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require a huge cost of computation and a large memory size. This thesis presents 

a low-power convolutional neural networks hardware accelerator based on 

GoogLeNet. Several optimization and approximation techniques are applied to 

reduce the power consumption and memory size. Consequently, only FPGA 

BRAMs are used for weights storage without using offline DRAMs. In addition, 
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Abstract 

Convolutional neural networks (CNNs) have dominated image recognition and 

object detection models in the last few years. They can achieve the highest accuracies 

with several applications such as automotive and biomedical applications. CNNs are 

usually implemented by using Graphical Processing Units (GPUs) or generic 

processors. Although the GPUs are capable of performing the complex computations 

needed by the CNNs, their power consumption is huge compared to generic processors. 

Moreover, current generic processors are unable to cope up with the growing CNNs 

demand for computation performance. Therefore, hardware accelerators are the best 

choice to provide the required computation performance needed by the CNNs as well as 

affordable power consumption. Several techniques are adopted in hardware accelerators 

such as pruning and quantization. 

In this thesis, a power-efficient convolutional neural networks hardware accelerator 

is proposed based on GoogLeNet CNN. Weights pruning and quantization are applied, 

which reduces the memory size by 57.6x. Consequently, only FPGA BRAMs are used 

for weights and activations storage without using offline DRAMs. In addition, the 

proposed hardware accelerator uses zero DSP units as it replaces all multiplications by 

shifting operations. The accelerator is developed based on a time-sharing/pipelined 

architecture, which processes the CNN model layer by layer. In addition, there are 

some dedicated units such as maxpooling and average pooling units. The architecture 

proposes a new data fetching mechanism that increases data reuse. Moreover, it uses 

only 224 parallel elements (PEs). All the proposed accelerator units are implemented in 

native RTL (Register Transfer Logic), and several optimization techniques are applied 

to reduce the power consumption. The accelerator classifies 25.1 frames/sec with 

3.92W only, which is more power-efficient than previous GoogLeNet FPGA 

implementations. In addition, it achieves top-5 average classification efficiency of 91%, 

which is significantly higher than comparable architectures. Furthermore, this 

accelerator overcomes the popular CPUs such as Intel Core-i7 and GPUs such as GTX 

1080Ti in terms of the number of frames processed per Watt. The normalized power 

efficiency is 6.4 frames/Watt for the proposed accelerator, 0.81 frames/Watt for NVidia 

GPU, and 0.128 frames/Watt for Intel Core-i7. 
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Chapter 1 : Introduction 

1.1. Motivation 

Deep learning has been employed in a lot of domains during the last decade, such 

as image classification [1-2], object recognition and detection [3-5], object detection [6-

7], audio recognition [8], and self-driving cars [9-10]. CNNs are used widely as they 

achieve challenging accuracies, and their models are easily applied to new applications. 

CNNs are one of the common deep learning algorithms mainly used for image and 

video classification and detection [11]. CNNs require large amounts of memory storage 

as there are millions of parameters in every CNN model. Moreover, CNNs are 

computationally intensive as they require billions of operations per image. The high 

computational complexity combined with inherent parallelism in these models makes 

them an excellent target for custom accelerators. 

Although the CNNs have dominated the image classification and detection 

algorithms, there are two main challenges regarding their implementations [12]. The 

first challenge is the cost of computation, as their architecture consists of many 

convolutional layers, which are multiplication-hungry layers. The second challenge is 

the memory bandwidths, in which the memory fetching speeds are much lower than the 

processing speeds. These two challenges have raised the need to develop custom 

architectures to accelerate the CNN computations while keeping the power 

consumption at affordable rates for limited energy embedded applications. However, 

the variations of network architectures and data fetching patterns make it difficult to 

adopt one architecture for all CNNs. As a result, custom designs are the dominant 

approach for these networks to get the best performance across all performance metrics.   

During the rising of deep learning (DL) and machine learning (ML) algorithms, 

two main categories of processors are used. The first platform is the Central Processing 

Units (CPUs), which are not efficient for DL and ML algorithms as these algorithms 

require high parallelism and a lot of DSP units to finish their processing rapidly. The 

second platform is the Graphical Procession Units (GPUs), which are capable of 

processing millions of pixels within a part of the second. Correspondingly, the GPUs 

are the most suitable platforms due to their high parallelism. Consequently, they have 

been used widely for both training and inference [13].  

When it comes to hardware accelerators, FPGAs get a critical mission to provide 

high-performance – low power processing units [14-15]. FPGAs stand for field-

programmable gate arrays (FPGAs) that provide low power consumption, high 

parallelism, optimized hardware, and real-time computation capabilities. Moreover, 

FPGAs have the advantages of short time-to-market, reconfigurability, and reusable IP 

(Intellectual Property) options. There is another choice for designers, which is ASIC 

chips. ASIC is application-specific integrated circuits that provide the lowest power 

consumption and highest clock speeds, but it has a long time to market and high initial 

fabrication costs. These properties make it suitable for mass production, such as NVidia 

accelerators and google TPUs or data centers, such as google cloud or amazon AWS. 

As artificial intelligence (AI) is emerging increasingly in a lot of applications, the 

demand for hardware accelerators is increased. Recently, a lot of research is done to 

develop high-performance hardware accelerators for data centers, smartphones, and IoT 
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devices. Accelerator specifications are set based on the target application, power 

consumption budget, and acceleration rate. AI accelerators need more specialized 

architectures and should be suitable and optimized for the target algorithm, in contrast 

to common architectures, such as RISC (Reduced instruction set computing) and CISC 

(Complex instruction set computing) architectures. This approach is becoming more 

common in industrial and research applications, specially inference processors [16].  

For many years, it is well-known that the depth of the network should be increased 

to get higher accuracies, especially the number of convolution layers. This has been a 

common direction till year 2014 when Szegedy proposed a new CNN network called 

GoogLeNet with the concept of inception module [17]. In this network, the depth and 

width of the network have been increased, but the computational budget has been kept 

constant by using the network-in-network concept. This concept uses additional 1x1 

convolutional layers to remove the network bottlenecks to help in dimension reduction 

as shown in Figure 1.1. GoogLeNet overcomes AlexNet [1] and VGG [2] networks by 

getting the highest accuracy with fewer weights. As AlexNet uses 60 million weights to 

get 84.7% top-5 accuracy, and VGG-16 uses 138 million weights to get 92.7% top-5 

accuracy. GoogLeNet uses only 6.9 million weights to get 93.4% top-5 accuracy. 

Despite all these advantages, GoogLeNet architecture is more complex than other CNN 

networks due to activations’ data dependency and complex connections between 

inception layers. This makes it usually challenging for hardware accelerators designers.  

1.2. The Proposed Work 

This thesis will explore the lowest power consumption techniques for CNN 

hardware accelerators to make full use of it through the design. The key points for this 

research will be as follows: 

 It is a dedicated hardware accelerator that is designed for CNNs. 

 It is an inference processor that uses pre-trained weights. 

 The main design purpose will be achieving the lowest power consumption. 

 It is designed on FPGA for fast prototyping and reconfigurability. 

 It is implemented using native RTL (Verilog). 

 It is specially designed for GoogLeNet CNN for best performance.  

 Providing a suitable/optimized architecture to meet the computation 

requirements. 

 

Figure 1.1: Inception module with dimension reduction [17] 
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The main features of the proposed accelerator in this work are briefly highlighted 

as follows: 

i. The accelerator achieves 25.1 fps for GoogLeNet classification with 

3.92W, which provides more power-efficiency than previous FPGA 

implementations for GoogLeNet. 

ii. The accelerator achieves an order of magnitude performance improvement 

over Intel Core-i7 and NVidia GTX 1080Ti. 

iii. Weights pruning and quantization are used to cut down the memory usage 

by 57.6x. As a result, only FPGA BRAMs are used for weights and 

activations storage without using offline DRAMs. 

iv. It uses zero DSP units by converting all multiplications into shifting 

operations. 

v. This accelerator is developed based on time-sharing/pipelined architecture 

that processes the CNN model layer by layer. 

vi. This accelerator proposes a new data handling mechanism that leads to high 

data reuse and low power consumption.  

vii. The proposed accelerator uses simple distributed control units, which can 

be reconfigured to other CNNs such as VGG.  

viii. The proposed accelerator uses only 224 simple parallel elements (PEs). 

ix. The design achieves top-5 classification accuracy of 91%, which is 

significantly higher than comparable architectures. 

1.3. Thesis Organization  

This thesis is organized as follows, Chapter 1 presents the introduction and 

motivation for this work in addition to the proposed work main features and thesis 

organization. Chapter 2 gives a brief background about neural networks and CNNs. 

Moreover, a literature review is made, to sum up all related work and show the areas 

that can be developed. Chapter 3 presents the applied memory compression model 

using both weights pruning and quantization. The results are used lately for improving 

the architectural design and optimizing the power consumption and the utilized area. 

Chapter 4 investigates the proposed architecture in details. Moreover, design and 

implementation for each block are discussed. In Chapter 5, the experimental results and 

discussions for the implemented design are presented. Different analyses are held to 

make sure of the accelerator performance. Finally, Conclusion is presented to conclude 

the contributions and show the future work. 
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Chapter 2 : Background and Literature Review 

In this chapter, the background necessary for the next chapters are presented. 

Firstly, neural networks are introduced. Secondly, the main layers of CNNs in addition 

to their training and inference information are presented. Finally, a literature review is 

presented about algorithm-level optimization techniques, hardware design methods, and 

popular CNN hardware accelerators implementations. 

2.1. Background 

2.1.1. Neural Networks Overview 

Artificial intelligence has been evolved through the years and split into several 

branches such as robotics, NLP, machine learning, and neural networks [48]. Neural 

networks usually consist of multiple layers. When the number of layers is increased, the 

depth of the network increases, which is stated as Deep Neural Network (DNN). A 

neural network basically consists of a system of neurons with an artificial nature, where 

artificial neurons are known as perceptrons. A complete perceptron model represents a 

complete neural network. Neural network algorithms usually find elemental 

relationships across the input data, and find the best model or system to represent it. 

A simple perceptron takes several inputs and generates a single output as shown in 

Figure 2.1. It is developed by Frank Rosenblatt in the 1950s and 1960s [43]. The 

perceptron is mathematically represented as an activation function. It is a non-linear 

function that allows output triggering with small changes in the weights or bias after 

passing the threshold. It is stated as follows: 

 

 

𝑦 = 𝑓(𝑊.𝑋 + 𝑏) = 𝑓(∑ 𝑤𝑗𝑥𝑗 + 𝑏𝑗 )                       (2.1) 

 

 

where the y  is the perceptron output, which is calculated by the dot product, followed 

by the bias addition. The vector W is the neuron weights, and vector X is the input. 

Finally, 𝑏 is the bias. 

 

 

Figure 2.1: A simple perceptron 
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A conventional neural network is constructed with thousands or millions of 

neurons that are usually organized into multiple layers. The first layer of a neural 

network is the input layer, which is followed by one or multiple hidden layers. After the 

last hidden layer, the classification is made by the output layer.  

There are many different activation functions, but ReLU, Tanh, and sigmoid are 

the commonly used ones [44]. Each activation curve is shown in Figure 2.2. They are 

deployed in the network based on their functionality. They may be used for adding non-

linearity to the layers or transform the classification results into probabilistic values.  

Every function is illustrated briefly as follows: 

 

i. ReLU function 

ReLU simply suppresses any negative value to zero. It is used in hidden 

layers to add non-linearity to the layers’ output. The mathematical 

representation is written as follows: 

 

ReLU(z) = max⁡(0, z)                                      (2.2) 

 

𝑤ℎ𝑒𝑟𝑒⁡𝑅𝑒𝐿𝑈(𝑧)⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑎𝑛𝑑⁡𝑧⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑖𝑛𝑝𝑢𝑡. 
 

ii. Sigmoid function 

It is used in output layer for classification as it gives a weighted output. 

The mathematical representation is written as follows: 

 

σ(z) =
1

1+e−z
                                             (2.4) 

 
𝑤ℎ𝑒𝑟𝑒⁡𝜎(𝑧)⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑎𝑛𝑑⁡𝑧⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑖𝑛𝑝𝑢𝑡. 
 

iii. Tanh function 

It is used in hidden layers to add non-linearity to the layers’ output. The 

mathematical representation is written as follows: 

 

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
                                             (2.3) 

 
𝑤ℎ𝑒𝑟𝑒⁡𝑡𝑎𝑛𝑐ℎ(𝑧)⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑎𝑛𝑑⁡𝑧⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑖𝑛𝑝𝑢𝑡. 

 

 
 (a) 

 
(b) 

 
(c) 

Figure 2.2: Activation functions, (a) ReLU, (b) Sigmoid, and (c) Tanh functions 
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2.1.2. Multilayer Perceptron 

 

The multi-layer perceptron (MLP) is one of the Feed-Forward neural networks, 

where the propagation of data only goes from the input to the output layers during 

calculations [45]. There is another type of neural networks which is the Recurrent 

Neural Networks (RNN). RNNs in contrast, have a feedback connections from forward 

layers to previous layers [46]. MLP is the most basic configuration of feed-forward 

neural networks and is commonly referred as fully connected layers. MLP usually 

consists of one or more hidden layers of perceptrons where the network’s perceptrons 

are connected with each other. When the number of hidden layers increases, the 

network deals with more complex problems. On the other hand, the number of network 

parameters jumps rapidly which increases the cost of training and inference. A simple 

MLP is as shown in Figure 2.3 which has one input layer, one hidden layer, and one 

output layer. 

2.1.3. Convolutional Neural Networks 

Convolutional Neural Network (CNN) is one of the feed-forward classes of neural 

networks, and is most mainly used for vision tasks [47]. CNNs, in contrast to MLPs, do 

not require every neuron in the input layer to receive information from every pixel of 

the visual field, which in turn simplifies the network complexity and connections.  

As all artificial neural network models are inspired by the human brain. The brain 

analogy usually identifies an object or a photo by describing the distinguishing features 

such as edges, color, and main shapes. In this way, it works efficiently without 

requiring the position and color or every pixel.  

In CNNs, kernels or filters are responsible for feature extraction through an 

operation that is well-known as 2D convolution. The convolution kernel slides across 

all input feature map while calculating the cross-correlation between the input feature 

map and applied kernel. The output is a scalar value that corresponds to how similar the 

input is to the kernel as shown in Figure 2.4. The convolution kernels are kept constant 

throughout the frame traversal and every CNN layer distinguishes multiple features of 

 

 

Figure 2.3: Basic MLP structure 
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the frame. Usually, the input images are not represented as two-dimensional arrays, but 

with multichannel inputs such as RGB images. This forms three-dimensional arrays 

with 3D-convolution operations. 

CNN basically consists of convolutional layers, fully connected layers, and pooling 

layers. These layers are stacked several times to form a CNN [47]. The deeper every 

CNN becomes, the higher accuracy it provides. However, this approach is evolved with 

time to add different techniques rather than increasing the depth of the network. Figure 

2.5 shows a simple CNN that consists of 3 convolution layers and 3 fully connected 

layers in addition to Maxpooling layers. The main layers for a conventional CNN will 

be discussed briefly in the next section. 

 

2.1.3.1. Convolution layers 

Convolution layers are one of the main building blocks of CNNs as they are 

responsible for extracting local features from input feature maps [47]. They require a 

lot of computations due to convolving nature and the size of convolutions. The 

mathematical equation for 2D convolution operation is stated as follows: 

 

y[m, n]+= bias +⁡∑∑w[k, l]⁡x[m + k, n + 1]

𝐿−1

𝑙=1

𝐾−1

𝑘=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.5) 

where y[m,n] is the output matrix map of the same dimensions as the input map x. m 

and n are the coordinates of the pixel of the interest region. Finally, L and K denote the 

kernel dimensions 

 

Figure 2.4: 2D-Convolution with sliding window kernel 

 

Figure 2.5: A simple CNN 
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Convolution layer dimensions are controlled by 4 hyper-parameters which controls 

the convolution input/output feature map sizes: 

 The number of filters K. 

 F is the width and height of filters. 

 The stride S, the kernel sliding step. 

 Finally, P is the amount of zero padding pixels. 

 

Where the size of the output feature maps is calculated as follows: 

 

𝑂𝐹𝑀𝐴𝑃𝑑𝑖𝑚𝑒𝑛 =
𝐼𝐹𝑀𝐴𝑃𝑑𝑖𝑚𝑒𝑛 − 𝐹 + 2𝑃

𝑆
+ 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.6) 

2.1.3.2. Fully connected layers 

Fully connected layers are used at the end of each CNN model to compute class 

scores as shown in Figure 2.6 example. It is like MLP which has one-to-one 

connections to all previous layer activations. There may be multiple fully connected 

layers in every exact CNN such as AlexNet to reduce the input size gradually and avoid 

having a huge full-connectivity layer at the end. Every CNN ends up with a fully 

connected layer with size equals to the number of trained classes.  

 

2.1.3.3. Pooling layers 

There are two popular pooling layers. Firstly, Maxpooling layers are usually paired 

with the convolution layers. Maxpooling works on each feature map separately by 

taking the max value of the applied subregion. The second type is the average pooling 

layer, which is applied by taking the average value of the applied subregion. Although 

it has been the most popular historically, it is less commonly used nowadays.  

 

 

Figure 2.6: Fully Connected layer in CNN models 
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Pooling layers are used to shrink the size of the input feature maps to reduce the 

number of parameters in the CNN model, hence reducing the amount of computation 

needed. On the other hand, they overcome the overfitting problem. Overfitting is a 

problem that occurs when a network predicts and classifies the training data well, but 

fails to deal with testing data. The pooling operation is performed on each feature map, 

reducing the size of each feature map without removing any of them. The pooling layer 

requires two hyper-parameters, F and S where the size of the output feature maps is 

calculated directly using (2.7): 

 Subregion width or height, F. 

 The stride S. 

 

𝑂𝐹𝑀𝐴𝑃𝑑𝑖𝑚𝑒𝑛 =
𝐼𝐹𝑀𝐴𝑃𝑑𝑖𝑚𝑒𝑛 − 𝐹

𝑆
+ 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.7) 

 

Figure 2.7 shows a simple example for Maxpooling operation with input feature map 

size 4x4, subregion F=2, and stride 2. The output feature map size will be 2x2 by 

following the equation of (2.7)    

 

2.1.3.4. Other layers 

After presenting the most popular layers, there are other types of layers that have 

importance in CNN calculations. Firstly, the normalization layers that are used to 

normalize the output at some parts of the network such as local response normalization 

(LRN) or batch normalization (BN) which is applied after each convolution layer [41]. 

Although BN has an additional cost of having learnable parameters and extra 

computations, it is preferred nowadays over LRN. However, LRN does not has any 

additional learnable parameters. 

On the other hand, there are some activation layers like ReLU activation, which is 

commonly used to add some non-linearity to network feature maps. Also, there is the 

dropout layer which is useful while training to overcome overfitting by randomly 

dropping some inputs. Their functionality is disabled while inference. 

 

 

Figure 2.7: Maxpooling example with F=2 and S=2 
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2.1.4. Popular CNN Models 

In this section, a careful analysis for popular CNNs is presented. Then, the analysis 

compares GoogLeNet CNN with other popular CNN models. 

 

 LeNet 

 

LeNet CNN is one of the most basic CNNs. It’s consists of two convolution 

layers, two average pooling layers, two fully connected layers, and one 

Softmax layer as shown in Figure 2.8. It was originally developed in 1998 to 

identify the hand written digits with 32 x 32 x 1 input grayscale image size. It 

has 60 K parameters. Moreover, LeNet uses Sigmoid and Tanh activation 

functions 

 

 AlexNet 

 

AlexNet was developed to classify 1000 classes of ImageNet Dataset [1]. It 

is consists of 60 Million parameters with deeper layers than LeNet, so it 

required multiple GPUs for training. The input image size is increased to 227 x 

227 x 3 which is RGB input. Also, the local response normalization layer is 

firstly introduced, and maxpooling is used instead of average pooling. The 

CNN structure is shown in Figure 2.9 with a layer arrangement with (Conv-1, 

Maxpool-1, Conv-2, Maxpool-2, Conv-3, Conv-4, Conv-5, Maxpool-3, FC-1, 

FC-2, Softmax). AlexNet won the ImageNet challenge with 83.6% top-5 

classification accuracy. 

 

Figure 2.8: LeNet CNN 

 
 

Figure 2.9: AlexNet CNN 
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 VGG-16 

 

VGG-16 CNN is a modification for AlexNet which was developed for 

ImageNet challenge [2]. The size of the model is large with 138 Million 

parameters, so it required huge resources for the training process. The input 

image size is set as 224 x 224 x 3 which is RGB input. The CNN structure is 

shown in Figure 2.10. Convolution filters are increased from 64 to 128 to 256 

to 512, and Maxpooling layer are responsible for shrinking the input size. 

VGG-16 won the second place in ImageNet challenge with 92.7% top-5 

classification accuracy in 2014. 

 

 Inception V3  

 

Inception V3 is the third version for GoogLeNet, which supports the same 

idea of inception network using 23.6 Million parameters [54]. The number of 

parameters for Inception V3 is more than GoogLeNet (6.9M), but less than the 

number of parameters for AlexNet (60M). Inception V3 achieves top-5 

classification accuracy with 96.5%, which won the ImageNet challenge in 

2015. Figure 2.11 shows the structure for Inception V3. 

 

 

Figure 2.10: VGG-16 CNN 

 

Figure 2.11: Inception V3 CNN 



 

12 
 

 GoogLeNet 

 

GoogLeNet CNN achieves a top-5 classification accuracy with 93.4% using 

~6.9 Million parameters only [17]. The number of parameters is cut down after 

deploying the concept of network-in-network module. This module uses 1x1 

convolution layer before 3x3 convolution and 5x5 convolution layers to shrink 

the dimension. It’s one of the most remarkable CNN provided in the literature. 

 

 ResNet 

 

ResNet CNN stands for residual network which consists of a group of 

residual blocks. The main idea is to add a skip connections before the second 

activation [55]. ResNet is the first CNN to allow the training of very deep 

networks even if with more than 100 layers. ResNet-34 achieves top-5 

classification accuracy with 94.4% using 20.5 Million parameters. There are 

many variations for ResNet such as ResNet-50 and ResNet-152. Figure 2.13 

shows an example for ResNet-34 CNN.  

 

 SqueezeNet 

 

SqueezeNet CNN is usually compared with AlexNet as it achieves the same 

classification accuracy with 50x fewer weights [56]. SqueezeNet consists 

mainly of fire modules with 3x3 and 1x1 convolution kernels. The 1x1 filters 

are used to reduce the input feature map size before 3x3 filters. SqueezeNet 

starts with a convolution layer, followed by 8 fire modules, and ends with a 

final convolution layer as shown in Figure 2.12.  

 

Figure 2.12: SqueezeNet CNN 
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Figure 2.13: ResNet-34 CNN 

In Table 2.1, a summarized comparison is made between popular CNN networks. 

VGG-16 has a Top-5 accuracy with 92.7%, but it requires 138 Million weights per 

frame. This requires a huge memory size, which in turn will increase the computation 

load and memory access. On the other hand, Inception V3 and ResNet-50 get higher 

accuracy with 96.5% and 96.4%, respectively. They get an approximate accuracy 

improvement of 3% more than GoogLeNet, but they require memory storage 3.5x times 

more than GoogLeNet. SqueezeNet gets the AlexNet accuracy with 50x fewer 

parameters, but top-5 accuracy with 83.6% is low compared with other CNNs 

accuracies. Accordingly, it is clear that GoogLeNet achieves the best accuracy while 

keeping the number of weights in an acceptable count.  
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Table 2.1: Popular CNNs 

CNN Year 
Top-5 accuracy 

(%) 

Number of weights 

(Millions) 

AlexNet 2012 83.6 60 M 

VGG-16 2014 92.7 138 M 

GoogLeNet 2014 93.4 6.9 M 

ResNet-34 2015 94.4 21.5 M 

Inception V3 2015 96.5 23.6 M 

SqueezeNet 2017 83.6 1.2 M 

 

Most of the hardware accelerators in the literature proposes high throughput and 

reasonable power consumption on feed-forward CNN networks such as LeNet, 

AlexNet, and VGG [37-38]. These processors fail to process the inception network 

well, and the obtained speed is degraded, since the structure of the inception module 

increases the depth of the layers horizontally and vertically while keeping 

computational cost by adding a 1x1 convolution layer as a bottleneck. Although this 

improves the accuracy, it increases system complexity. The challenge is to build a 

hardware accelerator based on GoogLeNet model, and design it carefully to make full 

use of every feature of it. 

2.1.5. Neural Networks Training 

The process of training a network is responsible for evaluating the optimum value 

of all learnable parameters such as weights and biases of the network. As the training of 

the networks is outside the scope of this work, only a quick overview of network 

training will be explained.  

After constructing the model of the neural network, network training comes to 

adjust the parameter values for all weights in the network. The training process is 

controlled via hyper-parameters and a training dataset. The desired goal of this process 

is to be able to classify similar classes during inference. Firstly, a cost function is 

introduced. The goal is to minimize this function to the least value. Cost function 

represents the squared difference between the computed output value and the desired 

one which is stated as follows: 

 

𝐶(𝑤, 𝑏) =
1

𝑚
∑||𝑦 − 𝑦̂||

2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.8)

𝑚

𝑖=1

 

 

Gradient decent algorithm is used to minimize the cost function. Gradient descent 

updates the values of the weights and biases with small steps in the direction of the 

negative gradient. This update for each parameter is given by: 

 

⁡𝑤′𝑘 =⁡𝑤𝑘 − ⁡𝜂
𝐶(𝑤, 𝑏)

𝑤𝑘
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.9) 

⁡𝑏′𝑘 =⁡𝑏𝑘 − ⁡𝜂
𝐶(𝑤, 𝑏)

𝑏𝑘
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.10) 
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Where 𝜂 is the learning rate or correction step, which is one of the training hyper-

parameters. If the learning rate is too small it leads to a very slow convergence being 

stuck in local minima. On the other hand, if the learning rate is too high it leads to a 

non-convergence system, so that it requires a careful selection. 

 

Unfortunately, the gradient descent algorithm cannot be really applied for training 

neural networks as it requires complex computations and all training dataset is involved 

in each step, which is impossible to be applied. There is another algorithm called Mini-

batch Gradient Descent. In Mini-Batch Gradient Descent, the derivate is approximated 

on a small mini-batch of the dataset, and is used to update the weights. Mini-batch is 

not guaranteed to reach an optimal solution. But, if a small learning rate is chosen with 

gradient descent, the loss is guaranteed to decrease every iteration.  

On the other hand, computing exact derivatives for millions of parameters is hard 

for a typical neural network model. Another way to calculate the derivatives is called 

back-propagation, which gives a good balance between the results and computations. 

The back-propagation method firstly computes the forward-propagation path in order to 

compute the output. Secondly, the error values on the outputs are propagated backward 

through the network, which is used to calculate the gradients and update all network 

parameters [46]. 

In brief, the training process nowadays uses both concepts of forward-propagation 

and back-propagation. The objective is not to have the minimum difference between the 

current weight value and the desired weight, but reaching to minimum error (Loss) 

between the classification of the training data and the prediction are made by the neural 

network. 

Training of artificial neural networks is simplified in steps as follows: 

1. Start by random weight initialization. 

2. Split the dataset into batches with the same batch size. 

3. Train the network with the batches, one by one. 

4. Perform the forward-propagation to get the output with the values of the 

current weight. 

5. Compare the calculated output to the expected output and compute the loss. 

6. Update the weights using backward-propagation with a decrement or 

increment learning rate. 

7. Repeat the process with other batches till finishing the training batches. 

 

2.1.6. Neural Networks Inference 

 

After performing network training, the model weights are saved to be used while 

applying the model in its application. The inference phase is simpler than the training as 

it just computes the forward-propagation path of the network, and evaluates the output 

without going backward for back-propagation and so on. Training accuracies are 

usually more than inference accuracies because the model fits the training data well and 

all network weights are adjusted for it. However, researchers seek to keep the inference 

accuracy so close to training accuracy.  
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2.2. Algorithm-Level Optimization Techniques 

 

In this section, a brief review about popular techniques for efficient hardware 

accelerator design using algorithm-level optimizations. These methods are addressed to 

select the suitable ones for the proposed hardware accelerator. The studied techniques 

are Weights pruning, quantization, weights sharing, Huffman coding, winograd 

transformation, binary/ternary nets, and low-rank approximation. 

 

1. Weights Pruning 

  

Deep neural networks models consist of millions of parameters. Many of these 

parameters are not important, and removing them can reduce the weights memory 

storage greatly. This is called the weights pruning operation, which eliminate the 

unnecessary connections. Figure 2.14 shows a simple example for a neural network 

before and after pruning. The unnecessary synapses are pruned away which simplifies 

the overall connections greatly. Eliminating these connections degrades the model 

accuracy as the model connections are mutually dependent. Correspondingly, retraining 

the remaining connections is necessary to recover the accuracy loss [57]. Figure 2.15 

shows the accuracy loss versus the percentage of pruned parameters for pretrained, 

pruned, and pruned/retrained models. It’s depicted from the figure that the accuracy 

starts to decrease by increasing the percentage of pruned-away parameters. By 

comparing the pruned-only model with pruned/retrained model, it’s clear that retraining 

keeps the accuracy loss tends to zero while saving 80% of the model weights. The 

pruning percentage decreases by increasing the model’s complexity, but this provides a 

good example about the effect of retraining after weights pruning on the model size. It’s 

worthy to mention that iterative retraining improves the accuracy more than one-stage 

retraining.   

Weights pruning makes a large change in the weights distribution. Basically, the 

pruning suppresses the weights that tend to zero a shown in Figure 2.16 (b). Retraining 

affect is shown in Figure 2.16 (c), which retrains the model weights to get a continuous 

distribution and recover the accuracy loss.     

 

 

 

Figure 2.14: Simple neural network before and after pruning 
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Figure 2.15: Accuracy loss versus the number of pruned parameters for 

pretrained, pruned, and pruned+retrained models. 

 
         (a) (b) (c) 

Figure 2.16: Weights distribution changes with pruning. (a) Before pruning, (b) 

after pruning, and (c) After retraining. 

2. Quantization 

 

Weights of deep learning models are usually represented with 32-bit precision, 

which allocates a large size of memory. Representing these weights in a smaller 

precision reduces the model size significantly. Moreover, quantizing the weights 

reduces the accuracy directly, and accordingly, retraining is necessary for quantization 

as the same as weights pruning. After applying weights pruning model, weights 

quantization is used to shrink the precision from 32-bit to 4-bit. Iterative quantization is 

preferred more than quantizing all the weights in one shot as it reduces the accuracy 

loss by partitioning the weights iteratively. Figure 2.17 shows the weights distribution  
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(a) (b) 

Figure 2.17: Weights distribution changes with quantization. (a) Before trained 

quantization, and (b) After trained quantization. 

before and after trained quantization. It’s clear that the quantization makes the weights 

distribution as a discrete distribution with a few weights. In addition, these weights is 

represented with fewer bits. 

 

3. Weights Sharing  

 

Weights sharing is usually used with trained quantization to improve the 

quantization operation. Weights sharing operation generates a code book by clustering 

the weights into few clusters. This is done by storing few effective weights in a code 

book and let other weights share one of them. The operation flow can be summarized as 

shown in Figure 2.18. The operation starts be clustering the weights. This clustering is 

done by different methods such as k-means clustering. Secondly, a code book with the 

new clusters is generated. Then, quantization is made with the code book. Finally, 

retraining is required to recover the accuracy loss and then go back to quantization and 

so on.  

Figure 2.19 shows a simple example for weights sharing operation. The example is 

made on a hidden layer neural network with 16 weights. Firstly, the weights is clustered 

into four groups with four different colors. Every cluster has its index which is used 

instead of using the value itself. By this way, only two bits are required to represent the 

index of the cluster. During the operation, the weight matrix on top left is converted to 

cluster index matrix. The weight matrix has a gradient matrix on bottom left which is 

grouped as shown on bottom middle matrix. Finally, the clusters centroids is updated 

using reduced gradient matrix and so on.   

 

4. Huffman Coding 

 

Huffman coding is a lossless data compression algorithm that can code the non-

uniformly distributed values to save large memory storage. After quantizing the model, 

many values of the weights are repeated frequently. Algorithms such as Huffman 

coding [32] is utilized to represent the most frequent values in smaller bits and the least 

frequent values in larger bits. Combining pruning, quantization, and Huffman coding 

can obtain larger compression ratios.  
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Figure 2.18: Weights sharing with quantization flow. 

 

Figure 2.19: Weights sharing example. 
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5. Winograd Transformation 

 

Winograd transformation is one of fast techniques to optimize the computation of 

convolutions [58]. It’s simply transforms the convolution operation into point-wise 

multiplication by replicating the filter elements. This transformation saves the required 

multiplications for every single output. Figure 2.20 shows a simple example for 

Winograd transformation. The input feature map size is 4x4, while the filter size is 3x3, 

and the output feature map size is 2x2. If the conventional convolution operation is 

used, it requires 9 multiplications per single output element. Consequently, it required 

36 multiplications per single output feature map with size 2x2. On the other hand, 

Winograd transformation extends the filter to 4x4 size and this saves the replicated 

multiplications during the convolution operation. Correspondingly, only 16 

multiplication operations are required for 2x2 output feature map with 2.25x fewer 

multiplications. 

 
 

6. Binary/Ternary Net  

 

As the current deep neural networks consist of millions of parameters per model. 

Many researchers have worked on reducing the precision of every parameter to the least 

value as binary or ternary values. These neural networks are called Binary/Ternary net 

with two weight values for binary nets or three weight values for ternary nets. This 

algorithm is suitable for many applications that are trained on simple datasets like 

MNIST or CIFAR. However, there is another work that can apply it with ImageNet 

dataset and AlexNet CNN with acceptable top-1/top-5 error rates [59-60]. Figure 2.21 

shows an example for neural network after retraining for ternary weights. 

 

 

Figure 2.20: Example for Winograd transformation.  

 

Figure 2.21: Retraining neural networks for ternary weights.  
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7. Low Rank Approximation  

 

During the past decade, the size and depth of convolution neural networks tend to 

increase to get higher classification accuracies and solve more complex problems. 

However, the computational cost of these CNNs also increases significantly. The 

computational cost makes the training and testing phases more complex. Low rank 

approximation technique can be used to reduce this complexity. This is made by 

decomposing large convolutional layer with d filters with filter size of k × k × c, where 

k is the spatial size of the filter and c is the number of input channels of this layer. It’s 

decomposed from one layer as shown in Figure 2.22 (a) to two layers as shown in 

Figure 2.22 (b) 

 A layer with 𝑑′ filters (k × k × c) 

 A layer with 𝑑⁡filter (1 × 1 × 𝑑′) 
 

By applying this technique, the computation complexity can be reduced from 

𝑂(𝑑𝑘2𝑐)⁡𝑡𝑜⁡𝑂(𝑑′𝑘
2
𝑐) + ⁡𝑂(𝑑𝑑′). Correspondingly, the computations can be speed up 

multiple times. In addition, this technique is proved to increase the classification 

accuracy as well [61]. 

 

 

Figure 2.22: Low rank approximation example. (a) Original layer, (b) 

approximated layer [61].  

2.3. Hardware Design 

 

In this section, common hardware design options are studied by reviewing several 

implementations. Secondly, Popular AI ASIC chips are presented to give an example 

for this type of implemenation. Moreover, FPGA overview is presented to show the 

main building blocks and design flows. Finally, an overview about fixed-point 

representation is presented as it will be used in the proposed hardware accelerator. 

 

Hardware implementation options are categorized into different categories. The 

first category is the general purpose hardware, which includes both CPUs and GPUs. 
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Secondly, specialized hardware category which has different types of categories, but 

it’s mainly divided into ASIC chips and FPGA implementations. Every category has its 

features, advantages, disadvantages, limitations, and others. Table 2.2 shows a 

summary and comparison between all of them.  

 

If CPUs, GPUs, FPGAs, and ASICs are compared in terms of flexibility, it is found 

that the CPUs and GPUs are better due to the availability for supporting programming 

languages and frameworks as shown in Figure 2.23. In contrast, ASICs are less flexible 

as they require custom frameworks. While FPGAs are currently supported by several 

framework such as OpenCL, but they require more development time. On the other 

hand, the efficiency is the best while using ASICs as it uses fixed/custom logic as 

shown in Figure 2.23. FPGAs come at next efficient type, but CPUs are the least 

flexible hardware as it is designed as a general purpose platform.  

Table 2.2: Comparison between AI hardware design methods 

Design Type CPU GPU FPGA ASIC 

Main Features 

Traditional 

sequential 

processor  

Parallel cores 

for graphics 

processing 

Configurable 

logic gates and 

IP cores 

Optimized 

integrated 

circuits for 

specific 

application 

Power 

Consumption 
High  High Medium Low 

Strengths  

Handling 

complex 

instructions 

Highly parallel 

cores used not 

only for 

graphics 

processing but 

also for AI 

processing,  

a lot of 

supporting 

frameworks for 

AI 

Flexibility, 

reconfigurability, 

specific design, 

variety of 

resources: LUTs, 

DSPs, etc. 

Low power 

consumption, 

speed, low 

footprint 

Constraints 

Memory access 

bottlenecks, 

few parallel 

cores 

High power 

consumption, 

large foot print 

Programming 

complexity 

High Cost, 

fixed logic, 

large time-

to-market  

Programming  

Assembly 

languages, high 

level languages 

OpenCL, C, 

C++, Python, 

Nvidia CUDA 

Verilog, VHDL, 

OpenCL, HLS 

Custom 

programming 
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Figure 2.23: Flexibility versus efficiency for CPUs, GPUs, FPGAs, and ASICs  

2.3.1. FPGAs Overview 

FPGAs are one of the common hardware design methods that provide high 

parallelism, optimized hardware, and real-time computation capabilities. FPGAs consist 

of programmable logic gates and interconnections that enables reconfiguring them to do 

specific functions. HDL (hardware descriptive languages) such as Verilog or VHDL are 

mainly used to make a design on FPGA. However, there are different design flows on 

FPGA like HLS (High Level Synthesis) and OpenCL (Open Computing Languages). In 

this section, a quick overview about FPGA main blocks are presented, and FPGA 

design flow is illustrated. 

 

FPGAs contain an array of configurable logic blocks (CLBs), and a hierarchy of 

reconfigurable interconnects that allow the blocks to be routed together. Also, FPGAs 

contain memory elements, which may be simple flip-flops or more complete blocks 

such as block RAMs or ultra-block RAMs. Figure 2.24 shows a simple schematic for 

FPGA internal design. 

 

 

Figure 2.24: FPGA Internal Design  
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 Configurable Logic Blocks (CLBs)  

 

CLBs carries the logic for the FPGA. The block contains lookup tables (LUTs) for 

creating arbitrary combinatorial logic functions, which are made of ROMs. Also, it 

contains flip-flops for clocked storage elements, along with multiplexers in order to 

route the logic within the block and from/to external resources. Figure 2.25 shows an 

example for basic CLB block. For the modern FPGA today, CLBs contain enough logic 

to create a small state machine.  

 

 Block RAM  

 

It is a dedicated block RAM for memory storage on FPGA without using FPGA 

LUTs. It serves as a relatively large memory structure, but much smaller than off chip 

memory resources.  

 

 DSP Cores  

 

Digital Signal Processors (DSPs) are used in FPGAs for complex arithmetic 

functions. They are specialized processors that are used to implement Multiply 

Accumulate blocks in addition to video and audio processing. 

 

 Programmable Interconnections 

 

They are the main routes that can be used to connect CLBs with each other on the 

FPGA. These interconnections are used as buses within the chip as shown in Figure 

2.26. Transistors are used to turn on/off connections between different blocks. 

Programmable switch matrices in the FPGA are used to connect the long and short 

interconnections together. In addition, there are global clock interconnects which are 

specially designed for low impedance and fast propagation clocks. These interconnects 

are used to connect the clock buffers to clocked element in each CLB.  

 

 

 

Figure 2.25: Example of Configurable Logic Block (CLB) 
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Figure 2.26: FPGA programmable interconnections  

 Configurable I/O Blocks  

 

A Configurable input/output (I/O) Blocks are used for input/output off-chip 

connections. It consists of an input buffer and an output buffer with three-state and 

open collector output controls as shown in Figure 2.27. Typically, there are pull up 

resistors on the outputs and sometimes pull down resistors that can be used to terminate 

signals and buses without requiring discrete resistors external to the chip. The polarity 

of the output can usually be programmed for active high or active low output. 

 

 Clock Circuitry  

 

Clock circuitry is a special I/O block with special high drive clock buffers, known 

as clock drivers. These buffers are distributed around the chip to connect drive the 

clock signals onto the global clock lines. These clock lines are designed for low skew 

and fast propagation.  

 

 Embedded Cores  

Embedded cores are added by the FPGA vendor as separate blocks to provide more 

peripherals for the developers.  The performance of these core do not depend on the rest 

of the design since it doesn’t need to be placed and routed.  

 

 FPGA Design Flow  

 

Figure 2.28 shows FPGA design flow. The flow is summarized as follows: 

 

1. Functional Specifications: system-level design is set and all specifications 

are determined.  

2. HDL coding: the HDL code is written, and then behavioral simulation is 

done to make sure of the design functionality.  

3. Synthesis: HDL is elaborated and synthesized into logic gates. This is 

intermediate state before doing place & route step. At this step, static 

timing analysis and estimate power consumption in addition to design 

utilization can be calculated. 

4. Place & Route: The design blocks and logic cells are placed on the FPGA 

are routed together.  

5. Download the bit stream: The HDL code is burned on the FPGA. 
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Figure 2.27: FPGA configurable I/Os. 

 

Figure 2.28: FPGA Programmable interconnect  

2.4. Literature Review 

Hardware accelerators get a huge attention in different research areas through past 

years. Researches compete to propose the best architecture or implementation for 

different Deep Learning applications. As the proposed work is focused on CNNs, the 

popular CNN hardware accelerators are investigated. The review firstly investigates the 

popular FPGA implementations. Secondly, ASIC hardware accelerators are presented. 

Finally, A review for previous GoogLeNet CNN hardware accelerators. After 

presenting the review it becomes helpful to set the proposed architecture while avoiding 

drawbacks of previous architecture and adding new features. 

 

 FPGA Implementations 

 

There are two popular high-level design flows of hardware accelerator 

implementation. The first flow is high-level synthesis (HLS), and the second one is 

Open Computing Language (OpenCL). They provide fast and easy hardware 

implementation, but they have a lack of optimization and energy efficiency. These 

high-level flows have been developed to build programs and execute them across 

heterogeneous platforms, such as CPUs, GPUs, and FPGAs [22-24]. HLS is an 

automated process to compile digital hardware circuits by synthesizing them. It enables 

building and verifying the hardware by giving better control over the architecture [25-

27]. 
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Aydonat proposes a new architecture written in OpenCL that minimizes external 

memory bandwidth and maximizes data reuse [22]. Furthermore, Winograd algorithm 

is used to increase the data reuse and decrease the number of computations. The design 

is implemented on Intel’s Arria 10, and processes 1382 GFLOPs. Aydonat’s hardware 

accelerator achieves a performance of 23fps/W when running the AlexNet.  

 

Jialiang’s hardware accelerator is another CNN hardware implementation based on 

OpenCL on FPGA [23]. The design is implemented on Altera Arria 10 GX1150. It 

achieves 866GOP/s floating-point performance at a frequency of 370MHz and 

1.79TOP/s fixed-point performance at a frequency of 385MHz.VGG is processed as a 

case study with 28.1fps in floating-point representation. 

 

Suda’s implementation is another OpenCL-based design on FPGA. It achieves a 

peak performance of 136.5 GOPS for convolution operation, and 117.8 GOPS for the 

entire VGG network that performs ImageNet classification. Both AlexNet and VGG are 

tested on this design using two Altera Stratix-V FPGA platforms, DE5-Net and P395-

D8 boards, which have different hardware resources.  

 

Zhang proposes a hardware accelerator for deep convolution neural networks [25]. 

This hardware accelerator is HLS design implemented on the VC707 FPGA board. In 

addition, Software implementation runs on an Intel Xeon CPU E5-2430 with 15MB 

cache. It achieves a peak performance of 61.62 GFLOPS at a frequency of 100MHz 

with 18.6W FPGA power consumption. 

 

fgpaConvNet is a framework for CNNs on FPGA based on HLS design [26]. This 

fraemwork introduces FPGA reconfiguration as a design option for CNNs FPGA 

implementations. The design is implemented on Zynq-7000 XC7Z020 FPGA at a 

frequency of 100MHz. fgpaConvNet achieves 12.73GOP/s and 7.27 GOP/s/W, and 

supports fixed-point as well as single and double precision floating-point 

representations. 

 

FINN is a framework for building fast and flexible hardware accelerators using a 

flexible heterogeneous architecture [27]. It is designed especially for binary neural 

networks on ZC706 embedded FPGA platform while consuming less than 25W total 

system power. FINN has a 0.31µs latency on the MNIST dataset with 95.8% accuracy, 

and 283µs latency on the CIFAR-10 and SVHN datasets with 80.1% and 94.9% 

accuracy, respectively. 

 

Moreover, many previous studies focus on accelerating the convolution layers of 

CNN only. For example, in [28] and [29], the hardware accelerator processes several 

convolution layers only rather than the full CNN while neglecting other CNN layers, 

such as fully connected layers. Consequently, those accelerators are not suitable to be 

deployed in low-power embedded applications. 

 

 ASIC Implementations 

  

EIE is an energy efficient inference engine that is developed by Stanford [64]. EIE 

provides 120× energy saving more than the conventional processors. EIE has a peak 

performance of 102GOP/s. It’s designed to work directly on a compressed CNN, but it 

can process an uncompressed network with 3TOP/s. power consumption is 600mW. 
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EIE has two versions with 64PEs and 256PEs. The first version operates at a frequency 

of 800MHz with power consumption 0.59W. The chip area is 40.8mm2 with 45nm 

technology and fixed-point 4-bit. The second version operates at a frequency of 

1200MHz with power consumption 2.36W. The chip area is 63.8mm2 with 28nm 

technology and fixed-point 4-bit. 

 

Eyeriss v1 is developed by MIT [63]. It uses row stationary (RS) datafow with 168 

processing elements. Eyeriss processes the convolutional layers at 35fps for AlexNet at 

278mW with batch size 4, and 0.7fps for VGG-16 at 236 mW with batch size 3. Chip 

size is 16mm2 with TSMC 65nm technology. The chip core operates from 100MHz to 

250MHz with a peak throughput 16.8 to 42 GOP/s 

 

Eyeriss v2 is the second generation for Eyeriss acelerator [21]. RS dataflow is 

upgraded to RS+ dataflow with many improvements. A network-on-chip (NoC) 

architecture is used for both multicast and point-to-point single-cycle data delivery. The 

number of PEs can be varied and increased from 256 PEs to 16384 PEs. Eyeriss v2 

shows a performance increase between 10:17× for 256 PEs, 37:71× for 1024 PEs, and 

448:1086× for 16384 PEs. 

 

DianNao accelerator is designed using CMOS technology of 65nm with an area of 

3.02mm2 [20]. It performs 452GOP/s of fixed-point operations in parallel with 0.485W 

(excluding main memory accesses). This accelerator is 21.1x more energy-efficient 

than a 128-bit SIMD core, and operates at 2GHz. However, the reported throughput is 

the peak theoretical throughput only for some convolution layers without DRAM 

access time, which degrades the speed and increases the power consumption.   

 

 

 GoogLeNet Hardware Implementations  

 

Snowflake accelerator [18] is able to achieve an average computational efficiency 

of 91%, and is implemented on a Xilinx Zynq XC7Z045 APSoC. Snowflake is capable 

of achieving 128GOP/s while consuming 9.48W of power. This work considers the 

number of frames without the fully connected layers. Correspondingly, adding the fully 

connected layers overhead degrades its throughput and increases its power 

consumption. Moreover, it has high power consumption due to the usage of 1GB of 

DDR3 memory in addition to two ARM cores running at 800MHz and one Kintex-7 

FPGA. The entire design is operated at a frequency of 250MHz.  

 

Another hardware accelerator that is designed by Zhao is synthesized by using the 

TSMC 65nm CMOS technology and achieves a peak of 280.8GOPS/s [19]. Its core 

area is 4.35mm2 running at 650MHz with a power dissipation of 859mW. Convolution 

layers implementation of popular CNNs shows a frame rate of 36.7fps for ResNet-34 

and 179.5fps for AlexNet. Compared with the existing AlexNet accelerators reported in 

recent years, this accelerator achieves 3.1x average area efficiency, 1.7x energy 

efficiency, and 20% higher average computational efficiency. However, the input 

image/feature data and filter weight parameters are transferred from the external off-

chip memory to the separated on-chip data buffer and parameter buffer. In addition, this 

work considers the number of frames without the fully connected layers similar to [18], 

and correspondingly adding this overhead degrades the throughput and increases its 

power consumption.  
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CoNNA is another hardware accelerator that processes different types of CNNs 

specially GoogLeNet [53]. CoNNA is implemented on Xilinx ZCU102 with three 

different versions using different resources and operating frequencies. In contrast to 

most existing solutions, CoNNA process fully compressed CNN models, which gives it 

more advantages than using uncompressed CNN models. CoNNA is designed as a 

reconfigurable architecture that operates at 60MHz, 100MHz, and 200MHz 

frequencies. CoNNA_C3 is one of CoNNA versions that reaches a peak performance 

with 17.325GOP/s and classifies 4.95fps for GoogLeNet. 

 

The last implementation is Kalle inception module [62]. As discussed before, 

GoogLeNet consists of 9 inception modules in addition to multiple layers such as 7x7 

convolution, LRN, Averagepooling, fully connected, Softmax, and maxpooling layers. 

But this work carries the implementation for inception module with size 14x14 on 

Xilinx Artix7A200 FPGA. It achieves peak performance with 9.92 GFLOPS at 

100MHz. 
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Chapter 3 : Memory Compression 

3.1. Introduction 

Increasing the model size has become a common trend within the development of 

CNN models.  These models have a huge number of weights that require large memory 

storage. As stated by [30], 32-bit DRAM memory access requires 640pJ, which leads to 

a fast battery drain of the embedded devices. Model compression techniques such as 

weights pruning and weights quantization are improved to be deployed in these CNNs 

models. On the other hand, deep neural networks consist of a dramatically large number 

of connections between the neurons, which makes the model contains millions of 

parameters. Many of these connections are not important, and removing them yields a 

large compression of the model. Weights pruning is a processing operation that 

removes unnecessary connections. Removing these connections degrades the model 

accuracy as the model connections are mutually dependent. Correspondingly, retraining 

the remaining connections is a mandatory step to recover the accuracy loss as in [30]. 

Consequently, model compression is applied for any type of deep learning models with 

little accuracy degradation. 

3.2. Related Work 

Weights of deep learning models are usually represented with 32-bit precision, 

which allocates a large size of memory. Representing these weights in a smaller 

precision can compress the model significantly.  Gong and Yunchao propose a method 

for quantizing the weights during training using a codebook that results in a smaller 

representation for the weights in terms of precision [31]. Moreover, quantizing the 

weights reduces the accuracy directly, and accordingly, retraining is necessary for 

quantization as the same as weights pruning. 

After quantizing the model, many values of the weights are repeated frequently. 

Algorithms such as Huffman coding [32] is utilized to represent the most frequent 

values in smaller bits and the least frequent values in larger bits. Combining pruning, 

quantization, and Huffman coding can obtain larger compression ratios. Applying 

memory compression on neural networks is an open area of research. Many techniques 

are proposed to deal with different models and achieve higher compression ratios.  

In [30], a pruning pipeline is proposed that firstly retrains the model from scratch, 

then performs the weights pruning iteratively, and retrains to compensate for the 

accuracy loss due to the reduction of weights count. However, this model takes a large 

retraining time due to its iterative pruning and training. Moreover, there is no chance 

for the removed connections to be restored when it is found that they are essential. On 

the other hand, [33] proposes a method of pruning and splicing the connections 

simultaneously. By splicing, the removed connections can be restored. Moreover, its 

running time is much shorter than previous work. Moreover, there are other pruning 

methods that dynamically prune the channels of the network based on the input as in 

[34]. For network compression, [35] proposes a method of weights incremental 

quantization. The method operates till all weights become either zeros or power of 2’s. 

As the pruning is applied before quantization, increasing the levels near zero can 
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further improve the compression results. Finally, compression pipelines are proposed in 

[36], which consists of pruning, quantization, and Huffman coding. This helps to 

achieve a large compression ratio. 

3.3. GoogLeNet CNN 

The proposed processor is designed to fit GoogLeNet inception CNN [17]. 

GoogLeNet CNN achieves higher inference accuracy while keeping the weights count 

of ~6.9 Million only, which is a great improvement compared to previous CNNs. 

Moreover, the size of weights is cut down significantly. For many years, it is well-

known that the depth of the network should be increased to get higher accuracies, 

especially the number of convolution layers. This has been a common direction till year 

2014 when Szegedy proposed a new CNN network called GoogLeNet with the concept 

of inception module as shown in Figure 3.1. In GoogLeNet, the depth and width of the 

network have been increased, but the computational budget has been kept constant by 

using the network-in-network concept. This concept uses additional 1x1 convolutional 

layers to remove the network bottlenecks to help in dimension reduction. GoogLeNet 

overcomes legacy CNNs such as AlexNet and VGG by getting the highest accuracy 

with fewer weights. 

GoogLeNet has 57 convolution layers and only one fully connected layer. The 

computation workload is centered in convolution layers with 2.58G MACs. 

Furthermore, the fully connected layer uses a huge number of weights per layer with 

1.024M weights. Moreover, it has fourteen Maxpooling layers to reduce the input 

feature map size. The network has one average pooling layer to reduce the input feature 

map size before the fully connected layer. Finally, the softmax layer is used to get the 

classification results in probabilistic values. Table 3.1 lists the detailed architecture and 

design parameters of GoogLeNet.  

3.4. GoogLeNet Training  

GoogLeNet is built based on Szegedy work [17]. The network structure is built as 

shown in Figure 3.1 with all layer sizes as mentioned in Appendix A. It is trained for 

100 epochs on ImageNet Dataset. ImageNet is one of the most popular datasets which 

have more than 1000 classes with 14 Million training images as mentioned in Appendix 

B. Furthermore, the optimization is done with stochastic gradient descent using a 

learning rate of 0.01, a momentum of 0.9, and a weight decay of 10-4. Every 30 epochs, 

the learning rate is divided by 10. The training accuracy is presented in the results 

section. 

3.5. Compression Model 

GoogLeNet model is compressed with a combined framework of weights pruning 

and quantization. The proposed framework consists of two stages which are selected 

carefully after exploring all related memory compression methods. Firstly, the 

framework applies the weights pruning based on dynamic network surgery work [33]. 

Secondly, the proposed hyper-framework quantizes the network iteratively based on the  
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Table 3.1: GoogLeNet analysis 

GoogLeNet CNN Count 

Convolution layers 57 

Convolution layers in depth 21 

Convolution workload (MACs) 2.58G 

Convolution parameters 5.9M 

Activation layer ReLU 

Maxpooling layers 14 

Average pooling layers 1 

FC layers 1 

FC workload (MACs) 1.024M 

FC parameters 1.024M 

Total workload (MACs) 2.58G 

Total parameters ~6.9M 

 

incremental network quantization (INQ) framework [35]. The proposed framework is 

built without applying Huffman coding to avoid overhead latency of Huffman decoding 

while fetching the weights on the FPGA hardware. Figure 3.2 shows a summarized 

flow chart for the used hyper-framework. Every framework for both weights pruning 

and weights quantization will be discussed clearly in the following two sections: 

3.5.1. Weights Pruning 

Weight pruning is performed using a dynamic network surgery method [33]. 

Unlike the previous methods of alternating pruning and retraining, the dynamic 

network surgery method performs connections pruning and splicing for the network 

iteratively and implements the whole process dynamically. The method is tested before 

on smaller datasets like MNIST and other CNN Models such as LeNet and AlexNet, 

but it is applied for the first time on ImageNet dataset and GoogLeNet CNN model. 

Weights pruning is performed on both, convolution layers and fully connected 

layers into two steps. Firstly, convolution layers are pruned successfully, secondly the 

fully connected layer. Dividing weights pruning operation is important to keep the 

accuracy as it is proved experimentally that performing weights pruning in one step 

causes some degradation on the overall accuracy. Dynamic network surgery method is 

performed by applying pruning and splicing for the network iteratively as shown in 

Figure 3.2. Firstly, activation masks are initialized for all weights to activate all of 

them. The masks are set during the process to one or zero to activate or deactivate 

them, respectively. During the forward-propagation, the masks are element-wise 

multiplied by the weights, and the resulting outputs are used in the network. During 

splicing, the values of the masks change according to weights mean, and standard 

deviation. As a result, they might be reactivated for some weights to recover the 

connections that are found to be important during retraining. This results in making 

accuracy degradation insignificant. By using this method, a lot of model parameters are 

trimmed and the classification accuracy will not be hurt too much. 
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Figure 3.1: GoogLeNet CNN network structure [17] 
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Figure 3.2: The proposed memory compression model 

 

Figure 3.3: Dynamic network surgery pruning method steps [33] 
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3.5.2. Weights Quantization 

After applying weights pruning model, weights quantization is used to shrink the 

precision from 32-bit to 4-bit. After analyzing multiple quantization frameworks, 

Incremental Network Quantization (INQ) framework is used [35]. INQ is a group-wise 

quantization that is performed by partitioning the weights into two groups iteratively. 

Weights partitioning uses a pruning-inspired measure to split the two groups in each 

layer based on their values. The first group is quantized to the target precision, and the 

second group is retrained to compensate for the accuracy loss. Weights are iteratively 

quantized to 4-bit with a value of zero or a number with a power of 2’s. All the weights 

that tend to zero are quantized to zeros to keep the effect of the network pruning. The 

number of quantization steps is increased at the end to avoid the sudden accuracy loss 

at the end of the quantization. The process is simplified in Figure 3.4 where the 

pretrained connections are colored with black, quantized connections are colored with 

green, and retrained connections are colored with blue. Also, operation (1) represents a 

single run of group-wise quantization and retraining. Moreover, operation (2) denotes 

the repeating operation of operation (1). INQ iterates with the assigned steps where 

every step takes some percentage of the weights to quantize it.  

3.6. Compression Results 

In this section, compression results are presented and some experiments on 

compressing GoogLeNet are demonstrated. The model is firstly trained that trained 

with ImageNet dataset based on [17] work, yielding a top-1 accuracy of 71.39%. The 

reference model has ~6.9M weights with 32-bit precision. The training is made as 

discussed in section 3.3. Secondly, weights pruning is made with dynamic network 

surgery model as discussed in section 3.4.1. The model is pruned to have less than 1 

million parameters only to fit in Virtex-7 FPGA without using off-chip DRAMs. 

Consequently, the pruning is made aggressively to reach 7.2x compression ratio with a 

top-5 error rate of 1.4% and top-1 error rate of 2.7% as listed in Table 3.2. 

Finally, incremental network quantization is applied to the pruned model to reduce 

the precision of weights from 32-bit to 4-bit. The removed connections are suppressed 

to zeros, and the quantization is performed iteratively on the remaining weights. At 

first, the accumulated partitions of quantized weights at iterative steps are set as 

reference paper as [0.2, 0.4, 0.6, 0.8, 1], but there is a sudden drop in the classification 

accuracy with 10% in top-1 accuracy.  

 

Figure 3.4: Incremental network quantization steps [35]. (a) pretrained/full-

precision model, (b) updated model after one iteration, (c) Final quantized model 
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Table 3.2: Error rates and compression ratio for different compression models 

Model 
Top-1 error 

rate (%) 

Top-3 error 

rate (%) 

Top-5 error 

rate (%) 

Compression 

ratio 

Reference model 0 0 0 1x 

Pruned model 2.7 1.7 1.4 7.2x 

Hyper model 4.8 3.5 2.6 57.6x 
 

this sudden drop happened because the model has many sparse weights and GoogLeNet 

has large network width with fewer parameters than other CNNs such as AlexNet and 

VGG. Therefore, the last steps starting from 80% quantization are increased to quantize 

and retrain the remaining weights carefully. Consequently, the model is quantized using 

percentages of [0.2, 0.4, 0.6, 0.8, 0.85, 0.9, 0.95, 1], which yields a loss of 4.8% for top-

1 error rate and 2.6% for top-5 error rate as listed in Table 3.2. Quantizing from 32-bit 

to 4-bit leads to a compression ratio of 8x independently. Correspondingly, the hyper 

model of the weights pruning followed by quantization compresses the model with 

57.6x successfully, as shown in the compression chart in Figure 3.5.  

Figure 3.6 shows the weights size reduction for each layer in the GoogLeNet 

model for the plain model, pruned model, and quantized model with colors blue, gray, 

and orange respectively. It is observed from the chart how the pruning firstly reduces 

the number of weights with gray columns. Secondly, quantization makes a reduction 

with 8x for every layer which is shown with the orange columns. Moreover, the fully 

connected layer is the most compressed layer, as it has a huge number of weights that 

tend to zero. On the other hand, 3x3 convolution layers come at the second most 

compressed layers due to the large number of filters they have. Memory reduction for 

every layer in Figure 3.1 is observed from Figure 3.6 by linking its name and location 

from the CNN network to the weights compression chart.  

 

 

Figure 3.5: Compression ratios after pruning and quantization 
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Figure 3.6: Weights compression for GoogLeNet layers   



 

38 
 

Chapter 4 : Architectural Design and Implementation 

This chapter presents the design and implementation for the proposed hardware 

accelerator. The chapter gradually builds up the complete image of the full architecture. 

This is done by presenting each block by showing its main features. The architecture is 

built as a time-sharing processor that performs the computations for layers, batch by 

batch. The processing flow is made depending on the accelerator’s control units and 

CNN structure. The adopted parallelism techniques and loop tiling are firstly presented. 

Secondly, the design of each unit is discussed in this chapter by showing its specs and 

implementation. Some of the units are modified with new improvements. These 

modifications are presented by comparing it with the older version. In addition, the 

important data flow is presented to show how the data is moved and handled between 

each unit. At the end of the chapter, several general modifications are made to improve 

the proposed accelerator and make full use of observed enhancements after memory 

compression results.  

The proposed state-of-art processor consists of 256 memory banks, 224 parallel 

elements for multiplications, weights memory, accumulator unit, Maxpooling unit, 

average pooling unit, fully connected unit, softmax unit, buffers, and nine distributed 

control units. Each unit is carefully designed and implemented in native RTL (Register 

Transfer Logic) (Verilog) to achieve the best performance taking into account the 

power consumption. The top-level diagram of the proposed architecture is shown in 

Figure 4.1.  

 

 

Figure 4.1: Top-level diagram of the proposed architecture 
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4.1. Parallelism  

As the CNNs have a huge number of computations in convolution and fully 

connected layers. Computations parallelism is required to reach a short inference and 

training times. There are different ways of parallelism in CNNs, such as Batch 

parallelism, inter-layer parallelism, inter-feature map parallelism, inter-convolution 

parallelism, and intra-convolution parallelism, as stated by [14]. Every hardware 

accelerator adopts one or more of these types to speed up the processing. In the 

proposed accelerator, 24 kernels of 3x3 convolution layers, nine kernels of 5x5 

convolution layers, or four kernels of 7x7 convolution layers, are processed in parallel 

as shown in Figure 4.2 and listed in Table 4.1. The following parallelizing techniques 

are adopted: 

 

 Inter-layer Parallelism 

In inter-layer parallelism, the accelerator has a feed-forward hierarchical structure 

that can process a succession of data-dependent layers. They are executed in a pipelined 

fashion by executing a layer while preparing the next layer data to be processed. In this 

way, the accelerator utilized area is decreased significantly, which makes it easy to fit it 

on FPGAs or develop a low foot-print chip. 

 

 Intra-Feature Map Parallelism  

In intra-feature map parallelism, a group of output feature map pixels of a single 

output feature map plane are processed in parallel, which reduces the required 

processing time by acceleration factor x. This depends on output feature map and 

kernel sizes. 

 

 Intra-convolution Parallelism 

The last adopted parallelism is the intra-convolution, in which the processing of 2D 

convolution layers are implemented in a pipelined/parallel fashion.  

Table 4.1: Required #PEs per kernel 

Kernel size #PEs/kernel 
Convolution 

opcode 

7x7 convolution 49 00 

3x3 convolution 9 01 

5x5 convolution 25 10 

1x1 convolution 1 11 
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Figure 4.2: Different applied kernel sizes on PEs 

There is a trade-off in the selection of the suitable number of parallel elements 

(PEs) between the acceleration factor and the accelerator size. Firstly, an analysis of 

GoogLeNet CNN layers is made to determine the suitable PEs count. GoogLeNet has 

four different convolution kernel sizes, which are 1x1, 3x3, 5x5 and, 7x7 kernels. The 

convolution opcode is represented by two bits to select the convolution type in different 

blocks by the control unit as listed in Table 4.1. In addition, the number of PEs is 

chosen to be 224 PEs that processes 224 kernels of 1x1conv 

4.2. Loop Tiling  

The capacity of buffers in FPGAs is not large enough to store all weights and 

intermediate feature maps (FMs) of all CNN layers. Consequently, loop-tiling is used to 

fetch the upcoming parts of feature maps in addition to kernel weights while processing 

the currently loaded ones. Feature maps and kernels of convolution layers are batched 

in a way that kernel weights are loaded only once, and FM tile is loaded once per batch. 

This factorization is employed to increase the data reuse and computational throughput 

as well.  

Convolution layer pseudo-code for one layer is shown in Figure 4.3, which consists 

of nested for-loops. The first two for-loop iterate over the output feature map rows and 
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columns. The U for-loop iterates over the output channels. Also, the for-loops of V and 

iterates over input channels. Finally, the last two for-loops iterate over kernel rows and 

columns.  

Some loops are selected to be unrolled to speed up the processing and parallelize 

the processing of certain iterations on the hardware. The number of parallelized 

iterations is called the unroll factor. Selecting suitable unroll factors might lead to huge 

hardware utilization. For the proposed processor, the for-loops of rows and columns are 

completely unrolled. Moreover, the for-loops of feature map rows and columns are tiled 

with a size of feature map row. The tile is reused by shifting the rows up by the stride 

value and other rows are reused again. Finally, the output channel is parallelized by 

processing multiple kernels and writing out multiple output pixels in parallel. In 

addition, Figure 4.4 shows an example of input feature map (IFMAP) tile to PEs 

fetching for 5x5 convolution. Parallel FIFOs reads a tile of five rows of IFMAP to start 

5x5 convolution on PE cores. They are reused for multiple iterations, then FIFOs shifts 

up all the rows and read a new row, then repeats the operation again and so on. 

 

Figure 4.3: Convolution layer pseudo code 

 

Figure 4.4: IFMAP tile to PEs – 5x5 convolution example 
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4.3. Memory Organization  

Memory organization is one of the main challenges during accelerator design. As 

discussed before, memory access requires careful handling and planning. The final 

memory organization is set after analyzing several options and selecting the best 

implementation. Firstly, the limited number of access ports of memory is overcome by 

dividing the memory into 256 banks to read/write in parallel. Secondly, adding multiple 

buffers resolves the stalls due to memory dependencies and fetching cycles. While the 

proposed accelerator is built in a pipelined fashion, separate memories for weights and 

temporary data are used. The proposed architecture consists of multiple hierarchy levels 

of storage as follows: 

 It consists of 256 Memory banks to save the partial summations during 

computations. They are implemented in FPGA BRAMs.   

 Weights memory saves all weights of the CNN model. It utilizes 3Mb and are 

implemented in FPGA BRAMs.  

 Weights Masks memory saves all weight masks. If the weight is a non-zero 

value, its value is fetched from weights memory. 

 Weights buffer fetches the weights from weights memory and prepare it for 

parallel fetching to processing unit. 

 IFMAPs buffer loads the feature maps from Memory banks and prepare them 

for FIFOs.  

 Seven parallel FIFOs load complete seven rows from the input buffer. They 

store it while convoluting them with filter kernels.  

 The internal register in each PE saves the loaded weight till the processing unit 

(PU) finishes.   

 

This mechanism results in high data reuse because it enables global fetching for all 

loaded kernels with the same loaded feature map part on FIFOs. In addition, it empties 

the input buffer to be able to load more IFMAPs. This mechanism is designed by 

considering the latency of buffer loading to illuminate any stalls during convolution. As 

it loads more values than the needed next row of IFMAP while convoluting the loaded 

rows on FIFOs except 7x7 convolution as it has a stride with two, which shifts out two 

rows every shifting up. Moreover, memory bottleneck is one of the two main 

challenges that face the design of hardware accelerators. This is resolved by using 256 

memory banks, and the processing unit became able to accumulate the partial sums of 

all needed convolution sizes without the usage of intermediate buffers.   

4.4. Weights Decompressing 

Weights memory saves the weights with 12-bit word length. After performing 

quantization on all weights, the weight’s word length became 4-bit, which makes the 

memory be able to store 3x weights more than before. The weights buffer prepares the 

weights for parallel shifting to the processing unit based on current convolution layer 

sizes. After applying weights pruning on GoogLeNet model, the non-zero weights are 

reduced from ~6.9 million to ~0.96 million weights. This reduction makes it possible to 

use only FPGA BRAMs for weights storage, but memory decompression becomes a 

mandatory step to decompress 0.96M to 6.9M during computations. Weights masks are 
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Figure 4.5: Masks map and weights decompressing 

stored in the memory and they are checked each time to add a zero or non-zero value. 

This operation is showed clearly in Figure 4.5 by a chart of the process. The weights 

fetching scenario goes as follows, the weight control unit (WCU) checks the next bit 

mask. If the bit is 0, it writes a zero in the weights buffer. If it is equal to 1, the WCU 

reads the weight value from the weights memory and writes it into the weights buffer. 

The design is verified against any stalls because of weights fetching delays as the next 

weights become ready while the processing unit is running the currently loaded 

weights. 

4.5. Processing Unit 

The processing unit (PU) consists of 224 parallel elements, summation unit, bias 

unit and PU control unit. The parallel element consists of one multiplier in addition to 

two multiplexers as shown in Figure 4.6. The first multiplexer for weight input that 

selects between the stored weight or a new value. The second MUX selects between 

different FIFO fetched elements locations based on convolution kernel sizes, such as 

1x1conv, 3x3conv, 5x5conv, and 7x7conv. The multiplier is built with simply shifting 

right block as all input weights are quantized to multiple of 2’s number, less than one.  

The summation unit is built of hierarchal adders to reduce the number of adders for 

different convolution sizes. This is resolved by using 24 adders with 9-inputs only 

instead of many adders with different input sizes. 

The data flow while performing convolution computations is made with the 

proposed mechanism to increase the data reuse. The input feature map is stored in the 

input buffer, which in turn fetches the parallel FIFOs for every convolution patch. The 

parallel FIFOs slide the convolution subregion to the PE cores every cycle till reaching 

the end of row. Figure 4.7 shows and an example of 7x7 convolution where the parallel 

FIFOs are fully used. As discussed before, the 7x7 convolution is accelerated by 4x 

times by running 4 kernels at the same time. Figure 4.7 (a) shows the first write for 4 

output feature maps. It is the first partial sum to be written which is fetched and added 
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with the new partial value. Secondly, Figure 4.7 (b) is the second write after shifting by 

stride value with 2. The third case is in Figure 4.7 (c) where the convolution for the 

currently loaded rows is finished, so the parallel FIFOs shift up the old two rows by 

newer two rows, then load the last two rows. After shifting up, the FIFOs work usually 

as shown in Figure 4.7 (a) and (b) by writing the partial sums to output feature maps, 

but in the next rows. 

4.6. Control Units 

The controlling of the system is made based on eight distributed-hierarchal control 

units (CUs) in addition to the main CU to simplify the controlling for each unit. Every 

CU is controlled by the main CU. On the other hand, every unit’s CU controls all unit’s 

related signals. Every CU is designed with a finite state machine that acts based on the 

stored values in their memories. This makes it easier to adopt and run other CNNs by 

changing the CU RAM values. The CUs are as follows: 

 

 Main CU 

 Processing unit CU 

 Partial sums accumulation CU 

 IFMAP fetching CU 

 Fully connected CU 

 Maxpooling CU 

 Average pooling CU 

 Softmax CU 

 

 

Figure 4.6: Parallel Element structure 
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Figure 4.7: 7x7 Convolution example with parallel FIFOs and PE cores 

4.7. Fully Connected Unit 

As discussed before, FC layers are memory-centric. They usually contain millions 

of weights, and each weight is used only once. Since each weight in FC layers is used 

in one inference process only, it leaves no chance for reuse. The limited bandwidth 

degrades the performance significantly as loading those weights might take a long time, 

so it requires a careful design for this unit. 

Firstly, a fast analysis of FC is presented. (4.1a) and (4.1b) represent a pseudo code 

for the FC layer.  The output of average pooling is 1024 activations, which is the N 

value. It is stored in an intermediate buffer as input activations for FC, then it is fetched 

to PU. The network is trained on the ImageNet dataset with 1000 classes, so the M is 

equal 1000, which is the FC output.  

 



 

46 
 

𝑜𝑢𝑡𝑚 = ∑ ∑𝑊𝑚𝑛𝑥𝐴𝑛 + 𝐵𝑚⁡

𝑁−1

𝑛=0

𝑀−1

𝑚=0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.1𝑎) 

 

for (m=0; m <M; m++) { 

for (n=0; n < N; j++) { 

𝑜𝑢𝑡𝑚⁡+= ⁡⁡𝑊𝑚𝑛⁡𝑥⁡𝐴𝑛⁡}  
       𝑜𝑢𝑡𝑚+=⁡𝐵𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.1𝑏) 

4.7.1. FC Memory Management. 

Fully connected processing requires 256 weights every cycle in the proposed 

design, which is not valid if they are fetched from weights memory directly. After 

performing memory compression as discussed in memory compression chapter, a lot of 

weights are suppressed to zero after weights pruning specially in the fully connected 

layer. An analysis is made on fully connected weights to discover their weights values. 

It is found that the number of non-zero weights per 256-tile does not exceed 32 

weights. This make it easy to decompress 256 weights per cycle while knowing that 

there are 32 non-zero weights by maximum. The decompression unit is implemented 

and integrated with weights unit to use it while FC processing without any memory 

stalls. Moreover, the input activations are fetched tile by tile with 256 tile size to PEs 

and used for 1000 cycles before fetching the next tile. This leads to high data reuse for 

activations instead of read/write them every cycle.  

4.7.2. FC Computation Management 

The parallel elements are used for FC multiplications with extra 32 shifting blocks 

to make full use of the processing unit. The acceleration of FC is made for the inner 

loop by processing a tile of 256 weight each cycle. Therefore, the inner loop is 

processed in 4 cycles instead of 1024. Consequently, the fully connected layer is 

accelerated by 256x than a single MAC unit. The tilling diagram is shown in Figure 

4.8. The diagram illustrates the process of adopted FC computation. The flow is as 

follows: 

1. Every cycle, new 256 weights are fetched to PU. 

2. An input activation tile is updated every 1000 cycles.  

3. The multiplication is performed and forwarded to a parallel adder with 256 

inputs. Finally, the adder’s output is saved to the output register file. 

4. After the first inner loop of pseudo code in (1b) is completed, the output of 

every summation is added to its corresponding value in the output register 

file, and so on till finishing all tiles. 

4.8. Maxpooling Unit  

Maxpooling is used between convolution layers to reduce the spatial size of feature 

maps. There are 14 Maxpooling layers in GoogLeNet. Maxpooling unit works on four 

feature maps in parallel. Every unit consists of an input buffer, output buffer, and 

comparators.  
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Figure 4.8: Fully Connected layer tiling diagram 

At first, the data flow for Maxpooling worked by fetching a complete three rows 

from every input feature map into the input buffer, then start sliding the subregion into 

a 9-input comparator to get the final output in the output buffer. This way makes the 

input buffer have a larger size in addition being busy for long time. Moreover, building 

a 9-input comparator is an extra cost for utilized area.  

The second data flow reads every input feature, row by row. This makes it easy to 

build a smaller input buffer and start working immediately with input data. Also, the 

comparator becomes smaller with 3-input only. The extra overhead is handling the 

output buffer data as the written result every cycle is kept till completing all 

comparisons. Firstly, the first comparator output is written as shown in case (a) of 

Figure 4.9. Secondly, the next output of the second row is compared with previously 

written value, then write the max as shown in the case (b) of Figure 4.9. Finally, the 

next output of third row is compared with the written one while writing the max as 

shown in case (c) of Figure 4.9. The final result becomes ready to be released and 

written to memory banks again. Figure 4.9 case (d) is an example of sliding 

Maxpooling subregion and writing a new output pixel to the output buffer. It is worth 

mentioning that, case (a) always followed by case (d) while processing. As case (b) for 

example comes while reading the second row of the input feature map. This solution is 

more optimum, so it is used for four parallel Maxpooling blocks. 
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Figure 4.9: Maxpooling data flow. (a) First part of comparator output, (b) Second 

part of comparator output, (c) Third part of comparator output, and (d) first part 

of second pixel comparator output 
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4.9. Local Response Normalization Unit  

Local response normalization (LRN) is used to normalize the distribution of the 

input activations by normalizing over local input regions. It depends on the activations 

of adjacent kernels at the same layer [41]. This is made instead of computing mean and 

deviation as performed by the batch normalization (BN) layer. LRN does not have any 

learnable parameters and all computations are made between input activations as shown 

in (4.2). The parameters (𝛼, β, k, n) are set firstly γ =0.0001, k=1,⁡β =0.75, and n=5. 

The parameter n represents the number of input activations 𝑎𝑥,𝑦
𝑗
⁡that is squared and 

summed to compute the normalized activation. After investigating the LRN equation, it 

needs a lot of computations to generate normalized activations. Squaring, division, and 

powering blocks in addition to intermediate registers are needed, which takes up a large 

area and power consumption to compute it.  

Instead of building these large blocks, a software experiment is done on the 

GoogLeNet model using the ImageNet testing set to get the average difference before 

and after the LRN layer. This average difference is computed across input channels and 

testing images. The average values are ranging from 0 to 0.006, which are added 

randomly across input channels instead of making all this computation. The overall 

accuracy does not affect as it is well known that the CNNs themselves add up noise 

through different layers. This is proven experimentally by replacing LRN with a 

randomizer using batches of testing images, every batch contains 128 images. The 

overall accuracy is ranging from 0.02:-0.02, or does not change in several testing 

batches. This is done by using the saved random values from the previous software 

experiment.    

 𝑏𝑥,𝑦
𝑖 =

𝑎𝑥,𝑦
𝑖

(𝑘+𝛼⁡.⁡⁡ ∑ (𝑎𝑥,𝑦
𝑗

)2
min⁡(𝑁−1,𝑖+

𝑛
2
)

𝑗=max⁡(0,𝑖−
𝑛
2
)

)β
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.2) 

4.10. Average Pooling Unit  

The average pooling layer is added before the fully connected layer to reduce the 

input feature map size to the fully connected layer to 1x1024 instead of 7x7x1024. It 

simply adds up all pixels of every 7x7 feature map and divides it by 49. The unit works 

on eight feature maps in parallel and stores the output in an intermediate buffer for the 

fully connected layer. 

4.11. Softmax Unit 

Softmax unit is used to convert the output of a fully connected layer to probability 

distributed values [40]. The unit consists of ten parallel CORDIC cores to compute the 

exponential function. The unit stores exponential outputs again in the buffer while 

computing their summation. After computing the summation of 1000 exponentials, 

every exponential is divided by the summation and stored in the final output buffer. As 

shown in (4.3), N is equal to 1000 as the number of classes is 1000 classes. The block 

diagram is shown in Figure 4.10.  

𝑓(𝑖) = ∑
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑘

𝑁
𝑖=0                                                 (4.3) 
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Figure 4.10: Softmax unit schematic 

4.12. Processor Modifications   

The DSP resources of the FPGA are firstly used to implement PEs multipliers, 

which increased the power consumption while processing convolution and fully 

connected layers. After memory compression and quantization, the weights are 

quantized to 4-bit only, and they become one of a few distinct values. As a result, the 

multiplication is made simply by shifting after decoding these weights based on the 

decoding table in Table 4.2. This modification lets the processor be DSP-free, and the 

power consumption of multipliers is saved as the conventional multipliers became a 

simple rewiring instead of large conventional adders.  

Furthermore, convolution kernels with equal size are processed at the same time, 

which makes some of the parallel cores are unutilized during layers computations. This 

is resolved by enabling the processing of multiple kernel sizes in parallel, which 

increases the utilization of the cores. Finally, the time overhead for writing and reading 

all padding pixels is skipped to save these cycles. Consequently, nearly 240,000 cycles 

are saved for writing and thousands of cycles reading. 
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Table 4.2: Weights decoding table 

Weight value Decoded code Shifting Sign 

0.5 0001 >>1 +ve 

0.25 0010 >>2 +ve 

0.125 0011 >>3 +ve 

0.0625 0100 >>4 +ve 

0.03125 0101 >>5 +ve 

0.015625 0110 >>6 +ve 

0.0078125 0111 >>7 +ve 

-0.5 1001 >>1 -ve 

-0.25 1010 >>2 -ve 

-0.125 1011 >>3 -ve 

-0.0625 1100 >>4 -ve 

-0.03125 1101 >>5 -ve 

-0.015625 1110 >>6 -ve 

-0.0078125; 1111 >>7 -ve 
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Chapter 5 : Discussion and Results 

In this chapter, the experiment of selecting the fixed-point precision is presented, 

and the theoretical throughput is computed. In addition, the resource utilization of the 

proposed processor is reported, and power consumption report by Vivado is presented. 

Then, a comparison is made between Intel Core-i7 CPU, NVidia GTX 1080Ti GPU, 

and the proposed accelerator by showing power consumption improvement. In addition, 

a comparison between the proposed work and popular AI embedded accelerators such 

as NVidia Jetson Nano and Intel Movidius is presented. Finally, a comparison between 

the existing GoogLeNet implementations and the proposed accelerator is provided. 

5.1. Selecting Fixed-point Precision 

The effect of word length is tiny on the accuracy of convolutional neural networks 

as stated in the literature [41-42]. 12-bit fixed-point arithmetic operators are used 

instead of 32-bit word-length to reduce storage size and power consumption during 

operations. Several experiments are held to select the suitable arithmetic operator width 

while keeping the accuracy loss at least. The experiments are done on an epoch of 1024 

images from the ImageNet dataset to see the effect of sweeping the word length. The 

model is implemented in software by providing the maximum and minimum values that 

are represented by the accelerator, and every output activation of each layer is 

suppressed to zero or truncated to this word length. The first experiment is done to 

select the integer part width. Width of 4-bit is selected for integer part to be able to 

represent the maximum integer value, which keeps the accuracy without any loss. The 

second experiment is done for the fractional part while fixing the integer part at 4-bit. 

The second experiment loss is depending on the width of the fractional part. 

Figure 5.1 shows the accuracy loss for top-1, top-3, and top-5 losses when using 

16-bit to 9-bit fixed-points. The number of bits represents the whole word length. For 

example, at 14-bit word length, the fractional part is 10-bit. The usage of 8-bit word 

length gave the worst accuracy with a loss of nearly 30%. By increasing the length 

gradually, the loss started to decrease to zero accuracy loss at 15-16 bits. It is observed 

that using 12-bit width with giving 8-bit to the fractional part gives an accuracy loss 

with 0.01 while keeping it multiple of 4’s. The word length reduction experiment is 

done on the inference phase only to use it by the accelerator, so while training, all 

values are represented by full precision. 

5.2. Theoretical Throughput 

On the other hand, theoretical throughput is calculated to compare it with the actual 

throughput. Theoretical throughput is calculated as follows: 

 

#convolution cycles/frame= 

 ∑
kernel⁡size

#𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙⁡𝑘𝑒𝑟𝑛𝑒𝑙𝑠
⁡𝑥⁡𝑂𝐹𝑀𝐴𝑃⁡𝑆𝑖𝑧𝑒⁡𝑥⁡#𝐼𝐹𝑀𝑎𝑝𝑠𝐿

𝑙=1                        (5.1) 
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Figure 5.1: Accuracy loss versus fixed point precision 

 (5.1) calculates the needed number of cycles for all 57 GoogLeNet convolution 

layers. Also, this count is added to the needed cycles for Maxpooling, average pooling, 

fully connected, and Softmax layers processing. The overall theoretical throughput is 

30.3fps at a frequency of 200MHz. 

5.3. Design Testing 

Design testing is an important step to validate the design functionality. Firstly, 

testing for each independent unit are done by testing the unit with critical cases to 

resolve any issue. The testing for each unit is done interactively to trace every signal 

and try different inputs. The integration is performed gradually between the design 

units as shown in Appendix C for the hardware accelerator units’ organization.  Also, 

interactive testing is done in every step. After integrating all units, a top-level test 

bench is used to test and validate the proposed hardware accelerator. Testing images are 

converted earlier to binary RGB format and written in separate files using Matlab. The 

processing is enabled by the “Start_CNN” signal after the “reset” signal goes down as 

shown in Figure 5.2. The accelerator keeps running till finishing all layers, which is 

identified by getting “ProcessorDone” signal high.  Softmax layer is computed using 

softmax unit, which runs till getting the highest class probability in addition to its class 

number. “ClassPrediction” and “ClassNumber” become available after getting 

“SoftMaxDone” signal high as shown in Figure 5.3. “ClassPrediction” is 12-bit fixed 

point variable. As the class prediction is a probabilistic value, 1 bit is set for sign, 1 bit 

for integer part, and 10 bits are set as fractional part. Moreover, “ClassNumber” is a 10-

bit integer variable that represent the class number from 0 to 999. Finally, the class 

number is mapped to its class name on Matlab. Appendix D shows an example for 

Image classification on the proposed hardware accelerator and the result is compared 

with the software result on python model. 



 

54 
 

 

Figure 5.2: Top-level signals at the start of processing  

 

Figure 5.3: Top-level signals at the end of processing 

5.4. Area Utilization and Power Consumption 

The proposed accelerator is implemented in native RTL (Verilog) on Virtex-7 

FPGA. Xilinx Virtex-7 FPGA VC709 is a popular FPGA kit which is widely used in 

high performance applications as presented in Appendix E. It is chosen due to several 

reasons. Firstly, it has a huge number of logic cells of 693,120 cells. Secondly, memory 

resources are important factor for selecting it with 52,920 Kb. There are 3600 DSP 

slices, but they do not be used after converting all conventional multiplications into 

shifting operations. There are other FPGA boards that have more resources, but with 

higher price which are not available.  

Table 5.1 shows the system utilization on the FPGA. Thanks to weights 

quantization and compression, the accelerator is built with zero DSP units and on-chip 

BRAMs only. Power consumption is one of the main factors that qualify digital 

designs. Also, the design flavor for the proposed architecture is getting the best power 

consumption. This flavor is followed in any trade-off during the implementation. All 

optimization and approximation techniques invoked during this work have a huge 

impact on the final power consumption.  

Table 5.1: The proposed hardware accelerator utilization on Virtex-7 FPGA 

Resource DSP BRAM LUT FF 

Used 0 1134 407290 85927 

Available 3600 1470 433200 866400 

Utilization 0% 77% 94% 10% 
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Full simulation is made on Vivado to generate a SAIF file, which is used to report 

an accurate power consumption without any estimations from the tool. SAIF stands for 

Switching Activity Interchange Format. The SAIF file saves information about toggle 

rates and static probability. After generating the SAIF file, it is imported in Vivado 

after synthesis to be used for power reporting. The report is generated under default 

conditions. As shown in Figure 5.4, the total on-chip power is nearly 3.9W with 0.45W 

static power consumption and 3.47W dynamic power consumption. 

5.5. Comparisons 

The proposed accelerator works on a maximum frequency of 200MHz. A 

comparison is made between Intel Core-i7 CPU, NVidia GTX 1080Ti GPU, and the 

proposed accelerator. The comparison is made in terms of the operating frequency, 

process technology, power consumption, performance (fps), and power efficiency, as 

shown in Table 5.2. The results show that the proposed accelerator provides the best 

performance in terms of the number of frames per Watt. The normalized power 

efficiency is 6.4 frames/Watt for the proposed accelerator, 0.81 frames/Watt for NVidia 

GTX 1080Ti GPU, and 0.128 frames/Watt for Intel Core-i7. It is worth mentioning that 

the used FPGA is fabricated with 28nm technology, which consumes a power more 

than 14nm and 22nm technologies. The proposed accelerator has 49.5x improvement 

over Intel Core-i7 and 7.8x over NVidia GTX 1080Ti. 

 

 

 

Figure 5.4: Power report by Vivado using a generated SAIF file 

Table 5.2: Comparison with other platforms 

 
Intel 

Core-i7 

NVidia GTX 

1080Ti 
This work 

Clock 3.1 GHz 1.5 GHz 200 MHz 

Technology 22nm 16nm 28nm 

Power (W) 15 106 3.92 

Performance (fps/s) 1.92 85.83 25.1 

Performance(1) (fps/s) 0.124 11.45 25.1 

Power Efficiency (fps/W) 0.128 0.81 6.4 
(1) Normalized performance to 200 MHz frequency  
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The developers have started to use embedded AI accelerators for deploying their 

deep learning applications. NVidia Jetson Nano and Intel Movidius NCS are from these 

popular accelerators. Table 5.3 shows the comparison between the proposed hardware 

accelerator, NVidia Jetson Nano, and Intel Movidius. Firstly, Jetson Nano is used to run 

GoogLeNet using two frameworks: Caffe and TensorRT at a frequency of 920MHz 

[49]. Caffe framework is widely used in deep learning development, while TensorRT 

framework is developed by NVidia to accelerate the inference process. Secondly, Intel 

Movidius NCS (Neural Compute Stick) runs GoogLeNet using Caffe framework at a 

frequency of 933MHz [50]. All inference experiments are done with batch size 1. The 

table shows that the proposed hardware accelerator overcomes Jetson Nano and Intel 

Movidius while running with Caffe framework, but Jetson has a better performance 

using TensorRT framework. The power consumption is 5W for Jetson and 3.92W for 

the proposed design. Unfortunately, Intel Movidius power consumption for GoogLeNet 

is not mentioned in the experiment. The power efficiency is the best for Jetson Nano 

using TensorRT framework with 12 frames/Watt, but the proposed implementation is 

better while using Caffe framework with 6.4 frames/Watt. 

Another comparison is made between the proposed accelerator and GoogLeNet 

hardware accelerators in the literature, as shown in Table 5.4. The first implementation 

is Zhao’s hardware accelerator, which is an ASIC chip built with 65nm technology. The 

second implementation is Gokhale’s FPGA implementation on Zynq XC7Z045. The 

third implementation is CoNNA_C3 on Zynq ZCU102. The comparison is made 

between the implementations in terms of the operating frequency, fixed-point precision, 

process technology, power consumption, performance, and power efficiency, as shown 

in Table 5.4. The results show that the proposed accelerator provides the best 

performance in terms of the number of frames per Watt. In addition, it overcomes 

Gokhale’s implementation in terms of peak performance and power consumption. 

Gokhale’s implementation computes the number of frames per second for convolution 

layers only, so it processes 27.2fps compared to 25.1fps for the proposed 

implementation. In addition, Zhao’s implementation overcomes the proposed 

accelerator in terms of GOP/s as it works on 650MHz. Also, it is an ASIC 

implementation, so the power consumption is expected to be lower than the FPGA 

implementations. Also, the proposed hardware accelerators overcomes the performance 

of CoNNA_C3. The power consumption is not mentioned for CoNNA_C3 

implementation, but it’s expected to be higher than the proposed implementation as it 

uses offline DRAMs and ARM processor with Zynq FPGA. While the other 

Table 5.3: Comparison with popular embedded AI accelerators 

 
NVidia 

Jetson 

Nano [51] 

NVidia 

Jetson 

Nano [51] 

Intel 

Movidius 

NCS [52] 

This work 

Framework Caffe TensorRT Caffe - 

Frequency 920MHz 920MHz 933MHz 200MHz 

Power (W) 5 5 - 3.92 

Performance (fps/s) 19 60 13.66 25.1 

Performance(1) (fps/s) 4.13 13.1 2.93 25.1 

Power Efficiency (fps/W) 3.8 12 - 6.4 
(1) Normalized performance to 200 MHz frequency  
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implementations use a plain GoogLeNet CNN model, the proposed implementation 

uses a compressed CNN model. This is one of the design advantages which improves 

the power consumption as discussed earlier. 

The data access patterns variations in CNNs make it difficult for custom 

architectures to get higher utilization efficiency while processing all CNN layers. 

Consequently, utilization efficiency is stated as the ratio of the actual number of 

operations processed to the theoretical maximum number of the processed operations. 

This is translated to the ratio of actual fps to the theoretical fps for a given CNN. Table 

5.4 shows that the utilization efficiency is 83% for Zhao’s work, 91% for Gokhale’s 

work, and 89% for this work. Also, the work of Zhao and Gokhale computes the 

number of frames per second for convolution layer acceleration only, which is degraded 

when FC and average pooling layers are added. 

Table 5.4: Comparison with other GoogLeNet hardware accelerators 

 Zhao [19] Gokhale [18] 
CoNNA_C3 

[53] 
This Work 

Platform 
ASIC 

TSMC 

Zynq 

XC7Z045 

Zynq 

ZCU102 

Virtex-7 

VC709 

Max Clock (MHz) 650 250 100 200 

Precision 16-bit fixed 16-bit fixed 16-bit fixed 12-bit fixed 

Process Technology  65nm 28nm 16nm 28nm 

Power 859mW 9.48W - 3.92W 

Peak Performance (GOP/s) 242.4 116.5 17.325 129.2 

Power Efficiency (GOP/W) 282 12.3 - 32.7 

Power Efficiency (fps/W) - 2.87 - 6.4 

Performance(1) (fps) 23.6 27.2 4.95 25.1 

Utilization efficiency   83% 91% - 89% 
(1) Normalized performance to 200 MHz frequency  
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Conclusion 

Contributions 

In this thesis, a power-efficient convolutional neural networks accelerator based on 

GoogLeNet CNN was proposed. Weights pruning and quantization were applied, which 

reduced the memory size by 57.6x with a top-5 accuracy loss of 2.6%. As a result, only 

FPGA BRAMs were used for weights and activations storage without using offline 

DRAMs. The compression model was explained in details, and the reduction for every 

GoogLeNet layer was presented. In addition, this accelerator used zero DSP units as it 

replaced all multiplications by shifting operations. 

The hardware accelerator was built based on a time-sharing/pipelined architecture 

that could process the CNN model layer by layer. The architecture proposed a new data 

fetching mechanism that increased data reuse. Moreover, it used only 224 PEs. All 

accelerator units were implemented in native RTL (Verilog), and all control units could 

be reconfigured to process other CNNs successfully. Several optimization and 

approximation techniques were adopted to improve the design with a little loss in the 

accuracy. 

Moreover, several improvements were applied lately, such as increasing cores 

utilization or skip padding cycles. A word length of 12-bit was used after performing 

several experiments to select a suitable word length. The proposed hardware accelerator 

classified 25.1 fps for GoogLeNet inference using 3.92W with a power-efficiency 

improvement more than the previous FPGA implementations for GoogLeNet. It 

provided 49.5x power-efficiency improvement over Intel Core-i7 and 7.8x over NVidia 

GTX 1080Ti. On the other hand, the proposed design processed the fully connected 

layer with 256x more than a single MAC unit. The proposed hardware accelerator 

achieved a top-5 classification accuracy of 91%, which was significantly higher than 

comparable architectures. 

Future Work 

Regarding future work, the control units in the proposed hardware accelerator can 

be reconfigured to process other CNN models such as ResNet or SqueezeNet. Also, the 

memory compression framework can be applied on the new CNN software model to get 

the proposed design benefits.  In addition, the ASIC implementation can be made to get 

better performance in terms of power consumption, processing speed, and utilized area. 
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Appendix A: GoogLeNet Layer Details  

Table A.1: GoogLeNet layer details [17] 
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Appendix B: ImageNet Dataset  

Existence of huge datasets plays a vital role in the development of efficient 

computer vision algorithms using deep neural networks. In the early stages of artificial 

intelligence revolution, the availability of datasets have delayed the evolution of many 

algorithms till starting of internet revolution and Big Data. 

ImageNet plays this role effectively which provided an open access dataset for the 

researchers and developers to develop more efficient applications. It's a huge database 

for over 14 million images. It has been originally created for computer vision research. 

However, it is used later in both industrial and research purposes. Moreover, it has been 

the first large scale image dataset over the world. Images are organized and labelled in 

main classes as shown in Figure B.1. Images are organized into 27 high-level categories 

with 21,841 subcategories. So that, ImageNet is a well-organized database that is used 

to benchmark machine learning models and algorithms. 

The proposed hardware accelerator is designed to process GoogLeNet CNN. 

GoogLeNet CNN is firstly trained using ImageNet Dataset for 1000 standard classes. 

Both training and validation dataset of ImageNet have been firstly used. Finally, testing 

dataset is used to evaluate the model inference accuracy. 

 

 

Figure B.1: A snapshot for ImageNet Dataset 
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Appendix C: Project Organization  

This appendix shows the project organization for Verilog files on Vivado. It gives 

a closer view for the proposed hardware accelerator blocks arrangement. 

 

 

Figure C.1: A snapshot for top-level project organization in Vivado 
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Figure C.2: A snapshot for processing unit organization in Vivado. 

 

Figure C.3: A snapshot for maxpooling unit organization in Vivado 
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Figure C.4: A snapshot for auxiliary connection organization in Vivado 
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The following snapshot shows the first instantiations for parallel memory banks. 

The total number of memory banks is 256 as discussed in chapter 4. 

 

 

Figure C.5: A snapshot for the first part of memory Banks organization in Vivado. 
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The following snapshot shows the first instantiations for parallel PE cores. The 

total number of PE is 224 in addition to extra 32 PE cores for fully connected operation 

only as discussed in chapter 4. 

 

 

Figure C.6: A snapshot for the first part of PE Cores organization on Vivado. 
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Appendix D: Image Classification Example on The 

Proposed Accelerator  

In this appendix an example for Image classification on the proposed hardware 

accelerator is presented, and the result is compared with the software result on python 

model. The experiment is made on an image for endian elephant as shown in Figure 

D.1. This image is chosen as it's from the hardest classification photos on both 

hardware and software model. The output prediction and class number for the proposed 

hardware accelerator are shown in Figure D.2 after mapping the output class number on 

Matlab. It's noted that the class prediction is 0.8505 on the hardware while its 

calculated 0.9015 by the software model. This is acceptable as long as the predicted 

class is correct "Indian Elephant" for the software and hardware models. The image is 

tested on the software model and the result is shown in Figure D.4. Also, the predicted 

class is shown in the classes list of ImageNet dataset as in Figure D.5. 

 

 

Figure D.1: Input Image sample "Endian Elephant" 

 

Figure D.2: Testing the image on The proposed Accelerator. 

 

Figure D.3: Mapping class number of the hardware result to its name on Matlab. 
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Figure D.4: Testing the same image on the software model (python model). 

 

Figure D.5: the Classes location in the ImageNet Dataset. 
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Appendix E: Virtex-7 FPGA  

The Virtex-7 FPGA VC709 Connectivity Kit is a 40Gb/s platform for high-

bandwidth and high-performance applications that includes all of the essential 

hardware, tools, and IP for efficient development. Figure E.1 shows Viretex-7 kit, while 

Table E.1 shows its available resources. 

 

key features: 
 Clocking: 

- Fixed Oscillator with differential 200MHz output used as the “system” clock 

for the FPGA.  

- Fixed Oscillator with differential 233.33MHz output used as the "memory" 

clock. 

 Power 

- AC Power adapter (12V) or ATX 

 Memory 

- DDR3 SODIMM (qty 2) - each with 4GB up to 933MHz / 1866Mbps 

- BPI Parallel NOR Flash: 32MB (256Mb) 

 Control & I/O 

- User Push Buttons (x5) 

- User DIP Switch (8-position) 

- User LEDs (x8) 

 Configuration 
- Onboard JTAG configuration circuitry to enable configuration over USB 

- BPI Parallel NOR Flash: 32MB (256Mb) 

-  

 

 

 

Figure E.1: Viretex-7 FPGA kit 
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Table E.1: Virtex-7 FPGA Resources 

Resource Count 

Logic Cells 693,120 

Memory (Kb) 52,920 

DSP Slices 3600 

GTH 13.1Gb/s Transceivers 80 

I/O Pins 1000 

 

Useful Virtex-7 User Guides: 

 

- https://www.xilinx.com/support/documentation/boards_and_kits/vc709/ug887-

vc709-eval-board-v7-fpga.pdf 

- https://www.xilinx.com/support/documentation/boards_and_kits/vc709/2014_3/

ug966-v7-xt-connectivity-getting-started.pdf 

- https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Co

nfig.pdf 

 

 

 

 



 

 
 

ملخصال  
 

الأكثر استخدامًا لتصنيف الصور. ومع ذلك، فإنه يتطلب عددًا  CNNs اصبحت الخوارزميات 
وسرعة  هذا ينعكس بالطبع على استهلاك الطاقة. ضخمة كبيرًا من العمليات الحسابية وذاكرة تخزين

 معالجات بموصفات خاصة.يتطلب تصميم  الأداء مما
 على فية استنادًاض الطاقة للشبكات العصبية التلافيقترح هذا العمل تصميمًا مسرعًا منخف 

GoogLeNet CNNالذاكرة، مما أدى إلى تقليل حجم الذاكرة بمقدار  . تم تطبيق عدة تقنيات لضغط
لتخزين  الداخلية FPGA BRAMs . تم استخدامفقط ٪2.6مرة مع خسارة دقة تصنيف بنسبة  57.6

هذا المسرع أيا من  ملا يستخد، إلى ذلكة خارجية. بالإضافة ذاكرة عشوائي أي استخدامالبيانات دون 
بالإضافة الى ذلك، لأنه استبدل جميع عمليات الضرب بعمليات تحويل بسيطة.  DSP وحدات ال

. استخدمت وحدات التحكم ٪91عنصرًا متوازيًا وحقق دقة تصنيف بنسبة  224المسرع يتألف من 
 أخرى. CNN الموزعة التي جعلت من الممكن استخدام المسرع لتصنيف شبكات

ل استهلاك استخدام البيانات وتقليانات، مما أدى إلى إعادة بياقترح هذا المسرع آلية جديدة لجلب ال 
المسرع.  وحدات هذا بجانب استخدام عدة طرق للتقريب أو التحسين خلال تصميم كل وحدة من الطاقة.

 25.1. صنف المعالج عله مناسبًا للعديد من التطبيقات، فإن المعالج يستهلك طاقة منخفضة مما جذلكل
من أكثر مع تحسن في استهلاك الطاقة واط  3.92باستخدام  GoogLeNet لنموذجإطارًا في الثانية 

مرة  49.5بمعدل في استخدام الطاقة تحسينًا  . قدم هذا المسرعFPGAة باستخدام الالسابق اتالتصميم
 .  NVidia GTX 1080Tiمرة مقارنة بـ 7.8و  Intel Core-i7مقارنة بـ
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 ملخـص الرسالة:
تطلب عددًا ت االأكثر استخدامًا لتصنيف الصور. ومع ذلك، فإنه CNNs صبحت الخوارزمياتأ

المعالجات ذات أصبحت  ،علاوة على ذلك .ضخمة كبيرًا من العمليات الحسابية وذاكرة تخزين
يقترح هذا العمل تصميمًا  . لذلكلاتفي بمتطلبات استهلاك الطاقة وسرعة الأداءالاستخدام المتعدد 

تم تطبيق  .GoogLeNet CNNفية استنادًا إلىض الطاقة للشبكات العصبية التلافمسرعًا منخف
فقط   FPGA BRAMsوحدات متستخدا حيث ،عدة تقنيات لتقليل استهلاك الطاقة وحجم الذاكرة

قلل من ي مما DSP وحدات هذا المسرع أي ملا يستخد، . ايضاً خارجية DRAMs بدون استخدام
باستهلاك   GoogLeNetإطارًا في الثانية لتصنيف 25.1حقق التصميم  .استهلاك الطاقة

 ٪ 91 بنسبة حسابية كفاءةنواة متوازية ويحقق متوسط  224يتكون التصميم من  .واط فقط3.92
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