DESIGN OF ENERGY ADAPTIVE NEURAL
NETWORKS USING APPROXIMATE COMPUTING
AND PARTIAL DYNAMIC RECONFIGURATION

By

Salma Hassan Sayed Abo Elmagd

A 'T'hesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and FElectrical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2020

Salma Hassan
Textbox

Salma Hassan
Textbox

DESIGN OF ENERGY ADAPTIVE NEURAL
NETWORKS USING APPROXIMATE COMPUTING
AND PARTIAL DYNAMIC RECONFIGURATION

By

Salma Hassan Sayed Abo Elmagd

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and FElectrical Engineering

Under the Supervision of

Dr.Hassan Mostafa Dr. Ahmed Nader
Position Position
Electronics and Electrical Communication Engineering His Department
Department Department
Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2020

Salma Hassan
Textbox

DESIGN OF ENERGY ADAPTIVE NEURAL
NETWORKS USING APPROXIMATE COMPUTING
AND PARTIAL DYNAMIC RECONFIGURATION

By

Salma Hassan Sayed Abo Elmagd

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and FElectrical Engineering

Approved by the Examining Committee:

Dr.Hassan Mostafa, Thesis Main Advisor

Prof. First E. Name, Member

Prof. Second S. Name, Internal Examiner

Prof. Third S. Name, External Examiner
(Some Faculty, Some University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2020

Salma Hassan
Textbox

Engineer’s Name:

Date of Birth:
Nationality:
E-mail:
Phone:
Address:

Registration Date:

Awarding Date:
Degree:
Department:

Supervisors:

Examiners:

Title of Thesis:

Key Words:

Salma Hassan Sayed Abo Elmagd
16/11/1992
Egyptian
salmahassansayed @ gmail.com
0100078029
Electronics and Electrical Communication Engineering
Department, Cairo University,
Giza 12613, Egypt
dd/mm/yyyy
dd/mm/yyyy
Master of Science
Electronics and Electrical Communication Engineering

Dr.Hassan Mostafa
Dr. Ahmed Nader

Dr.Hassan Mostafa
Prof. First E. Name
Prof. Second S. Name
Prof. Third S. Name

DYNAMIC RECONFIGURATION

ANN; SNN; neuromorphic computing; PDR; approximate computing

Summary:

Insertphoto here

(Thesis main advis
(Member)

(Internal examiner
(External examine

DESIGN OF ENERGY ADAPTIVE NEURAL NETWORKS
USING APPROXIMATE COMPUTING AND PARTIAL

This thesis represents the idea of using partial dynamic reconfiguration in the design
and implementation of adaptive artificial neural network. The thesis also represents
the idea of using approximate multipliers in the design of I1zhikevich neuron model

Salma Hassan
Textbox

Acknowledgments

First and foremost, I would like to thank God for giving me the strength, ability and
opportunity to complete this work.

I can’t express enough thanks to my family for their continuous support and encour-
agement throughout my journey.

Special thanks to Dr.Hassan Mostafa, my supervisor, and Eng.Sameh Attia how sup-
ported me with many ideas to have this thesis in that shape.

Finally, Thanks to my friend Manar, how helped me in every single step in this thesis.

Dedication

To my mother, my father
Without you both, I wouldn’t have been anywhere

Thank you for everything!

11

Table of Contents

Acknowledgments

Dedication

Table of Contents

List of Tables

List of Figures

List of Publications

List of Symbols and Abbreviations

Abstract

1 Introduction

1.1
1.2

1.3

Neural Networks,
Neural Network Types
1.2.1 Artificial neural network
1.2.2 Convolutional Neural Network
1.2.3 Spiking Neural Network
Organization of the thesis

2 Literature Review

2.1
22

2.3

24

Introduction to artificial neural network and its hardware components
Approximate computing in the hardware implementation of artificial neu-
ralnetworks L
Literature Review for Approximate Hardware Implementations of Artifi-
cial Neural Network L L
Literature Review of the Approximate Multipliers
24.1 Broken Array Multiplier (BAM)
2.4.2 Under-designed Multiplier (UM)
2.4.3 Error Tolerant Multiplier (ETM)
2.4.4 Truncated Multiplier L.

111

ii

iii

vi

vii

xi

xi

xii

2.5 Introduction to Spiking Neural Networks and neuron models approximation 25

2.5.1 Biologically plausible models 27
2.5.1.1 Hodgkin-Huxley model 27
2.5.1.2 Morris Lecarmodelo 28
2.5.1.3 Fitzhugh-Nagumomodel 29
2.5.2 Imtegrate and firemodels Lo 29
2.5.2.1 Leakyintegrateand fire 29
2.5.2.2 Quadratic Integrate and fire model 30
2.5.2.3 Exponential integrate and fire model 31
2.5.3 Biologically Inspired models 31
2.5.3.1 Hindmarsh-Rose model 31
2.5.3.2 Mihalas-Nieburmodel 32
2.53.3 The Quarticmodel 33
2.53.4 Izhikevichneuronmodel 33

3 Design of Adaptive Artificial Neural Network using Approximate Comput-

ing and Partial Dynamic Reconfiguration and Experimental Results 35

3.1 Introduction to Artificial Neural Network Learning Process 35

3.2 Research Hypothesis 36

3.3 Approximate Computing Techniques 37

33.1 PrecisionScaling 37

3.3.2 Approximate Activation Function 39

3.3.2.1 Sigmoid Activation Function 39

3.3.2.2 RELU Activation Function 40

3.3.3 Computation Skipping Approximation 41

3.3.4 Neuron Skipping Approximation 42

3.3.5 Inaccurate Arithmetic 43

3.3.6 Approximate Adders 43

34 DesignApproach 43

34.1 Data-sets e 44
3.4.1.1 MNIST data-set and its artificial neural network archi-

tecture e 44

3.4.1.2 SVHN data-set its artificial neural network architecture 45

3.4.2 Partial Dynamic Reconfiguration (PDR) 46

3.5 ExperimentalSetup 48

3.5.1 SoftwareSetup 49

352 HardwareSetup. o 49

3.5.2.1 MNIST Block Diagram 50

3.5.2.2 SVHNBlock Diagram 50

3.5.2.3 Neuron Top Block Diagram 52

3.6 MNISTResults 53

3.6.1 MNIST Energyresults 53

v

3.6.2 Effect of computation skipping, 53

3.63 SigmoidVSRELU 55
37 SVHNResults 0 o 56
371 SVHNEnergyresults 56
3.8 Proposed Algorithm and Configurations Selection 57
3.8.1 comparison between conventional system and EANN system . . . 60
3.8.2 Partial Dynamic Reconfiguration Results 60
39 Conclusion e 63

4 Design and Implementation of Izhikevich neuron model using Approxi-

mate Multiplier 65

4.1 Izhikevichneuronmodel 65

4.1.1 Izhikevich neuron patterns experimental results 66

4.1.1.1 Regularspiking 66

4.1.1.2 Intrinsically Bursting 67

4.1.1.3 Chattering 68

41.14 FastSpiking 68

4.1.1.5 Low Threshold spiking 68

4.2 Piece Wise Linear Implementations of Izhikevich neuron model 70

4.3 Approximate Multiplier Based implementation of Izhikevich neuron model 73

4.3.1 Truncated Multiplier Implementation 73

4.3.2 Error Tolerant Multiplier Approximation 74

4.3.3 Broken Array Multiplier Approximation 76

4.4 Proposed approximate multiplier based Izhikevich model 80

4.5 Error Analysis 85

45.1 ERRt 85

452 NRMSD 88

453 MRE 89

4.5.4 PWL4 model Error Results 89

4.5.5 Approximate multiplier based model Error Results 89

4.6 Hardware Implementation 90

4.6.1 PWLA4 hardware implementationresults 92

4.6.2 Approximate multiplier based hardware implementation results . 92

4.7 Network Behavior of the proposed Approximate multiplier model 93
4.8 Comparison between the PWL4 neuron model and Approximate Multi-

plierbasedmodelo 94

49 Conclusion L 96

S Future Work 98

References 99

Arabic Abstract

List of Tables

2.1
22

3.1
32
33
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13

4.14

Multiplication operation decomposition example
Map for the inaccurate 2x2 multiplier for all possible input combinations

A-law approximation of sigmoid function
power and accuracy regions for MNIST data-set
power and accuracy regions for MNIST data-set
Area, Power and accuracy results for SVHN configurations
Area, Power and accuracy results for MNIST configurations

PWLA4 Error results using WL=17
PWL4 Error results using WL=16
PWLA4 Error results using WL=15
PWLA4 Error results using WL=14
Truncated multiplier error results using WL=16and FL=7
Truncated multiplier error results using WL=15,FL=6
Truncated multiplier error results using WL=14,FL=5
Hardware implementation results of PWL4 using WL=17
Hardware implementation results of PWL4 using WL=16
Hardware implementation results of PWL4 using WL=15
Hardware implementation results of PWL4 using WL=15
Hardware implementation results of truncated multiplier using WL=16,

FL=T7 . . e
Hardware implementation results of truncated multiplier using WL=15,

FL=6
Hardware implementation results of truncated multiplier using WL=14 ,

FL=5 . .

vi

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8
29
2.10
2.11

2.12
2.13

2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

2.23

Simplified biological neuron [2]

Basic structure of Artificial Neural Network
Single artificial neuron structure oL
Sigmoid activation function oL
Tanh activation function 0oL
RELU activation function
Design steps of Approximate Neural Network [5]
Hardware architecture of the quality control neuromorphic processing en-

gine [S]o
Hardware architecture of processing element and memory [6]
Operation of Alphabet Set Multiplier [8]
Retraining algorithm for neural network uses Alphabet Set Multiplier [8]

Differences between synapses approximation and neuron approximation

[1I0] . . .
Hardware structure of the Broken Array Multiplier (BAM) [11]
(A) Carry Save Adder cell used in the broken array multiplier , (B) Vector

merging adder cell in the broken array multiplier
The effect of increasing horizontal break level and vertical break level on

the mean error of the broken array multiplier output [11]
Hardware implementation of 2x2 accurate multiplier unit
Hardware implementation of 2x2 under-designed multiplier unit
Building larger multipliers from smaller ones in the under-designed mul-

tiplier
Example of generating larger multipliers from smaller multiplier units in

the under-designed multiplier method
Algorithm of the Error Tolerant Multiplier [13]
Truncated signed multiplier partial product matrix with n=8 and h=2 [14]
Main spiking patterns of the biological neuron [15]
Electrical circuit model of Hodgkin-Huxley biologically plausible neuron

[16] . . . e
Leaky integrate and fire circuit model [18]

Vil

2.24 Trade off between the complexity of the neuron model vs its biological
characteristics [3]

3.1 Limited-Energy application block diagram for using energy adaptive neu-
ralnetworkso
3.2 Simplified block diagram illustrating the computation skipping in the
hardware implementation L.
3.3 Sample data of MNIST data-set [25]
3.4 Sample data of SVHN data-set [26]
3.5 [Illustration of Partial Reconfiguration
3.6 Block Diagram of the Network used for MNIST Data-set
3.7 Block Diagram of the Network used for SVHN Data-set
3.8 Block Diagram of the neuron unit used in both MNIST and SVHN net-
WOTKS . . . L
3.9 MNIST : Approximation results for MNIST data-set, sig: Sigmoid activa-
tion function, Cs: Computation skipping, AM: Approximate Multiplier,
TA: Truncated Accumulation, Ns: Neuron skipping, RELU: RELU acti-
vation function Lo
3.10 MNIST : Effect of computation skipping on the accuracy versus con-
sumed €Nergy e e
3.11 MNIST : Comparison between Sigmoid and RELU in terms of Energy
and Accuracy Loss L
3.12 MNIST : Configuration points used as a searching space to choose the
suitable implementation at a given energy for MNIST data-set, sig: Sig-
moid activation function, Cs: Computation skipping, AM: Approximate
Multiplier, TA: Truncated Accumulation, Ns: Neuron skipping
3.13 Approximation results for SVHN data-set, No-app: No approximation,
Ns: Neuron skipping, TA: Truncated Accumulation
3.14 MNIST: Energy levels that the proposed EANN system uses to adapt to
the given energy budget oL
3.15 SVHN: Energy levels that the proposed EANN system uses to adapt to
the given energy budget oL
3.16 Comparison between conventional systems and energy adaptive system
when exposed to variableenergy Lo
3.17 SVHN : Floor-planning and static routing (re-configurable area) of the
physical neurons in case of SVHN data-set
3.18 MNIST : Floor-planning and static routing (re-configurable area) of the
physical neurons in case of MNIST data-set

4.1 Izhikevich model parameters and the resulting spiking patterns
RS(Regular Spiking), IB (Intrinsically Bursting), CH(Chattering),
FS(Fast Spiking), LTS(Low Threshold Spiking) [28]

viil

4.2

43
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

Regular spiking pattern, and the increasing inter-spike frequency at in-
creasing the inputdc current
Intrinsically bursting spiking pattern L.
Regular spiking pattern, and the increasing inter spike frequency at in-
creasing the inputdccurrent
Fast spiking patterno oo
Low threshold spiking firing pattern
Second-Order Piece-wise Linear approximation
Third-Order Piece-wise Linear approximation
Fourth-Order Piece-wise Linear approximation
U-V plot for the truanted multiplier implementation for different fraction
lengths, FL: Fraction Length
Maximum error vs the fraction length in the truncated multiplier imple-
mentation L
Different spiking patterns reproduced using the truncated multiplier ap-
proximation with fraction length = 4, RS: Regular Spiking, IB: Intrinsi-
cally Bursting, CH: Chattering, FS: Fast Spiking, LTS: Low Threshold
Spiking
Different spiking patterns reproduced using the truncated multiplier ap-
proximation with fraction length = 8, RS: Regular Spiking, IB: Intrinsi-
cally Bursting, CH: Chattering, FS: Fast Spiking, LTS: Low Threshold
Spiking
U-V plot for the error tolerant multiplier implementation for different non
multiplication parts, NMB: Non Multiplication Part
Maximum error vs Non multiplication part in the error tolerant multiplier
implementation
Different spiking patterns reproduced using the error tolerant multiplier
approximation with non multiplication part = 8, RS: Regular Spiking,
IB: Intrinsically Bursting, CH: Chattering, FS: Fast Spiking, LTS: Low
Threshold Spiking
Different spiking patterns reproduced using the error tolerant multiplier
approximation with non multiplication part = 8, RS: Regular Spiking,
IB: Intrinsically Bursting, CH: Chattering, FS: Fast Spiking, LTS: Low
Threshold Spiking
U-V plot for the broken array multiplier implementation for different hor-
izontal break level values from 12 to 7, HBL: Horizontal Break Level
U-V plot for the broken array multiplier implementation for different hor-
izontal break level values from 6 to 1, HBL: Horizontal Break Level . . .
Maximum error vs Horizontal break level in the broken array multiplier
implementationo

X

83

84

4.21 Different spiking patterns reproduced using the broken array multiplier ap-
proximation with horizontal break level=9, RS: Regular Spiking, IB: In-
trinsically Bursting, CH: Chattering, FS: Fast Spiking, LTS: Low Thresh-
old Spiking 86

4.22 Different spiking patterns reproduced using broken array multiplier ap-
proximation with horizontal break level =4, RS: Regular Spiking, IB: In-
trinsically Bursting, CH: Chattering, FS: Fast Spiking, LTS: Low Thresh-

old Spiking L 87
4.23 ERRtcalculation as the time difference between the spikes of the proposed
model and the original model 88

4.24 Raster diagram of a network of 1000 connected neurons modeled using
the approximate multiplier based implementation compared to the origi-

nal modeloutput 94
4.25 Spikes count of randomly selected neurons from the network for both the

original model and the proposed model 95
4.26 Figure of Merit (FoM)of both approximate multiplier based model and

the PWL4 model Versus Word Length(WL) 96

List of Publications

Published:

(1]

(2]

S. Hassan, S. Attia, K. N. Salama, and H. Mostafa, “Eann: Energy adaptive neural
networks,” Electronics, vol. 9, no. 5, p. 746, May 2020. [Online]. Available: http:
//dx.doi.org/10.3390/electronics9050746.

S. Hassan, K. N. Salama, and H. Mostafa, “An approximate multiplier based hard-
ware implementation of the izhikevich model,” in 2018 IEEE 61st International
Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, 2018, pp. 492—
495.

X1

http://dx.doi.org/10.3390/electronics9050746
http://dx.doi.org/10.3390/electronics9050746

Abstract

Artificial intelligence is a new era that depends mainly on the machine learning. Neu-
ral networks are one of the well known algorithms used in the machine learning field.
Neural networks have emerged in the last decades due to their computation efficiency and
their ability to perform intensive computations in a fast and efficient way. Several types
of neural networks are designed to solve many problems such as classification, pattern
recognition and prediction. They also have a great role in the area of computer vision
and autonomous cars. Several types of neural networks have evolved as time passes. All
of them have the vision to mimic how the human brain identifies and processes the in-
formation, how the learning process of the information is held in the brain, and how it
manipulates the information and many other human brain processes.

The simplest type of neural networks is the artificial neural networks(ANNSs), that are
used to solve problems such as pattern recognition and classifications. They are simple
enough to be implemented on a hardware platform. The second type of networks that
emerged to solve more complex problems such as image processing, speech processing,
and video processing is the convolutional neural networks(CNNs), that have more com-
putational capabilities than the ANNS.

The third generation of the neural networks is the spiking neural networks(SNNs).
SNNs are the most realistic neural networks, as they are not only mathematical models
that mimic the processing capabilities of the brain, but they are also biological models that
contain the biological behaviors of the brain such as the spiking patterns and the timing
relations between the inputs and the outputs.

The hardware implementation of the neural networks is a challenging task as the area
and power consumption are the main metrics that govern the hardware design. Approxi-
mate computing is also a well known technique adopted in the hardware implementation
of the neural network to balance the power, area, and accuracy. Using approximate com-
puting in the neural networks hardware units sacrifices some accuracy to gain less area
and power consumption. This is acceptable in the applications that use neural networks
and do not require high accuracy due to the error resilient nature of the machine learning
algorithm.

Xii

In this thesis, several hardware approximation techniques are used in the implementa-
tion of the artificial neural network such as precision scaling, computation skipping, neu-
ron skipping, approximate activation functions, approximate multipliers, and truncated
accumulation. These techniques are then implemented on the FPGA platform. The idea
in the thesis is that the partial dynamic reconfiguration feature of the FPGA is used to make
the hardware adaptable to the changes in the battery energy that feeds the system. The
hardware adapts and reconfigures its units in response to the input energy at the expense

of accuracy degradation.

The spiking neural networks are also investigated in the thesis. First, a survey of the
neuron models is made from the biologically plausible models to the biologically inspired
ones. Izhikevich neuron model is one of the well known models due to its ability to repro-
duce the spiking patterns seen in the biological experiments and due to its mathematical
simplicity. The main drawback of this model is the square operation used in its equations.
This thesis provides a new approximate multiplier based implementation to that model.
Following that, the approximate multiplier based model is compared with the well known
piece-wise linear implementations.

Xiil

Chapter 1

Introduction

Neural Networks are brain-inspired systems that mimic human brain behavior and
how it processes the information. They are used in a wide range of applications that need
intensive and complex processing and that perform many operations in parallel. Some
of the applications that use neural networks are classification, pattern recognition, image
recognition, data analysis, and computer vision[1]. Neural networks have achieved supe-
riority over Von-Neumann computing systems in such applications since they overcome
the bottleneck between the instruction memory, data memory, and the CPU. Neural net-
works process the information in a parallel manner, thus reducing the processing time and
make it faster than the conventional systems.

There are several types of neural networks, each type has a different structure and a
different way of data processing. Neural network types are also different in their com-
plexity level, the degree of mimicking the biological brain and the complexity of data
processed by the network with good accuracy. Some of the neural network types are Arti-
ficial Neural Network(ANN), Convolutional Neural Network(CNN) ,and Spiking Neural
Network(SNN).

1.1 Neural Networks

In the human brain, there are around 100 billion interconnected neurons. Each neuron
is connected to about 10000 neighboring neurons and receives stimuli from them. The
information flows from the weighted synapses to the axon. Then the axon of each neuron
conveys the information to its neighboring neurons[1]. Figure 1.1 shows a simplified
model of a biological neuron.

The biological neuron itself consists of dendrites, each dendrite is connected to another
one through an axon, the junction between the dendrite and the axon is the synapse and
then the synapses are connected to the cell body. The dendrites are where the cell body
receives its inputs. The axons are where the cell body transmits its outputs to other neurons.
The connection between one dendrite of a neuron to an axon of another neuron is the

Figure 1.1: Simplified biological neuron [2]

synapse, each synapse has a certain weight that allows a different weight for each neuron
input.

The information is transmitted between the neurons in the form of chemical or elec-
trical signals. The neuron body uses these input signals and accumulates charges in the
form of voltage, and when the voltage potential exceeds a certain threshold the neuron
fires and generates a signal that is transmitted to another neuron as an input pulse through
the axon. The operation of the neuron is to accumulate charges, compare the potential
with a threshold, and then fire a spike to transmit the output.

Based on the explanation of the biological neuron nature, several neuron models are
implemented to have the same effect of the biological neuron and to process the infor-
mation in the same manner. Some neuron models are biologically plausible and others
are biologically inspired. The neuron models are categorized into three categories as
follows[3]:

1. Biologically plausible: The neuron models that implement the biological neuron
features in the same way as seen in biological systems, thus the physical charac-
teristics are taken into consideration in such models. The dendrites, axons models,
and membrane dynamics are modeled in these models.

2. Biologically inspired: The neuron models that mimic the same biological neuron’s
behavior such as the firing patterns, however, they do not have the physical param-
eters of the biological neurons.

3. Integrate and fire: They are a simpler category of the biologically inspired neuron
models.

1.2 Neural Network Types

1.2.1 Artificial neural network

The artificial neural network (ANN) consists of several connected artificial neurons
that form a simplified system to mimic the biological neurons. The excitation is applied
to the network inputs, then it is processed and passed through the activation function to
produce the output. The neurons are connected in a network by weighted synapses. The
synapses weights are learned in the learning phase to predict the output at high accuracy.
The artificial neural networks are simple in their architecture compared to the convolu-
tional neural networks or the spiking neural networks. They consist of the input layer,
one or more hidden layer and an output layer. The applications that use artificial neural
networks are pattern recognition applications and classification tasks.

1.2.2 Convolutional Neural Network

The second type of neural networks that emerged to solve more complex problems
such as image processing, speech processing, and video processing is the convolutional
neural networks(CNNs). They have more computational capabilities than ANNs. They
can be seen as the evolution of artificial neural networks. The CNNs are mainly composed
of some convolution layers used for feature extraction, and then fully connected layers for
the classification task.

1.2.3 Spiking Neural Network

Spiking neural networks are the third generation in the field of machine learning and
neural networks. Unlike artificial neural networks, spiking neural networks use biological
and realistic models to mimic the human brain processing and thus perform the compu-
tations in a biological manner. A spiking neural network (SNN) applies the concept of
spikes, which is the same as the human brain’s way of processing and manipulating in-
formation. In the human brain, when a neuron cell is exposed to a certain stimulus, the
membrane potential increases and when it exceeds a certain threshold it spikes. These
spikes travel from one neuron to its neighboring neurons for further information process-
ing. There are two types of neurons: excitatory neurons and inhibitory. The excitatory
neurons result in a positive change to the membrane potential. The inhibitory neurons
result in a negative change to the membrane potential. The spikes travel from one neuron
to another conveying information necessary for processing. The information herein these
models is contained in the presence or absence of a spike. The cell potential resets after
a spike and it remains under reset till it is exposed to another stimulus, during the reset
time it does not produce any spikes. The spiking neural networks operate with a discrete
spikes that occur at a certain point in time not a continuous value of inputs. There are
various neuron models developed over the years. Some of them are biologically plausible

models that are developed from the lab experiments and observations. The others are only
mathematical models used to produce the same biological spiking patterns.

1.3 Organization of the thesis

The next chapters of the thesis are organized as follows: Chapter 2 is the literature
review of the thesis. It begins with an introduction to the artificial neural network, its
architecture and the activation functions used in it. It also introduces the approximate
computing techniques used in the literature. The second part of the review is the litera-
ture review of the common approximate multipliers techniques.The last part of the chapter
is the introduction to spiking neural networks and the neuron models different approxima-
tions.

Chapter 3 is the design approach and methodology used to design an adaptive arti-
ficial neural network using approximate computing and partial dynamic reconfiguration
techniques. First, it explains the learning process of the network and the learning algo-
rithm. Then, it explains the design methodology and the PDR technique.

Chapter 4 is the Experimental setup and results of the adaptive artificial neural network
implementation. It explains the hardware and software setup used to obtain the listed
results. It also explains the block diagram of both the networks used for MNIST and
SVHN data-sets. And at last the results obtained for both MNIST and SVHN data-sets.

Chapters5 is an explanation of the Izhikevich neuron model. It also introduces the main
used hardware implementation of the Izhikevich neuron model, i.e., the piece wise linear
implementation. Next, the results of utilizing the approximate multipliers in Izhikevich
implementation are listed. The error metrics used for judging a model are explained. The
hardware implementation approach of the approximate multiplier based model and the
PWL model are explained. The last thing is the comparison between the PWL model and
the approximate multiplier based model.

Chapter 6 is the last chapter and it contains the future work intended in the thesis.

Chapter 2

Literature Review

2.1 Introduction to artificial neural network and its hard-
ware components

The artificial neural network (ANN) consists of many connected artificial neurons to
form a simplified system mimicking the biological neurons. The excitation is applied
to the network inputs, then it is processed and passed through the activation function to
produce the output. The neurons are connected in a network by weighted synapses, the
weights are learned in the learning phase to predict the output at high accuracy.

The simplest type of neural networks is ANN. It is a feed-forward neural network, where
data propagates from the input layer to the output layer without any feedback. The main
structure of ANN is illustrated in Figure2.1. In Figure2.1, the network is structured as an
input layer, one or more hidden layers and an output layer. The layers are fully connected
where neurons are connected by weighted synapses, thus each neuron output is defined
by the layer inputs and the weights. Let X be the layer input, and yi is the i-th output from
the fully connected layer, the yi is calculated as follows:

vi=¢wlxl +w2x2+..... + wnxn) 2.1
where ¢ is the activation function used at that layer.

In each layer, the basic processing unit is the neuron unit as shown in Figure 2.2.
It consists of a multiplier, an accumulator and an activation function. The input data is
multiplied by its corresponding weights, then they are added in the accumulator, after that
the output passes through an activation function to add some non-linearity to the product
to mimic the human brain behavior. The output of each layer is the input to the next layer
until the output layer is reached.

Hidden
layer 2

Input layer
Layer 1

Hidden

layer n-1

Output layer
Layer n

Figure 2.1: Basic structure of Artificial Neural Network

()

Non-linear
activation function

Figure 2.2: Single artificial neuron structure

8 10

Figure 2.3: Sigmoid activation function

The rule of the activation function is to add non-linearity to the neural network to help
to solve more complex problems. Activation functions attached to each neuron are used
to determine whether that neuron will produce output due to the stimuli or not. They are
also used to normalize the neurons’ output in a defined range (-1, 1) or (0,1) depending
on its type.

The most commonly used activation functions are Sigmoid and RELU :

1. Sigmoid:
It normalizes the output between 0 and 1, deep negative inputs results in 0 output
and deep positive input result in 1 output. Outputs are centered around 0.5 as shown
in Figure2.3.
Its formula is as follows:

fx) =

2.2
I+e™* 2.2)

2. Tanh:
It is similar to the sigmoid function, but it normalizes the output between 1 and -1,
and it is centered around O as shown in Figure 2.4.

3. RELU:
RELU has a different behavior other than the sigmoid function, it allows all values
that are greater than O to propagate with the same value, however, the values that are

f(x)

0.8

0.6

0.2

-0.4-

-0.8-

1
=1

-10

f(x)

10

-8 -6 -4

Figure 2.4: Tanh activation function

Figure 2.5: RELU activation function

10

10

less than O are multiplied by a very small value as shown in Figure 2.5. Following
is the equation of RELU activation function.

f=1" x20 2.3)
X) = .
0.015625+xx x<0

2.2 Approximate computing in the hardware implemen-
tation of artificial neural networks

Hardware implementation of neural networks is challenging since it trades the accu-
racy with the complexity of the hardware components. ANNs require intensive computa-
tions, they use a large number of processing elements (neurons). As the number of layers
or the number of neurons in each layer increases, the power and the area of the hardware
system is increased as well. Hardware implementation of such networks has a lot of chal-
lenges. ANNs are defined by many parameters: network architecture, learning approach
(online-offline), activation function, hardware precision, number of layers, number of neu-
rons in each layer, and weights’ memory. Each one of these parameters contributes to the
hardware implementation.

There is a variety of options when implementing an ANN. It can be all digital, all
analog, or a mix of both technologies, it can be implemented using memristors. If it is
all digital, it may be implemented on an FPGA or ASIC. What governs the choice of a
certain technology is the application that uses the ANN, maybe the application needs low
power, high speed, small area, high accuracy or a combination of these specifications

In [4], it presents an overview of the examples of various hardware implementations
across a wide range of ANN models. The fact that ANNSs are used in error resilience ap-
plications has permitted some approximation in the hardware implementation of them. A
lot of research has been carried out to achieve energy efficient hardware implementation
for the ANNs and that results of many hardware approximation techniques such as com-
putation skipping, neurons skipping, inaccurate arithmetic (approximate multipliers and
approximate adders), truncated accumulation, precision scaling, and approximate activa-
tion functions.

The use of hardware approximation techniques help to reduce the area and power
which are the major concern in any hardware implementation. The approximation may
result in accuracy degradation, but again most of ANN applications are error-tolerant, thus
100% accuracy is not a must. The hardware approximation target is to reduce the area and
power while having the highest possible accuracy and that is the trade-off.

Following is a list of the most common hardware approximation techniques:

1. Precision scaling: it is the most used approximation technique. By nature, the data
exists in the software layer in a floating-point representation, however, to use it at
the hardware level it should be scaled down to a fixed point representation. If the
precision of the fixed point numbers is reduced, the word length of all numbers
is reduced as well. Accordingly, the sizes of multipliers, adders, and activation
functions are reduced, the area, power, and accuracy are reduced as well.

2. Inaccurate arithmetic: The neural networks have a huge number of processing ele-
ments (neurons) that work in parallel, thus a large number of multipliers and accu-
mulators are required. The multipliers are power-hungry hardware elements, as a re-
sult, these units should be optimized as much as possible to save area and power. An
approximated version of multipliers and accumulators are then used in the ANNs,
they do not perform all the intermediate computations needed to produce a result
so they are called inaccurate arithmetic.

3. Neuron skipping: As the ANN may have more than one hidden layer and each
layer has a large number of neurons, so it is a good approach to select the neurons
that have the least contribution to the output of the network and skip them from
the computation or approximate their hardware units. This approach reduces the
energy used by the network.

4. Computation skipping: In the applications that use the ANNs in image processing,
the images may have many zeros as the row data. The zero-valued inputs do not
contribute or change the output of the accumulator. Thus, when the hardware de-
tects a zero input, it skips the computation for that input. This approach reduces
the activity factor on the hardware units and reduces the overall dynamic power
consumption.

5. Approximate activation function: There are two commonly used activation func-
tions RELU and Sigmoid. Sigmoid has exponential in its formula, and this can
not be implemented exactly because it consumes area and power. Therefore, an
approximation to sigmoid function is used and the most common approximation
is Piece-Wise Linear (PWL) that produces a response close to the sigmoid’s exact
response, thus saves area and power. RELU has a problem that it passes any value
greater than zero as it is unlike sigmoid that limits its output between 0 and 1. At
the hardware level and as a fixed point number representation is used, RELU should
have a limit for its output, thus a truncated version of its output is used.

2.3 Literature Review for Approximate Hardware Imple-
mentations of Artificial Neural Network

A literature review is carried out to find the techniques that are used in the hardware
design of artificial neural networks and to find how the approximate computing is adopted

10

in the hardware implementation. In the following paragraphs a study of the approximate
implementations of the ANNs is presented.

Venkataramani et al. [5] in their work propose a new approach to design energy-
efficient hardware implementations of large-scale neural networks (NNs) using approx-
imate computing. They propose to approximate a given neural network selectively by
calculating how each neuron affects the overall accuracy of the network, and then approx-
imate the neurons that have the least impact on the accuracy. After approximating the
selective neurons they retrain the network to improve the efficiency after approximation.
They also propose a quality-configurable neuromorphic processing engine (qcNPE) that
executes the computations with dynamically configurable accuracy.

The proposed AxNN (Approximate Neural Network) depends on three main design
steps:

1. Resilience characterization, in which the least contributors to the output quality are
identified using the back-propagation algorithm. This is a challenging step since it
is needed to identify the neurons that can be approximated and will not affect the
output quality and the neurons that are highly sensitive and can not be approximated.
This is achieved using the back-propagation algorithm, since it defines the amount
of the error at the output of each neuron, so it can measure the contribution of each
one.

2. Neurons approximations, in which the error-resilient neurons are approximated and
the sensitive neurons are not approximated. The neuron approximation is done by
using inaccurate hardware components such as precision scaling and piece-wise
linear approximation of the activation function.

3. Incremental retraining, in which the approximated network is retrained to minimize
the quality loss by minimizing the errors. The retraining process in an iterative loop
between approximation and retraining to get the best approximation with the least
error as shown in Figure 2.6.

A quality configurable Neuromorphic Processing Engine (qcNPE) is introduced as a
platform to execute AxNN. It contains hardware elements that are dynamically config-
urable to execute different neuron approximations. It has two processing elements: a 2D
array of neural compute units (NCUs) and a 1D array of activation function units (AFUs).
The NCU is mainly used to calculate the weighted sum of the neuron. It takes its inputs
from a FIFO (First In First Out) memory element, the inputs are streamed to the neurons
along the rows and the weights along the columns. The NCU is designed with a control
register to control the precision of its units. In AFU, the activation function is performed
on the weighted sum that is output from the NCU. The hardware architecture of the qcNPE
is shown in Figure 2.7.

11

Approximate
Neural Network

Neural
Network (NN)

Backpropagation

— W,
<1~ ® > @ Wi,
2 @@ ™ oo "
H Was W
@ @ ®le @O el | yosute v Quality Canstraint
= = - ; | parameters to reduce error
Sensitive Resilient Approximate versions ‘

No
Resilience : Meural Network : Incremental Quality
Characterization Approximation Retrain Met? ésl

top

Divide neurons into resilient Approximate resilient neurons Retrain the network to further Yes

and sensitive ones to minimize impact on guality reclaim output quality |
terate

Figure 2.6: Design steps of Approximate Neural Network [5]

Zhang et al. [6] proposed ApproxANN that considers approximation for both compu-
tation and memory accesses. This is done by the assessment of how each neuron is critical
to the output quality and energy consumption. They also proposed a theoretical neuron
criticality analysis that can be used with any network topology.

To judge the criticality of a neuron, it is observed if a small jitter in the neuron’s com-
putation produces a large difference in output quality, then this neuron is critical and its
approximation should be done consciously. If a small jitter in the neuron’s computation
produces a small difference in output quality, then the neuron is considered error-tolerant.
To determine each neuron’s criticality, intuitively, a random error is injected on each neu-
ron input and its influence on the final output is recorded. The target is to minimize the er-
ror between the target output and the expected output. After identifying the error-resilient
neurons, the neurons are ranked in the network for further computations.

Each neuron computes the product of the inputs by weights, then passes the result to
the activation function. In their implementation, each processing element is composed of
an arithmetic unit and a local memory for weights. The local memory is used to read the
corresponding weights from off-chip memory.

The implemented approximate design choices are memory access skipping, precision
scaling, and approximate arithmetic blocks, especially, approximate multiplier. Memory
access skipping means that a specific reading from the off-chip memory to the weights
matrix is skipped. The assessment of the skipped weights’ reading is done in the analysis
step. Precision scaling means that the word length is reduced by truncating some of the
least significant bits, reducing the computation quality and saves energy as well.

12

1

=
- LUT
= g [[— :
ErTRQ £ £ = £ .
S O e e e .]
P Q :

.........

o el
o b
s} S
|]]
| E—

AFU

FIFO

MUX
lData Out

Figure 2.7: Hardware architecture of the quality control neuromorphic processing
engine [5]

|
w2	w3/ Wk		
J J 1 |
\LM\ \LM\ \LM \LM\
Buffer
wil (5
PE PE O PE
Weight
matrices

Data/Output

Off-chip memory

Figure 2.8: Hardware architecture of processing element and memory [6]

13

Table 2.1: Multiplication operation decomposition example

| Weights | Decomposition of product |
W1 =011010012(10510) | W;x I=22.(0011).1+2°.(1001).I
W, =010000102(6610) | Wax I=2°.(0001).1 + 2! .(0001).I

In Kung et al. [7], the digital feed-forward neural network is approximated by us-
ing precision scaling and/or approximate multipliers. First, the approach decides a set
of approximate synapses that have the least impact on the output quality using a greedy
algorithm. The output sensitivity is identified during the training phase by knowing how
much error is produced from small perturbation at each synaptic weights. The selected
synapses are approximated by using precision scaling and/or approximate multipliers.
They achieved a power saving of about 53% by comparing the accurate processing ele-
ment that uses an accurate multiplier and the other approximated one.

Sarwar et al. [8] proposed Alphabet Set Multiplier (ASM), it replaces the conventional
accurate multiplier in the neurons by a multiplier-less one and thus reduces the consumed
energy. In a multiplication operation, the product is generated from lower-order multiples
of the multiplier input ‘I’. The decomposition is based on the multiplicand ‘W’ (weight).
Sample decomposition of two multiplication operations W1XI and W2XI are shown in 2.1.
If I, 31, 51, 71, 91, 111, 131, and 151 are available, the entire multiplication is reduced to a
few shifts and add operations. A pre-computer bank is required to generate the alphabets.
Then the multiplication is performed by generating the alphabets, selecting the appropriate
alphabets, shifting them, then adding the shifted alphabets as shown in Figure 2.9. The
number of alphabets is less than required to get an accurate result, thus it uses less energy.
The architecture also reduces the area by sharing the alphabets between the multiplication
units.

Multiplier
|

I Output

Control Logic —

- Shifted by 4
——) Control Logic

Figure 2.9: Operation of Alphabet Set Multiplier [8]

Multiplicand
w

0100 1010

The efficiency of the ASM depends on the number of alphabets used to calculate the
multiplications needed. If the bit sequences used for the decomposition of the multipli-
cation operation contain 4bits, then an alphabet set of 8 alphabets {1,3,5,7,9,11,13,15} is
enough to calculate any product accurately. For more improvement, the alphabet set is
reduced and this results in multiplication approximation. To overcome this problem, a
constrained training is performed so that it does not generate multiplications that need
these unsupported alphabets. The network is retrained with these constraints for better ac-
curacy. The design methodology and the retraining algorithm are shown in Figure 2.10.

Mrazek et al. [9] proposed a methodology for the design of a power-efficient Neural
Network that has a uniform structure (all nodes are identical in all layers). The network at
first is accurate, then there is an algorithm responsible for the approximation by identifying
the accepted error. The parts of the network to be approximated are specified by error
metrics such as the average error magnitude or maximum arithmetic error.

TrData TsData Quah'ty
) Constraint Q
l Pre-trained Network

NN
Accuracy J

Initial TsDat
Synapse Weights TrDlata s la a

W“ Network

Accuracy K

No

Weight restrictions based on
number of alphabets

Increase no. of alphabets
—

Iterate

Figure 2.10: Retraining algorithm for neural network uses Alphabet Set Multiplier

[8]

Kim et al. [10] proposed a network that is designed for on-chip training, but others
considered off-chip training. This is done to study the different conditions such as bit
precision during the training, the number of iterations of training, the number of layers of
Multi-Layer Perceptron (MLP) on the effectiveness of the approximation, and the amount
of power savings. It also presents a method for finding a near-optimum approximation for
synapses to minimize the power consumption of the network while keeping the accuracy
at a reasonable value. They used bit-precision and inexact multipliers for approximation
and this is based on the selected synaptic weights during the learning phase.

The main idea is to select the synapses that have the least impact on the output results,
not the neurons. Error sensitivities of weights are calculated during the training phase

15

Trained NN Approximate Approximate
Neurons Synapses

Figure 2.11: Differences between synapses approximation and neuron
approximation [10]

using the back-propagation algorithm, following that the synapses that are less sensitive
to errors are selected for approximation. As shown in Figure 2.11, if the whole neuron is
selected for approximation it results in A approximation since it has an average error of
0.9 while it has a synapse of 3.0 error sensitivity. B is not approximated since it has an
average error sensitivity of 0.93. In the case of approximating the synapses, the synapses
with low error sensitivity are the only approximated ones, and the synapses with high
error sensitivity are ignored.

Another approximation used is to choose the proper bit precision that minimizes the
power consumption while maintaining the target accuracy. The algorithm sorts all synap-
tic weights of the neural network regardless of the layer. Therefore, each layer has different
percentages of approximation and this is enhanced by considering different sensitivity for
different layers.

In summary, a lot of research work has been proposed for the hardware implementation
of artificial neural networks. The most common approximation methods are precision
scaling and approximate arithmetic especially approximate multipliers since they are the
greatest source of power consumption. All the work has been directed on how to find the

16

best combination of these approximation methods. The main target of all mentioned works
is to find the optimal approximation that would result in the highest possible accuracy with
the least energy and power consumption.

2.4 Literature Review of the Approximate Multipliers

Multipliers are one of the main hardware units used in artificial neural network. They
are the most power hungry hardware element. A study of the approximate multipliers
used in the literature is held.

2.4.1 Broken Array Multiplier (BAM)

In [11], it discusses an approximate multiplier called broken array multiplier. As
known, the multiplication operation in the traditional array multiplier is performed by
calculating the partial product terms, then adding them to produce the final result. Fig-
ure 2.12 shows the basic structure of the 6x6 array multiplier which is used later to omit
some cells to form the BAM. This array consists of 6x6 similar cells of carry-save adder
in which a certain 2 bits are and-ed, the diagonal sum that comes from its above neighbor-
ing cell, and the input carry are all added together in that cell. The hardware structure of
the CSA cell is an AND gate and Full Adder (FA) cell as shown in Figure2.13. Finally a
vector merging adder is used to add the last 2 vectors and produces the output result.

It is obvious that the array multiplier is symmetric and all the cells that form it are
symmetric too. The ability to reduce the CSA cells reduces the area of the multiplier
and also reduces the size of the vector adder that is used in the last stage of the output
generation. The power consumption is also reduced by the reduction of CSA cells, but
the final result is imprecise. The Broken Array Multiplier is based on the reduction of the
CSA cells, it breaks the array multiplier and omits some CSA cells using two break levels,
Horizontal Break Level (HBL), and Vertical Break Level (VBL).

The number of omitted CSA cells depends on both the HBL and VBL. If the HBL
= 0 and VBL = 0, then the BAM is the same as the array multiplier. HBL= 0 means
that no CSA cells are omitted horizontally. VBL=0 means that no CSA cells are omitted
vertically. As the HBL increases, this means that all the CSA above that level are omitted.
Similarly, as the VBL increase, this means that all the CSA cells to the left of that level
are omitted as shown in Figure 2.12. The output values of the horizontally and vertically
omitted cells are assumed to be zero. Thus, these cells are replaced by zero value and so
no need to consider them in the following calculations. As the HBL and VBL increase, the
number of CSA omitted cells increases too, causing more area reduction and less optimum
output result.

17

Horizontally-omitted Cell

’ Vertically-omitted Cell

|
vys |va Y3 Y2 v1 YO
|
X0 |
|
X1 ,
I
HBL=2 |
- ——————————— ==t = e = e —

|
X3 I
|
X4 : |
| |
X5 A A . (—~ '
NN |
|

| &

ot 1§

=
T T T T] |
|

P11 PIO P9 P8 P7 P6 PS5 P4 P3 P2 Pl PO

Figure 2.12: Hardware structure of the Broken Array Multiplier (BAM) [11]

Sin Yj Cin Xi Yj A
e S | B A B
X: — in
I CSA — Cout =1 Merging
Ce” T Cin adder |~— C;, — Cin
l cell
Cout Sout Cout Sout Ila Cout Pi
i
(A) (B)

Figure 2.13: (A) Carry Save Adder cell used in the broken array multiplier , (B)
Vector merging adder cell in the broken array multiplier

18

Mean Relative Error (%)

. & 2 Horizontal
L. % 6 Break Level
(VBL) (HBL)

'2 3 4 5§ 6
Vertical Break Leve|

Figure 2.14: The effect of increasing horizontal break level and vertical break level
on the mean error of the broken array multiplier output [11]

The differences in the results obtained using BAM and the accurate multiplier is dis-
cussed in [11]. The maximum and minimum differences between the BAM and the precise
multiplier are calculated by the equations 2.4 and 2.5, respectively.

HBL-1 . VBL-HBL-1 .
MAXBAM — (ZWL _ 1) % (Z 21) + 2HBL * (Z (2VBL—HBL _ 21)) (24)
i=0 i=0
MINpapy =0 (2.5)

The equations indicate that if the HBL = VBL = 0, maximum and minimum differ-
ences between BAM and the precise multiplier are also 0 and the BAM produces 100%
accurate results with O error. Another metric to estimate the error caused by BAM is the
mean error. It is calculated in terms of HBL, VBL, and WL of the multiplier and mul-
tiplicand. Equation 2.6calculate the mean error (ME) of BAM. As noticed, the ME is
0 if the HBL=VBL=0and the results equal the precise multiplier results. As HBL and
VBL increase, the ME of the BAM increases as well with different rates. For a constant
HBL, increasing the VBL does not affect the mean error of BAM greatly. However, with
a constant VBL, increasing the HBL by one value increases the mean error of BAM sig-
nificantly. This is because the HBL truncates values that affect the most significant bits
of the result, but the VBL truncates values that affect the least significant bits of the re-
sult. Accordingly, the HBL has to increase consciously in order not to degrade the output
quality in a significant way. Figure 2.14 shows the effect of increasing the HBL and VBL
of the BAM mean error in (%).

19

Table 2.2: Map for the inaccurate 2x2 multiplier for all possible input
combinations

B1BO
ATAO 00 | 01 | 10 | 11
00 | 000 | 000 | 000 | 000
01 000 | 001 | 010 | 011
10 | 000 | 010 | 100 | 110
11 1000 | O11 | 110 | 111

2WL _1 HBL-1 . VBL-HBL-1 '
MEpay =(—7—)=(3, 29422 3 (a-20D) @6
i=0 i=0

2.4.2 Under-designed Multiplier (UM)

All techniques targeting to approximate the multiplier introduce an error in the result
calculation and this error is used to optimize the hardware implementation of the mul-
tiplier. Most of the introduced errors manipulate the logical design of the multiplier to
reduce the needed hardware elements. The under-designed multiplier introduced in [12]
uses this concept to build an approximate multiplier. It designs a 2x2 under-designed mul-
tiplier block, then uses it as a building block for any larger size approximate multiplier.

To design the 2x2 inaccurate under-designed building block, the logic of the 2x2 mul-
tiplication is manipulated. As shown in table 2.2, the multiplication result of any 2x2
values has to output a result in 3 bits only. As known the multiplication result of 2x2
numbers has a maximum value presented in 4 bits, i.e., if (11),* is multiplied by (11),
the accurate result is (1001);, that is represented in 4 bits. In the under-designed multi-
plier, it has to be represented in 3 bits only. This causes (1001); to be approximated to
(111)pas shown in table 2.2. Table 2.2 indicates that the only value approximated in the
2x2 multiplier unit is the result of maximum multiplication of (11),* (11), and all other
multiplication results are accurate. Consequently, the error occurs with a probability of
%, one error output out of 16 output results. Such approximation causes the area of the
2x2 multiplier to be about half the area of the accurate version as shown in figures 2.15
and 2.16.

The next step in the implementation of an under-designed multiplier is to build larger
multiplier using the 2x2 building blocks discussed earlier. Figure 2.17 shows the main
idea of rearranging the 2x2 inaccurate multiplier blocks to form the larger 4x4 multiplier.
Ar, Xy are the least significant 2 bits of the inputs, and Ay, Xy are the most significant 2
bits of the inputs. The procedure of multiplication is to multiply every 2 bits of the inputs
using the 2x2 under-designed unit, shift them, and then add the shifted blocks to form the
output. This concept can be extended to build any multiplier size out of the 2x2 multiplier
unit. Another example of building a 16x16 multiplier is shown in Figure 2.18. First, the

20

4 E
sé:} Jﬁ)) out2
:é:}) outl
E%:D out0

Figure 2.15: Hardware implementation of 2x2 accurate multiplier unit

b1 out2

al—

al—
b0 —
outl
b1l—
a0—

30— out0
L

b0—

Figure 2.16: Hardware implementation of 2x2 under-designed multiplier unit

21

Ay | AL

Xu | XL

A|_XX|_

AHXXL

ALXXH

AHXXH

Figure 2.17: Building larger multipliers from smaller ones in the under-designed
multiplier

blocks of 4x4 multiplier are built, then they are shifted and added to form the larger 8x8
multiplier. Finally, using the 8x8 block, shift and add them to build the output of 16x16
multiplier.

As discussed earlier, the probability of error in a 2x2 multiplier block is %6, and it is
constant for that multiplier size, and it is the same case for larger size multipliers. Each
size has a fixed probability of error and a fixed error magnitude as illustrated in [12]. Since
the multiplier is built from 2x2 blocks, whenever the block is located in a position that
is sensitive to errors it can be replaced with an accurate block to enhance the quality of
the result. The most significant bits are an example of the most sensitive locations that
cause high errors, or in other words, the error in these bits reflects on the output accuracy
significantly.

2.4.3 Error Tolerant Multiplier (ETM)

Error Tolerant Multiplier is another way of multiplier approximation that reduces the
operations needed to perform the accurate multiplication operation. ETM is introduced
in [13]. In the ETM, the input operands are divided into two parts: the non-multiplication
part and the multiplication part. The multiplication part is the part of the input that is
used to calculate the output as the accurate multiplier and it includes the most significant
bits of the inputs. The non-multiplication part is the part of the input that its contribution
to the output is approximated and it includes the least significant bits of the inputs. The
length of the multiplication part and the non-multiplication part does not have to be the
same.

22

4

* * * *
8*8 ’—‘4*4 8*8 ’—‘4*4 8*8 ’—‘4*4 8*8 ’—‘4*4
*4 *4 *4 *4

4 4 4
4*4 4*4 4*4 4*4
4%4 4%4 4%4 4%4
16*1,6/ 8*g
8*8
8*8
8*8

Figure 2.18: Example of generating larger multipliers from smaller multiplier
units in the under-designed multiplier method

Starting
Point
Operating directi ing directi
VISE perating direction Operating direction LSB
101 1 10i0 110 1 1 Input
01001 1i0 01 00 1 Operands
170171771 1 17T,
101110
0000 0 O
00000 O
101 110
0 0000
Product
011011010100 11111111111

I I
Multiplication Part Non-multiplication Part

Figure 2.19: Algorithm of the Error Tolerant Multiplier [13]

To illustrate the multiplication procedure of the ETM, refer to Figure2.19 as an exam-
ple. In this example, both the multiplication and non-multiplication parts are of the same

23

size, i.e., the multiplication part of the input is 6 bits and the non-multiplication part is 6
bits as well. First, begin at the splitting point, in the non-multiplication part, move from
the left to right while searching for a logic “1” in one of the inputs or both and when the
first one is found, all the output bits starting from that position are set to one. If both input
bits are 0, then the corresponding output is 0 as well. In this case, no need to calculate the
partial products for the non-multiplication part, thus, the hardware needed is reduced. For
the multiplication part, its share in the output is calculated normally as in the traditional
multiplier by calculating the partial products, shifting and adding them. The multiplica-
tion part is chosen to be the most significant bits of the inputs so that it does not reduce
the output accuracy as it has a higher weight than the non-multiplication part.

The quality of the output results of the ETM is assessed using two defined metrics
namely: Overall-Error(OE), and Accuracy(ACC). The overall-error(OE) is calculated as
in 2.7.

OE =|R.—R,| (2.7)

where R, is the correct result and R,is the result produced from the ETM multiplier.
The Accuracy (ACC) is calculated as follows in 2.8.

ACC=(1-0E/R.)*100% (2.8)

From the previous equations, the accuracy of the Error tolerant multiplier depends
greatly on the input pattern and the chosen size of the non-multiplication part. The trade-
off here is between choosing the appropriate size for the multiplication part and the non-
multiplication part and the overall input size. As the non-multiplication part increases,
the area and power consumption are reduced, but the accuracy is degraded as well.

2.4.4 Truncated Multiplier

The truncated multiplier is another approximation approach to enhance the hardware
implementation of the multiplier at the cost of some accuracy reduction. The conventional
multipliers calculate nxn multiplication operation and the exact output size is 2n bits. In
some circuits, the exact result is not a must and the size of the output result needn’t be
the full size, i.e., the output result is rounded to n bits instead of the 2n bits. This reduces
the size of all the hardware units that follow the multiplier in the data-path. The truncated
multiplier is the approach that rounds the output result to a smaller number of bits than the
number of bits needed to hold the full accurate result as discussed in [14]. That truncation
takes several forms and can be used to truncate any number of bits. As shown in Figure
2.20, the example assumes that the inputs x and y are fractional numbers. The partial
product of the inputs is calculated as in the normal multiplier by anding the bits of the two
inputs. Then the partial product can be seen as two sets, the least significant part (LSP
) and the most significant part (MSP). The LSP includes the least significant columns of

24

LSP
) h=2 @ Hoy=n-h=06

=t .
X1Yg MY Nalg| Xy¥g NsVg NgYg XgVg Ng¥gi
i i

Xya|fi X7 XaY7Hi{Xa¥| XsY7 Xg¥7 X7¥7 Xg¥7 .~
XY Xa¥e|[} X3¥6 -"‘4}"{.5::"53"6 Xe¥e X7¥6 Xg¥se _,.-""'
X¥s Xo¥s Xa¥s|[i X4Y's ‘w‘w XeYs| X7¥'5 “x‘«
4 XaYy XgYalli Xs¥a XeYafi[X7¥y -‘uh’,/"'
33 X4¥3 Xs¥3lli XeY3 x7)’ﬁ§ x;;)’}_,.-""

X3Y2 X4¥2 Xs5¥2 XeYo[i i
Xy, XY X, v, - ;

iJ[1T_ 0 0 0 0.0 0 0]

- B --""‘.‘
LSPminor ;

PL Py Py Py Ps Po Pr Py R/ NG AN R P P R

-1 - < -n ~H=ft=1 o -1-h-2 -1n
= 2

Figure 2.20: Truncated signed multiplier partial product matrix with n=8 and h=2
[14]

the partial products that are the result of the LSBs of the inputs. The MSP that includes
the most significant columns of the partial products that are the result of the MSBs of
the inputs. The LSP itself is divided into two parts, the LSPminor and the LSPmajor and
these columns are defined by a design parameter h that ranges from O to n. Since the
least significant bits of the result will be truncated from the result, no need to calculate
the partial products that produce them. To enhance the output quality of the truncated
multiplier, a correction term is added to the result to compensate for the truncated partial
products, thus, increasing the multiplier accuracy.

The input correction (IC) term in the left-most column of the LSPminor part of the
partial products is introduced for the compensation of the truncated partial product terms.
The whole partial products of the LSPminor are truncated and compensated for by f(/C).
fUC) is a function that uses the IC column to calculate a compensation term for the
LSPminor. Generally, f(/C) is much simpler than calculating the sum of partial product.

2.5 Introduction to Spiking Neural Networks and neuron
models approximation

The Spiking neural network (SNN) is the next generation of artificial neural networks.
Spiking neural networks use biological and realistic models to mimic the human brain
processing and thus perform the computations in a biological manner. There are some of
the spiking and bursting patterns that are observed in the biological neurons in response
to a certain stimulus. Not all neurons fire the same patterns, but each neuron fires a certain
set of patterns [15]. Some of the well known patterns are described as follows:

25

—linput - - - - - -

de-current 20 ms

(a) (b) (c) (d)

(H (2) (h)

Figure 2.21: Main spiking patterns of the biological neuron [15]

(e)

1. Tonic spikes (Regular spikes), Figure 2.21.a: They are a train of spikes that fire in
response to continuous input current, and the frequency of the spikes increases with
the input stimulus.

2. Phasic spiking, Figure 2.21.b: It is the behavior of generating an impulse at the
beginning of the stimulus, then resting at low potential until the end of the stimulus.

3. Tonic bursting, Figure 2.21.c and phasic bursting, Figure 2.21.d: They are similar
to tonic and phasic spiking in the repetitive behavior, the main difference is that they
spike in bursts as a response to the stimulus. The tonic bursting generates a set of
bursts with a frequency proportional to the input stimulus and the phasic bursting
fire one set of bursts at the start of the stimulus. There is also a mixed mode where
the spikes are bursts at first, then they switch to a single spike each time, Figure
2.21.e.

4. Spike frequency adaption: the neurons can reduce the spiking frequency or increase
it in response to the input stimulus as shown in Figure 2.21.f,g,h.

As discussed previously, the neuron model is implemented in different ways that de-
fine how much it is close to the biological neurons. The Biologically plausible models
are the models that implement the biological neurons with their physical parameters and
behaviors. The biologically inspired neurons are the ones that mimic the biological behav-
ior without the need to model the physical characteristics of the neurons. In the following
subsections, the most common neuron models are discussed.

26

Extracellular Medium

I

Cm gn(tav) gL
— i 2

E, T E, T
8

Intracellular Medium

Figure 2.22: Electrical circuit model of Hodgkin-Huxley biologically plausible
neuron [16]

2.5.1 Biologically plausible models
2.5.1.1 Hodgkin-Huxley model

Hodgkin-Huxley model is the most complex neuron model and the closest one to the
biological neurons. It considers each physical characteristic in the neuron cell as an elec-
trical element in the model equation. It emulates the sodium and potassium ion currents
and their effects on the spiking patterns generated by the neuron. The model could obtain
a very realistic biological neuron behavior that can regenerate all the spiking and bursting
patterns and also the frequency adaption phenomenon of the biological neurons [16].

The electrical model of the Hodgkin-Huxley neuron is shown in figure 2.22. The
capacitance Cprepresents the lipid bilayer. Each voltage-gated ion channel is represented
as time and voltage-dependent conductance g,. Leak channel is represented as constant
conductance g;. E,represents the electrochemical gradients that cause the ions flow. And
I represents the ion pumps. Finally, the membrane voltage is V.

Through a series of experiments, Hodgkin-Huxley developed a mathematical model
of four differential equations to model the neuron cell biological behavior. The Hodgkin-
Huxley equations are described in the following equations:

dV,
I= cmd—;” + & (Vi = Vi) + gNa® h(Vi = Vig) + §1(Vin = V) (2.9)
dn
=7 = (Vi) (L =1) = B (V) (2.10)

27

d—”t“ = (Vi) (1 =m) = B (Vi) 2.11)
d

h
27 = an(Vn)(L=1) = Bp(Vin)h (2.12)

Where g is the potassium conductance, gn, is the sodium conductance per unit area,
Vi is the potassium reverse potential and Vy, is the sodium reverse potential. n,m,h are
quantities between 0 and 1 and relate to the potassium channel activation, sodium channel
activation, and sodium channel inactivation. «;,3;are rate constants for the i-th ion channel.
As shown in the previous equations, Hodgkin-Huxley is the most complex neuron model
that includes all the physical characteristics of the biological neuron. However, it is the
most accurate biologically plausible neuron model.

2.5.1.2 Morris Lecar model

It is a reduced model from the Hodgkin-Huxley that is discussed in the previous sec-
tion. It reduces the Hodgkin-Huxley model to two-dimensional nonlinear equations, how-
ever, its parameters still have a physical meaning. The activation of calcium ions is as-
sumed to be very fast, that it can be modeled as instantaneous and the model is then
reduced to two-dimensional equations. It has the same modeling concept as Hodgkin-
Huxley and it represents the physical parameters of the neuron cells as electrical elements.
Following are the equation of the Morris Lecar model [17]:

dv

C= = ~lion(Vow) + Lapy (2.13)
Cfi—f = Blweo(V) = w]/T(V) (2.14)

Tion = 82ames(VI(V = Vea) + gk(V = Vi) + g1(V = V) (2.15)
Meo(V) = 0.5(1 + tanh((V —=V1)/V3)) (2.16)

Woo (V) =0.5(1 + tanh((V — V3)/Vy4)) 2.17)

Tw(V) =1/cosh((V —V3)/(2V4)) (2.18)

w is the fraction of open potassium channels, it provides the slow voltage dependent
feedback required for excitability, gc, and gxare the maximum conductances of calcium
and potassium ions, respectively, and Vc,and Vi are the reversal potentials for calcium
and potassium channels, respectively. mq, andws are the activation functions, 7,1s the
voltage dependent activation time constant. ¢is a temperature factor.

As seen in the previous two models, the main concern in the biologically plausible
models is to maintain the same dynamics, physical characteristics, and exact behaviors

28

of the neuron cells, which complicates the model equations and makes the hardware im-
plementations of such models difficult. The biologically inspired models evolved to over-
come the complexity issues of the biologically plausible models. They mimic the neuron
processing capabilities without modeling the physical parameters exactly.

2.5.1.3 Fitzhugh-Nagumo model

This is a very simplified version of Hodgkin-Huxley and it still has some physical
meaning in its parameters, but it does not consider all physical parameters. It simplifies the
modeling of the sodium and potassium ions. The sodium ion current is fast and is strongly
dependent on the membrane voltage, as a result, it is modeled as a time-independent non-
linear conductance. The potassium ion current is slow and it does not depend on the mem-
brane potential, thus it is modeled by a linear resistance in series with an inductor L and
a voltage source Vjto represent the resting potential of the membrane. The mathematical
representation of the Fitzhugh-Nagumo model is shown in the following equations:

dav, .
Cmd_tm =1-ig _fNa(Vm) (2.19)
dig .
LE =V,+V,—Rig (220)

It is noted from the previous discussion the main trade-off is between the simple equa-
tions in terms of the parameters and variables and the regeneration of the exact dynamical
behavior of the biological neurons. The simpler the model, the simpler the hardware im-
plementation.

2.5.2 Integrate and fire models

Integrate and fire models are a simpler set of neuron models that ranges in their com-
plexity from the simplest model (leaky integrate and fire) to more complex models that
approach the Izhikevich model. These neuron models are less biologically realistic, how-
ever, they produce a reasonable set of spiking behaviors suitable for simple spiking neural
networks. The following sections describe the most common integrate and fire neuron
models with more details with an implementation example of each model.

2.5.2.1 Leaky integrate and fire

Leaky integrate and fire model is a very simple neuron model that describes the neuron
dynamics. Although it is computationally simple, it is not capable of producing all spiking
dynamics. The model is described as follows: when an input current /(7) is injected to
the neuron cell, it charges the cell membrane that can be modeled as a capacitor C. Some
charges leak through the cell membrane and this is modeled as a leak resistance R. Thus,

29

I(t)
/ -
. RfjC

Urest

L 1Y

Figure 2.23: Leaky integrate and fire circuit model [18]

the circuit model that represents the leaky integrate and fire model is a capacitor C in
parallel to a resistance R and an input current I(t) as shown in Figure 2.23[18].

The membrane voltage at the normal conditions is at its resting value u,.g, then the
voltage across the membrane is calculated as follows:

I(t)=1Ir+1Ic (2.21)
u(t) = Urest du
I(t) = ——— — 2.22
) R +Cdt (2.22)
au_
" dt

= —[u(®) — tres] + RI(¥)

(2.23)
Where 7, = RC is the time constant of the leaky integrator. The leaky integrate and

fire model is expanded further to a more complex model which is the non-linear leaky

integrate and fire. An example of the non-linear leaky integrate and fire model is the
quadratic integrate and fire model that is discussed in the following subsection.

2.5.2.2 Quadratic Integrate and fire model

Quadratic integrate and fire is a more complex version of the leaky integrate and fire

are as follows:

neuron model. It regenerates some of the most important spiking patterns. It has many ana-
log and digital hardware implementations in literature [19]. The equations of the model

du

= ao(u—Upes) (U —ue) + RI

(2.24)

30

where ag > Oandu. > u,.y, the parameter u.is the critical voltage for spike initiation
by a short current stimulus. The quadratic model is simpler than the exponential integrate
and fire model that is investigated in the following subsection in terms of the hardware
implementation, however, it appears that the experimental data of the spikes profiles is
much better in the case of the exponential model than the quadratic model [18].

2.5.2.3 Exponential integrate and fire model

Exponential integrate and fire model is an enhancement of the quadratic integrate and
fire model that added a term to fire with a low stimulus current. In this model, the same
basic terms of the integrate and fire model exists. The added term in that equation is the
exponential term as in the following equation:

du Uu—"vy

TE = _(u - urest) +AT exp(AT

)+RI (2.25)

At 1s called the sharpness parameter and the parameter vy,is the threshold voltage.
Again, when the voltage reaches the threshold, the neuron fires a spike and the membrane
potential resets. The exponential integrate and fire model results in more exact spikes
firing times relative to that obtained experimentally. The main drawback of that model is
the exponential term that is hardware costly.

2.5.3 Biologically Inspired models

The biologically inspired models are a wide set of neuron models that are interested in
mimicking the processing capabilities of the neuron cells such as their firing and excitation
patterns rather than emulating the physical parameters. They are very much simpler than
biologically plausible models as their equations are simpler and have less set of parameters
that have no physical meaning. Thus, they are more hardware friendly, as a result, several
implementations of such models exist in both analog and digital domains. In the following
subsections, some of the common biologically inspired neuron models are discussed, their
model equations and some of their hardware implementations are investigated as well.

2.5.3.1 Hindmarsh-Rose model

Hindmarsh-Rose model is one of the common biologically inspired neuron models. It
is one of the models that are interested in regenerating the spiking patterns and spiking
timing of the biological neurons on the cost of lower biological accuracy. It models the
temporal behaviors and the dynamics of the neuron cells. The Hindmarsh-Rose model is
described in the form of three coupled differential equations that describe the behavior of
the neuron potential as in the following equations:

31

% :y_f(x)_Z+Iapp

L= g(x)-y (2.26)
L = r(h(x)-z)

where,

f(x0=x3—3x%
g(x) =1-5x2 (2.27)
h(x)=4(x+8)

x is the membrane potential, y is the recovery current and z is the adaption current.
I4ppis the applied current to the neuron, r controls the spiking frequency and also affects
the number of spikes per burst in case of bursting. As shown in [20], the Hindmarsh-Rose
models two dynamic behaviors: the spiking and the bursting. In the spiking mode, the
bursting variable is set to zero, the spiking frequency is then dependent on the stimulus
current. As the stimulus increases, the spiking frequency increases. Due to the simplicity
of the model equations and its ability to regenerate the spiking patterns at a reasonable
accuracy, many works implemented it in hardware. Its equations can be rewritten in a
discrete form and then implemented as a piece-wise linear implementation as done in
[20]. It can be implemented in an analog form by CMOS implementation as in [21].

2.5.3.2 Mihalas-Niebur model

Itis a generalized form of the leaky integrate and fire model and it has some parameters
that have a biological meaning, the following equations are the Mihalas-Niebur model
equations.

I(0) = =kIi(0), j=1,.coN (2.28)
: 1
Vin(t) = S e + Z 1i(1) = G(Vu(t) - EL)) (2.29)
j
® (1) = a(Viu(t) - EL) - b(©(1) - ©) (2.30)

where /; are the internal currents, /.18 the external input current to the neuron, V,, is
the membrane potential, C is the membrane capacitance, ® is the adaptive threshold. The
adaptive threshold is updated continuously not only at a spike.

A spike is generated when V,, > ® and following the spike, the variables are updated
again to their reset conditions[15]. This model is also implemented in hardware due to
its simplicity. As an example of implementation, [15] implements Mihalas-Niebur by
switched capacitor circuits and proves that it is able to generate the main spiking and
bursting patterns and the neurons dynamic behaviors as well.

32

2.5.3.3 The Quartic model

The Quartic model is very common in the biologically inspired neuron models. It is
relatively simple from the mathematical point of view while having the ability to repro-
duce the dynamical neuron behaviors. The dynamics of that model are defined by two
coupled differential equations as listed in the following equations:

{V' =V +2av—w+1
(2.31)
w = a(bv—w)
1) >a then V0= (2.32)
v a then .
w(t)=w(")+d

I is the input stimulus, a, b are the parameters that control the dynamical behavior of
the neuron model. ais the threshold after which the neuron fires a spike. v, is the reset
value of the membrane potential after a spike. So, v, and d are the parameters that control
the reset behavior of the neuron. The quartic model proves its ability to reproduce the
dynamical activities of the neurons the same way as the Izhikevich model and exponential
integrate and fire model.

From a hardware implementation point of view, the quartic model is not hardware
friendly because of the quadratic term in the differential equations, however, it has many
hardware implementations as in [22].

2.5.3.4 Izhikevich neuron model

The Izhikevich neuron model is one of the well-known neuron models that gained
interest in the area of spiking neural networks due to its simplicity and the ability to re-
produce much dynamical behavior in a timely manner. It is a simplified version of the
Hodgkin-Huxley that regenerates spiking and bursting behaviors of the known types of
cortical neurons. It is a mathematical model consisting of two-dimensional differential
equations as follows:

v = 0.0 +5v+140—u+1 (2.33)
u =a(bv—u) (2.34)
V «— C
if v>30mV, then{ (2.35)
u — u+d

It is obvious from the equations that the Izhikevich neuron model is simple enough
to be implemented in the hardware, however, it is a very good model in regenerating the
neuron dynamics. In this work, the Izhikevich model is discussed in deep details and

33

-

More 4

VHodgkin-HuxIey

Hindmarsh-
Rose
>) Fitzhugh-
E Integrate-and-Fire Naggmo
9 Family R
o McCulloch-Pitts Izhikevich
€ Family
o
o
Less

.
|

Less Biological Inspiration More

Figure 2.24: Trade off between the complexity of the neuron model vs its biological
characteristics [3]

it is also implemented using approximate computing. The critical point in the hardware
implementation of that model is the square operation in the potential equation since the
multiplication is the power and area consumer in hardware designs. Thus, the approximate
multipliers are adopted in the implementation and their effect on the spiking patterns and
model accuracy is studied in the next chapters.

As illustrated in the previous list of neuron models, there is a wide variety of models
that reproduce the biological dynamics. Some of the models are realistic and take the
physical parameters and experimental observations into considerations. Others are inter-
ested in mimicking the neuronal behavior without the need to have the real parameters,
they are just mathematical models. The trade-off is always between the model complexity
and the biological reality. The most complex model is the most real biological model.
Figure 2.24 shows the different models, trading off between complexity and biological
inspiration.

34

Chapter 3

Design of Adaptive Artificial Neural
Network using Approximate Computing
and Partial Dynamic Reconfiguration
and Experimental Results

3.1 Introduction to Artificial Neural Network Learning
Process

Unlike the common ways that depend on the relation between inputs and outputs to
detect the corresponding output to a certain stimulus or input, the artificial neural networks
do not have a formula between inputs and outputs. ANNs learn the relation between
inputs and outputs in the training phase, adjust the weights between the connections of
the neurons and then the trained networks are used to generate the outputs directly from the
inputs. This is called offline training, where the network is trained on the software layer,
then the pretrained network is used in the application by using the saved weights. Online
training is another training approach, in which the weights are adapted in the real-time.
Object tracking is an example of applications that require online training.

To train the network, learning data is needed with its correct labels to enhance the
weights. The network starts with random weights, then the learning data is used to pro-
duce output from the network. The produced output is compared with the expected out-
put(labels). The error between the expected output and the network output is used to tune
the weights accordingly in a manner such that the error is decreased. The weights’ tuning
is performed using a learning algorithm. The testing subset of the data-set should not be
used for learning to avoid over-fitting.

The most used learning algorithm for the artificial neural network is the back-
propagation and it is based on the gradient descent algorithm[23]. The weights are initially

35

random data and have no meaning. The error between the target and the network output
is calculated. Then, the network weights are adjusted as follows:

Whew = Woia — 3.1

where @, ¢ are learning rate and error term, respectively. The learning rate starts with
a large value, then it is tuned with a decay factor as the error decreases. This is called
supervised learning. After the learning step of the network, the adjusted weights are used
in the network’s hardware implementation.

3.2 Research Hypothesis

The designers of limited energy Internet of Things (IoT) applications, such as wire-
less sensor nodes (WSNss), have several design trade-offs when selecting the most suitable
ANN for their application. Given that approximated ANNs designs are reported in the lit-
erature with various energy-accuracy flavors, the limited energy applications designers
usually select the ANN that exhibits moderate energy consumption and acceptable ac-
curacy. In this work, the following research question is investigated “’Is it possible to
reconfigure the application with different ANN flavors adaptively based on the available
energy budget? and if yes, how much energy is saved?”. In other words, this work at-
tempts to provide an energy-driven adaptive IoT application platform that is reconfigured
with a specific ANN design according to the available battery energy at the expense of
accuracy degradation. The ANN is used as a case study to answer this research hypothesis
question with the application of the Partial Dynamic Reconfiguration feature of the FPGA,
however, any design that has energy trade-offs can be used following the same work flow
and methodology. Figure 3.1 displays a block diagram of the target limited energy appli-
cation that consists of static modules and dynamic modules. The static modules are fixed
and performing other functions of the application such as decision making circuits. The
dynamic modules are reconfigured as follows. The battery energy sensor determines the
battery energy level and accordingly, the PDR controller reconfigures the dynamic mod-
ules of the application with the corresponding ANN. For example, assuming that ANNI1
has the highest energy consumption with the highest accuracy and ANNS has the lowest
energy consumption with the lowest accuracy. The reconfiguration methodology should
be as follows. (1) when the battery energy level is from 1% to 20%, ANNS should be
selected, (2) when the battery energy level is from 21% to 40%, ANN4 should be selected,
(3) when the battery energy level is from 41% to 60%, ANN3 should be selected, (4) when
the battery energy level is from 61% to 80%, ANN2 should be selected, and (5) when the
battery energy level is from 81% to 100%, ANN1 should be selected. The number of
reconfigurations depends on the available ANN flavors and correspondingly, the energy
levels values. In addition, the energy levels might be non-uniform in some applications
depending on the ANN design energy trade-offs.

36

Static Modules

Battery

PDR
— Energy —»
System
Sensor
- _
Application Limited-Energy

Application

S
. o ANN3 . .
I

Configuration memory

Battery

Figure 3.1: Limited-Energy application block diagram for using energy adaptive
neural networks

3.3 Approximate Computing Techniques

As introduced in the previous chapter, there are so many used approximation tech-
niques in literature that trade off the energy-efficient designs with the accuracy of the
network. Each type of approximation reduces the power consumption and also degrades
the accuracy as well. Not all the approximations reduce the power and accuracy by the
same amount and each approximation combination has its degree of optimization.

As a first insight into the design approach, the approximations used in the thesis are
listed with deep details, and then the combinations of approximations with each other to
form a network is introduced. These different combinations are then used to form en-
ergy adaptive artificial neural network using the PDR(Partial Dynamic Reconfiguration)
feature of the FPGAs. The approximations are precision scaling, approximate multiplier,
approximate activation functions, truncated accumulation, neuron skipping and computa-
tion skipping.

3.3.1 Precision Scaling

Precision scaling is a widely used approximate computing technique [6, 7, 10]. For
power and energy savings, the fixed point is used in the implementation of neural networks
instead of the computationally expensive floating-point implementations. Floating-point
arithmetic is much more expensive and complex than fixed-point ones, but they are more
accurate and produce results similar to the software results.

37

Precision scaling is carried out by forcing the least significant bits(LSBs) of fixed-
point operands to zero (Software precision scaling), or by implementing the design with
reduced word length (hardware precision scaling). Both techniques reduce energy con-
sumption by decreasing the switching activity. The word length is the number of bits of
each piece of data in the design. If the word length is 10, then all data used in the design
has to be represented in 10 bits (fraction part and integer part). Also, all hardware units
have to support inputs of that word length. For example, the inputs to the neural network
are the input data and weights, so they have to be represented as an array of vectors each
vector is 10 bits. The inputs and weights are multiplied, then the multiplier will be 10bits
x 10bits with an output of 20bits data and so on. As a result, every single hardware unit
is affected by the choice of the word length. Another hardware element that is greatly
affected by the word length is the memory required to store both the initial inputs and
weights and the intermediate results between the network layers.

The choice of the word length is done on the software layer since the training of the
network is done using Python (Offline training). It is required to tune the word length
to get the least word length that produces the same accuracy result as the floating-point
calculation. Lots of iterations are performed to decide which word length produces the
floating-point accuracy and then a fixed-point representation of the data is used at the
hardware layer. The more the word length is reduced, the higher the saving in the area
and power at the expense of accuracy degradation.

At a certain word length, the full dynamic range of the bits should be used to achieve
the highest accuracy for the chosen configuration. This requires a smart selection of the
integer and fraction portions of the fixed point word length. For instance, when using
Sigmoid or Tanh activation functions, the inputs of the neuron do not exceed +1. Con-
sequently, the integer length of the operands of the neuron unit is selected to be two bits,
including the sign bit, which saves a room for representing the fraction bits. However, the
values of the weights might exceed the range of the input values. In the training phase,
the weights generated by the learning algorithm may be in any number. To overcome this
problem and to keep the input size consistent for both inputs and weights, the values of the
weights are forced to be in the same range of the input value (i.e., the weights are forced
to have 1 as the integer part and any value as the fractional part). Again, this is performed
on the software layer, after achieving the required accuracy, all weights of the network
for all layers are observed and if their integer portion exceeds 1 they are scaled down to
by a factor that makes them back again to 1 as their integer portion. The network is then
tested after scaling the weights and if the accuracy is degraded a continue-training phase
is performed to increase the accuracy again. If the retraining causes an increase in the
integer portion, the scaling is done again. The loop of weights scaling, testing network
and continue-training the network breaks when the required accuracy is achieved with all
network weights have an integer portion of 1.

38

Table 3.1: A-law approximation of sigmoid function

(x[8] 4 | 2[-1] 1 [2] 4 [8]
[y] 0]0.0625]0.12[0.25]0.75]0.87 [0.937 [1|

3.3.2 Approximate Activation Function

Activation functions are very important hardware processing elements in artificial neu-
ral networks. There are types of activation functions, this thesis uses two types of activa-
tion functions RELU and Sigmoid.

3.3.2.1 Sigmoid Activation Function

It is a commonly used activation function that has the formula 3.2

1

= 3.2
YT Ther (3-2)
and its derivative is shown in equation 3.3
d
= =y(1-y) (3.3)

dx
It is obvious from the sigmoid equation that the exact hardware implementation of
Sigmoid is costly and requires intensive computation to implement the exponential term.
There are many approaches to approximate the sigmoid computation as listed in the fol-
lowing section.

1. Lookup table implementation: in this approach, each value of x is used to calculate
its corresponding y value and the results are stored in memory. This would be
inefficient if high precision is used as it causes the use a large memory attached to
each processing element.

2. A-law approximation: This method depends on modifying the resulting curve to
linear segments, the curve is presented by 7 segments as shown in table 3.1

3. Alippi and Storti-Gajani Approximation: It depends on selecting a set of break-
points of the first derivative and setting the function as a sum of the power of two
numbers. For the reason that the sigmoid function has a symmetry point at coordi-
nates (0, 0.5), only half pairs of x-y is calculated. Its expression is shown in 3.4:

3 0.5+F|RAC(‘()|—x)/4 >0
YN SMNTx
Alippi(X) =\ o5, FRAC()/4 <0 (3.4)
W XS

39

4. Piece-wise second-order approximation: It can be implemented as a second-order
approximation, this approximation using the square operation which uses multiplier
and thus not the most efficient implementation as shown in equation 3.5

lﬂﬂ:{aﬂg—nz ~4>x<0

(3.5)
1-0.5(5+1)% 4>x>0

5. Piece-wise linear approximation: It is a kind of approximation that perform the
sigmoid function by modifying its curve to linear segments, each segment equa-
tion is calculated using shift and add operations, thus it is very hardware efficient
implementation and consumes low area and power. The formula expressed in 3.6
describes the equation of each segment :

1 x25

35 +0.84375 2.375<x<5o0r-5<x<-2375
f(x)=15+0.625 1 <x<23750r-2375<x<-1 (3.6)

7+0.5 O<x<lor-1<x<0

0 x<-5

The last approximation PWL (piece-wise linear approximation) is used to approximate
the sigmoid function since it is efficient and uses fewer hardware resources. As indicated
in its equation, all division factors are powers of 2, and this is synthesized to shift operation
and addition to the constant term, thus making the implementation easy and hardware
friendly.

A comparative analysis between different approximations, their exact hardware uti-
lization, power consumption, and maximum operating frequency can be found in [24].

3.3.2.2 RELU Activation Function

Linear activation functions such as RELU activation function is widely used in the
implementation of artificial neural networks due to its small hardware and its efficiency
in power reduction as well. Its hardware implementation is easy compared to the Sigmoid
implementation, as shown in equation 3.7, it mainly contains two linear functions in the
ranges when x > 0 and x < 0, thud it is seen from a hardware point of view as comparing
with zero and assigning the output to a value accordingly. The main implementation issue
in RELU function is that it passes the input to the output directly for the values of x > 0. If
the full range of x is allowed to be transferred to the output y, this requires larger arithmetic
units in the following layers that have the activation function outputs as their inputs. This
is because the integer length of the fixed point representation is increased due to MAC
operations. Instead of using bigger hardware in the following layers and to keep the design
consistent, truncated versions of the RELU outputs are used to save power at the cost of
reduced accuracy. The saturation means that if the input reached a certain threshold or

40

Read_en ———— Inputs
memory

Registered
input
* Accumulator

Read_en ‘ ‘

Acc_en Acc_dis

Read_dis Weights
memory

Figure 3.2: Simplified block diagram illustrating the computation skipping in the
hardware implementation

a value above that threshold, the output retains the maximum value and can not increase
above it. This helps to limit the linear increase in the output value as the input increases.
The chosen input threshold is 8 so that the integer length does not exceed four bits.

X x>0
f) = 3.7)
0.015625%x x<0

3.3.3 Computation SKkipping Approximation

Computation skipping technique mainly depends on the shape of the input, in other
words, it depends on the values that present the input and its efficiency or usefulness is
directly related to the zero-valued inputs.

In many applications or data-sets, the number of zero, or near zero, valued inputs is
high. Moreover, using precision scaling significantly increases this number. Also, using
Rectified Linear Unit (RELU) layers, which force the negative valued layer outputs to zero,
participates in increasing the number of zeroes in the system. These zero-valued inputs
do not affect the operation of the network by any means, as they do not contribute to the
output by any value. For example, if the input is zero it is multiplied by the corresponding
weight and results in zero output, thus the first hardware operation that can be bypassed
is the multiplication operation as its result is known ahead. Then this zero is added to the
other inputs in the accumulator. The addition to zero does not change the output, so this
operation can be skipped as well.

41

On the hardware side, a zero detection unit is added. It compares the input value to
zero and indicates if the upcoming data to the neuron unit is zero, then the unnecessary
computations are skipped. As shown in figure 3.2, the input data is read, then the zero
detection unit checks if it is zero or not. Its output controls the inputs of the multiplier,
so in case of zero, the registered input is used. The weights memory is not enabled for
reading at this cycle, as a result, the second input of the multiplier is not changed. The
switching activity on the multiplier inputs is decreased, and this saves the dynamic power
dissipation. The accumulator is also disabled for that input, and this is another source
of decreasing the switching activity. This procedure is very effective as it reduces the
switching activity and dynamic power dissipation without any loss in the accuracy of the
network result.

3.3.4 Neuron Skipping Approximation

To further decrease energy, some neurons in the hidden layers are skipped and all
operations associated with them are not performed. For example, in a system with 10
physical neuron units running on MNIST data-set with a single hidden layer of 100 neu-
rons, if ten of the 100 hidden neurons are skipped, 7860 (i.e., the number of inputs x10)
Multiply-and-Accumulate (MAC) operations and memory accessing are not performed
reducing the time and energy needed for inference.

In contrast to computation skipping which avoids unnecessary computations and has
no effect on accuracy, neurons skipping does have an impact on accuracy, but saves more
energy. To reduce the impact of neuron skipping on the accuracy, the skipped neurons
should be selected carefully. The selected neurons should be the most resilient ones so
that skipping them has the smallest effect on the inference.

A neurons resilience ranking method has been proposed in [5]. This method depends
on back-propagating the error at the output layer for each instance of the training set and
calculates the average error contribution for each neuron to identify the least contributing
neurons to the output error. After training the network, the neuron resilience ranking is
done. The associated weights of the most resilient neurons are placed at the top of the
memory of the weights so that if 10 neurons are selected to be skipped to reduce the
consumed energy, the controller skips the weights of the first ten neurons in the memory
and starts reading normally after them. Skipping some neurons in a neural network layer
affects also the following layers. The input to the following layer from a skipped neuron is
set to g(zero) where g(x) is the activation function of the previous layer, which equals to
zero when using Tanh or RELU functions, allowing more energy reduction if computation
skipping is used, and g(x) equals to 0.5 when Sigmoid is used.

42

3.3.5 Inaccurate Arithmetic

Neural networks involve thousands of arithmetic operations such as multiplications
and accumulations. Using inaccurate arithmetic operations introduces some errors which
are tolerated due to neural network error resiliency. However, using these inaccurate arith-
metic operations saves a big chunk of energy. A multiplier is one of the power-hungry
units in digital neural networks. Many approximate multipliers are proposed in the liter-
ature to design a less accurate multipliers that save much power and area. Based on the
discussion held in the previous chapter, this thesis uses the truncated multiplier due to its
hardware efficiency and due to its good accuracy.

3.3.6 Approximate Adders

Approximate adders are used also to reduce the power consumption, however, they
have a smaller impact on the energy savings than approximate multipliers. In this work,
instead of using an approximate adder, a truncated accumulation is used rather than accu-
mulating the whole output of the multiplier. Inspired by the truncated multiplier that is
used in the thesis, a truncated accumulation is used. Instead of accumulating the whole
output of the multiplier, it is truncated to the specified word-length of the design. The
least significant bits of the multiplication result are truncated. Since most numbers in the
design are fractional, the truncation would not degrade the output quality in a significant
way. As a result, the size of the used accumulator is reduced, and the area and power
dissipation of the accumulator is reduced with a very small impact on the accuracy.

3.4 Design Approach

In this work, the artificial neural network implementation utilizes all the previously
mentioned hardware approximations. Different combinations of these approximations
are also tested to get the best set of approximations suitable for a certain power and area
budget at a certain acceptable accuracy. The main idea here is to have a large set of
hardware elements, each with a different value of area, power, energy, and accuracy. And
according to the available budget of power which varies across the time, the network can
adaptively tune its hardware elements to fit within that budget at the cost of accuracy
reduction. As time passes, the available energy reduces and the hardware adapts to that
available energy with less accuracy, and then after the energy increases again the hardware
adapts again to the new budget with higher accuracy and so on. With the help of this idea,
the system is more flexible to the possible energy changes that always happen to any
battery-based device such as smartphones. This would not be an easy task without the
Partial Dynamic Reconfiguration (PDR) feature available on the FPGA platform. As an
example for the low power applications that benefits from the PDR technique is the low-
cost battery-powered wireless image sensor of precision agriculture. This application is
used to perform pest control monitoring and is based on the use of insect traps conveniently

43

spread over the specified control area. Depending on the targeted insect, each trap is
properly installed with pheromones or other chemical substances that attract the insect
that is intended to be captured. The wireless image sensor function is to classify the
number of insects around the trap. When the battery energy is low, the neural network that
performs the classification task reconfigures itself to a lower classification accuracy. As a
result, the battery life lasts for more time. The approach here is to prove the concept that
neural network generally can be power adaptive. Two data-sets are used with two different
artificial neural network architecture for each data-set. The two data-sets are the well
known MNIST data-set [25] and SVHN data-set[26]. In the following sections, the two
data-sets are illustrated in more details and the hardware architecture of the neural network
used for each data-set. Then the Partial Dynamic Reconfiguration (PDR) approach is
introduced.

3.4.1 Data-sets

The data-sets is a very large database that contains a big amount of data collected
and made available for use. Any neural network needs to be trained to set and adjust its
weights at a suitable value to get the required accuracy. This training may be online in the
real time operation of the network, or it may be offline by adjusting the weights, saving
them in memory, and using them in the network real time processing. To perform the task
of learning the network a large set of data is needed so the network learns from different
sources to predict the output from the input. The learning data-set contains inputs and the
labeled outputs, these labeled outputs are used as a reference. The output of the network is
compared to the correct labeled output and the error is used to adjust and tune the network
weights. The second set of data in any data-set is the testing set. This set is also a large
set of data different from the training set and is used to test the network and calculate
the accuracy. The testing data-set should not be used in the learning phase. The neural
network architecture affects greatly the accuracy results obtained for each data-set, thus
the network architecture that works with the MNIST data-set will not work with another
data-set or application. Consequently, the network architecture is application based and
its parameters(number of hidden layers and the number of neurons in each hidden layer)
are tuned to get the required accuracy.

3.4.1.1 MNIST data-set and its artificial neural network architecture

MNIST (Modified National Institute of Standards and Technology) data-set is the ba-
sic data-set used in the area of the neural network, pattern recognition, and machine learn-
ing. Itis set of binary images of handwritten digits, real-world data that consists of 60000
samples for the learning phase and 10000 sample for the testing phase. Each sample is a
black and white image whose size is 28 x 28 pixels. The pixels values vary from O to 255,
0 means white and 255 means black. The attached labels take values from O to 9 as they
are the digits. A sample data of MNIST data-set is shown in Figure 3.3.

44

Figure 3.3: Sample data of MNIST data-set [25]

The artificial neural network that is used with the MNIST data-set is simple as the data to
be processed is simple by nature. It is chosen to be a network of (785 - 100 -10). 785 input
neurons (one for each pixel + 1 that is used as a bias to the network). 10 output neurons
to have a neuron for each output digit. One hidden layer of 100 neurons, the number of
hidden neurons is chosen to be multiple of 10 to reuse a set of physical neurons as will be
discussed later.

3.4.1.2 SVHN data-set its artificial neural network architecture

SVHN (Street View House Number) data-set is a more complex data-set than the
SVHN. It is real-world images that are taken from real house numbers in Google street
view images so it is a harder and more complex data-set. A sample data of the SVHN
data-set is shown in 3.4. Unlike the MNIST data-set, the SVHN data-set comes in RGB
color format so it needs some sort of preprocessing before it is used. Another difference
is that its images are a larger size, Each image is 32 x 32 pixels. It has 73257 digits in the
training set and 26032 digits in the testing set. It also has 10 labels, but they are from 1 to
10. Digit 1 has label 1, digit 9 has label 9, but digit 0 has label 10.

The artificial neural network that is used with the SVHN data-set is bigger in terms of
hidden layers and the number of neurons in each layer as the data to be processed is more
complex and requires more processing to achieve reasonable accuracy. It is chosen to be
a network of (1025- 300-300 -10). 1025 input neurons (one for each pixel + 1 that is used
as a bias to the network). 10 output neurons to have a neuron for each output digit. Two
hidden layers of 300 neurons each. The choice of the architecture, in this case, is done in
an iterative, trial and error process to get the best architecture that results in a reasonable

45

Figure 3.4: Sample data of SVHN data-set [26]

accuracy. Many architectures are trained and tested, but this is the one that achieved the
highest accuracy among them.

3.4.2 Partial Dynamic Reconfiguration (PDR)

Partial Dynamic Reconfiguration is a very powerful technique in hardware implemen-
tations using the FPGAs (Field Programmable Gate Arrays). FPGAs are hardware plat-
forms used to implement a specific design by configuring its resources, it allows pro-
grammability and flexibility for most design options. The advantage of dynamic recon-
figuration is that it allows another degree of freedom to reconfigure part or all the FPGA
hardware in the run time according to the application needs.

The FPGA internal structure differs from vendor to vendor and from version to an-
other. But in general, any FPGA consists of two main parts: the hardware elements that
it supports and the configuration memory that holds the bit-stream (binary) files used to
program that hardware. The hardware layer in the FPGA contains the basic infrastructure
needed to implement any design by changing the connections and contents of it. These
hardware resources are mainly Lookup Tables (LUTs), Flip-Flops, memory elements and
it may contain DSPs as well. The size and the specifications of the hardware elements
differ with the type of the used FPGA. There is also a routing network that is used to route
between the different hardware elements to create the needed logical connections. An-
other element is the clock tree that is used to supply the logic with the clocks needed for
proper operation. The configuration memory in the FPGA is used to hold the information
needed to configure the hardware elements, the routing details between the different re-
sources, the values stored in the LUTs that implement a specific function, the reset values
of the flip-flops used in the design, and all other details needed for proper operation. Thus,
to change the functionality done by the FPGA, one has to change the configuration file,
and when loaded on the FPGA, new hardware with a new function is operating.

46

The flexibility of programming the FPGA through altering the loaded bit-stream file
is the main force that made the partial dynamic reconfiguration possible. First, the term
partial refers to the ability to change part of the configuration file that affects a certain
hardware logic to change or modify its functionality, and thus the other hardware elements
that are not affected by this part of the configuration file are not changed. Second, the
term dynamic means that the reconfiguration process is performed in the run time. The
reconfiguration is done through an interface between the hardware and the configuration
memory called Internal Configuration Access Port(ICAP) in Xilinx devices.

There are many advantages to using partial dynamic reconfiguration. It made it pos-
sible to have more than one hardware implementation of a function with the ability to
choose among them according to the application needs. Even better, you have the ability
to store many implementations for different functions and time multiplex between them
as long as they have the same interface. The reconfiguration time for the partial recon-
figuration is less than that of the full configuration as the time is directly proportional to
the bit-stream file size. Consequently, the PDR is the best choice in an adaptive hardware
design that has to respond according to an always changing environment [27].

In this work, and as discussed in the previous sections, all previous approximation
techniques on the ANN are adopted to design an energy adaptive neural network (EANN)
that re-configures the neural network hardware units with the required approximations to
meet the available energy budget of the application. This energy adaptation comes at the
expense of lower accuracy. As a result, the hardware is reconfigured in the run-time to
have less optimum units and reduce the required energy for operation.

In the non-adaptive systems, if the available energy is not enough for the hardware
unit to operate, the unit stops functioning and maybe it completely turns OFF. However,
in the proposed EANN system, if the energy is not enough the hardware is reconfigured
and adapted to work with this lower available energy at the expense of some loss in the
accuracy which is acceptable in error-tolerant applications in which 100% accuracy is not
a must all the time. In the PDR systems, the hardware modules are dynamically changed
within an active design in response to the available application energy requirements as
shown in Figure 3.5. The reconfiguration task is conducted in the run-time with no need
to switch off the system for reconfiguration. The PDR technique is highly recommended
when the application has multiple configurations to choose among and to reuse the same
hardware physical resources for all configurations instead of implementing all of them.

The advantages of using the PDR technique is the flexibility of redefining the modules
according to the current requirements. It also saves much area since there is no need
to implement all different configurations of the design, and build a controller to switch
between these different configurations, but instead, they are reconfigured and replaced.

47

Config_6.bit

Config_5.bit

Config_4.bit

Config_3.bit

FPGA Config_2.bit

Reconfig Config_1.bit

Block

“neuron unit” C—

Figure 3.5: Illustration of Partial Reconfiguration

3.5 Experimental Setup

In this work, and as discussed in the previous chapters, approximate computing tech-
niques used in the artificial neural network are adopted to design an energy adaptive neural
network (EANN). The main idea of the EANN is that the hardware reconfigures its units
to work with a less accurate and more energy-efficient version. The neural network is
approximated with the required approximations to meet the available energy budget of
the application. The hardware keeps track of the available energy over time, and when
the energy level changes, it adapts its unit to fit in the available energy level. As a result,
the hardware remains functioning for a longer time. The energy adaptation comes at the
expense of lower accuracy. As the available energy decreases, the more hardware units
are approximated, and the less accurate results are obtained. Another important point is
that the hardware is reconfigured during the run-time to have a less optimum units, so the
required energy for operation is reduced. The dynamic reconfiguration is achieved by us-
ing the FPGA platform. In the non-adaptive systems, if the available energy is not enough
for the hardware unit to operate, the unit stops functioning and maybe it completely turns
OFF, and this is the main strength in the EANN.

The experimental setup used to test the EANN is divided into two parts: the first is
software-based and the second is hardware-based. The software part is used to perform

48

the training task to the networks, and to get the weights and the accuracy results. The
hardware part is used to implement the designs, and to get the area and power results
using the weights obtained from the training step. The accuracy is also verified on the
hardware after its implementation and compared to the software accuracy results as a part
of the hardware verification.

3.5.1 Software Setup

The software is used as an abstract model of the artificial neural network, to train the
networks, and to generate the weights needed in the hardware implementation. Python is
used to model the artificial neural networks. The first step in the experiments was to choose
suitable network architecture. The networks have many parameters to be tuned. Each con-
figuration of the parameters is suitable for a certain application, and results in a different
accuracy result. The MNIST data-set is easier than the SVHN, so the network needed for
the MNIST simulations was a simple network that has the structure (785*%100*10). First,
the weights start with random values. The network training begins with a high learning
rate, as the accuracy approaches the needed value, the learning rate is decreased. The
weights are scaled-down with a ratio that makes all the weights lie between 1 and -1 for
more optimized hardware. To overcome the scaling weights effects, a continue training op-
tion is used to continue the network training to enhance the accuracy. Finally, the weights
are dumped to files to be loaded to the memory into the hardware implementations.

The SVHN data-set is more complex than the MNIST data-set as it is generated from
real pictures taken from the street house numbers. The raw data of this data-set needs
preprocessing to convert the RGB images to black and white scale to be the same format of
the MNIST data-set. Another difference between the two data-sets is that the network used
for the SVHN data-set is more complex. The network is chosen to be (1025%300%300%10).
It has two hidden layers not only one layer, and each layer has more neurons, i.e., 300
instead of 100. The same process applies to the SVHN data-set, it is trained, the weights
are tuned and scaled, and then dumped in the files for use in the hardware implementation.

3.5.2 Hardware Setup

The second important part in the implementation is the hardware implementation of
the two neural networks used for MNIST and SVHN data-sets. Again, each network has a
different hardware architecture that is discussed in details in the following block diagrams.

To implement such networks on the hardware, one can implement all the neurons phys-
ically. The second option is to implement certain number of neurons physically and reuse
them in the calculations of other neurons. In this work, the second approach is adopted
as this work targets limited energy applications. Ten physical neurons are implemented
on the hardware and they are reused to obtain the results of all neurons. Thus, the first

49

ten neuron operations are carried out and their results are saved in a hidden memory, then
the second ten neuron operations are carried out, and so on until all the first layer neuron
operations are carried out. The output of the first hidden layer is saved in the hidden mem-
ory and is used as the input to the output layer. Then, the same ten physical neurons are
used to carry out the computation of the output layer. In the following subsections, the
exact block diagram of each neural network is introduced.

3.5.2.1 MNIST Block Diagram

In this section, the block diagram of the network used in MNIST data-set is illustrated.
The system top level consists of two memory blocks, one to store the inputs, and the
other to store the intermediate results of the first hidden layer to use it as the input to the
output layer. The system has ten physical neurons. One memory is attached to each one
of the physical neurons to hold the weights associated to this neuron. A multiplexer is
also attached to each neuron input to select the whether the input is taken from the input
memory, or from the hidden memory. The hidden memory is used to store the output of
the first layer. As aresult, there is a multiplexer on the input of the hidden memory to select
which neuron output to be saved, and to respect the arrangement of the neuron outputs in
the memory. The output prediction unit is used in the output layer to predict the result of
a certain input. A main control finite state machine is used to control the data movement
between the blocks. It produces the control signals to all blocks such as memories read and
write enables, registers resets, multiplexer selections, counters increment and decrement
signals, and so on. The block diagram of MNIST network is shown in figure 3.6.

3.5.2.2 SVHN Block Diagram

In this section, the block diagram of the network used in SVHN data-set is illustrated.
The system top level consists of three memory blocks, one to store the inputs similar to the
one used in the MNIST block diagram, and two memories to store the intermediate results
of the first and second hidden layers. The first hidden memory is used to store the outputs
of the first hidden layer, and it is used as an input to the second hidden layer. The second
hidden memory is used to store the outputs of the second hidden layer, and it is used as an
input to the output layer. The system has ten physical neurons. One memory is attached to
each neuron to hold the weights associated to this neuron. A multiplexer is also attached
to each neuron input to select whether the input is taken from the input memory, the first
hidden memory, or the second hidden memory. A multiplexer exists on the input of each
memory to select which neuron output to be stored in which hidden memory, and to keep
them in order. The output prediction unit is used in the output layer to predict the result
of a certain input. A main control finite state machine exists to control the data movement
between the blocks. It produces the control signals to all blocks such as memories read and
write enables, registers resets, multiplexer selections, counters increment and decrement
signals, and so on. The block diagram of MNIST network is shown in figure 3.7.

50

hram1
Neuron
| 0
Weights -

i 1
| 1
i 1
| 1
i 1
| 1
i 1
| 1
i 1
| 1
i 1
| 1
i 1
| 1
: |
i Memory :
| o , |
| Memory F—1 Hidden | |
i Memory Layerl i
: i Memory !
| 1
i tNeuron i
i hram1 Weights ;
: Memory i
|
| 9 :
| 1
i 1
| 1
: |
i Neuron0 i
: output i Output !
' ; L |
: FSM Controller { |prediction !
i Neuron 9 ! Unit i
' MLPTOP output :
1

Figure 3.6: Block Diagram of the Network used for MNIST Data-set

hram1 :
hram2 'm:)'u" Hidden
i Layerl

I 1
| |
I 1
| |
I 1
| |
I 1
| |
I 1
| |
I 1
| |
I 1
| gl |
| M ; Memory | |
i i ;
| : ;
| Inputs :
i | Memory :
I 1
| |
: |
! hram2 wm;.uu ;] ;
i hram1 Weights Hidden i
! Memory i Layer2 '
: S ' Memory 1
| |
I 1
| |
: |
i Neuron0 i
: output i Output !
| H P 1
: FSM Controller prediction '
i Neuron 9 : Unit i
| MLPTOP output :

i

Figure 3.7: Block Diagram of the Network used for SVHN Data-set

51

Input

Neuron
Activation Output
Function

Multiplier Accumulator
Weight

Neuron Unit Top

Figure 3.8: Block Diagram of the neuron unit used in both MNIST and SVHN
networks

3.5.2.3 Neuron Top Block Diagram

Each physical neuron consists of three main hardware blocks. The multiplier which is
used to multiply the inputs by the weights. The accumulator which is used to accumulate
the output of the multiplier to the previous outputs. Finally, the activation function block
that is used to generate the scaled output according to its type (sigmoid or RELU). The
block diagram of the neuron unit is shown in figure 3.8.

All the approximations are hardware implemented (i.e., approximate multiplier, trun-
cated accumulation, approximate activation function, computation skipping, neuron skip-
ping and precision scaling). The precision scaling is common with other approximations.
This means the word length changes gradually while using another approximation. This
method creates a very wide set of hardware combinations, and each combination has dif-
ferent accuracy, power, area, and energy. Not necessarily that each combination has a
unique result. Different approximations may produce the same results. The energy is
obtained using the following formula:

nxp
f

where n is the number of cycles, p is the power in mw and f is the frequency of oper-

Energy = 3.8)

ation.

To explain the energy formula, the network of MNIST dataset is taken as an example.
It consists of 785 input neurons, 100 hidden neurons, and 10 output neurons. It is a fully
connected network, all the layer outputs are used as inputs to the following layer. The
output of each neuron is calculated as the weighted sum of the neuron inputs passed by
the activation function. To get the output for a certain input from such a network, it is
needed to perform 78500 multiply-accumulate (MAC) operations in the first layer and
1000 operations in the output layer. Since the hardware uses only 10 physical neurons,

52

then the number of cycles (n) to finish the whole computation is the total number of needed
operations divided by the physical neurons count and equals 79500/10 = 7950 cycles.

Another item is calculated for each configuration is the accuracy loss. The accuracy
loss is the percentage decrease of the accuracy measured from the highest accuracy value.
Each data set has a different point that produces the highest accuracy result and this is
discussed in the following sections.

3.6 MNIST Results

In this section, the results obtained from the MNIST data-set are discussed. For all
the results of MNIST data-set, the accuracy loss is calculated with reference to the highest
accuracy. The highest consumed energy is obtained when the ANN operates using word
length of 12-bits (because experimental results show that the 12-bits word length results
in the same accuracy as the 32-bits and the floating point in case of the MNIST dataset)
and utilizing computation skipping technique, and this implementation (i.e., 12-bits and
computation skipping) also gives the highest accuracy. The configuration that results in
the highest accuracy result also consumes the highest energy.

3.6.1 MNIST Energy results

In figure 3.9, the different configurations are introduced. Each point on the graph
shows a certain accuracy loss and a certain normalized energy value. Each color on the
graph indicates a certain configuration. For example, the red color indicates using RELU
activation function, computation skipping, and truncated accumulation techniques. Each
color has more than one point, each point indicates a certain word length. As the word
length decreases, the accuracy loss increases, however, the normalized energy decreases.
At each energy level, many points fulfill this energy, but the best point to choose is the
one with the lowest accuracy loss. This graph is used to pick the best point in each energy
level to be used later for reconfiguration.

3.6.2 Effect of computation skipping

The first important optimization in this network is the computation skipping. The
MNIST data-set by nature is black and white images represented as pixel, and each pixel
has intensity value. This results in a large number of pixels with zero value. The com-
putation skipping is the best optimization to use in this case, as it skips the unneeded
computation while maintaining the same accuracy.

Figure 3.10 shows two curves, one using the computation skipping technique, and the
other is the normal results without using the computation skipping technique. The result

53

12 ¢ ' ®Sig_Cs
()
$ e s Sig_Cs_AM
g>n 1 o0 ®)
o e ’ Sig_Cs_TA
c
2os8 . ® e Sig_Cs_Ns
S ® ®)
T 06 ®Sig_Cs_TA_Ns
£ | J ‘ PY ° o°
5 o . : ®RELU_Cs
=z 04 ° o °
@ RELU_Cs_AM
0.2 e ®RELU_Cs_TA
0 ® RELU_Cs_Ns
0 1 2 3 4 @RELU_Cs_TA_Ns

Accuracy Loss

Figure 3.9: MNIST : Approximation results for MNIST data-set, sig: Sigmoid
activation function, Cs: Computation skipping, AM: Approximate Multiplier, TA:
Truncated Accumulation, Ns: Neuron skipping, RELU: RELU activation function

19
0.95
0.9
0.85
08 ®
0.75
0.7
0.65
0.6 | —8—No_Cs
0.55 Cs

0.4 T
0.35
0.3

Figure 3.10: MNIST : Effect of computation skipping on the accuracy versus
consumed energy

54

14

1.2

—Sig_Cs
0.8 —
RELU_Cs

0.6

Normalized energy

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy Loss

Figure 3.11: MNIST : Comparison between Sigmoid and RELU in terms of Energy
and Accuracy Loss

indicates that the hardware utilizing the computation skipping has the same accuracy loss
as the hardware without computation skipping, but it uses less energy. Therefore, the
computation skipping technique is used as the default hardware configuration.

3.6.3 Sigmoid Vs RELU

The second observation from the results of the MNIST data set is the major difference
between RELU and Sigmoid activation functions. In terms of accuracy, using the RELU
activation function produces lower accuracy than the Sigmoid activation function. Each
point on the graph shown in 3.11 indicates that any configuration using RELU activation
function for different word lengths can be found using Sigmoid activation function on the
same energy level with a lower accuracy loss. This means that sigmoid approximation is
better than RELU approximation. The reason that RELU produces lower accuracy results
is that saturation is used in the implementation of RELU to limit the integer part of the
output of RELU. This saturation is used to save power at the cost of reduced accuracy.
According to this observation, all RELU points are excluded from the search space and
the configuration selection step includes Sigmoid points only.

After removing the RELU activation function results from the selection points, the
remaining configuration that can be used for the selection of the best combination between
area, power and accuracy are shown in figure 3.12.

55

=
>

=
N

(]
1 o
Sig_Cs

§0.8 L
5 o Sig_Cs_AM
S 0.6
[ORa .
5 ° Sig_Cs_TA
No4 PS Sig_Cs_Ns
©
£ ig_Cs_TA_N
502 ® ®Sig_Cs_TA_Ns
4

0

0 1 2 3 4

Accuracy Loss

Figure 3.12: MNIST : Configuration points used as a searching space to choose the
suitable implementation at a given energy for MNIST data-set, sig: Sigmoid
activation function, Cs: Computation skipping, AM: Approximate Multiplier, TA:
Truncated Accumulation, Ns: Neuron skipping

3.7 SVHN Results

In this section, the results obtained using MNIST data-set SVHN are discussed. For
all the results of the SVHN data-set, the accuracy loss is calculated with reference to
the highest accuracy. The highest consumed energy is obtained when the ANN operates
using word length of 8-bits (because experimental results show that the 8-bits word length
results in the same accuracy as the 32-bits and the floating point in case of the SVHN
dataset) and without utilizing any other approximation technique, and this configuration
also gives the highest accuracy. The configuration that results in the highest accuracy
result also consumes the highest energy.

3.7.1 SVHN Energy results

In figure 3.13, the different configurations are introduced. Each point on the graph
shows a certain accuracy loss and a certain normalized energy. Each color on the graph
indicates a certain approximation. For example, the red color indicates not using any
approximation technique while getting these results. Each color has more than one point,
each point indicates a certain word length. As the word length decreases, the accuracy
loss increases, but the normalized energy decreases. At each energy level, many points
fulfill this energy, but the best point to choose is the one with the lowest accuracy loss. This
graph is used to pick the best point in each energy level to be used later for reconfiguration.

It is worth to note that the computation skipping technique is not used in the SVHN
network implementation. This is because that the input images in the SVHN data set

56

1.2

1 °
>
X
7] 0.8
o °
No_a
g 06 ° PP
= TA
€ []
= 0.4 Ns
o
z
0.2 O Ns_TA
0
0 20 40 60 80

Accuracy loss

Figure 3.13: Approximation results for SVHN data-set, No-app: No approximation,
Ns: Neuron skipping, TA: Truncated Accumulation

come in an RGB format, they are not black and white images. As a result, not many zero-
valued inputs exist in that data-set. If the computation skipping is added for this data-set,
this would cause a little increase in the area due to the added hardware for checking the
value of the input. With this increase in hardware, the dynamic power does not decrease
due to the absence of the zero inputs. Therefore, the computation skipping technique is
not used at all in the SVHN data set implementation.

3.8 Proposed Algorithm and Configurations Selection

To introduce the proposed energy adaptive neural network (EANN) algorithm, sup-
pose the use of a battery-powered application. In these applications, if the voltage level
that feeds the hardware circuits falls below a certain level, it causes the system to power
OFF. If the profile of the voltage drop with time is known, then the amount of the available
energy for the system to operate for a certain amount of time is also known. The EANN
system can make use of this information to adapt its hardware units, and to operate with
lower energy at a lower accuracy mode, thus the battery lasts for more time.

As explained in the earlier sections in this chapter, both MNIST and SVHN networks
have more than one hardware configuration. Many approximations with different word
length are implemented, thus produces many configurations to the system. Each neuron
configuration has a different area, power, and accuracy. These different configurations are
used to adapt the hardware units to the given energy budget.

The hardware reconfiguration is achieved by using the FPGA platform and the partial
dynamic reconfiguration feature. The logic in FPGA is divided into two parts: the static
part which models the memory used for storing weights and the top-level circuits, and
the dynamic (re-configurable) part which is the neuron unit. During reconfiguration, the

57

0.546

Normalized Energy

3.73

053
051 0.499 0.502
0.49 0.462
0.47
0.45 I
0.43
1.46 055 053

0.617

0.556 0.557

0.4 0.09

Accuracy Loss

0.06

0.707

0.662 6:665 ‘

0.05 0.03 0.02

0.798

Figure 3.14: MNIST: Energy levels that the proposed EANN system uses to adapt
to the given energy budget

Table 3.2: power and accuracy regions for MNIST data-set

Normalized Energy | Accuracy Loss% | Configurations
0.23 3.73 Cs_TA_Ns 4
0.255 3.26 CS_TA_4
0.371 0.68 Cs_TA_Ns_6
0.389 0.55 Cs_Ns_6
0.412 0.25 Cs_TA_6
0.431 0.09 Cs_6
0.549 0.07 Cs_8
0.569 0.06 Cs_TA_8
0.765 0.02 Cs_10
0.9 0 Cs_12

CS: Computation Skipping, NS: Neuron Skipping, TA: Truncated Accumulation

static part remains functioning and the dynamic part changes without turning the system
OFF. This allows the EANN system to select among the different configurations to adapt
itself to meet the energy constraint without completely turning OFF the system.

For the MNIST data-set, the energy is divided into ten levels in this test case as shown
in figure 3.14. In the EANN system, there is a sensing circuit that could determine the
available energy, then the comparators select the nearest level to that energy level. After
choosing the best-fit energy level, the suitable configuration that fits with this energy bud-
get is selected from 3.2. For example, if the sensing circuit outputs energy greater than or
equal to 0.9 (i.e., 90% of the total energy of the unapproximated neural network), then the
proposed EANN system operates with the highest performance and zero accuracy loss.

58

1.2

>
0
g 08 0.695 0.72
(V]
o 0.575 0.595
e 06
S 0.4715
£
5 0.4
2

0.2

0
40.283 12.31 8.215 5.68 0.347 0

Accuracy loss

Figure 3.15: SVHN: Energy levels that the proposed EANN system uses to adapt to
the given energy budget

Table 3.3: power and accuracy regions for MNIST data-set

Normalized Energy | Accuracy Loss% | Configurations
0.4715 40.283 Ns_4
0.575 12.31 Ns_5
0.595 8.215 No-App_5
0.695 5.68 Ns_6
0.72 0.347 No-App_6
1 0 No-App_8

No-App: No approximation, NS: Neuron Skipping

From Table 3.2, the configuration that is selected in this case is the neuron unit that sup-
ports computation skipping using a word length of 12. If the energy drops to 0.765 (i.e.,
76.5% of the total energy of the unapproximated neural network), then the second energy
level with accuracy loss 0.02% is selected and the FPGA is reconfigured. The configu-
ration that is used in this case is the neuron unit that supports computation skipping and
truncated accumulation with word length 10.

For the SVHN data-set, the energy is divided into six energy levels as shown in figure
3.15. Here in this case, if the sensing circuit outputs full energy, then the proposed EANN
system operates with the highest performance and zero accuracy loss. From Table 3.3,
the configuration that is selected in this case is the neuron unit with no approximation
using a word length of 8. If the energy drops to 0.72 (i.e., 72% of the total energy of the
unapproximated neural network), then the second energy level with accuracy loss 0.347%
is selected and the FPGA is reconfigured. The configuration that is used in this case is the
neuron unit with no approximation and word length 6.

59

It should be noted that none of the selected configuration contains approximate mul-
tiplier, this is because that any combination contains approximate multiplier has higher
accuracy loss compared to other configurations with the same energy. Therefore, there is
always a replacement to the approximate multiplier approximation with any other approx-
imations.

The cost of the re-configurability is the reconfiguration time, which is the time con-
sumed by the dynamic part to change from one configuration to another one. Another
overhead of re-configurability is that the area occupied on the FPGA is the area of the
largest re-configurable module of the selected re-configurable modules. However, the
strength of the proposed energy adaptive technique is that the EANN system does not
shut down when it fails to achieve the highest accuracy. Instead, it keeps operating with
the lower available energy budget at the expense of lower accuracy.

3.8.1 comparison between conventional system and EANN system

To compare the proposed EANN system and the conventional ANN systems, suppose
that system A (a conventional ANN system) needs normalized energy of 0.8 (i.e., 80% of
the total energy of the unapproximated neural network) to work with the best performance
and no accuracy loss. In system A, if the energy falls below 0.8, the system turns off. In
the proposed EANN system B, if it is given 0.8 energy, it works with the best performance
and no accuracy loss. However, in system B (the proposed EANN system) if the energy
falls below 0.8 and becomes 0.6 (i.e., 60% of the total energy of the unapproximated
neural network), it re-configures its units and works with the available energy budget with
an accuracy loss of 0.09%.

If there is always available energy of 0.8, systems A and B are of the same perfor-
mance. When system B has energy less than 0.462 (i.e., 46.2% of the total energy of the
unapproximated neural network), it also shuts down. The main drawback of system B is
that it occupies a total area equivalent to the conventional ANN system (i.e., system A)
even if the available energy is between 0.4 and 0.8. However, from an energy perspec-
tive, system B adapts itself to the available energy budget trading off the accuracy for
energy adaptively. System B is the best choice if the available energy is always chang-
ing. The overhead of the reconfiguration is the reconfiguration time between the different
modules. Figure3.16 shows the difference between the proposed EANN system and the
conventional system that targets maximum accuracy over time from the functionality per-
spective.

3.8.2 Partial Dynamic Reconfiguration Results

Figure 3.17 shows the design floor-planning on “ZYNQ Ultra-Scale Plus” MPSoC in
case of SVHN data-set, and figure 3.18 shows the design floor-panning in case of MNIST

60

[iN

= = = Energy profile
_____ System A
1 — System B

o
©

o
©

o
3

o
o
T

o
2
T

Normalized Energy

o
w
T

o
N
T

o
[

Time

Figure 3.16: Comparison between conventional systems and energy adaptive
system when exposed to variable energy

data-set. The re-configurable partitions of this design are the 10 physical neurons, they are
floor-planned to accommodate the maximum hardware needed among all configurations.
The most important benefit of partial dynamic reconfiguration is that there is no need to
switch the system off to perform the reconfiguration task, instead, it takes place in the run
time. The re-configurability of the FPGA allows utilizing multiple implementations of
the same module that does the same functionality, but with different accuracy and energy
consumption. This work applies the idea of PDR on the artificial neural networks, where
the re-configurable module is the neuron unit that has different implementations with dif-
ferent approximations. It is tested on two different artificial neural network structures one
for SVHN data-set and the other for MNIST data-set.

Partial dynamic configuration saves much area. It is not needed to implement all the
possible configurations of the system and build a controller to perform the switching task
between them. As shown in Table 3.4 for SVHN data-set, if all possible configurations
of the neuron unit are implemented on the board, this consumes much area and power
consumption.

The needed area to implement all configuration is about (11974 CLBs and 466
BRAMs) and consumes a total power of about 339 mw. The area needed to implement the
EANN system is the area of the largest reconfiguration module (highest accuracy), and
the area of the static routing connections which is about (4297 CLBs and 161.5 BRAMs).
This indicates that the EANN system achieves about 2.8X area and power reduction.

In the case of MNIST data-set as shown in Table 3.5, if all configurations are imple-
mented on the same board, the area needed is about (27987 CLBs and 140.5 BRAMs)
and consumes a total power of about 198 mw. The area needed to implement the EANN
system is the area of the largest reconfiguration module (highest accuracy) and the area of

61

Figure 3.17: SVHN : Floor-planning and static routing (re-configurable area) of
the physical neurons in case of SVHN data-set

Figure 3.18: MNIST : Floor-planning and static routing (re-configurable area) of
the physical neurons in case of MNIST data-set

Table 3.4: Area, Power and accuracy results for SVHN configurations

Configuration CIB Argi{ AM Power(mw) | Accuracy(%)
WL_8 4297 | 161.5 121 80.58
WL_6 3015 | 121.5 87 80.3
WL_5 2489 | 101.5 72 73.96
WL_4 2173 81.5 59 47.73

62

Table 3.5: Area, Power and accuracy results for MNIST configurations

Configuration CLBArgaR AM Power(mw) | Accuracy(%)
Cs_12 7369 31 46 97.92
Cs_10 5715 26 39 97.9

Cs_TA_8 3736 21 28 97.86
Cs_8 3980 21 29 97.85
Cs_6 2728 15.5 22 97.83

Cs-_TA_6 2606 15.5 21 97.67

Cs_TA_4 1853 10.5 13 94.66

the static routing connections which is about (7369 CLBs and 31 BRAMs). This indicates
that the EANN system achieves about 3.8X area and around 4X power reduction.

The overhead of using PDR is the reconfiguration time needed to load one configura-
tion of the neuron unit and the need for external memory to store the partial bit files of
all neuron unit configurations. The reconfiguration time = (Total Partial Bit-Stream File
Size / Throughput). The commonly used access port for PDR is the Internal Configura-
tion Access Port (ICAP). The throughput of the ICAP is 400 MB/sec. The reconfigura-
tion time depends on the area of the partition and the speed of the PDR controller. Using
the“ZYNQ Ultra-Scale Plus” MPSoC, the maximum reconfiguration time to reconfigure
the ten physical neurons is 3.7625 ms for MNIST data-set, and 2.7825ms for SVHN data-
set. The reconfiguration time is very short compared the rate of energy changes. This
assumption is emphasized by noting that the energy level changes are mainly due to the
harvested energy variations or the battery energy level fluctuations, which are usually in
the order of seconds.

3.9 Conclusion

This work represents a new method to make the neural network energy adaptive using
the partial dynamic reconfiguration feature in the FPGA platform. The proposed EANN
system uses a variety of network approximation techniques such as precision scaling, ap-
proximate multipliers, truncated accumulation, approximate activation function, compu-
tation skipping, and neuron skipping. The idea is tested using two data-sets, SVHN and
MNIST. Each one is tested on a different neural network with different network architec-
ture. A combination of different configurations is then utilized to achieve a wide range
of energy levels to adapt to the available energy budget in the proposed EANN system at
the expense of degraded accuracy. Using the partial dynamic reconfiguration technique,
the proposed EANN system selects one of the configurations at a time to adapt to the
energy budget at the expense of lower accuracy. With the proposed approach, the EANN

63

system is always functioning with variable accuracies according to the available energy
level rather than the ON-OFF conventional system behavior.

64

Chapter 4

Design and Implementation of
Izhikevich neuron model using
Approximate Multiplier

4.1 Izhikevich neuron model

The Izhikevich neuron model is seen as a very effective model. It combines some
of the biologically plausible properties as Hodgkin—Huxley model, while it is computa-
tionally efficient as integrate and fire models. The model depends on four parameters
a,b,c,d. Tuning these parameters reproduce different spiking patterns. The model is a two
differential equations :

dv

Z:0.04v2+5v+14o—u+1 4.1)
d
d—bt‘ = a(bv—u) 4.2)
With the reset after spike equations :
V & C
if v>30mV, then{ “4.3)
u —u+d

Where a, b, c, d are dimensionless parameters, and t is the time variable. v is the
membrane potential, and u is the membrane recovery variable. After the spike reaches
its threshold 30 mv, the membrane voltage and recovery variables reset to their default
values. I represents the input stimulus current.

The resting potential in the model is about -70 mv to -60 mv. The model does not have
a fixed value for the threshold as real neurons. It can range from -55mv to -40mv. Each
parameter of a, b, ¢, and v has a certain meaning:

65

RZ [RS
gl e
LTS,TC .
025 © |
© T
@ : I8
© FS = .
2 | GRSIBCH Z g 4
g i H
s g, JSLTSRZ G
o
.............. G oos|WIC T]
0 0.02 0.1 65 55 50
parameter a parameter ¢

Figure 4.1: Izhikevich model parameters and the resulting spiking patterns
RS(Regular Spiking), IB (Intrinsically Bursting), CH(Chattering), FS(Fast
Spiking), LTS(Low Threshold Spiking) [28]

1. a is the time scale of the recovery variable u. Smaller values of a lead to slow
recovery. Its typical value is 0.02.

2. bis the sensitivity of the recovery variable to the dynamics of the membrane voltage.
Larger values of b mean that u and v are directly coupled and results in oscillations
and low-threshold dynamics. Its typical value is 0.2.

3. cis the reset value of the membrane voltage after a spike. Its typical value is -65mv.
4. d s the reset value of the recovery variable after a spike. Its typical value of 2.

The choice of these parameters produces different spiking pattern, figure 4.1 shows the

selection of the different parameters and the resulting pattern for each set of parameters
[28].

4.1.1 Izhikevich neuron patterns experimental results

The excitatory neurons are classified according to the spiking patterns that they pro-
duce. Their classifications are: Regular spiking (RS), Intrinsically bursting (IB), and
Chattering (CH). Inhibitory neurons are classified to Fast spiking (FS) and Low Thresh-
old Spiking (LTS). First of all, the Izhikevich neuron model is simulated on MATLAB to
make sure that it regenerates most of the spiking patterns. In the following subsection the
results obtained from the simulations are presented.

4.1.1.1 Regular spiking

Regular spiking is the most common spiking pattern. The neuron fires spikes when it
is exposed to a DC current. There is a period between each spike called inter-spike period

66

40

MMM

-100 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

time t [ms]

40

WIMMNIM

1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
time t [ms]

Figure 4.2: Regular spiking pattern, and the increasing inter-spike frequency at
increasing the input dc current

and the frequency of the spikes increases by increasing the input current. The model
parameters of this type of spiking are: a=0.02, b=0.2, c=-65mv, and d=8. Figure 4.2
shows the regular spiking and the effect of increasing the DC current on the inter-spike
period/frequency.

4.1.1.2 Intrinsically Bursting

Intrinsically bursting neurons are the second type of the excitatory neurons, their firing
pattern is somehow the same as the regular spiking, however, they fire a burst of spikes at
the start followed by regular spikes with a certain inter-spike period. The model parame-
ters to reproduce this pattern are: a = 0.02, b=0.2, c=-55mv, and d=4. Figure 4.3 shows
the intrinsically bursting spike pattern.

67

40

MMM,

| | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
time t [ms]

Figure 4.3: Intrinsically bursting spiking pattern

4.1.1.3 Chattering

Chattering neurons are the last set of excitatory neurons. Their firing pattern is dif-
ferent from the last two types. They fire bursts in a repetitive manner with a certain inter-
bursts period. As the injected DC current increases, the number of spikes per burst in-
creases. To reproduce this pattern, the model parameters are: a=0.02, b=0.2, c=-50mv,
and d=2. Figure 4.4 shows the chattering pattern and the effect of increasing the input
stimulus on increasing the number of bursts per spike.

4.1.1.4 Fast Spiking

Fast spiking neurons are the first type of inhibitory neurons. The neurons fire periodic
spikes with very high frequency relative to the frequency of the regular spiking neurons.
The model parameters of this pattern are: a =0.1 that provides the needed fast recovery
and b = 0.2, c =-65mv, and d=2. Figure 4.5 shows the fast spiking pattern.

4.1.1.5 Low Threshold spiking

The last type of inhibitory neurons is the low threshold spiking pattern. In this pattern,
the neurons fire a high frequency spikes with a frequency adaption, i.e., slowing down the
frequency after some time. They also fire at a low threshold which is obvious from the
value of b = 0.25 in the model parameters. The rest of the model parameters are: a=0.02,
c¢=-65mv, and d=2. Figure 4.6 shows the low threshold spiking pattern.

68

40

I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
time t [ms]

i ‘

v [mV]

L L L L
0 50 100 150 200 250 300 350 400 450 500
time t [ms]

Figure 4.4: Regular spiking pattern, and the increasing inter spike frequency at
increasing the input dc current

40

20 B

_20 | .

o W

v [mV]

~100 ! ! ! ! ! ! ! | |
0 50 100 150 200 250 300 350 400 450 500

time t [ms]

Figure 4.5: Fast spiking pattern

69

40

201 : : ; ,

v [mV]

.

_100 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
time t [ms]

Figure 4.6: Low threshold spiking firing pattern

4.2 Piece Wise Linear Implementations of Izhikevich
neuron model

There are several hardware implementations of the Izhikevich neuron model. As noted
from the equation of Izhikevich, most area and power consumption results from the square
term in the equation. The implementations addressing this neuron model are interested in
approximating the equations to be more hardware friendly.

The common hardware approximation of Izhikevich neuron model is the PWL (Piece
Wise Linear) implementation as presented in [29]. The PWL implementation of the model
is a multiplier-less implementation. The implementation approximates the square func-
tion in the model and replaces it with a comparison or absolute value operations that are
far less expensive than the exact square function. This approximation simplifies the hard-
ware needed for the implementation since the hardware of a multiplier is much greater than
the hardware of shift and add operations. As a result, the implementation of a network
containing thousands of neurons is doable on the FPGA board.

The paper [29] discusses three types of Piece Wise Linear implementations:

1. Second-Order Piece-wise Linear Model: 2PWL model approximates the square
operation of the original model with two crossed linear lines as shown in figure 4.7,

the approximation is formulated as follows:
dv
& =K|v+62.5|-K,—u+1
9 =abv—u)

In this model, there are two parameters K, K> that can be tuned to get a near exact
behaviors, so they provide two degrees of freedom.

70

Figure 4.7: Second-Order Piece-wise Linear approximation

2. Third-Order Piece-wise Linear model: 3PWL model approximates the square op-
eration of the original model with three crossed linear lines as shown in figure 4.8.
The 3PWL model approximation is formulated as follows:

{% = K1([v+62.5+ Ka|+|v+62.5 - Kp|) - K3 Ko Ky —u+1 “s)

% =a(bv—u)
This approximation has three tunable parameters K, K>, and K3. These parameters
provide three degrees of freedom to the model to be able to achieve a near behavior

to the original model. The 3PWL model is more expensive than the 2PWL model,
but it is closer to the original model.

3. Fourth-Order Piece-wise Linear Model: The last model proposed in this paper and
the closest one to the original model. It approximates the original model by four
intersecting linear lines as shown in figure 4.9. It is formulated as follows:

% =Ky([v+ 625+ K3|+|[v+62.5-K3|) - K |[v+62.5|-4K3Ky —u+1
fl—b; =a(bv—u)
Similar to the 3PWL model, the 4PWL model has three degrees of freedom pro-

vided by the three parameters K3, K>, Kj. Itis the most complex model in hardware
implementation, yet it is the closest one to the original behavior.

(4.6)

In all PWL model approximations the coefficients are chosen so that they simplify
the hardware implementation and achieve a closer behavior to the original model. These
coefficients are chosen to be implemented as a shift and add operations.

The proposed hardware implementation in this thesis is based on the concept of ap-
proximate multipliers. The approximate multipliers are discussed in deep details in a

71

VY
kk(2—k,)

Figure 4.8: Third-Order Piece-wise Linear approximation

Figure 4.9: Fourth-Order Piece-wise Linear approximation

72

previous chapter. The approximate multipliers are hardware friendly that consume less
area and power than the exact multipliers. The approximate models have to produce the
same firing patterns as the original model and they also have to produce the same behavior
when integrated into a network of many spiking neurons.

Both approximate based Izhikevich neuron model and PWL neuron models are simu-
lated and compared with each other to discover the key strengths and weaknesses in each
of them. Error metrics are evaluated for both models and a figure of merit is introduced
to judge the effectiveness of both models. The network behavior is also simulated and the
spiking patterns for them are reproduced and compared to the original model.

In the following sections, the detailed implementation of the approximate multiplier
based Izhikevich neuron model is discussed and its simulation results are introduced as
well. Then a comparison between the approximate multiplier based Izhikevich model and
the PWL implementations is held.

4.3 Approximate Multiplier Based implementation of
Izhikevich neuron model

Multiplication is the most hardware costly operation in the Izhikevich neuron model.
Unlike the exact multipliers, the approximate multipliers consume less area and power
and introduce some errors to the original model. In this work, the use of approximate
multipliers in the hardware implementation of the Izhikevich neuron model is studied.
There are several approximate multipliers in the literature and they can be used for imple-
menting the square term in the Izhikevich neuron model. What gives an advantage to an
approximate multiplier over another is its ability to reproduce the same spiking patterns
of the original model with minimum errors. To choose a certain approximate multiplier
to implement the Izhikevich model, simulations are held to discover the errors introduced
by each approximate multiplier.

U and v variables in Izhikevich equations are plotted against each other in the original

model and the approximation models to see how far these models away from the original

one. U and v equations are plotted in the equilibrium state so % = % = 0. As a result,

their equations map to the following equations :

u; = 0.04v% +5v+ 140
4.7

u2=bv

4.3.1 Truncated Multiplier Implementation

The integer length and fraction length of the word used in that implementation are
chosen so that they produce the least errors while having the least possible value in order

73

not to complicate the hardware implementation. The integer part has to be 8 to be able
to hold the maximum value of u and v (-90). The trade-off here is to choose the fraction
length. As the fraction length decreases, the total word-length decreases and the hard-
ware units are simpler. To choose the least possible fraction length, Matlab simulation
is used to calculate the error between the approximate multiplier implementation with
different fraction lengths and compare it with the original model in the u-v plot. Figure
4.10 shows how the fraction length affects the behavior of the u-v plot. As the fraction
length increases, the approximate multiplier based model becomes very close to the orig-
inal behavior in the u-v plot. The u-v plot in the equilibrium state gives an indication of
what will happen in the dynamic behavior. Figure 4.11 also presents the maximum error
introduced by implementing the model using truncated multiplier versus different fraction
lengths. It also shows that a fraction length of 8 is a good choice for the fraction length
since it produces zero error in the u-v plot.

It is still needed to show the dynamic behavior of the neuron model and how it is
affected by the fraction length variations. Again, the model is simulated in its dynamic
state and the different responses of the model for different firing patterns are shown in
figures 4.12, 4.13. In figure 4.12, the model is simulated with fraction length 4. It is very
clear that this case is far away from the original model. The approximate model does not
produce any of the firing patterns except for the Low Threshold Spiking mode. Even in
the case of low threshold spiking, the model is not accurate in timing and does not follow
the original model. In figure 4.13, the firing patterns are improved in all cases, and now
the approximate multiplier based model follows the original model except for some slight
errors in the timing between them. In the next subsections, the same analysis is done for
the remaining types of approximate multipliers.

4.3.2 Error Tolerant Multiplier Approximation

In this model, there is a tunable parameter in the multiplier which is the non-
multiplication part(NMB). The word length and fraction length in this model are fixed
and chosen to be WL=16, and FL=8 to be consistent with the truncated multiplier model.
The task now is to see the effect of varying the non-multiplication part on the equilibrium
state, i.e., u-v plot and on the dynamic behavior, i.e., the spiking patterns. It is worth to
note that increasing the non-multiplication part simplifies the hardware implementation,
however, it reduces the output quality.

Figure 4.14 shows how the u-v plot is affected by varying the non-multiplication part.
The best result occurs when the non-multiplication part is O which means exact multipli-
cation. As the non-multiplication part increases the results get worse. A near-optimum
result is obtained by choosing the non-multiplication part to be 4, but it still has some
errors. Figure 4.15 demonstrates the same observation and shows that non-multiplication

74

original model
proposed model

FL=0 ™

-80

-70 -60 -50 -40 -30

riginal model
roposed model

FL=2 ™

-70 -60 -50 -40 -30
v

—— original model
proposed model

FL=4 ™

-80

-70 -60 -50 -40 -30
v

-70 -60 -50 -40 -30
v

original model
proposed model

FL=8 ™

-80

-70 -60 -50 -40 -30
v

riginal model
proposed model

FL=1 ™

-80 =70 -60
v

=50 -40 =30

riginal model
roposed model | |

FL=3 ™

-80 -70 -60

-50 -40 -30

original model | |
proposed model

FL=5 ™

-80 -70 -60
v

-50 -40 -30

riginal model
roposed model

-80 -70 -60
v

-50 -40 -30

Figure 4.10: U-V plot for the truanted multiplier implementation for different
fraction lengths, FL: Fraction Length

75

350

Maximum Error

Non multiplication part

Figure 4.11: Maximum error vs the fraction length in the truncated multiplier
implementation

parts of 4 and 5 results in a maximum error of less than 1. Thus, it is chosen to per-
form the dynamic simulations using non-multiplication part of 4 and compare it with the
non-multiplication part of 8.

The dynamic simulations presented in figures 4.16 and 4.17 show that the approximate
model reproduces the spiking pattern in both cases, i.e., non-multiplication part =8 and
non-multiplication part =4. Referring back to the results of the truncated multiplier, the
model was not able to regenerate the spiking patterns when the fraction length is 4, but
when fraction length is 8 it could regenerate the patterns with good accuracy. The error-
tolerant multiplier regenerates the spiking patterns when the non-multiplication part =
8 but with a very bad accuracy. And when the non-multiplication part = 4 the patterns’
accuracy is good in most cases. There is still a slight shift between the original model and
the approximated model at higher values of time as in the case of Intrinsically Bursting,
Fast spiking, and Low Threshold Spiking in figure 4.17.

4.3.3 Broken Array Multiplier Approximation

The last approximate multiplier is the Broken Array multiplier. In this approximation,
fixed word length and fraction length are used. They are chosen the same as the previous
ones WL=16 and FL=8. This multiplier has two degrees of freedom to tune for better
results, the vertical break level(VBL) and the horizontal break level(HBL). As known
from the illustration of the broken array multiplier, the VBL does not degrade the output
quality very much. The VBL can increase very much before it has a significant effect on
the results. This is not the case with HBL, every single increase in the HBL affects the
output quality. In the simulations, the results have fewer errors in case of increasing the
VBL and it gets much worse as the HBL increases. As the WL is chosen to be 16, then
the multiplication result needs 32bits to be accurate. The FL is 8, so the first 16 bits are

76

20 20
0 0
_20 -20
= =
£ E
> -40 : : 1 > -40
-60 } J 2 -60
_g — 1 -80
original model original model
10 . . proposed model 100 : : : : : proposed model
0 100 200 300 400 500 0 50 100 150 200 250 300 350 400 450 500
RS time t [ms] IB time t [ms]
40 40
20 20
0 0
— —20 S -20
£ E
> 4 > -40
—ed —6d |“4UwHHJHHHHHHJHku,mlmu
o~ W
-8 original model -800 original model 7
proposed model proposed model
_10 i i i ; _10 1 I N N
0 100 200 300 400 500 0 100 200 300 400 500
CH time t [ms] FS time t [ms]
40
20
0
— —20
S
E
> 40
-60

original model
proposed model

0 100 200 300 400 500

LTS time t [ms]

Figure 4.12: Different spiking patterns reproduced using the truncated multiplier
approximation with fraction length = 4, RS: Regular Spiking, IB: Intrinsically
Bursting, CH: Chattering, FS: Fast Spiking, LTS: Low Threshold Spiking

77

v [mV]

%

/

original model
proposed model
N

I
0 100

I
200

300 400

time t [ms]

original model

500

100 proposed model
0 100 200 300 400 500
CH time t [ms]
40
20
0
— —20
S
E
> 40]
M
-80 original model 7]
proposed model
~100 i i ; i
0 100 200 300 400
LTS time t [ms]

v [mV]

original model
proposed model
~100 i i : :
0 100 200 300 400 500
IB time t [ms]
40

v [mV]

1/

Wil
t

original model
proposed model

200
time t [ms]

300

400

500

Figure 4.13: Different spiking patterns reproduced using the truncated multiplier
approximation with fraction length = 8, RS: Regular Spiking, IB: Intrinsically
Bursting, CH: Chattering, FS: Fast Spiking, LTS: Low Threshold Spiking

78

— original model
proposed model { 25

original model
proposed model

NMB — 8 o0 -80 70 60 50 40 30 NMB _7 “Ze0 -80 =70 -60 -50 -40 -30
= v = v

2 original model — original model
—— proposed model proposed model

NMB j— 6 =90 -80 -70 -60 -50 -40 -30 NMB j— 5 o0 -80 -70 -60 -50 -40 -30
= v = v

original model
proposed model

2 original model
proposed model

NMB — 4 o0 -80 70 60 -50 -40 -30 NMB — 3 ~90 80 =70 60 50 20 =30
= M = v

original model
proposed model 25

original model
proposed model

NMB _2 =90 80 =70 60 50 40 =30 NMB — 1 “90 80 =70 60 50 40 30
= v == v

original model
proposed model

NMB _0 -90 80 =70 60 =50 20 =30
- v

Figure 4.14: U-V plot for the error tolerant multiplier implementation for different
non multiplication parts, NMB: Non Multiplication Part

79

Maximum Error
N

0 1 2 3 s 5 6 7 8
Non multiplication part

Figure 4.15: Maximum error vs Non multiplication part in the error tolerant

multiplier implementation

the fraction part. The VBL can be chosen to be 16 so that it affects only the fraction part.
To choose the HBL, it is needed to study its effect very well. To do that, the HBL is tuned
and simulation results are analyzed to get the best compromise between the HBL and
VBL. The simulations are held on the equilibrium state as well as the dynamic behavior.
In figures 4.18 and 4.19, the different results of the U-V plot are shown while varying
the HBL, it is noticed that as the HBL approaches 0 the results are better. As the HBL
increases, the U-V plot experiences more errors. Figure 4.20 shows that the lower values
of the HBL have fewer error values. The error is less than 5 in the case of HBL of 4. As
the HBL increases, the error increases as well. The dynamic simulations are performed
using HBL=9 and HBL= 4, then their results are compared.

The dynamic simulations in figures 4.21 and 4.22 show that the approximate model
reproduces the spiking pattern in both cases, i.e., horizontal break level = 9 and horizontal
break level = 4. The broken array multiplier regenerates the spiking patterns when the
horizontal break level = 9, but with a very bad accuracy. All the patterns have a notice-
able error in the timing of the spikes. When the horizontal break level = 4 the patterns’
accuracy is good in most cases with a slight shift between the original model and the ap-
proximate model at higher values of time. This error is seen in the case of Intrinsically
Bursting, Fast spiking, and Low Threshold Spiking in figure 4.22.

4.4 Proposed approximate multiplier based Izhikevich
model

From the previously discussed results, the truncated multiplier is the best of them in
terms of the accuracy results and the hardware simplicity. Thus, it is chosen to implement

80

40

201
ot
-20}
=
E
> -40
80 original model
proposed model
~100 i i i i i N T N i
0 50 100 150 200 250 300 350 400 450 500
Rs time t [ms]
40
20 ‘
O ‘
20 1
g I
£
> _40 ! 1
|
60 - |
q # >
~80 g™ — gl
original model
proposed model
~100 i i i i i
0 50 100 150 200 250 300 350 400 450 500
CH time t [ms]
40
S
E
> M
original model
proposed model
200 300 400 500
LTS time t [ms]

FS

original model
— proposed model

~10 i i
100 200 300 400 500
time t [ms]
40
20 ‘
0 ’ ‘ ‘
-20 I ‘
-40 ‘
| i 1 ‘
~60 e ke AT
P~ P
-80 ¢ original model 1
proposed model
-100 i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500
time t [ms]

Figure 4.16: Different spiking patterns reproduced using the error tolerant
multiplier approximation with non multiplication part = 8, RS: Regular Spiking,
IB: Intrinsically Bursting, CH: Chattering, FS: Fast Spiking, LTS: Low Threshold
Spiking

81

20
0
—20
—40]
o0 A
original model
proposed model
~10 i i . .
100 200 300 400 500
time t [ms] IB
40

v [mv]

LTS

original model
proposed model

50

100 150 200 250 300 350 400 450 500
time t [ms]

original model
proposed model

200 300 400
time t [ms]

100 500

y

original model
proposed model

50 100

150 200 250 300 350 400 450 500

0
time t [ms]
40
20 ‘ ‘ 4
of- i
-20- 1
-40- il J
0 A e 1
o b
—80y original model 7
proposed model
~10 I I 1 1
100 200 300 400 500
time t [ms]

Figure 4.17: Different spiking patterns reproduced using the error tolerant
multiplier approximation with non multiplication part = 8, RS: Regular Spiking,
IB: Intrinsically Bursting, CH: Chattering, F'S: Fast Spiking, LTS: Low Threshold

Spiking

82

30 30

original model
— proposed model |

original model
proposed model

201

101

HBL=12 % 80 ED 60 50 40 < HBL=11 %0 80 70 60 50 ~a0 -30
—_ v — v

T T
original model
proposed model

(/

original model
251 proposed model

201

10

HBL=10 =) 80 70 —30 50 40 -30 HBL=9 g

T T
original model
proposed model

original model
proposed model

-10

-15 L R -15

—2f L L L L —2 I L L L L
HBL:8 -90 -80 =70 —\(/50 -50 -40 -30 HBL:7 -90 -80 =70 —\(ISO -50 -40 -30

Figure 4.18: U-V plot for the broken array multiplier implementation for different
horizontal break level values from 12 to 7, HBL: Horizontal Break Level

83

HBL=4

30

25

original model
proposed model

-70

-60

-50 -40 -30

original model
proposed model

20 i i i ;
-90 -80 =70 -60 -50 -40 -30
v
30
original model
25 proposed model

L
-80

I
-70

-50 -40 -30

HBL=5

HBL=3

HBL=1

30

25

original model
proposed model

-70

-60

-50 -40 -30

original model
— proposed model

—2 i i i i i
-90 -80 =70 -60 -50 -40 -30
v
30
original model
25

proposed model

=2
-90

-80

-60

-50 -40 -30

Figure 4.19: U-V plot for the broken array multiplier implementation for different
horizontal break level values from 6 to 1, HBL: Horizontal Break Level

84

30

25

20

15

Maximum Error

101

Non multiplication part

Figure 4.20: Maximum error vs Horizontal break level in the broken array
multiplier implementation

the approximate multiplier based Izhikevich neuron model using the truncated multiplier.
The results of the approximate model using the truncated multiplier are compared to the
piece-wise linear implementation results. The comparison is based on the error analysis
in the next section, the network behavior, and the hardware cost.

4.5 Error Analysis

To investigate the accuracy of any model implementing the Izhikevich neuron model,
many error metrics should be calculated for the approximate model. The calculated errors
are: ERRt, Normalized Root Mean Square Deviation (NRMSD), and Mean Relative Error
(MRE). These errors indicate how much the model is close to the original model. Most
of the errors depend on the timing of the reproduced spiking, since the timing is the most
important factor in the spiking neural networks. The proposed model that implements the
Izhikevich neuron model using the truncated multiplier is simulated using different word
lengths and fraction lengths and all the errors are calculated for them. The PWL4 model is
the best implementation of all PWL models, so it is used for comparison with our model.
All errors are calculated for it to provide a fair comparison between the PWL model and
the approximate multiplier based model. In the following subsections, the different errors
are illustrated and then the results for both the approximate multiplier based model and
PWL model are listed.

4.5.1 ERRt

ERRt measures the amount of time shift between the original model and the proposed
model. It is calculated by once synchronizing the spikes of the two models and then

85

v [mVv]

RS

CH

LTS

40
20
o
-20
-40
LU WU
80 original model
proposed model
~100 i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500
time t [ms] IB
40
20
o
-20
_40b |
—60F)
A7
-80 L™
original model
proposed model
~100 i i i i i i
0 50 100 150 200 250 300 350 400 450 500
time t [ms] FS
40 T T
>
£
>
original model
10 . . — proposed model
100 200 300 400 500
time t [ms]

v [mV]

v [mV]

original model
proposed model

100

200
time t [ms]

300

400

500

W /ujw

— proposed model

i

original model

100

200
time t [ms]

300

400

Figure 4.21: Different spiking patterns reproduced using the broken array

multiplier approximation with horizontal break level=9, RS: Regular Spiking, IB:
Intrinsically Bursting, CH: Chattering, FS: Fast Spiking, LTS: Low Threshold

Spiking

86

500

40 40
20 b 20
0 1 0
_20 , -20
S
d d
> -aq 4 > 40 E
//jjjjj) | \)\)\M\)\)WW\»\/
-80 original model 1 -80 original model 1
proposed model proposed model
_10 i i i i ~100 i i i i i i i i i
0 100 200 300 400 500 0 50 100 150 200 250 300 350 400 450 500
RS time t [ms] 1B time t [ms]
40 T T T T T T T T T 40
200 20l
of ol ‘ ‘ ‘
-20 _o0l- ‘ ‘ ‘
s | |
£ T [‘
> -40 I | \
-60 \/ —60}- ‘ ’W'Jw“ul"il'l;l“|Hr“nl”4|lmi“\ll‘ ‘
-80% - l -80 original model
original model d model
— proposed model proposed mode
~100 i i i i i i i i i ~100 i i i i
0 50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500
CH time t [ms] FS time t [ms]
40
20
0
-20
S
£
> -40
~60 I)JJ) JJ)})J)JJJJJ))}JI
80 original model
proposed model
-100 i i i i
0 100 200 300 400 500
LTS time t [ms]

Figure 4.22: Different spiking patterns reproduced using broken array multiplier
approximation with horizontal break level =4, RS: Regular Spiking, IB:
Intrinsically Bursting, CH: Chattering, F'S: Fast Spiking, LTS: Low Threshold
Spiking

87

measures the difference in time between the next two spikes as shown in 4.23. The error
is formulated as

A, — At
ERRt = |—2—2
AT,

o

* 100 (4.8)

AT = Tspike2 — Espikel 4.9)

where At, and Af,are the time difference between two spikes in the proposed model
and original model, respectively.

synched spike
40 yi : I.U

20

-1000 50 100 150) 200

time t [ms]

Figure 4.23: ERRt calculation as the time difference between the spikes of the
proposed model and the original model

4.5.2 NRMSD

NRMSD is used to measure the difference in voltage values between the original and
proposed model and is given by:

" (vp(n)-vo(n))?
RMSD = \/ i=1(VPn) —vo(n)) (4.10)
n
NRMSD is calculated as
RMS D
NRMSD = ——>— @.11)

Vmax — Vmin

88

where v, is the value of the voltage of the proposed model and v, is the value of the
voltage of the original model, v, and v,;,, are the maximum and the minimum voltage
values from the original model in the range of calculating RMSD. For better calculation
of RMSD, the two models are synchronized, then a window is taken before and after the
spike at half the distance between two spikes then the error is calculated from 4.10 [30].

4.5.3 MRE

The mean relative error(MRE) calculates the difference in the spike time between the
original model and the proposed model. For fair calculation of that error, a window of
1000 ms in time is taken and the error is averaged over it. The MRE is formulated as:

A1y (AL
oy |+ s 1+

MRE% = * 100 (4.12)

where At; is the time difference between the i;;spike time in the original model and
the proposed model, and fo;is the iy, spike time of the original model [29].

4.5.4 PWL4 model Error Results

The following tables 4.1, 4.2, 4.3, and 4.4 list all the error values ERRt, NRMSD,
MRE, for the PWL4 implementation for different word length. The errors are calculated in
most common spiking patterns, regular spiking, tonic spiking, fast-spiking, low threshold
spiking. Then the average of each type of error is calculated and the average of all errors
is calculated as well.

Table 4.1: PWL4 Error results using WL=17

| PWL4,WL=17 | ERRt | NRMSD | MRE |
Regular Spiking 1.09% | 0.90% | 0.52%
Tonic Spiking 3.07% | 19.62% | 3.17%
Fast Spiking 5.88% | 0.83% | 1.19%

Low Threshold Spiking | 3.57% | 3.24% | 0.37%
Average of each error | 3.40% | 6.15% | 1.31%
Average of all errors 3.62%

4.5.5 Approximate multiplier based model Error Results

The following tables 4.5, 4.6, and4.7 list the error values ERRt, NRMSD, MRE, for
the approximate multiplier based implementation for different word length. The errors are
calculated in most common spiking patterns, regular spiking, tonic spiking, fast-spiking,
low threshold spiking. Then the average of each type of error is calculated and the average
of all errors is calculated as well.

89

Table 4.2: PWL4 Error results using WL=16

| PWL4,WL=16 | ERRt | NRMSD | MRE |
Regular Spiking 217% | 1.13% | 1.04%
Tonic Spiking 3.07% | 19.63% | 3.17%
Fast Spiking 5.88% | 0.89% | 0.60%

Low Threshold Spiking | 3.33% | 1.45% | 0.38%
Average of each error | 3.61% | 5.78% | 1.30%
Average of all errors 3.56%

Table 4.3: PWL4 Error results using WL=15

PWL4, WL=15 | ERRt | NRMSD | MRE |

Regular Spiking 1.09% | 0.70% | 0.52%
Tonic Spiking 2.63% | 19.62% | 2.90%
Fast Spiking 556% | 0.65% | 1.35%

Low Threshold Spiking | 3.57% | 3.37% | 0.91%
Average of each error | 3.21% | 6.09% | 1.42%
Average of all errors 3.57%

Table 4.4: PWL4 Error results using WL=14

PWL4, WL=14 | ERRt | NRMSD | MRE |

Regular Spiking 1.09% | 0.73% | 0.52%

Tonic Spiking 3.07% | 19.63% | 3.17%

Fast Spiking 5.88% | 0.54% | 1.16%

Low Threshold Spiking | 3.57% | 2.53% | 1.62%

Average of each error | 3.40% | 5.86% | 1.62%
Average of all errors 3.63%

4.6 Hardware Implementation

In this the hardware implementation for both the PWL4 model and the approximate
multiplier based model are discussed in detail and the area, power, and frequency results
are listed. First, the differential equations are discretized using the Euler method and all
constant multiplications are chosen to be powers of 2 so that they are performed as shift
and add operations. The equations used are as follows:

vin+ 1] = v[n] +a’t(x.v2[n] +4v[n] +109.375 —u[n] + I[n]) 4.13)
uln+ 1] = u[n] + dt(a(bv(n] — u[n])) 4.14)

The constant x = 0:0400390625 and is evaluated as % + 1;—8 + ﬁ, 5:v [n] is evaluated
as v[n] + 4.v [n], and dt is 0.5. To compare between the model and PWL4 model, both

90

Table 4.5: Truncated multiplier error results using WL=16 and FL=7

| PWL4, WL=16,FL=7 | ERRt | NRMSD | MRE |

Regular Spiking 0% 0.14% 0%
Tonic Spiking 0% 0.43% 0%
Fast Spiking 556% | 0.48% 0.52%
Low Threshold Spiking | 3.33% 2.58% 0.34%
Average of each error | 2.223% | 0.91% | 0.2150%
Average of all errors 1.115%

Table 4.6: Truncated multiplier error results using WL=15, FL=6

| PWL4, WL=15,FL=6 | ERRt | NRMSD | MRE

|

Regular Spiking 3.26% 1.02% 2.22%
Tonic Spiking 4.12% 0.48% 1.33%
Fast Spiking 5.56% 1.54% 0.50%
Low Threshold Spiking | 3.45% 2.82% 0.80%
Average of each error | 4.098% | 1.47% | 1.2125%
Average of all errors 2.258%

Table 4.7: Truncated multiplier error results using WL=14, FL.=5

PWL4, WL=14, FL=5 | ERRt | NRMSD | MRE

|

Regular Spiking 6.52% 1.18% 5.18%
Tonic Spiking 7.14% | 14.73% 2.92%
Fast Spiking 11.76% | 2.23% 3.77%
Low Threshold Spiking | 13.33% | 2.49% 2.96%
Average of each error | 9.688% | 5.16% | 3.7075%
Average of all errors 6.184%

91

models are implemented on the RTL level and synthesized on Zynq XC7Z2020-1CLG484C
FPGA. The area and power results are estimated using Vivado tool.

4.6.1 PWL4 hardware implementation results

Tables 4.8, 4.9, 4.10, and 4.11 shows the results of area, power, and frequency of
PWL4 model.

Table 4.8: Hardware implementation results of PWL4 using WL=17

| Dynamic power(W) | 0.01 |

Total power(W) 0.13
Area(LuTs) 381
Frequency(MHz) 25
Word-Length 17

Table 4.9: Hardware implementation results of PWL4 using WL=16

Dynamic power(W) \ 0.009 ‘

Total power(W) 0.129
Area(LuTs) 347

Frequency(MHz) | 25M
Word-Length 16

Table 4.10: Hardware implementation results of PWL4 using WL=15

Dynamic power(W) \ 0.008 ‘

Total power(W) 0.128
Area(LuTs) 324
Frequency(MHz) | 25M
Word-Length 15

Table 4.11: Hardware implementation results of PWL4 using WL=15

Dynamic power(W) \ 0.008 ‘

Total power(W) 0.128
Area(LuTs) 286

Frequency(MHz) | 25M
Word-Length 14

4.6.2 Approximate multiplier based hardware implementation re-
sults

Tables 4.12, 4.13, and 4.14 show the results of area, power and frequency of PWL4
model.

92

Table 4.12: Hardware implementation results of truncated multiplier using

WL=16, FL=7
’ Dynamic power(W) \ 0.011 ‘
Total power(W) 0.131
Area(LuTs) 597
Frequency(MHz) | 25M
Word Length 16

Table 4.13: Hardware implementation results of truncated multiplier using

WL=15, FL=6
| Dynamic power(W) | 0.01 |
Total power(W) 0.13
Area(LuTs) 560
Frequency(MHz) | 25M
Word Length 15

Table 4.14: Hardware implementation results of truncated multiplier using

WL=14, FL=5
Dynamic power(W) \ 0.009 ‘
Total power(W) 0.129

Area(LuTs) 457
Frequency(MHz) | 25M
Word Length 14

4.7 Network Behavior of the proposed Approximate mul-
tiplier model

Another important metric to judge the proposed model is its ability to behave well and
generate spikes in a network of connected neurons. To simulate the network behavior of
the proposed model against the original model, a network of randomly connected 1000
neurons is simulated as in [28]. Motivated by the anatomy of a mammalian cortex, the
ratio of excitatory to inhibitory neurons is chosen to be 4 to 1. The results of the firings
are shown in the so-called raster diagram. The raster diagrams shown in 4.24 show that
the network behavior of the proposed model is very close to the original model. Both
models shown in the figure have the same behavior and both have the neurons fire with
a rate of 5 Hz in the network. Another measure to test the accuracy in the network is
the count of spikes that each neuron fires in a defined time interval. Some neurons are
selected randomly from the previous raster diagram and their spikes count is evaluated
and compared to the original model. 4.25 shows that a randomly selected neuron in the
original model and the proposed model fire almost the same spikes count.

93

Original Model

1000 T T T T
800 §
5
€]
S 600
zZ \
c F
2 400 §
:
200
0 E 1 1 1 1
0 100 400 500 600 800 900 1000
Time[ms]
Proposed Model
1000 T T T T T T T ".
800 3 -
th r .. []
£ ool - P
= 600 .
pd o °
c L]
S 4004 :
> o
(0] o
$,
200 * A
0 L L e hd
0

| | | | |
100 200 300 400 500 600 800 900 1000

Time[ms]
Figure 4.24: Raster diagram of a network of 1000 connected neurons modeled

using the approximate multiplier based implementation compared to the original
model output

From this discussion, the proposed implementation of the neuron using the approxi-
mate multiplier has a very close behavior to the original model.

4.8 Comparison between the PWL4 neuron model and
Approximate Multiplier based model

After the above discussion, it is proved that the approximate multiplier based neuron
model is a good implementation of the original model. It can reproduce the spiking pattern
the same as the original model. It can generate the spikes with a near accurate time frame
as shown in the errors section. Moreover, its behavior in the network in terms of the
spikes frequency and the spike count of the neurons is close to the original model. The
PWL4 implementation discussed in [29] proves that the PWL4 neuron model can also

94

Original Model

100 T T T T T T T T T T

80 .
k<
3 60r .
(&)
3
x 40 g
o
(2]

20+ -

0

100 200 300 400 500 600 700 800 900 1000
Neuron Number
Proposed Model

100 T T T T T T T T T T

80 .
€
3 60f .
(&]
3
< 40t g
o
n

20+ .

0

100 200 300 400 500 600 700 800 900 1000
Neuron Number

Figure 4.25: Spikes count of randomly selected neurons from the network for both
the original model and the proposed model

95

0.3

0.254355

0.25 2
0.2 o Approx_Mul
e PWL
CE) 0.15 0.137954
w 0.126467 °
* 0.111231
0.1 0.09?434 S — 0.09'2599
° 0.073222
0.05
0
12 13 14 15 16 17 18

WL

Figure 4.26: Figure of Merit (FoM)of both approximate multiplier based model
and the PWL4 model Versus Word Length(WL)

be used for implementing the Izhikevich model. Both PWL4 and approximate multiplier
based implementations are hardware friendly. To hold a fair comparison between both
implementations, one should take into consideration all design aspects. The important
measures in that comparison are The accuracy of the model, and this can be measured by
the errors produced due to the approximations, the area ,and power consumption of the
model. To group all these aspects in one measure, a Figure of Merit(FoM) is introduced.
This is calculated to conclude the effect of accuracy in terms of errors, area, and power.
The FoM is defined as follows:

FoM = Errosg,g * Area x Power 4.15)

Where the Errorsgy, is the average of all errors calculated for the spiking patterns,
Area is the number of used LUTs, and Power is the dynamic power consumed by the
design in mw. It is better to have a small FoM value to make the best trade-off of accuracy,
area, and power. FoM is evaluated for both PWL4 model and the approximate multiplier
based model for different word length (WL) used in hardware implementation. Figure
4.26 shows that as the WL increases, The FoM increases as well and that the WL of 14
gives the best FoM in the case of the PWL4 model. A WL of 16 gives the best FoM in
the case of an approximate multiplier based model.

4.9 Conclusion

The Izhikevich neuron model is a well-known model in the implementation of Spiking
Neural Networks for its simplicity and its ability to reproduce the same spiking patterns

96

of the biological neurons. The main issue with that model is the need for a square opera-
tion which is not a hardware friendly operation and consumes much area and power. This
work proposes the use of the Approximate Multiplier in the implementation of the model.
Three approximate multipliers are used to generate the model and the simulation results
prove that the truncated multiplier is the best as its accuracy is the best of the other two
approximate multipliers. Simulation results show that the approximate multiplier model
is a good alternative to the well known PWL models in terms of accuracy, power, and
area. The calculated Figure of Merit proves that the approximate multiplier based imple-
mentation is better than the PWL4 model using Word Length of 16, this implementation
has better accuracy while maintaining low area and power.

97

Chapter 5

Future Work

The previous chapters discuss the hardware implementation of the artificial neural
network and the utilization of approximate computing in the implementation. Moreover,
the energy adaptive neural network(EANN)is introduced. This EANN has the ability to
adapt its hardware components to the available energy budget on the fly. The dynamic
reconfiguration adds advantage to the system that it can continue functioning for more
time before it completely turns off.

The next work shall be directed to implement the idea of partial dynamic reconfigu-
ration to the spiking neural networks. The reconfiguration shall be between the different
neuron models. There is a variety of the neuron models, some of them are biologically
plausible, but they are very complex. Some of them are biologically inspired, and they are
much simpler. This variety shall provide many models for reconfiguration. The models
shall be different in the accuracy and the ability to reproduce the spiking patterns.

98

References

(1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

[10]

S. A. Kalogirou, “Applications of artificial neural-networks for energy systems,”
Applied energy, vol. 67, no. 1-2, pp. 17-35, 2000.

Biological neuron, https://www.ee.co.za/article/application-of-machine-learning-
algorithms-in-boiler-plant-root-cause-analysis.html, Accessed : 2020-01-05.

C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose,
and J. S. Plank, “A survey of neuromorphic computing and neural networks in
hardware,” arXiv preprint arXiv:1705.06963, vol. abs/1705.06963, 2017.

J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of two
decades of progress,” Neurocomputing, vol. 74, no. 1-3, pp. 239-255, 2010.

S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “AxNN: Energy-
Efficient Neuromorphic Systems using Approximate Computing,” International
symposium on Low Power Electronics and Design, pp. 27-32, 2014.

Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “ApproxANN: An Approximate
Computing Framework for Artificial Neural Network,” Conference on Design, Au-
tomation and Test in Europe, pp. 701-706, 2015.

J. Kung, D. Kim, and S. Mukhopadhyay, “A power-aware digital feedforward neu-
ral network platform with backpropagation driven approximate synapses,” Interna-
tional Symposium on Low Power Electronics and Design, pp. 85-90, 2015.

S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy, “Multiplier-less Arti-
ficial Neurons Exploiting Error Resiliency for Energy-Efficient Neural Computing,”
Conference on Design, Automation and Test in Europe, pp. 145-150, 2016.

V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design of power-
efficient approximate multipliers for approximate artificial neural networks,” Inter-
national Conference on Computer-Aided Design, pp. 1-7, 2016.

D. Kim, J. Kung, and S. Mukhopadhyay, “A Power-Aware Digital Multilayer Per-
ceptron Accelerator with On-Chip Training based on Approximate Computing,”

IEEFE Transactions on Emerging Topics in Computing, vol. 5, no. 2, pp. 164-178,
2017.

99

https://www.ee.co.za/article/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis.html
https://www.ee.co.za/article/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis.html

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired imprecise
computational blocks for efficient vlsi implementation of soft-computing applica-
tions,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 4,
pp- 850-862, 2009.

P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an
underdesigned multiplier architecture,” Internatioal Conference on VLSI Design,
pp. 346-351, 2011.

K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed multiplier for error-
tolerant application,” International Conference of Electron Devices and Solid-State
Circuits (EDSSC), pp. 1-4, 2010.

N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. G. Strollo, “Truncated binary
multipliers with variable correction and minimum mean square error,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 57, no. 6, pp. 1312-1325,
2009.

F. Folowosele, T. J. Hamilton, and R. Etienne-Cummings, “Silicon modeling of
the mihalags—niebur neuron,” IEEE transactions on neural networks, vol. 22, no. 12,
pp. 1915-1927, 2011.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current
and its application to conduction and excitation in nerve,” The Journal of physiol-
ogy, vol. 117, no. 4, pp. 500-544, 1952.

A. Borisyuk, “Morris—lecar model,” in Encyclopedia of Computational Neuro-
science, D. Jaeger and R. Jung, Eds. New York, NY: Springer New York, 2015,
pp- 1758-1764.

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press,
2014.

E. J. Basham and D. W. Parent, “An analog circuit implementation of a quadratic
integrate and fire neuron,” Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society, pp. 741-744, 2009.

M. Hayati, M. Nouri, D. Abbott, and S. Haghiri, “Digital multiplierless realization
of two-coupled biological hindmarsh—rose neuron model,” IEEE Transactions on
Circuits and Systems I1: Express Briefs, vol. 63, no. 5, pp. 463—467, 2015.

J. Lu,J. Yang, Y.-B. Kim, J. Ayers, and K. K. Kim, “Implementation of excitatory
cmos neuron oscillator for robot motion control unit,” journal of semiconductor
technology and science, vol. 14, no. 4, pp. 383-390, 2014.

F. Grassia, T. Levi, T. Kohno, and S. Sdighi, “Silicon neuron: Digital hardware
implementation of the quartic model,” Artificial Life and Robotics, vol. 19, no. 3,
pp- 215-219, 2014.

100

(23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representa-
tions by error propagation,” California Univ San Diego La Jolla Inst for Cognitive
Science, Tech. Rep., 1985.

A. Tisan, S. Oniga, D. Mic, and A. Buchman, “Digital implementation of the
sigmoid function for fpga circuits,” Acta Technica Napocensis Electronics and
Telecommunications, vol. 50, no. 2, p. 6, 2009.

Mnist database, http://yann.lecun.com/exdb/mnist, Accessed : 2017-06-12.
Svhn database, http://ufldl.stanford.edu/housenumbers, Accessed : 2017-06-12.

K. Vipin and S. A. Fahmy, “Fpga dynamic and partial reconfiguration: A survey
of architectures, methods, and applications,” ACM Computing Surveys (CSUR),
vol. 51, no. 4, p. 72, 2018.

E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on neural
networks, vol. 14, no. 6, pp. 1569—-1572, 2003.

H. Soleimani, A. Ahmadi, and M. Bavandpour, “Biologically inspired spiking neu-
rons: Piecewise linear models and digital implementation,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 59, no. 12, pp. 2991-3004, 2012.

M. Heidarpour, A. Ahmadi, and R. Rashidzadeh, “A cordic based digital hardware
for adaptive exponential integrate and fire neuron,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 63, no. 11, pp. 1986-1996, 2016.

101

http://yann.lecun.com/exdb/mnist
http://ufldl.stanford.edu/housenumbers

Adla) (adls

Gl 1L Sl bl e sy 5 alY) e S JS adiag 535 | e lileaV] oIS jeac g4 Casall jemall aay
SN e 8 Aaniioaall LN) (e Ao i) Aysanl) CUSWEN 3a3 g 5dine dplan) 508 5 4Ly 28, paial
dbeall clileadls ALl e Lg% a5 5,81 3 ghall 8 sk e Ll aV) dpsemal) ClSuE) @i jels e lilaa)
Adadll il gal) (unlie aal (e Lad 5 de ju 5 483 dpliad) Cilleal) ae Jalaii L) LS | dlle 43lES; Bainall

Al AN 2l Al JSLEA (ay) Lela o sllaall QG DAL due lihal) daneaal) Sl Gle ¢ (alids
& oee s Apelilaal) dpaall SN Cali LS i) 5 Bl e Gaadll 5 Capaill ; Lla e delibaaY)
A4k A il Jaall sl8las e dclihia¥) dnasll Gl aaat dilee aaiad 5 3ol 435803 &l jlhd) Jlae

e Cla il Zlisiu) 488§ Sl sleall Qs LIV Ao Cajaill 548 prall Clileally dal8

ol e Lo Adagiad) CSEA Ja (8 203003 5 daal) GIKAEN o) 5 Jal) 8 Apclibial) duasll Gl
o 3l g s s 4kl Aagi KA (e g sl Vagd A5 S 50 ppns Jgray LS, Al 5 LY e
Tysen S Cle g Ja (e (Sl SN (o g gl 138 20 dyaal) CASWE g 5 TelilaaY) dymall S,
5) g e dplua Sllee ey COKE) o g sill 138 il soadl) 5 geall 5 seall dallas Jie KGN (g
4 L (o LAY el AN (S Lo

D yaa ol Al CIAN e g sl 138 Gaaly Bacliaiall duasll GISLAN 58 dpnanl) CISEN (e a5 Gl & i)
Janll Jalyy 23 Al A gl sl cllead) JS 3lSlas o 508 JS0 daing 43S0 5 (5 pall Jied) 31l Lyl Lad sa
llaall 5 e € IS8 g @Al seliail) 13 Cuf 65 Slay LS Cila slell

Sy Loyl 30l Aalie 0 6S5 o) e Laliall) dpscasl) IS e Ul 2l 435 V) 3 gall avenal o liag
3 yall BeliS e aSall b Zaulul) ol sl aal e oBleladl (138 5 48U (e 5aS 538) Lgaliiad axe) ASLaYL
AR LSOl 53 ylall daliee G) 58 Jand 433 5 55SIV) i) gall ananal & chliluad) o i 20585 a0d008 443 9 yiSIY)

Al 5 i sall Aalise Jali5 e 8 ciliboad) 483 (e ¢ a e JOL e Gl (A& bl Gy 58 4085 adiag
Cllall Gy 55 4085 Canal 388 dle 480 plind Y il 8 53l oal) (e g i) 138 aladiiad dagii s Leliadill d<lgil)
Agpasll G syl & daddio b) aaf e

A8 Y A8y (W et L 038 Appanl) CISLA anaal 8 Cllual) (a5 L (e el Al 1 028 aodis
Gl)Y (e e e Ul 5 o puiall dlee (85 5 Jmdil) 50 855 Agaaanll LOAN Jads o llual) i

ol a8 Bale) A acxi) g Ao jall AL Ay g ySIV el) aladily CLGED o3 arenal Al Lgren
Ji Laind Lol 8 axdind) a8l a5 ae (RSl (e 4 g yISIVD 3 a0l (St dpalad) o3a alasiuly | Sualiall
AR Q5 s e 138l (S5 B A8y Jasdl (e LgiSiay Sy aUaill 25 oSl i sall (5 65 5 Baaiasal) 48U

il Claa sy IS (0S5 o AL (pa g sl 13 b BaeLoaiall Asanl) ASL Lind Al i) 638 (paal
LA (55 Lol Jilay zr30al 038 (pa s Asael) LT 3] 3Ll (o ael) s LS Fusenel) LIAT) janss
Y1 o 0 o sl LD e 13) 15 121 1 Ly Slag A1 imed) 5 bl fae)
alasiuly Sl 5" 1zhikevich neuron model " (sern 4aanll LA (o 73 gad aranal Allu Hll 228 J 5l Lpailiady
M\QM\MMM\ oA e\@\@)@ﬂ\@&ﬂ)ﬁg&‘jy‘ Gbluad) Cuy y85 e (e 40183
Addal) g daboadl WSS J81 5 Jaaat J8) YIPRN| RIS

D g

Insert photo here

195kal) oy

salmahasssansayed@gmail.com 1A &)

01000789029 Ot

1) sind)

tdaaedl)

HOM N TB™

itualall Al

A S il 5 Iy el

(sihaan Gua/a 1 sh)
BRERVEA

(>l padiadl) A)5S 1O giadanll
(o Aal) ated)) PR
(st a5l ot iyl
(5a=) A)5

sl o) sis
e lihaa) dyeanl) AN aena
AnE p Clbluall G)8 408 aladdinly
Saaliall 2l o <l 3ale)
A1l sl
Lguanll S cllual) oy i | Saaiall 33l o 5K sale)
sacliatiall Lanll GISLEN dpianll Glluall clilhiaY)
sl padla
4 aladiuly el sl GISAN aanat 3 S8 Al)l 038 (panall
ok Llaad 138 5 4 KNI il gall o) 3aY Saalinall 33l (oSl sl
6553 LS 5 yana 5y oy il sall 020 Jeridity o585) A8l 3 il pe
" oam A Agmanll LAY 23l e il aread e Al)l o3

. pall dlee (8 448 o233l " Izhikevich neuron model

mailto:salmahasssansayed@gmail.com

5 cbball qu it 48 aladiuly Lo UhaY) Luant) GG asal
(eSaliaal) A5l o oSl Bale) Ak
dac
aall g3l B s (ol
(o Aadia Al
BN daaly — daigl) 418
da 0 Lo Jgand) ciblliia (56 JaS
alall
o
A gl b g Sy

somiatiaall ddal e Al

i) Gyl — e M) i piial)

Al gisa

SN cataad) — A iy

IR (adaall — A) s
A A8 — duaigh) 4
_aLA!) dxala — daigll d<
A) puan 4y) 9gan — 0 5all
2020 b

5 hluald) 88 408 aladiuly 4elibay) danl) GG araal
(eSaliaal) A5l o oSl Bale) Ak

dlac)

aall gl b s als
() Aadia Uy
_aLAl daala — dwaigl) 48
da 0 o Jgandl ciltkia (e g5 jas
alall
o
gl i g sy

BRERA sthaa

Zgalall a0l Aaalall 4a)
A eSI VL) 5 caly 5 STy A eSI YL 5 <l 5 STy
3oaldl) daala — duaigll S 3oaldl) daala — duaigll S

3 yalal) daala - Aldigl A4S
An) jae iy span — 5 5l

2020 (el

5 bbald) oo &8 408 aladiuly Lelihay) dael) GG sl
eSmaliaal) 45l o eSil) Bale) Ak

dac |

2al) g3l B s (el
o iasia Al
5_ALAl daala — dwaigl) 48
da i Ao Jamaad) cilithiia (e g5 308
fiealal)
o
A g e g)

3 yalal) daala - Aldigl A4S
An) jae iy span — 5 5l

2020 (el

	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	List of Publications
	Abstract
	1 Introduction
	1.1 Neural Networks
	1.2 Neural Network Types
	1.2.1 Artificial neural network
	1.2.2 Convolutional Neural Network
	1.2.3 Spiking Neural Network

	1.3 Organization of the thesis

	2 Literature Review
	2.1 Introduction to artificial neural network and its hardware components
	2.2 Approximate computing in the hardware implementation of artificial neural networks
	2.3 Literature Review for Approximate Hardware Implementations of Artificial Neural Network
	2.4 Literature Review of the Approximate Multipliers
	2.4.1 Broken Array Multiplier (BAM)
	2.4.2 Under-designed Multiplier (UM)
	2.4.3 Error Tolerant Multiplier (ETM)
	2.4.4 Truncated Multiplier

	2.5 Introduction to Spiking Neural Networks and neuron models approximation
	2.5.1 Biologically plausible models
	2.5.1.1 Hodgkin-Huxley model
	2.5.1.2 Morris Lecar model
	2.5.1.3 Fitzhugh-Nagumo model

	2.5.2 Integrate and fire models
	2.5.2.1 Leaky integrate and fire
	2.5.2.2 Quadratic Integrate and fire model
	2.5.2.3 Exponential integrate and fire model

	2.5.3 Biologically Inspired models
	2.5.3.1 Hindmarsh-Rose model
	2.5.3.2 Mihalas-Niebur model
	2.5.3.3 The Quartic model
	2.5.3.4 Izhikevich neuron model

	3 Design of Adaptive Artificial Neural Network using Approximate Computing and Partial Dynamic Reconfiguration and Experimental Results
	3.1 Introduction to Artificial Neural Network Learning Process
	3.2 Research Hypothesis
	3.3 Approximate Computing Techniques
	3.3.1 Precision Scaling
	3.3.2 Approximate Activation Function
	3.3.2.1 Sigmoid Activation Function
	3.3.2.2 RELU Activation Function

	3.3.3 Computation Skipping Approximation
	3.3.4 Neuron Skipping Approximation
	3.3.5 Inaccurate Arithmetic
	3.3.6 Approximate Adders

	3.4 Design Approach
	3.4.1 Data-sets
	3.4.1.1 MNIST data-set and its artificial neural network architecture
	3.4.1.2 SVHN data-set its artificial neural network architecture

	3.4.2 Partial Dynamic Reconfiguration (PDR)

	3.5 Experimental Setup
	3.5.1 Software Setup
	3.5.2 Hardware Setup
	3.5.2.1 MNIST Block Diagram
	3.5.2.2 SVHN Block Diagram
	3.5.2.3 Neuron Top Block Diagram

	3.6 MNIST Results
	3.6.1 MNIST Energy results
	3.6.2 Effect of computation skipping
	3.6.3 Sigmoid Vs RELU

	3.7 SVHN Results
	3.7.1 SVHN Energy results

	3.8 Proposed Algorithm and Configurations Selection
	3.8.1 comparison between conventional system and EANN system
	3.8.2 Partial Dynamic Reconfiguration Results

	3.9 Conclusion

	4 Design and Implementation of Izhikevich neuron model using Approximate Multiplier
	4.1 Izhikevich neuron model
	4.1.1 Izhikevich neuron patterns experimental results
	4.1.1.1 Regular spiking
	4.1.1.2 Intrinsically Bursting
	4.1.1.3 Chattering
	4.1.1.4 Fast Spiking
	4.1.1.5 Low Threshold spiking

	4.2 Piece Wise Linear Implementations of Izhikevich neuron model
	4.3 Approximate Multiplier Based implementation of Izhikevich neuron model
	4.3.1 Truncated Multiplier Implementation
	4.3.2 Error Tolerant Multiplier Approximation
	4.3.3 Broken Array Multiplier Approximation

	4.4 Proposed approximate multiplier based Izhikevich model
	4.5 Error Analysis
	4.5.1 ERRt
	4.5.2 NRMSD
	4.5.3 MRE
	4.5.4 PWL4 model Error Results
	4.5.5 Approximate multiplier based model Error Results

	4.6 Hardware Implementation
	4.6.1 PWL4 hardware implementation results
	4.6.2 Approximate multiplier based hardware implementation results

	4.7 Network Behavior of the proposed Approximate multiplier model
	4.8 Comparison between the PWL4 neuron model and Approximate Multiplier based model
	4.9 Conclusion

	5 Future Work
	References

