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IoT devices are extremely vulnerable to attack, as they are tiny devices, and 

normally only possess intelligence which is enough to perform a single function, so 

that they can fit almost anywhere. 

In this thesis, we focus on low area low energy hardware security for IoT, five 

lightweight cryptographic ciphers from The Competition for Authenticated 

Encryption: Security, Applicability, and Robustness (CAESAR) were optimized 

for low power low area on Field-programmable gate array (FPGA), namely 

NORX, SILC, COLM, Tiaoxin, and JAMBU.  

Moreover, two new design methodologies using Partial dynamic reconfiguration 

was proposed in the thesis to achieve resource-efficient and energy-efficient 

hardware security. 
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Abstract 

IoT makes use of data collected from IoT devices to optimize the observation and 

control of the world in domains such as logistics, retail, military, and healthcare. IoT 

devices are extremely vulnerable to attack, as they are tiny, and normally possess 

intelligence which is enough to perform a single function, so that they can fit almost 

anywhere. 

 

In this thesis, we focus on low area low energy hardware security for IoT, five 

lightweight cryptographic ciphers from The Competition for Authenticated 

Encryption: Security, Applicability, and Robustness (CAESAR) were optimized for 

low power low area on Field-programmable gate array (FPGA) and application-

specific integrated circuit (ASIC), namely NORX, SILC, COLM, Tiaoxin, and 

JAMBU. 

 

Moreover, two new design methodologies using Partial dynamic reconfiguration 

was proposed to in the thesis achieve resource-efficient and energy-efficient hardware 

security. 
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Chapter 1 : Introduction  

The Internet of Things (IoT) has effectively spread through billions of tiny devices 

to every corner of the globe, they are incorporated into almost everything: televisions, 

shoes, cars, and light bulbs. It is also starting to appear in the processes of 

manufacturing and military technology. Although the functionality of the IoT devices 

is individually limited, they easily combine into huge data-collection networks that 

provide insights that were never available before. The internet of things links billions 

of devices to the internet and requires the use of billions of data points that must all be 

protected. IoT protection and IoT privacy are cited as major concerns because of its 

increased surface of attack. 

 

 

 

Figure 1 IOT Devices 

IoT security concerns have attracted the attention of technology companies and 

government agencies around the world. The hacking of smart refrigerators, 

thermostats, baby monitors, cameras and even weapons are a security threat created by 

the future of IoT. Too many new nodes were added to the networks and the internet 

will provide malicious actors with countless attack vectors to carry out their evil deeds, 

particularly when many of them suffer from security holes. 
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This fear was realized with a massive distributed denial of service attack that 

crippled the servers of services like Twitter, Netflix, NY Times, and PayPal across the 

U.S. on October 21st, 2016. It’s the result of an immense assault that involved millions 

of Internet addresses and malicious software, according to Dyn, the prime victim of 

that attack. “One source of the traffic for the attacks was devices infected by the Mirai 

botnet”. The attack comes amid heightened cybersecurity fears and a rising number of 

Internet security breaches. Preliminary indications suggested that countless Internet of 

Things (IoT) devices that power everyday technology like closed-circuit cameras 

and smart-home devices were hijacked by the malware, and used against the servers. 

The more important shift in security will come from the fact that IoT will become more 

ingrained in our lives. Concerns will no longer be limited to the protection of sensitive 

information and assets. Our very lives and health can become the target of IoT hack 

attacks. 

 

Since IoT devices are closely related, the only thing a hacker needs to do is exploit 

one vulnerability to access all of the data, rendering it. Furthermore, manufacturers 

who do not regularly upgrade their products or at all leave them vulnerable to cyber-

attacks. Additionally, connected apps often ask users to enter their personal details, 

including names, ages, addresses, phone numbers, and even social media profiles, 

Information that is invaluable to hackers. However, hackers aren't the only threat to 

IoT, privacy is another big concern for IoT users. For instance, companies producing 

and selling consumer IoT devices may use those devices to collect and sell personal 

data from users. 

 

A decision that system designers face in IoT field is deciding between software-

based or hardware-based security solutions. The first solution to show up was software-

based security which is relatively inexpensive as it shares resources with other 

programs to secure the data. The software-based implementation is capable of being 

revisited and upgraded as threats and vulnerabilities evolve. The software approach is 

the weak link within systems-security architecture because secrets remain vulnerable 

to discovery and the algorithms typically run on general-purpose non-secure hardware 

and are an attack risk. Hardware security is achieved through a dedicated integrated 

circuit (IC), or a processor with specialized security hardware, specifically designed to 

provide cryptographic functions. In Hardware Security, operations such as 

encryption/decryption and authentication, will take place at the IC hardware level 

where crypto algorithm performance is optimized. 

 

IoT is extremely vulnerable to attack because they are tiny devices and usually 

have intelligence that is adequate to perform a single task to fit almost anywhere. 

Unfortunately, processors do not have the room to increase the processing capabilities 

needed for security. The fact is that because of the resource constraints, the biggest 

problem is the security and privacy issues of the huge amount of data being processed. 

Security and privacy insurance in IoT devices is very challenging because of low 

constraints which require innovations in both hardware and hardware and software. 

Lack of sufficient resources in terms of computing ability is one of the characteristics 

for Majority of the IoT devices [1], [2]. In addition, Form factor and cost play an 

important role, further limiting the overall capability of the IoT devices.  

 

 

https://www.bbvaopenmind.com/en/this-is-how-a-virus-took-down-amazon-and-spotify/
http://en.wikipedia.org/wiki/Mirai_%28malware%29
http://en.wikipedia.org/wiki/Mirai_%28malware%29
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Recent advances in ultra-low-power technology enabled the development of 

smaller, autonomous, more mobile devices. Examples of this trend are smart cards, 

Radio Frequency Identification (RFID), and wearables. The power available to these 

devices is less than what common battery powered devices consume. Batteries for these 

devices are tiny and can supply 10Wfor only one day. Moreover, some of these 

technologies collect energy from environmental sources, such as light, heat, noise, or 

vibration using power scavengers which produce between 1 W and 500 W.  

 

Conventional approaches such as advanced encryption standard (AES), though 

secure and robust, are not suitable for ensuring the integrity of data traveling among 

resource-constrained devices [3]. This raised the need for Authenticated ciphers which 

combine the cryptographic services of confidentiality, integrity, and authentication into 

one algorithm, they can potentially replace distinct block ciphers and hash functions 

that are required to work together, which both reduces resources, and eliminates 

potential security vulnerabilities. Authenticated encryption has historically been 

accomplished by the use of two different algorithms to encrypt and authenticate. Modes 

are being proposed recently which combine encryption and authentication together. 

This function is particularly useful for hardware implementations, as it enables a 

significant reduction in the area of the circuit and power relative to conventional 

schemes 

 

The Competition for Authenticated Encryption Security, Applicability, and 

Robustness (CAESAR), evaluates candidates based on several criteria, including 

performance in hardware, to choose a portfolio of authenticated ciphers that offer 

advantages over AES-GCM, and are suitable for widespread adoption. The majority of 

these implementations were optimized for high speed (HS), in that they employed 

either basic iterative or unrolled architectures, and used full-width data paths and large 

I/O bus widths. Such design choices are not surprising, in that HW submissions are 

historically evaluated based on best throughput-to-area (TP/A) ratios, which are 

achieved using the aforementioned architectures [4]. 
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1.2. Thesis Objectives 

 

The objective of the work in this thesis is to provide a low area low power 

optimized implementation for cryptography algorithms to match the power constraints 

imposed by the low power IoT applications. The addressed algorithms are selected 

from algorithms that have participated in CAESAR. The selected algorithms are 

NORX, Tiaoxin, SILC, COLM, and JAMBU. The algorithms are implemented using 

the Field Programmable Gate Array (FPGA) flow and Application Specific Integrated 

Circuits (ASIC) flow. The Optimized implementations are benchmarked against the 

high-speed implementations. 

 

Then we investigate the usage of dynamic partial reconfiguration in hardware 

encryption to have resource-efficient and energy-efficient hardware security. 

1.3. Organization of the Thesis 

The thesis presents different techniques for hardware security for IoT. The thesis is 

organized as follows. 

 

Chapter 2 discusses the basic security objectives of any cryptographic system and 

then the methods that assure the security objectives. Later, we introduce the topic of 

Authenticated Encryption and its advantages over traditional schemes. Then we move 

to different types of Attacks on Ciphers. Finlay, we introduce the Competition for 

Authenticated Encryption: Security, Applicability, and Robustness.   

 

Chapter 3 present the work done for low area low power optimization of five 

selected candidates namely NORX, SILC, COLM, Tiaoxin, and JAMBU, and compare 

the optimized results with the implementations available for high-speed 

implementations and those provided in other research. First, related work is presented, 

then we summarize the operation of each algorithm of the selected candidates and then 

present the optimization techniques applied. Finally, the results of optimized 

implementations are compared against the available high-speed implementations and 

other implementation provided in the research. 

 

Chapter 4 presents Using Dynamic Partial Reconfiguration to achieve energy-

efficient and resource-efficient Hardware Encryption, first, it gives an introduction for 

dynamic partial reconfiguration, and then it goes to how Partial dynamic 

reconfiguration could be used to implement resource-efficient and energy-efficient 

hardware encryption. 

 

Finally, Chapter 5 contains the summary of achievements of the thesis. In addition, 

it provides potential directions for future work. 
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Chapter 2 : Introduction to Authenticated Encryption 

2.1. Cryptography 

Cryptography seeks to achieve information security and for this aim, it uses 

various techniques to achieve this objective. The main cryptographic objectives are 

described as follows 

1. Confidentiality.  

2. Data Integrity.  

3. Authentication.  

4. Non-repudiation of Message. 

5. Availability  

 

1) Confidentiality  

It is a technique used against unauthorized disclosure to keep the data secure. In other 

words, if and only if the message's sender and the recipient can access the message’s 

data then confidentiality is guaranteed. Confidentiality means that someone who is 

not part of the communication and unauthorized is not going to get access to the 

message information. 

 

2) Data Integrity  

This is a technique used to deal with the situation in which the unauthorized 

individual changes or alters the data. Changes to data include replacement, deletion, 

or addition of bits. Accordingly, data integrity guarantees the receiver can detect 

changes made by the unauthorized person on the message.  

 

3) Authentication  

This is identity-based technique of verifying a user's identity who wants to access the 

message, this form of authentication is called peer-entity authentication. Another 

form of authentication is authentication of data origin which ensures that the data 

originates from the actual sender and does not come from any third party. 

 

4) Non-repudiation  

This is a technique which prevents an entity from denying previous commitments or 

Actions. Non-repudiation protects both the recipient and the sender. Imagine 

receiving an email threatening anyone who denies sending the email. How can you 

figure the facts out? Digital signatures show that email messages are sent and 

received, ensuring, guaranteeing nonrepudiation. 

 

5) Availability  

This is a technique which provides access to data and techniques in the required 

manner without delay. 
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2.2. Encryption scheme 

An encryption scheme is an algorithm that encrypts a message, called plaintext, to 

produce a new message, called ciphertext, using a key. The transformation is called 

encryption. On reverse transformation, called decryption, the ciphertext is decrypted 

with the same or a different key to produce the initial plaintext message (depending on 

the type of scheme). Ciphers history is a long one. Throughout history, there have been 

various types of cipher known, now classified as classical and modern.  

Classical ciphers encrypt at letter level, they are classified into  

1) Substitution ciphers, where the ciphertext replace the plaintext symbol 

2) Transposition ciphers, where plaintext symbols are rearranged according 

to a defined scheme. 

Modern ciphers operate on a lower bit level. They are further classified into the 

following  

 

1. Symmetrical Encryption 

 

 

Figure 2: Symmetric Encryption [5] 

This is the simplest method of encryption, involving only one secret key for 

ciphering and deciphering information. Symmetrical encryption is an old technique 

and is well known. It uses a secret key, which can be either a number, a word, or a 

random letter string. It is blended with the message's plain text to change the content 

in a specific way. The sender and the recipient should know the secret key that is used 

to encrypt and decrypt all the messages. Blowfish, AES, RC4, DES, RC5, and RC6 are 

examples of symmetric encryption. The most widely used symmetric algorithm are 

AES-128, AES-192, and AES-256.  

The major drawback for symmetric key encryption is that all the interested parties 

share the key used in encryption to be used in decryption. 
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2. Asymmetrical Encryption 

 

 

Figure 3: Asymmetric Encryption [5] 

Asymmetric encryption is also known as public-key cryptography, compared to 

symmetric encryption it is a fairly new technique. For asymmetric encryption, two keys 

are used to encrypt a plain text. Secret keys are shared over the network. It ensures no 

abuse of the keys by malicious persons. It is important to remember that someone with 

a secret key can decrypt the message and this is why asymmetric encryption uses two 

related keys to improve security. Anyone who may want to send you a message will 

be given a public key free. The second private key is kept a secret for you to know 

only. 

 

A message encrypted using a public key can only be decrypted using a private key, 

while using a public key can also decrypt a message encrypted using a private key. 

Public key protection is not needed because it is open to the public and can be 

transmitted over the internet. Asymmetric key has a far better power in ensuring the 

security of information transmitted during communication. Asymmetric encryption is 

mostly used in day-to-day communication channels, especially over the Internet. 

Popular asymmetric key encryption algorithm includes RSA, DSA, Elliptic curve 

techniques, PKCS. 
 

Difference between Symmetric and Asymmetric Encryption 

 Symmetric encryption uses a single key that needs to be shared between the 

people who need to receive the message while asymmetrical encryption uses a 

pair of public key and a private key to encrypt and decrypt messages when 

communicating. 

 Asymmetric encryption is relatively new while Symmetric encryption is old 

technique. 

https://www.ssl2buy.com/wiki/ecc-algorithm-to-enhance-security-with-better-key-strength/
https://www.ssl2buy.com/wiki/ecc-algorithm-to-enhance-security-with-better-key-strength/
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 Asymmetric encryption has been implemented to counter the inherent issue of 

sharing the key in Symmetric encryption, removing the need to exchange the 

key using a pair of public-private keys. 

 Asymmetric encryption is slower than the symmetric encryption. 

2.3. Authenticated Encryption 

Authenticated encryption has historically been accomplished by the use of two 

different algorithms to encrypt and authenticate. Modes are being proposed recently 

which combine encryption and authentication together. This function is particularly 

useful for hardware implementations, as it enables a significant reduction in the area 

of the circuit and power relative to conventional schemes. 

 

Authenticated encryption (AE) is primarily a combination of authentication and 

encryption that provides both privacy and authenticity of the data that is encapsulated. 

Authenticated encryption ciphers take a message (M), an associated data (AD), a public 

message number (Npub), and an optional secret message number (Nsec) as an input 

and generate resulting ciphertext (C) and optional encrypted (Nsec). Integrity of data 

and authenticity of sender are ensured by a keyed-hash computation which occurs on 

all blocks of (Npub), (AD) and (M).  

 

The result of these computations is forwarded to the recipient as a Tag, as shown 

in Figure.4. In authenticated decryption, the recipient receives original (AD) and 

(Npub), along with (C) and (Tag), and uses Key to decrypt (C) to (M). The 

authenticated decryption recreates a Tag (Tag'), and releases the ciphertext if and only 

if Tag = Tag', then authentication and integrity of the transaction are assured, otherwise 

the decrypted ciphertext is not released. 

 

 

 

Figure 4: Input and Output of an Authenticated Cipher [6] 
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Combining authentication and encryption into one single algorithm in hardware 

might possibly provide the advantages listed below 

 Area requirement could be smaller for a single algorithm there by reducing 

the cost.  

  It is a good option for low-power applications where designs with smaller 

area requirements are needed. 

 A combined algorithm needs only a single key and so has an advantage in key 

storage and key management.  

2.4. Authentication Techniques  

This section covers a detailed explanation of authentication techniques. 

2.4.1. Cryptographic Hash Functions 

A hash function which is identical to a checksum. The key difference is that while 

the purpose of a checksum is to detect unintentional changes in the data, a 

cryptographic hash function is designed to detect deliberate alterations. When a 

cryptographic hash function processes the data, a short string of bits, known as a hash, 

is generated. Typically the smallest change to the message causes a major difference 

in the resulting hash. There is no cryptographic key needed for a cryptographic hash 

function. The basic requirements of a hash function are as listed below.  

1) One-way function.  

2) Could be computed easily. 

3) Fixed length Output. 

 

 

Figure 5: Cryptographic Hash Functions [7] 
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2.4.2. Message authentication code (MAC)  

A message authentication code (MAC) is a cryptographic checksum on data that 

uses a session key to detect both accidental and intentional modifications of the data. 

A MAC needs two inputs: a message and a secret key known only to the message's 

originator and its intended receiver(s). It helps message recipients to check the 

message’s integrity and to authenticate that the sender of the message has the shared 

secret key. If a sender does not know the secret key, then the hash value will be 

different, which would inform the receiver that the message did not come from the 

original sender. The basic requirements of a MAC are as listed below  

1) It should contain a key.  

2) Fixed length output.  

3) It must be computationally easy. 

 

 

Figure 6 Message authentication code 

Based on the way they are built there are two types of MACs  

1) Hash function based MACs. 

It is a special form of message authentication code (MAC) which includes a 

cryptographic hash function and a cryptographic secret key. It can check at the same 

time both the integrity of data and the authentication of a message. Any 

cryptographic hash function, such as SHA256 or SHA-3, can be used to compute an 

HMAC, the resulting MAC algorithm is called HMAC-X, where X is the hash 

function used. 

 

 

https://searchsecurity.techtarget.com/definition/cryptographic-checksum
https://searchsecurity.techtarget.com/definition/session-key
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2) Block cipher based MACs. 

It is a technique for constructing a message authentication code from a block cipher.  

The message is encrypted with some block cipher algorithm in a certain way to create 

blocks chains, so that each block depends on the previous block’s proper encryption. 

This interdependence ensures that a change to any of the plaintext bits will cause the 

final encrypted block to change in an unpredictable way that cannot be predicted or 

counteracted without knowing the block cipher key. 

2.5. Authentication Ciphers Types 

An Authenticated Cipher can be based on Block Ciphers, Tweakable Block ciphers, 

Stream Ciphers. 

2.5.1. Block ciphers  

A block cipher is an encryption method that applies a deterministic algorithm 

along with a symmetric key to encrypt a block of text. For example, a common block 

cipher, AES, encrypts 128 bit blocks with a key of predetermined length: 128, 192, or 

256 bits. Block ciphers are pseudorandom permutation (PRP) families that operate on 

the fixed size block of bits. PRPs are functions that cannot be differentiated from 

completely random permutations and thus, are considered reliable, until proven 

unreliable. 

 

Block cipher operation modes have been developed to eliminate the chance of 

encrypting identical blocks of text the same way, the ciphertext formed from the 

previous encrypted block is applied to the next block. A block of bits called an 

initialization vector (IV) is also used by modes of operation to ensure cipher texts 

remain different even when the same plaintext message is encrypted multiple times. 

Some of the various modes of operation for block ciphers include  

 CBC (cipher block chaining) 

 CFB (cipher feedback) 

 CTR (counter) 

 GCM (Galois/Counter Mode). 

 

Popular block ciphers 

 

 DES  

DES used to be the most popular block cipher in the world which stands for Data 

Encryption Standard. It's not used widely nowadays but still popular because it's 

usually included in the encryption historical discussions. The DES algorithm became 

a standard in the US in 1977. However, it's already been proven to be vulnerable to 

brute force attacks and other cryptanalytic methods. DES works with a 64-bit key and 

https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Block_cipher
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it is a 64-bit cipher. Actually, the key size is technically 56 bits long as 8 of the 64 

bits in the key are parity bits.  

 

 3DES  

As its name implies, 3DES is a cipher based on DES. It's practically DES that's run 

three times. Each DES operation can use a different key, with each key being 56 bits 

long. 3DES has a block size of 64 bits Like DES. Although 3DES is many times 

stronger than DES, it is also much slower (about 3x slower). It never became the 

ultimate successor of DES because many organizations found 3DES to be too slow 

for many applications. 

 

 AES  

A US Federal Government standard since 2002, AES or Advanced Encryption 

Standard is arguably the most widely used block cipher in the world. It has a block 

size of 128 bits and supports three possible key sizes - 128, 192, and 256 bits. The 

longer the key size, the stronger the encryption. However, longer keys also result in 

slower processes of encryption.  

 

 Blowfish  

This is another popular block cipher. It has a block size of 64 bits and supports a 

variable-length key that can range from 32 to 448 bits. Blowfish is unpatented and 

royalty-free which makes it so appealing.  

 

 Twofish  

This cipher is related to Blowfish but it's not as popular. It's a 128-bit block cipher 

that supports key sizes up to 256 bits long.  

2.5.2. Stream Cipher 

A stream cipher is an encryption algorithm that encrypts 1 bit or byte of plaintext 

at a time. The key of this cipher is infinite stream of pseudorandom bits. The key should 

never be reused and the pseudorandom generator should be unpredictable so that the 

cipher implementation remain secure. Stream ciphers are designed to approximate an 

idealized cipher, known as the One-Time Pad. 

 

The One-Time Pad, which is supposed to employ a purely random key, can 

potentially achieve "perfect secrecy". That is, it's supposed to be fully immune to brute 

force attacks. The problem with the one-time pad is that, its key should be as long as 

or even longer than the plaintext in order to create such a cipher. In other words, if you 

have 500 Megabyte video file that you need to encrypt, a key that's at least 4 Gigabits 

long is needed. Stream ciphers can be divided in two major groups:  
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1) Synchronous and self-synchronous.  

These ciphers generate key streams independently and separately from the 

plaintext. To form the cipher text the key stream is then combined with the 

plaintext. 

 

2) Self-synchronizing and asynchronous 

Stream cipher is a stream cipher in which the key stream is a function of the 

key and a fixed number of previous cipher text characters. 

 

Popular stream ciphers 

 

 RC4  

RC4, which stands for Rivest Cipher 4, is the most widely used of all stream 

ciphers, particularly in software. It's also known as ARCFOUR or ARC4. RC4 has 

been used in various protocols like WEP and WPA (both security protocols for wireless 

networks) as well as in TLS. Unfortunately, recent studies have revealed vulnerabilities 

in RC4, prompting Mozilla and Microsoft to recommend that it should be disabled 

where possible.  

2.5.3. Tweakable Block ciphers 

 A tweakable block cipher accepts a second input with its usual plaintext or cipher 

text input called the tweak. The tweak, along with the key, selects the permutation 

computed by the cipher. There are have been many proposed constructions Most of 

which rely on a block cipher, and generically introduce the tweak. 

2.6. Authenticated Encryption approaches 

There are three main approaches which are adopted for AEAD:  

 Encrypt then MAC (EtM) 

 Encrypt and MAC (E&M)  

 MAC then Encrypt (MtE) 

2.6.1. Encrypt-then-MAC (EtM)  

In this scheme a message is first encrypted and the tag is calculated by taking the 

MAC over the obtained cipher text. In addition, on the receiver's side first the tag gets 

verified and if it matches decryption will take place to get the plaintext.  
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2.6.2. MAC-then-Encrypt (MtE)  

In this scheme first the tag is calculated by taking the MAC over the message. The 

obtained is tag is then appended to the message and the resultant is encrypted to 

generate the cipher text. In addition, on the receiver's side first decryption will takes 

place to get plaintext and tag pair, and then verifies the tag.  

2.6.3. Encrypt-and-MAC (E&M)  

The message is encrypted to get the cipher text and the tag is also calculated on 

the original message. In addition, on the receiver's side first decryption is done to get 

the plaintext and then verifies the tag. 
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Figure 7: Authenticated Encryption approaches [15] 
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2.7. Attacks on ciphers 

Total breaking of an encryption scheme means that an attacker can retrieve the 

secret encryption/decryption key and this way decrypt the cipher text. A cipher is 

partially broken if the attacker is able to retrieve part of the plaintext (but not the key) 

from cipher text. 

Following is classification for the different types of Attacks. 

 

1) A ciphertext-only attack (COA):  

During ciphertext-only attacks, the attacker has no idea what the plaintext data or 

the secret key may be, he has access only to a number of encrypted messages. The goal 

is to guess the secret key or to recover as much plaintext messages as possible. It will 

be possible to break all the other messages which have been encrypted by this key if 

the encryption key is discovered. 

 

It is particularly important to secure the encryption algorithms against ciphertext-

only attacks while designing them, as they are the most obvious starting point for every 

cryptanalysis. Well prepared and reviewed ciphers are usually not very vulnerable to 

these attacks. However, there are some examples of protocols that have been broken 

by attacks based on the ciphertext-only approach. There are a few techniques which 

are based only on the knowledge of the ciphertext messages and were proved to be 

very effective even when targeting modern ciphers. The most important methods are: 

 Attack on Two-Time Pad 

 Frequency Analysis 

 

2) A known plaintext attack (KPA):  

During these attacks, the attacker has an access to the plaintext and its 

corresponding ciphertext. His goal is to guess the secret key or to develop an algorithm 

which make him able to do decryption for any further messages. 

This gives the attacker much bigger possibilities to break the cipher than just by 

performing only attacks. However, he is no able to actively provide customized data 

or secret keys which would be processed by the cipher. 

 

3) Chosen plaintext attack (CPA):  

During the chosen-plaintext attack, a cryptanalyst can choose arbitrary plaintext 

data to be encrypted and then he receives the corresponding ciphertext. He tries 

to acquire the secret encryption key or alternatively to create an algorithm which 

would allow him to decrypt any ciphertext messages encrypted using this key (but 

without actually knowing the secret key). 

 

This is a more comfortable situation for the attacker. He can get more information 

about the secret key and about the attacked system, because he has the ability to choose 

any plaintext to be processed by the system. Based on any kind of input data, he can 

http://www.crypto-it.net/eng/attacks/two-time-pad.html
http://www.crypto-it.net/eng/attacks/frequency-analysis.html
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analyze the system behavior and output ciphertext, based on any kind of input data. 

During breaking deterministic ciphers with the public key, the intruder can easily 

create a database with popular ciphertexts. After that by simply comparing many 

intercepted encrypted messages with his own database entries, he will be able to find 

the meaning of many them. 

 

4) An adaptive chosen plaintext attack (ACPA): 

In this kind of chosen-plaintext attack, the attacker has the ability to choose 

plaintext for encryption many times. Instead of using one big block of text, he can 

choose the smaller plaintext, get its encrypted ciphertext and then based on it, choose 

another one, and so on. This allows him to study the attacked system in much more 

details. 

 

5) Chosen ciphertext attack (CCA):  

During the chosen-ciphertext attack, a cryptanalyst can analyze any chosen 

ciphertexts together with their corresponding plaintexts. His goal is to acquire a secret 

key or to get as many information about the attacked system as possible. The attacker 

has the ability to make the victim decrypt any ciphertext and send him back 

the ciphertext. By analyzing the chosen ciphertext and the corresponding received 

plaintext, the attacker tries to guess the secret key which has been used in the 

decryption. Chosen-ciphertext attacks are used usually for attacking public key 

encryption systems. For example, The RSA cipher were vulnerable to such attacks. 

They are used less often for attacking symmetric ciphers. Some self-synchronizing 

stream ciphers have been also attacked successfully in that way. 

 

6) An adaptive chosen ciphertext attack (ACCA):  

The adaptive-chosen-ciphertext attack is a kind of chosen-ciphertext attacks, 

during which an attacker can make the attacked system decrypt many different 

ciphertexts. This means that the new ciphertexts are decrypted based on responses 

(plaintexts) received previously. The attacker has the ability to request decrypting of 

many ciphertexts. This model is used for the analysis of the security of encryption 

system. Proving that this attack doesn't break the system confirms that any realistic 

chosen-ciphertext attack will not be able to break the system. 

2.8. Attack analysis: differential and linear cryptanalysis 

A CPA or CCA gives the attacker the freedom to analyze a cipher from plain-text 

cipher pairs. Adaptive cases give him even more power, since he can use certain 

dependencies from previous queries. These types of attacks allow the collection of 

certain advantageous data that can be analyzed and used for the following types of 

cryptanalysis. 

 

 

 

http://www.crypto-it.net/eng/asymmetric/rsa.html?tab=0
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1) Linear cryptanalysis  

 

It exploits correlations between a two linear function, the first one is the function 

of the input blocks and the second one is the function of the output blocks. The two 

linear functions combination is called linear approximation. The most widely used 

linear function involves calculating the bitwise dot product block operation with a 

specific binary vector. The value combined with the input blocks is called the input 

mask, while that applied to the output blocks is called the output mask. 

 

2) Differential cryptanalysis 

 

It takes advantage of how a specific difference in a pair of inputs of a cipher can 

affect a difference in the pair of outputs of the cipher, where the pair of outputs are 

obtained by encrypting the pair of inputs using the same key. The notion of difference 

can be defined in several ways; the most widely used is using XOR operation. The 

difference between the inputs is called the input difference, and the difference between 

the outputs is called the output difference. The combination of the input difference and 

the output difference is called a differential. 

2.9. Competition for Authenticated Encryption: Security, 

Applicability, and Robustness 

In 1970 public developments made high quality cryptography accessible to the 

general public. Governments tried to keep their monopoly on it, and until this day there 

are still laws restricting the export of cryptography. The United States relaxed their 

laws on the export of cryptography around the year 2000. At the time, the US National 

Institute of Standards and Technology (NIST) announced an open competition to find 

an unclassified, publicly disclosed encryption algorithm capable of protecting 

government sensitive information well into the next century. The winning algorithm of 

that competition (Advanced Encryption Standard or AES), is still one of the most used 

symmetric-key algorithms today. 

 

Based on the same open principles, several other competitions, were organized in 

the new millennium. ESTREAM, organized from 2004 to 2008, resulted in a portfolio 

of seven stream ciphers [8]. Later, the SHA-3 competition was organized to find a new 

hash algorithm to augment and revise the SHA-1 and SHA-2 standards [9]. 

The competition was organized because of fears that SHA-2 would be broken. Due to 

theoretical attacks on SHA-1 [10, 11] and successful attacks on MD5, there was no 

other backup algorithm. The competition went from 2007 to 2012. 

 

In 2013, The CAESAR Competition for Authenticated Encryption: Security, 

Applicability, and Robustness was announced in order to encourage the design of AE 

algorithms. In round 1, 57 different proposals have been submitted to the competition. 

Out of these 57 submissions, only 28 submissions qualified to the second round. FPGA 

implementations of all the 28 candidates have been developed and benchmarked for 
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comparison. In September 2016, 15 candidates have been selected for the third round 

of the competition. In 2019 the final portfolio was announced which includes 6 ciphers. 

  

The Cryptographic Engineering Research Group (CERG) at George Mason 

University (GMU), USA, operates and maintains the online platform ATHENa aimed 

at fair, comprehensive, and automated evaluation of hardware cryptographic cores 

targeting Systems on Chip, FPGAs, and ASICs. Comparing of the FPGA 

implementations of the CAESAR competition candidates is one of their ongoing 

projects. They have also provided round-based high-speed implementations. The most 

recent benchmarking results are published in [12], where the authors provided a 

summary of available implementations for candidates that are designed by either the 

CERG research group or other members of the cryptographic community. The 

benchmarking process was performed only for FPGA and some of the designs were 

implemented using High-Level Synthesis (HLS) as opposed to manual Register-

Transfer-Level (RTL) design [13]. Moreover, only the implementations that are 

compliant with the CAESAR Hardware API [15] were considered. The authors of [13] 

and [12] adopted a few assumptions that motivated their benchmarking process. These 

assumptions include: 

 The rankings of different implementations will be the same regardless of 

whether the benchmarking is done using FPGA or ASIC. 

 The rankings of different implementations will be the same regardless of 

whether the benchmarking is done using HLS or manual RTL. 

 It is only fair to compare implementations with the same hardware API. 

 

 

Figure 8 the inputs and output of authenticated ciphers participating in the 

CAESAR competition [15] 
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Figure 9: FPGA Benchmarking Results of Round 3 Candidates [15] 

 

Ciphers participating in the CAESAR competition will accept plaintext and 

variable length Associated Data (AD), and convert these into a cipher text with the help 

of a fixed-length public nonce, secret nonce and key (the use of a secret nonce is 

optional). Integrity is provided for the Associated Data, and both integrity and 

confidentiality are provided for the plaintext. AD is a part of a message that should be 

authenticated, but doesn’t need confidentiality. For example the payload of a packet 

should by encrypted (this is the plaintext) and authenticated, but the header should be 

authenticated only. Integrity is important for both parts, so no attacker can fool the 

receiver in to thinking that he is communicating with someone else. The nonce is an 

extra number aside from the key. For example it prevents the same cipher text to be 

obtained when the same message is encrypted twice with the same key. Often it cannot 

be reused multiple times for the same key, without the loss of the cipher security. 

 

 



22 
 

The evaluation of different candidates is based on a common interface and 

protocol, it is desirable to have a common API. At the beginning of the CAESAR 

competition in 2012 SW API was specified, and in 2016 the official HW API – the 

CAESAR HW API for Authenticated Ciphers – was established. The first version of 

the CAESAR HW Development Package (v1.0) [17] was implemented in 2016 to 

support CAESAR Round 2 submissions. Although the API allows for LW 

implementations with external data bus widths of 8, 16, or 32 bits, Development 

Package v1.0 did not support bus widths of less than 32 bits. Though work-around are 

possible, this shortfall discouraged the submission of true LW CAESAR Round 3 

candidates, which were due in summer 2017. Subsequently, the LW CAESAR HW 

Development Package (v2.0) was released in Dec. 2017 [18], and facilitates lower-area 

implementations by  

1) Permitting external bus widths of 8, 16, or 32 bits, 

2) Reducing the amount of functionality automatically provided by Pre- and 

Postprocessor.  

 

The CAESAR HW API was introduced to provide a common interface for the 

hardware implementations of the ciphers participating in the competition. It makes the 

comparison of different algorithms easier and fairer. The Hardware API separates the 

external communication and the development of the Core (which is called Cipher 

Core), containing the cipher specific part. One of the useful features is the support for 

a wide range of data port widths (ranging from 8 to 256 bytes), which are functionally 

completely separated from the Cipher Core. Furthermore, it also supports an arbitrary 

length of the input stream. There is support for encryption and decryption with the 

same core. It can communicate with simple devices like FIFOs to use as memory and 

it is relative lightweight. 

 

The AEAD core consists of three main blocks: pre-processor, cipher core, and 

post-processor, as shown in Figure.10 The main difference between the different 

algorithms is in the cipher core implementation, as it contains the hardware blocks that 

perform either encryption or decryption and authentication algorithm steps. 

The George Mason University Application Programming Interface (GMU-API) 

blocks are described as follows: 

 

1) Pre-processor 

The first block of the AEAD core is the Pre-processor, it receives public and secret 

data and start processing them. 

 

2) Post-processor 

The post-processor is the output stage of the API. 

 

3) Cipher core 

The cipher core is divided into two blocks: core data path and core controller.  

The core data path contains the hardware which is responsible for encryption or 

decryption and tag generation through processing the associative data, in addition to 

the hardware which is responsible for the key scheduling and the round keys 

generation.  
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The cipher core controller is an algorithmic state machine that generates control 

signals to the core data path based on the some information signals takes from the 

pre-processor. 

 

4) Bypass first-in-first-out (FIFO) 

Small FIFO which bypasses the tags, header, associated data and any data blocks that 

are used in the authentication Process and will not be encrypted. 

 

5) Auxiliary FIFO 

The memory used by the post-processor to temporarily store the decrypted message 

till the result of authentication is ready. 

 

The area overhead introduced by the API is mainly determined by the block size used 

by the ciphers and the size of the input words.  

 

 

Figure 10: Top-level block diagram of a lightweight architecture of a single-pass 

authenticated cipher core, AEAD [16] 
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Chapter 3 : Low Area and Low Power Implementation 

of CAESAR Authenticated Ciphers 

In this chapter we present the work done for low area low power optimization of 

five selected candidates namely NORX, SILC, Tiaoxin, COLM, and JAMBU, and 

compare the optimized results with the implementations available for high-speed 

implementations and those provided in other research. First the Related work is 

presented, then we summarize the operation of each algorithm of the selected 

candidates and then present the optimization techniques applied. Finally the results of 

optimized implementations are compared against the available high-speed 

implementations and other implementation provided in research. 

3.1. Power Measurements  

After viable implementation versions of the ciphers are found, low-level 

improvements can be performed on them. There have been some previous studies about 

these optimizations on FPGA and some recommendations for energy-efficient designs 

have been published. The power consumption of an FPGA consists of two main parts: 

dynamic power consumption and static power consumption. The static power is mainly 

due to the complicated wiring and gate leakage in FPGA. It is not something the 

designer can control, so it does not differ much between designs. The dynamic power 

consumption is due to the switching activity, and the change of status of the wires. This 

can be improved by good design. 

 

Several general strategies can be used to reduce the dynamic power consumption.  

One is to make use of the embedded blocks as much as possible, as they are designed 

at the gate level instead of using less efficient LUTs. Besides, a second strategy is 

clock gating, to avoid switching activity in certain parts of the design when it is not 

used. In Smaller designs the last technique is not of much use.  Glitches often cause 

power consumption. Glitches are unwanted switching activities that happen before a 

signal settles down to its correct value.  Avoiding too long logic paths can reduce 

this, for example pipelining could be applied on such paths. Also rearranging the 

logic, can also help in some case. 

 

The energy consumption can be calculated by using certain energy estimation tools 

or using a hardware setup to calculate the power .Two common power estimation tools 

used by Xilinx boards are the Xilinx Power Estimator (XPE) and Xilinx Power 

Analyzer (XPA). Both tools are simple and quick to use, as they are designed to work 

together with Vivado or ISE, which is used to synthesize and generate the bit stream 

of designs on Xilinx FPGA's. XPA is used to evaluate the design when the full HDL 

code is available while XPE is used before the full HDL code is written. The XPA is 

the one of interest for this thesis because the throughput per clock cycle of the 

implementations can be calculated from simulation, the power consumption could be 

used to deduce the energy consumption. XPA uses the actual design parameters like 
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the board voltage, clock frequency and the load on the output pins, to estimate the 

power consumption.  

3.2. Literature Survey  

Hardware submissions of CAESAR Round 3 candidates were made available for 

public evaluation and FPGA benchmarking in July 2017 in the form of VHDL or 

Verilog code compatible with the CAESAR Hardware Applications Programming 

Interface (HW API).   

However, the majority of these implementations were designed for high speed (HS), 

in that they employed simple either unrolled or iterative architectures, and used full-

width data paths and wide I / O bus widths. Such design choices are not surprising, 

given that HW applications are historically evaluated based on best throughput-to-

area (TP / A) ratios, which are accomplished using the aforementioned architectures. 

 

Additionally, the majority of HW submissions were implemented using the 

CAESAR HW Development Package, discussed at [17]. At the time, the HS package 

was the only available version, but was not optimal for LW implementations, in that 

the minimum I/O bus width was 32 bits, and I/O modules often contained resource 

intensive units (e.g., a universal padding unit) not necessary for certain designs. As a 

result, the true LW potential of candidates stating a LW use case, as intended by the 

CAESAR committee, was not evaluated. Additionally, third-party evaluations of these 

implementations in resource-constrained environments (e.g., low-cost FPGAs with 

minimum area budgets) are more difficult.  

 

Certain CAESAR candidates can be realized using low area implementations.  

An example in [19] which present low area implementation of Ascon, it uses 2.57 

Kilo-Gate Equivalent (KGE) and requires as little as 15μW for a 1MHz clock source 

in 90 nm ASIC technology. The Architecture of the data path uses a radical low-area 

approach, which can be described as “one bit operation per cycle”. This version is not 

compatible with the CAESAR Hardware Application Programming Interface (HW 

API) and it results in 512 clock cycles per round transformation. 

 

In [29], a very compact AEGIS design is introduced. They used the Canright’s 

implementation [30] of SBOX to process 8 bits of state at a time. They implemented 

an optimization to reduce the number of 128-bit registers necessary to store the next 

state. The proposed design has a low area which requires 18 KGE. 

 

There were attempts to provide dedicated lightweight authenticated encryption 

schemes. An example Hummingbird-2 [2] which is an authenticating encryption 

primitive that has been developed specifically for resource-constrained devices such as 

RFID tags, wireless sensors, smart meters and industrial controllers. Hummingbird-2 

can be implemented with very limited hardware or software footprint and is therefore 

ideal for providing security in low-cost ubiquitous devices. Hummingbird-2, needs 2.2 

kGE in ASIC. 
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In [21], authors proposed a new Authenticated Lightweight Encryption algorithm 

coined ALE. The AES round transformation and the AES-128 key schedule are the 

basic operation of ALE. ALE is an online single-pass authenticated encryption 

algorithm that supports optional associated data. Its security relies on using nonce. An 

optimized low-area implementation of ALE in ASIC hardware was provided which is 

about 2.5 kGE. This area is almost two times smaller than that of the lightweight 

implementations for AES-OCB and ASC-1 using the same lightweight AES engine. 

At the same time, its performance is at least 2.5 times higher than the alternatives in 

their smallest implementations as it requires only 4 AES rounds to both encrypt and 

authenticate a 128-bit data block. 

 

The majority of HW submissions of CAESAR are implemented using the 

CAESAR HW Development Package v1.0 [17] then a new version of the CAESAR 

HW Development Package v2.0 supporting lightweight (LW) implementations [18] 

was released. In [22] authors present LW implementations of CAESAR candidates 

Ketje Sr, Ascon-128, and Ascon-128a. They demonstrate that the use of a prototype 

version of the LW Development Package v2.0 significantly reduces the overhead of 

interface modules compared to the previous CAESAR HW Development Package 

v1.0.  

In [23] authors improved upon the HS implementations of ACORN, NORX, 

CLOC, and SILC ciphers by designing true LW implementations. Their design 

methodology consists of two aspects: 

 Use of the LW CAESAR HW Development Package v2.0, with I/O bus 

widths of 8, 16, or 32 bits. 

 Use of internal data paths for cryptographic primitives and authenticated 

cipher layer operations, which are matched to their corresponding I/O bus 

widths. 

3.3. Low Power low Area Optimization  

The optimization methodology depends on resource sharing as the addressed Ciphers 

(NORX, Tiaoxin, SILC, COLM, and JAMBU) are found to use resource duplication 

in their implementations. The CAESAR HW Development Package v1.0 is used in 

the proposed work. 

3.3.1. The General Approach 

Very high speed integrated circuit Hardware Description Language (VHDL) is the 

used hardware description language (HDL) to implement algorithms in register transfer 

level (RTL). The operating frequency is chosen to be 100 MHz for all algorithms. The 

implementation is done for the Cipher Core only, the postprocessor, preprocessor, and 

FIFOs are excluded from implementation as the optimization is done for Cipher Core 

only.  
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3.3.2. Implementations Evaluation  

To evaluate the hardware performance of the proposed optimized 

implementations, pairs of corresponding publicly available HS implementations 

(donated by High-Speed Implementations) and proposed Optimized implementations 

(denoted by Optimized Implementations) are benchmarked for FPGA and ASIC 

implementations 

3.3.2.1. Implementation on field programmable gate array (FPGA) 

FPGAs take advantage of the size and power efficiency of ASICs, while still 

providing flexibility in the form of reprogrammability. Making them cheaper and faster 

to develop on, but at the cost of worse specifications and cost-per-unit when made in 

large batches. Because of the exponential growth of transistor density through Moore’s 

law, FPGAs have become feasible for more and more applications since their invention 

in 1982. 

 

The FPGA implementation of the candidates is performed using the Xilinx Vivado 

2016.2 design suite. The algorithms are synthesized using the Virtex-7 FPGA device. 

Vivado tool is used to perform the logic synthesis, mapping, placing, and routing. 

Vivado results report the area and power consumption of the algorithms.  

For power consumption the Inputs/Outputs (IOs) power is excluded from the total 

dynamic power as in real case the Cipher Core IOs will be connected to internal 

signals not primary IOs of the FPGA. 

3.3.2.2. Implementation on application specific integrated circuit (ASIC) 

Synthesis step is done using Synopsys Design Compiler (DC) B-2008.09 for 

Linux. CMOS UMC 130nm technology is the used technology for synthesis and place 

and route steps. DC takes RTL codes, technology libraries, and constraints file as an 

input and produced the gate level netlist as an output. The switching activity file 

generated from Modelsim is included for accurate power consumption results. 

3.3.3. The GMU Hardware API for Authenticated Ciphers 

In the implementations made in this thesis, the Cipher Core is implemented for 

each cipher and fit in to this API. The size of the input words and the block size used 

by the ciphers determine the area overhead introduced by the API. Since the five 

chosen ciphers have small block sizes (maximum 128-bit), and small word widths are 

used in the inputs (32-bit), this overhead in absolute terms is not that high. However, 

since the ciphers are all fairly small in area, the overhead in relative terms it is not 

negligible.  

 

When the ciphers will be used they will be integrated in a bigger design the 

majority of time, and not use this specific API. However the API forces the Cipher 

Core of all ciphers to be structured a certain way, which makes the comparison of them 

more accurate. It is also useful to verify the correct functionality of the 
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implementations with the API, and the structure makes it easier to understand and 

possibly reuse the implementations with different APIs in the future. 

3.3.4. Common Features for CASEAR Candidates 

The following selected algorithms: SILC, Tiaoxin, COLM, and JAMBU-AES are 

based on Advanced Encryption Standard (AES) to perform the encryption and the 

decryption processes. AES is a symmetric block cipher that uses several key sizes. AES 

has various standard versions: AES-128, AES-192, and AES-25611. 

 

The number of rounds for each version depends on the key size. It uses 10, 12, and 

14 rounds for a key size of 128, 192, and 256 respectively. Figure. 3 shows a flowchart 

for the AES encryption algorithm. AES operates on a 4 4 column-major order array of 

bytes, termed the state and applies four permutation functions in each round which are 

• Substitute bytes:  

Uses an S-box to perform a byte-by-byte substitution of the block. 

 

• ShiftRows:  

A simple permutation that rotates the state rows right with a different number 

of positions. 

 

• MixColumns:  

A substitution that combines the four bytes of each column of the state using 

an invertible linear transformation. 

 

• AddRoundKey:  

A simple bitwise XOR of the current block with a portion of the round key. 

 



29 
 

 

Figure 11 AES encryption algorithm 
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3.4. NORX 

NORX [24] has a unique parallel architecture based on monkey duplex 

construction, where the degree of parallelism and tag size can be changed arbitrarily. 

The scheme is based on Addition-Rotation-XOR (ARX).  

 

NORX was optimized for hardware and software efficiency, with a SIMD-friendly 

core, almost byte-aligned rotations, only bitwise operations and no secret-dependent 

memory lookups. The NORX core is inspired by the ARX primitive, however integer 

addition is replaced with the approximation 𝑎 ⨁ 𝑏 ⨁  (𝑎 ∧ 𝑏) ≪ 1 . This improves 

hardware efficiency and simplifies cryptanalysis. Furthermore, NORX specifies a 

dedicated datagram to avoid users the trouble of defining custom signaling and 

encoding, and to facilitate interoperability. 

3.4.1. Operation  

 

NORX has High security as it supports 128-bit and 256-bit keys and authentication 

tags of arbitrary size, thanks to its duplex construction. The core permutation of NORX 

was designed and evaluated to be cryptographically strong. NORX uses the monkey 

Duplex construction enhanced with the capability to process payload in parallel.  
 

The duplex construction and sponge function are being used widely to implement 

many algorithms for cryptography including AE schemes. Some of those AE 

algorithms are submitted to CAESAR such as ASCON, NORX, and Ketje. The fixed 

permutation F in the duplex construction function is determined by the following two 

parameters: capacity (c) and bitrate (r). The state size (S) are computed by adding both 

parameters. There is a trade-off for a fixed state size between speed and security 

because of assigning different values for the capacity and bit-rate. For example, to 

make the algorithm faster higher bitrate is needed which makes the algorithm has lower 

security and vice versa. 

 

The bitrate part of the permutation F get the input blocks (plaintext), the input 

blocks gets padded to achieve the full r bits if it is smaller than r bits. The r-bit output 

blocks (ciphertext) are squeezed out after being processed by the permutation F. The 

duplex construction is used to develop the Authentication encryption with associated 

data as described in Figure 12. First, the concatenation of a nonce and a secret key K 

are given into the initial state which is applied to the permutation F. The following 

steps show the process of duplex construction on n blocks of plain text 𝑃𝑖. 

For the plain text 𝑃𝑖, the plaintext with the bitrate part are XOR-ed to compute 𝐶𝑖. 

The permutation F is kept calling until the last block. Similarly, the public associated 

data blocks could be processed by absorbing them without encryption. The r-bit 

authentication tag T is get by completing the encryption. The security sponge-based 

authenticated encryption schemes largely depends on the internal structure of 

permutation F which is implemented usually as a sequence of elementary operations 

named rounds. As the number of rounds in the permutation F increase, the 

cryptanalysis is more complex and the relevant AEAD becomes more secure but this 

will require more hardware resources. 
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Figure 12 Duplex construction based Authenticated encryption scheme [24] 

 

The core algorithm F of NORX is a permutation of 𝑆 = 𝑟 + 𝑐 bits. F is called a 

round and F' denotes its 𝑙 − fold iteration. The state is viewed as a concatenation of 16 

words, i.e. 𝑆 = 𝑠0|| … ||𝑠15 , out of which 𝑠0|| … ||𝑠11 are called the rate words where 

data blocks are injected and 𝑠12|| … ||𝑠15 are called the capacity words which remain 

untouched. Conceptually, the 16 state words are arranged in a 4x4 matrix. 

 

The pseudo code for the NORX core permutation F' is given in Figure 13. A single 

NORX round F processes the state S by first transforming its columns with the function 

G using function Col(S), and then transforming its diagonals using function Diag(S).  

The G function uses cyclic rotations and non-linear operation interchangeably to 

update its four input words. 
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Figure 13 NORX Algorithm [24] 

3.4.2. Low Area Low Power Optimization  

The high-speed NORX hardware implementation duplicates the G function 8 

times. The round operation is done in 2 steps, at the first step, 4 G functions operate on 

the columns, and at the second step, and the other 4 G functions operate on the 

diagonals so the same process is done on columns and diagonals sequentially. 

 

In order to optimize NORX for low area, only one G function is used so that the 

Round operation is processed in 8 cycles instead of 1 cycle. In this research, a mux is 

added which select the input to G function and the state register is used to store the 

output of the G function, so no more sequential elements are added to reduce the 

switching power. 
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Figure 14: NORX High speed Block diagram 

A small FSM is added to control the flow of data, and in order to account for the 

additional delay due to the insertion of the pipe stage, few counters are added. The 

optimization removes 7 instances of the G function by converting the implementation 

to be sequential  

3.4.3. Results 

1) FPGA Results  

The results show that the proposed optimized implementations achieve an area 

reduction for NORX with 31%, and a Dynamic Power consumption reduction by 70% 

respectively. As a cost, throughput (TP) decreases for NORX by 87.5%, and 

throughput-to-area (TP/A) decreases by 82%.The reduction in TP and TP/A ratio is 

expected as latency and throughput are sacrificed for area reduction.  

The proposed optimized implementations are compared to work proposed in [16]. 

In [16] virtex-6 FPGA is used for implementation, while virtex-7 FPGA is used in this 

research so a comparison is done between Area reduction, Dynamic Power reduction 

and throughput-to-area change achieved by proposed work and the work in [16]. For 

NORX proposed implementation has lower area reduction with 31% compared to 

53.3% in [16] and the throughput-to-area (TP/A) has decreased with 82% while it 

increased with 25.5 % in [16]. 

 

2) ASIC Results  

The results show that the proposed optimized implementations achieve an area 

reduction for NORX with 44%, and a Dynamic Power consumption reduction by 54% 

respectively. As a cost, throughput (TP) decreases for NORX by 87.5%, and 

throughput-to-area (TP/A) decreases by 77%. 
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3.5. SILC 

SILC [27] (Simple Lightweight CFB (Cipher Feedback)) is a mode of operation 

with a block cipher as the underlying base function. It is a lightweight function that is 

suitable for use in constrained hardware devices as the hardware implementation cost 

is very low. SILC doesn't need much precomputation other than key scheduling so less 

hardware is needed there by reducing computational cost. 

 

SILC uses AES-128 block cipher which improves memory utilization and latency 

more than LED and PRESENT block ciphers [31]. The S-box in AES allows pseudo-

randomness which provides provable security against birthday attack (i.e., 

cryptographic attack that applies the birthday paradox mathematics) [27]. 

3.5.1. Operation   

The encryption and decryption operations of SILC can be done with the use of the 

encryption function alone. Both encryption and decryption are online processes that 

means 𝑖𝑡ℎ input block 𝑀𝑖 depends only on the blocks 𝑀𝑖. . . , 𝑀𝑖−1. It is inverse free 

which means it only requires encryption for both encryption and decryption processes. 

For verification of the tag it use EtM composition scheme which means the tag is 

verified before decryption. It is a two pass scheme i.e., first the authentication is 

executed and then the encryption.   

 

The round keys for key scheduling is the only pre-computation needed in SILC. 

For this reason, no extra hardware register is needed for storing the pre-computed 

result. SILC use a GF multiplier only in AES encryption function which reduces the 

area as GF multiplier requires huge number of gates [32]. The S-box block dominates 

the SILC power consumption due to its large size (16 x 16 x 8) in look-up table 

implementation. 

 

SILC uses four subroutines to perform the encryption and decryption operations: 

1) HASH. 

2) Encryption (ENC) 

3) Pseudo Random Function (PRF) 

4) Decryption(DEC) 

 

1. HASH Function 

The HASH function takes the input as key (K), associated data (A), nonce (N) 

concatenated with parameter and returns the output which is intermediate tag (V). In 

the case of an empty associated data string it encrypts the zero prepended nonce. In the 

case of a non-empty associated data the XOR-ed associated data value is encrypted 

with the previous encrypted associated data value. The encryption function output is 

then XOR-ed with the associated data length and then sent to the tweak function (g), 

and finally the intermediate tag (V) is returned.  
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2. Encryption (ENC) 

The ENC function takes the input as the message (M) and the intermediate tag (V) 

and returns output which is ciphertext(C). If the message length is zero then the cipher 

text is a string of zeros. In the case of the message is not empty, the cipher text first 

block is obtained by XOR-ing the message first block with encrypted output of the 

intermediate tag (V). The 𝑖𝑡ℎ  cipher text block is generated by XOR-ing the 

𝑖𝑡ℎmessage block with encrypted value of the (𝑖 − 1)𝑡ℎ ciphertext.  

 

3. Pseudo Random Function (PRF) 

The PRF function takes the input as the cipher text (C) and the intermediate tag 

(V) and returns the output which is tag (T). The tweaked (V) is encrypted first and then 

XOR-ed with the cipher text first block. The next encryption block receive the output 

as feedback. The most significant 64 bits out of the tweak of last block's encryption is 

taken to generate the tag.  

 

4. Decryption(DEC) 

The DEC function takes the input the cipher text (C) and the intermediate tag (V) 

as the inputs and returns the message (M) as output. If the cipher text length is zero 

then the message output is a string of zeroes. In the case of the cipher test is not empty, 

the message first block is obtained by XOR-ing the cipher text first block with 

encrypted output of the intermediate tag (V). The 𝑖𝑡ℎ message block is generated by 

XOR-ing the 𝑖𝑡ℎ cipher text block with encrypted value of (𝑖 − 1)𝑡ℎ cipher. 

 

 

Figure 15: SILC Algorithm [27] 
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Fig. 10. SILC encryption and decryption block diagrams [27] 

3.5.2. Low Area Low Power Optimization  

The four functions used in SILC HASH, ENC, DEC, and HASH, are all sequential. 

The high-speed implementation using two regular 128-bit AES cores to achieve the 

highest possible throughput. However, at the expense of large area. Since the high 

speed implementation was intended for maximum possible throughput. It used two 

AES cores exploiting the parallelism of ENC and PRF subroutines, which in turn 

increased the area massively. 
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Figure 16: SILC high speed block diagram 

The idea of making the design efficient is to use only one instance of AES and 

reuse it in a multi-cycle approach. In order to optimize SILC for low area, the block 

cipher calls in ENC and PRF are done sequentially. Each function of ENC and PRF 

use One AES core, so calling the ENC and PRF sequentially will require only one AES 

core to perform both functions. As a result, one round operation is done in 2 cycles 

instead of 1 cycle. 
 

3.5.3. Results 

1) FPGA Results  

The results show that the proposed optimized implementations achieve an area 

reduction for SILC with 33%, and a Dynamic Power consumption reduction by 39% 

respectively. As a cost, throughput (TP) decreases for SILC by 50%, and throughput-

to-area (TP/A) decreases by 25%. 

The proposed optimized implementations are compared to work proposed in [16]. 

For SILC proposed implementation has lower area reduction with 33% compared to 

69% in [16] and the throughput-to-area (TP/A) has decreased with 25% while it 

increased with 65 % in [16]. 

 

2) ASIC Results  

The results show that the proposed optimized implementations achieve an area 

reduction for SILC with 26%, and a Dynamic Power consumption reduction by 39% 

respectively. As a cost, throughput (TP) decreases for SILC by 50%, and throughput-

to-area (TP/A) decreases by 33%. 
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3.6. Tiaoxin-346 

Tiaoxin-346 [25] is a nonce-based authenticated encryption scheme. It is the first 

to use only 3 AES round calls per 16-byte message (6 per 32-bytemessage). All 6 calls 

are fully parallelizable. It achieves 0.28 cycles per byte on Intel Haswell. Twice faster 

than AES-128 in counter mode, 3.5 to 6.5 times faster than AES-GCM. 

It is analyzed against different attacks types. The design decisions (choice of state 

sizes, output function, etc.) were taken in order to make the cipher secure. Tiaoxin 

provides full security for nonce-respecting adversaries. Security claims include 

related-key attacks and distinguishers.  

 

The internal state consists of 13 words each of 16 bytes. The 13 words are divided 

into three groups of 3, 4 and 6 words each (this is also the why it is named Tiaoxin-

346). The function of state update for Tiaoxin-346 absorbs a 32 bytes message block 

and a new internal state is produced, as illustrated in Figure 17. 

3.6.1. Operation 

Tiaoxin-346 has three states T3, T4, T6 composed of 3, 4, 6 words, respectively. 

The Update operation (round function) is computes the new value of the states (in the 

different phases). As inputs, beside the three states, Update takes three additional words 

M0, M1, M2. I.e. Update: T3 × T4 × T5 × M0 × M1 × M2 → T3 × T4 × T6.  

 

 

 

Figure 17: Tiaoxin-346 Algorithm [25] 

 

Tiaoxin-346 works in four phases:  

Initialization, Processing associated data, Encryption, and Finalization which are 

executed respectively  

 

1. Initialization.  
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In the initialization, the key (K) and the public message number nonce (IV) are 

loaded into the three states T3, T4, T6 which are applied to 15 rounds 

 

2. Processing associated data. 

Assume the padded associated data has d blocks 𝐴𝐷 = 𝐴𝐷1, … . 𝐴𝐷𝑑. Each block is 

composed of two words. The Processing associated data is defined as:  

 

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑑  

𝑈𝑝𝑑𝑎𝑡𝑒(𝑇3, 𝑇4, 𝑇6, 𝐴𝐷𝑖
0, 𝐴𝐷𝑖

1, 𝐴𝐷𝑖
0⨁𝐴𝐷𝑖

1); 

𝑒𝑛𝑑 𝑓𝑜𝑟 

 

3. Encryption.  

Assume the padded message has 𝑚 blocks: 𝑀1, … , 𝑀𝑙 Recall that each block is composed of 

two words, i.e.  𝑀𝑖 = 𝑀𝑖
0|| 𝑀𝑖

1 . In the encryption, a block 𝑀𝑖 is processed in one round, and 

a block of ciphertext 𝐶𝑖 = 𝐶𝑖
0|| 𝐶𝑖

1  is output. The encryption is defined as 

 

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚  

𝑈𝑝𝑑𝑎𝑡𝑒(𝑇3, 𝑇4, 𝑇6, 𝑀𝑖
0, 𝑀𝑖

1, 𝑀𝑖
0⨁𝐴𝑀𝑖

1); 

𝐶𝑖
0 = (𝑇3[0] ⨁ 𝑇3[2] ⨁ 𝑇4[1] ⨁ ( 𝑇6[3] & 𝑇4[3])) 

𝐶𝑖
1 = (𝑇6[0] ⨁ 𝑇4[2] ⨁ 𝑇3[1] ⨁ ( 𝑇6[5] & 𝑇3[2])) 

𝑒𝑛𝑑 𝑓𝑜𝑟 

 

4. Finalization/Tag production.  

After all message blocks have been processed, the words holding the lengths of the 

associated data and message are processed, then the states go through 20 more rounds, and 

the tag is produced as an XOR of all words of all states. This final phase is defined as: 

 

𝑈𝑝𝑑𝑎𝑡𝑒(𝑇3, 𝑇4, 𝑇6, 𝐴𝐷𝑙𝑒𝑛𝑔ℎ𝑡, 𝑀𝑙𝑒𝑛𝑔𝑡ℎ, 𝐴𝐷𝑙𝑒𝑛𝑔ℎ𝑡⨁𝑀𝑙𝑒𝑛𝑔𝑡ℎ)  

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 20  

𝑈𝑝𝑑𝑎𝑡𝑒(𝑇3, 𝑇4, 𝑇6, 𝑍1, 𝑍0, 𝑍1); 

𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑇𝑎𝑔 =  𝑇3[0] ⨁ 𝑇3[1] ⨁ 𝑇3[2] ⨁ 𝑇4[0] ⨁ 𝑇4[1] ⨁ 𝑇4[2] ⨁ 𝑇4[3]  

⨁ 𝑇6[0] ⨁ 𝑇6[1] ⨁ 𝑇6[2] ⨁ 𝑇6[3] ⨁ 𝑇6[4] ⨁ 𝑇6[5]  

 

3.6.2. Low Area Low Power Optimization  

The high-speed Tiaoxin-346 hardware implementation duplicates AES 6 times. In 

order to optimize Tiaoxin-346 for low area, only one AES is used. The round operation 

is processed in 6 cycles instead of 1 cycle. A small FSM is added to control the flow 

of data, Multiplexes are added to control data to the AES, and counters are added to 

account for the additional delay in the round operation. The block diagram in Figure 

18 shows the optimized implementation, as it shown only one AES round is used.  
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The state updated takes 6 clock cycles. A MUX controls the input to AES and 

select one of 𝑇3[2], 𝑇3[0], 𝑇4[3], 𝑇4[0], 𝑇6[5] then 𝑇6[0] to computes 𝑇3[0], 𝑇3[1], 

𝑇4[0], 𝑇4[1], 𝑇6[0] then 𝑇6[1] respectively. The optimization removes 5 instances of 

AES. 

 

 

Figure 18: Tiaoxin-346 high speed state update block diagram 

3.6.3. Results 

1) FPGA Results  

The results show that the proposed optimized implementations achieve an area 

reduction for Tiaoxin-346 with 38%, and a Dynamic Power consumption reduction by 

65% respectively. As a cost, throughput (TP) decreases for Tiaoxin-346 by 83%, and 

throughput-to-area (TP/A) decreases by 73%. 

 

2) ASIC Results  

The results show that the proposed optimized implementations achieve an area 

reduction for Tiaoxin-346 with 43%, and a Dynamic Power consumption reduction by 

46% respectively. As a cost, throughput (TP) decreases for Tiaoxin-346 by 83%, and 

throughput-to-area (TP/A) decreases by 70%. 
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3.7. COLM 

COLM [26] is a block cipher which is based on Encrypt-Linear mix-Encrypt 

mode. The COLM was designed to achieve online misuse resistance, to be secure 

against block wise adaptive attacks and to be fully parallelizable. COLM cipher is 

formulated as a mixture of characteristics inherited from COPA and ELmD. COLM 

consists of two layers of encryption that are parallelizable and connected by a linear 

mixing function. While COPA uses plain XOR mixing, ELmE, ELmD, and COLM use 

a more involved invertible mixing function. 

 

COLM is parameterized based on the enumeration blocks after which intermediate 

tags will be created (τ). For example, COLM127 has intermediate tags while COLM0 

does not.  

3.7.1. Operation 

Encryption key (K), original message, associated data, Npub and a set of 

parameters are combined so that the ciphertext (C) is generated and intermediate tags 

(T), which will be used during decryption to retrieve original message M. Once this is 

complete, tag verification is done for authenticity validation.The general structure of 

COLM is given in Figure 19. Where, 𝐸 is an n-bit block cipher, 𝐾 denotes the key, 𝑁 

the nonce, 𝐴 associated data, 𝑀 the message, 𝐶 the ciphertext, and 𝑇 the tag. 

 

 

Figure 19: COLM Algorithm [26] 
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The generic COLM type structure consists of two-layer parallelizable encryption 

masked with the sub key 𝐿 = 𝐸𝑘(0) and a counter. COLM mixes the output of the first 

encryption layer to generate the input to the second encryption layer, using the linear 

mixing function. COLM is composed of three processes 

1) Associated data processing 

2) Authenticated encryption 

3) Tag Generation.  

 

Associated data processing: 

The inputs for COLM are the string of associated data 𝐷 and 𝐿 which is computed 

as  𝐿 =  𝐸𝑘(0128) . D is processed in blocks of 128 bit length. Figure 20 show how the 

associated data is processed basically, they it is based on Parallelizable Message 

Authentication Code (PMAC) structure which consists in three phases 

1) Masking 

2) Encryption 

3) Mixing. 

 

1) Masking.  

The input blocks 𝐷[1], … … 𝐷[𝑑] are masked using the masking generation function 

and 𝐿 value, generating 𝐷𝐷[𝑖] blocks. 

 

 

Figure 20: Associated data processing in COLM 

2) Encryption.  

The second step is the encryption of masked blocks 𝐷𝐷[𝑖]. 
 

3) Mixing.   

The specific mixing function is used to combine the encrypted blocks such that the 

generated IV depends on all associated data blocks. 

 

Authenticated Encryption: 

The input message 𝑀 is divided in to 128-bits blocks using the function split (𝑀) 

getting blocks 𝑀[1], 𝑀[2], … … , 𝑀[𝑙]. The encryption is divided into four phases: 
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 Input-masking 

Each block message  𝑀[𝑖] is masked generating the blocks 𝑀𝑀[𝑖] using 

the values generated by △𝑀 [𝑖]  . 
 Mixing up 

Blocks 𝑀𝑀[𝑖] feed the first encryption layer giving; as a result, 𝑋[𝑖] 
blocks which are fed to the mixing function. 

 Mixing down.  

The input of the second encryption layer is the output of the mixing 

function. 

 Output-masking.  

The final step is masking the output of the second encryption layer 

using △𝑐 [𝑖]. 
 

Tag Generation  

The tag is generated processing the block 𝑀[𝑙 + 1] which contains the checksum 

of the input blocks. After determined number of blocks are processed, an intermediate 

tag is generated. A corrupted message can be detected using intermediate tags during 

verification before all message processing.  

 
Following are the operation performed on message to get the tagged cipher text C 
 

           W[0] =  IV, 

  MM[i] =  M[i]⨁ △𝑀 [𝑖]               𝑓𝑜𝑟 𝑖 = 1, … . . 𝑙 + 1,  

              X[i] = 𝐸𝑘(MM[𝑖])                     𝑓𝑜𝑟 𝑖 = 1, … . . 𝑙 + 1,  

(Y[i], W[i]) = ρ(X[𝑖], W[𝑖 − 1])          𝑓𝑜𝑟 𝑖 = 1, … . . 𝑙 + 1,  

           𝐶𝐶[i] =  𝐸𝑘(𝑌[𝑖])                         𝑓𝑜𝑟 𝑖 = 1, … . . 𝑙 + 1,  

           𝐶[i]    =  𝐶𝐶[i] ⨁ △𝑐 [𝑖]             𝑓𝑜𝑟 𝑖 = 1, … . . 𝑙 + 1,  

 

For decryption, the same steps of encryption are applied in inverse order and using 

the inverse functions. 

3.7.2. Low Area Low Power Optimization  

The high-speed COLM implementation instantiates two instances of AES to 

implement the two layers of encryption. In order to optimize COLM for low area, only 

one instance of AES is used to perform the two encryption layers. A Finite state 

machine and Multiplexers are added to control the data flow to the AES. The optimized 

encryption operation is processed in twice the clock cycles of the non-optimized one 

and the same applies for the decryption operation. 

3.7.3. Results 

1) FPGA Results  

The results show that the proposed optimized implementations achieve an area 

reduction for COLM with 28%, and a Dynamic Power consumption reduction by 51% 



44 
 

respectively. As a cost, throughput (TP) decreases for COLM by 50%, and throughput-

to-area (TP/A) decreases by 30%. 

 

2) ASIC Results  

The results show that the proposed optimized implementations achieve an area 

reduction for COLM with 38%, and a Dynamic Power consumption reduction by 48% 

respectively. As a cost, throughput (TP) decreases for COLM by 50%, and throughput-

to-area (TP/A) decreases by 19%. 

3.8. JAMBU 

JAMBU is a nonce-based authenticated encryption operating mode proposed by 

Wu and Huang [36] that can be instantiated with any block cipher. Yet, the submission 

AES-JAMBU to the CAESAR competition uses AES-128 [37] as the internal block 

cipher. The main advantage of JAMBU mode is its low memory requirement, which 

places it in the group of lightweight authenticated encryption modes. It is not as fast as 

the parallelizable schemes such as OCB [38] and OTR [39], but it is inverse-free, using 

only XOR operations, and has a lower state size in the cost of a shorter nonce and tag 

length [36]. In the encryption of JAMBU, the plaintext is divided into blocks of n-bit. 

In each step of the encryption, a plaintext block Pi is encrypted to a ciphertext block 

Ci. 

3.8.1. Operation 

JAMBU uses a k-bit secret key 𝐾  and an n-bit public nonce value 𝐼𝑉  to 

authenticate a variable length associated data AD and to encrypt and authenticate a 

variable length plaintext 𝑃. It produces a ciphertext 𝐶, which has the same bit length 

with plaintext, and an n-bit tag 𝑇.  

The encryption process of JAMBU consists of 5 phases:  

1) Padding 

2) Initialization 

3) Processing of the associated data 

4) Processing of the plaintext 

5) Finalization/Tag generation 

 

The internal state of JAMBU will be represented by the variables (𝑆𝑖, 𝑅𝑖) with 𝑆𝑖 =
(𝑈𝑖, 𝑉𝑖), where  𝑅𝑖 , 𝑈𝑖 and 𝑅𝑖 are n-bit values.  

1) Padding 

The associated data AD is padded with 10* padding first. The length of the 

associated date need to be a multiple of n-bit, to achieve this, ‘1’ bit is appended 

followed by ‘0’ bits. The same methodology is applied on plain text. 

 

2) Initialization 

An n-bit public nonce value IV is used by JAMBU to initialize the internal state 
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3) Processing of the associated data 

The padded associated data are processed block by block after being divided to n-

bit blocks.  

 

4) Processing of the plaintext 

𝑃 Is the number of plaintext blocks after padding and 𝑃 = (𝑃1, 𝑃2, … . 𝑃𝑝). The 

plaintext is processed block by block. At round i, the internal state is updated with the 

plaintext block 𝑃𝑖   by  

𝑆𝑖+1 = (𝑈𝑖+1, 𝑉𝑖+1) = 𝐸𝑘(𝑆𝑖) ⨁ (𝑃𝑖||  𝑅𝑖)  

And  

𝑅𝑖+1 = 𝑅𝑖  ⨁ 𝑈𝑖+1.  

The ciphertext block 𝐶𝑖 is then computed with   𝐶𝑖 = 𝑃𝑖  ⨁ 𝑉𝑖+1 . 

 

 

Figure 21: Processing of the plaintext 

5) Finalization and tag generation.  

After, the procession of all the plaintext blocks. The authentication tag T is 

generated with two internal block cipher calls. 

3.8.2. Low Area Low Power Optimization  

In order to optimize JAMBU for low area, The AES core adopts an iterative 

architecture with an 8-bit data path [28].The AES round operations as well as the key 

expansion operations are performed sequentially.The MixColumns multiplier 

performs the matrix multiplication of MixColumns. One column of State is operated 

separately in four clock cycles. The data is processed byte by byte and four registers 

are used to maintain the results.  
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As the same multiplier coefficients are used for each row of a column, only in a 

cyclically shifted order, a 32-bit part of the MixColumns operation can be performed 

by adding and cyclically shifting the intermediate results in the unit. The contents of 

the registers are masked to zero with the en signal during inputting the first byte of a 

column (bytes 0, 4, 8, and 12).  
 

 

 

Figure 22: MixColumns multiplier 

 

 

Figure 23: Processing of the plaintext 
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The MixColumns multiplier performs a complete MixColumns operation in 16 

cycles in parallel with the rest of the operations of the AES core. The State register is 

shifted every clock cycle from the 5 cycles to process each row of the state matrix 

iteratively and the data from sbox is stored in a register to be used with the output of 

Mixcolumns when it is ready after 4 clock cycles then it is introduced to the 

AddRoundKey module with the round key. A small FSM is added to control the flow 

of data, and in order to account for the additional delay due to the insertion of the pipe 

stage, few counters are added. As a result of the proposed optimization, one round 

operation is done in 5 cycles instead of 1 cycle. 

3.8.3. Results 

3) FPGA Results  

The results show that the proposed optimized implementations achieve an area 

reduction for JAMBU with 30%, and a Dynamic Power consumption reduction by 57% 

respectively. As a cost, throughput (TP) decreases for COLM by 80%, and throughput-

to-area (TP/A) decreases by 71%. 

 

4) ASIC Results  

The results show that the proposed optimized implementations achieve an area 

reduction for JAMBU with 28%, and a Dynamic Power consumption reduction by 30% 

respectively. As a cost, throughput (TP) decreases for JAMBU by 80%, and 

throughput-to-area (TP/A) decreases by 72%. 

 

3.9. Conclusion    

The hardware performance of the proposed optimized implementations, pairs of 

corresponding publicly available high speed implementations and proposed Optimized 

implementations are benchmarked in the FPGA and ASIC implementations. 

 

1) FPGA Results 

 

Results for benchmarking the proposed optimized implementations (denoted by 

Optimized Implementations) and the corresponding publicly-available HS 

implementations [4] (donated by High-Speed Implementations) are shown in Table 1. 

The results show that the proposed optimized implementations achieve an area 

reduction for NORX, Tiaoxin, SILC, COLM, and JAMBU with 31%, 38%, 33%, 28% 

and 30% respectively, and a Dynamic Power consumption reduction by 70%, 65%, 

39%, 51%, 57% respectively. As a cost, throughput (TP) decreases for NORX, 

Tiaoxin, SILC, COLM and JAMBU by 87.5%, 83%, 50%, 50%, and 80% respectively, 

and throughput-to-area (TP/A) decreases by 82%, 73%, 25%, 30% and 71% 

respectively. 

 

For NORX and SILC the proposed optimized implementations are compared to 

work proposed in [16]. In [16] virtex-6 FPGA is used for implementation, while virtex-

7 FPGA is used in this research so a comparison is done between Area reduction, 

Dynamic Power reduction and throughput-to-area change achieved by proposed work 
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and the work in [16]. The comparison is summarized in table 2. For NORX proposed 

implementation has lower area reduction with 31% compared to 53.3% in [16] and the 

throughput-to-area (TP/A) has decreased with 82% while it increased with 25.5 % in 

[16]. For SILC proposed implementation has lower area reduction with 33% compared 

to 69 % in [16] while proposed implementation has less reduction in throughput-to-

area (TP/A) with 25% compared to 65% in [16]. 

 

2) ASIC Results 

 

Results for benchmarking the proposed optimized implementations and the 

corresponding publicly-available HS implementations [4] are shown in Table 2. The 

results show that the proposed optimized implementations achieve an area reduction 

for NORX, Tiaoxin, SILC, COLM, and JAMBU with 44%, 43%, 26%, 38% and 

28% respectively, and a Dynamic Power consumption reduction by 54%, 46%, 39%, 

48%, 30% respectively. As a cost, throughput (TP) decreases for NORX, Tiaoxin, 

SILC, COLM and JAMBU by 87.5%, 83%, 50%, 50%, 48%, and 80% respectively, 

and throughput-to-area (TP/A) decreases by 77%, 70%, 33%, 19% and 72% 

respectively. 
 

Low area and low power implementations for five candidates (NORX, Tiaoxin-

346, SILC, COLM, and JAMBU) of CAESAR Round 3 are proposed. The optimized 

implementations and the corresponding high-speed implementations are benchmarked 

in the Virtex-7 FPGA flow and ASIC flow. For FPGA flow a reduction in area with an 

average of 32% and a reduction in dynamic power with an average of 56% are achieved 

compared to their corresponding high-speed architectures. Moreover, throughput (TP) 

in (Mbps) decreases by an average of 70% and throughput-to-area (TP/A) in 

(Mbps/Slices) decreases by an average of 56%. 

 

For ASIC flow a reduction in area with an average of 36% and a reduction in 

dynamic power with an average of 43% are achieved compared to their corresponding 

high-speed architectures. Moreover, throughput (TP) in (Mbps) decreases by an 

average of 70% and throughput-to-area (TP/A) in (Gbps/mm2) decreases by an average 

of 54%. The reduction in TP and TP/A ratio is expected as latency and throughput are 

sacrificed for area reduction. 

Table 1 Comparison of Results to Work in [16] 

Algorithm  Area 

Reduction 

[%] 

Dynamic 

Power 

Reduction 

[%] 

TP/Area  

Change [%] 

Work Proposed in [18] 

NORX 53.3 82 +25.5 

SILC 69.1 29 -65 

Optimized implementation 

NORX 31 70 -82 

SILC 33 39 -25 
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Table 2 Results of Implementation in virtex 7 FPGA 

Algorithm  Area 

[Slices] 

Reduction 

[%] 

Dynamic 

Power 

[mW] 

Reduction 

[%] 

Freq 

[MHz] 

TP 
[Gb/Sec] 

Reduction TP/Area 

[Mbps/Slices] 

Reducti

on 

[%] 

High Speed Implementations 

NORX 1367 - 416 - 100 19.2 - 14.04 - 

Tiaoxin 2030 - 527 - 100 25.6 - 12.6 - 

SILC 984 - 230 - 100 1.28 - 1.3 - 

COLM 2149 - 149 - 100 1.16 - 0.54 - 

JAMPU 511 - 106 - 100 0.64 - 1.25 - 

Optimized Implementations 

NORX 949 31 127 70 100 2.4 87.5 2.53 82 

Tiaoxin 1250 38 183 65 100 4.27 83 3.42 73 

SILC 662 33 140 39 100 0.64 50 0.97 25 

COLM 1543 28 73 51 100 0.58 50 0.38 30 

JAMPU 357 30 46 57 100 0.128 80 0.36 71 

 

Table 3 Results of Implementation in ASIC 

Algorithm  Area 

[Slices] 

Reduction 

[%] 

Dynamic 

Power 

[mW] 

Reduction 

[%] 

Freq 

[MHz] 

TP 

[Gb/Sec] 
Reduction TP/Area 

[Mbps/Slices] 

Reducti

on 

[%] 

High Speed Implementations 

NORX 187266 - 9.47 - 100 19.2 - 102.5 - 

Tiaoxin 402603 - 221.84 - 100 25.6 - 63.6 - 

SILC 139225 - 11.53 - 100 1.28 - 9.2 - 

COLM 529777 - 19.15 - 100 1.16 - 2.2 - 

JAMPU 80924 - 4.79 - 100 0.64 - 7.9 - 

Optimized Implementations 

NORX 103992 44 4.37 54 100 2.4 87.5 23.1 77 

Tiaoxin 228271 43 11.68 46 100 4.27 83 18.7 70 

SILC 103109 26 7 39 100 0.64 50 6.2 33 

COLM 327476 38 12.08 48 100 0.58 50 1.8 19 

JAMPU 58073 28 3.39 30 100 0.128 80 2.2 72 
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Chapter 4 Using Dynamic partial Reconfiguration to achieve 

energy efficient and resource efficient Hardware 

Encryption  

This chapter presents Using Dynamic partial Reconfiguration to achieve energy 

efficient and resource efficient Hardware Encryption , first it gives introduction for 

dynamic partial reconfiguration ,then it goes to how Partial dynamic reconfiguration 

could be used to implement resource efficient and energy efficient hardware 

encryption.  

4.1. Configuration Definition  

Configuration is a complete design programmed on the FPGA. FPGA can be 

considered as device with two-layers: configuration memory layer and logic layer. The 

configuration stored on the configuration memory layer, will control the logic layer. 

 

There are three types of FPGA configurations:  

 

1) Fixed Configuration:  

At power-on data is loaded, till the end of the FPGA cycle the configuration will remain 

fixed.  

 

2) Partial Reconfiguration:  

At power-on the initial full bit file is loaded into the FPGA. The FPGA will stop 

whenever something to be altered, then a partial bit file that contains the modification 

is loaded.  

 

3) Dynamic Partial Reconfiguration:  

Unlike the partial reconfiguration, during the loading of the data into the FPGA, the 

FPGA continues its normal operation, except for the part subjected to the modification.  

4.2. Dynamic Partial Reconfiguration 

DPR is a SRAM-FPGAs feature that gives the flexibility to reconfigure a part of 

FPGA during runtime reusing the same resources of hardware. The DPR design flow 

in Xilinx requires partitioning of the design into two parts, a static part and a dynamic 

part. The static part contains the static modules that are not going to change during the 

reconfiguration, while the dynamic part contains the system reconfigurable modules 

(RM). The dynamic part contains multiple Reconfigurable Regionss (RRs), each RR 

has contains a set of RMs which can be exchanged without the interruption of the 

system during runtime. During configuration, for each RM there will be a partial bit 

stream generated to be mapped into a specific RR. Partial bit streams are loaded from 

a nonvolatile memory to the FPGA configuration memory through dedicated 

configuration interfaces.  

 

Dr Hassan Mostafa
Highlight
Dynamic Partial Reconfiguration Based Hardware Implementation 
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Figure  24 : Dynamic Partial Reconfiguration in SRAM-FPGAS 

4.3. Configuration Modes 

During DPR, RMs partial bit streams are loaded to the FPGA configuration 

memory. Accessing the configuration memory is done through various FPGA 

configuration modes or configuration ports. The configuration modes are classified 

based on the type of configuration interface used in accessing the configuration 

memory. Table 4 shows the different configuration modes for Zynq FPGA.    

4.3.1. External Modes 

In External configuration modes, external FPGA interfaces are used to load the 

partial bit files to the FPGA configuration memory. Zynq FPGA has only one external 

configuration port which is JTAG. The partial bit streams are transferred from an 

external storage source, for example, the PC to the configuration memory through the 

JTAG serial interface. 

4.3.2. Internal Modes 

In Internal configuration modes, internal FPGA interfaces are used to load the 

partial bit files to the FPGA configuration memory. Xilinx Zynq FPGA has two 

internal configuration modes.  

1) The Internal Configuration Access Port (ICAP) configuration mode is based on 

the ICAP hard macro 32-bit configuration port primitive located on the PL side to 

access the configuration memory with a theoretical data rate of 400 MB/S.  

2) Processor Configuration Access Port (PCAP) configuration mode is based on the 

PCAP 32-bit configuration port in the PS side controlled by the ARM processor to 

access the configuration memory with a data rate of 400 MB/S 
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Table 4 Zynq FPGA Configuration Modes 

Configuration 

Mode 
Type Max Clock Data Width 

Max 

Bandwidth 

ICAP Internal 100 MHZ 32-bit 400 MB/S 

PCAP Internal 100 MHZ 32-bit 400 MB/S 

JTAG External 66 MHZ 1-bit 8.25MB/S 

4.4. Advantage and Disadvantage of DPR 

The main advantages of the reconfigurable systems are: 

 

1) Resources utilization: DPR will increase the resource utilization as each part of 

design is implemented in the required time, and it allows time multiplexing 

between the modules of the design according to schedule of activity.  

 

2) Scalability: Using reconfigurable systems gives the ability to update the system to 

handle new tasks defined due to the growth. It also make it easier to deploy 

enhancements and bug fixes to the system without the need to redeploy new 

hardware. 

 

3) Reusability: Reusing the resources for different design implementations, where a 

system can be customized for adaptability. 

 

4) Power reduction: This is considered the most important item. In the Integrated 

Circuits (IC) design the static power is consumed although the device is idle. FPGA 

reconfiguration can be used to delay implementation of a specific part until its time 

of operation, which will decrease the static power consumption. 

 

5) Area: Rather than horizontally implementing a complete system that consumes 

area, the system can be optimized vertically by implementing the concept of space 

and time programming. Where the block stack is stored and loaded at the time of 

operation. This saves the area used by the same blocks in the horizontal design. 

 

On the contrary, there are some disadvantages for the DPR and they are improving 

by research such as:  

 

1) Latency: The reconfiguration time will add latency to the design. It could be 

improved by speeding the reconfiguration time through using high-speed PR 

controller. 

 

2) Memory: storing the reconfigurable blocks will require extra memory. 
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4.5. Dynamic Partial Reconfiguration Controller 

To enhance the reconfiguration speed and maximize the reconfiguration 

throughput researchers proposed Partial Reconfiguration (PR) controllers [40]. PR 

controller provides the interface for loading the partial bit stream from an external or 

internal memory to the FPGA internal configuration port (i.e., ICAP or PCAP) with a 

high data throughput. Moreover, some PR controller architectures have the ability to 

monitor the system performance by determining the status of RMs and measuring the 

reconfiguration time.  

 

Reconfiguration time depends on the generated partial bit stream data size, the 

dimension of RP, and the memory configuration setups used for data transfer. The key 

factor in the PR controller design is the reconfiguration time as it measures how fast 

the controller can handle the reconfiguration process. There are many PR controllers 

that are used in DPR, they are either conventional controllers provided by the FPGA 

vendors or novel controllers developed to have more efficient DPR with less 

configuration time.  PR controller is implemented by a dedicated custom processor 

using or a Finite State Machine (FSM) to control and manage the DPR 

 

 

External Memory

 

Figure  25 : Partial Reconfiguration Controller in DPR System [45] 
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Following are the most common Dynamic Partial Reconfiguration Controllers 

available: 

4.5.1. Xilinx ICAP Controller (AXI-HWICAP) 

Multiple IP cores are provided by Xilinx for interfacing the Xilinx’s ICAP 

primitive with the user design. ICAP Controllers enable an embedded microprocessor 

such as ARM processors or Microblaze to be used in accessing the configuration 

memory. ICAP provides access directly to the configuration memory both in read and 

write modes. In Xilinx 7-series, the ratio of the data width of the ICAP interface to the 

configuration memory is 8, 16 or 32 bit wide. The ICAP provides a maximum 

throughput of reconfiguration theoretically equal to 400 MB/S at a clock frequency of 

100MHZ and data width of 32 bits.  

4.5.2. Xilinx Partial Reconfiguration Manager 

Xilinx Partial Reconfiguration Controller depends on the concept of Virtual 

Sockets (VS) [47]. Xil-PRC is released for enclosed systems where all the design RMs 

are known to the controller. The VS represents the Reconfigurable Partition (RP) 

associated with some logic blocks used to isolate it from the static region during 

reconfiguration process. VSMs are connected to a fetch path that fetches the partial 

bitstream data from an external memory to the ICAP without passing by the processor 

which leads to a short reconfiguration time. 

4.5.3. Custom DMA Based ICAP Controller 

Various Open Source ICAP Controllers are proposed by researchers [48-52] to 

improve the reconfiguration time while using the ICAP through an embedded 

microprocessor. A custom reconfiguration controller for Xilinx Zynq FPGA (ZYCAP) 

is presented in [52]. ZYCAP achieves a reconfiguration throughput of 382 MB/S. 

ZYCAP is a DMA based AXI-HWICAP controller equipped with two AXI slave bus 

interfaces connected to the ARM processor. The AXI4 bus interface receive partial 

bitstream data from DDR memory and the AXI-Lite bus interface receive control 

signals. 

4.5.4. Software-Controlled Partial Reconfiguration 

Xilinx Zynq FPGA provides the potential to implement a software-controlled (S-

C) DPR through the processing system (PS) device configuration (DevC)/PCAP 

interface [53]. This scheme does not require any programmable logic (PL) resources 

during DPR. The ARM processor control the DevC unit is to select the internal 

configuration interface to be ICAP or PCAP according to the user design. 
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Figure  26:  Types of Internal Partial Reconfiguration Controllers [45] 
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In [45] the partial reconfiguration controllers discussed above (AXI-HWICAP, S-

c/PCAP, ZYCAP, Xil-PRC) are used to implement a high-speed reconfigurable 

Software Defined Radio (SDR) system targeting a Xilinx Zynq FPGA. A 

reconfigurable convolutional encoder is benchmarked to do performance evaluation of 

the four partial reconfiguration controllers.  

 

Figure 30. Shows the reconfiguration time of the four types of PR controllers 

discussed with various reconfigurable partition regions sizes. The minimum 

reconfiguration time is achieved by Xil-PRC and DMA-based ICAP controller 

(ZYCAP). AXI slave memory mapped AXI-HWICAP is the worst PR controller in 

term of reconfiguration time.  

 

Xil-PRC and ZYCAP will be always recommended for designs that require high 

reconfiguration speed as shown in Figure 31. For designs that require low Power S-C 

/ PCAP will be recommended as it do not require any resources on the PL side for DPR 

Therefore, the power consumed by the ARM during the reconfiguration is the only 

power consumed, but this scheme has downside which is the ARM processor during 

the reconfiguration time is blocked from doing other tasks. In this work we will be 

using the S-C/PCAP as has the less power consumed and no area overhead, and this 

will fit for the low area low power constrained designs for IoT. 
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Figure  27  Reconfiguration Time for Different PR Controllers [45]
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Figure  28   (a) Resource Utilization, (b) Avg. Reconfiguration Throughput and (c) Power Consumption Comparisons between different 

PR controllers [45
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4.6. Resource Efficient Hardware Implementation for AEAD 

Ciphers Using PDR   

The Crypto processor is a processor that can be used to work as encryption 

processor or decryption processor based on a 1-bit control signal that goes to the 

processor. The control signal selects whether the data-buffer output will hold the cipher 

text or decrypted message data. The presence of this control signal increased the 

flexibility of the processor in a way that with the help of run-time reconfiguration 

technology. Our Proposed design methodology use the PDR to switch between 

decryption and encryption based on the value of the control signal. The proposed 

methodology will be sufficient in case the decryption logic is different from the 

encryption logic, in this case the area for decryption can be saved during encryption as 

it is not needed which will decrease the power consumption as well the area. 

 

We studied some of the Caesar candidates and defined two categories of ciphers  

1) Ciphers that have a separate round for encryption and decryption, here the PDR 

would be beneficial and could be used to switch between the Encryption and 

Decryption modes, as the resources for decryption will be unused during encryption 

and vice versa. We will focus on those ciphers in the thesis.  

 

2) Ciphers that do not have a separate round for encryption and decryption, the DPR 

would not be so beneficial because the same resources are used in both encryption 

and decryption 

 

Based on the study we have identified two Ciphers that will be targeted for our 

work, COLM, OCB. Figure 29 Describe the Round function for OCB, and COLM it is 

very similar in both cases. The Round function is used in encryption and the InvRound 

is used in decryption, as it both have a separate data path and separate logic.  

 

COLM was discussed in the previous chapter. Offset Codebook (OCB) mode of 

operation is based on block cipher, it provides simultaneously authenticity and privacy 

for the plaintext. Despite this, OCB is clean, easy and simple to be implemented in 

either software or hardware.  

 

OCB accomplishes its work without bringing in the machinery of universal 

hashing, a technique that does not seem to lend itself to implementations that are simple 

and fast in both hardware and software. In 2001 the initial version of OCB was 

presented. In FSE 2011, (OCB3) which is the current version was presented and 

accepted as RFC 7253 [57]. The tweakable block cipher structure used by OCB makes 

the power analysis attack difficult compared to other block ciphers. The plaintext is 

processed in 128-bit blocks and produces 128-bit ciphertext, and tags with lengths of 

64, 96, and 128 bits. This cipher supports key lengths of 128, 192, and 256 
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Figure 29 COLM, OCB Round Function 

 

In the top section of Figure 30, the calculation of masking values (Δ) is shown. The 

nonce N is 96 bits which use 10*-padding to make the 128-bit block. For each 

encryption, the new values for the nonce are generated. If the nonce is used with the 

same key, the confidentiality and authenticity of the scheme will be endangered   . 

The ciphertext is calculated 𝐶[𝑖] = 𝐸𝑘(𝑀[𝑖] ⨁ 𝑍(𝑖))⨁𝑍[𝑖] for each 128-bit block 

of M[i] plaintext. AD is processed in the bottom part of Fig. 3 and used to calculate the 

final tag. 
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Figure 30 Illustration of OCB authenticated cipher [56] (N: nonce, Auth: 

authenticator for AD, trunc: truncate the least significant bits, τ : tag length) 
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4.6.1. Proposed System Overview  

The proposed use the DPR is to alternate the operation mode between 
encryption and decryption based on one control signal the control the processor 
either to perform encryption or decryption operation.  

4.6.1.1. COLM Reconfigurable Crypto processor 

PDR is applied to the AES core in the COLM Cipher, COLM has 2 AES cores as 
discussed in the previous chapter. Figure 31. Describe the design architecture, the 
top module consists of two parts: a dynamic and a static part. The static part is 
Cipher controller, and Cipher Data path. The dynamic part is the AES Cores, here 
we have 2 RPs for each AES core, and each RP has two RMs (encryption and 
decryption). 

 

 

Figure 31 COLM Reconfigurable Crypto processor 

4.6.1.2. OCB Reconfigurable Crypto processor 

Similar to COLM, PDR is applied to the AES core in the OCB Cipher, but COLM 

has only one AES core. Figure 32. Similar to COLM. The static part is Cipher 

controller, and Cipher Data path. The dynamic part is the AES Core, here we have one 

RP, which has two RMs (encryption and decryption). 

 

 

Figure 32 OCB Reconfigurable Crypto processor 
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4.6.2. Reconfiguration Time 

The bit size assigned to the RP determine the reconfiguration time of RPs depends 

on the bit size assigned to the RP. The bit size for each RP is about 0.3 MB. The 

reconfiguration times for the one RP is around 0.75 msec. This makes the 

reconfiguration time for COLM 1.5 msec as it has 2 RMs and 0.75 for OCB as it has 

only one RM.  

The reconfiguration take place on switching between encryption and decryption, 

and on changing the Key during decryption as it requires the Round function which 

exist in the encryption module. So the throughput for encryption is not affected, and for 

decryption it will be affected only in case the key changed during decryption, if the key 

changed during encryption the decryption throughput will not be affected. Therefore, 

we can assume the decryption throughput will not change as the key change will not 

take place frequently. Hence the reconfiguration time is not a concern here.   

4.6.3. Resource Utilization 

Table 5, 6 shows the resource utilization of the OCB and COLM proposed 

reconfigurable crypto processor against the corresponding publicly-available HS 

implementations [4]. The resource utilization decreases from 3617 LUTs to 2324 LUTs 

by 35% for OCB, decreased from 6827 LUTs to 4146 LUTs by 40% for COLM. The 

reduction in area for COLM is larger than OCB because COLM has 2 RPs. 

Table 5 OCB Resource Utilization 

 OCB Crypto 

Processor[4] 

OCB Proposed Crypto 

Processor 

Reduction 

[%] 

Number of LUTs 3617 2324 35% 

Number of Registers 1116 988 11% 

Table 6 COLM Resource Utilization 

 COLM Crypto 

Processor[4] 

COLM Proposed Crypto 

Processor 

Reduction 

[%] 

Number of LUTs 6827 4146 40% 

Number of Registers 2302 1789 22% 

4.6.4.  Power Consumption and Energy Efficiency  

Table 7, 8 show the dynamic power consumption for the OCB and COLM proposed 

reconfigurable crypto processor against the corresponding publicly-available HS 

implementations [4]. The dynamic power has decreased from 46 mW to 29 mW by 37% 

for OCB and decreased from 105 mW to 70.6 mW by 33% for COLM.  

The throughput is not affected for encryption, decryption as discussed above. 

Hence the energy consumed by the proposed crypto processor will decrease. The energy 

consumed for OCB decreased from 43 pJ/b to 27 pJ/b and decreased from 105 pJ/b to 

70.6 pJ/p for COLM which makes the proposed crypto processor more energy efficient 

and consume less power.  
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Table 7 OCB Energy Utilization 

 OCB Crypto 

Processor[4] 

OCB Proposed Crypto 

Processor 

Reduction [%] 

Dynamic Power [mW] 46 29 37% 

TP [Gb/Sec] 1.07 1.07 - 

Energy [pJ/b] 43 27 37% 

Table 8 COLM Energy Utilization 

 COLM Crypto 

Processor [4] 

COLM Proposed Crypto 

Processor 

Reduction 

[%] 

Dynamic Power [mW] 122 82 33% 

TP [Gb/Sec] 1.16 1.16 - 

Energy [pJ/b] 105 70.6 33% 

4.7. Energy Efficient Hardware Implementation for AEAD Ciphers 

Using PDR   

Because of the overhead necessary for the initialization or finalization of the 

ciphers, the energy consumption per bit also depends on the length of a message. In 

[58] Author compared energy consumption for different algorithms Joltik, Ascon and 

Morus. Morus was found to have long initialization and finalization stage. If the aim is 

to encrypt short messages, the cipher will be a lot less energy efficient. Ascon-128a is 

more efficient than Morus-640 if the message is under five data blocks long (0.64 Kb)   

 

In order to implement energy efficient hardware encryption, PDR would be used 

to switch between different algorithms depending on the message length. If the message 

length is less than 0.64 Kb the crypto processor is configured to be Ascon and if the 

message length is more than 0.64 Kb the crypto processor is reconfigured to be Morus.  

 

The Proposed design will be energy efficient as it select the most energy efficient 

algorithm based on the message length, this will be gained on the cost of reconfiguration 

time that will be in range of milliseconds, which make this flow suitable for application 

operating in frequencies of range 1 KHz. The Proposed Design will have only one RP, 

with 2 RMs (one for Ascon and the other one of Morus). 

 

 

Figure 33 Energy Consumption [58] 
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4.8. Conclusion 

In this chapter two design methodologies were proposed, the methodologies utilize 

PDR to have resource-efficient energy-efficient hardware encryption.  

 

The first methodology utilize PDR to switch the crypto processor between 

decryption and encryption. The methodology was applied on two algorithms COLM 

and OCB. The methodology reduced the area for COLM by 40% and for OCB by 35%, 

in addition to reducing the energy for COLM by 33% and OCB by 37%. 

 

The second methodology utilize PDR to switch the cipher based on the message 

length to achieve energy-efficient hard ware encryption. The switch is done between 

Morus and Ascon algorithms based on the message length. 
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Chapter 5 Conclusion and Future Work  

5.1. Conclusion 

 
The objective of the thesis is to optimize AEAD Ciphers for low power and low 

energy to fit in IoT low constrained devices, the target is met by  

 

1. Optimizing five candidates of CAESAR for power and area reduction. The 

proposed optimization For FPGA flow a reduction in area with an average of 32% 

and a reduction in dynamic power with an average of 56% are achieved compared 

to their corresponding high-speed architectures.  

 

2. Utilizing PDR to switch the crypto processor between decryption and encryption. 

The methodology was applied on two algorithms COLM and OCB. The 

methodology reduced the area for COLM by 40% and for OCB by 35%, in addition 

to reducing the energy for COLM by 33% and OCB by 37%. 

 

3. Utilizing PDR to switch the cipher based on the message length to achieve energy-

efficient hard ware encryption.  

5.2. Future Work 

1. Explore more CEASAR candidates for low area and low power optimization. 

 

2. Combine the work proposed in chapter 3 and chapter 4 together, to achieve more 

power and area reduction.   

Dr Hassan Mostafa
Highlight
More details. It should be at least 2-3 pages especially the conclusion 
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 الملخص

 العالم على والسیطرة المراقبة لتحسین الأشیاء إنترنت أجھزة من جمعھا تم التي البیانات الأشیاء إنترنت یستخدم

 إنترنت أجھزة .الصحیة والرعایة ، العسكریة التجزئة والخدمات وتجارة ، اللوجستیة الخدمات مثل مجالات في

 بحیث ، واحدة وظیفة لأداء الكافي الزكاء تمتلك ما وعادة ، جداً صغیرة لأنھا نظرًا ، للھجوم معرضة الأشیاء

 منخفضة الطاقة منخفضة الأجھزة أمان على نركز البحث، ھذا في .تقریبًا  مكان أي تناسب أن  یمكنھا لتحقیق

 وھي اقل وطاقة اقل لتحقیق حجم (CAESAR)مسابقة  من للتشفیر شفرات خمسة تحسین وتم ، الحجم

.JAMBUو Tiaoxin و COLM و SILC و NORX  . 

 معالج وظائف الجزئي لتبدیل الدینامیكي التكوین إعادة تستخدم جدیدة تصمیم منھجیة ھناك ، ذلك على علاوة

 .الموارد بكفاءة یتمیز الأجھزة في أمانًا تحقق والتي التشفیر وفك التشفیر بین التشفیر
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