance.

On the other hand, the advancement in dynamically reconfigurable Field

Programmable Gate Arrays (FPGAs) allows the hardware designs to be reconfigured

during runtime. Dynamic Partial Reconfiguration (DPR) adds more flexibility to

hardware modules and offers better area utilization and more power optimization.

Furthermore, using DPR permits the adaptive hardware algorithms to evolve based on

the different applications.

Introducing the reconfigurability concept into one of the most ramping and trending

design platforms like the NoC is considered a good opportunity for extracting the benefits

out of the two concepts. The high flexibility and full customization of the reconfigurable

NoC could open the door for a completely adaptive NoC that suits a large number of

benchmarks according to the runtime requirements. The importance of reconfigurable

NoCs appears with the designs intended to be dynamically reconfigurable. When the

NoC is part of the design, its re-configurability gives the opportunity to operate with the

best fit network to every user benchmark.

The ability to reconfigure SRAM-based FPGAs is the most powerful feature over

Application Specific Integrated Circuit (ASIC) designs. DPR emphasizes this feature by

increasing flexibility over runtime phase. Xilinx Virtex family of FPGAs provides four

techniques to perform DPR; SelectMAP, Serial mode, JTAG, and ICAP. In this thesis,

each technique is reviewed, evaluated, and tested using convolutional encoder module

which is an essential block from Software Defined Radio (SDR) system. SDR as a system

is chosen as it becomes the most promising application for DPR. Experiments are carried

out using Xilinx Virtex 5 to measure the trade-offs between performance and area-

overhead by adding reconfiguration controller on/off FPGA fabric. It is shown that the

performance of each interface is independent of design resource. However, the

performance is proportional only with partial reconfiguration region selection which had

been chosen at the Place and Route phase.

The main objective of this thesis is to present the runtime configurability support to

CONNECT NoC. Additionally, the thesis studies the impact of this reconfigurability on

the network performance with its different configuration parameters. Runtime

configurability expands the flexibility of NoCs and allows a full customization to the

NoC with the dynamic reconfigurable designs. In comparison with the fixed NoCs, the

runtime configurable NoCs save area by reusing a part of the network when it is not

required during runtime. A reconfiguration tool is developed to assist the user in

constructing the optimal network structure for every used benchmark. The

reconfiguration tool requires the minimum needed throughput and the expected traffic

load as inputs. The tool inputs are required to recommend the best network configuration

according to the minimum area that achieves those requirements.

1

Chapter 1 : Introduction

This chapter highlights the aim of applying the configurability concept into modern

systems based on Network on Chip architectures. A complete study to the

reconfigurability impact is provided inside this thesis. The following Sections present the

motivation behind this work, the contribution added to this work, and the thesis structure

and organization.

1.1. Motivation

Design area and throughput are among the most important metrics that need to be

considered while planning an architecture for a SoC. With the complexity of designs,

NoC design architecture appeared as an optimal candidate for an on-chip platform that

can be customized according to the application requirements. NoC design approach is

preferred over the conventional bus communication for its scalability, improved

modularity, and better performance.

On the other hand, introducing the reconfigurability concept into the FPGAs unlocks

a lot of capabilities in the hardware designs leading to a full hardware customization

during runtime. The added flexibility to the hardware by the DPR offers better area usage

and more power optimization. In addition, using DPR allows the adaptive hardware

algorithms to evolve based on the different applications.

Studying the reconfigurability techniques offered by FPGA providers (Xilinx and

Altera) would aid in analyzing the strength and weakness of the different methods with

the different design sizes. Besides, taking into consideration the reconfigurability

constraints could help in the design phase of any SoC. This maximizes the gain earned

from targeting reconfigurable architectures.

Introducing the DPR capability to the NoC creates new opportunities for

customizing network topology according to the system requirements during the runtime.

Self-adaptive NoCs during runtime are beneficial when used with configurable hardware

design. The configurable hardware has multiple benchmarks and different performance

requirements, and this flexibility is absent in the fixed NoCs.

2

1.2. Contribution

This work includes the following contributions:

 Presenting a complete review and a comparison for the different DPR

techniques in Xilinx FPGAs including serial and parallel methods. Then,

providing a complete evaluation for the Serial techniques (JTAG and Slave

Serial mode) against the parallel techniques (SelectMAP and ICAP).

 Studying the CONNECT NoC with all its capabilities and how they are

implemented. Then, integrating the RTL into a test environment for

evaluation.

 Introducing the Configurability to the CONNECT NoC Register Transfer

Level (RTL) to be fully adaptive during runtime. The flexibility is

accompanied with switching into a certain topology and updating all the

routing tables for creating alternative paths to the routed packets.

 Implementing a configuration tool for analyzing the different benchmarks’

requirements. The tool is responsible for choosing the most suitable network

topology according to the desired performance. The selection criteria is based

on the minimum area and power overhead of the different user benchmarks.

 Providing a complete study for the impact of reconfigurability on the NoC

different parameters. The study includes how those parameters can

emphasize the value of the dynamically adaptive network

1.3. Organization of the thesis

The remainder of this thesis organized as follows. Chapter 2 provides a detailed

survey of the DPR and NoCs with FPGA. Chapter 3 presents a performance evaluation

of the different DPR techniques inside Xilinx FPGAs using SDR as an application.

Chapter 4 offers a detailed description of CONNECT NoC and the contribution made for

adding the reconfiguration capability into it. Chapter 5 shows a complete study for the

impact of introducing the configurability to NoCs. Chapter 6 presents a discussion and

conclusion for the work in addition to the possible future work for this thesis.

Finally, Appendix A contains a user manual for the Reconfiguration tool and

Appendix B contains the Reconfiguration tool source code.

3

Chapter 2 : Literature Review

2.1. Introduction

This Chapter covers the FPGA technology important concepts like the advantages

and disadvantages of FPGA over ASIC, FPGA internal architecture, the Partial Dynamic

Reconfiguration, and Network-on-Chip concepts. After those concepts being discussed,

the reconfigurable NoCs are reviewed and the related work in this area is presented.

2.2. FPGA architecture and Capabilities

2.2.1. FPGA over ASIC

ASIC and FPGA market constraints and needs are different. The ASIC industry

consumes a lot of cost for fabrication which includes the Non-Recurring Cost (NRC)

with a much more optimized hardware than the FPGAs. Therefore, it is better for the

large number of units or large fabrication volumes. On the other hand, the FPGA’s cost

with low volumes is much more efficient on the expense of design optimization.

Therefore, it is more suitable with the initial prototypes and designs with relaxed

constraints (speed, area, power …).

In addition to that, with the technology advancement, the cross-over point between

ASIC cost and FPGA cost is moving forward as shown in Figure 2.1. This gives an

advance for the FPGA in the future when it comes to the unit cost, time to market, design

cycle, and design reusability.

Figure 2.1: FPGA versus ASIC with respect to Cost and Number of units [1]

4

2.2.2. FPGA structure

FPGA is considered as a good alternative for the digital logic implementation. The

FPGA is a pre-fabricated silicon chip that can be programmed multiple of times in order

to implement any digital circuit. A general internal architecture for the mesh-based

FPGAs can be shown in Figure 2.2.

Figure 2.2: Mesh-based FPGA internal structure [2]

FPGA consists mainly of the following component blocks:

 Programmable logic blocks

 Programmable routing

 I/O blocks

The Programmable logic blocks are responsible for implementing the logic

functions. The programmable routing (interconnects) is used for connecting the logic

functions. Additionally, the I/O blocks are responsible for interfacing with other chips.

5

The FPGA architecture shown in Figure 2.2 is the most common architecture for the

FPGAs and is known by the island style architecture. The arrangement of the

Configurable Logic Blocks (CLBs) is in a 2D-grid and they are connected to each other

by means of programmable routing networks. Moreover, the Input/Output (I/O) blocks

are connected to the programmable routing network.

Due to the advancement in the design sizes and complexity, an enormous amount of

logic is implemented inside the FPGA chip. This amount leads to the appearance of many

routing and communication issues. These communication issues were challenging the

new FPGA architecture advancements. Ideas like NoCs and DPR are offered by the

FPGA providers as an option for specific design requirements. This thesis reviews the

NoC and DPR concepts and discusses the opportunity of the reconfigurable NoCs in the

next generation FPGAs.

2.3. Dynamic Partial Reconfiguration (DPR)

The configuration of the FPGA is the action of downloading a design into the

programmable blocks of the FPGA. This is achieved by means of electrical pins and

configuration memory. The configuration is categorized into the following different

categories:

 Full reconfiguration vs Partial reconfiguration

The full reconfiguration is reconfiguring the whole design inside the FPGA,

while the partial one is reconfiguring a part of the design maintaining the rest

of the design as it is.

 Static reconfiguration vs Dynamic reconfiguration

The static reconfiguration is the reconfiguration while the design operation

is stalled, while the Dynamic configuration is the configuration while the rest

of the implementation is running (at runtime).

This thesis is mainly concerned with the Partial Dynamic Reconfiguration.

2.3.1. SRAM cells configuration topologies

Programming of SRAM cells in FPGA is achieved through different topologies that

differ in simplicity and optimization. The SRAM configuration is categorized into the

following categories:

 Coarse grained vs Fine grained

The coarse grained configuration requires programming of a large block as

the design is divided into large ones. While in fine grained configuration, the

design is divided into fine elements as the building block of the design

configuration. This makes the coarse grained is better in routing simplicity

and speed while the fine grained is better in area utilization.

6

Several SRAM cell configuration techniques are used and differ in the method

simplicity, control and programming blocks access. Below is a description of different

SRAM configuration topology with highlighting the advantage and disadvantage of each.

 Register chain configuration

The SRAM cells are arranged in a chain and the configuration is performed

through a single configuration pin outside. This requires a certain

configuration data pass by a long chain of cells before reaching its target

SRAM cell. This topology has simple configuration wiring and requires a

simple configuration controller. However, it is very poor in register access,

especially when the number of registers is large. An illustration of the register

chain configuration is shown in Figure 2.3 (a).

 Column based configuration

The column based topology provides an access to each column letting a

quicker configuration than the register chain configuration topology.

However, the column based configuration requires a column decoder for

analyzing the target column and cell to be programmed. This way of

decoding increases the wiring complexity. Therefore, the column based

configuration is better in register access yet more complex in wiring and

routing. An illustration of the column based configuration is shown in Figure

2.3 (b).

 Mixed configuration

The mixed configuration is based on both topologies, the register chain and

column based ones are merged into this topology. The SRAM cells are

divided into regions, each region is accessed like the column based

configuration. Inside each region, SRAM cells are organized in a register

chain. An illustration of the mixed configuration is shown in Figure 2.3 (c).

Figure 2.3: SRAM configuration topologies [3]

7

2.3.2. Multi context configuration

Some modern FPGA architectures go beyond the conventional single context

configuration and investigate new areas in context switching. This context switching is

achieved with a very high speed between different layers of configuration. This criteria

is named as space-time configuration as it allows different plane context switching to be

done in a time multiplexed way.

Figure 2.4 shows an example for Tabula FPGA that uses 12 planes and time

multiplex between them by a high speed clock of 2 Ghz while the user clock is 12 times

slower.

Figure 2.4: Tabula FPGA internal structure [4]

2.3.3. Dynamic Partial Reconfiguration Advantages

DPR is the act of reconfiguring a portion of an FPGA during runtime after its initial

configuration.

The most valuable advantage of DPR is that it presents more flexibility to the

hardware designs. In addition, DPR allows the implementation of complex circuits within

a reasonable area and reduces static power consumption. Thus, it introduces the concept

of virtual hardware [5].

DPR is used with applications that require high level of flexibility like SDR and

some embedded FPGA applications; video processing, cryptography, and genomic

sequence alignment. Moreover, DPR has an important role in implementing adaptive

hardware algorithms and improve FPGA fault tolerance [6].

8

Most of Xilinx FPGAs (i.e. Virtex series) support DPR. Additionally, Altera FPGAs

support the DPR. Figure 2.5 shows a high level illustration of the DPR within an SDR

system.

Figure 2.5: Dynamic Partial Reconfiguration illustration [7]

2.4. Network on Chips

Network on Chip (NoC) is a communication platform for connecting different apart

elements in the design with each other. NoC is considered as an alternative for the

conventional bus communication systems. Besides, NoC evolves due to the massive size

of designs and its complexity.

The true value of NoC in FPGA appears in its scalability, modularity, and its power

optimization compared to the conventional bus communication. The NoC mainly is

composed of routers, links, and network interface. In general, the NoC is defined with

certain prameters which are described below in the next subsection.

2.4.1. NoC parameters

Any NoC has some parameters that need to be covered as it impacts the network

characteristics differently. Those parameters are as follows:

 NoC topology

The NoC topology is the arrangement and connection of the NoC router

elements. There are a lot of NoC topologies such as Mesh, Ring, Star, Line,

Fat Tree, and others.

The topology selection depends mainly on the application targeted from

using the network. Figure 2.6 shows some examples for the different network

topologies.

9

Figure 2.6: Star, Mesh, and Ring network topologies [8]

10

 Flow control

The flow control mechanism defines the way NoC is handling its own

resources. The flow control is responsible for broadcasting the availability of

the network nodes, buffer space, and virtual channel allocation.

Two main important types of flow control are: Peek flow control and Credit

based flow control.

The peek flow control is a simple communication handshake informing the

neighbors the availability of resource in each node without more detailed

information about the remaining space available. On the other hand, the

credit based flow control is responsible for sending credits with each resource

update available or busy.

Figure 2.7 shows a simple structure for the credit based flow control.

Figure 2.7: Credit based flow control structure [9]

 Buffer Depth

The buffer depth is the size of the memory buffer inside each router element.

The buffer depth is reflecting directly how much packets can the router store

from the source. These stored packets then go through the allocation and the

router node pass them to their next station according to the routing path.

 Virtual Channel

The virtual channel provides the interface with separate paths for a virtual

parallelization at the transaction level. Each interface port has its own buffer

depth leading to the sense of separate queues which reduce the latency and

enhance throughput. Some virtual channels may have priority over others

according to the requirement and the arbitration sequence.

11

2.5. Challenges of Reconfigurable NoCs

The importance of reconfigurable NoCs appears with the designs intended to be

dynamically reconfigurable. When the NoC is part of the design, its re-configurability

gives the opportunity to operate with the best fit network to every user benchmark.

Many NOC architectures are proposed offering a high level of configurability.

However, most of the work done in configurable NoCs is addressing the design time

configurability not the runtime [31]. However, some configurable NoCs handle dynamic

communication issues like surrounding or bypassing obstacles during runtime and how

routing adaptation could be managed dynamically.

The next subsections discuss the related work in this area with a detailed coverage

to the DyNoC as a good example for a dynamic adaptable NoC.

2.5.1. Previous efforts

In [10], the authors proposed a NoC handling circuit routing for dynamic

reconfigurable devices and how this is better than the bus based communication

architectures. In [11] and [12], DyNoC is proposed offering dynamic capabilities to the

routing mechanism in order to guarantee the reachability to all the blocks and pins.

Consequently, this is achieved by extending the well-known XY routing algorithm to an

S-XY-routing (Surrounding XY routing) which is based on surrounding obstacles during

runtime for a deadlock-free routing mechanism. The DyNoC is discussed in the next

subsection.

Moreover, the authors in [13] proposed a CoNoChi NoC with minimal number of

switches and area overhead with a similar deadlock-free mechanism. Moreover, they

offered two ways of reconfigurations with the NoC stalled and without the NoC stalled.

In [14], the reconfigurability is achieved by placing or removing switches and using

dynamic routing tables to guarantee full connectivity and every switch is accessed by the

neighbors. In addition, network updates are propagated through special packets from a

global control unit.

In [15], the NoC reconfiguration is based on local traffic monitoring and path weight

calculations are passed to a global arbiter for selecting the minimum cost path.

12

2.5.2. DyNoC

The solution proposed by DyNoC is based on the communication between modules

dynamically placed at runtime on a 2D NoC-based reconfigurable device. This is because

of DyNoC advantages in performance, modularity, and structure. An advantage of the

packet-based approach is that changing the network does not block communication,

because packets are always routed in a strongly connected network. A set of components

is strongly connected if and only if, for every pair of components, a path of routers exists

connecting the two components. The DyNoC architecture achieves the packet-based

approach.

DyNoC implementation goal was not only to ensure module reachability. In

addition, the pin reachability was targeted. Therefore, a requirement for the chip

architecture is set: A ring of routers should internally surround the device. Figure 2.8

shows this architecture. Each task is implemented as a component, represented by a

rectangular box and stored in a database. Because the synthesis is time-consuming,

component synthesis must be done during the compile time. A box encapsulates a circuit

implemented with the resources in a given area (router logic and PEs).

A component (or pin) at a given time on a reconfigurable device is reachable only if

every packet sent to this component can reach the component. Because the chip’s

configuration is unknown in advance and communications among components are

established during the runtime, all pins and components on the device must be assured to

be reachable at any time during the temporal placement. This condition is met at any time

if the pins and components on the device are strongly connected.

The one way to enforce strong connectivity is to make a ring of routers which always

surrounds each component on the chip as a requirement. This can be achieved by one of

two solutions. The first solution is synthesizing components so that they are always

surrounded by a ring of routers when they are on the device. However, the second

solution is achieved by leaving the job to a temporal placer. Nevertheless, this task

increases the placer’s complexity. Besides the computing free space in which to place a

new component, the module placement must be strongly connected.

Therefore, the first solution is chosen. The following statement holds: If each

component is synthesized in a way that it is only surrounded internally by PEs, then each

placement on the reconfigurable device is strongly connected.

Figure 2.8 (a) and Figure 2.8 (b) show the different component placement types and

how this affects the connectivity and the reachability of each PE.

13

Figure 2.8: Feasible (a) and infeasible (b) component placement [11]

14

In fact, if a set of components which is developed as required in the preceding

statement and placed on the device is not strongly connected, at least one pair of

components, or a single component, borders the device boundary. Without loss of

generality, if the first case is considered, then either the two components will overlap or

at least one component uses some routers on its internal boundary. The first case is

impossible because only overlapping-free placements are valid.

The second case contradicts the preceding statement’s requirement. Figure 2.8 (a)

shows an impossible placement, in which two components border. Figure 2.8 (b)

illustrates a placement in which all components and pins are reachable.

In the static NoC, each router always has its own four active neighbor routers.

However, this is not always the case in the Dynamic NoC like DyNoC which is presented

here. Whenever a component is placed on the device, it covers the routers in its area.

Those routers are deactivated because they cannot be used. Therefore, the component

sets a deactivation signal to the neighbor routers in order to notify them not to send

packets in its direction. Upon the completion of its execution, the component sets the

deactivated routers back to their default state. Due to the obstacles created by the

components dynamically placed on the chip, a routing algorithm that was used for

common NoCs cannot work on the DyNoC in this case.

Therefore, a routing algorithm is provided to DyNoC (based on the well-known

greedy XY algorithm) that considers network obstacles. As Figure 2.9 shows, the

algorithm treats cases in which packets are blocked in the horizontal direction differently

from cases in which packets are blocked in the vertical direction.

The proposed routing algorithm is called S-XY (Surrounding XY). As it is an

extension of the XY routing algorithm, it still holds the properties of the XY algorithm:

locally decisive and deadlock free. This means that each packet reaches its destination

after a finite number of steps. Each router operates in three different modes:

 Normal XY (N-XY): A normal XY router behavior, the router sends a packet

first horizontally to the right column and then vertically to the right row.

 Surround horizontal XY (SH-XY). The router enters this mode when its left or

right horizontal neighbor is deactivated.

 Surround vertical XY (SV-XY). The router enters this mode when its upper or

lower vertical neighbor is deactivated.

15

Figure 2.9: Obstacle surrounding in the horizontal (a) and vertical (b) directions

[12]

16

Assume, without loss of generality, that an obstacle blocks a packet moving from

the right to the left. As Figure 2.9 (a) shows, there are two alternative paths by which the

packet is routed to reach its destination. If the Y-coordinate of the packet’s destination is

greater than or equal to the local router’s Y-coordinate, the local router chooses the first

path and sends the packet upwards. Otherwise, the local router chooses the second path

and sends the packet downwards. A problem occurs when, for example, a packet with

destination Ydest traverses upwards and reaches router R whose coordinate Yr which is

greater than Ydest.

According to the previously defined scheme, the packet traverses downwards to the

router with coordinate Yr − 1, which sends it upwards, thus producing a Ping-Pong effect.

To avoid this Ping-Pong behavior, the second router stamps the packet by setting a stamp

bit to 1 to notify router R not to send the packet back. The stamp bit is removed when the

packet reaches the router at the device’s upper right, and the packet traverses left until

reaching its destination column or encountering another obstacle. The algorithm treats

cases in which a packet moving vertically is blocked in the same way, except that all

packets must be stamped. Otherwise, the Ping-Pong effect will always occur between

router 2 and router 4, as shown in Figure 2.9 (b).

Whenever a packet is blocked in a given direction, it takes the perpendicular

direction. This allows the packet to continue until it reaches the last router on the blocking

component boundary at one corner of the module that the packet must surround. From

this point, the N-XY routing algorithm can resume. Therefore, a packet’s looping around

a component is not possible.

Obviously, the algorithm creates a placement sequence in which a packet keeps

moving around in the device and never reaches its destination. This problem is common

at online algorithms. However, only one packet is lost, and all the remaining packets

reach their destinations. A packet’s probability of being blocked is then less significant.

In the S-XY routing, the direction is fixed in advance for all routers in which to send a

packet whenever it encounters an obstacle. This can lead to extremely long routing paths

like that is shown in Figure 2.10 (a), which is caused by placements for which the routers

always choose the right path.

17

Figure 2.10: Placement leading to extremely long routing path (a); Router guiding

in the DyNoc (b) [12]

18

To avoid this problem, the placed component informs each router which direction to

take whenever the component blocks an incoming packet in a given direction. Figure

2.10 (b) illustrates this approach which is called router guiding. Instead of one activation

line code, two lines are used: the first is for activation (1 = activate, 0 = deactivate), and

the second is for direction (0 = east or south, 1 = west or north). This limits the router

complexity considerably and eliminates the need for stamping.

Some component placements lead into making multiple routers has the same

direction of routing and decisions, the algorithm is merging of the bit-stream information

such as the one shown in Figure 2.11.

Figure 2.11: Merging bit-stream for a 2D partial reconfiguration on Xilinx FPGAs

[12]

19

Chapter 3 : Performance Evaluation of Dynamic Partial

Reconfiguration Techniques for SDR on FPGA

DPR presents more flexibility to the hardware designs which are considered as its

most valuable advantage. Additionally, DPR allows the complex circuits implementation

within the constant area and works on reducing the static power consumption, thus it

introduces the concept of virtual hardware [5]. DPR is recommended with applications

that need high level of flexibility like SDR and some embedded FPGA applications;

cryptography, video processing, and genomic sequence alignment. Besides, DPR plays

an important role in implementing adaptive hardware algorithms and improves FPGA

fault tolerance [6].

Many Xilinx FPGAs (i.e. Virtex series) support DPR in a way that allows the user

to specify the reconfigured area while maintaining the static logic unaffected. The

reconfiguration takes place with different reconfiguration methods like JTAG and ICAP.

Since the partial reconfiguration is implemented at FPGAs and has taken place, more

opportunities appeared and take the advantages of dynamic reconfiguration especially in

Software Defined Radio (SDR) implementation. McDonlad [16] presents an overview of

reconfigures Forward Error Correction (FEC) for partial reconfiguration designs on

viertex-4 and comments on the additional overhead necessary for creating this design.

Moreover, Delahaye and Palicot in [17] are targeting the implementation of

Convolutional Coder, FIR filter, and a constellation mapper. They implement

management architecture based on MicroBlaze interconnected with a NoC which is

extended from a 3G wireless communications system.

Tan, DeMara and Ejnioui [18] evaluated (JTAG and SelectMAP) as the only two

interfaces of Virtex II in terms of design complexity and performance. The conclusion

was that the JTAG design consumes third of the device I/O pins, and from 3 to 7 times

fewer logic area. However, the poor throughput of JTAG interface degrades the

reconfiguration performance with a factor of 40 than the SelectMAP.

In [19], [20], [21] and [22] the DPR using ICAP interface only is discussed. In these

papers, different versions of ICAP interface are exploited starting from OPB_HWICAP

which is connected to the On-Chip Peripheral Bus (OPB), then XPS_HWICAP which

uses PLB bus, and finally AXI_HWICAP which is connected to AXI bus. All the

previous IPs were experimented with various memory configuration setups to measure

the reconfiguration time from the system side and evaluate the overhead added by

reconfiguring the interconnecting components that are inserted during the

reconfiguration process.

This section covers the different configuration techniques in Xilinx FPGAs and

presents an evaluation of those techniques based on experimental results using an SDR

application.

20

3.1. Xilinx FPGA Configuration Techniques

 DPR in FPGA is achieved by loading a partial bitstream along with the static

bitstream. And, this is performed through different interfaces. Xilinx FPGAs offer four

interfaces to program a partial bitstream from nonvolatile memory into reconfiguration

memory [7]. Some of these interfaces need Partial Reconfiguration controller which is

either located externally (in an external device - a PC for example) or internally (inside

the FPGA’s fabric - like MicroBlaze). Figure 3.1 shows the four techniques applied to a

convolution encoder inside a communication system.

Figure 3.1: Reconfiguration techniques of convolutional encoder inside

communication chain

The following sub-sections presents a description of the different reconfiguration

techniques in Xilinx FPGAs (JTAG, Serial Mode, SelectMAP, and ICAP) and the

differences across them. Additionally, an evaluation of these techniques and their

preferred usage model.

3.1.1. JTAG

The JTAG is an acronym for Joint Test Action Group, this group is the one that

developed the JTAG standard. JTAG is widely used in testing and as an important

debugging tool as it can communicate data out through I/O ports for testing board level

connections. In addition, it can internally send signals for testing device behavior, these

tests aim for shorts and opens detection at board and device levels. The JTAG

configuration is achieved by downloading the bit stream file that is stored on the PC using

the iMPACT utility and the Xilinx programming cable as in Figure 3.1 (c). The partial

reconfiguration takes place through downloading the partial bit stream the same way.

21

When JTAG is used for multiple devices configuration, the control signals should

be connected in parallel like the TCK pin which is driven by the Xilinx programming

cable [18].

3.1.2. Serial Mode

Using slave serial configuration mode, loading the configuration data is achieved

one bit per “CCLK” cycle. The “CCLK” in the slave serial mode must be driven

externally from an external control logic. The slave serial mode usually is used in

configuring a single device from an external microprocessor as in Figure 3.1 (c) or

configuring multiple devices in a daisy chain.

The dedicated pins to the slave serial mode that are required for configuration

include PROGRAM_B, CCLK, DONE, INIT_B, Din, DOUT_BUSY, and the mode pins

M[2:0]. The mode pins should be tied high with the slave mode [3011]. In addition, the

single configuration is used to configure multiple devices arranged in a daisy chain. Each

device in the daisy chain receives the configuration data through its D_IN pin and is

required to pass it to the next device in the chain through its DOUT pin till the last device

in the chain is configured and accordingly all the devices release their DONE pins.

3.1.3. SelectMAP

SelectMAP offers an 8-bit, 16-bit, or 32-bit configuration interface with

bidirectional data bus interface to FPGA’s fabrication, this interface is used for both

configuration and read-back. SelectMAP works in two modes; Master mode which drives

the configuration clock, or Slave mode which is driven by an external configuration

clock. Read-back is applicable only in case of Slave SelectMAP mode.

There are various setups for the SelectMAP like a Single-device Slave SelectMAP

which includes a processor which provides data and clock. Alternatively, a CPLD is used

as a configuration manager. Another setup is Multiple-device daisy-chain that is used to

configure multiple number of FPGAs in series with different bit-streams buffered from a

nonvolatile memory or processor [23].

Slave SelectMAP is the only mode that allows performing partial configuration in

all Xilinx FPGA’s as master modes are clearing all FPGA’s configuration memory as in

Figure 3.2.

For carrying out the reconfiguration process using Slave mode SelectMAP, 38 pins

are required including the DATA pins (D0:D31), DONE, CCLK, BUSY, PROG_B,

CS_B, RDWR_B, and INIT_B. Multiple FPGAs are connected to SelectMAP bus and

share some pins with others FPGAs.

Keeping the general propose DATA pins as configuration pins, the persist option of

BitGen need to be set otherwise, the DATA pins in this case become user pins after

configuration. Besides, the SelectMAP is an 8-bit width interface by default unless other

SelectMAP width is selected with the CONFIG_MODE constraint.

22

Figure 3.2: SelectMAP structure in Xilinx Virtex 5 FPGAs [24]

3.1.4. ICAP

Internal Configuration Access Port (ICAP) is a Xilinx interface that provides a direct

access to the configuration logic at the FPGA fabric. During the run-time, ICAP interface

allows the configuration data to be loaded/downloaded into/from the FPGA

configuration memory. Moreover, it permits status registers reading of the configuration

logic.

The ICAP interface is similar to SelectMAP slave mode interface except with a dual

port 8-bit, 16-bit, or 32-bit data bus for reading and writing configuration data. The ICAP

interface uses BUSY, CE, WRITE, and CLK signals [23]. Configuration data is written

to the device at the rising clock edge and if the ICAP port is enabled. Consequently, the

configuration data writing is controlled by the clock as well as by setting the enable signal

while connecting the ICAP primitive to a fixed clock.

Even though, there are two available ICAP primitives starting from Virtex-5, the two

ports cannot be operated simultaneously. The design must start with the top ICAP, then

alternate between the two ports sequentially.

ICAP caches the configuration bits into BRAM before loading to the FPGA

configuration memory Figure 3.1 (b). Xilinx provides an IP core called OPBHWICAP

that is connected to the OPB bus as a slave peripheral, and enables the processor to access

the configuration memory through the ICAP, by using a library and software routines

using EDK toolkit. For the Virtex-4 and Virtex-5 FPGAs, the XPSHWICAP then

AXI_HWICAP was released which works similarly with the OPBHWICAP. However,

it is connected on the PLB and AXI bus respectively. This achieves a lower-latency

reconfiguration.

23

3.2. Software Defined Radio

Software Defined Radio (SDR) is a concept where the different hardware parts can

be replaced and controlled by means of software according to the current requirement.

Recently, the SDR as an application became a trending one for DPR usage. As wireless

technologies gain their growth and development, more advanced standards will be

released, thus the demand to implement these entire standards in one device is obligated.

On the other hand, hardware designs are required to provide compatibility with the

current standards, if even possible, will most likely become obsolete after a short while.

Though, SDR system maintains the flexibility to control the same hardware resources via

software for these multi-communication devices.

The reconfigurability of FPGAs is considered as a good asset to the SDR systems

for loading the desired standard according to the runtime need. Practically, the ability of

reconfiguring a specific block provides an opportunity to create an extremely flexible

and compact design, while all other blocks are working normally. This permits chip area

saving and power reduction.

The advantages of SDR system are noticed clearly after applying DPR techniques

on Convolutional Encoder block. This encoder is responsible of generating FEC coding

schemes. These coding schemes are used for decreasing the channel noise.

Convolutional encoder outputs are affected by the code schemes used in the current

standard, and as well affected by several parameters (n, k, l) which are being used for

describing convolutional codes. Where “n” represents the input encode elements, “k”

represents the output encode elements, and “l” represents the shift register numbers of

convolution encoder.

In the proposed experiment, two encoder schemes; WIFI and 3G communication

systems, are used as a benchmark for DPR as shown in Figure 3.1. Following this

approach is called a Single-Loaded Encoder Module (SLEM) where DPR is used to

implement one encoder at a time on the chip.

24

3.3. Results and Discussion

The experiment is aiming to apply DPR to the implemented SDR design using the

different configuration methods and compare between them with respect to the area and

reconfiguration time. This design has been implemented using XUPV5-LX110T kit

which includes Virtex-5 xc5vlx110tff1136-1 FPGA, System ACE Compact Flash

configuration controller to store bit-stream files of PR regions, and UART interface to

interact with MicroBlaze by sending reconfiguring commands.

As mentioned previously, the reconfiguration time of DPR is not directly related to

design resources. Nevertheless, it is proportional only with PR region which is translated

to number of frames which are the minimum building blocks for PR region.

In the past, in Virtex and Virtex II families, frames that are consisted of the whole

column of FPGA. Starting form Virtex 4, frames became a complete tile which includes

certain number of CLBs of a whole column, and this number is increasing with each new

Xilinx family. Therefore, the total design size (static and PR region) will be the major

effect on the reconfiguration time.

Consequently, the SDR design size is varied along the experiment in order to check

the variation in performance of each configuration technique. The variation steps are

chosen taking into consideration a significant change in the partial bit stream file size

which reflects directly in the estimated reconfiguration time.

Table 3.1: Reconfiguration speed for different Reconfiguration techniques [28]

Configuration Mode Data Width Max. clock rate Max. Bandwidth

JTAG 1-bit 66 MHz 66 Mbps

Serial Mode 1-bit 100 MHz 100 Mbps

ICAP 8/16/32 bits 100 MHz 0.8/1.6/3.2 Gbps

SelectMAP 8/16/32 bits 100 MHz 0.8/1.6/3.2 Gbps

The figure of merit chosen for the comparison between these different techniques is

the area multiplied by reconfiguration time. This metric is a good indicator to the

performance variation from a certain design size to another. Considering the area

overhead with the speed makes the comparison more fair between the serial and the

parallel techniques.

In addition, the number of occupied LUTs is considered as a significant indicator to

the design area as shown at vertical axis and horizontal axis in Figure 3.3.

The theoretically estimated reconfiguration time is calculated according to (1),

where “Bssize” is the bit-stream file size of the PR region, “Clkmax” is the maximum

clock rate supported by reconfiguration interface, and “Dw” is interface data width.

These values are listed in Table 3.1 for each interface.

𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
𝐵𝑠𝑠𝑖𝑧𝑒

𝐶𝑙𝑘𝑚𝑎𝑥 ∗ 𝐷𝑤
 (1)

25

The reconfiguration region sizes are chosen in a way to completely occupy a certain

number of frames. This is done in order to make use of the whole area without any change

in the partial bit stream size and without affecting the estimated reconfiguration time.

Figure 3.3 shows the performance of the JTAG, Slave Serial mode, Slave

SelectMAP 8-bit, and ICAP 8-bit data width using the SDR design with different

selections of PR regions. It is obvious that at small designs that need PR regions less than

~400 and ~750 LUTs for JTAG and Serial mode respectively, JTAG and Serial mode are

better in performance than ICAP and SelectMAP which work with 8-bit width at 50 Mhz.

These values are decreased (~150 and ~300 LUTs) when ICAP and SelectMAP work

at 100 MHz taking into consideration that ICAP, due to the others used resources in

FPGA fabric, allow maximum frequency less than JTAG and Serial mode. This can be

avoided when using SelectMAP as it has external “CCLK” port.

Figure 3.3: 8-bit ICAP and SelectMAP with Serial mode and JTAG [28]

In Figure 3.4, the experiment is repeated with 16-bit data width for ICAP and

SelectMAP. It is noted that the intersection points decreased more (~150 and 300 LUTs

for JTAG and Serial mode respectively) compared with ICAP working at 50 Mhz. These

values decreased because the comparison becomes unfair for serial interfaces like JTAG

and Serial mode compared to 16/32-bits ICAP and SelectMAP as the parallel

configuration always gives more capability to reach high configuration speed.

26

Figure 3.4: 16-bit ICAP and SelectMAP with Serial mode and JTAG [28]

Designs which are using JTAG and Serial mode can save ~2400 LUTs compared to

ICAP and SelectMap, this overhead is significant with small area designs. However, the

reconfiguration speed of 16-bit ICAP and SelectMap is better with factor of 24.2 and 16

than JTAG and Serial mode respectively.

ICAP and SelectMAP are always recommended if they worked with full data width

32-bit over other reconfiguration techniques as shown in Figure 3.4. However, the

drawback of this scheme is the used I/O pins. In SelectMAP, these pins have to be

reserved the whole time for reconfiguration purpose only. While in ICAP, these pins are

used as I/O general after the reconfiguration has been done.

27

Figure 3.5: 32-bit ICAP and SelectMAP with Serial mode and JTAG [28]

28

29

Chapter 4 : Applying Dynamic reconfiguration to

CONNECT NoC

4.1. CONNECT NoC Architecture

Different NoCs are reviewed and compared in [31] while NoC parameters are

reviewed in [32]. However, this work is based on using CONNECT network for NoC-

based FPGA [30]. CONNECT achieves an efficient network performance by means of

its consistent lower latencies for FPGA-based designs. Moreover, CONNECT offers a

fully parameterizable router design and flexible network routing, allocation and flow

control mechanisms. The user generates the desired NoC through an RTL configurator

as in Figure 4.1 where different network configurations are supported, such as network

topology, network size, number of virtual channels, buffer depth, data width, allocation

type, and flow control mechanism.

The internal structure of CONNECT is based on optimized RTL implementation to

different modules in a scalable manner in order to satisfy its customizable requirements.

Figure 4.2 shows the main internal structure for CONNECT router core. Each router core

can communicate with four neighbour routers in addition to the outside user port which

makes them five open communication channels. The core contains input handler for

routing input packets and input queues for internal storage. Additionally, output port

FIFOs are required for dealing with neighbor routers availability [30].

30

Figure 4.1: CONNECT NoC RTL configurator [8]

31

Figure 4.2: CONNECT NoC router core internal structure

The chosen network configuration is a 4x4 mesh network with two virtual channels,

credit-based flow control and buffer depth varying from 4 to 64. The CONNECT 4x4

mesh with two virtual channels is recommended by [25] giving optimal performance with

highest throughput and lowest latency for high injection rates.

The following subsection describes the changes made to CONNECT RTL in order

to introduce the reconfigurability during the runtime. Additionally, it shows how the

reconfiguration improves network flexibility to be adaptive according to the user

benchamrk requirements on the expense of adding a significant area overhead.

4.2. Reconfiguration changes to CONNECT

The reconfiguration of the network during the runtime requires dynamic adaptation

to the routing as each router needs to know if the neighbor router is still active.

Therefore, some changes are applied to the generated fixed CONNECT RTL in order

to introduce the runtime reconfigurablity to each router. The RTL updates are as follows:

32

• A global input configuration is added for indicating the current network status of

each router. Each bit corresponds to a single node whether it is active and normally

functioning with the other nodes or inactive and being bypassed by the other nodes.

• The routing inside all the routers is adapted considering the possibility that the

neighbor is inactive and some packets may need to change route. This change adds

significant area overhead due to preserving the original routing tables. All the routing

combinations are considered covering the four routers possible reconfiguration. The

popular XY routing algorith is modifiedin order to find a substitute routing path when

the neighbor router is getting reconfigured. For example, when the packet needs to be

routed in the horizontal path while it is not available, the router release the packet in the

available vertical path in order to let the packet to go in a surrounding path around the

obstacle.

• Connectivity switches are added around each router to bypass the inactive

neighbor routers in case any of them being reconfigured.

The previous changes implies a limitation to the reconfiguration as it is not allowed

to reconfigure two consequtive routers at the same time, The reason behind this is that

each router has the information of the availability of the first level neighbors only. If the

second level neighbor is also reconfigured at the same time, some packets might be

mistakenly lost. However, the wire delays between routers need tobe considered.

In general, the RTL changes added an area overhead to the CONNECT RTL

implementation. The area overhead is for the added network map module, connectivity

switches, and the routing adapted LUTs. The new structure for the reconfigurable

CONNECT NoC is shown in Figure 4.3. All these RTL changes are described and

discussed in [29].

Figure 4.3: Reconfigurable CONNECT NoC structure

33

Those changes permitted the network to be fully customizable according to the

desired requirements during the runtime. In Figure 4.4(a), the 4x4 network is fully

functioning and can be reconfigured during the runtime to any network structure such as

the 3x3 network in Figure 4.4(c) by disabling the 7 edge routers, or the 2x3 network as

depicted in Figure 4.4(d) by disabling the 10 edge routers, or even any irregular form as

shown in Figure 4.4(b).

Figure 4.4: Reconfigurable examples of CONNECT NoC during runtime [29]

34

4.3. Test Environment structure

The modified CONNECT RTL is placed inside an environment driven from [25]

with the structure shown in Figure 4.5. Each network node is connected against a packet

generation element and a credit handling element. The main function of the packet

generator is to provide each node with input flits targeting a totally randomized

destinations and virtual channels. The packet generator takes into consideration the

current active nodes, the desired traffic density and the available virtual channels. The

credit element monitors the input and output packets to and from every virtual channel.

This credit is considered as an indication to the available space in each channel buffer.

Figure 4.5: Environment structure of CONNECT NoC during runtime [29]

35

4.4. Reconfiguration tool

In general, the aim of all those modifications is to develop a tool providing the

recommended network structures based on the planned benchmarks to be used during the

runtime. The referred tool is developed as shown in Figure 4.6.

The tool requires all the input user benchmarks with their corresponding traffic

densities and performance requirements. The output of the tool is the recommended

network structure for each benchmark to be switched during reconfiguration. Table 4.1

shows an example for how the tool outputs could recommend different network structures

leading to area saving when switching from a benchmark to another.

Table 4.1: Reconfiguration tool output for different user benchmarks

Benchmark Target

Throughput

Expected

Traffic

Network

Configuration

Virtual

Channel

Buffer

Depth

Benchmark 1 0.68 80% mesh 4x4 2 64

Benchmark 2 0.53 55% mesh 4x3 2 32

Benchmark 3 0.4 40% mesh 3x3 2 16

Benchmark 4 0.1 20% mesh 2x2 2 4

Figure 4.6: Reconfiguration tool structure [29]

36

The configuration tool is developed using Python as a scripting language. The

criteria is based on searching for the best fitting network within the evaluation results.

The required throughput and the expected traffic load are the two inputs for the

reconfiguration tool from which the tool use to list all the fitting networks in an output

file.

The reconfiguration tool interface with the user is available in the batch mode and

the GUI mode as well.

In Batch mode, the python script “search.py” is called through the shell passing the

expected traffic and required throughput. Figure 4.7 shows an example on the tool

interface in batch mode with 80% expected traffic and 0.59 pkts/cycle/node required

throughput.

Figure 4.7: Reconfiguration tool interface in Batch mode

In GUI mode, the python script “gui.py” is called through the shell letting a user

interface initiates. Figure 4.8 shows the GUI interface of the tool. The GUI interface lets

the user parse the expected traffic and the required throughput.

37

Figure 4.8: Reconfiguration tool interface in GUI mode

The output of the tool in both modes is a list of all network configurations that are

fitting the requirements. The output configuration list of the last example is shown in

Figure 4.9.

Figure 4.9: Reconfiguration tool output in Batch and GUI modes

For the detailed use of the Reconfiguration tool, please refer to Appendix A:

Reconfiguration tool User Manual.

38

39

Chapter 5 : Impact of Dynamic reconfiguration on

Network on Chip performance

5.1. Environment Setup

 The previously referred CONNECT environment in the last Chapter is generalized

having the capability to test different network configurations with various traffic

densities ranging from 5% to 100%. The environment handles different virtual channels

ranging from 2 to 8, different buffer depths ranging from 4 to 64. Moreover, the DPR

evaluation is applied to all the possible networks nodes starting from all the 16 nodes

functioning (4x4 mesh) up to disabling 14 nodes and keeping only two nodes functioning

(2x1 mesh).

The network evaluation is based on the throughput as a performance metric and it

plays an important role in deciding the optimal network configuration.

The throughput is calculated after flooding the network with input packets according

to the desired traffic density. Then, monitoring the number of output packets per cycle

per node.

When many routers are disabled during network reconfiguration, the network size

become smaller in size. This leads into area saving on the expense of performance

degradation as the neighbor routers are required to handle higher traffic load. The

network reconfiguration is varying from a full network with highest performance to an

inadequate network with the lowest performance. And the benchmark desired

performance plays an important role in deciding the best configuration that meets this

requirement. The selection criteria is prioritizing the less significant area size which

corresponds to the smallest network possible.

The following subsections discuss the impact of different configurations on the

performance. And, provides an in-depth view on how each configuration works

individually on boosting the network overall performance.

5.2. Network topology DPR Evaluation

From the early evaluation results, the regular forms of the network give better results

than the irregular ones for the same number of routers. For the mesh 3x3 network for

example, it consists of 9 routers and gives better results than any irregular network form

with the same area size (9 routers). Accordingly, the results shown here are mainly

focusing on the regular network forms such as: mesh 4x4, mesh 4x3, mesh 3x3, mesh

3x2, mesh 2x2, and mesh 2x1.

Figure 5.1 shows the performance of the specified networks with credit-based flow

control, two virtual channels, buffer depth of four and under a traffic load ranging from

5% to 100%. It is clear that lowering the network size using reconfiguration leads to less

significant throughput rates. This is because the remaining active nodes after

40

reconfiguration are required to compensate the absence of the reconfigured inactive

nodes.

Figure 5.1: CONNECT throughput of all PDR configurations –

Credit-based flow control – VC=2 – BD=4

In general, shrinking the network size using DPR into a smaller topology degrades

the network performance. However, DPR saves significant area for other logic to be used.

This is beneficial with the applications that does not require high performance at the

moment and switches into a smaller network topology.

The network topology DPR evaluation result of a network with 4 virtual channels,

Credit-based flow control, and different buffer depths are shown in Figures 5.2, 5.3, 5.4,

5.5, and 5.6. Figures 5.2, 5.3, 5.4, 5.5, and 5.6 correspond to buffer depths of 4, 8, 16, 32,

and 64 respectively.

In addition, the network topology DPR evaluation result of a network with 8 virtual

channels, Peek-based flow control, and different buffer depths are shown in Figures 5.7,

5.8, 5.9, 5.10, and 5.11. Figures 5.7, 5.8, 5.9, 5.10, and 5.11 correspond to buffer depths

of 4, 8, 16, 32, and 64 respectively.

It is obvious in all the network configurations that shrinking the network size always

results in throughput degradation.

41

Figure 5.2: CONNECT Performance all PDR configurations –

Credit-based flow control – VC=4 – BD=4

Figure 5.3: CONNECT throughput of all PDR configurations –

Credit-based flow control – VC=4 – BD=8

42

Figure 5.4: CONNECT throughput of all PDR configurations –

Credit-based flow control – VC=4 – BD=16

Figure 5.5: CONNECT throughput of all PDR configurations –

Credit-based flow control – VC=4 – BD=32

43

Figure 5.6: CONNECT throughput of all PDR configurations –

Credit-based flow control – VC=4 – BD=64

Figure 5.7: CONNECT throughput of all PDR configurations –

Peek-based flow control – VC=8 – BD=4

44

Figure 5.8: CONNECT throughput of all PDR configurations –

Peek-based flow control – VC=8 – BD=8

Figure 5.9: CONNECT throughput of all PDR configurations –

Peek-based flow control – VC=8 – BD=16

45

Figure 5.10: CONNECT throughput of all PDR configurations –

Peek-based flow control – VC=8 – BD=32

Figure 5.11: CONNECT throughput of all PDR configurations –

Peek-based flow control – VC=8 – BD=64

46

5.3. Buffer Depth DPR Evaluation

Applying DPR into the buffer depth as a network parameter impacts the network

performance differently. The performance shown here is for the buffer depth of each

router inside the 4x4 specified network with credit-based and peek-based flow controls,

two virtual channels, buffer depth of four and under a traffic load ranging from 5% to

100%.

In general, increasing the buffer depth impacts the performance of all the network

configurations positively. This is because each node become capable of receiving and

handling more packets at the expense of significant area overhead.

Figure 5.12 represents the performance of the buffer depth as a variant on a mesh

4x3 network after reconfiguring 4 nodes from the original mesh 4x4 network. The

network performance is the same with the larger buffer depth at the low traffic densities

and is enhanced with the larger buffer depth at the high traffic densities. The performance

of the buffer depth of 64 for example is more significant than the buffer depth of 32.

Figure 5.12: CONNECT throughput of all BD configurations –

Mesh 4x3 – Credit-based flow control – VC=2

47

In Figure 5.13, switching to a larger buffer depth such as 16, 32, or 64 has a small

impact on the performance of the relatively small networks (such as mesh 2x2 – 12

routers are reconfigured). This is due to the network low latency as the packets don’t

consume much time till reaching the destination.

Additionally, the larger buffer depth with the mesh 2x2 networks results in a bit

different performance impact. The throughput impact is almost the same at the low traffic

densities till the traffic density of 40%. However, the complete mesh 4x4 network has

the same performance till a traffic load of nearly 30% as shown in Figure 5.12.

Figure 5.13: CONNECT throughput of all BD configurations –

Mesh 2x2 – Credit-based flow control – VC=2

Figure 5.14 shows the throughput of mesh 2x1 network using various buffer depths

ranging from four to 64, while keeping the other configurations constant. The buffer

depth impact becomes non-noticeable with shrinking the network size. And, this is

because most of the buffer depth is not used efficiently especially with the mesh 2x2 and

mesh 2x1 network sizes. Using a buffer depth of 64 in this case is a waste of because it

has the same performance of using the buffer depth of four.

The larger buffer depth with the smaller network (14 routers are reconfigured) gives

a very different performance impact from the relatively large networks. All the

throughput values are the same at all traffic densities.

More buffer depth DPR evaluation results are shown are shown in Figures 5.15, 5.16,

5.17, 5.18, 5.19, and 5.20. The results are for a Peek-based flow control, two virtual

channels, and a network topology configurations of (Mesh 4x4, 4x3, 3x3, 3x2, 2x2, and

2x1 respectively).

48

Figure 5.14: CONNECT throughput of all BD configurations –

Mesh 2x1 – Credit-based flow control – VC=2

Figure 5.15: CONNECT throughput of all BD configurations –

Mesh 4x4 – Peek-based flow control – VC=2

49

Figure 5.16: CONNECT throughput of all BD configurations –

Mesh 4x3 – Peek-based flow control – VC=2

Figure 5.17: CONNECT throughput of all BD configurations –

Mesh 3x3 – Peek-based flow control – VC=2

50

Figure 5.18: CONNECT throughput of all BD configurations –

Mesh 3x2 – Peek-based flow control – VC=2

Figure 5.19: CONNECT throughput of all BD configurations –

Mesh 2x2 – Peek-based flow control – VC=2

51

Figure 5.20: CONNECT throughput of all BD configurations –

Mesh 2x1 – Peek-based flow control – VC=2

52

5.4. Virtual Channel DPR Evaluation

Applying DPR into the virtual channel as a network parameter impacts the network

performance in a different way than the buffer depth. The performance shown here is for

the virtual channels inside the mesh 4x4 network with credit-based and peek-based flow

controls, buffer depth of 4, 8, and 64 and under a traffic load ranging from 5% to 100%.

In general, increasing the virtual channels improves the performance of all the

network configurations positively. This is because it creates new routing paths in parallel

with the original network paths. Accordingly, the network capability to handle and

receive packets has increased at the expense of significant area overhead.

Figure 5.21 represents the throughput of a mesh 4x4 network using various virtual

channels varying from two to eight, while keeping the other configurations constant. The

network performance is the same with the four and eight virtual channels at the low traffic

densities till nearly 30% and is enhanced at the high traffic densities above 30%.

Figure 5.21: CONNECT throughput of all VC configurations –

Mesh 4x4 – Peek-based flow control – BD=4

Figure 5.22 shows the virtual channel DPR performance with a mesh 2x1 network

using the same other configurations. The virtual channel impact becomes non-noticeable

with the shrinking of the network size. And, this is because the low latency of the small

networks which lowers the probability of congestion even with high injection rates.

The buffer depth of 64 even with the mesh 4x4 network gives the same performance

impact for all virtual channels as in Figure 5.23. With the large buffer depths, increasing

the virtual channels become useless.

53

Figure 5.22: CONNECT throughput of all VC configurations –

Mesh 2x1 – Peek-based flow control – BD=4

Figure 5.23: CONNECT throughput of all VC configurations –

Mesh 4x4 – Peek-based flow control – BD=64

54

More results of virtual channel DPR are shown in Figures 5.24, 5.25, 5.26, 5.27,

5.28, and 5.29. The results are for a Credit-based flow control, buffer depth of 8, and a

network topology configurations of (Mesh 4x4, 4x3, 3x3, 3x2, 2x2, and 2x1

respectively).

It is noticeable in all the results that the positive impact of virtual channel DPR is

valuable only with the relatively large networks with small buffer depths. Investing in

virtual channel DPR in the small networks or the large buffer depths results in a waste of

area.

Figure 5.24: CONNECT throughput of all VC configurations –

Mesh 4x4 – Credit-based flow control – BD=8

55

Figure 5.25: CONNECT throughput of all VC configurations –

Mesh 4x3 – Credit-based flow control – BD=8

Figure 5.26: CONNECT throughput of all VC configurations –

Mesh 3x3 – Credit-based flow control – BD=8

56

Figure 5.27: CONNECT throughput of all VC configurations –

Mesh 3x2 – Credit-based flow control – BD=8

Figure 5.28: CONNECT throughput of all VC configurations –

Mesh 2x2 – Credit-based flow control – BD=8

57

Figure 5.29: CONNECT throughput of all VC configurations –

Mesh 2x1 – Credit-based flow control – BD=8

58

5.5. Buffer Depth vs Virtual Channel

Applying DPR into the buffer depth or the virtual channel impacts the network

performance in nearly the same way. The performance shown here is for the buffer depths

vs virtual channels inside the mesh 4x4 network with credit-based and peek-based flow

controls, under a traffic load ranging from 5% to 100%.

Figures 5.30 and 5.31 show how using virtual channel/ buffer depth gives nearly the

same effect with the same network configurations. This is proven using the 4-virtual

channels and a buffer depth of eight compared with the eight virtual channels and a buffer

depth of four.

The same result is highlighted in Figures 5.32 and 5.33 even with using a moderate-

sized network (mesh 3x3). In addition, the flow control type does not change this

conclusion as credit-based flow control in Figure 5.32 and peek-based flow control in

Figure 5.33.

It is obvious that the rule of the small networks effect still applies. This is shown in

Figure 5.34 and 5.35. In those Figures, a small-sized (mesh 2x2) network is used with

credit-based and peek-based flow controls similar to the previous networks.

Figure 5.30: CONNECT throughput of BD vs VC configurations –

Mesh 4x4 – Peek-based flow control – VC=2, 4, and 8 – BD=4, 8, and 16

59

Figure 5.31: CONNECT throughput of BD vs VC configurations –

Mesh 4x4 – Credit-based flow control – VC=2, 4, and 8 – BD=4, 8, and 16

Figure 5.32: CONNECT throughput of BD vs VC configurations –

Mesh 3x3 – Credit-based flow control – VC=2, 4, and 8 – BD=8, 16, and 32

60

Figure 5.33: CONNECT throughput of BD vs VC configurations –

Mesh 3x3 – Peek-based flow control – VC=2, 4, and 8 – BD=8, 16, and 32

Figure 5.34: CONNECT throughput of BD vs VC configurations –

Mesh 2x2 – Credit-based flow control – VC=2, 4, and 8 – BD=16, 32, and 64

61

Figure 5.35: CONNECT throughput of BD vs VC configurations –

Mesh 2x2 – Peek-based flow control – VC=2, 4, and 8 – BD=16, 32, and 64

62

5.6. Flow Control DPR Evaluation

The network flow control mechanism defines the feedback technique while

communicating with neighbor routers. The credit-based flow control provides a detailed

feedback when there is a free space in each virtual channel. However, the peek-based

flow control just provides a busy signal indicating the availability of each virtual channel.

Accordingly, The peek-based flow control is much simpler and allows maximizing the

use of network resources. Nevertheless, the credit-based flow control provides more

intelligence to the network in case of choosing different routing paths.

The following Figures show that the impact of Flow control mechanism is very

slight. It is only noticeable with the small buffer depths that the peek-based flow control

is preferred over the credit-based flow control. Note that the rule of the small networks

still applies.

Figure 5.36 corresponds to a 4x4 mesh network with 2 virtual channels and a buffer

depth of four. Figure 5.37 shows a 2x1 mesh network with 2 virtual channels and a buffer

depth of four. Figure 5.38 corresponds to a 3x3 mesh network with four virtual channels

and a buffer depth of 16. Figure 5.39 corresponds to a 2x2 mesh network with four virtual

channels and a buffer depth of 32. Figure 5.40 corresponds to a 4x3 mesh network with

eight virtual channels and a buffer depth of eight. Figure 5.41 corresponds to a 2x1 mesh

network with eight virtual channels and a buffer depth of 64.

Figure 5.36: CONNECT throughput of Flow Control configurations –

Mesh 4x4 – VC=2 – BD=4

63

Figure 5.37: CONNECT throughput of Flow Control configurations –

Mesh 2x1 – VC=2 – BD=4

Figure 5.38: CONNECT throughput of Flow Control configurations –

Mesh 3x3 – VC=4 – BD=16

64

Figure 5.39: CONNECT throughput of Flow Control configurations –

Mesh 2x2 – VC=4 – BD=32

Figure 5.40: CONNECT throughput of Flow Control configurations –

Mesh 4x3 – VC=8 – BD=8

65

Figure 5.41: CONNECT throughput Flow Control configurations –

Mesh 2x1 – VC=8 – BD=64

66

5.7. Area Evaluation

As a different performance metric, the experimental results of the area for the

different networks is considered the most important factor in deciding the most suitable

network with every benchmark. This metric is mainly used by the reconfiguration tool in

order to prevent the throughput from misleading the network selection criteria.

In this subsection, an example highlights how the area is the valuable gain by using

the reconfigurable NoCs over the static NoCs.

The original CONNECT and the reconfigurable CONNECT are implemented on

Virtex-5 xc5vlx110tff1136-1 FPGA. At the implementation level, adding the runtime

reconfigurability to the 4x4 mesh CONNECT increases the area. This overhead is due to

the switches and routing adaptation.

For the area resources in Virtex 5 Xilinx FPGAs, Table 5.1 shows the estimation for

the area for each Virtex 5 resource with respect to the equivalent number of gates and the

absolute area in mm2. These area results are used by the reconfiguration tool as a metric

for the best fitting network. This criteria is used as the main aim of the reconfigurable

NoC is to allow area saving when switching between the different networks.

Table 5.1: Estimated Virtex 5 Xilinx FPGA resource area [26, 27, 33]

Resource Equivalent Number of gates Silicon Area in mm2

Register 7 0.000341

LUT 24 0.001171

IO 100 0.004882

BRAM - 0.025436

5.7.1. Case Study

This is a case study highlighting the effect of the reconfigurable NoC. The five

benchmarks listed in Table 5.2 are designed using the Static NoC approach and the

Reconfigurable NoC approach.

The different reconfigurble benchmarks force designing the static NoC with the

highest performance requirements and consuming the biggest area all the time. However,

the reconfigurable NoC offers switching to the best fit configuration satisfying the

benchmark requirement without reserving unnused area.

Table 5.2: Case study benchmarks with Static NoC and Reconfigurable NoC

approaches

Benchmark Static NoC approach Reconfigurable NoC approach

Benchmark 1 Mesh 4x4 Mesh 4x4

Benchmark 2 Mesh 4x4 Mesh 4x3

Benchmark 3 Mesh 4x4 Mesh 3x3

Benchmark 4 Mesh 4x4 Mesh 3x2

Benchmark 5 Mesh 4x4 Mesh 2x2

67

Figure 5.42 represents a usage model example of two NoCs switching between the

set of listed bencmarks. These benchmarks are ranging from a 4x4 mesh network down

to a 2x2 mesh network. The first NoC is a static NoC, which shows a constant area

resource usage even with moving from an application to another. However, the second

NoC which is a reconfigurable NoC shows a variable area with each new reconfiguration.

The swiching takes place and hence the current area utilization are determined according

to the current application used. In general, the NoC reconfigurability power appears when

the usage model does not require the high throughput all the time.

Figure 5.42: Virtex 5 xc5vlx110tff1136-1 Area results of reconfigurable mesh 4x4

CONNECT vs Static mesh 4x4 CONNECT

The area resources of all those networks are listed in Table 5.3. The area reduction

is noticed with decreasing the network size when switching between the different

benchmarks.

68

Table 5.3: Area resources for different networks corresponding to different

benchmarks

Network VC BD Slice

Regs

Slice

LUTs

LUT-FF

pairs

IOs BUFG

Mesh 4x4 (Static) 2 4 3758 12644 2287 914 2

Mesh 4x4 (Reconfig.) 2 4 3758 14696 2276 930 2

Mesh 4x3 (Reconfig.) 2 4 2728 10660 1668 818 1

Mesh 3x3 (Reconfig.) 2 4 1976 7202 1231 733 1

Mesh 3x2 (Reconfig.) 2 4 1207 4145 766 648 1

Mesh 2x2 (Reconfig.) 2 4 726 2238 459 590 1

Assuming that the five benchmarks are operating with equal times, the overall area

saving in this case study is as follows:

 Saving in Slice Registers: 44.67%

 Saving in Slice LUTs: 38.4%

 Saving in LUT-FF pairs: 44%

 Saving in IOs: 18.6%

 Saving in BUFG/BUFGCTRL: 40%

69

5.8. Design recommendations

From the previous evaluations, some recommendations should be considered when

planning to use NoCs in the user design and whether static or reconfigurable NoCs are

going to be used. These design recommendations are listed below:

 Reconfigurable NoCs are preferred when there are multiple benchmarks are

going to run with different requirements (traffic load, throughput). The

reconfigurable NoCs will give the design the required adaptability to the

runtime requirements with area and power gains.

 Static NoCs are preferred when only a single benchmark is running.

Additionally, it is suitable for multiple benchmarks with the same

performance requirements. The adaptability here has no meaning as the

runtime requirements does not need a lot of variations.

 The main gain behind applying PDR to the NoC topology is the area and

power saving. Removing a set of routers and changing the network topology

during the runtime degrades the performance while saving the area of the

reconfigured nodes. This area saved is going to be used by the rest of the

design.

 Applying DPR to the network buffer depth is beneficial with the high traffic

loads and the relatively large networks. It has its minimal effect with the

small networks or the low traffic loads.

 Applying DPR to the network virtual channel has its most effect with high

traffic loads and relatively large networks plus a small buffer depth. Large

buffer depth networks could prevent making the most of the available virtual

channels.

 Choosing buffer depth DPR or virtual channel DPR depends mainly on the

usage model of the design specified benchmarks. The virtual channel is

preferred when planning to use the parallel loading and packet injection.

However, the buffer depth is preferred when the internal router storage is

more important than routing resources.

 Flow control mechanism DPR could help when fine tuning the network

parameters while DPR selection. The peek flow control is much simpler in

the implementation which means less area and power. However, the credit

flow control gives the router a more detailed information about the traffic

going through the neighbors and gives a more smart insight with the possible

routing paths.

70

Conclusion

In this thesis, four reconfiguration methods for DPR in Xilinx FPGAs are reviewed

and results are discussed.

It is obvious that JTAG and Serial Mode reconfiguration methods are much slower

than the ICAP and SelectMap methods. However, serial reconfiguration methods have

less significant area overhead compared to the parallel methods. Therefore, the

performance with JTAG and Serial methods is better than the parallel methods with small

design areas. With these less significant designs, the area overhead is very noticeable.

Despite that, the performance with JTAG and Serial modes are not recommended with

the more significant design areas. The area overhead is not significant compared to the

large design areas. On the other hand, JTAG allows sending internal signals to the outside

for debugging purposes.

In addition, the methods that use a parallel port support a high speed reconfiguration

compared to the others, especially with large designs.

This work presents a study on the reconfiguration impact on the NoC performance.

Additionally, it focuses on how shrinking the network size during the runtime results in

area saving. This saving is at the expense of degrading the performance. In general, the

low performance is suitable with cerain benchmarks under certain traffic loads.

Moreover, other network configuration parameters are studied and their impact on the

network performance is analyzed.

Since the large network requires hosting the packets for a longer time than the

smaller network, the buffer depth contributes in enhancing the performance with the

larger network sizes. Moreover, the Virtual channel acts as a booster for the performance

especially with the large networks and small buffer depths. In addition, the flow control

mechanism impact is noticeable with the small buffer depths. Finally, the area metric

plays a very important role in the best network selection. The area results are considered

the main advantage that is gained from applying DPR into NoC.

71

Future Work

The reconfigurable mesh 4x4 CONNECT holds a detailed analysis on the throughput

as a performance metric of the network performance. However, this study can be

extended in the future to include the following:

 Evaluate larger networks such as 6x6 and 8x8 mesh networks in order to

provide more configuration options to the user and more detailed analysis

on the large scale NoCs.

 Evaluate other network topologies such as Ring and Star networks and

providing a detailed analysis and a comparison among them.

 Consider the impact of the network latency as a performance metric.

The network latency shall reflect on the best network structure

selection by the reconfiguration tool.

 Engage this work with the new NoC simulators and study the opposite

way how the NoC should impact the reconfiguration time and the DPR

performance in general. This should give the user a complete holistic

view on the reconfiguration and its usage with the NoC.

 Propose a technique for estimating traffic load for every user

benchmark.

72

References

1. S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First Thirty Years

of FPGA Technology,” in Proceedings of the IEEE, vol. 103, no. 3, pp. 318-331,

March 2015.

2. Farooq U, Marrakchi Z, and Mehrez H., “FPGA architectures: An overview. In: Tree-

based Heterogeneous FPGA Architectures,” Springer, New York, pp 7–48, 2012.

3. Xilinx Inc., “Virtex-4 FPGA Configuration Guide, UG071”, June 2017.

4. http://www.fpl2012.org/Presentations/Keynote_Steve_Teig.pdf. Accessed: 2018-

06-03

5. M. Liuzy , Z. Luy , W. Kuehnz, and A Jantsch, “Reducing FPGA Reconfiguration

Time Overhead using Virtual Configurations,” in ReCoSoC, 2010.

6. P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgeford, “Enhanced

architectures, design methodologies and CAD tools for dynamic reconfiguration on

XILINX FPGAS,” in Proceedings of the 16th International Conference on Field

Programmable Logic and Applications, FPL06, Madrid, Spain, August 2006.

7. Xilinx Inc., “Partial Reconfiguration User Guide, UG702”, 2013.

8. http://users.ece.cmu.edu/~mpapamic/connect/. Accessed: 2018-06-03

9. M. Katevenis, “Buffer requirements of credit-based flow control when a minimum

draining rate is guaranteed,” The Fourth IEEE Workshop on High-Performance

Communication Systems, Greece, pp. 168-178, 1997.

10. A. Ahmadinia, C. Bobda, J. Ding, M. Majer, J. Teich, S. P. Fekete, and J. C. van der

Veen, “A Practical Approach for Circuit Routing on Dynamic Reconfigurable

Devices,” in Proceedings of RSP, pp. 84-90, 2005.

11. C. Bobda and A. Ahmadinia, “Dynamic interconnection of reconfigurable modules

on reconfigurable devices,” Design & Test of Computers, vol. 22, no. 5, pp. 443–

451, 2005.

12. C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and J. van der Veen,

“DyNoC: A dynamic infrastructure for communication in dynamically

reconfigurable devices,” in Proc. Int. Conf. Field Program. Logic Appl., pp. 153–158,

Aug. 2005.

13. T. Pionteck, R. Koch, and C. Albrecht, “Applying partial reconfiguration to

networks-on-chips,” in Proc. Int. Conf. Field Programmable Logic and Applications,

FPL, pages 1–6. IEEE, 2006.

14. T. Pionteck, C. Albrecht, and R. Koch, “A Dynamically Reconfigurable

PacketSwitched Network-on-Chip,” in Proceeding of the conference on Design,

Automation and Test in Europe, DATE'06, vol.1, pp.8-9, March 2006.

15. M. Modarressi, H. Sarbazi-Azad, and A. Tavakkol, “An efficient dynamically

reconfigurable on-chip network architecture,” Proc. of the 47th Design Automation

Conference, DAC 2010, pp. 310-313, 2010.

http://www.fpl2012.org/Presentations/Keynote_Steve_Teig.pdf
http://users.ece.cmu.edu/~mpapamic/connect/

73

16. E. J. Mcdonald, “Runtime FPGA Partial Reconfiguration,” in Proc. of 2008 IEEE

Aerospace Conference, pp. 1-7, Mar. 2008.

17. Jean-Philippe Delahaye, Pierre Leray, Christophe Moy, and Jacques Palicot,

“Managing Dynamic Partial Reconfiguration on Heterogeneous SDR Platforms,”

SDR Forum Technical Conference'05, Anaheim, USA, November 2005.

18. H. Tan, R. F. DeMara, A. J. Thakkar, A. Ejnioui, and J. Sattler, “Complexity and

Performance Evaluation of Two Partial Reconfiguration Interfaces on FPGAs: A

Case Study,” in Proceedings of ERSA'06, Las Vegas, Nevada, USA, pp. 253-256,

June 2006.

19. Liu, M., Kuehn, W., Lu, Z., and Jantsch, A., “Run-time Partial Reconfiguration Speed

Investigation and Architectural Design Space Exploration,” in Proceedings of FPL,

Prague, Czech Republic, 2009.

20. K. Vipin and S. Fahmy, “A high speed open source controller for FPGA partial

reconfiguration,” Proc. Int. Conf. Field Programmable Technol., FPT, pp.61 -66,

2012.

21. K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial reconfiguration

in FPGA systems: A survey and cost model,” ACM Transactions on Reconfigurable

Technology and Systems, TRETS, vol. 4, no. 4, pp. 36:1-36:24, Dec. 2011.

22. C. Claus , F. Muller , J. Zeppenfeld and W. Stechele, “A new framework to accelerate

Virtex-II Pro dynamic partial self-reconfiguration,” Proc. IEEE Int. Parallel Distrib.

Process. Symp., pp.1 -7, 2007.

23. Xilinx Inc., “Virtex-5 FPGA Configuration User Guide, UG191”, 2012.

24. Xilinx Inc., “Using a Microprocessor to Configure Xilinx FPGAs via Slave Serial or

SelectMAP Mode”, 2009.

25. Helal, K. A., S. Attia, T. Ismail, and H. Mostafa, “Comparative Review of NoCs in

the Context of ASICs and FPGAs”, ISCAS, pp. 1866- 1869, 2015.

26. https://www.xilinx.com/training/downloads/what-is-the-difference-between-an-

fpga-and-an-asic.pptx. Accessed: 2018-06-03

27. F. Arnaud., “A Functional 0.69 Embedded 6T-SRAM bit cell for 65nm CMOS

platform,” the Digest of Technical Papers of the Symposium on VLSI Technology,

pp. 65-66, 2003.

28. A. Hassan, R. Ahmed, H. Mostafa, H. A. H. Fahmy and A. Hussien, “Performance

evaluation of dynamic partial reconfiguration techniques for software defined radio

implementation on FPGA,” 2015 IEEE International Conference on Electronics,

Circuits, and Systems, ICECS, Cairo, pp. 183-186, 2015.

29. R. Ahmed, H. Mostafa and A. H. Khalil, “Impact of dynamic partial reconfiguration

on CONNECT Network-on-Chip for FPGAs,” 2018 13th International Conference

on Design & Technology of Integrated Systems In Nanoscale Era DTIS, Taormina,

pp. 1-5, 2018.

30. Papamichael, M. K., and J. C. Hoe, “CONNECT: Re-examining Conventional

Wisdom for Designing NoCs in the Context of FPGAs,” in Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

FPGA’12, New York, NY, USA, pp. 37–46, ACM, 2012.

74

31. Salaheldin, A., K. Abdallah, N. Gamal, and H. Mostafa, “Review of NoC-Based

FPGAs Architectures,” IEEE International Conference on Energy Aware Computing

Systems and Applications, pp. 1-4, 2015.

32. S. Abba and J. A. Lee, “Examining the Performance Impact of NoC Parameters for

Scalable and Adaptive FPGA-Based Network-on-Chips,” in 2013 Fifth International

Conference on Computational Intelligence, Modelling and Simulation, pp. 364–372,

Sept 2013.

33. Gamal, N., H. A. H. Fahmy, Y. Ismail, T. Ismail, M. Mohie-Eldin, and H. Mostafa,

“Design Guidelines for Soft Implementations to Embedded NoCs of FPGAs,” IEEE

International Design and Test Symposium, pp. 1-6, 2016.

75

Appendix A: Reconfiguration tool user manual

This part contains the configuration tool user manual. All the needed steps for the user to

install the tool and use it properly.

A.1 Environment Setup

Before using the tool, the environment need to be ready by installing the required

compilers and placing the needed files and datasheets at their right place.

First, the tool is developed in Python. Therefore, the user need to install python in

order to be able to run the tool successfully.

Figure A.1: The Reconfiguration tool required files and sheets

76

Second, the Python Scripts “search.py” and “gui_new.py” need to be placed in

the run directory as shown in Figure A.1. Additionally, the Sheet

“PDR_NOC_result.xlsx” is required beside the python scripts in the same directory as it

contains all the required network information. The tool output appears in the “searchout”

text file.

A.2 Batch mode run

In the Batch mode, the user only needs to run the “search.py” script in the python

terminal passing the expected network traffic and the desired throughput as in Figure A.2

(the terminal part).

>> python .\search.py ExpectedTraffic RequiredThroughput

A.2 GUI mode run

In the GUI mode, the user only needs to run the “gui_new.py” script in the python

terminal. The GUI interface appears letting the user enter the expected network traffic

and the desired throughput as in Figure A.2 (the GUI part).

 >> python .\gui_new.py

A.3 Tool Output

The tool output in the GUI mode is the best fitting Network structure and

configuration in addition to a list with all the fitting networks as in Figure A.2 (the output

part). The Output list is the only output in the Batch mode run.

77

Figure A.2: The Reconfiguration tool interface and output

78

79

Appendix B: Reconfiguration tool source code

This part contains the python configuration tool source code. The python source code

requires the existence of the Connect NoC results data base for searching among it for

the most suitable Noc structure fitting the desired network requirements.

For more information on how to use the Configuration tool, please refer to Appendix A

which is the user manual for the reconfiguration tool.

The Source code:

from tkinter import *

from PIL import ImageTk, Image

from tkinter import messagebox

from openpyxl import load_workbook

import string

import sys

import random

def calculate(pktrate, thrpt):

 column = getPacketRateCol(pktrate)

 streamWriter=open('searchout.txt','w')

 minarea = -1

 which = 'NotFound'

 NW = -1

 VC = -1

 BD = -1

 temp = -1

 for r in range(4,ws1.max_row+1):

 cellval = ws1[column+str(r)].internal_value

 if thrpt < cellval:

 temp = ws1['AB'+str(r)].internal_value

 if minarea == -1 or minarea > temp:

 minarea = temp

 which = ws1['E'+str(r)].internal_value

 NW = ws1['A'+str(r)].internal_value

 VC = ws1['B'+str(r)].internal_value

80

 BD = ws1['C'+str(r)].internal_value

 streamWriter.write("NW= %2d, VC= %2d, BD= %3d, PDR= %4s, which router= %6s,

Config= %4s

\n"%(ws1['A'+str(r)].internal_value,ws1['B'+str(r)].internal_value,ws1['C'+str(r)].internal_value,str

(ws1['D'+str(r)].internal_value),str(ws1['E'+str(r)].internal_value),str(ws1['F'+str(r)].internal_value

)))

 #print("NW=%2d VC=%2d BD=%3d PDR=%4s which=%6s

Config=%4s"%(ws['A'+str(r)].internal_value,ws['B'+str(r)].internal_value,ws['C'+str(r)].internal_v

alue,str(ws['D'+str(r)].internal_value),str(ws['E'+str(r)].internal_value),str(ws['F'+str(r)].internal_v

alue)))

 #print(str(r) + ' NW=' + str(ws['A'+str(r)].internal_value) + ' VC=' +

str(ws['B'+str(r)].internal_value)+ ' BD=' + str(ws['C'+str(r)].internal_value)+ ' PDR=' +

str(ws['D'+str(r)].internal_value) + ' which=' + str(ws['E'+str(r)].internal_value) + ' Config=' +

str(ws['F'+str(r)].internal_value))

 for r in range(4,ws2.max_row+1):

 cellval = ws2[column+str(r)].internal_value

 if thrpt < cellval:

 temp = ws2['AB'+str(r)].internal_value

 if minarea == -1 or minarea > temp:

 minarea = temp

 which = ws2['E'+str(r)].internal_value

 NW = ws2['A'+str(r)].internal_value

 VC = ws2['B'+str(r)].internal_value

 BD = ws2['C'+str(r)].internal_value

 streamWriter.write("NW= %2d, VC= %2d, BD= %3d, PDR= %4s, which router= %6s,

Config= %4s

\n"%(ws2['A'+str(r)].internal_value,ws2['B'+str(r)].internal_value,ws2['C'+str(r)].internal_value,str

(ws2['D'+str(r)].internal_value),str(ws2['E'+str(r)].internal_value),str(ws2['F'+str(r)].internal_value

)))

 #print("NW=%2d VC=%2d BD=%3d PDR=%4s which=%6s

Config=%4s"%(ws['A'+str(r)].internal_value,ws['B'+str(r)].internal_value,ws['C'+str(r)].internal_v

alue,str(ws['D'+str(r)].internal_value),str(ws['E'+str(r)].internal_value),str(ws['F'+str(r)].internal_v

alue)))

 #print(str(r) + ' NW=' + str(ws['A'+str(r)].internal_value) + ' VC=' +

str(ws['B'+str(r)].internal_value)+ ' BD=' + str(ws['C'+str(r)].internal_value)+ ' PDR=' +

str(ws['D'+str(r)].internal_value) + ' which=' + str(ws['E'+str(r)].internal_value) + ' Config=' +

str(ws['F'+str(r)].internal_value))

81

 for r in range(4,ws3.max_row+1):

 cellval = ws3[column+str(r)].internal_value

 if thrpt < cellval:

 temp = ws3['AB'+str(r)].internal_value

 if minarea == -1 or minarea > temp:

 minarea = temp

 which = ws3['E'+str(r)].internal_value

 NW = ws3['A'+str(r)].internal_value

 VC = ws3['B'+str(r)].internal_value

 BD = ws3['C'+str(r)].internal_value

 streamWriter.write("NW= %2d, VC= %2d, BD= %3d, PDR= %4s, which router= %6s,

Config= %4s

\n"%(ws3['A'+str(r)].internal_value,ws3['B'+str(r)].internal_value,ws3['C'+str(r)].internal_value,str

(ws3['D'+str(r)].internal_value),str(ws3['E'+str(r)].internal_value),str(ws3['F'+str(r)].internal_value

)))

 #print("NW=%2d VC=%2d BD=%3d PDR=%4s which=%6s

Config=%4s"%(ws['A'+str(r)].internal_value,ws['B'+str(r)].internal_value,ws['C'+str(r)].internal_v

alue,str(ws['D'+str(r)].internal_value),str(ws['E'+str(r)].internal_value),str(ws['F'+str(r)].internal_v

alue)))

 #print(str(r) + ' NW=' + str(ws['A'+str(r)].internal_value) + ' VC=' +

str(ws['B'+str(r)].internal_value)+ ' BD=' + str(ws['C'+str(r)].internal_value)+ ' PDR=' +

str(ws['D'+str(r)].internal_value) + ' which=' + str(ws['E'+str(r)].internal_value) + ' Config=' +

str(ws['F'+str(r)].internal_value))

 streamWriter.close()

 return minarea, which, NW, VC, BD

def getPacketRateCol(val, row=2):

 alpha = list(string.ascii_uppercase)

 alpha = alpha[6:]

 for col in alpha:

 curr_cell = ws1[col+str(row)].internal_value

 if val > curr_cell:

 continue

 else:

 return col

82

def validate(event=None):

 fail = False

 try:

 trafficLoad = int(entry1.get())

 if trafficLoad < 0 or trafficLoad > 100:

 raise ValueError

 except ValueError:

 if entry1.get() == '':

 messagebox.showerror("Traffic load invalid input", "Traffic load shouldn't be left empty.")

 else:

 messagebox.showerror("Traffic load input error", "You should enter value between: 0 and

100")

 fail = True

 try:

 throughput = float(entry2.get())

 if throughput < 0 or throughput > 1:

 raise ValueError

 except ValueError:

 if entry1.get() == '':

 messagebox.showerror("Target throughput invalid input", "Target throughput shouldn't be

left empty.")

 else:

 messagebox.showerror("Target throughput input error", "You should enter value

between: 0 and 1")

 fail = True

 if fail == True:

 return

 minarea, which, NW, VC, BD= calculate(trafficLoad, throughput)

 if minarea == -1:

 panel1.config(text="No configuration selected",font='Helvetica 14 bold')

 panel2.configure(image='')

 fail = True

 messagebox.showerror("Configuration not found", "The networks available don't meet the

required configurations")

83

 # return #TEMP

 if not fail:

 panel1.config(text = "Minimum Area="+str(minarea)+', '+"NW="+str(NW)+',

'+"VC="+str(VC)+', '+"BD="+str(BD), width = "50")

 ##image

identifier####################################

 testval = random.randint(1,101)

 if testval > 50:

 number = 2

 else:

 number = 1

 path = "test" + str(number) + ".png"

##

################

 image = Image.open(path)

 image = image.resize((820, 820), Image.ANTIALIAS) #The (250, 250) is (height, width)

 img = ImageTk.PhotoImage(image)

 #img = ImageTk.PhotoImage(Image.open(which))

 panel2.configure(image=img)

 panel2.image = img # keep a reference!

if __name__ == '__main__':

 master = Tk()

 master.title('Re-Configuration Tool')

 master.geometry("850x1000")

 master.resizable(0,0)

 frame1 = Frame(master,width=300)

 frame1.pack(side=TOP, padx=5, pady=5)

 label1 = Label(frame1, width=10, text='Traffic load:',anchor=W, padx=50)

 label1.pack(side=LEFT)

 entry1 = Entry(frame1)

 entry1.pack(side=LEFT)

 entry1.bind('<Return>',validate)

 frame2 = Frame(master,width=300)

 frame2.pack(side=TOP, padx=5, pady=5)

 label2 = Label(frame2, width=10, text='Target throughput:',anchor=W,padx=50)

84

 label2.pack(side=LEFT)

 entry2 = Entry(frame2)

 entry2.pack(side=LEFT)

 entry2.bind('<Return>',validate)

 frame3 = Frame(master)

 frame3.pack(side=TOP, fill=X, padx=5, pady=5)

 button1 = Button(frame3,text="Show",command=validate)

 button1.pack()

 button1.bind('<Return>',validate)

 frame4 = Frame(master,borderwidth=1,relief= GROOVE,padx=10,pady=10)

 frame4.pack(side=TOP, fill=BOTH, padx=5, pady=5)

 panel1 = Label(frame4, text="No configuration selected",font='Helvetica 14 bold')

 panel1.pack()

 frame5 = Frame(frame4,borderwidth=1,padx=10,pady=10)

 frame5.pack(side=TOP, fill=X, padx=5, pady=5)

 panel2 = Label(frame5, text="",font='Helvetica 14 bold')

 panel2.pack()

 wb = load_workbook(filename = 'PDR_NOC_results.xlsx', data_only=True)

 ws1 = wb['Bypass 4x4 vc2']

 ws2 = wb['Bypass 4x4 vc4']

 ws3 = wb['Bypass 4x4 vc8']

 master.mainloop()

 #pip install Pillow

 أ

 الرسالة ملخص

ة تصميم ، يتم تقديم بنيالرقائقم على في كثافة التصميم داخل النظ امكل ع المطردةمع الزيادة

تم يتحديات أنظمة التصميم المعقدة. مواجهة لاتصالات موثوقة بنيةتوصيل المعلومات كشبكة

جل قابلية لأالاتصالات التقليدية نهج علىتوصيل المعلومات شبكة نهج تصميم إتباع ل يفضت

 .الأفضل هاؤأداالمحسنة ، و تها، ونمطي هاتوسع

بشكل نالقابلة لإعادة التكويو من ناحية أخرى ، فإن التقدم في المصفوفات القابلة للبرمجة

 الديناميكى كيلإعادة التشأثناء وقت التشغيل. يسمح مستخدمةتصاميم الال شكيلديناميكي يتيح إعادة ت

والمزيد من ةمساحأفضل لل غلالا ويوفر است لمكونات المختلفة للتصميمبمزيد من المرونة لالجزئى

خوارزميات تطويرالجزئى الديناميكى إعادة التشكيل، يتيح استخدام كذلكالطاقة. استخدام تحسين

 لى متطلبات وقيود التطبيقات المختلفة.بناءا عالتكيفية التصاميم

لتصميم ا بنياتفي واحدة من أكثر الجزئى الديناميكى أو التشكيل إدخال مفهوم إعادة التهيئة

ا. مهفرصة جيدة لاكتساب أقصى استفادة منيعتبر ل المعلوماتيصشبكات تومثل إقبالا و ا نتشارا

أن يفتحا نشكيل يمكللت ةالقابل ل المعلوماتيصشبكات توالكامل لـ تشكيلالإعادة رونة العالية ولما

ا من ال و للتكيف بشكل كامل ةقابل معلوماتيل شبكات توصالباب أمام وفق ا طبيقاتتيلائم عدد ا كبير

 لاحتياجات ومتطلبات وقت التشغيل.

تعد خلايا الذاكرة الالكترونيةعلى أساس المبنية القابلة للبرمجة المصفوفات تشكيلإعادة

الجزئي كيلشعادة الت. يؤكد إالدوائر الالكترونية المصنعة لتطبيقات محددةأقوى ميزة على تصاميم

(Xilinx) ةمرحلة التشغيل. توفر عائل أثناءة على هذه الميزة بإضافة المزيد من المرون الديناميكي

 SelectMAP :ئيالجزالديناميكي شكيلعادة التأربعة أساليب لتنفيذ إ المصفوفات القابلة للبرمجة من

 ،Serial Mode ،JTAG و ،ICAP التقنيات وتقييمها كل من هذه عرض يتم، الرسالة. في هذه

، رامجم الراديو المحددة بب، وهو جزء أساسي من نظ الالتفافىواختبارها باستخدام برنامج التشفير

 . تم إجراء التجاربالجزئيالديناميكي شكيلعادة التصبح أكثر التطبيقات الواعدة لإأ والذي

ين ب فارقاتقياس المتحديد و ل(من المصفوفات القابلة للبرمجة Xilinx Virtex 5) عائلة باستخدام

 داخل أو خارج تهاإعادة تهيئو الإضافية عن طريق إضافة وحدة تحكم تكلفة المساحةالأداء و

لتصميم ، ا نوع على لا يعتمد أسلوبأن أداء كل من النتائج . يتبينلمصفوفات القابلة للبرمجةا

تحديد حلةأثناء مرالتي تم اختيارها و المعاد تشكيلهاالمنطقة الجزئية حجمولكنه يتناسب فقط مع

 .الأماكن و المسارات للتصميم

 بكةشإلى الجزئى الديناميكىإعادة التشكيل دعم هو تقديم هذه الأطروحة الهدف الرئيسى من

الديناميكى إعادة التشكيل . هذه الأطروحة أيضا تدرس تأثير(CONNECT) ل المعلوماتيصتو

غيل على التش أثناء شكيلالتإعادة عمل قابلية ت. بمختلف عوامل ضبطها على أداء الشبكة الجزئى

عن وماتل المعليصشبكات توالكامل لـ التشكيلسمح بتو ل المعلوماتيصشبكات تومرونة زيادة

 ،الثابتة وماتالمعلشبكات تواصل بالمقارنة مع .شكيل الديناميكىالقابلة لإعادة التالتصاميم طريق

ريق إلى توفير المساحة عن ط الديناميكى عادة التشكيلالقابلة لإ شبكات تواصل المعلوماتتؤدي

والتي يلأداة إعادة التشك تم تنفيذ جزء من الشبكة عند عدم الحاجة إليه أثناء وقت التشغيل. غلالاست

تخدم تتطلب أداة إعادة التشكيل من المس .تطبيقتسمح للمستخدم بتحديد هيكل الشبكة الأمثل لكل

يتم استخدامهم فى هذان المدخلان كمدخلين للأداة. الحمل المتوقع و السعة المطلوبة من الشبكة

 مساحة.التحديد الشبكة الأنسب من ناحية

 محمدرامى أحمد على :دسـمهن

 ١٩٨٩\٦\۲۳ تاريخ الميلاد:

 مصرى الجنسية:

 ٢٠١٢\١٠\١ تاريخ التسجيل:

 ٢٠١٩\ \ تاريخ المنح:

 الإلكترونيات و الإتصالات الكهربيةهندسة القسم:

 العلوم ماجستير الدرجة:

 المشرفون:

 محمد.د. أحمد حسين أ

 حسن د. حسن مصطفى

 الممتحنون:

)المشرف الرئيسي(محمدأ.د أحمد حسين

 جامعة القاهرة –أستاذ الإلكترونيات بكلية الهندسة

 (متحن الداخلى)الم محمد نصار مينأ.د أ

 جامعة القاهرة –أستاذ الإلكترونيات بكلية الهندسة

 (متحن الخارجى)الم عمرو طلعت عبد الحميد مأ.

 الجامعة الألمانية بالقاهرة –أستاذ مساعد بقسمى الإلكترونيات و الشبكات

 عنوان الرسالة:

 شبكة تواصل معلومات معاد تشكيلها للجيل القادم من المصفوفات القابلة للبرمجة بإستخداملتصميم

 الديناميكى الجزئى إعادة التشكيل

 الكلمات الدالة:

دوائر ؛ كترونيةعلى الرقائق الا شبكات توصيل المعلومات ؛ إعادة التشكيل الجزئي الديناميكي

 مصفوفات البوابات المنطقيه

 :رسالةملخـص ال

 الجزئى إلى شىىبكة توصىىيل الديناميكى هو تقديم دعم إعادة التشىىكيله الأطروحة الهدف الرئيسىىى من هذ

تدرس تأثير إعادة التشىىىىكيل الديناميكى هذه الأطروحة بالإضىىىىافة لذلك، (.CONNECTالمعلومات)

. بالمقارنة مع شىىىبكات تواصىىىل المعلومات الثابتة، الجزئى على أداء الشىىىبكة بمختلف عوامل ضىىىبطها

الديناميكى إلى توفير المسىىىىاحة عن طريق تؤدي شىىىىبكات تواصىىىىل المعلومات القابلة لإعادة التشىىىىكيل

اسىىىتغلال جزء من الشىىىبكة عند عدم الحاجة إليه أثناء وقت التشىىىغيل. تم تنفيذ أداة إعادة التشىىىكيل والتي

 تسمح للمستخدم بتحديد هيكل الشبكة الأمثل لكل تطبيق.

للجيل القادم من المصفوفات القابلة معاد تشكيلها معلوماتة تواصل شبكلتصميم

 الديناميكى الجزئىكيل بإستخدام إعادة التش للبرمجة

 عداد إ

 رامى أحمد على محمد

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 هندسة الإلكترونيات و الإتصالات الكهربية

 :يعتمد من لجنة الممتحنين

 شرف الرئيسىالم أحمد حسين محمد الاستاذ الدكتور:

 جامعة القاهرة –أستاذ الإلكترونيات بكلية الهندسة

 خليادالممتحن ال أمين محمد نصارالاستاذ الدكتور:

 جامعة القاهرة –أستاذ الإلكترونيات بكلية الهندسة

 الممتحن الخارجى : عمرو طلعت عبد الحميدالمساعدالاستاذ

 القاهرةالألمانية بجامعة ال – و الشبكاتالإلكترونيات بقسمى مساعد أستاذ

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

۲٠١٩

شبكة تواصل معلومات معاد تشكيلها للجيل القادم من المصفوفات القابلة لتصميم

 الديناميكىالجزئى بإستخدام إعادة التشكيل للبرمجة

 عداد إ

 رامى أحمد على محمد

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 ماجستير العلوم درجة على الحصول متطلبات من كجزء

 في

 هندسة الإلكترونيات و الإتصالات الكهربية

 تحت اشراف

 محمد .د أحمد حسينأ حسن د. حسن مصطفى

 مدرس

 قسم هندسة الإلكترونيات

 و الإتصالات الكهربية

 جامعة القاهرة -كلية الهندسة

 أستاذ

 قسم هندسة الإلكترونيات

 و الإتصالات الكهربية

 جامعة القاهرة - كلية الهندسة

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

۲٠١٩

شبكة تواصل معلومات معاد تشكيلها للجيل القادم من المصفوفات القابلة لتصميم

 الديناميكى الجزئىللبرمجة بإستخدام إعادة التشكيل

 عداد إ

 رامى أحمد على محمد

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 هندسة الإلكترونيات و الإتصالات الكهربية

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

۲٠١٩

