Cairo University

POWER-EFFICIENT DESIGN OF HIGH PERFORMANCE
GOOGLENET-BASED CONVOLUTIONAL NEURAL
NETWORKS HARDWARE ACCELERATOR

By

Ahmed Jamal Mohamed Abdel-Maksoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2021

POWER-EFFICIENT DESIGN OF HIGH PERFORMANCE
GOOGLENET-BASED CONVOLUTIONAL NEURAL
NETWORKS HARDWARE ACCELERATOR

By
Ahmed Jamal Mohamed Abdel-Maksoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Under the Supervision of

Prof. Ahmed Hussien Mohamed Dr. Hassan Mostafa Hassan
Professor Assistant Professor
Electronics and Communications Electronics and Communications
Department Department

Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2021

POWER-EFFICIENT DESIGN OF HIGH PERFORMANCE
GOOGLENET-BASED CONVOLUTIONAL NEURAL
NETWORKS HARDWARE ACCELERATOR

By
Ahmed Jamal Mohamed Abdel-Maksoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Approved by the
Examining Committee

Prof. Ahmed Hussien Mohamed Khalil, Thesis Main Advisor
Dr. Hassan Mostafa Hassan Mostafa, Advisor

Prof. Mohamed Mahmoud Riad Alghoniemy, Internal Examiner
Prof. Ahmed Hassan Kamel Madian, External Examiner

(Atomic Energy Authority & Nile University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2021

Engineer Name:

Date of Birth:
Nationality:
E-mail:
Phone:
Address:

Registration
Date:

Awarding Date:

Degree:
Department:

Ahmed Gamal Mohamed Abdel-Maksoud

2/7/1995

Egyptian -~ =
ahmedjamal2035@yahoo.com Y
01121040245 -
Electronics and Communications S,
Engineering Department, Cairo University, x .
Giza 12613, Egypt

1/3/2019

oo/ 12021
Master of Science
Electronics and Communications engineering

Supervisors:
Prof. Dr. Ahmed Hussien Mohamed Khalil
Dr. Hassan Mostafa Hassan Mostafa

Examiners:
Prof. Ahmed Hussien Mohamed Khalil (Thesis main advisor)
Dr. Hassan Mostafa Hassan Mostafa (advisor)
Prof. Mohamed Mahmoud Riad Alghoniemy (Internal examiner)
Prof. Ahmed Hassan Kamel Madian (External examiner)
(Atomic Energy Authority & Nile University)
Title of Thesis:

Power-Efficient Design of High Performance GoogleNet-Based
Convolutional Neural Networks Hardware Accelerator

Key Words:
CNN, Deep Learning, Image processing, artificial intelligence, hardware
accelerators

Summary:
Convolutional neural networks (CNNs) have dominated image

recognition and object detection models in the last few years. However, they
require a huge cost of computation and a large memory size. This thesis presents
a low-power convolutional neural networks hardware accelerator based on
GoogLeNet. Several optimization and approximation techniques are applied to
reduce the power consumption and memory size. Consequently, only FPGA
BRAMs are used for weights storage without using offline DRAMSs. In addition,
the proposed hardware accelerator uses zero DSP units. The accelerator classifies
25.1 frames/sec with only 3.92W, which is more power-efficient than previous
GoogLeNet FPGA implementations. The processor uses only 224 parallel
elements (PEs) and achieves an average classification efficiency of 91%

Disclaimer

| hereby declare that this thesis is my own original work and that no part of it has
been submitted for a degree qualification at any other university or institute.

| further declare that | have appropriately acknowledged all sources used and have
cited them in the references section.

Name: Ahmed Jamal Mohamed Date: .. /.. /2021

Signature: Ahmed Jamal Mohamed

Dedication

To my parents, my brother, and my family whose unbounded support and love have
brought me this far.

Acknowledgments

I would like to offer my sincere thanks to my supervisors Dr. Ahmed Hussien and
Dr. Hassan Mostafa. | would express my deepest gratitude to Dr. Hassan for his efforts
throughout this work for precious supervision, continuous encouragement, and active help.

I want to thank all those, who helped me by their knowledge and experience. | will always
appreciate their efforts.

My sincere gratitude and love to my family for their encouragement and help during whole
masters journey.

Table of Contents

[T L O I AN 11V 1t |
DED I CATION ..ottt e et e e e e e e e e e e e e e e e e eeennan 1]
ACKNOWLED GMENTS ..ottt e e e e e 11
TABLE OF CON T EN T S ettt e e e e e e e e e e e e e e e e e eeeeennns v
LIST OF TABLES ... oottt e e e e e e e e e e e s Vi
LIST OF FIGURES ...ttt ettt e ettt e e e e et e r e e e e e s e e e br s VIl
NOMEN CLATURE ...ttt e ettt e e et et e e s e e eeeeeeesbanr s IX
A B S T R A T i et ettt e et ettt et e e et et e e e bt e e e eeteea b rrreeareear s X
CHAPTER 1 : INTRODUCTION ...ttt ettt e e e s e s ees s s s e e s s enennnn 1
1.1. |V [0 V7N 1 (o] TSR 1
1.2. THE PROPOSED WORK ...ttt e e e e e e e e e e e 2
1.3. THESIS ORGANIZATION ...t e e e et e e e e e e e e e e eteee e e e e e e ee e e e aaeseeeeeeeee e reeeeeees 3
CHAPTER 2 : BACKGROUND AND LITERATURE REVIEW......ccccccvvvvivi. 4
2.1. BACKGROUNDcoiiieettttisseeeeeteeetessseseeeseesss s sesesseeesssnssseesseessssnnssreessesesnnes 4
2.1.1. NEURAL NETWORKS OVERVIEW .. .oittteirtiiiiiieeeteeessiinissessssssssssnnsssssssesssnnnnns 4
2.1.2. MULTILAYER PERCEPTRON ...utuuuiiteettttetttiessseesseeesstnssssssssesesssssnnsesssssessssnnnnns 6
2.1.3. CONVOLUTIONAL NEURAL NETWORKSuuiiieeeieeeeeiiisieeeeeseesiaisseessssessnnnns 6
2.1.3.1. CONVOLUTION LAYERS .. .teeeettee e e ettt e e e e e e e ee et teeaaeeeeeeee e e aaeeeeeeeeeenaaa s 7
2.1.3.2. FULLY CONNECTED LAYERS ..ttuetteeeeteeeeteeeee e e e e eee e teeaeeeeeeeeeeeeeaaseeeeeeeeennaaaens 8
2.0.3.3. POOLING LAYERS ..etuete et eeteeeeeee e e e e e e et tee e e e e e e e eee e eeaaeeeeeeee e e aeeeeeeeeeennaaaens 8
2.1.3.4. OTHER LAYERS «.oevetue et e e e eeeeeeee e e e e e e et e tee e e e e e e e eee e e e e eeeeeee e e aeeeeeeeeeennnaaaens 9
2.1.4. POPULAR CININ IMODELS ...coetteee ettt e e e e e e e et ee e e e e e e eeeaaan s 10
2.1.5. NEURAL NETWORKS TRAININGcetttteetttieieeeeeteeetitissesessseesssnnnsesessseessnnnnes 14
2.1.6. NEURAL NETWORKS INFERENGCEcteevtutuitiieeeeeeestntinseeessseesssnnnseeessseesssnnns 15
2.2. ALGORITHM-LEVEL OPTIMIZATION TECHNIQUEScovvviiiiieiiiieeieeeeeeeeeeeeeeeens 16
2.3. HARDWARE DESIGN ...tuiiiie e ettt te s et et tteete s s e e e s teseas e ssseessesssssnnssseeesesessnns 21
2.3. 1. FPGAS OVERVIEW ..oueeeeieeeeeee ettt e et e e e e e e e e eaaseeeeeeeeenaaseeeaeeeeennnnaaeeas 23
2.4. LITERATURE REVIEW ... ettt ettt e e ee e e e e e e e e e e erennns 26
CHAPTER 3 : MEMORY COMPRESSION ...ttt 30
3.1. INTRODUGCTION . .. ettt ettt et et e e e e e et e e e e e e e e e e e e e eeeeeeeeeneeeeeenaeeeeens 30
3.2. RELATED WORK . ..ccteeete ettt ettt e e e e e e et et e e e s e eeeeeeesatasseeeeeeennnnns 30
3.3. GOOGLENET CNIN ...ttt et e e e e e e e e e e e e e e een s 31
3.4. GOOGLENET TRAINING «.cevvttti et e e ettt e e e e e e e eeee e e s s e e e eeeeestaseeeeseeeennnnaeas 31
3.5. COMPRESSION IMODEL ...eevtttee ettt e e e et e e e e e e e e e e ees e e s e e e e eeeennnn s 31
351, WWEIGHTS PRUNINGieeteteeeeeeee e e e e ettt easeeeeeeeeeeneasseseeeseeensnaasseseeeeeennnnanens 32

3.5.2. WEIGHTS QUANTIZATION ...cooveverererersteisistetetstetstssetssstesssesssssssssssesesesesssesesenns 35

3.6. COMPRESSION RESULTS c.vttttttiiteeeteeesstsiisssessseessssnsseessssesstssseeesssessn 35
CHAPTER 4 : ARCHITECTURAL DESIGN AND IMPLEMENTATION.......... 38
4.1. P ARALLELISM .t e ettt ettt e et e e ettt e e ettt e e e e e e e e e e e e ee et s e eeeannees 39
4.2. (Il]= R I [T 40
4.3. MEMORY ORGANIZATION ..ttt ee e e e et et e e e e e e e aeeeae e aaseeeeeeeeesnaaseeeeeeennnnns 42
4.4, WEIGHTS DECOMPRESSINGeevttnteeeeeteeteeeeeeeeeseseseeseseseesnseseesnsesesnnnsesennnns 42
45, PROCESSING UNIT 1uttiiiiiiiiiietiie s e e e et tee et e s e e et ee s sab s e e eesseessabsseeeesseesnrnan s 43
4.6. (000 10T N1 57T 44
47. FULLY CONNECTED UNIT . iiitiiititieiiieeeteeestisssssesseresssasssssessssssssssnnssesssessssnns 45
4.7.1. FC MEMORY MANAGEMENT. . ittttttttttiitteeetetesstnnssseesseessssnrsreesseesssnreeeses 46
4.7.2. FC COMPUTATION IMANAGEMENT ..evuuet e et et eeee e e e e e eeeeeeeeeeeeeeeeeenneaaeaeeeeees 46
4.8. IMLAXPOOLING UNIT ettt et e e et e e e e e e e e e e e e e e e 46
4.9. LOCAL RESPONSE NORMALIZATION UNIT ... eeenns 49
4.10. AVERAGE POOLING UNIT .ottt e e e e e e e e e 49
4.11. Yo=Y 1 1 T 49
4,12, PROCESSOR MODIFICATIONS .. .uuttteeetteetttisseseesseessssnssessssseessssnsesesssessssnnnns 50
CHAPTER 5 : DISCUSSION AND RESULTS ..ot 52
5.1. SELECTING FIXED-POINT PRECISION .vvvuiiiiieeieeeiiie s e e e eeeeesss s e e e e eeeesnan s 52
5.2. THEORETICAL THROUGHPUT .. ettt ettt e e e eee e e e e e e e e e enennnns 52
5.3. DESIGN TESTING «.ceeeet ettt e et e e e e e e e et e e e e e e e e e e e e e eeannees 53
5.4. AREA UTILIZATION AND POWER CONSUMPTION ...cevevteeeeeeeeeeeeeeieeeeeeeeeeeennnns 54
5.5. COMPARISONS ..ttt e e et e e e e e e e e e e et e e e e e e e e ee e e e e eeeeee e e e e eeeeeeeennnanaeas 55
(010)\ (01 I U] 16]\ IR 58
CONTRIBUTIONS vttt eeteteestatasseeeeeteessseasseessesesstss s sesssesesssss s sseesesesnsssasreeesseeennnnnnnses 58
FUTURE WORK ... ceiieeettee ettt ettt ettt e ettt et e e e e ettt et e et e e e e et ee e bt e e e eeteeerntnrereeeees 58
LIST OF PUBLICATIONS ...ttt ettt e et r e e e e e e e ee s 59
REFERENGCES ...ttt ettt et e e et ettt e e s e e e e et e et nreeeeeeeearan s 60
APPENDIX A: GOOGLENET LAYER DETAILS ..o 64
APPENDIX B: IMAGENET DATASET ..ottt 65
APPENDIX C: PROJECT ORGANIZATION ..ottt 66
APPENDIX D: IMAGE CLASSIFICATION EXAMPLE ON THE PROPOSED
A C C E L E R AT O R e ettt e ettt e e e e e e e e e e e e e eeeeeeeennnns 71
APPENDIX E: VIRTEX-T FPGA ..ottt 73

Table 2.1:
Table 2.2:
Table 3.1:
Table 3.2:
Table 4.1:
Table 4.2:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:

Table A.1:
Table E.1:

List of Tables

POPUIAT CNINS ... 14
Comparison between Al hardware design methods............ccccceevevieeieiiiennen, 22
GOOGLENEL ANAIYSIS ...t 32
Error rates and compression ratio for different compression models 36
Required #PES per Kernel..........ccoooiiiiiiiiiiieee e, 39
Weights decoding table ... 51
The proposed hardware accelerator utilization on Virtex-7 FPGA............... 54
Comparison with other platforms.............ccccoveiiiiiiccc e 55
Comparison with popular embedded Al acceleratorsccooevvveiininnen, 56
Comparison with other GoogLeNet hardware accelerators.............c.c.ce.... 57
GoogLeNet layer details [17]ccovoeriiiiiiiniseee e, 64

VIrtEX-7 FPGA RESOUITES ...eeeeeeeee et eeee e e e e e eee e e e e e e e e e aeeens 74

Vi

List of Figures

Figure 1.1: Inception module with dimension reduction [17]........cccccociiiiininiiniinicnienn. 2
Figure 2.1: A SIMPIE PEICEPIION ...c.viieie ettt reesae e nrees 4
Figure 2.2: Activation functions, (a) ReLU, (b) Sigmoid, and (c) Tanh functions.......... 5
Figure 2.3: BaSiC IMLP STIUCLUIEooiieieiie e 6
Figure 2.4: 2D-Convolution with sliding window kernel ... 7
Figure 2.5: A SIMPIE CNINL....ooiiiic et e e nre s 7
Figure 2.6: Fully Connected layer in CNN mMOdelS...........cooeiiiiiiiiieiiieeeeeecee 8
Figure 2.7: Maxpooling example with F=2 and S=2..........cccooevieiie e, 9
FIgure 2.8: LENEE CNIN ... 10
Figure 2.9: AIEXNEL CNINL.....ooiiiiiiei e 10
Figure 2.10: VGG-16 CNNooiiiieircecieiee et st 11
Figure 2.11: INCEPLioN V3 CNINcooiiiiii e 11
Figure 2.12: SQUEEZENET CNINooiiiiiiieieie e 12
Figure 2.13: RESNEt-34 CNNocoiiiieii et 13
Figure 2.14: Simple neural network before and after pruningc.ccocevvvivviieieiennn, 16
Figure 2.15: Accuracy loss versus the number of pruned parameters for pretrained,
pruned, and pruned-+retrained models.ccooeieiininiin 17
Figure 2.16: Weights distribution changes with pruning. (a) Before pruning, (b) after
pruning, and (C) After retraining.cooceveririinieieese e 17
Figure 2.17: Weights distribution changes with quantization. (a) Before trained
quantization, and (b) After trained quantization............cccccceevevvererivereenne 18
Figure 2.18: Weights sharing with quantization flow.ccccccoeveviiiiicc e 19
Figure 2.19: Weights sharing eXxample. ..., 19
Figure 2.20: Example for Winograd transformation.ccccccovvveveiiciicvn e 20
Figure 2.21: Retraining neural networks for ternary Weights............ccocovvvvincinnennn, 20
Figure 2.22: Low rank approximation example. (a) Original layer, (b) approximated
TAYET [BL]. oot 21
Figure 2.23: Flexibility versus efficiency for CPUs, GPUs, FPGAs, and ASICs.......... 23
Figure 2.24: FPGA INternal DESIGN........cccviiiiiiiiiieiesiesesee e 23
Figure 2.25: Example of Configurable Logic Block (CLB).......c.cccccovviieiieieiieveee 24
Figure 2.26: FPGA programmable interconnections............cccovvereniienineseseceeee, 25
Figure 2.27: FPGA configurable 1/OS. ..ot 26
Figure 2.28: FPGA Programmable iNntercoNNEeCtcocvvveiriiieniiesineseeeeeeeee, 26
Figure 3.1: GoogLeNet CNN network structure [17]cocovveveiieveeiecieceece e 33
Figure 3.2: The proposed memory compression modelccccoeviieinininicicneen, 34
Figure 3.3: Dynamic network surgery pruning method steps [33].......cccccoevieiiievinennn. 34
Figure 3.4: Incremental network quantization steps [35]. (a) pretrained/full-precision
model, (b) updated model after one iteration, (c) Final quantized model ...35
Figure 3.5: Compression ratios after pruning and quantizationc.ccocevvvveierienen, 36
Figure 4.1: Top-level diagram of the proposed architectureccccocvevveviecinevieenne, 38
Figure 4.2: Different applied kernel Sizes on PESccooviiiiiiincieeeee, 40
Figure 4.3: Convolution layer pseudo COE..........cceciiiiiiiie i 41
Figure 4.4: IFMAP tile to PEs — 5x5 convolution exampleccccooiiiniiiiicnenn, 41
Figure 4.5: Masks map and weights deCOmMpPressingcoccvevvveiveiiieviie e 43
Figure 4.6: Parallel EIement StrUCTUIEccooveiiiiieieeseeeeee e 44
Figure 4.7: 7x7 Convolution example with parallel FIFOs and PE cores..........c..c....... 45

Vii

Figure 4.8: Fully Connected layer tiling diagramccocoveiiiiiencnenineseeeeeeee, 47
Figure 4.9: Maxpooling data flow. (a) First part of comparator output, (b) Second
part of comparator output, (c) Third part of comparator output, and (d) first

part of second pixel comparator QUEPUL............ccveveiieieene e, 48
Figure 4.10: Softmax unit SChEMALIC..........cccoiiiiiiiie e 50
Figure 5.1: Accuracy loss versus fixed point preCiSion..........ccocevveveeieseesesrieseesienns 53
Figure 5.2: Top-level signals at the start of processing..........ccccoceveeeieiiiininicieee, 54
Figure 5.3: Top-level signals at the end of Processing..........ccccceevveveiiieseeresie e 54
Figure 5.4: Power report by Vivado using a generated SAIF file.........c.ccooooiiieene, 55
Figure B.1: A snapshot for ImageNet Dataset............ccceeveveeieieeieese e 65
Figure C.1: A snapshot for top-level project organization in Vivadocc.cccoveneneen. 66
Figure C.2: A snapshot for processing unit organization in Vivado.ccccccvvenenne. 67
Figure C.3: A snapshot for maxpooling unit organization in Vivadocc.cccceeeueneee. 67
Figure C.4: A snapshot for auxiliary connection organization in Vivado..................... 68
Figure C.5: A snapshot for the first part of memory Banks organization in Vivado.69
Figure C.6: A snapshot for the first part of PE Cores organization on Vivado.............. 70
Figure D.1: Input Image sample "Endian Elephant”............ccccoooiiiiiiniiiccee, 71
Figure D.2: Testing the image on The proposed Accelerator.cccccevvevvevieseernenne. 71
Figure D.3: Mapping class number of the hardware result to its name on Matlab. 71
Figure D.4: Testing the same image on the software model (python model). 72
Figure D.5: the Classes location in the ImageNet Dataset.cccceveririnieiiciienenen, 72
Figure E.L: VireteX-7 FPGA KItooiiiiie et 73

viii

CNN
Al
ANN
RTL
DSP
DRAM
BRAM
PE

ML
DL
GPU
ASIC
FPGA
IP
RISC
CISC
MAC
HLS
OpenCL
INQ
FM
IFMAP
OFMAP
CuU

PU
WCU
FC
LRN
BN
SAIF

Nomenclature

Convolutional Neural Network
Artificial Intelligence

Artificial Neural Networks

Register Transfer Logic

Digital Signal Processing

Double Random Access Memory
Block Random Access Memory
Parallel Element

Machine Learning

Deep Learning

Graphical Procession Units
Application-Specific Integrated Circuits
Field-Programmable Gate Arrays
Intellectual Property

Reduced Instruction Set Computing
Complex Instruction Set Computing
Multiply and Accumulate
High-Level Synthesis

Open Computing Language.
Incremental Network Quantization
Feature Map

Input Feature Map

Output Feature Map

Control Unit

Processing Unit

Weight Control Unit

Fully Connected

Local Response Normalization
Batch Normalization

Switching Activity Interchange Format

Abstract

Convolutional neural networks (CNNs) have dominated image recognition and
object detection models in the last few years. They can achieve the highest accuracies
with several applications such as automotive and biomedical applications. CNNs are
usually implemented by using Graphical Processing Units (GPUs) or generic
processors. Although the GPUs are capable of performing the complex computations
needed by the CNNSs, their power consumption is huge compared to generic processors.
Moreover, current generic processors are unable to cope up with the growing CNNs
demand for computation performance. Therefore, hardware accelerators are the best
choice to provide the required computation performance needed by the CNNs as well as
affordable power consumption. Several techniques are adopted in hardware accelerators
such as pruning and quantization.

In this thesis, a power-efficient convolutional neural networks hardware accelerator
is proposed based on GoogLeNet CNN. Weights pruning and quantization are applied,
which reduces the memory size by 57.6x. Consequently, only FFGA BRAMSs are used
for weights and activations storage without using offline DRAMs. In addition, the
proposed hardware accelerator uses zero DSP units as it replaces all multiplications by
shifting operations. The accelerator is developed based on a time-sharing/pipelined
architecture, which processes the CNN model layer by layer. In addition, there are
some dedicated units such as maxpooling and average pooling units. The architecture
proposes a new data fetching mechanism that increases data reuse. Moreover, it uses
only 224 parallel elements (PEs). All the proposed accelerator units are implemented in
native RTL (Register Transfer Logic), and several optimization techniques are applied
to reduce the power consumption. The accelerator classifies 25.1 frames/sec with
3.92W only, which is more power-efficient than previous GooglLeNet FPGA
implementations. In addition, it achieves top-5 average classification efficiency of 91%,
which is significantly higher than comparable architectures. Furthermore, this
accelerator overcomes the popular CPUs such as Intel Core-i7 and GPUs such as GTX
1080Ti in terms of the number of frames processed per Watt. The normalized power
efficiency is 6.4 frames/Watt for the proposed accelerator, 0.81 frames/Watt for NVidia
GPU, and 0.128 frames/Watt for Intel Core-i7.

Chapter 1 : Introduction

1.1. Motivation

Deep learning has been employed in a lot of domains during the last decade, such
as image classification [1-2], object recognition and detection [3-5], object detection [6-
7], audio recognition [8], and self-driving cars [9-10]. CNNs are used widely as they
achieve challenging accuracies, and their models are easily applied to new applications.
CNNs are one of the common deep learning algorithms mainly used for image and
video classification and detection [11]. CNNs require large amounts of memory storage
as there are millions of parameters in every CNN model. Moreover, CNNs are
computationally intensive as they require billions of operations per image. The high
computational complexity combined with inherent parallelism in these models makes
them an excellent target for custom accelerators.

Although the CNNs have dominated the image classification and detection
algorithms, there are two main challenges regarding their implementations [12]. The
first challenge is the cost of computation, as their architecture consists of many
convolutional layers, which are multiplication-hungry layers. The second challenge is
the memory bandwidths, in which the memory fetching speeds are much lower than the
processing speeds. These two challenges have raised the need to develop custom
architectures to accelerate the CNN computations while keeping the power
consumption at affordable rates for limited energy embedded applications. However,
the variations of network architectures and data fetching patterns make it difficult to
adopt one architecture for all CNNs. As a result, custom designs are the dominant
approach for these networks to get the best performance across all performance metrics.

During the rising of deep learning (DL) and machine learning (ML) algorithms,
two main categories of processors are used. The first platform is the Central Processing
Units (CPUs), which are not efficient for DL and ML algorithms as these algorithms
require high parallelism and a lot of DSP units to finish their processing rapidly. The
second platform is the Graphical Procession Units (GPUs), which are capable of
processing millions of pixels within a part of the second. Correspondingly, the GPUs
are the most suitable platforms due to their high parallelism. Consequently, they have
been used widely for both training and inference [13].

When it comes to hardware accelerators, FPGAs get a critical mission to provide
high-performance — low power processing units [14-15]. FPGAs stand for field-
programmable gate arrays (FPGAs) that provide low power consumption, high
parallelism, optimized hardware, and real-time computation capabilities. Moreover,
FPGAs have the advantages of short time-to-market, reconfigurability, and reusable IP
(Intellectual Property) options. There is another choice for designers, which is ASIC
chips. ASIC is application-specific integrated circuits that provide the lowest power
consumption and highest clock speeds, but it has a long time to market and high initial
fabrication costs. These properties make it suitable for mass production, such as NVidia
accelerators and google TPUs or data centers, such as google cloud or amazon AWS.

As artificial intelligence (Al) is emerging increasingly in a lot of applications, the
demand for hardware accelerators is increased. Recently, a lot of research is done to
develop high-performance hardware accelerators for data centers, smartphones, and 10T

1

devices. Accelerator specifications are set based on the target application, power
consumption budget, and acceleration rate. Al accelerators need more specialized
architectures and should be suitable and optimized for the target algorithm, in contrast
to common architectures, such as RISC (Reduced instruction set computing) and CISC
(Complex instruction set computing) architectures. This approach is becoming more
common in industrial and research applications, specially inference processors [16].

For many years, it is well-known that the depth of the network should be increased
to get higher accuracies, especially the number of convolution layers. This has been a
common direction till year 2014 when Szegedy proposed a new CNN network called
GoogLeNet with the concept of inception module [17]. In this network, the depth and
width of the network have been increased, but the computational budget has been kept
constant by using the network-in-network concept. This concept uses additional 1x1
convolutional layers to remove the network bottlenecks to help in dimension reduction
as shown in Figure 1.1. GoogLeNet overcomes AlexNet [1] and VGG [2] networks by
getting the highest accuracy with fewer weights. As AlexNet uses 60 million weights to
get 84.7% top-5 accuracy, and VGG-16 uses 138 million weights to get 92.7% top-5
accuracy. GoogLeNet uses only 6.9 million weights to get 93.4% top-5 accuracy.
Despite all these advantages, GoogLeNet architecture is more complex than other CNN
networks due to activations’ data dependency and complex connections between
inception layers. This makes it usually challenging for hardware accelerators designers.

1.2. The Proposed Work

This thesis will explore the lowest power consumption techniques for CNN
hardware accelerators to make full use of it through the design. The key points for this
research will be as follows:

= Itis adedicated hardware accelerator that is designed for CNNs.

= |tis an inference processor that uses pre-trained weights.

= The main design purpose will be achieving the lowest power consumption.

= |tis designed on FPGA for fast prototyping and reconfigurability.

= Itis implemented using native RTL (Verilog).

= |tis specially designed for GoogLeNet CNN for best performance.

= Providing a suitable/optimized architecture to meet the computation

requirements.

Filter
concatenation

ﬂv

3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions) [} [}

wmons 1x1 convolutions 3x3 max pooling

Previous layer

Figure 1.1: Inception module with dimension reduction [17]

The main features of the proposed accelerator in this work are briefly highlighted

as follows:
I

Vi.
Vil.

Viii.
iX.

The accelerator achieves 25.1 fps for GoogLeNet classification with
3.92W, which provides more power-efficiency than previous FPGA
implementations for GoogLeNet.

The accelerator achieves an order of magnitude performance improvement
over Intel Core-i7 and NVidia GTX 1080Ti.

Weights pruning and quantization are used to cut down the memory usage
by 57.6x. As a result, only FPGA BRAMSs are used for weights and
activations storage without using offline DRAMs.

It uses zero DSP units by converting all multiplications into shifting
operations.

This accelerator is developed based on time-sharing/pipelined architecture
that processes the CNN model layer by layer.

This accelerator proposes a new data handling mechanism that leads to high
data reuse and low power consumption.

The proposed accelerator uses simple distributed control units, which can
be reconfigured to other CNNs such as VGG.

The proposed accelerator uses only 224 simple parallel elements (PEs).

The design achieves top-5 classification accuracy of 91%, which is
significantly higher than comparable architectures.

1.3. Thesis Organization

This thesis is organized as follows, Chapter 1 presents the introduction and

motivation

for this work in addition to the proposed work main features and thesis

organization. Chapter 2 gives a brief background about neural networks and CNNs.
Moreover, a literature review is made, to sum up all related work and show the areas
that can be developed. Chapter 3 presents the applied memory compression model
using both weights pruning and quantization. The results are used lately for improving
the architectural design and optimizing the power consumption and the utilized area.

Chapter 4

investigates the proposed architecture in details. Moreover, design and

implementation for each block are discussed. In Chapter 5, the experimental results and
discussions for the implemented design are presented. Different analyses are held to
make sure of the accelerator performance. Finally, Conclusion is presented to conclude
the contributions and show the future work.

Chapter 2 : Background and Literature Review

In this chapter, the background necessary for the next chapters are presented.
Firstly, neural networks are introduced. Secondly, the main layers of CNNSs in addition
to their training and inference information are presented. Finally, a literature review is
presented about algorithm-level optimization techniques, hardware design methods, and
popular CNN hardware accelerators implementations.

2.1. Background

2.1.1. Neural Networks Overview

Artificial intelligence has been evolved through the years and split into several
branches such as robotics, NLP, machine learning, and neural networks [48]. Neural
networks usually consist of multiple layers. When the number of layers is increased, the
depth of the network increases, which is stated as Deep Neural Network (DNN). A
neural network basically consists of a system of neurons with an artificial nature, where
artificial neurons are known as perceptrons. A complete perceptron model represents a
complete neural network. Neural network algorithms usually find elemental
relationships across the input data, and find the best model or system to represent it.

A simple perceptron takes several inputs and generates a single output as shown in
Figure 2.1. It is developed by Frank Rosenblatt in the 1950s and 1960s [43]. The
perceptron is mathematically represented as an activation function. It is a non-linear
function that allows output triggering with small changes in the weights or bias after
passing the threshold. It is stated as follows:

where the y is the perceptron output, which is calculated by the dot product, followed
by the bias addition. The vector W is the neuron weights, and vector X is the input.
Finally, b is the bias.

Bias

P o

b
X, o—-@ j
X, o—@ fa

Inputs) v Z > ole) 'V
' /\ S 4 Output
Xz o——((om Sum Activation

= Function
Weights

Figure 2.1: A simple perceptron

A conventional neural network is constructed with thousands or millions of
neurons that are usually organized into multiple layers. The first layer of a neural
network is the input layer, which is followed by one or multiple hidden layers. After the
last hidden layer, the classification is made by the output layer.

There are many different activation functions, but ReLU, Tanh, and sigmoid are
the commonly used ones [44]. Each activation curve is shown in Figure 2.2. They are
deployed in the network based on their functionality. They may be used for adding non-
linearity to the layers or transform the classification results into probabilistic values.
Every function is illustrated briefly as follows:

I. ReLU function
ReLU simply suppresses any negative value to zero. It is used in hidden
layers to add non-linearity to the layers’ output. The mathematical
representation is written as follows:

ReLU(z) = max(0,z) (2.2)
where ReLU(z) is the output and z is the input.

Ii. Sigmoid function
It is used in output layer for classification as it gives a weighted output.
The mathematical representation is written as follows:

1
1+e™2

o(z) = (2.4)

where o(z) is the output and z is the input.

lii. Tanh function
It is used in hidden layers to add non-linearity to the layers’ output. The
mathematical representation is written as follows:

eZ—e™?

tanh(z) = —— (2.3)
where tanch(z) is the output and z is the input.
10 1 1
=10 10
10 10 =10 s 10 1
(a) (b) (c)

Figure 2.2: Activation functions, (a) ReLU, (b) Sigmoid, and (c) Tanh functions

2.1.2. Multilayer Perceptron

The multi-layer perceptron (MLP) is one of the Feed-Forward neural networks,
where the propagation of data only goes from the input to the output layers during
calculations [45]. There is another type of neural networks which is the Recurrent
Neural Networks (RNN). RNNs in contrast, have a feedback connections from forward
layers to previous layers [46]. MLP is the most basic configuration of feed-forward
neural networks and is commonly referred as fully connected layers. MLP usually
consists of one or more hidden layers of perceptrons where the network’s perceptrons
are connected with each other. When the number of hidden layers increases, the
network deals with more complex problems. On the other hand, the number of network
parameters jumps rapidly which increases the cost of training and inference. A simple
MLP is as shown in Figure 2.3 which has one input layer, one hidden layer, and one
output layer.

2.1.3. Convolutional Neural Networks

Convolutional Neural Network (CNN) is one of the feed-forward classes of neural
networks, and is most mainly used for vision tasks [47]. CNNs, in contrast to MLPs, do
not require every neuron in the input layer to receive information from every pixel of
the visual field, which in turn simplifies the network complexity and connections.

As all artificial neural network models are inspired by the human brain. The brain
analogy usually identifies an object or a photo by describing the distinguishing features
such as edges, color, and main shapes. In this way, it works efficiently without
requiring the position and color or every pixel.

In CNNs, kernels or filters are responsible for feature extraction through an
operation that is well-known as 2D convolution. The convolution kernel slides across
all input feature map while calculating the cross-correlation between the input feature
map and applied kernel. The output is a scalar value that corresponds to how similar the
input is to the kernel as shown in Figure 2.4. The convolution kernels are kept constant
throughout the frame traversal and every CNN layer distinguishes multiple features of

Input Hidden Ouput

layer layer layer
h 7

N

Figure 2.3: Basic MLLP structure

(ep]

the frame. Usually, the input images are not represented as two-dimensional arrays, but
with multichannel inputs such as RGB images. This forms three-dimensional arrays
with 3D-convolution operations.

CNN basically consists of convolutional layers, fully connected layers, and pooling
layers. These layers are stacked several times to form a CNN [47]. The deeper every
CNN becomes, the higher accuracy it provides. However, this approach is evolved with
time to add different techniques rather than increasing the depth of the network. Figure
2.5 shows a simple CNN that consists of 3 convolution layers and 3 fully connected
layers in addition to Maxpooling layers. The main layers for a conventional CNN will
be discussed briefly in the next section.

2.1.3.1. Convolution layers

Convolution layers are one of the main building blocks of CNNs as they are
responsible for extracting local features from input feature maps [47]. They require a
lot of computations due to convolving nature and the size of convolutions. The
mathematical equation for 2D convolution operation is stated as follows:

K-1L—1
y[m, n]+= bias + ZZWkl [m+kn+ 1] (2.5)

where y[m,n] is the output matrix map of the same dimensions as the input map X. m
and n are the coordinates of the pixel of the interest region. Finally, L and K denote the
kernel dimensions

L~

Figure 2.4: 2D-Convolution with sliding window kernel

Feat Feat Feat Layer Layer
Inputs Maps Maps Maps units units Outputs
3@12x12 24@12x12 24@6x6 36@3x3 200 60 10

Conv. & Fully

Convolution Conv. &
MaxPooling MaxPooling connected

Figure 2.5: A simple CNN

7

Convolution layer dimensions are controlled by 4 hyper-parameters which controls
the convolution input/output feature map sizes:
= The number of filters K.
F is the width and height of filters.
The stride S, the kernel sliding step.
Finally, P is the amount of zero padding pixels.

Where the size of the output feature maps is calculated as follows:

IFMAP yon — F + 2P
OFMAP 30m = d”"? +1 (2.6)

2.1.3.2. Fully connected layers

Fully connected layers are used at the end of each CNN model to compute class
scores as shown in Figure 2.6 example. It is like MLP which has one-to-one
connections to all previous layer activations. There may be multiple fully connected
layers in every exact CNN such as AlexNet to reduce the input size gradually and avoid
having a huge full-connectivity layer at the end. Every CNN ends up with a fully
connected layer with size equals to the number of trained classes.

2.1.3.3. Pooling layers

There are two popular pooling layers. Firstly, Maxpooling layers are usually paired
with the convolution layers. Maxpooling works on each feature map separately by
taking the max value of the applied subregion. The second type is the average pooling
layer, which is applied by taking the average value of the applied subregion. Although
it has been the most popular historically, it is less commonly used nowadays.

Input image
Convolutional layer_1

Pooling layer_1
Convolutional layer_2
Pooling layer_2
. =

)

Pooling layer_n

~ Flattening layer

Fully-connected layer

Figure 2.6: Fully Connected layer in CNN models

8

Pooling layers are used to shrink the size of the input feature maps to reduce the
number of parameters in the CNN model, hence reducing the amount of computation
needed. On the other hand, they overcome the overfitting problem. Overfitting is a
problem that occurs when a network predicts and classifies the training data well, but
fails to deal with testing data. The pooling operation is performed on each feature map,
reducing the size of each feature map without removing any of them. The pooling layer
requires two hyper-parameters, F and S where the size of the output feature maps is
calculated directly using (2.7):

= Subregion width or height, F.

= The stride S.

IFMAPyon — F
OFMAP 30m = dSm‘en +1 (2.7)

Figure 2.7 shows a simple example for Maxpooling operation with input feature map
size 4x4, subregion F=2, and stride 2. The output feature map size will be 2x2 by
following the equation of (2.7)

2.1.3.4. Other layers

After presenting the most popular layers, there are other types of layers that have
importance in CNN calculations. Firstly, the normalization layers that are used to
normalize the output at some parts of the network such as local response normalization
(LRN) or batch normalization (BN) which is applied after each convolution layer [41].
Although BN has an additional cost of having learnable parameters and extra
computations, it is preferred nowadays over LRN. However, LRN does not has any
additional learnable parameters.

On the other hand, there are some activation layers like ReLU activation, which is
commonly used to add some non-linearity to network feature maps. Also, there is the
dropout layer which is useful while training to overcome overfitting by randomly
dropping some inputs. Their functionality is disabled while inference.

1
2
1
5

S| W | © | W
p—i
—

Figure 2.7: Maxpooling example with F=2 and S=2

2.14.

Popular CNN Models

In this section, a careful analysis for popular CNNs is presented. Then, the analysis
compares GoogLeNet CNN with other popular CNN models.

= | eNet

LeNet CNN is one of the most basic CNNs. It’s consists of two convolution
layers, two average pooling layers, two fully connected layers, and one
Softmax layer as shown in Figure 2.8. It was originally developed in 1998 to
identify the hand written digits with 32 x 32 x 1 input grayscale image size. It
has 60 K parameters. Moreover, LeNet uses Sigmoid and Tanh activation
functions

= AlexNet

AlexNet was developed to classify 1000 classes of ImageNet Dataset [1]. It
is consists of 60 Million parameters with deeper layers than LeNet, so it
required multiple GPUs for training. The input image size is increased to 227 X
227 x 3 which is RGB input. Also, the local response normalization layer is
firstly introduced, and maxpooling is used instead of average pooling. The
CNN structure is shown in Figure 2.9 with a layer arrangement with (Conv-1,
Maxpool-1, Conv-2, Maxpool-2, Conv-3, Conv-4, Conv-5, Maxpool-3, FC-1,
FC-2, Softmax). AlexNet won the ImageNet challenge with 83.6% top-5

T

avg pool FC

classification accuracy.
avg pool
f= 5x%5

Softmax

32x3Zx1 28x28x6 14x14 %6 10x10x16 5><5x’1b

Figure 2.8: LeNet CNN

conv. layer max-pool conv. layer max-pool
55x55%96 27x27x96 27x27x256 13x13x256
227x227x3
conv. layer conv. layer conv. layer max-pool
=3 /
13x13x384 13x13x384 13x13x256 6x6x256 9216 4096 4096

Figure 2.9: AlexNet CNN

10

= VGG-16

VGG-16 CNN is a modification for AlexNet which was developed for
ImageNet challenge [2]. The size of the model is large with 138 Million
parameters, so it required huge resources for the training process. The input
image size is set as 224 x 224 x 3 which is RGB input. The CNN structure is
shown in Figure 2.10. Convolution filters are increased from 64 to 128 to 256
to 512, and Maxpooling layer are responsible for shrinking the input size.
VGG-16 won the second place in ImageNet challenge with 92.7% top-5
classification accuracy in 2014.

= Inception V3

Inception V3 is the third version for GoogLeNet, which supports the same
idea of inception network using 23.6 Million parameters [54]. The number of
parameters for Inception V3 is more than GoogLeNet (6.9M), but less than the
number of parameters for AlexNet (60M). Inception V3 achieves top-5
classification accuracy with 96.5%, which won the ImageNet challenge in
2015. Figure 2.11 shows the structure for Inception V3.

—> 224x%224x64—> 112Xx112 x64 —» 112x112 x128 —» 56x56 x128
[CONV 64] POOL [CONV 128] POOL
X2 X2

224x224 x3

i

——> H6XH6 X256 —» 28%28 X256 —» 28%x28 X512 —> 14x14x512

[CONV 256] POOL [CONV 512] POOL
X3 X3
—> 14x14 X512 —» TxTx512 » FC » FC — Softmax
[CONV 512] POOL 4096 4096 1000

X3

Figure 2.10: VGG-16 CNN

Grid Size Reduction o .
(with some modifications) EndSzsheducion

Input: 99x299x3 Oulpul 8x8x2048 2% Inception Module C

5x Inceptlon Module A 4x Inception Module B
Convolution Input: g)uatp;:):‘s
299x299x3 x8x
:ﬁvai‘:o(:l e Final part:8x8x2048 -> 1001
Concat % G
Dropout Auxiliary Classifier

Fully connected
Softmax

Figure 2.11: Inception V3 CNN

11

= GooglLeNet

GoogLeNet CNN achieves a top-5 classification accuracy with 93.4% using
~6.9 Million parameters only [17]. The number of parameters is cut down after
deploying the concept of network-in-network module. This module uses 1x1
convolution layer before 3x3 convolution and 5x5 convolution layers to shrink
the dimension. It’s one of the most remarkable CNN provided in the literature.

= ResNet

ResNet CNN stands for residual network which consists of a group of
residual blocks. The main idea is to add a skip connections before the second
activation [55]. ResNet is the first CNN to allow the training of very deep
networks even if with more than 100 layers. ResNet-34 achieves top-5
classification accuracy with 94.4% using 20.5 Million parameters. There are
many variations for ResNet such as ResNet-50 and ResNet-152. Figure 2.13
shows an example for ResNet-34 CNN.

= SqueezeNet

SqueezeNet CNN is usually compared with AlexNet as it achieves the same
classification accuracy with 50x fewer weights [56]. SqueezeNet consists
mainly of fire modules with 3x3 and 1x1 convolution kernels. The 1x1 filters
are used to reduce the input feature map size before 3x3 filters. SqueezeNet
starts with a convolution layer, followed by 8 fire modules, and ends with a
final convolution layer as shown in Figure 2.12.

g 8
S S N 8 s |&
[+ (<] n 2 I8 - E
Q o. ©
a a i &
x x © 8
©) o
£ £ ©
]

Figure 2.12: SqueezeNet CNN

12

image

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 cony, 256, /2
3x3 conv, 256

y

Y

3x3 conv, 512
avg pool

fe 1000

Figure 2.13: ResNet-34 CNN

In Table 2.1, a summarized comparison is made between popular CNN networks.
VGG-16 has a Top-5 accuracy with 92.7%, but it requires 138 Million weights per
frame. This requires a huge memory size, which in turn will increase the computation
load and memory access. On the other hand, Inception V3 and ResNet-50 get higher
accuracy with 96.5% and 96.4%, respectively. They get an approximate accuracy
improvement of 3% more than GooglLeNet, but they require memory storage 3.5x times
more than GoogLeNet. SqueezeNet gets the AlexNet accuracy with 50x fewer
parameters, but top-5 accuracy with 83.6% is low compared with other CNNSs
accuracies. Accordingly, it is clear that GooglLeNet achieves the best accuracy while

keeping the number of weights in an acceptable count.

13

Table 2.1: Popular CNNs

CNN Year Top-S(Sa/c(;)r):u racy Num(th(jll;Ii)i]; \r/lvse)ights
AlexNet 2012 83.6 60 M
VGG-16 2014 92.7 138 M
GoogLeNet 2014 93.4 6.9 M
ResNet-34 2015 94.4 21.5M
Inception V3 2015 96.5 23.6 M
SqueezeNet 2017 83.6 1.2M

Most of the hardware accelerators in the literature proposes high throughput and
reasonable power consumption on feed-forward CNN networks such as LeNet,
AlexNet, and VGG [37-38]. These processors fail to process the inception network
well, and the obtained speed is degraded, since the structure of the inception module
increases the depth of the layers horizontally and vertically while keeping
computational cost by adding a 1x1 convolution layer as a bottleneck. Although this
improves the accuracy, it increases system complexity. The challenge is to build a
hardware accelerator based on GoogLeNet model, and design it carefully to make full
use of every feature of it.

2.1.5. Neural Networks Training

The process of training a network is responsible for evaluating the optimum value
of all learnable parameters such as weights and biases of the network. As the training of
the networks is outside the scope of this work, only a quick overview of network
training will be explained.

After constructing the model of the neural network, network training comes to
adjust the parameter values for all weights in the network. The training process is
controlled via hyper-parameters and a training dataset. The desired goal of this process
is to be able to classify similar classes during inference. Firstly, a cost function is
introduced. The goal is to minimize this function to the least value. Cost function
represents the squared difference between the computed output value and the desired
one which is stated as follows:

1 m
112
cw,b) =—> |y =3 (28)
i=1

Gradient decent algorithm is used to minimize the cost function. Gradient descent
updates the values of the weights and biases with small steps in the direction of the
negative gradient. This update for each parameter is given by:

, C(w, b)
Wr= Wr— 71 " (2.9)
, C(w,b)
k

Where 7 is the learning rate or correction step, which is one of the training hyper-
parameters. If the learning rate is too small it leads to a very slow convergence being
stuck in local minima. On the other hand, if the learning rate is too high it leads to a
non-convergence system, so that it requires a careful selection.

Unfortunately, the gradient descent algorithm cannot be really applied for training
neural networks as it requires complex computations and all training dataset is involved
in each step, which is impossible to be applied. There is another algorithm called Mini-
batch Gradient Descent. In Mini-Batch Gradient Descent, the derivate is approximated
on a small mini-batch of the dataset, and is used to update the weights. Mini-batch is
not guaranteed to reach an optimal solution. But, if a small learning rate is chosen with
gradient descent, the loss is guaranteed to decrease every iteration.

On the other hand, computing exact derivatives for millions of parameters is hard
for a typical neural network model. Another way to calculate the derivatives is called
back-propagation, which gives a good balance between the results and computations.
The back-propagation method firstly computes the forward-propagation path in order to
compute the output. Secondly, the error values on the outputs are propagated backward
through the network, which is used to calculate the gradients and update all network
parameters [46].

In brief, the training process nowadays uses both concepts of forward-propagation
and back-propagation. The objective is not to have the minimum difference between the
current weight value and the desired weight, but reaching to minimum error (Lo0sS)
between the classification of the training data and the prediction are made by the neural
network.

Training of artificial neural networks is simplified in steps as follows:

Start by random weight initialization.

Split the dataset into batches with the same batch size.

Train the network with the batches, one by one.

Perform the forward-propagation to get the output with the values of the
current weight.

Compare the calculated output to the expected output and compute the loss.
Update the weights using backward-propagation with a decrement or
increment learning rate.

7. Repeat the process with other batches till finishing the training batches.

el A

oo

2.1.6. Neural Networks Inference

After performing network training, the model weights are saved to be used while
applying the model in its application. The inference phase is simpler than the training as
it just computes the forward-propagation path of the network, and evaluates the output
without going backward for back-propagation and so on. Training accuracies are
usually more than inference accuracies because the model fits the training data well and
all network weights are adjusted for it. However, researchers seek to keep the inference
accuracy so close to training accuracy.

15

2.2. Algorithm-Level Optimization Techniques

In this section, a brief review about popular techniques for efficient hardware
accelerator design using algorithm-level optimizations. These methods are addressed to
select the suitable ones for the proposed hardware accelerator. The studied techniques
are Weights pruning, quantization, weights sharing, Huffman coding, winograd
transformation, binary/ternary nets, and low-rank approximation.

1. Weights Pruning

Deep neural networks models consist of millions of parameters. Many of these
parameters are not important, and removing them can reduce the weights memory
storage greatly. This is called the weights pruning operation, which eliminate the
unnecessary connections. Figure 2.14 shows a simple example for a neural network
before and after pruning. The unnecessary synapses are pruned away which simplifies
the overall connections greatly. Eliminating these connections degrades the model
accuracy as the model connections are mutually dependent. Correspondingly, retraining
the remaining connections is necessary to recover the accuracy loss [57]. Figure 2.15
shows the accuracy loss versus the percentage of pruned parameters for pretrained,
pruned, and pruned/retrained models. It’s depicted from the figure that the accuracy
starts to decrease by increasing the percentage of pruned-away parameters. By
comparing the pruned-only model with pruned/retrained model, it’s clear that retraining
keeps the accuracy loss tends to zero while saving 80% of the model weights. The
pruning percentage decreases by increasing the model’s complexity, but this provides a
good example about the effect of retraining after weights pruning on the model size. It’s
worthy to mention that iterative retraining improves the accuracy more than one-stage
retraining.

Weights pruning makes a large change in the weights distribution. Basically, the
pruning suppresses the weights that tend to zero a shown in Figure 2.16 (b). Retraining
affect is shown in Figure 2.16 (c), which retrains the model weights to get a continuous
distribution and recover the accuracy loss.

before pruning after pruning

pruning
Synapses

pruning
neurons

Figure 2.14: Simple neural network before and after pruning

16

© Pruning Pruning+Retraining

0.5%
0.0%= LSl ¢ feufinliieel ittt Rl ity
o -0.5% Toe
8 -1.0%
- 15%
& 000
@ -2.0%
S5 -2.5%
8 3.0%
< . o
-3.5%
-4.0%
-4.5% v
40% 50% 60% 70% 80% 90% 100%
Parameters Pruned Away
Figure 2.15: Accuracy loss versus the number of pruned parameters for
pretrained, pruned, and pruned+retrained models.
10 de4 . . . 10 de4 . . : 10 {4
0.8 | 0.8 F 0.8
5 0657 _ 061 L _ 061
3 5 5
© o4/ 80.4- b 80‘4-
0.2 A 0.2 4 r 0.2 4
0.0 = " 0.0 + - 0.0 + L
-0.10 -0.05 . 0.00 005 0.10 -0.10 -0.05 0.00 005 0.10 -0.10 -0.05 000 005 0.10
Weight Value Weight Value Weight Value
(@) (b) (©)

Figure 2.16: Weights distribution changes with pruning. (a) Before pruning, (b)
after pruning, and (c) After retraining.

2. Quantization

Weights of deep learning models are usually represented with 32-bit precision,
which allocates a large size of memory. Representing these weights in a smaller
precision reduces the model size significantly. Moreover, quantizing the weights
reduces the accuracy directly, and accordingly, retraining is necessary for quantization
as the same as weights pruning. After applying weights pruning model, weights
quantization is used to shrink the precision from 32-bit to 4-bit. Iterative quantization is
preferred more than quantizing all the weights in one shot as it reduces the accuracy
loss by partitioning the weights iteratively. Figure 2.17 shows the weights distribution

17

5 [le3 i 5 5 3 led

3
€ =
> 3
o o
O 24 O
14
1
0 L 0 i ‘ | | |
-0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10
Weight Value Weight Value
(a) (b)

Figure 2.17: Weights distribution changes with quantization. (a) Before trained
guantization, and (b) After trained quantization.

before and after trained quantization. It’s clear that the quantization makes the weights
distribution as a discrete distribution with a few weights. In addition, these weights is
represented with fewer bits.

3. Weights Sharing

Weights sharing is usually used with trained quantization to improve the
quantization operation. Weights sharing operation generates a code book by clustering
the weights into few clusters. This is done by storing few effective weights in a code
book and let other weights share one of them. The operation flow can be summarized as
shown in Figure 2.18. The operation starts be clustering the weights. This clustering is
done by different methods such as k-means clustering. Secondly, a code book with the
new clusters is generated. Then, quantization is made with the code book. Finally,
retraining is required to recover the accuracy loss and then go back to quantization and
SO on.

Figure 2.19 shows a simple example for weights sharing operation. The example is
made on a hidden layer neural network with 16 weights. Firstly, the weights is clustered
into four groups with four different colors. Every cluster has its index which is used
instead of using the value itself. By this way, only two bits are required to represent the
index of the cluster. During the operation, the weight matrix on top left is converted to
cluster index matrix. The weight matrix has a gradient matrix on bottom left which is
grouped as shown on bottom middle matrix. Finally, the clusters centroids is updated
using reduced gradient matrix and so on.

4. Huffman Coding

Huffman coding is a lossless data compression algorithm that can code the non-
uniformly distributed values to save large memory storage. After quantizing the model,
many values of the weights are repeated frequently. Algorithms such as Huffman
coding [32] is utilized to represent the most frequent values in smaller bits and the least
frequent values in larger bits. Combining pruning, quantization, and Huffman coding
can obtain larger compression ratios.

18

{ N

Cluster the Weights

. >

<

r 3

Generate Code Book
\ y,
) L9
Quantize the Weigh
kwith Code Book

<z

Retrain Code Book

’

_

Figure 2.18: Weights sharing with quantization flow.

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

3 0 2 1 3:

cluster 1 1 0 3
0 3 1 0
3 | 2 2

gradient

group by

=

reduce

=

Figure 2.19: Weights sharing example.

19

5. Winograd Transformation

Winograd transformation is one of fast techniques to optimize the computation of
convolutions [58]. It’s simply transforms the convolution operation into point-wise
multiplication by replicating the filter elements. This transformation saves the required
multiplications for every single output. Figure 2.20 shows a simple example for
Winograd transformation. The input feature map size is 4x4, while the filter size is 3x3,
and the output feature map size is 2x2. If the conventional convolution operation is
used, it requires 9 multiplications per single output element. Consequently, it required
36 multiplications per single output feature map with size 2x2. On the other hand,
Winograd transformation extends the filter to 4x4 size and this saves the replicated
multiplications during the convolution operation. Correspondingly, only 16
multiplication operations are required for 2x2 output feature map with 2.25x fewer
multiplications.

6. Binary/Ternary Net

As the current deep neural networks consist of millions of parameters per model.
Many researchers have worked on reducing the precision of every parameter to the least
value as binary or ternary values. These neural networks are called Binary/Ternary net
with two weight values for binary nets or three weight values for ternary nets. This
algorithm is suitable for many applications that are trained on simple datasets like
MNIST or CIFAR. However, there is another work that can apply it with ImageNet
dataset and AlexNet CNN with acceptable top-1/top-5 error rates [59-60]. Figure 2.21
shows an example for neural network after retraining for ternary weights.

4x4 Tile

Z over C

Point-wise
Filter multiplication Output Transform
Filter Transform

Figure 2.20: Example for Winograd transformation.

6400
4800
3200-
1600 |

0

-0.05 0 0.05 -
Weight Value 1 0 1

Count
Il
vV

Figure 2.21: Retraining neural networks for ternary weights.

20

7. Low Rank Approximation

During the past decade, the size and depth of convolution neural networks tend to
increase to get higher classification accuracies and solve more complex problems.
However, the computational cost of these CNNs also increases significantly. The
computational cost makes the training and testing phases more complex. Low rank
approximation technique can be used to reduce this complexity. This is made by
decomposing large convolutional layer with d filters with filter size of k x k x ¢, where
k is the spatial size of the filter and c is the number of input channels of this layer. It’s
decomposed from one layer as shown in Figure 2.22 (a) to two layers as shown in
Figure 2.22 (b)

= A layer with d’ filters (k x k x ¢)
= A layer with d filter (1 x 1 x d")

By applying this technique, the computation complexity can be reduced from
0(dk?c) to O(d”‘zc) + 0(dd"). Correspondingly, the computations can be speed up
multiple times. In addition, this technique is proved to increase the classification
accuracy as well [61].

(a)

(b)

¢ channels d’ channels d channels

Figure 2.22: Low rank approximation example. (a) Original layer, (b)
approximated layer [61].

2.3. Hardware Design

In this section, common hardware design options are studied by reviewing several
implementations. Secondly, Popular Al ASIC chips are presented to give an example
for this type of implemenation. Moreover, FPGA overview is presented to show the
main building blocks and design flows. Finally, an overview about fixed-point
representation is presented as it will be used in the proposed hardware accelerator.

Hardware implementation options are categorized into different categories. The
first category is the general purpose hardware, which includes both CPUs and GPUs.

21

Secondly, specialized hardware category which has different types of categories, but
it’s mainly divided into ASIC chips and FPGA implementations. Every category has its
features, advantages, disadvantages, limitations, and others. Table 2.2 shows a
summary and comparison between all of them.

If CPUs, GPUs, FPGAs, and ASICs are compared in terms of flexibility, it is found
that the CPUs and GPUs are better due to the availability for supporting programming
languages and frameworks as shown in Figure 2.23. In contrast, ASICs are less flexible
as they require custom frameworks. While FPGAs are currently supported by several
framework such as OpenCL, but they require more development time. On the other
hand, the efficiency is the best while using ASICs as it uses fixed/custom logic as
shown in Figure 2.23. FPGAs come at next efficient type, but CPUs are the least
flexible hardware as it is designed as a general purpose platform.

Table 2.2: Comparison between Al hardware design methods

Design Type CPU GPU FPGA ASIC
Optimized
Traditional Parallel cores Configurable integrated
Main Features sequential for graphics logic gates and circuits for
processor processing IP cores specific
application
Power . . .
Consumption High High Medium Low
Highly parallel
cores used not
only for Flexibility,
graphics . A
. . reconfigurability, | Low power
Handling processing but o . .
specific design, | consumption,
Strengths complex also for Al .
. . . variety of speed, low
instructions processing, : :
resources: LUTS, footprint
a lot of
. DSPs, etc.
supporting
frameworks for
Al
Memory access Hiah bower High Cost,
. bottlenecks, gh pow Programming fixed logic,
Constraints consumption, . -
few parallel . complexity large time-
large foot print
cores to-market
Assembly OpenCL, C, .
Programming | languages, high | C++, Python, Vgrgg%LVI:IIEIS_, roClrJaSrfnTin
level languages | Nvidia CUDA P ’ prog g

22

FLEXIEILITY EFFICIEMCY

Figure 2.23: Flexibility versus efficiency for CPUs, GPUs, FPGAs, and ASICs

2.3.1. FPGAs Overview

FPGAs are one of the common hardware design methods that provide high
parallelism, optimized hardware, and real-time computation capabilities. FPGAs consist
of programmable logic gates and interconnections that enables reconfiguring them to do
specific functions. HDL (hardware descriptive languages) such as Verilog or VHDL are
mainly used to make a design on FPGA. However, there are different design flows on
FPGA like HLS (High Level Synthesis) and OpenCL (Open Computing Languages). In
this section, a quick overview about FPGA main blocks are presented, and FPGA
design flow is illustrated.

FPGAs contain an array of configurable logic blocks (CLBs), and a hierarchy of
reconfigurable interconnects that allow the blocks to be routed together. Also, FPGAs
contain memory elements, which may be simple flip-flops or more complete blocks
such as block RAMs or ultra-block RAMs. Figure 2.24 shows a simple schematic for
FPGA internal design.

los| 108 | [08| [i0B| [ioB| |ioB|

oa o oo o [foa Hoa

IIOB] |IOBI IIOBI [IOBI [IOB] |IOBI

Figure 2.24: FPGA Internal Design

23

= Configurable Logic Blocks (CLBs)

CLBs carries the logic for the FPGA. The block contains lookup tables (LUTS) for
creating arbitrary combinatorial logic functions, which are made of ROMs. Also, it
contains flip-flops for clocked storage elements, along with multiplexers in order to
route the logic within the block and from/to external resources. Figure 2.25 shows an
example for basic CLB block. For the modern FPGA today, CLBs contain enough logic
to create a small state machine.

= Block RAM

It is a dedicated block RAM for memory storage on FPGA without using FPGA
LUTSs. It serves as a relatively large memory structure, but much smaller than off chip
memory resources.

= DSP Cores

Digital Signal Processors (DSPs) are used in FPGAs for complex arithmetic
functions. They are specialized processors that are used to implement Multiply
Accumulate blocks in addition to video and audio processing.

= Programmable Interconnections

They are the main routes that can be used to connect CLBs with each other on the
FPGA. These interconnections are used as buses within the chip as shown in Figure
2.26. Transistors are used to turn on/off connections between different blocks.
Programmable switch matrices in the FPGA are used to connect the long and short
interconnections together. In addition, there are global clock interconnects which are
specially designed for low impedance and fast propagation clocks. These interconnects
are used to connect the clock buffers to clocked element in each CLB.

- Q2

G2

Gl

Fa—J

F3

F2

F1 —

K
(Clock)

Figure 2.25: Example of Configurable Logic Block (CLB)

24

CLB CLB

CLB CLB

Figure 2.26: FPGA programmable interconnections

= Configurable I/0 Blocks

A Configurable input/output (I/O) Blocks are used for input/output off-chip
connections. It consists of an input buffer and an output buffer with three-state and
open collector output controls as shown in Figure 2.27. Typically, there are pull up
resistors on the outputs and sometimes pull down resistors that can be used to terminate
signals and buses without requiring discrete resistors external to the chip. The polarity
of the output can usually be programmed for active high or active low output.

= Clock Circuitry

Clock circuitry is a special 1/0 block with special high drive clock buffers, known
as clock drivers. These buffers are distributed around the chip to connect drive the
clock signals onto the global clock lines. These clock lines are designed for low skew
and fast propagation.

= Embedded Cores

Embedded cores are added by the FPGA vendor as separate blocks to provide more
peripherals for the developers. The performance of these core do not depend on the rest
of the design since it doesn’t need to be placed and routed.

» FPGA Design Flow
Figure 2.28 shows FPGA design flow. The flow is summarized as follows:

1. Functional Specifications: system-level design is set and all specifications
are determined.

2. HDL coding: the HDL code is written, and then behavioral simulation is
done to make sure of the design functionality.

3. Synthesis: HDL is elaborated and synthesized into logic gates. This is
intermediate state before doing place & route step. At this step, static
timing analysis and estimate power consumption in addition to design
utilization can be calculated.

4. Place & Route: The design blocks and logic cells are placed on the FPGA
are routed together.

5. Download the bit stream: The HDL code is burned on the FPGA.

25

Local
Bus Open Slew
Collector Rate

Express Bus

Exit
Cell -
-

B
L1l Ag 4

LocalBus +
Express Bus

Express Bus <€—————

Entry o A
Cell 5

AE M
L2] TTL/CMOS
Express Bus €———

Local
Bus

Figure 2.27: FPGA configurable 1/Os.

Functional HDL Synthesis Place & Route Download &
Specification Verify in circuit

DD
gy

) Static Timing Static Timing
Behavioral Analysis Analysis
Simulation

Figure 2.28: FPGA Programmable interconnect

2.4. Literature Review

Hardware accelerators get a huge attention in different research areas through past
years. Researches compete to propose the best architecture or implementation for
different Deep Learning applications. As the proposed work is focused on CNNs, the
popular CNN hardware accelerators are investigated. The review firstly investigates the
popular FPGA implementations. Secondly, ASIC hardware accelerators are presented.
Finally, A review for previous GoogLeNet CNN hardware accelerators. After
presenting the review it becomes helpful to set the proposed architecture while avoiding
drawbacks of previous architecture and adding new features.

= FPGA Implementations

There are two popular high-level design flows of hardware accelerator
implementation. The first flow is high-level synthesis (HLS), and the second one is
Open Computing Language (OpenCL). They provide fast and easy hardware
implementation, but they have a lack of optimization and energy efficiency. These
high-level flows have been developed to build programs and execute them across
heterogeneous platforms, such as CPUs, GPUs, and FPGAs [22-24]. HLS is an
automated process to compile digital hardware circuits by synthesizing them. It enables
building and verifying the hardware by giving better control over the architecture [25-
27].

26

Aydonat proposes a new architecture written in OpenCL that minimizes external
memory bandwidth and maximizes data reuse [22]. Furthermore, Winograd algorithm
IS used to increase the data reuse and decrease the number of computations. The design
is implemented on Intel’s Arria 10, and processes 1382 GFLOPs. Aydonat’s hardware
accelerator achieves a performance of 23fps/W when running the AlexNet.

Jialiang’s hardware accelerator is another CNN hardware implementation based on
OpenCL on FPGA [23]. The design is implemented on Altera Arria 10 GX1150. It
achieves 866GOP/s floating-point performance at a frequency of 370MHz and
1.79TOP/s fixed-point performance at a frequency of 385MHz.VVGG is processed as a
case study with 28.1fps in floating-point representation.

Suda’s implementation is another OpenCL-based design on FPGA. It achieves a
peak performance of 136.5 GOPS for convolution operation, and 117.8 GOPS for the
entire VGG network that performs ImageNet classification. Both AlexNet and VGG are
tested on this design using two Altera Stratix-V FPGA platforms, DE5-Net and P395-
D8 boards, which have different hardware resources.

Zhang proposes a hardware accelerator for deep convolution neural networks [25].
This hardware accelerator is HLS design implemented on the VC707 FPGA board. In
addition, Software implementation runs on an Intel Xeon CPU E5-2430 with 15MB
cache. It achieves a peak performance of 61.62 GFLOPS at a frequency of 100MHz
with 18.6W FPGA power consumption.

fgpaConvNet is a framework for CNNs on FPGA based on HLS design [26]. This
fraemwork introduces FPGA reconfiguration as a design option for CNNs FPGA
implementations. The design is implemented on Zyng-7000 XC7Z020 FPGA at a
frequency of 100MHz. fgpaConvNet achieves 12.73GOP/s and 7.27 GOP/s/W, and
supports fixed-point as well as single and double precision floating-point
representations.

FINN is a framework for building fast and flexible hardware accelerators using a
flexible heterogeneous architecture [27]. It is designed especially for binary neural
networks on ZC706 embedded FPGA platform while consuming less than 25W total
system power. FINN has a 0.31pus latency on the MNIST dataset with 95.8% accuracy,
and 283ps latency on the CIFAR-10 and SVHN datasets with 80.1% and 94.9%
accuracy, respectively.

Moreover, many previous studies focus on accelerating the convolution layers of
CNN only. For example, in [28] and [29], the hardware accelerator processes several
convolution layers only rather than the full CNN while neglecting other CNN layers,
such as fully connected layers. Consequently, those accelerators are not suitable to be
deployed in low-power embedded applications.

= ASIC Implementations
EIE is an energy efficient inference engine that is developed by Stanford [64]. EIE
provides 120x energy saving more than the conventional processors. EIE has a peak

performance of 102GOP/s. It’s designed to work directly on a compressed CNN, but it
can process an uncompressed network with 3TOP/s. power consumption is 600mW.

27

EIE has two versions with 64PEs and 256PEs. The first version operates at a frequency
of 800MHz with power consumption 0.59W. The chip area is 40.8mm? with 45nm
technology and fixed-point 4-bit. The second version operates at a frequency of
1200MHz with power consumption 2.36W. The chip area is 63.8mm? with 28nm
technology and fixed-point 4-bit.

Eyeriss v1 is developed by MIT [63]. It uses row stationary (RS) datafow with 168
processing elements. Eyeriss processes the convolutional layers at 35fps for AlexNet at
278mW with batch size 4, and 0.7fps for VGG-16 at 236 mW with batch size 3. Chip
size is 16mm? with TSMC 65nm technology. The chip core operates from 100MHz to
250MHz with a peak throughput 16.8 to 42 GOP/s

Eyeriss v2 is the second generation for Eyeriss acelerator [21]. RS dataflow is
upgraded to RS+ dataflow with many improvements. A network-on-chip (NoC)
architecture is used for both multicast and point-to-point single-cycle data delivery. The
number of PEs can be varied and increased from 256 PEs to 16384 PEs. Eyeriss v2
shows a performance increase between 10:17x for 256 PEs, 37:71x for 1024 PEs, and
448:1086x for 16384 PEs.

DianNao accelerator is designed using CMOS technology of 65nm with an area of
3.02mmz2 [20]. It performs 452GOP/s of fixed-point operations in parallel with 0.485W
(excluding main memory accesses). This accelerator is 21.1x more energy-efficient
than a 128-bit SIMD core, and operates at 2GHz. However, the reported throughput is
the peak theoretical throughput only for some convolution layers without DRAM
access time, which degrades the speed and increases the power consumption.

= GoogLeNet Hardware Implementations

Snowflake accelerator [18] is able to achieve an average computational efficiency
of 91%, and is implemented on a Xilinx Zynq XC7Z045 APSoC. Snowflake is capable
of achieving 128GOP/s while consuming 9.48W of power. This work considers the
number of frames without the fully connected layers. Correspondingly, adding the fully
connected layers overhead degrades its throughput and increases its power
consumption. Moreover, it has high power consumption due to the usage of 1GB of
DDR3 memory in addition to two ARM cores running at 800MHz and one Kintex-7
FPGA. The entire design is operated at a frequency of 250MHz.

Another hardware accelerator that is designed by Zhao is synthesized by using the
TSMC 65nm CMOS technology and achieves a peak of 280.8GOPS/s [19]. Its core
area is 4.35mm? running at 650MHz with a power dissipation of 859mW. Convolution
layers implementation of popular CNNs shows a frame rate of 36.7fps for ResNet-34
and 179.5fps for AlexNet. Compared with the existing AlexNet accelerators reported in
recent years, this accelerator achieves 3.1x average area efficiency, 1.7x energy
efficiency, and 20% higher average computational efficiency. However, the input
image/feature data and filter weight parameters are transferred from the external off-
chip memory to the separated on-chip data buffer and parameter buffer. In addition, this
work considers the number of frames without the fully connected layers similar to [18],
and correspondingly adding this overhead degrades the throughput and increases its
power consumption.

28

CoNNA is another hardware accelerator that processes different types of CNNs
specially GoogLeNet [53]. CoNNA is implemented on Xilinx ZCU102 with three
different versions using different resources and operating frequencies. In contrast to
most existing solutions, CONNA process fully compressed CNN models, which gives it
more advantages than using uncompressed CNN models. CoNNA is designed as a
reconfigurable architecture that operates at 60MHz, 100MHz, and 200MHz
frequencies. CONNA_C3 is one of CoNNA versions that reaches a peak performance
with 17.325GOP/s and classifies 4.95fps for GoogLeNet.

The last implementation is Kalle inception module [62]. As discussed before,
GoogLeNet consists of 9 inception modules in addition to multiple layers such as 7x7
convolution, LRN, Averagepooling, fully connected, Softmax, and maxpooling layers.
But this work carries the implementation for inception module with size 14x14 on
Xilinx Artix7A200 FPGA. It achieves peak performance with 9.92 GFLOPS at
100MHz.

29

Chapter 3 : Memory Compression

3.1. Introduction

Increasing the model size has become a common trend within the development of
CNN models. These models have a huge number of weights that require large memory
storage. As stated by [30], 32-bit DRAM memory access requires 640pJ, which leads to
a fast battery drain of the embedded devices. Model compression techniques such as
weights pruning and weights quantization are improved to be deployed in these CNNs
models. On the other hand, deep neural networks consist of a dramatically large number
of connections between the neurons, which makes the model contains millions of
parameters. Many of these connections are not important, and removing them yields a
large compression of the model. Weights pruning is a processing operation that
removes unnecessary connections. Removing these connections degrades the model
accuracy as the model connections are mutually dependent. Correspondingly, retraining
the remaining connections is a mandatory step to recover the accuracy loss as in [30].
Consequently, model compression is applied for any type of deep learning models with
little accuracy degradation.

3.2. Related Work

Weights of deep learning models are usually represented with 32-bit precision,
which allocates a large size of memory. Representing these weights in a smaller
precision can compress the model significantly. Gong and Yunchao propose a method
for quantizing the weights during training using a codebook that results in a smaller
representation for the weights in terms of precision [31]. Moreover, quantizing the
weights reduces the accuracy directly, and accordingly, retraining is necessary for
guantization as the same as weights pruning.

After quantizing the model, many values of the weights are repeated frequently.
Algorithms such as Huffman coding [32] is utilized to represent the most frequent
values in smaller bits and the least frequent values in larger bits. Combining pruning,
quantization, and Huffman coding can obtain larger compression ratios. Applying
memory compression on neural networks is an open area of research. Many techniques
are proposed to deal with different models and achieve higher compression ratios.

In [30], a pruning pipeline is proposed that firstly retrains the model from scratch,
then performs the weights pruning iteratively, and retrains to compensate for the
accuracy loss due to the reduction of weights count. However, this model takes a large
retraining time due to its iterative pruning and training. Moreover, there is no chance
for the removed connections to be restored when it is found that they are essential. On
the other hand, [33] proposes a method of pruning and splicing the connections
simultaneously. By splicing, the removed connections can be restored. Moreover, its
running time is much shorter than previous work. Moreover, there are other pruning
methods that dynamically prune the channels of the network based on the input as in
[34]. For network compression, [35] proposes a method of weights incremental
quantization. The method operates till all weights become either zeros or power of 2’s.
As the pruning is applied before quantization, increasing the levels near zero can

30

further improve the compression results. Finally, compression pipelines are proposed in
[36], which consists of pruning, quantization, and Huffman coding. This helps to
achieve a large compression ratio.

3.3. GoogLeNet CNN

The proposed processor is designed to fit GooglLeNet inception CNN [17].
GoogLeNet CNN achieves higher inference accuracy while keeping the weights count
of ~6.9 Million only, which is a great improvement compared to previous CNNSs.
Moreover, the size of weights is cut down significantly. For many years, it is well-
known that the depth of the network should be increased to get higher accuracies,
especially the number of convolution layers. This has been a common direction till year
2014 when Szegedy proposed a new CNN network called GoogLeNet with the concept
of inception module as shown in Figure 3.1. In GoogLeNet, the depth and width of the
network have been increased, but the computational budget has been kept constant by
using the network-in-network concept. This concept uses additional 1x1 convolutional
layers to remove the network bottlenecks to help in dimension reduction. GoogLeNet
overcomes legacy CNNs such as AlexNet and VGG by getting the highest accuracy
with fewer weights.

GoogLeNet has 57 convolution layers and only one fully connected layer. The
computation workload is centered in convolution layers with 2.58G MACs.
Furthermore, the fully connected layer uses a huge number of weights per layer with
1.024M weights. Moreover, it has fourteen Maxpooling layers to reduce the input
feature map size. The network has one average pooling layer to reduce the input feature
map size before the fully connected layer. Finally, the softmax layer is used to get the
classification results in probabilistic values. Table 3.1 lists the detailed architecture and
design parameters of GooglLeNet.

3.4. GoogLeNet Training

GoogLeNet is built based on Szegedy work [17]. The network structure is built as
shown in Figure 3.1 with all layer sizes as mentioned in Appendix A. It is trained for
100 epochs on ImageNet Dataset. ImageNet is one of the most popular datasets which
have more than 1000 classes with 14 Million training images as mentioned in Appendix
B. Furthermore, the optimization is done with stochastic gradient descent using a
learning rate of 0.01, a momentum of 0.9, and a weight decay of 10**. Every 30 epochs,
the learning rate is divided by 10. The training accuracy is presented in the results
section.

3.5. Compression Model

GoogLeNet model is compressed with a combined framework of weights pruning
and quantization. The proposed framework consists of two stages which are selected
carefully after exploring all related memory compression methods. Firstly, the
framework applies the weights pruning based on dynamic network surgery work [33].
Secondly, the proposed hyper-framework quantizes the network iteratively based on the

31

Table 3.1: GoogLeNet analysis

GooglLeNet CNN Count
Convolution layers 57
Convolution layers in depth 21
Convolution workload (MACs) 2.58G
Convolution parameters 5.9M
Activation layer RelLU
Maxpooling layers 14
Average pooling layers 1
FC layers 1
FC workload (MACs) 1.024M
FC parameters 1.024M
Total workload (MACSs) 2.58G
Total parameters ~6.9M

incremental network quantization (INQ) framework [35]. The proposed framework is
built without applying Huffman coding to avoid overhead latency of Huffman decoding
while fetching the weights on the FPGA hardware. Figure 3.2 shows a summarized
flow chart for the used hyper-framework. Every framework for both weights pruning
and weights quantization will be discussed clearly in the following two sections:

3.5.1. Weights Pruning

Weight pruning is performed using a dynamic network surgery method [33].
Unlike the previous methods of alternating pruning and retraining, the dynamic
network surgery method performs connections pruning and splicing for the network
iteratively and implements the whole process dynamically. The method is tested before
on smaller datasets like MNIST and other CNN Models such as LeNet and AlexNet,
but it is applied for the first time on ImageNet dataset and GoogLeNet CNN model.

Weights pruning is performed on both, convolution layers and fully connected
layers into two steps. Firstly, convolution layers are pruned successfully, secondly the
fully connected layer. Dividing weights pruning operation is important to keep the
accuracy as it is proved experimentally that performing weights pruning in one step
causes some degradation on the overall accuracy. Dynamic network surgery method is
performed by applying pruning and splicing for the network iteratively as shown in
Figure 3.2. Firstly, activation masks are initialized for all weights to activate all of
them. The masks are set during the process to one or zero to activate or deactivate
them, respectively. During the forward-propagation, the masks are element-wise
multiplied by the weights, and the resulting outputs are used in the network. During
splicing, the values of the masks change according to weights mean, and standard
deviation. As a result, they might be reactivated for some weights to recover the
connections that are found to be important during retraining. This results in making
accuracy degradation insignificant. By using this method, a lot of model parameters are
trimmed and the classification accuracy will not be hurt too much.

32

?

Softmax
4
FC
4
Averagepooling
4
Depth Concat
Conv 1x1+1(s) Conv3x3+1(s) Conv 5x5+1(s) Conv 1x1+1(s)
4
Conv 1x1+1(s) Conv 1x1+1(s) Maxpool 3x3+1(s)
Depth Concat
S
P 4 0
Conv 1x1+1(s) Conv 3x3+1(s) Conv 5x5+1(s) Conv 1x1+1(s)
4 1 t
Conv 1x1+1(s) Conv 1x1+l(s) Maxpool 3x3+1(s) t
Softmax
+
Maxpool 3x3+2(s) =
1 +
Depth Concat FC
T
Conv 1x1+1(s) Conv 3x3+1(s) Conv 5x5+1(s) Conv 1x1+1(s) Conv 1x1+1(s)
4 1 t 4
Conv 1x1+1(s) Conwv 1x1+1(s) Maxpool 3x3+1(s) Averagepool 5x5+3(v)
L_Q’_.__-l N —
Depth Concat
Conv 1x1+1(s) Conv 3x3+1(s) Conv 5x5+1(s) Conv 1x1+1(s)
t t 4
Conv 1x1+1(s) Conv 1x1+1(s) Maxpool 3x3+1(s)
Depth Concat
A
’ t
Conv 1x1+1(s) Conv 3x3+1(s) Conv 5x5+1(s) Conv 1x1+1(s)
Softmax
1 t t :
Conv 1x1+1(s) Conv 1x1+1(s) Maxpool 3x3+1(s) =
4
Depth Concat FC
[;
Conv 1x1+1(s) Conv 3x3+1(s) Conv 5x5+1(s) Conv 1x1+1(s) Conv 1x1+1(s)

4 t t t
Conv 1x1+1(s) Conv 1x1+l(s) Maxpool 3x3+1(s) Averagepool 5x5+3(v)

Depth Concat

A
— 7

Conv 1x1+1(s) Conv 3x3+1(s) Conv 5x5+1(s) Conv 1x1+1(s)

1 t +
kCunv 1x1+1(s) Conv 1x1+1(s) Maxpool 3x3+1(s)
x__¥_14 R

Maxpool 3x3+2(s)

T

Depth Concat

Conv 1x1+1(s) Conv 3x3+1(s) Conv 5x5+1(s) Conv 1x1+1(s)
+ £ +
Conv 1x1+1(s) Conv 1x1+1(s) Maxpool 3x3+1(s)
Depth Concat
Conv Ix1+1(s) Conv3x3+1(s) Conv 5x5+1(s) Conv 1x1+1(s)
t t +

Conv 1x1+1(s) Conv 1x1+1(s) Maxpool 3x3+1(s)

Maxpool 3x3+2(s)

?

4
Conv 3x3+1(s)

?

LRN

f

Maxpool 3x3+2(s)

f
Conv 7x7+2(s)

Figure 3.1: GoogLeNet CNN network structure [17]

33

Pretrained Model

v

(Pruning

y

(Splicing)

4

(Update parameters

)
\

(Weights Pruning)
Dynamic Network Surgery

v

Pruned Model

v

N\
./

partitioning

4

Group-wise quantizatimD

A 4

\- J
v

((Pruned + Quantized) Model)

(Weights Quantization)
Incremental Network Quantization

Figure 3.2: The proposed memory compression model

Update parameters,
re-evaluate parameter importance:

Network pre-training: Update parameters:

Making pruning trials: Pruning and splicing:

Figure 3.3: Dynamic network surgery pruning method steps [33]

34

3.5.2. Weights Quantization

After applying weights pruning model, weights quantization is used to shrink the
precision from 32-bit to 4-bit. After analyzing multiple quantization frameworks,
Incremental Network Quantization (INQ) framework is used [35]. INQ is a group-wise
quantization that is performed by partitioning the weights into two groups iteratively.
Weights partitioning uses a pruning-inspired measure to split the two groups in each
layer based on their values. The first group is quantized to the target precision, and the
second group is retrained to compensate for the accuracy loss. Weights are iteratively
quantized to 4-bit with a value of zero or a number with a power of 2’s. All the weights
that tend to zero are quantized to zeros to keep the effect of the network pruning. The
number of quantization steps is increased at the end to avoid the sudden accuracy loss
at the end of the quantization. The process is simplified in Figure 3.4 where the
pretrained connections are colored with black, quantized connections are colored with
green, and retrained connections are colored with blue. Also, operation (1) represents a
single run of group-wise quantization and retraining. Moreover, operation (2) denotes
the repeating operation of operation (1). INQ iterates with the assigned steps where
every step takes some percentage of the weights to quantize it.

3.6. Compression Results

In this section, compression results are presented and some experiments on
compressing GooglLeNet are demonstrated. The model is firstly trained that trained
with ImageNet dataset based on [17] work, yielding a top-1 accuracy of 71.39%. The
reference model has ~6.9M weights with 32-bit precision. The training is made as
discussed in section 3.3. Secondly, weights pruning is made with dynamic network
surgery model as discussed in section 3.4.1. The model is pruned to have less than 1
million parameters only to fit in Virtex-7 FPGA without using off-chip DRAMs.
Consequently, the pruning is made aggressively to reach 7.2x compression ratio with a
top-5 error rate of 1.4% and top-1 error rate of 2.7% as listed in Table 3.2.

Finally, incremental network quantization is applied to the pruned model to reduce
the precision of weights from 32-bit to 4-bit. The removed connections are suppressed
to zeros, and the quantization is performed iteratively on the remaining weights. At
first, the accumulated partitions of quantized weights at iterative steps are set as
reference paper as [0.2, 0.4, 0.6, 0.8, 1], but there is a sudden drop in the classification
accuracy with 10% in top-1 accuracy.

5%, ... 100%

ONORON®)
©

Figure 3.4: Incremental network quantization steps [35]. (a) pretrained/full-
precision model, (b) updated model after one iteration, (c) Final quantized model

35

Table 3.2: Error rates and compression ratio for different compression models

Model Top-1error Top-3 error Top-5 error Comprc_assion
rate (%) rate (%) rate (%) ratio
Reference model 0 0 0 1x
Pruned model 2.7 1.7 1.4 7.2X
Hyper model 4.8 3.5 2.6 57.6x

this sudden drop happened because the model has many sparse weights and GoogLeNet
has large network width with fewer parameters than other CNNs such as AlexNet and
VGG. Therefore, the last steps starting from 80% quantization are increased to quantize
and retrain the remaining weights carefully. Consequently, the model is quantized using
percentages of [0.2, 0.4, 0.6, 0.8, 0.85, 0.9, 0.95, 1], which yields a loss of 4.8% for top-
1 error rate and 2.6% for top-5 error rate as listed in Table 3.2. Quantizing from 32-bit
to 4-bit leads to a compression ratio of 8x independently. Correspondingly, the hyper
model of the weights pruning followed by quantization compresses the model with
57.6x successfully, as shown in the compression chart in Figure 3.5.

Figure 3.6 shows the weights size reduction for each layer in the GooglLeNet
model for the plain model, pruned model, and quantized model with colors blue, gray,
and orange respectively. It is observed from the chart how the pruning firstly reduces
the number of weights with gray columns. Secondly, quantization makes a reduction
with 8x for every layer which is shown with the orange columns. Moreover, the fully
connected layer is the most compressed layer, as it has a huge number of weights that
tend to zero. On the other hand, 3x3 convolution layers come at the second most
compressed layers due to the large number of filters they have. Memory reduction for
every layer in Figure 3.1 is observed from Figure 3.6 by linking its name and location
from the CNN network to the weights compression chart.

60 57.6X
50
40
30
20

10 7.2X

1X

Reference Model Pruned Model Hyper Model {Pruning+Quantization)

Figure 3.5: Compression ratios after pruning and quantization

36

Jahke1 NND 19NB|B00D

000001
000002

o

conv7x7 P
conv3x3 [Er——"—

incepl_convlxl
incepl_conv3x3r =
incepl_conv3x3
incepl_conv5x5r |

incepl_conv5x5 [®
incepl_pool_proj P

incep2_convlxl ==
incep2_conv3x3r ==
incep2_conv3x3 [
incep2_conv5x5r P

incep2_conv5x5 [
incep2_pool_proj ™
incep3_convixl [
incep3_conv3x3r =
incep3_conv3x3 [
incep3_conv5x5r P

incep3_conv5x5 =
incep3_pool_proj ==
incepd_convixl ==
incepd_conv3x3r e
incepd_conv3x3 ——————
incepd_conv5x5r [
incep4_conv5x5 ==
incepd_pool_proj ==
incep5_.convixl ===
incep5_conv3x3r

00000€

incep5_conv3x3 [
incep5_conv5x5r
incep5_conv5x5 ==
incep5_pool_proj ==
incepb_convlxl ===
incep6_conv3x3r

incep6_conv3x3 [
incep6_conv5x5r =
incepb_conv5x5 ===
incep6_pool_proj ==
incep7_convlx] [—=
incep7_conv3x3r

Number of parameters

00000t

incep7_conv3x3 |
incep7_conv5x5r
incep7_conv5x5 [—
incep7_pool_proj =
incep8_convlxl [
incep8_conv3x3r [

incep8_conv3x3 [
incep8_conv5x5r ™=

incep8_conv5x5 [—
incep8_pool_proj [—

incep9_convixl [
incep9_conv3x3r

000008

000009

incep9_conv3x3 [
incep9_conv5x5r ==
incep9_conv5x5 [
incep9_pool_proj [—

00000L

000008

000006

0000001

uoneziyuenb saye @ Suiunad 1a3e @ Sulunid ai0j9q W

Fully Coonected [

Figure 3.6: Weights compression for GoogLeNet layers

37

Chapter 4 : Architectural Design and Implementation

This chapter presents the design and implementation for the proposed hardware
accelerator. The chapter gradually builds up the complete image of the full architecture.
This is done by presenting each block by showing its main features. The architecture is
built as a time-sharing processor that performs the computations for layers, batch by
batch. The processing flow is made depending on the accelerator’s control units and
CNN structure. The adopted parallelism techniques and loop tiling are firstly presented.
Secondly, the design of each unit is discussed in this chapter by showing its specs and
implementation. Some of the units are modified with new improvements. These
modifications are presented by comparing it with the older version. In addition, the
important data flow is presented to show how the data is moved and handled between
each unit. At the end of the chapter, several general modifications are made to improve
the proposed accelerator and make full use of observed enhancements after memory
compression results.

The proposed state-of-art processor consists of 256 memory banks, 224 parallel
elements for multiplications, weights memory, accumulator unit, Maxpooling unit,
average pooling unit, fully connected unit, softmax unit, buffers, and nine distributed
control units. Each unit is carefully designed and implemented in native RTL (Register
Transfer Logic) (Verilog) to achieve the best performance taking into account the
power consumption. The top-level diagram of the proposed architecture is shown in
Figure 4.1.

4 ¥
I'___I_T__' —
| I IFMap
Weights | cu - L =
| o = 5 =
| | - - = ———=——n
wan | || weigns | | || | (I = - - | e | ceumtr |
cu | Memory | |ewn| | OO = = =] w ||
[T ~ O3 * |
| s | weigs | [I - “ - e+ |
M Buff L3 i i
| e [(I - - < I - |
= - == N ;
| | [T - - e || une "1
LT —| [= = == | L |
- migﬁsmt_ - T Parallel FIFOs PE Cores Accuymlator

I l I AVG Adder GFST Dividers Summer
| Ma"éﬂ""“ >< / >l< >/< | REG ReG [|
| AVG File File Paralle]
, FC SoftMax coRDIC |
[I]:Ifﬂ:ﬂ] ooling 1 1} L
I [It[l]] ﬂ:ﬂfﬂl (L l | S cu Cores
cu I
| T - E e L
—— e — — — — — — — —— — | ——— — —— — — — — —| — — —]
MaxPooling Unit AvgPooling Unit Fully/connected Unit Softmax Unit
Vi J

Data signal
—
Control signal

Figure 4.1: Top-level diagram of the proposed architecture

38

4.1. Parallelism

As the CNNs have a huge number of computations in convolution and fully
connected layers. Computations parallelism is required to reach a short inference and
training times. There are different ways of parallelism in CNNs, such as Batch
parallelism, inter-layer parallelism, inter-feature map parallelism, inter-convolution
parallelism, and intra-convolution parallelism, as stated by [14]. Every hardware
accelerator adopts one or more of these types to speed up the processing. In the
proposed accelerator, 24 kernels of 3x3 convolution layers, nine kernels of 5x5
convolution layers, or four kernels of 7x7 convolution layers, are processed in parallel
as shown in Figure 4.2 and listed in Table 4.1. The following parallelizing techniques
are adopted:

= Inter-layer Parallelism

In inter-layer parallelism, the accelerator has a feed-forward hierarchical structure
that can process a succession of data-dependent layers. They are executed in a pipelined
fashion by executing a layer while preparing the next layer data to be processed. In this
way, the accelerator utilized area is decreased significantly, which makes it easy to fit it
on FPGAs or develop a low foot-print chip.

= Intra-Feature Map Parallelism

In intra-feature map parallelism, a group of output feature map pixels of a single
output feature map plane are processed in parallel, which reduces the required
processing time by acceleration factor x. This depends on output feature map and
kernel sizes.

= Intra-convolution Parallelism

The last adopted parallelism is the intra-convolution, in which the processing of 2D
convolution layers are implemented in a pipelined/parallel fashion.

Table 4.1: Required #PEs per kernel

Kernel size #PEs/kernel Cog;/(c:)cl)légon
7x7 convolution 49 00
3x3 convolution 9 01
5x5 convolution 25 10
1x1 convolution 1 11

39

MODE 2: 5X5 CONV MODE 1: 7X7 CONV

+ 5 > 5 > 5 > < 7 > 7 »

P pE| P pe PENPE| PE|PE| PE| PEPE|| PE| PE| PE | PE pe | pe | Pe | pe | pe | Pe | pEpe | PE| PE| PE| PE| PE| PE

Pe | pE | PE|PE PEf PE| PE| PE| PE| PERPE| PE| PE| PE|PE PE | PE| PE| PE | PE) PE | PE QPE | PE| PE | PE | PE| PE | PE

pe | pe | PE | e PEl PE | PE| PE| PE| PElPE|| PE| PE | PE | PE PE | PE | PE | PE| PE| PE| PElPE| PE| PE| PE| PE| PE| PE

Pe | Pe | PE | PE | PE PE | PE| PE| PE| PEllPE|| PE| PE | PE | PE PE | PE|PE|PE| PE| PE| PElPE| PE| PE| PE| PE| PE| PE

PE | PE | PE | PE | PE PE | PE| PE| PE| PEJ PE|| PE | PE | PE | PE PE | PE | PE| PE| PE| PE| PEPE| PE PE| PE| PE| PE| PE

pe | pe|PE|PE PEf PE| PE| PE| PE| PENPE|| PE| PE | PE | PE PE | PE| PE| PE | PE) PE | PEQPE| PEJ PE| PE | PE| PE | PE

Pe | Pe | PE | PE | PE PE | PE| PE| PE| PEllPE|| PE| PE | PE | PE PE | PE|PE|PE| PE| PE| PERPE| PE| PE| PE| PE| PE| PE

PE | PE| PE | PE| PE PE | PE| PE| PE| PEJ PE|| PE | PE | PE | PE PE | PE | PE| PE| PE| PE| PEQPE| PEJ PE | PE| PE| PE | PE

pe | pe | PE | PE PEf PE| PE| PE| PE| PEN PE|| PE| PE | PE | PE PE | PE| PE| PE| PE) PE| PEQPE| PEJ PE| PE| PE| PE | PE

PE | PE | PE | PE | PE PE | PE| PE| PE| PEJPE|| PE| PE | PE | PE PE| PE|PE|PE) PE) PE| PENPE | PE PE| PE| PE| PE| PE

pe | Pe | Pe | PE | PE PE | PE| PE| PE| PEJ PE|| PE | PE | PE | PE PE | PE|PE|PE) PE)PE| PENPE] PE PE| PE| PE| PE| PE -
PE | Pe | Pe | Pe | PE PE | PE| PE| PE| PEl PE|| PE| PE | PE | PE PE | PE | PE|PE| PE| PE| PERPE PE PE| PE| PE| PE| PE -
PE | PE | PE | PE| PEQ PE | PE || PE | PE | PE N PE | PE | PE | FE | PE PE| PE| PE| PE | PE| PE) PEQPE| PE) PE| PE| PE| PE | PE

pe | pe | Pe | pe | PEl PE | PE | PE| PE| PEl PE|| PE| PE | PE | PE pe | PE | PE | PE | PE| PE| PElPE | PE| PE | PE | PE| PE | PE

e pE| P pe PENPE| PE| PE| PE| PEPE|| PE| PE| PE | PE

MODE 3: 3X3 CONV MODE 4: 1X1 CONV
4+—3—>r4+—3—r4—3—>4+—3—>4+—3—>
0 PE |\ PE| PEQPE| PE | PEQPE || PE| PENPE | PE || PEJPE | PE | PE PE | PE | PE| PE| PE | PE PE| PE | PE | PE | PE| PE | PE | PE | PE
pe | pe | el PE | PE | PEPE | PE| PEMPE | PE | PE lPE | PE | PE PE | PE| PE| PE| PE| PE| PE | PE| PE| PE| PE| PE| PE | PE | PE
pe | PE | PEQ PE | PE| PE I PE | PE| PE I PE | PE | FE I PE | PE | PE PE | PE | PE| PE| PE| PEJ PE| PE | PE | PE | PE | PE | PE | PE | PE
pe | pE | pEMPE | PE| PEPE | PE| PEMPE | PE | PE I PE | PE | PE PE| PE| PE| PE| PE| PE| PE PE| PE| PE| PE| PE| PE| PE | PE
PE| PE| PENPE || PE|PENPE|PE| PERPE| PE| PEQPE | PE| PE PE| PE|PE| PE| PE| PEJ PE| PE| PE| PE) PE| PE| PE| PE | PE
pe | PE | el Pe | PE | PE P | PE| PEPE | PE | PE fIPE | PE | PE PE | PE| PE| PE| PE| PE| PE | PE| PE| PE| PE | PE| PE | PE | PE
pe | pE | pEMPE | PE| PE M PE | PE| PEMPE | PE | PE I PE | PE | PE PE| PE| PE| PE| PE| PE| PE PE| PE| PE| PE| PE| PE| PE | PE
G PE PE PENPE| PE|PElPE| PE| PERNPE PE| PEJPE| PE| PE PE | PE| PE| PE| PE| PEJPE| PE| PE| PE| PE| PE| PE| PE | PE
pe | pE | PElPe || PE| PEPE | PE| PEPE | PE | PE fIPE | PE | PE PE | PE| PE| PE | PE| PE| PE| PE| PE| PE| PE| PE| PE | PE | PE
pe | pe | pEfPe | PE| PEPE | PE| PENPE | PE| PEPE| PE| PE PE | PE| PE| PE| PE| PE| PE| PE| PE| PE| PE| PE| PE | PE | PE
pe | pe | PelPe | PE| PEPE| PE| PENPE | PE| PEIPE | PE| PE PE | PE| PE | PE | PE | PE| PE| PE| PE | PE| PE | PE | PE | PE | PE
pe | pE | PEPe | PE | PEPE | PE| PEMPE | PE | PEPE | PE | PE PE | PE| PE| PE| PE | PE| PE| PE| PE| PE| PE | PE| PE | PE | PE
PE| PE PENPE| PE|PElPE | PE| PERPE PE| PEJPE| PE| PE PE | PE|PE|PE|PE|PEJPE]PE| PE| PE| PE| PE| PE| PE | PE
pe |l PE PERPE| PE| PElPE| PE| PElPE PE| PEPE| PE| PE PE|PE|PE|PE|PE|PEJPE)|PE|PE]PE|]PE) PE|PE| PE| PE
v Pe | pe | PEPeE | PE| PERPE | PE| PEQPE | PE || PE I PE | PE | PE PE | PE| PE | PE | PE | PEJ PE | PE | PE | PE | PE | PE | PE | PE | PE

Figure 4.2: Different applied kernel sizes on PEs

There is a trade-off in the selection of the suitable number of parallel elements
(PEs) between the acceleration factor and the accelerator size. Firstly, an analysis of
GoogLeNet CNN layers is made to determine the suitable PEs count. GoogLeNet has
four different convolution kernel sizes, which are 1x1, 3x3, 5x5 and, 7x7 kernels. The
convolution opcode is represented by two bits to select the convolution type in different
blocks by the control unit as listed in Table 4.1. In addition, the number of PEs is
chosen to be 224 PEs that processes 224 kernels of 1x1conv

4.2. Loop Tiling

The capacity of buffers in FPGAs is not large enough to store all weights and
intermediate feature maps (FMs) of all CNN layers. Consequently, loop-tiling is used to
fetch the upcoming parts of feature maps in addition to kernel weights while processing
the currently loaded ones. Feature maps and kernels of convolution layers are batched
in a way that kernel weights are loaded only once, and FM tile is loaded once per batch.
This factorization is employed to increase the data reuse and computational throughput
as well.

Convolution layer pseudo-code for one layer is shown in Figure 4.3, which consists
of nested for-loops. The first two for-loop iterate over the output feature map rows and

40

columns. The U for-loop iterates over the output channels. Also, the for-loops of V and
iterates over input channels. Finally, the last two for-loops iterate over kernel rows and
columns.

Some loops are selected to be unrolled to speed up the processing and parallelize
the processing of certain iterations on the hardware. The number of parallelized
iterations is called the unroll factor. Selecting suitable unroll factors might lead to huge
hardware utilization. For the proposed processor, the for-loops of rows and columns are
completely unrolled. Moreover, the for-loops of feature map rows and columns are tiled
with a size of feature map row. The tile is reused by shifting the rows up by the stride
value and other rows are reused again. Finally, the output channel is parallelized by
processing multiple kernels and writing out multiple output pixels in parallel. In
addition, Figure 4.4 shows an example of input feature map (IFMAP) tile to PEs
fetching for 5x5 convolution. Parallel FIFOs reads a tile of five rows of IFMAP to start
5x5 convolution on PE cores. They are reused for multiple iterations, then FIFOs shifts
up all the rows and read a new row, then repeats the operation again and so on.

for (n=0; n<N; n++) { /output FM rows
for (m=0; m<M; m++) { /loutput FM columns
for (u=0; u<U; ut+) { /output channels
for (v=0; v<V; v++) { /finput channels
for (i=0; 1<K; i++) { //kernel rows
for (j =0; j<K; j++) { /lkernel columns
Fout[u][n][m+=Fin[v][S*n+i][S*m+j]*K[u][v][i][j]
SSSS |
Fout[u][n][m]+=bias[u]
§
Figure 4.3: Convolution layer pseudo code
_________ Al l=]= p
T TTTTITITL [5) == === aees i Bl Rk il M N ik M il M Il il Wi Bl B
(AN AN AR AR . pe | pe | pe | e § ope | pe | pe | Pe | pe | pe | e oPe | pe | P | P
Parallel FIFOs ““.‘ : : :E : : : i pe | pe | ope | pE || Pe : pe | PE
Feature MAP PE Cores

Figure 4.4: IFMAP tile to PEs — 5x5 convolution example

41

4.3. Memory Organization

Memory organization is one of the main challenges during accelerator design. As
discussed before, memory access requires careful handling and planning. The final
memory organization is set after analyzing several options and selecting the best
implementation. Firstly, the limited number of access ports of memory is overcome by
dividing the memory into 256 banks to read/write in parallel. Secondly, adding multiple
buffers resolves the stalls due to memory dependencies and fetching cycles. While the
proposed accelerator is built in a pipelined fashion, separate memories for weights and
temporary data are used. The proposed architecture consists of multiple hierarchy levels
of storage as follows:

= It consists of 256 Memory banks to save the partial summations during
computations. They are implemented in FPFGA BRAMs.
= Weights memory saves all weights of the CNN model. It utilizes 3Mb and are
implemented in FPGA BRAMs.
Weights Masks memory saves all weight masks. If the weight is a non-zero
value, its value is fetched from weights memory.
Weights buffer fetches the weights from weights memory and prepare it for
parallel fetching to processing unit.
IFMAPs buffer loads the feature maps from Memory banks and prepare them
for FIFOs.
Seven parallel FIFOs load complete seven rows from the input buffer. They
store it while convoluting them with filter kernels.
The internal register in each PE saves the loaded weight till the processing unit
(PU) finishes.

This mechanism results in high data reuse because it enables global fetching for all
loaded kernels with the same loaded feature map part on FIFOs. In addition, it empties
the input buffer to be able to load more IFMAPs. This mechanism is designed by
considering the latency of buffer loading to illuminate any stalls during convolution. As
it loads more values than the needed next row of IFMAP while convoluting the loaded
rows on FIFOs except 7x7 convolution as it has a stride with two, which shifts out two
rows every shifting up. Moreover, memory bottleneck is one of the two main
challenges that face the design of hardware accelerators. This is resolved by using 256
memory banks, and the processing unit became able to accumulate the partial sums of
all needed convolution sizes without the usage of intermediate buffers.

4.4. Weights Decompressing

Weights memory saves the weights with 12-bit word length. After performing
quantization on all weights, the weight’s word length became 4-bit, which makes the
memory be able to store 3x weights more than before. The weights buffer prepares the
weights for parallel shifting to the processing unit based on current convolution layer
sizes. After applying weights pruning on GoogLeNet model, the non-zero weights are
reduced from ~6.9 million to ~0.96 million weights. This reduction makes it possible to
use only FPGA BRAMs for weights storage, but memory decompression becomes a
mandatory step to decompress 0.96M to 6.9M during computations. Weights masks are

42

Uncompressed

Memory Masks
0
0
0.5
0 UCM PTR &—p>
Compressed
Memory

0.5 |<4—® CMPTR

LI T T I 1T 1T1] Jol~lole]

Figure 4.5: Masks map and weights decompressing

stored in the memory and they are checked each time to add a zero or non-zero value.
This operation is showed clearly in Figure 4.5 by a chart of the process. The weights
fetching scenario goes as follows, the weight control unit (WCU) checks the next bit
mask. If the bit is O, it writes a zero in the weights buffer. If it is equal to 1, the WCU
reads the weight value from the weights memory and writes it into the weights buffer.
The design is verified against any stalls because of weights fetching delays as the next
weights become ready while the processing unit is running the currently loaded
weights.

4.5. Processing Unit

The processing unit (PU) consists of 224 parallel elements, summation unit, bias
unit and PU control unit. The parallel element consists of one multiplier in addition to
two multiplexers as shown in Figure 4.6. The first multiplexer for weight input that
selects between the stored weight or a new value. The second MUX selects between
different FIFO fetched elements locations based on convolution kernel sizes, such as
1x1conv, 3x3conv, 5x5conv, and 7x7conv. The multiplier is built with simply shifting
right block as all input weights are quantized to multiple of 2’s number, less than one.

The summation unit is built of hierarchal adders to reduce the number of adders for
different convolution sizes. This is resolved by using 24 adders with 9-inputs only
instead of many adders with different input sizes.

The data flow while performing convolution computations is made with the
proposed mechanism to increase the data reuse. The input feature map is stored in the
input buffer, which in turn fetches the parallel FIFOs for every convolution patch. The
parallel FIFOs slide the convolution subregion to the PE cores every cycle till reaching
the end of row. Figure 4.7 shows and an example of 7x7 convolution where the parallel
FIFOs are fully used. As discussed before, the 7x7 convolution is accelerated by 4x
times by running 4 kernels at the same time. Figure 4.7 (a) shows the first write for 4
output feature maps. It is the first partial sum to be written which is fetched and added

43

with the new partial value. Secondly, Figure 4.7 (b) is the second write after shifting by
stride value with 2. The third case is in Figure 4.7 (c) where the convolution for the
currently loaded rows is finished, so the parallel FIFOs shift up the old two rows by
newer two rows, then load the last two rows. After shifting up, the FIFOs work usually
as shown in Figure 4.7 (a) and (b) by writing the partial sums to output feature maps,
but in the next rows.

4.6. Control Units

The controlling of the system is made based on eight distributed-hierarchal control
units (CUs) in addition to the main CU to simplify the controlling for each unit. Every
CU is controlled by the main CU. On the other hand, every unit’s CU controls all unit’s
related signals. Every CU is designed with a finite state machine that acts based on the
stored values in their memories. This makes it easier to adopt and run other CNNs by
changing the CU RAM values. The CUs are as follows:

Main CU

Processing unit CU

Partial sums accumulation CU
IFMAP fetching CU

Fully connected CU
Maxpooling CU

Average pooling CU

Softmax CU

ConvMode
4
InputZ_lQ—P\
Input2_2 gf—p| <
= —lp
Input2_3 @i <
o —P
Input2_4 |_— MUL [p—3-» Output
Inputl @ p| W a
Reg
[[] é
WrEn Clk EnPE

Figure 4.6: Parallel Element structure

44

F
I.]
) —p -
Parallel FIFOs
Input Feature MAP PE Cores Output Feature MAP
(a)
II-I
lu
Shift by Stride |
value 5=2
- ITTITIT
- - -
Parallel FIFOs
Input Feature MAP PE Cores Output Feature MAP
End of convoluting
Shift up by Stride value S b
“two rows” of feature map o
=]
[T r
OO S
LTI
INRRRRNRRRNRRRRNRRRNRRRRNRRRNNNEE)
- - -p
Parallel FIFOs
Input Feature MAP PE Cores Output Feature MAP
(c)

Figure 4.7: 7x7 Convolution example with parallel FIFOs and PE cores

4.7. Fully Connected Unit

As discussed before, FC layers are memory-centric. They usually contain millions
of weights, and each weight is used only once. Since each weight in FC layers is used
in one inference process only, it leaves no chance for reuse. The limited bandwidth
degrades the performance significantly as loading those weights might take a long time,
so it requires a careful design for this unit.

Firstly, a fast analysis of FC is presented. (4.1a) and (4.1b) represent a pseudo code
for the FC layer. The output of average pooling is 1024 activations, which is the N
value. It is stored in an intermediate buffer as input activations for FC, then it is fetched
to PU. The network is trained on the ImageNet dataset with 1000 classes, so the M is
equal 1000, which is the FC output.

45

=

M-1N-1
m

out,, = z WoynxAn + By (4.1a)

=0 0

S
1l

for (m=0; m <M; m++) {
for (n=0; n <N; j++) {
outy, += Wy, x A, }
out,+= B, (4.1b)

4.7.1. FC Memory Management.

Fully connected processing requires 256 weights every cycle in the proposed
design, which is not valid if they are fetched from weights memory directly. After
performing memory compression as discussed in memory compression chapter, a lot of
weights are suppressed to zero after weights pruning specially in the fully connected
layer. An analysis is made on fully connected weights to discover their weights values.
It is found that the number of non-zero weights per 256-tile does not exceed 32
weights. This make it easy to decompress 256 weights per cycle while knowing that
there are 32 non-zero weights by maximum. The decompression unit is implemented
and integrated with weights unit to use it while FC processing without any memory
stalls. Moreover, the input activations are fetched tile by tile with 256 tile size to PEs
and used for 1000 cycles before fetching the next tile. This leads to high data reuse for
activations instead of read/write them every cycle.

4.7.2. FC Computation Management

The parallel elements are used for FC multiplications with extra 32 shifting blocks
to make full use of the processing unit. The acceleration of FC is made for the inner
loop by processing a tile of 256 weight each cycle. Therefore, the inner loop is
processed in 4 cycles instead of 1024. Consequently, the fully connected layer is
accelerated by 256x than a single MAC unit. The tilling diagram is shown in Figure
4.8. The diagram illustrates the process of adopted FC computation. The flow is as
follows:

1. Every cycle, new 256 weights are fetched to PU.
2. Aninput activation tile is updated every 1000 cycles.
3

The multiplication is performed and forwarded to a parallel adder with 256
inputs. Finally, the adder’s output is saved to the output register file.

4. After the first inner loop of pseudo code in (1b) is completed, the output of
every summation is added to its corresponding value in the output register
file, and so on till finishing all tiles.

4.8. Maxpooling Unit
Maxpooling is used between convolution layers to reduce the spatial size of feature
maps. There are 14 Maxpooling layers in GoogLeNet. Maxpooling unit works on four

feature maps in parallel. Every unit consists of an input buffer, output buffer, and
comparators.

46

Input Activations FC Weights
1000

4
[l
v
y 5

A 4

Tile-4

Tile-3

Tile-2

Tile-1

—256— > 4¢—256— > ¢—256— P> 4—256—>»

bt (TS T T EITRRFT T T ORI

—256— > 4—256— P €—256— P> 4—256—>

RNV ANOR TR 0RO 03NN RO R CRR R RO
< 1000 >
FC Output

Figure 4.8: Fully Connected layer tiling diagram

At first, the data flow for Maxpooling worked by fetching a complete three rows
from every input feature map into the input buffer, then start sliding the subregion into
a 9-input comparator to get the final output in the output buffer. This way makes the
input buffer have a larger size in addition being busy for long time. Moreover, building
a 9-input comparator is an extra cost for utilized area.

The second data flow reads every input feature, row by row. This makes it easy to
build a smaller input buffer and start working immediately with input data. Also, the
comparator becomes smaller with 3-input only. The extra overhead is handling the
output buffer data as the written result every cycle is kept till completing all
comparisons. Firstly, the first comparator output is written as shown in case (a) of
Figure 4.9. Secondly, the next output of the second row is compared with previously
written value, then write the max as shown in the case (b) of Figure 4.9. Finally, the
next output of third row is compared with the written one while writing the max as
shown in case (c) of Figure 4.9. The final result becomes ready to be released and
written to memory banks again. Figure 4.9 case (d) is an example of sliding
Maxpooling subregion and writing a new output pixel to the output buffer. It is worth
mentioning that, case (a) always followed by case (d) while processing. As case (b) for
example comes while reading the second row of the input feature map. This solution is
more optimum, so it is used for four parallel Maxpooling blocks.

47

IEEEENEENEEEENEENENEENEEEENEEEEEN]

Input Feature MAP

Read row by row

IS EEEEEENEENEENEENEENEEENEEEEEN]

Input Feature MAP

Read row by row

=1

Input Feature MAP

Read row by row

IEEEEEENESNEENEENEENNENNEENEENEEN]

Input Feature MAP

Read row by row

3-Elements

mmp | Comparator
><

(a)

Output Feature MAP

3-Elements

mmp | Comparator
><

(c)

Output Feature MAP

3-Elements

mmp | Comparator
><

(c)

Output Feature MAP

3-Elements

mmp | Comparator
><

(d)

Output Feature MAP

Figure 4.9: Maxpooling data flow. (a) First part of comparator output, (b) Second
part of comparator output, (c) Third part of comparator output, and (d) first part
of second pixel comparator output

48

4.9. Local Response Normalization Unit

Local response normalization (LRN) is used to normalize the distribution of the
input activations by normalizing over local input regions. It depends on the activations
of adjacent kernels at the same layer [41]. This is made instead of computing mean and
deviation as performed by the batch normalization (BN) layer. LRN does not have any
learnable parameters and all computations are made between input activations as shown
in (4.2). The parameters (a, B, k, n) are set firstly y =0.0001, k=1, $ =0.75, and n=5.
The parameter n represents the number of input activations a,’c’y that is squared and
summed to compute the normalized activation. After investigating the LRN equation, it
needs a lot of computations to generate normalized activations. Squaring, division, and
powering blocks in addition to intermediate registers are needed, which takes up a large
area and power consumption to compute it.

Instead of building these large blocks, a software experiment is done on the
GoogLeNet model using the ImageNet testing set to get the average difference before
and after the LRN layer. This average difference is computed across input channels and
testing images. The average values are ranging from 0 to 0.006, which are added
randomly across input channels instead of making all this computation. The overall
accuracy does not affect as it is well known that the CNNs themselves add up noise
through different layers. This is proven experimentally by replacing LRN with a
randomizer using batches of testing images, every batch contains 128 images. The
overall accuracy is ranging from 0.02:-0.02, or does not change in several testing
batches. This is done by using the saved random values from the previous software
experiment.

i ey
by = minN-1i4D) ; (4.2)
j=max(0,i-3) (@x)")

4.10. Average Pooling Unit

The average pooling layer is added before the fully connected layer to reduce the
input feature map size to the fully connected layer to 1x1024 instead of 7x7x1024. It
simply adds up all pixels of every 7x7 feature map and divides it by 49. The unit works
on eight feature maps in parallel and stores the output in an intermediate buffer for the
fully connected layer.

4.11. Softmax Unit

Softmax unit is used to convert the output of a fully connected layer to probability
distributed values [40]. The unit consists of ten parallel CORDIC cores to compute the
exponential function. The unit stores exponential outputs again in the buffer while
computing their summation. After computing the summation of 1000 exponentials,
every exponential is divided by the summation and stored in the final output buffer. As
shown in (4.3), N is equal to 1000 as the number of classes is 1000 classes. The block
diagram is shown in Figure 4.10.

e%i

) = Tz om (43)

49

CORDIC Control
Block Unit

CORDIC
Block 4

REG : . N _| reG
™ fe : Sum Unit Divider ™ e A

CORDIC A +
Block

 J

CORDIC
Block

Figure 4.10: Softmax unit schematic

4.12. Processor Modifications

The DSP resources of the FPGA are firstly used to implement PEs multipliers,
which increased the power consumption while processing convolution and fully
connected layers. After memory compression and quantization, the weights are
quantized to 4-bit only, and they become one of a few distinct values. As a result, the
multiplication is made simply by shifting after decoding these weights based on the
decoding table in Table 4.2. This modification lets the processor be DSP-free, and the
power consumption of multipliers is saved as the conventional multipliers became a
simple rewiring instead of large conventional adders.

Furthermore, convolution kernels with equal size are processed at the same time,
which makes some of the parallel cores are unutilized during layers computations. This
is resolved by enabling the processing of multiple kernel sizes in parallel, which
increases the utilization of the cores. Finally, the time overhead for writing and reading
all padding pixels is skipped to save these cycles. Consequently, nearly 240,000 cycles
are saved for writing and thousands of cycles reading.

50

Table 4.2: Weights decoding table

Weight value Decoded code Shifting Sign
0.5 0001 >>1 +ve
0.25 0010 >>2 +ve
0.125 0011 >>3 +ve
0.0625 0100 >>/4 +ve
0.03125 0101 >>5 +ve
0.015625 0110 >>6 +ve
0.0078125 0111 >>7 +ve
-0.5 1001 >>1 -ve
-0.25 1010 >>2 -ve
-0.125 1011 >>3 -ve
-0.0625 1100 >>4 -ve
-0.03125 1101 >>5 -ve
-0.015625 1110 >>6 -ve
-0.0078125; 1111 >>7 -ve

51

Chapter 5 : Discussion and Results

In this chapter, the experiment of selecting the fixed-point precision is presented,
and the theoretical throughput is computed. In addition, the resource utilization of the
proposed processor is reported, and power consumption report by Vivado is presented.
Then, a comparison is made between Intel Core-i7 CPU, NVidia GTX 1080Ti GPU,
and the proposed accelerator by showing power consumption improvement. In addition,
a comparison between the proposed work and popular Al embedded accelerators such
as NVidia Jetson Nano and Intel Movidius is presented. Finally, a comparison between
the existing GoogLeNet implementations and the proposed accelerator is provided.

5.1. Selecting Fixed-point Precision

The effect of word length is tiny on the accuracy of convolutional neural networks
as stated in the literature [41-42]. 12-bit fixed-point arithmetic operators are used
instead of 32-bit word-length to reduce storage size and power consumption during
operations. Several experiments are held to select the suitable arithmetic operator width
while keeping the accuracy loss at least. The experiments are done on an epoch of 1024
images from the ImageNet dataset to see the effect of sweeping the word length. The
model is implemented in software by providing the maximum and minimum values that
are represented by the accelerator, and every output activation of each layer is
suppressed to zero or truncated to this word length. The first experiment is done to
select the integer part width. Width of 4-bit is selected for integer part to be able to
represent the maximum integer value, which keeps the accuracy without any loss. The
second experiment is done for the fractional part while fixing the integer part at 4-bit.
The second experiment loss is depending on the width of the fractional part.

Figure 5.1 shows the accuracy loss for top-1, top-3, and top-5 losses when using
16-bit to 9-bit fixed-points. The number of bits represents the whole word length. For
example, at 14-bit word length, the fractional part is 10-bit. The usage of 8-bit word
length gave the worst accuracy with a loss of nearly 30%. By increasing the length
gradually, the loss started to decrease to zero accuracy loss at 15-16 bits. It is observed
that using 12-bit width with giving 8-bit to the fractional part gives an accuracy loss
with 0.01 while keeping it multiple of 4’s. The word length reduction experiment is
done on the inference phase only to use it by the accelerator, so while training, all
values are represented by full precision.

5.2. Theoretical Throughput

On the other hand, theoretical throughput is calculated to compare it with the actual
throughput. Theoretical throughput is calculated as follows:

#convolution cycles/frame=
L kernel size

x OFMAP Size x #IFMaps (5.1)

=1 #parallel kernels

52

11.23
10.54

10
9.1

g
W
w1
o]
—
= 6
(8]
vl
S
=3
o
o
< 3
2.23
2 1.54
1.39 0.25 0.07 0.01 0.01 0.005
0.06 0-037,0.01 0.03 |0.01 0.01-/ 0.005 0 0
0
9 10 11 12 13 14 15 16

Fixed Point Precision (Bits)
Top 1 Accuracy Top 3 Accuracy Top 5 Accuracy

Figure 5.1: Accuracy loss versus fixed point precision

(5.1) calculates the needed number of cycles for all 57 GooglLeNet convolution
layers. Also, this count is added to the needed cycles for Maxpooling, average pooling,
fully connected, and Softmax layers processing. The overall theoretical throughput is
30.3fps at a frequency of 200MHz.

5.3. Design Testing

Design testing is an important step to validate the design functionality. Firstly,
testing for each independent unit are done by testing the unit with critical cases to
resolve any issue. The testing for each unit is done interactively to trace every signal
and try different inputs. The integration is performed gradually between the design
units as shown in Appendix C for the hardware accelerator units’ organization. Also,
interactive testing is done in every step. After integrating all units, a top-level test
bench is used to test and validate the proposed hardware accelerator. Testing images are
converted earlier to binary RGB format and written in separate files using Matlab. The
processing is enabled by the “Start CNN” signal after the “reset” signal goes down as
shown in Figure 5.2. The accelerator keeps running till finishing all layers, which is
identified by getting “ProcessorDone” signal high. Softmax layer is computed using
softmax unit, which runs till getting the highest class probability in addition to its class
number. “ClassPrediction” and “ClassNumber” become available after getting
“SoftMaxDone” signal high as shown in Figure 5.3. “ClassPrediction” is 12-bit fixed
point variable. As the class prediction is a probabilistic value, 1 bit is set for sign, 1 bit
for integer part, and 10 bits are set as fractional part. Moreover, “ClassNumber” is a 10-
bit integer variable that represent the class number from 0 to 999. Finally, the class
number is mapped to its class name on Matlab. Appendix D shows an example for
Image classification on the proposed hardware accelerator and the result is compared
with the software result on python model.

53

0000001
1010100
000000000000
0000000000

010101
010100

001101100111 000000000000
0110000010 0000000000

8 SoftMaxDone

Figure 5.3: Top-level signals at the end of processing

5.4. Area Utilization and Power Consumption

The proposed accelerator is implemented in native RTL (Verilog) on Virtex-7
FPGA. Xilinx Virtex-7 FPGA VC709 is a popular FPGA kit which is widely used in
high performance applications as presented in Appendix E. It is chosen due to several
reasons. Firstly, it has a huge number of logic cells of 693,120 cells. Secondly, memory
resources are important factor for selecting it with 52,920 Kb. There are 3600 DSP
slices, but they do not be used after converting all conventional multiplications into
shifting operations. There are other FPGA boards that have more resources, but with
higher price which are not available.

Table 5.1 shows the system utilization on the FPGA. Thanks to weights
quantization and compression, the accelerator is built with zero DSP units and on-chip
BRAMs only. Power consumption is one of the main factors that qualify digital
designs. Also, the design flavor for the proposed architecture is getting the best power
consumption. This flavor is followed in any trade-off during the implementation. All
optimization and approximation techniques invoked during this work have a huge
impact on the final power consumption.

Table 5.1: The proposed hardware accelerator utilization on Virtex-7 FPGA

Resource DSP BRAM LUT FF
Used 0 1134 407290 85927
Available 3600 1470 433200 866400
Utilization 0% 77% 94% 10%

54

Full simulation is made on Vivado to generate a SAIF file, which is used to report
an accurate power consumption without any estimations from the tool. SAIF stands for
Switching Activity Interchange Format. The SAIF file saves information about toggle
rates and static probability. After generating the SAIF file, it is imported in Vivado
after synthesis to be used for power reporting. The report is generated under default
conditions. As shown in Figure 5.4, the total on-chip power is nearly 3.9W with 0.45W
static power consumption and 3.47W dynamic power consumption.

5.5. Comparisons

The proposed accelerator works on a maximum frequency of 200MHz. A
comparison is made between Intel Core-i7 CPU, NVidia GTX 1080Ti GPU, and the
proposed accelerator. The comparison is made in terms of the operating frequency,
process technology, power consumption, performance (fps), and power efficiency, as
shown in Table 5.2. The results show that the proposed accelerator provides the best
performance in terms of the number of frames per Watt. The normalized power
efficiency is 6.4 frames/Watt for the proposed accelerator, 0.81 frames/Watt for NVidia
GTX 1080Ti GPU, and 0.128 frames/Watt for Intel Core-i7. It is worth mentioning that
the used FPGA is fabricated with 28nm technology, which consumes a power more
than 14nm and 22nm technologies. The proposed accelerator has 49.5x improvement
over Intel Core-i7 and 7.8x over NVidia GTX 1080Ti.

Power estimation from Synthesized netlist. Activity On-Chip Power
derived from constraints files, simulation files or r

vectorless analysis. Note: these early estimates can Dynamic: AW (
change after implementation. B s 0230 W
Total On-Chip Power: 392w 40% Signals: 1.382W (4
Design Power Budget: Not Specified 89% Logic: 1296 W (37
Power Budget Margin: N/A 37% BRAM: 0.502W (14
Junction Temperature: rq,e°C DSP: <0.001 W
Thermal Margin: 00,1°C (€1,0 W) 14% 1/0: 0.004 W
Effective GJA: /W

Power supplied to off-chip devices: 0 W L Device Static: DAty it

Confidence level: Medium

Launch Power Constraint Advisor to find and fix
invalid switching activity

Figure 5.4: Power report by Vivado using a generated SAIF file

Table 5.2: Comparison with other platforms

Intel NVidia GTX This work
Core-i7 1080Ti

Clock 3.1 GHz 1.5 GHz 200 MHz
Technology 22nm 16nm 28nm
Power (W) 15 106 3.92
Performance (fps/s) 1.92 85.83 25.1
Performance® (fps/s) 0.124 11.45 25.1
Power Efficiency (fps/W) 0.128 0.81 6.4

@ Normalized performance to 200 MHz frequency

55

The developers have started to use embedded Al accelerators for deploying their
deep learning applications. NVidia Jetson Nano and Intel Movidius NCS are from these
popular accelerators. Table 5.3 shows the comparison between the proposed hardware
accelerator, NVidia Jetson Nano, and Intel Movidius. Firstly, Jetson Nano is used to run
GoogLeNet using two frameworks: Caffe and TensorRT at a frequency of 920MHz
[49]. Caffe framework is widely used in deep learning development, while TensorRT
framework is developed by NVidia to accelerate the inference process. Secondly, Intel
Movidius NCS (Neural Compute Stick) runs GooglLeNet using Caffe framework at a
frequency of 933MHz [50]. All inference experiments are done with batch size 1. The
table shows that the proposed hardware accelerator overcomes Jetson Nano and Intel
Movidius while running with Caffe framework, but Jetson has a better performance
using TensorRT framework. The power consumption is 5W for Jetson and 3.92W for
the proposed design. Unfortunately, Intel Movidius power consumption for GoogLeNet
is not mentioned in the experiment. The power efficiency is the best for Jetson Nano
using TensorRT framework with 12 frames/Watt, but the proposed implementation is
better while using Caffe framework with 6.4 frames/Watt.

Another comparison is made between the proposed accelerator and GoogLeNet
hardware accelerators in the literature, as shown in Table 5.4. The first implementation
is Zhao’s hardware accelerator, which is an ASIC chip built with 65nm technology. The
second implementation is Gokhale’s FPGA implementation on Zynq XC7Z045. The
third implementation is CoNNA_C3 on Zyng ZCU102. The comparison is made
between the implementations in terms of the operating frequency, fixed-point precision,
process technology, power consumption, performance, and power efficiency, as shown
in Table 5.4. The results show that the proposed accelerator provides the best
performance in terms of the number of frames per Watt. In addition, it overcomes
Gokhale’s implementation in terms of peak performance and power consumption.
Gokhale’s implementation computes the number of frames per second for convolution
layers only, so it processes 27.2fps compared to 25.1fps for the proposed
implementation. In addition, Zhao’s implementation overcomes the proposed
accelerator in terms of GOP/s as it works on 650MHz. Also, it is an ASIC
implementation, so the power consumption is expected to be lower than the FPGA
implementations. Also, the proposed hardware accelerators overcomes the performance
of CoNNA_C3. The power consumption is not mentioned for CoNNA_C3
implementation, but it’s expected to be higher than the proposed implementation as it
uses offline DRAMSs and ARM processor with Zyng FPGA. While the other

Table 5.3: Comparison with popular embedded Al accelerators

NVidia NVidia Intel
Jetson Jetson Movidius | This work
Nano [51] | Nano [51] | NCS [52]

Framework Caffe TensorRT Caffe -
Frequency 920MHz 920MHz 933MHz | 200MHz
Power (W) 5 5 - 3.92
Performance (fps/s) 19 60 13.66 25.1
Performance® (fps/s) 413 13.1 2.93 25.1
Power Efficiency (fps/W) 3.8 12 - 6.4

M Normalized performance to 200 MHz frequency

56

implementations use a plain GoogLeNet CNN model, the proposed implementation
uses a compressed CNN model. This is one of the design advantages which improves
the power consumption as discussed earlier.

The data access patterns variations in CNNs make it difficult for custom
architectures to get higher utilization efficiency while processing all CNN layers.
Consequently, utilization efficiency is stated as the ratio of the actual number of
operations processed to the theoretical maximum number of the processed operations.
This is translated to the ratio of actual fps to the theoretical fps for a given CNN. Table
5.4 shows that the utilization efficiency is 83% for Zhao’s work, 91% for Gokhale’s
work, and 89% for this work. Also, the work of Zhao and Gokhale computes the
number of frames per second for convolution layer acceleration only, which is degraded

when FC and average pooling layers are added.

Table 5.4: Comparison with other GoogLeNet hardware accelerators

Zhao [19] | Gokhale [18] CON['Q'gA]—% This Work
ASIC Zynq Zynq Virtex-7

Platform TSMC | xc7zosas | zcuio2 | vcro9
Max Clock (MHz) 650 250 100 200
Precision 16-bit fixed | 16-bit fixed | 16-bit fixed | 12-bit fixed
Process Technology 65nm 28nm 16nm 28nm
Power 859mwW 9.48W - 3.92W
Peak Performance (GOP/s) 242.4 116.5 17.325 129.2
Power Efficiency (GOP/W) 282 12.3 - 32.7
Power Efficiency (fps/W) - 2.87 - 6.4
Performance® (fps) 23.6 27.2 4.95 25.1
Utilization efficiency 83% 91% - 89%

1 Normalized performance to 200 MHz frequency

57

Conclusion

Contributions

In this thesis, a power-efficient convolutional neural networks accelerator based on
GoogLeNet CNN was proposed. Weights pruning and quantization were applied, which
reduced the memory size by 57.6x with a top-5 accuracy loss of 2.6%. As a result, only
FPGA BRAMs were used for weights and activations storage without using offline
DRAMs. The compression model was explained in details, and the reduction for every
GoogLeNet layer was presented. In addition, this accelerator used zero DSP units as it
replaced all multiplications by shifting operations.

The hardware accelerator was built based on a time-sharing/pipelined architecture
that could process the CNN model layer by layer. The architecture proposed a new data
fetching mechanism that increased data reuse. Moreover, it used only 224 PEs. All
accelerator units were implemented in native RTL (Verilog), and all control units could
be reconfigured to process other CNNs successfully. Several optimization and
approximation techniques were adopted to improve the design with a little loss in the
accuracy.

Moreover, several improvements were applied lately, such as increasing cores
utilization or skip padding cycles. A word length of 12-bit was used after performing
several experiments to select a suitable word length. The proposed hardware accelerator
classified 25.1 fps for GoogLeNet inference using 3.92W with a power-efficiency
improvement more than the previous FPGA implementations for GoogLeNet. It
provided 49.5x power-efficiency improvement over Intel Core-i7 and 7.8x over NVidia
GTX 1080Ti. On the other hand, the proposed design processed the fully connected
layer with 256x more than a single MAC unit. The proposed hardware accelerator
achieved a top-5 classification accuracy of 91%, which was significantly higher than
comparable architectures.

Future Work

Regarding future work, the control units in the proposed hardware accelerator can
be reconfigured to process other CNN models such as ResNet or SqueezeNet. Also, the
memory compression framework can be applied on the new CNN software model to get
the proposed design benefits. In addition, the ASIC implementation can be made to get
better performance in terms of power consumption, processing speed, and utilized area.

58

List of Publications

1.

A. J. El-maksoud, M. Ebbed, A. H. Khalil, and H. Mostafa, “Power Efficient
Design of High-Performance Convolutional Neural Networks Hardware
Accelerator on FPGA: A Case Study with GoogLeNet,” in IEEE Access, vol. 9, pp.
151897-151911, 2021.

A. J. El-maksoud, et al., “FPGA Design of High-Speed Convolutional Neural

Network Hardware Accelerator,” in 3rd Novel Intelligent and Leading Emerging
Sciences Conference (NILES), pp. 376-379, 2021.

59

https://www.sciencedirect.com/science/article/abs/pii/S0026269218310024?via%3Dihub#!

10.

11.

12.

13.

14.

15.

16.

References

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in Neural Information Processing
Systems (NIPS), vol. 25, no. 2, 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in Proc. Int. Conf. Learn. Representations, 2015.

J. Mutch and D. G. Lowe, “Multiclass object recognition with sparse localized
features,” IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR'06), pp. 11-18, 2006.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, and M. Bernstein, “Imagenet large scale visual recognition
challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211-
252, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770-778, 2016.

Y. Lee, H. Kim, E. Park, B. Yim, and H. Kim, “Optimization for object detector
using deep residual network on embedded board,” in IEEE Int. Conf. Consum.
Electron., pp. 0-3, 2016.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 580-587, 2014.

S. Tamura et al., “Audio-visual speech recognition using deep bottleneck features
and high-performance lipreading,” Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA), pp. 575-582, 2015.

S. Ramos, S. Gehrig, P. Pinggera, U. Franke and C. Rother, “Detecting unexpected
obstacles for self-driving cars: Fusing deep learning and geometric modeling,”
IEEE Intelligent Vehicles Symposium (1V), pp. 1025-1032, 2017.

B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, et al., “An
empirical evaluation of deep learning on highway driving,” arXiv:1504.01716,
Apr. 2015.

A. Khan, A. Sohail, U. Zahoora and A. S. Qureshi, “A survey of the recent
architectures of deep convolutional neural networks,” arXiv:1901.06032, Jan.
2019.

J. Hoffmann, O. Navarro, K. Florian, B. Janfen, and H. Michael, “A survey on
CNN and RNN implementations,” IARIA, no. ¢, pp. 33-39, 2017.

E. Nurvitadhi et al., “Can FPGAs beat GPUs in accelerating next-generation deep
neural networks?” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
pp. 5-14, 2017.

K. Abdelouahab, M. Pelcat, J. Serot and F. Berry, “Accelerating CNN inference on
FPGAs: A survey,” arXiv:1806.01683, 2018.

A. Shawahna, S. M. Sait and A. ElI-Maleh, “FPGA-based accelerators of deep
learning networks for learning and classification: A review,” IEEE Access, vol. 7,
pp. 7823-7859, 2019.

K. Guo, S. Zeng, J. Yu, Y. Wang and H. Yang, “A survey of FPGA-based neural
network inference accelerator,” ACM Trans. Reconfigurable Technol. Syst., vol.
12, no. 1, pp. 1-26, 2019.

60

17

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., pp. 1-9, 2015.

V. Gokhale, A. Zaidy, A. X. M. Chang and E. Culurciello, “Snowflake: An
efficient hardware accelerator for convolutional neural networks,” in I|IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1-4, 2017.

Zhao, B., Li, J., Pan, H.,, and Wang, “A high-performance reconfigurable
accelerator for convolutional neural networks,” in ICMSSP, pp. 150-155, 2018.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning,” in
Proc. 19th Int. Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS), pp.
269-284, 2014.

Y. Chen, T. Yang, J. Emer and V. Sze, “Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 292-308, June 2019.
U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling and G. R. Chiu, “An OpenCL
deep learning accelerator on arria 10,” in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays, pp. 55-64, 2017.

J. Zhang and J. Li, “Improving the performance of OpenCL-based FPGA
accelerator for convolutional neural network,” in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, pp. 25-34, 2017.

N. Suda et al., “Throughput-optimized OpenCL-based FPGA accelerator for large-
scale convolutional neural networks,” in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays, pp. 16-25, 2016.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, “Optimizing FPGA-based
accelerator design for deep convolutional neural networks,” in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays, pp. 161-170, 2015.

S. I. Venieris and C.-S. Bouganis, “FPGAConvNet: A framework for mapping
convolutional neural networks on FPGA,” in Proc. IEEE 24th Annu. Int. Symp.
Field-Program. Custom Comput. Mach. (FCCM), pp. 40-47, May 2016.

Y. Umuroglu et al., “FINN: A framework for fast scalable binarized neural
network inference,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
pp. 65-74, 2017.

S. Chakradhar, M. Sankaradas, V. Jakkula and S. Cadambi, “A dynamically
configurable coprocessor for convolutional neural networks,” in Proc. 37th Annu.
Int. Symp. Comput. Archit. (ISCA), pp. 247-257, 2010.

M. Sankaradas et al., “A massively parallel coprocessor for convolutional neural
networks,” 20th IEEE International Conference on Application-specific Systems,
Architectures and Processors, pp. 53-60, 2009.

S. Han, J. Pool, J. Tran and W. Dally, “Learning both weights and connections for
efficient neural network,” in Proc. Adv. Neural Inf. Process. Syst., pp. 1135-1143,
2015.

Y. Gong, L. Liu, M. Yang and L. Bourdev, “Compressing deep convolutional
networks using vector quantization,” arXiv:1412.6115, 2014.

D. A. Huffman, “A method for the construction of minimum-redundancy codes,”
in Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, Sept. 1952.

Y. Guo, A. Yao and Y. Chen, “Dynamic network surgery for efficient DNNS,” in
Proc. Adv. Neural Inf. Process. Syst., pp. 1379-1387, 2016.

A. Zhou, A. Yao, Y. Guo, L. Xu and Y. Chen, “Incremental network quantization:
Towards lossless CNNs with low-precision weights,” arXiv:1702.03044, 2017.

61

35

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49,

50.
51.

52.

53.

X. Gao, Y. Zhao, L. Dudziak, R. Mullins and C.-Z. Xu, “Dynamic channel
pruning : Feature boosting and suppression,” in Proc. Int. Conf. Learn. Represent.,
pp. 1-14, 20109.

S. Han, H. Mao and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning trained quantization and Huffman coding,”
arXiv:1510.00149, 2015.

S. Mittal, “A survey of FPGA-based accelerators for convolutional neural
networks,” Neural Comput. Appl., vol. 32, no. 4, pp. 1109-1139, Feb. 2020.

K. Guo, S. Zeng, J. Yu, Y. Wang and H. Yang, “A survey of FPGA-based neural
network inference accelerator,” ACM Trans. Reconfigurable Technol. Syst., vol.
12, no. 1, pp. 1-26, 2019.

K. Lee, S. H. Sung, D. Kim and S. Park, “Verification of normalization effects
through comparison of CNN models,” in International Conference on Multimedia
Analysis and Pattern Recognition (MAPR), pp. 1-5, 2019.

C. E. Nwankpa, W. Jjomah, A. Gachagan, and S. Marshall, “Activation functions :
Comparison of trends in practice and research for deep learning,”
arXiv:1811.03378, 2018.

J. L. Holi and J. Hwang, “Finite precision error analysis of neural network
hardware implementations,” IEEE Transactions on Computers, vol. 42, no. 3, pp.
281-290, March 1993.

D. Larkin, A. Kinane, and N. O’Connor, “Towards hardware acceleration of
neuroevolution for multimedia processing applications on mobile devices,” I. King,
J. Wang, L. Chan, and D. L. Wang, editors, ICONIP (3), volume 4234 of Lecture
Notes in Computer Science, pages 1178-1188, Springer, 2006.

M. Svensén and C.M. Bishop, “Pattern recognition and machine learning,”
Springer, pp. 101, 2009.

X. Glorot, A. Bordes and Y. Bengio, “Deep Sparse Rectifier Neural Networks,” in
Proc. Conf. Artificial Intelligence and Statistics, 2011.

M. C. Popescu, V. E. Balas, L. Perescu-Popescu and N. Mastorakis, “Multilayer
perceptron and neural networks,” WSEAS Transactions on Circuits and Systems,
vol. 8, no. 7, pp. 579-588, 20009.

M. A. Nielsen, “Neural Networks and Deep Learning, Determination Press,” 2015,
[online] Available: http://neuralnetworksanddeeplearning.com/.

S. Khan, H. Rahmani, S. A. A. Shah and M. Bennamoun, “A guide to
convolutional neural networks for computer vision,” Synth. Lectures Comput. Vis.,
vol. 8, no. 1, pp. 1-207, 2018.

Y. Lu, “Artificial intelligence: A survey on evolution models applications and
future trends,” J. Manag. Analytics, vol. 6, no. 1, pp. 1-29, 2019.

“NVIDIA Jetson Nano,” [Online]. Available: https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-nano, 2019.

“Intel Movidius VPU,” [Online]. Available: https://www.movidius.com/, 2017.
“Running TensorRT Optimized GoogLeNet on Jetson Nano,” [Online]. Available:
https://jkjung-avt.github.io/tensorrt-googlenet/, May 2019.

“Deploying Customized Caffe Models on Intel Movidius,” [Online]. Available:
https://movidius.github.io/blog/deploying-custom-caffe-models/, Jan. 2018.

R. Struharik, B. Vukobratovi¢, A. Erdeljan and D. Rakanovi¢, “CoNNA -
Compressed CNN Hardware Accelerator,” 21st Euromicro Conference on Digital
System Design (DSD), pp. 365-372, 2018.

62

54

55.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

C. Szegedy, V. Vincent, S. loffe, J. Shlens and Z. Wojna, "Rethinking the
inception architecture for computer vision”, Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., pp. 2818-2826, Jun. 2016.

K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image
recognition”, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 770-778, Jun.
2016.

F. N. landola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally and K. Keutzer,
“SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and < 0.5 MB
Model Size,” arXiv:1602.07360, 2016.

Song Han, Jeff Pool, John Tran, and William J. Dally, “C Learning both weights
and connections for efficient neural networks,” In Proceedings of the 28th
International Conference on Neural Information Processing Systems (NIPS'15),
Vol. 1, pp. 1135-1143, 2015.

A. Lavin and S. Gray, “Fast algorithms for convolutional neural networks,” Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., pp. 4013-4021, Jun. 2016.

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio,
“Neural networks with few multiplications,” arXiv:1510.03009, 2015.

C. Zhu, S. Han, H. Mao and W. J. Dally, “Trained ternary quantization,” Proc. Int.
Conf. Learn. Represent. (ICLR), 2017.

X. Zhang, Jianhua Zou, Xiang Ming, K. He and J. Sun, “Efficient and accurate
approximations of nonlinear convolutional networks,” IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1984-1992, 2015.

K. NGO, “FPGA hardware acceleration of inception style parameter reduced
convolution neural networks,” M.Sc. thesis, KTH royal institute of technology,
sweden 2017.

Y.-H. Chen, T. Krishna, J. S. Emer and V. Sze, “Eyeriss: An energy—efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE J. Solid-
State Circuits, vol. 52, no. 1, pp. 127-138, Jan. 2017.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, et al., “Eie: efficient
inference engine on compressed deep neural network,” in Proceedings of the 43rd
International Symposium on Computer Architecture, IEEE Press, 2016.

63

Appendix A: GoogLeNet Layer Details

Table A.1: GoogLeNet layer details [17]

type ‘ pa ;::;Lw 0::::‘ | depth ‘ #1x1 tii:::g F#F#3x3 ig:c: F#5x5 :::;: ‘ params ‘ ops
convolution TXT/2 112x112x64 1 27K 34M
max pool 3x3/2 56 x 56 x 64 0
convolution 3x3/1 56 x56x192 2 64 192 112K 360M
max pool 3x3/2 2828} 192 0
inception (3a) 28 x28x 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28X 28x 480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x14x480 0
inception (4a) 14x14%512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x%512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x%512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x 832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 7TxTx832 0
inception (5a) TXTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TxTx1024 2 384 192 384 48 128 128 1388K TIM
avg pool TXT/1 1x1x1024 0
dropout (40%) 1x1x1024 0
linear 1x1x1000 1 1000K M
softmax 1x1x1000 0

64

Appendix B: ImageNet Dataset

Existence of huge datasets plays a vital role in the development of efficient
computer vision algorithms using deep neural networks. In the early stages of artificial
intelligence revolution, the availability of datasets have delayed the evolution of many
algorithms till starting of internet revolution and Big Data.

ImageNet plays this role effectively which provided an open access dataset for the
researchers and developers to develop more efficient applications. It's a huge database
for over 14 million images. It has been originally created for computer vision research.
However, it is used later in both industrial and research purposes. Moreover, it has been
the first large scale image dataset over the world. Images are organized and labelled in
main classes as shown in Figure B.1. Images are organized into 27 high-level categories
with 21,841 subcategories. So that, ImageNet is a well-organized database that is used
to benchmark machine learning models and algorithms.

The proposed hardware accelerator is designed to process GoogLeNet CNN.
GoogLeNet CNN is firstly trained using ImageNet Dataset for 1000 standard classes.
Both training and validation dataset of ImageNet have been firstly used. Finally, testing
dataset is used to evaluate the model inference accuracy.

ﬂ
ml ﬁﬂ ’5

mammal — p!acental — carnivore — canine — dog

vehxcle — craft — watercraft — sailingvessel — sailboat —— trimaran

Figure B.1: A snapshot for ImageNet Dataset

65

Appendix C: Project Organization

This appendix shows the project organization for Verilog files on Vivado. It gives
a closer view for the proposed hardware accelerator blocks arrangement.

~ @ 2 CNN_Processor (CMNMN Processorv) (9)
® MainControlUnit : MainControlUnit (MainControlUnit.y)
> @ CacheMem : CacheMemory (CacheMemory.v) (1)
® IFMAPControlUnit : IFMAP_CU (IFMAP_ClU.y)
~ @ PU: ProcessingUnit (ProcessingUnityv) (4)
> @ FetchUnit: InBuff_CU_FIFOs (Buff_FIFOs.v) (9)
> @ PEsCore : PECores (PECores.v) (224)
> @ PE_FCCores: PE_FCCores (PE_FC_Coresy) (22)
> @ AdderTree : AdderTree (AdderTreey) (24)
> @ Accum : Accumlator (Accumlatory) (2)
~ @ WeightsUnit : WeightsUnit (WeightsMemory.v) (4)
® WeightsMem : WeightsMem (WeightsMem.v)
® MasksROM : MasksROM (MasksROM.v)
® WeightsBuff : WeightsBuffer (WeightsBuffer.yv)
> @ FCWeightsFetcher : FCWeightsFetcher (FC\WeightsFetchery) (129)
@ ImageWritingBlock : ImageWritingBlock (ImageWritingBlocky)
~ @ MaxPooling : MaxPooling (MaxPooling.v) (5)
> @ MaxPoolUnit1 : MaxPoolUnit (MaxPoolUnity) (3)
> @ MaxPoolUnit2 : MaxPoolUnit (MaxPoolUnity) (3)
> @ MaxPoolUnit3 : MaxPoolUnit (MaxPoolUnity) (3)
> @ MaxPoolUnitd : MaxPoolUnit (MaxPoolUnity) (3)
® MaxPoolingCU : MaxPoolingCU (MaxPoaolingCU.v)
~ @ AuxailaryConnection : AuxailaryConnection (AuxiliaryConnectiony) (3)
> @ AveragePoolingUnit : AveragePoolingUnit (AveragePoolingUnity) (2)
> @ FullyConnectedUnit : FullyConnectedUnit (FullyConnectedUnityv) (3)
> @ SoftMaxUnit : SoftMaxUnit (SofthMaxUnity) (4)

Figure C.1: A snapshot for top-level project organization in Vivado

66

~ @ PU: ProcessingUnit (ProcessingUnitv) (4)
~ @ FetchUnit : InBuff_CU_FIFOs (Buff FIFOs.v) (9)
@ PU_CU:PU_CU (ProcessingUnit_CU.v)
@ INBuff : InputBuffer (INBUff.y)
@ FIFO1 : SingleFIFO (SingleFIFOV)
@ FIFO?2 : SingleFIFO (SingleFIFO.V)
@ FIFO3 : SingleFIFO (SingleFIFO.w)
@ FIFO4 : SingleFIFO (SingleFIFO.V)
@ FIFOS : SingleFIFO (SingleFIFOw)
@ FIFO6 : SingleFIFO (SingleFIFOY)
@ FIFO7 : SingleFIFO (SingleFIFO.W)
» @ PEsCore : PECores (PECoresy) (224)
> @ PE_FCCores : PE_FCCores (PE_FC_Coresw) (32)
> @ AdderTree : AdderTree (AdderTreey) (24)

Figure C.2: A snapshot for processing unit organization in Vivado.

~ @ MaxPooling : MaxPoaling (MaxPoaoling.v) (5)

~ @ MaxPoolUnit1 : MaxPoolUnit (MaxPoolUnityv) (3)

@ INBuffMaxPool : INBuffMaxPool (MaxPoollnBuff.y)

® MaxpoolBlock : MaxpoolBlock (MaxPoolBlocky)

® MaxPoolOutBuff : MaxPoolOutBuff (MaxPoolOutBuffy)
~ @ MaxPoolUnit2 : MaxPoolUnit (MaxPoolUnityv) (3)

@ INBuffMaxPool : INBuffMaxPool (MaxPoollnBuff.y)

® MaxpoolBlock : MaxpoolBlock (MaxPoolBlocky)

® MaxPoolQutBuff : MaxPoolQutBuff (MaxPoolOutBuffyv)
~ @ MaxPoolUnit3 : MaxPoolUnit (MaxPoolUnity) (3)

@® INBuffMaxPool : INBuffMaxPoal (MaxPoollnBuffyv)

® MaxpoolBlock : MaxpoolBlock (MaxPoolBlocky)

® MaxPoolQutBuff : MaxPoolQutBuff (MaxPoolOutBuffyv)
~ @ MaxPoolUnit4 : MaxPoolUnit (MaxPoolUnity) (2)

@® INBuffMaxPool : INBuffMaxPoal (MaxPoollnBuffyv)

® MaxpoolBlock : MaxpoolBlock (MaxPoolBlocky)

® MaxPoolQutBuff : MaxPoolQutBuff (MaxPoolOutBuffyv)

® MaxPoolingCU : MaxPoolingCU (MaxPoolingCU.v)

Figure C.3: A snapshot for maxpooling unit organization in Vivado

67

~ @ AuxailaryConnection : AuxailaryConnection (AuxiliaryConnection.y) (2)
~ @ AveragePoolingUnit : AveragePoolingUnit (AveragePoaolingUnity) (2)
® AveragePoolingCU : AveragePoolingCU (AveragePoolingClUv)
® AveragePoolingBuffer : AveragePoolingBuffer (AveragePoolingBuffery)
~ @ FullyConnectedUnit : FullyConnectedUnit (FullyConnectedUnity) (3)
® FC_CU:FC_CU (FC_CUw)
® FCParallelAdder : FCParallelAdder (FCParallelAddery)
@ FCOutBuff : FCOUtBuff (FCOUtBUffY)
~ @ SoftMaxUnit : SoftMaxUnit (SofthMaxUnity) (4)
~ @ SoftMaxExpoRack : SoftMaxExpoRack (SoftMaxExpoRacky) (10)
> @ Ds[0].exponential : cordic (cordicy) (1)
> @ Ds[1].exponential : cordic (cordicy) (1)

> @ Ds[2].exponential : cordic (cordicy) (1)

S

® Ds[3].exponential : cordic (cordicy) (1)

hv

©® Ds[4].exponential : cordic (cordicy) (1)
> @ Ds[5].exponential : cordic (cordicy) (1)
> @ Ds[6].exponential : cordic (cordicy) (1)
> @ Ds[7]l.exponential : cordic (cordicy) (1)
> @ Ds[8]l.exponential : cordic (cordicy) (1)
> @ Ds[9].exponential : cordic (cordicy) (1)
® SoftMaxAdder: SoftMaxAdder (Softmaxaddery)
@ SoftMaxDivider : SoftMaxDivider (SoftMaxDivider.y)
@ SoftMaxOutBuffer : SoftMaxOutBuffer (SofthMaxOutBuffery)

Figure C.4: A snapshot for auxiliary connection organization in Vivado

68

The following snapshot shows the first instantiations for parallel memory banks.
The total number of memory banks is 256 as discussed in chapter 4.

~ @ CacheMem : CacheMemory (CacheMemory.v) (1)

~ @ MemBanks : MemoryBanks (MemBanks.v) (256)

® for_of SBANK[255].SBANKO
@ for_of SBANK[254].SBANKOD

@ for_of_SBANK[253].5BANKO :
@ for_of SBANK[252].5BANKO :
@ for_of_SBANK[251].5BANKO :
@ for_of SBANK[250].5BANKO :
® for_of_SBANK[249].5BANKO :
@ for_of SBANK[248].5BANKO :
® for_of_SBANK[247].SBANKO:
® for_of SBANK[246].SBANKO :
® for_of SBANK[245].5BANKO :
@ for_of_SBANK[244].5BANKO :
@ for_of SBANK[243].5BANKO :
@ for_of_SBANK[242].5BANKO :
@ for_of SBANK[241].5BANKO :
® for_of_SBANK[240].5BANKO :
@ for_of SBANK[239].5BANKO :
® for_of_SBANK[238].SBANKO:
® for_of SBANK[237].SBANKO :
® for_of SBANK[236].5BANKO :
@ for_of_SBANK[235].5BANKD :
@ for_of SBANK[234].SBANKO :
@ for_of_SBANK[233].5BANKO:
@ for_of SBANK[232].5BANKO :
® for_of_SBANK[231].SBANKO:
® for_of SBANK[230].5BANKO :
® for_of SBANK[229].SBANKO :
@ for_of_SBANK[228].5BANKO :
@ for_of SBANK[227].SBANKO :
@ for_of_SBANK[226].SBANKO :

69

: SBANK (SBank.w)
: SBANK (SBankwv)
SBANK (SBank.wv)
SBANK (SBank.w)
SBANK (SBank.w)
SBANK (SBank.wv)
SBANK (SBank.w)
SBANK (SBank.wv)
SBANK (SBankw)
SBANK (SBank.v)
SBANK (SBankw)
SBANK (SBank.wv)
SBANK (SBank.w)
SBANK (SBank.w)
SBANK (SBank.wv)
SBANK (SBank.w)
SBANK (SBank.wv)
SBANK (SBankw)
SBANK (SBank.v)
SBANK (SBankw)
SBANK (SBank.wv)
SBANK (SBank.w)
SBANK (SBank.w)
SBANK (SBank.wv)
SBANK (SBankw)
SBANK (SBank.v)
SBANK (SBankw)
SBANK (SBank.wv)
SBANK (SBank.w)
SBANK (SBank.w)

Figure C.5: A snapshot for the first part of memory Banks organization in Vivado.

The following snapshot shows the first instantiations for parallel PE cores. The
total number of PE is 224 in addition to extra 32 PE cores for fully connected operation
only as discussed in chapter 4.

v @ PEsCore : PECores (PECores.v) (224)
® PECores[0].PECore : PE (PEV)
@ PECores[1].PECore : PE (PEV)
@ PECores[2].PECore : PE (PEv)
® PECores[3].PECore : PE (PEv)
@ PECores[4].PECore : PE (PEV)
@ PECores[5].PECore : PE (PEv)
@ PECores[6].PECore : PE (PE.v)
® PECores[7].PECare : PE (PEv)
@ PECores[8].PECore : PE (PEV)
@ PECores[9].PECore : PE (PEv)
® PECores[10].PECore : PE (FEV)
@ PECores[11].PECore : PE (PEV)
@ PECores[12].PECore : PE (PEv)
® PECores[13].PECore : PE (PEV)
@ PECores[14].PECore : PE (PEV)
@ PECores[15].PECore : PE (PEv)
@® PECores[16].PECore : PE (PEv)
@® PECores[17].PECore : PE (PEV)
@ PECores[18].PECore : PE (PEv)
@ PECores[19].PECore : PE (PEv)
® PECores[20].PECore : PE (PEV)
@ PECores[21].PECore : PE (PEv)
@ PECores[22].PECore : PE (PEv)
® PECores[23].PECore : PE (PEV)
@ PECores[24].PECore : PE (PEv)
@ PECores[25].PECore : PE (PEv)
® PECores[26].PECore : PE (PEv)
® PECores[27].PECore : PE (PEV)
@ PECores[28].PECore : PE (PEv)
@ PECores[29].PECore : PE (PEv)
® PECores[30].PECore : PE (PEV)

Figure C.6: A snapshot for the first part of PE Cores organization on Vivado.

70

Appendix D: Image Classification Example on The
Proposed Accelerator

In this appendix an example for Image classification on the proposed hardware
accelerator is presented, and the result is compared with the software result on python
model. The experiment is made on an image for endian elephant as shown in Figure
D.1. This image is chosen as it's from the hardest classification photos on both
hardware and software model. The output prediction and class number for the proposed
hardware accelerator are shown in Figure D.2 after mapping the output class number on
Matlab. It's noted that the class prediction is 0.8505 on the hardware while its
calculated 0.9015 by the software model. This is acceptable as long as the predicted
class is correct "Indian Elephant” for the software and hardware models. The image is
tested on the software model and the result is shown in Figure D.4. Also, the predicted
class is shown in the classes list of ImageNet dataset as in Figure D.5.

1010101
1010100

001101100111 000000000000
0110000010 0000000000

Figure D.2: Testing the image on The proposed Accelerator.

Command Window

@) New to MATLAB? Watch this Video, see Examples, or read Getting Started.

Class is: Indian E1l1
Class Number is: 38

Figure D.3: Mapping class number of the hardware result to its name on Matlab.

71

Indian elephant ©.9815619158744812
tusker ©.858225732296705246

African elephant ©.021374277770519257
hippopotamus 8.812157320976257324

water buffalo ©.08023159412667155266

Figure D.4: Testing the same image on the software model (python model).

guenon
patas

baboon

macaque

langur

colobus
proboscis monkey
marmoset
capuchin

howler monkey
titi

spider monkey
squirrel monkey
Madagascar cat
indri

African elephant
lesser panda
giant panda
barracouta

eel

coho

rock beauty
anemone fish
sturgeon

gar

lionfish

puffer

abacus

abaya

academic gown
accordion
acoustic guitar
aircraft carrier
airliner

Figure D.5: the Classes location in the ImageNet Dataset.

72

Appendix E: Virtex-7 FPGA

The Virtex-7 FPGA VC709 Connectivity Kit is a 40Gb/s platform for high-
bandwidth and high-performance applications that includes all of the essential
hardware, tools, and IP for efficient development. Figure E.1 shows Viretex-7 kit, while
Table E.1 shows its available resources.

key features:
e Clocking:
- Fixed Oscillator with differential 200MHz output used as the “system” clock
for the FPGA.
- Fixed Oscillator with differential 233.33MHz output used as the "memory"
clock.
Power
- AC Power adapter (12V) or ATX
Memory
- DDR3 SODIMM (qty 2) - each with 4GB up to 933MHz / 1866Mbps
- BPI Parallel NOR Flash: 32MB (256Mb)
Control & I/0
- User Push Buttons (x5)
- User DIP Switch (8-position)
- User LEDs (x8)
Configuration
- Onboard JTAG configuration circuitry to enable configuration over USB
- BPI Parallel NOR Flash: 32MB (256Mb)

Figure E.1: Viretex-7 FPGA kit

73

Table E.1: Virtex-7 FPGA Resources

Resource Count
Logic Cells 693,120
Memory (Kb) 52,920
DSP Slices 3600
GTH 13.1Gb/s Transceivers 80
I/0O Pins 1000

Useful Virtex-7 User Guides:

- https://lwww.xilinx.com/support/documentation/boards_and_Kkits/vc709/ug887-
vc709-eval-board-v7-fpga.pdf

- https://www.xilinx.com/support/documentation/boards_and_Kkits/vc709/2014 3/
ug966-v7-xt-connectivity-getting-started.pdf

- https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Co
nfig.pdf

74

uadlal)

Bae ey 4ld celld may o geal) Capeail Ghasiul Y1 CNNS @il sl canual
Aoy Al oDlgind o adall (oSay 138 Aedia (330 5S35 Aulual) Clilaall (e BaS
Aald Cliase cilallas et bl Las 6l

Slo 13l 20Dl sl il Al paitie Ejuee el deadl s -5
Oher 3SIA aas Jils U (6ol Lea 880301 Laiaal il sae 3l 3 .GoogLeNet CNN
oAl Ldalall FPGA BRAMS aladia) & .dadd /Y, dawdy Chnieal 483 Blud aa B3 OV,
Oo bl gl 138 aadig ¥ oelly) ALYl L La)ls Ldlsde 5SI f aladiul (e il
celly ALyl A disad @llery Gyl Glilee goes Jaiiad 4 DSP J) ilasg
ASaill Glang creadiol /4 Lawly Gl A8 Biag Ulsie Duaie YYE o Cilly gyl
A CNN s Caial ¢ jenal) alaial (Saall (o ciles) deygall

Dhgind daliy UL aladiad sale)) 6ol Lae cculilal) alad s 2407 & pusdll 130 7538
oyl Slang e Bang US aaa DA a5l Cujall)k ae aladial cuila 134 .48
Yo, alladl Chia ikl (o el aslic ales Loe Liatiio 28l cllgioy aellaall (b celld
oo ST AN @Dlgin) B Gead ae Ly 7,4 slasiuls GoogleNet z3seil 4l 8)
By £9,0 Jaea d8lall alaain) & Gaaas g yeall 138 238 .[FPGAJ) pladials dalid) cilasanstl)
NVidia GTX 1080Ti = 43, 55 V,A g Intel Core-i7 2 &)l

Y440 /Y /Y

- =
—) Yoya /v
‘x. AR I AU A
Ayl Y Laty g calug STV A

pstall faals

(el ayiiall) QA dena s daaf Lol
(—aradl) MW@MW.%J
(A3 Cpaiaall) it by dgane dena Lo

(el (el e Jal€ G aaal L]
() Zaalag Ayl L)) ia)

fudiga
el gl

-

tdaaal)

:M‘ &Uu

el
2 paal)

:da)

10 g8 pial)

10 giadiaal)

Al olsis

)1 Ao ARl dupanl) il & el A8Uall b 5a asana

:ad)al) clalsy)

el Cile yun ¢ el oS ¢ geall dallas ¢ Baeall alail) (28Dl dupaal) 3040

Ayl padls

Bae bl Lgil cclld pag o seal) Chpiail Gasiu) SY) CNNS il yleall cassal

Gl clallad) cspal @l e sdle dedica (p3a8 5813 duleall Glleall e s

Cosauat anll 138 7 55y UL L elaY) e purg ABUY) Dlgin) cilillaiar &Y 2axiall aladio)

Gubki & .GoogLeNet CNN) 13l adll dpasll Gl A8 jmddie o e

L FPGA BRAMS cilaay cuariinl Cun 3)SIAI) anag d8Uall eDlganl Jdil b sae

o i Les DSP ilang (sF gpmaall 138 aatieny ¥ L) i jls DRAMS alasial s

Dlgiul GoogleNet canail dslill 4 Hlh) Yo,V sewaill @as A8 Digiul

28 Ay dalis 5ol Jasgia (3inng Aulsia 853 YV £ (e anecaill (oS L Jaid Lals¥, 4 Y

) e aaidal) duuand) lSud) & pual A8UAL jga asanal

dlae)
Jgaballie dasa Jlay aal

5 ALl s — Ftigl) IS 1) dasia AL
da) e Jgpanll lillaic (e ¢ jas
pstrdl yiuale
o
Ay Sl el g el g SN daia

;ointaal) Aial (he Adday
(s i yiall) Gl dasa i daal) giSal) M)

(i) s Ga Ahas G ;) gasall)
(AU calaall) aniill Galy) 3gana Jana 1) giSAl) LY

(> SB Gadiaall) Coda JalS Cpun daa 1 gisall Ay
(S Al g 4y 21 ABUaY) Ain)

5y alil) Ledls - A waigl) A

A yad) uan A) sgarn - 5 5l
YY)

) e daainial) Land) Gl ¢ el A8l 8 e araal

dac |
Jgaballie dasa Jlay aal

5_alal)l drala — Al K) danie Al
a3 e semall e (e ¢ JaS
pstrdl yiuale
Ay Sl el g el g SN daia

A HeSIh VLAY g el o STV daia A S VLAY 5 <l g KTV Asaia
5 alill ala diigll IS 5 ALl Aaals, conigll IS

5 5 Al Faala - digll 3K
A yad) uan A) sgarn - 5 5l
YY)

213 e Adil) Lpand) CASEY £ el LBUall 3 g4 ananal
dlac
Jgpalallie daaa Jlaa daai

5l frals — Figll A0S) et Allu
da 0 e Jsanll cldhic (e ¢ jaS
sl jficala
o
Ay 4o<l) LAty g il g RSN dwaia

5 Al Hnala - digl) A
A yadl uan A) sgan - B 5l
Yov)

