
Efficient HLS Implementation for Convolutional
Neural Networks Accelerator on an SoC

Muhammad Sarg∗, Ahmed H. Khalil∗, and Hassan Mostafa∗†
∗Electronics and Communications Engineering Department, Cairo University, Giza 12613, Egypt
†University of Science and technology, Nanotechnology and Nanoelectronics Program, Zewail City

of Science and Technology, Giza 12578, Egypt
Email: muhammad.sarg@gmail.com, ahmed.hussien60@gmail.com, and hmostafa@uwaterloo.ca

Abstract—Convolutional Neural Networks (CNNs) have
achieved high accuracy in many applications such as image
recognition and classification. However, due to their large amount
of parameters and intensive required operations, general purpose
processors cannot achieve the desired inference performance lev-
els. Recently, various hardware accelerators for deep CNNs have
been carried out to enhance the throughput of CNNs. Among
these accelerators, field programmable gate array (FPGA)-based
ones have gained a lot of interest due to their high performance,
low power consumption, high reconfigurability, and fast develop-
ment cycle. Furthermore, the availability of high-level synthesis
(HLS) tools lowers the programming burden and increases the
productivity of the FPGA-based accelerator designers. In this
paper, a C++ HLS implementation for FPGA-based accelerator
for the convolutional layers of CNNs is proposed. As a case study,
we evaluate the proposed accelerator using Resnet50 CNN on
Xilinx Zynq UltraScale+ MPSoC ZCU104 evaluation board using
SDSoC development environment, achieving up to 339x inference
speedup.

Index Terms—Convolutional Neural Networks (CNNs), Field
Programmable Gate Arrays (FPGAs), Hardware Accelerator,
High-Level Synthesis (HLS), SDSoC.

I. INTRODUCTION

Convolutional Neural Network (CNN) is one of the state-
of-the-art deep learning architectures. It is constructed by
adding a set of convolutional layers on top of the traditional
Artificial Neural Network (ANN). With enough amount of
labeled data, CNNs automatically learn and extract complex
features. As a result, they provide high accuracy and are
widely used in a variety of applications such as computer
vision, speech recognition, and natural language processing.
Furthermore, in recent years, incredible progress has been
made, and state-of-the-art CNNs can currently surpass humans
in image classification [1].

This outstanding performance of CNNs comes at a high cost
in terms of computational complexity and resources due to the
large number of parameters and required operations. Moreover,
recent CNNs stack more layers to adapt with the increased
complexity of the target applications and achieve higher accu-
racy. Therefore, for efficient processing, they require a scalable
platform that offers massive parallelization opportunities in
addition to large high-speed memory resources.

Central Processing Units (CPUs) have a fixed amount of
resources and provide limited opportunities for parallel opera-
tions. Thus, CPUs fail to achieve the required performance lev-

els. Alternatively, Graphical Processing Units (GPUs), which
are designed for parallel processing, offer high throughputs
due to their high memory bandwidth and highly parallel
architectures that make them very efficient for floating-point
matrix-based operations. However, GPUs have high power
consumption numbers. Hence, they cannot be integrated into
embedded platforms that are powered by batteries such as
smartphones, drones, or wearable devices. Furthermore, these
devices are limited not only in terms of power consumption
but also in terms of physical size.

Therefore, many FPGA-based and ASIC-based CNN accel-
erators have been proposed recently [2]–[11]. Among these
approaches, FPGA-based hardware accelerators have gained
a lot of interest due to their high performance, low power
consumption, high reconfigurability, and fast development
cycle. Furthermore, the availability of high-level synthesis
(HLS) tools reduces the programming barrier for FPGA-based
accelerator designers, increasing their productivity [12], [13].
Moreover, Xilinx, an FPGA vendor, has introduced SDSoC, a
hardware-software co-compiler that enables the implementa-
tion of heterogeneous FPGA-CPU platform. The fundamen-
tal characteristic of SDSoC is that it converts C++ design
specifications into a hardware accelerator with minimal work
and time, allowing for great performance while consuming
minimal energy.

Convolution operations dominate the CNN operations.
Thus, efficiently accelerating the convolutional layers is the
key to achieve an efficient accelerator implementation. The
convolution operation consists of many nested loops. By this
means, it is required to effectively use loop optimization
techniques such as loop interchange, loop tiling, and loop
pipelining and unrolling [14]–[16]. These techniques optimize
for the efficiency of the on-chip memory, data locality, and
exploit the massively parallel architecture of the FPGA to
achieve high throughput and low latency.

In this paper, we propose a C++ HLS implementation for
FPGA-based accelerator to accelerate the convolution layers
of CNNs. The rest of this paper is organized as follows.
Section II gives an overview of High-Level Synthesis. Section
III introduces the background of CNN. Section IV presents the
details of the developed CNN accelerator architecture and the
optimization techniques which have been used. We present
the evaluation of our work in Section V, and the paper is

978-1-6654-0839-4/21/$31.00 ©2021 IEEE

2021 International Conference on Microelectronics (ICM)

1

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ic
ro

el
ec

tro
ni

cs
 (I

C
M

) |
 9

78
-1

-6
65

4-
08

39
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
M

52
66

7.
20

21
.9

66
49

20

Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:12:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SHAPE PARAMETERS OF A CNN LAYER

Shape Parameter Description
Nif # of ifmap/filter channels
Nof # of ofmap/3D filters
Niy /Nix ifmap height/width
Noy /Nox ofmap height/width
Nky /Nkx filter height/width
T∗ Tiling parameters
P ∗ Parallelism parameters

concluded in Section VI.

II. HIGH-LEVEL SYNTHESIS

HLS is the transformation of a C specification into register
transfer logic (RTL) implementation. It enables designers to
work at a higher level of abstraction. Hence, improving the
productivity by allowing them to focus on the algorithms
being developed rather than the low-level hardware details.
Further, HLS has more flexibility and programmability, and
faster development and verification time than RTL [12], [13].

The HLS tools provide directives, also called pragmas, to
control the synthesis process and optimize the design. Using
these directives, a designer can easily explore the design space.
Thus, HLS enables faster deployment and time to market.
However, HLS has some challenges. The designer needs tool
expertise and to think in hardware. Thus, a VLSI background
is needed. Moreover, HLS is not only about pragmas insertion,
many times the code needs to be refactored to be HLS-friendly
and hardware-aware.

III. THE CNN

The CNN learning structure is constructed by adding a set
of convolutional layers, and optionally pooling layers, on the
top of the Fully Connected (FC) layers that construct the
traditional Neural Network (NN). The added convolutional
layers form the features extractor component of the CNN while
the FC layers form the classifier part.

By this means, instead of feeding the raw input image
tensor directly to the first FC layer in the CNN, we first
apply filters to extract the features that distinguish one image
from another. Thus, the convolutional layers narrow down the
content of the input image tensor to emphasize specific and
distinct details. As a result, the FC layers process a low-
dimensional features tensor with more focused and presumably
more accurate information. The FC layers determine which
class the input image may belong to. The shape parameters of
a CNN layer are listed in Table I.

A. The Convolution Layer

The convolution layer (Conv) convolves the input tensors,
input feature maps (ifmaps) and kernels, to produce the output
feature maps (ofmaps) tensor. For every pixel in the ifmaps
tensor, it takes its value and the values of its neighbor pixels
according to the kernel window. Then, it multiplies each pixel
value by the corresponding value in the kernel window. The
output pixel value is the accumulation of these values over

Fig. 1. An example for the convolution operation with an ifmaps tensor and
weights tensor to produce the ofmaps tensor.

f o r (y =0; y < Noy ; ++y)
f o r (x =0; x < Nox ; ++x)
f o r (n =0; n < Nof ; ++n)
f o r (i =0 ; i < Nif ; ++ i)
f o r (ky =0; ky < Nky ; ++ky)
f o r (kx =0; kx < Nkx ; ++kx)

ofmaps [y] [x] [n] +=
i f ma ps [ky+y*S] [kx+x*S] [i] *
w e i g h t s [ky] [kx] [i] [n] ;

Fig. 2. Pseudo code for the convolution operation (assuming the output buffer
is initialized with the bias). ’S’ is the convolution stride

the tensors channels. Then, the kernel window is shifted by
the stride S to produce the next output pixel value. The
computation of the convolution layer is illustrated using Fig.
1 and Fig. 2.

IV. THE PROPOSED CNN ACCELERATOR

A. Accelerator Architecture

A System-on-Chip (SoC) platform with a processing system
(PS) and Programmable Logic (PL) is used. The CNN model
runs on the PS and uses the PL for acceleration. In our
evaluations, when the CNN model is run completely on the PS,
the convolutional layers dominate the inference time by more
than 99%. Therefore, our work focuses on accelerating the
convolution module by developing an efficient FPGA-based
accelerator. The architecture of the developed accelerator is
presented in Fig. 3.

The PS runs the entry function which allocates memory in
the DRAM and initializes it with the target model’s parameters
and the input images. The Pooling module and the softmax
activation function are run on the PS. The FC module is
scheduled to run as a Conv. layer on the developed accelerator.

The Conv layer acceleration on the PL consists mainly of
four key components: multiply and accumulations (MACs)
array, on-chip buffers, external memory, and the AXI4 memory
interfaces. The MAC operation is the core of the convo-
lution operation. The developed accelerator has a uniform
and scalable MACs array architecture that is reusable by all
convolutional modules with the highest efficiency.

2021 International Conference on Microelectronics (ICM)

2Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:12:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Architecture of the developed accelerator.

The on-chip buffers are used to cache data read from
external memory in order to increase the data reuse and
avoid rereading it from external memory. Moreover, the dual
buffering technique is used to reduce the latency by hiding the
data movements behind the computation time [8].

Because of the limited on-chip memory and the high number
of parameters in current CNNs, the parameters of the target
CNN and the ofmaps tensor of each layer are stored in
external memory. Hence, the AXI4 master data movers serve
as a link between the on-chip buffers and external memory.
Furthermore, AXI4 burst mode data transfers are used for
higher data throughput.

The ifmaps are padded, if needed, while loading them from
external memory into the on-chip buffer. The CNN weights
copied from external memory are stored in the weights buffers.
The partial sums (psums) buffer is used to store the results of
the MACs array.

The ofmaps buffer is constructed with a depth that equals
the maximum depth of the ofmaps tensor of any Conv layer
in the target CNN. The psums buffer results are cached in the
ofmaps buffer. Hence, the external memory is not used as the
psums cache. Furthermore, by using the ofmaps buffer instead
of the psums buffer to communicate with the external memory,
the MACs operations are not bounded by the external memory
communication time.

B. Convolution Loops Optimization

1) Loop Tiling: Due to the limited on-chip memory, the
input and output tensors of most layers don’t fit on-chip. Thus,
we must partition them into a set of tiles where each tile can
fit in the available on-chip buffer [14]. Therefore, the tiling
factors are driven mainly by the available on-chip memory
on the target FPGA. The ifmaps tile buffer height and width
must be big enough to cache the required number of rows and
columns needed to produce the ofmaps tile rows and columns
according to (1) and (2).

f o r (i t =0 ; i t < dTif/P ife ; ++ i t)
f o r (ky =0; ky < Nky ; ++ky)
f o r (kx =0; kx < Nkx ; ++kx)
f o r (y t =0 ; y t < dToy/Poye ; ++ y t)
f o r (x t =0 ; x t < dTox/Poxe ; ++ x t)
f o r (n t =0 ; n t < dTof/Pofe ; ++ n t)

pragma HLS PIPELINE
f o r (y =0; y < Poy ; ++y)
f o r (x =0; x < Pox ; ++x)
f o r (i =0 ; i < P i f ; ++ i)
f o r (n =0; n < Pof ; ++n)

psums [y] [x] [n] +=
w e i g h t s T i l e [ky] [kx] [i t * P i f + i] [n t *

Pof + n] *
i f m a p s T i l e [ky + (y t *Poy + y) *S] [kx +

(x t *Pox + x) *S] [i] ;

Fig. 4. Pseudo code for the tiled convolution operation.

Tiy = Nky + S ∗ (Toy − 1) (1)

Tix = Nkx + S ∗ (Tox − 1) (2)

Also, in order to fully utilize the available accelerator
parallelism resources, the tiling factors are set to be the same
as the parallelism factors, i.e., Toy = Poy , Tox = Pox, and
Tof = Pof .

2) Loop Transformation: The loop computations order af-
fects the data reuse opportunities and the number of memory
accesses. Further, the HLS tool cannot pipeline a loop that
contains a loop with a variable bound. Thus, the loops are
reordered such that they achieve the highest data reuse factors
and the minimum data movements and memory accesses. Also,
the loops with constant bounds are set to be the innermost
loops. Fig. 4 illustrates the new loops computation order. The
introduced loops order enables the reuse of the same kernel
element Poy ∗ Pox times and the ifmaps pixel Pof times.

3) Loop Pipelining and Unrolling: Loop pipelining is one
of the key optimization techniques to obtain a high per-
formance design by allowing the concurrent execution of
operations. Loop unrolling is employed to create multiple
independent operations. This allows loop iterations to occur
in parallel and utilizes the massively parallel architecture of
the FPGA to achieve high throughput and low latency. As
shown in Fig. 4, the pipeline pragma is inserted at the level
of the innermost loop with a variable bound to pipeline it and
automatically unrolls all the loops in the hierarchy below.

V. EVALUATION

The proposed CNN accelerator is demonstrated by acceler-
ating the inference process for ResNet50 [1] CNN on Xilinx
Zynq UltraScale+ MPSoC ZCU104 evaluation board. This
board has Xilinx Zynq ZU7EV chip with a PS that runs at
1.2 GHz.

2021 International Conference on Microelectronics (ICM)

3Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:12:44 UTC from IEEE Xplore. Restrictions apply.

TABLE II
INFERENCE TIMING ON PS

CNN ResNet50
of Operations (GOPs) 7.74
Conv Clock Cycles 8.32x1010

Pooling Clock Cycles 3.2x107

Total Clock Cycles 8.33x1010

Latency/Image (s) 69.4

TABLE III
ACCELERATION RESULTS

CNN ResNet50 ResNet50
Data Precision 16-bit float 32-bit float
Clock (MHz) 150 150
BiyxBixxBif 10x10x2048 9x9x1024

PoyxPoxxPifxPof 1x1x8x64 1x1x4x64
DSPs 1, 591 (92%) 1, 331 (77%)
LUTs 125, 926 (54.66%) 120, 531 (52.3%)
REGs 136, 586 (29.64%) 162, 168 (35.2%)

BRAMs 188 (60.26%) 236 (75.64%)
URAMs 78 (81.25%) 90 (93.75%)

Power (Watt) 8 9.2
Conv Latency/Image (ms) 204.5 350.8

Latency/Image (ms) 239.8 378.3
Speedup to PS 339x 198x

We used Xilinx Vivado-HLS tool (v2019.1) to conduct pre-
synthesis C simulation and C/RTL co-simulation. Also, it is
used to get the pre-synthesis reports on the resources utiliza-
tion estimates for design space exploration and performance
estimation. Then, Xilinx SDSoC tool (v2019.1) is used to
compile the PS functions and synthesize and place-and-route
the accelerator functions on PL.

In our experiments, the benchmarking is conducted with a
batch size of 1. Table II shows the breakdown of the inference
on the PS and table III shows the detailed breakdown of
the inference accelerated using PL in addition to the PL
resources utilization. The resources utilization is reported after
the place-and-route is completed. The developed accelerator
utilizes an ifmaps buffer with dimensions of 9x9x1024 for
the floating point implementation and 10x10x2048 for the
half-floating point implementation. Compared to the PS-based
inference, the developed accelerator achieves 198x and 339x
speedup using floating-point and half floating-point data types,
respectively.

VI. CONCLUSION

In this paper, HLS was utilized to build an FPGA-based
inference accelerator for CNNs on a Xilinx SoC. The proposed
work focused on speeding up the convolutional layers, which
account for the majority of the inference time on the PS side
of the SoC. Hence, loop optimization techniques such as loop
tiling, loop interchange, loop pipelining, and loop unrolling are
employed. The developed accelerator was synthesized using
Xilinx SDSoC development environment. Then, it was bench-
marked using a complex CNN, ResNet50, on Xilinx Zynq
UltraScale+ MPSoC ZCU104 evaluation board. In comparison

to the PS-based inference, the created accelerator achieved up
to 339x inference speedup.

ACKNOWLEDGMENT

This work was partially funded by ONE Lab at Zewail
City of Science and Technology and Cairo University, Siemens
EDA (Mentor Graphics), ASRT, NTRA, and ITAC.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[3] A. Shawahna, S. M. Sait, and A. El-Maleh, “Fpga-based accelerators of
deep learning networks for learning and classification: A review,” IEEE
Access, vol. 7, pp. 7823–7859, 2019.

[4] D. Gschwend, “Zynqnet: An fpga-accelerated embedded convolutional
neural network,” 2020.

[5] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’15, (New York, NY, USA),
p. 161–170, Association for Computing Machinery, 2015.

[6] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards
uniformed representation and acceleration for deep convolutional neural
networks,” in 2016 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 1–8, 2016.

[7] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis,
J. Ngadiuba, M. Pierini, R. Rivera, N. Tran, and et al., “Fast inference
of deep neural networks in fpgas for particle physics,” Journal of
Instrumentation, vol. 13, p. P07027–P07027, Jul 2018.

[8] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Automatic compilation of
diverse cnns onto high-performance fpga accelerators,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 2, pp. 424–437, 2020.

[9] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292–308, 2019.

[10] P. G. Mousouliotis and L. P. Petrou, “Squeezejet: High-level synthesis
accelerator design for deep convolutional neural networks,” Lecture
Notes in Computer Science, p. 55–66, 2018.

[11] R. Osama and H. Mostafa, “Implementation of deep neural networks
on fpga-cpu platform using xilinx sdsoc,” Springer Analog Integrated
Circuits and Signal Processing, vol. 106, pp. 399–408, 2021.

[12] Y. Liang, K. Rupnow, Y. Li, D. Min, M. N. Do, and D. Chen, “High-level
synthesis: Productivity, performance, and software constraints,” JECE,
vol. 2012, Jan. 2012.

[13] M. Fingeroff, High-Level Synthesis Blue Book. Xlibris US, 2010.
[14] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator

efficiency through resource partitioning,” 2018.
[15] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop oper-

ation and dataflow in fpga acceleration of deep convolutional neural
networks,” in Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA ’17, (New York,
NY, USA), p. 45–54, Association for Computing Machinery, 2017.

[16] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing the convolution
operation to accelerate deep neural networks on fpga,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 7,
pp. 1354–1367, 2018.

2021 International Conference on Microelectronics (ICM)

4Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:12:44 UTC from IEEE Xplore. Restrictions apply.

