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Abstract—The growing complexity of analog circuits poses
challenging constraints on analog simulation tools. Simulation
based optimization approaches have gained a lot of interest to
cut down the analog circuit design time and complexity. One of
these approaches is the Bayesian optimization (BO) approach,
which represents the analog circuit as a black box function,
and incorporates optimization goal and constraints aiming to
reach the optimum design parameters with the least possible
simulation iterations. In this paper, a BO approach for automated
sizing of analog circuits is discussed. The proposed approach uses
Gaussian Process (GP) as a surrogate model and utilizes SOBOL
sampling. The proposed algorithm is validated on a two-stage op
amp benchmark circuit and compared to the literature work.

Index Terms—Bayesian optimization, Analog circuits optimiza-
tion.

I. INTRODUCTION

Challenges in analog circuit design are continuously in-

creasing with the emerging new technology nodes, the growth

in operational speed, and the increasing complexity of elec-

tronics systems. This results in making manual analog circuit

design a very challenging and time consuming process. On the

other hand, the demand for high performance and low power

designs have been increasing. Which in turn, increases the

need for faster and smarter analog circuit design techniques

and tools with more degrees of automation. As a result,

automated analog circuit design tools attracted the interest of

industry as well as academia.

The automation for analog circuit optimization problems

can be grouped into two categories: model based and simula-

tion based [1]. Model based approaches focus on generating

simplified models that can represent the performance of the

circuit, cutting out the long simulation times. Geometric

programming is an example of model based approaches,

where the circuit metrics are modeled as posynomial and

monomial functions. The analog circuit sizing problem can

then be represented as a convex optimization problem. Once

the posynomial models are obtained, the global optimum could

be reached [2].

Alternatively, simulation based algorithms depend on the

circuit simulations. They deal with the objective functions and

constraints as black box functions, which are evaluated by the

circuit simulators. The improvement emerges from the appli-

cation of various statistical or machine learning approaches to

propose new candidates aiming for a more efficient exploration

of the design space to reach the optimum design point.

Some examples of these approaches are simulated annealing,

evolutionary algorithm, particle swarm intelligence, genetic

algorithms, and multi start optimization algorithm. That is

in addition to a machine learning technique called Bayesian

Optimization (BO), which is a supervised machine learning

method, better known for optimizing expensive black box

functions in case the closed form expression is unavailable

[3]. Previous research applying BO to circuits design proves

that it achieves better results, specially in convergence rate, in

comparison with other approaches used in analog optimization

[4] [5].

In this paper, an efficient BO implementation for automated

analog circuit sizing is presented. The implementation relies

on an efficient initial random sampling method to build an

initial representation of the surrogate model, then iteratively

improves a Gaussian Process (GP) model, with an acquisition

function used to propose the next design point to evaluate.

This paper is organized as follows. In Section II, the prob-

lem definition of analog circuit optimization and its challenges

are presented. In Section III, BO theory and components are

described. In Section IV, the approach taken to apply it to

analog circuit optimization is presented, while the results are

provided in Section V, and the work is concluded in Section

VI.

II. PROBLEM DEFINITION

In this section, the problem definition of the analog circuit

optimization is presented. Analog circuit optimization - mainly

transistor sizing - problem is a non-convex one, like many

engineering problems in several fields. Since most of realistic

systems do not tend to have linear responses to its control

parameters. That is why non-convex optimization attracted the

attention of several researchers. Analog circuit optimization

problem can be restated as an effort to maximize an expensive-

to-evaluate, black box function f (the circuit performance in

our case). Note that, we do not have the functional form of f
and our only approach is to evaluate the function at a sequence

of test points. Aiming at reaching a near-optimal design point

after a small number of trial evaluations (called arms). This

means that our aim is to reach the optimum design point,

that is; one that satisfies our design requirements, in the least
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number of iterations possible. Formally, it can be represented

as an optimization problem with constrains.

maximize f(x)

s.t : ci(x) < 0 (1)

∀i ∈ 1...Nc

Where x ∈ Rd, Rd is the design space, with d representing

the circuit’s design variables. f(x) denotes the main circuit

objective (i.e: the DC gain for an op amp or the efficiency

for a power amplifier) and the constraints over other perfor-

mance metrics (i.e: total power consumption or total area) are

represented by ci(x) < 0 [1].

III. BAYESIAN OPTIMIZATION

In this section, a brief introduction to BO theory using GP,

the system parameters and components are presented.

A. Bayes’ Theorem

BO originated from a well-known equation in probability

theory and statistics, called Bayes’ theorem. Given a set of

training design parameters, the observed metrics are D =
{xi, yi}. Let us define p(h) as the prior probability which

models the belief about the objective function f(x;h) prior to

the observation of D, while p(D|h) is the likelihood function

which can represent how probable high efficiency is, given

the function f(x;h) [4]. Bayes’ theorem can be applied to

evaluate the posterior probability p(h|D) for the function after

observing D as:

p(h|D) =
p(D|h)p(h)

p(D)
(2)

p(D) =

∫
p(D|h)p(h)dh (3)

It can be proved that the integrated term is a normalization

constant. So, the posterior probability is formulated as:

p(h|D) ∝ p(D|h)p(h) (4)

B. Bayesian Optimization Algorithm

In the field of intelligent machine learning algorithms, BO

is one of the supervised learning algorithms, best used for

the optimization of expensive, non convex objective functions

in multi dimensional space. Since the aim is to optimize f
with the least possible number of evaluations, a model has

to be built to help us extrapolate and deduce the values of

f at points we have not yet evaluated. In BO, this is called

the surrogate model. The surrogate model should also indicate

the uncertainty of its predictions in the form of a posterior

distribution over function f(x) at points x.

In BO literature, the surrogate model is typically a GP,

due to its flexibility and tractability. In a GP, the posterior

distribution on any finite set of points is a multivariate normal

distribution. A GP model is defined by a mean function

μ(x) and a covariance kernel k(x, x′), which means that

a mean vector (μ(x0)),...., μ(xk)) and covariance matrix Σ
with Σ = k(x, x′) can be calculated for any set of points

[(x1, ...xk)]. Using a GP surrogate model for f means that

we assume [(f(x1), ..., f(xk))] is multivariate normal with a

mean vector and covariance matrix determined by μ(x) and

k(x, x′). Posteriors are an indication on the ”belief” a model

has about the values of the function at a point (or a set of

points), based on the data it has been trained with till that

moment. That is the posterior distribution over the outputs

conditional on the data observed so far. The GP posterior is

relatively cheap to evaluate, so it is used to suggest points

from the search space where the function evaluation is likely

to result in an improvement.

Acquisition functions are responsible for proposing sam-

pling points in the search space. They trade off exploitation

and exploration and propose a candidate that is believed

to achieve the best possible improvement given the current

model built so far. Exploitation means sampling where the

surrogate model’s prediction indicates a high objective, while

exploration means sampling where the prediction uncertainty

is high. Such two cases would result in a high acquisition

function values, and the goal is to maximize the acquisition

function in order to decide which point to sample next (i.e,

the point that would have the most expected improvement).

That point would be ideal to be the next sampling point. To

avoid getting stuck in a local maximum (over exploitation)

and avoid not making the best of a reached, good value

(over exploration), a good balance between exploration and

exploitation is required. The objective function f will next be

sampled at

xt = argmaxxu(x|D1:t−1) (5)

u is the acquisition function and D1:t−1 is the (t−1) samples

drawn from f till this iteration. Examples of frequently used

acquisition functions are probability of improvement (PI) and

expected improvement (EI) [3]. In our implementation, we will

use EI which is the most widely used.

IV. PROPOSED FRAMEWORK

As mentioned in section III. BO is best used to optimize a

black box function. Here, we benchmark our implementation

using the op-amp circuit shown in Figure 1. The input pa-

rameters to optimize the circuit as well as the main objective

and the constraints are shown in Figure 2. The process used

is 180nm. The optimization is performed over 11 design

variables, which are W , L of all MOSFET devices, the

compensation capacitor Cc and resistor Rc . The load capacitor

CL equals 1 pF. The performance metrics used are voltage gain

(Av) gain bandwidth product (GBW), and phase margin (PM).

The design specifications are listed in Eq. 6:

maximize Gain

s.t : GBW > 40MHz (6)

PM > 60
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Fig. 1. A two-stage operational amplifier [2]

Fig. 2. Black Box system representation

The proposed BO approach is explained in algorithm 1,

and the framework flow chart is summarized in Figure 3.

First, a random set of training data points is generated using

SOBOL. That is a search paradigm for quasi-random search

that achieves a more uniform coverage than purely random

search. The generated parameter values (arms) are run through

the circuit simulator, and the values are used to build the

model. Then, based on the acquisition function, new set of

arms are selected for evaluation, passed again to the simulator,

iteratively optimizing the GPEI model till the stop criteria

are reached. Stop criteria can either be a maximum number

of trials or a minimum expected improvement value. As an

attempt to reduce the time taken to reach the optimum arm,

the simulations are performed by the simulator with reduced

accuracy. This adds an error term to the mean objective value

obtained, which is treated as a noise term in the GP and would

not affect the performance of the BO loop. The more accurate

simulation values are then obtained only after settling on the

optimum arm achieving the optimum metrics.

Algorithm 1 Bayesian Optimization

1: Initialize a set of data points (arms) selected randomly

from the search space using SOBOL.

2: Simulate the training arms with the SPICE simulator with

relaxed accuracy.

3: Build the probabilistic surrogate model.

4: for iteration = 1, 2, . . . , N do
5: Find armi that maximizes the acquisition function.

6: Evaluate y = f(armi) through the SPICE simulator

with relaxed accuracy.

7: Update the surrogate model.

8: end for
9: Find the best arm recorded during optimization trials.

10: Return the best arm, and the best metrics achieved,

evaluated by the SPICE simulator with best accuracy.

Fig. 3. Framework Flow Chart

V. RESULTS

In this section, the effectiveness of the algorithm is demon-

strated on a sample circuit, showing the algorithm performance

in action with plots. The proposed algorithm is implemented in

python with BoTorch framework [8]. The test circuit used is a
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two stage op amp with miller compensation, which is a widely

accepted benchmark in the literature. Let us demonstrate the

algorithm performance on a sample run. Figure 4 shows the

trace of the accumulated maximum DC gain achieved, which

shows that the algorithm quickly reached a maximum DC

gain value, approaching the optimum. However, obtaining the

maximum gain does not necessarily mean that this is the

optimum design point, because other constraints might not

have been met. The goal is to find the maximum DC gain

possible while still meeting the constraints. Figure 5 shows

the achieved DC gain values vs simulation trials, with colour

coding showing whether this arm has met the constraints

(orange) or not (blue).

Fig. 4. Maximum DC Gain Achieved vs trial iterations

Fig. 5. DC Gain Progress vs trial iterations

The algorithm performance can be evaluated by considering

the metrics achieved (gain, GBW and PM) as well as the

number of iterations/trials needed to reach these values. The

algorithm is run 10 times in order to calculate an average to

eliminate random fluctuations. The total number of runs is kept

under 100 total trials (including the random initial sampling).

The results of the ten runs are shown in table I. While table II

shows a comparison between the mean of the values obtained

in this work and the values obtained in [2] and [9].

TABLE I
METRICS OBTAINED FROM 10 RUNS

Gain PM(deg) GBW(MHz) Power (μ W)
Objective >70 >60 >40 < 170
best arm 75.35 61.24 45.11 123.156

worst arm 68.39 67.09 70.24 336.78
best values 75.35 73.38 67.09 123.156

worst values 68.39 61.66 45.11 336.78
mean 70.91 66.6 60.2 208.143

median 70.19 67.67 62.25 209.34

TABLE II
TWO STAGE OP AMP OPTIMIZATION COMPARISON WITH [2] AND [9]

Performance
Metric

Spec
This work Obtained

in [2]
Obtained

in [9]Best Arm Mean
Gain >70 75.35 70.91 70.1 69

GBW(MHz) >40 45.11 60.2 29.1 30.6
PM(deg) >60 61.24 66.6 60 61

Power (μ W) <170 123.156 208.143 173.5 177

VI. CONCLUSION

In this paper, a Bayesian optimization framework for analog

circuit optimization is presented. A carefully designed opti-

mization loop with appropriate hyperparameters is proposed to

achieve a good balance between exploration and exploitation.

The proposed algorithm is applied on a two-stage op amp to

validate its effectiveness. Finally, the algorithm’s performance

tracing is illustrated with plots.
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