

Fast RTL Implementation of A* Path Planning

Algorithm
Adham Osama¹, Ahmed Mostafa¹, Eslam Mamdouh¹, Mohamed Gamal¹, Usama Imam¹, Mohamed Taha², Ahmed Khalil²,

Islam Ahmed², Hassan Mostafa
1,3

¹ Electronics and Communication Engineering Department, Cairo University, Giza 12613, Egypt.

² IC Verification Solutions, Siemens EDA, Cairo Egypt.
³ University of Science and technology, Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology, October Gardens, 6th of

October, Giza 12578, Egypt

{ adhamosama242@gmail.com, Ahmedmostafa8298@gmail.com, emamdouh123@gmail.com, muhamedtawfik@outlook.com, usama.emam02@gmail.com,
Mohamed_Taha@mentor.com, Ahmed_Khalil@mentor.com, Islam_Ahmed@mentor.com, hmostafa@uwaterloo.ca }

Abstract— The conventional A* algorithm consumes a lot of

time due to its large number of iterations. In every iteration, the

memory is accessed for multiple data structures, functions are

evaluated then sorted into queues which makes it sometimes not

suitable for real-time applications. This paper proposes a fast

implementation for the A* algorithm to meet requirements of

real-time applications. The proposed implementation uses

parallelism and caching to achieve better performance. We used

Register Transfer Level (RTL) simulation and formal

verification to do functional verification of the implemented

design.

The design is implemented on Xilinx Virtex-7 to be

evaluated. Experiments prove that this implementation achieves

100 times enhancement for low obstacle maps and 50 times for

high ones relative to software implementation. The design is

suitable for real-time applications.

I. INTRODUCTION

Path planning is a computational problem that aims to find

a sequence of movement of a certain object to travel between

two points in a defined space. In some applications such as

autonomous vehicles, the path-planning algorithm needs to

find the correct path in real-time since the map is a dynamic

map which changes rapidly when any object in the

environment changes its location.

Depending on how much information is known about the

environment, the path planning could be used in the

autonomous real-time systems to predict a guidance path

which makes the job of the autonomous driving systems [1]

and crash avoidance systems [2] a lot easier than unguided

navigation.

There are many path planning algorithms. One of the most

notable is the A* algorithms Which is theoretically guaranteed

to find the best existing solution for a map in addition to

having a heuristic function which acts like a guide to reach the

goal in fewer iterations.

This paper introduces a hardware implementation to

accelerate the A* algorithm to reach real-time performance by

using parallelism, solving memory bottlenecks and using

optimized designs for every block in the overall design. The

design was implemented on Xilinx Virtex-7 FPGA. The

design is implemented in Verilog, synthesized using Xilinx

Vivado Design Suite, and verified using UVM and formal

verification. The resulting timing constraints were compared

to previous implementations of the same algorithm

Yuzhi Zhou et al [3] introduced a hardware design that

uses parallelism and implemented on kintex-7 FPGA which

had results showing an improvement of 37-75 times

performance could be achieved compared to software

implementation. However, in this paper the results show that

performance of the algorithm can be enhanced by 79-430

times depending on the map that the design deals with.

II. A* ALGORITHM

A* algorithm, pronounced as A* star algorithm [4], is

suitable for determining the least cost path in a grid map. Grid

map is formed of nodes, each one can be a square. Reaching

any node must be through one of its eight neighbors or what

can be called “children nodes”. Hence, moving from one node

to another can be vertically, horizontally, or diagonally.

To calculate the cost of a node, the value F is calculated

using the formula:

���� = ���� + ����

Where G(n) is the accumulative cost from the start node to

the current node that is being expanded and H(n) is the

heuristic function which gives the algorithm an estimated cost

from the current node to the goal node.

There are some well-known heuristic functions that can be

used. These functions were compared in [5]. The most popular

one is to calculate the Euclidean distance between the current

node and the goal node, so:

���� =
��
 + ��

However, there are some other heuristic functions that

must be considered before choosing one. One of these

functions is the octile distance function, which is also known

as “Chebyshev distance” or “diagonal distance”. Octile

distance function is calculated as:

H�n� = � ∗ �|��| + |��|� + ��2 − 2 ∗ �� ∗ ������, ���

Where D and D2 are constant weights, dx and dy are

horizontal and vertical distances from current node to goal

node. Using this function was more suitable than Euclidean

distance for the design introduced in this paper for two main

reasons:

1. The number of iterations decreases when using
Octile distance as the heuristic function as the design
expands a smaller number of nodes and still manages
to find the correct path.

2. The evaluation of cost function F(n) is simpler as it
can be implemented using conventional blocks like
comparator, addition, subtraction and absolute,
unlike Euclidean distance function which uses
square root block that is more complicated and
usually has longer combinational delay.

978-1-6654-0839-4/21/$31.00 ©2021 IEEE

2021 International Conference on Microelectronics (ICM)

5

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ic
ro

el
ec

tro
ni

cs
 (I

C
M

) |
 9

78
-1

-6
65

4-
08

39
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
M

52
66

7.
20

21
.9

66
49

60

Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:13:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Full Design of the A* Accelerator

Each iteration, the algorithm computes the F(n) cost for all

the neighboring nodes of the current node and then chooses

the node with the lowest total estimated cost to be the new

“current node”. The algorithm saves the data of the node being

processed as a parent node for all of the eight children if it

provides the lowest G(n) for that child node.

III. DIGITAL DESIGN OF A* ACCELERATOR

A. Design Overview

Figure 1 shows the full design of the A* Accelerator. The

grid map is initialized in the memory and the start and end

nodes are sent to the design so it can start solving the map. The

Nodes Manager is the main controller of the algorithm. The

memory manager is a cache-like module that is used to

overcome the memory access bottleneck which will be

discussed in the next section. The design uses parallelism to

calculate the F(n) costs of all child nodes at the same time, in

the evaluator modules. Each evaluator inserts its results in its

corresponding priority queue. The comparator engine selects

the best node out of all eight queues and sends it to the Nodes

Manager so it can request the needed data from the memory

manager and start a new iteration.

B. Memory Access

Previous digital implementations of A* accelerator

suffered from memory access bottlenecks. As mentioned

before, the algorithm needs eight data structures every

iteration for its calculations. Simply giving the algorithm

direct access to the memory will limit the design at a certain

timing and going lower will be extremely hard. This

implementation overcomes this bottleneck by using a cache-

like block, called memory manager, that handles the memory

reads and writes that the algorithm needs.

 The algorithm operates on a 3x3 block of the eight
nodes surrounding the current node. Since the algorithm has a
heuristic, the next expanded node is usually one of the nodes
next to the current node. The memory manager stores a 5x5

block surrounding the same node, Figure 2. This way, when

the algorithm moves to a neighboring node, the data it needs

is already stored out of memory in the memory manager and

it receives the data instantly without any memory access

delay.

 Figure 3 shows a scenario where the algorithm takes a step

in the northern east direction. The node’s data marked with

purple will instantly be transmitted to the algorithm so it can

start a new iteration. In the meantime, the memory manager

shifts its internal registers and accesses the memory to return

to its original state, Figure 2, being ready for another data

request from the algorithm.

In the case of the algorithm moving to a node other than

the neighboring ones, the memory manager signals to the

algorithm to halt while it accesses the memory to read the

needed data. This is equivalent to a cache miss in a

microcontroller system.

Fig. 2. Data Stored inside Memory Manager. The red node is the node
currently being investigated. Blue Nodes are its children which the F cost is

being calculated for. The yellow nodes are extra data inside the memory

manager that will help overcome the memory access bottleneck

Fig. 3. Purple Node's data sent to the algorithm in the case of northern east

movement

2021 International Conference on Microelectronics (ICM)

6Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:13:39 UTC from IEEE Xplore. Restrictions apply.

C. Priority Queues

After calculating the cost of eight children, they are

inserted in an open list. The open list is a sorted queue. This

sorting operation is a bottleneck in the algorithm itself. To

overcome this bottleneck in this implementation, several

comparisons were done to choose the most optimum based

design and the number of parallel queues.

By comparing different architectures of sorting queues and

according to the results in [6], the most optimum design for

this implementation would be the one based on the shift

register. This queue implementation inserts and sorts any new

value in just one cycle. This happens by comparing the new

input value with all the stored values in the queue to decide its

correct order inside the queue. Comparing the input value with

all the queue blocks creates a bus loading problem, which

becomes very dominant in large length and limits the

maximum operating frequency. This problem makes the

decision of the queue length to be very critical.

In the software there is no limitation on the size of the open

list, but this is unfeasible for hardware. Therefore, the most

suitable size of the queues has to be determined taking into

consideration low utilization, clock frequency, parallelism

degree and the accuracy of the algorithm. It is important to

choose the most suitable size to have the correct functionality

and avoid discarding important data, which may prevent the

algorithm from finding the shortest path. Sweeping on 10,000

maps for different probabilities of obstacles was done in two

different cases: eight parallel queues and four parallel queues.

By comparing the results of sweeping according to accuracy,

which is the ability of the algorithm to find the shortest path,

the chosen length is 313 blocks for each queue in 8 parallel

queues. This chosen length achieves 99.6% accuracy and the

best performance in terms of maximum clock frequency and

minimum number of cycles across the design.

D. Comparator Engine

In each iteration, the algorithm selects the least cost node

to be expanded. As there are eight parallel queues in the

design, the comparator engine block compares between the

top values of all queues and selects the least cost node to be

used in the next iteration.

The conventional comparator is a basic arithmetic unit that

compares the magnitude of binary numbers and for the

algorithm, the comparison mainly focuses on smaller than

operations. This technique does not give the best performance

as it contains three phases of comparison. It is obvious that the

best performance comparator that detects the smallest input in

only one phase of comparison and this could be achieved by

parallelism of comparison operations and each input is

compared to all other inputs in parallel.

 The area of the design plays a main role in parallel

comparison operation as it increases gradually by increasing

the number of inputs and their bit width. A published paper

[7] has provided an optimization solution in area by removing

each block with a condition smaller than or equal and

replacing them with inverters to signals that provide the

opposite condition of the removed block. By applying this

optimization, about half of the comparison blocks are

replaced by inverters.

Fig. 4. Pblock Assignment

This is a great solution that provides very high performance

with area compared to the conventional comparator.

IV. FUNCTION VERFICATION

The design is verified dynamically using the Universal

Verification Methodology (UVM) through a testing

environment that reads the start and the goal points from a text

file generated by a python script. The environment reads the

results generated from the high-level model, and then it passes

the start and the goal points to the design and compares the

outputs. Because the nature of maps is random, the testing was

automated to help in getting the concluding results in Table II.

As the design aims to find the shortest path for a 256×256

map, it has a great number of possible maps, and it cannot be

validated completely using simulation. Formal verification

helps in validating the design’s behavior as it guarantees that

the design will operate correctly with any map. The formal

verification tools take behaviors and tries to find a

counterexample for each behavior searching for bugs. The

design is proved using PropCheck ,Mentor Graphics’s tool,

and verified statically using formal verification by proving 98

assertions and 27 reachable coverpoints.

V. FPGA IMPLEMENTAION

The A* accelerator was synthesized, placed, and routed by

Xilinx EDA tool Vivado 2019.1 targeting Xilinx Virtex-7

FPGA. The performance is improved by limiting the fan-out,

changing the default strategies and changing the floorplanning

that was done automatically by the tool (Xilinx Vivado Design

Suite) and doing it manually as much as possible. Pblocks

were assigned for every module and put it near the modules

that it is connected. For example, each evaluator writes in a

single queue every time, they can be put together in a single

Pblock as shown in Figure 4. This results in eight Pblocks that

are connected to the comparator engine. Each Pblock’s area is

double the area of the modules inside it to make routing easier.

The Nodes Manager, Memory Manager, and the main

memory were put together in the same Pblock. The

Comparison Engine with the register holding the current node

data together in the same Pblock. This manual floorplanning

is then put in the constraints to make the tool restricted with it.

Also, slack setup violations don’t exist until the tool enters the

routing phase. The setup violations appear while the tool is

trying to solve the hold violations, therefore the final strategies

were chosen to guide the tool to start the early stages with the

hold violations in consideration.

During FPGA deployment, the number of I/O pins was not

enough, so Vivado’s built-in IPs were used to allow the usage

of as many I/O pins as needed. These IPs are Virtual I/O

(VIO), Integrated Logic Analyzer (ILA) and Clocking wizard.

2021 International Conference on Microelectronics (ICM)

7Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:13:39 UTC from IEEE Xplore. Restrictions apply.

VI. EXPERIMENTAL RESULTS

A. FPGA Implementation Results

The results of the design after placement and routing,

using the previously mentioned techniques, are illustrated as

shown in table I below. The maximum operational frequency

of the A* Accelerator is 200MHz. The total on-chip power is

1.569 Watts.

TABLE I. AREA RESULTS ON XILINX VIRTEX-7

Cells Used Available Utilization

Slice registers 100735 866400 11.63%

Slice LUTs 121222 433200 27.98%

Block RAMs 82 1470 5.58%

B. Performance

The benchmarked results are from trials on a 256×256 map

with randomly placed obstacles. To calculate the time needed

by the algorithm to finish, the worst case for the algorithm was

considered. Selecting the start point at (0,0) and the goal point

at (255,255) ensured the highest number of computations for

the algorithm which is the worst case. Using the 200MHz

clock frequency, the average operating time to finish the

algorithm and give outputs for every probability of obstacles

based on 1000 different maps for every case was calculated.

These timing results are illustrated as shown in table II.

TABLE II. EXPERIMENTAL RESULTS OF RANDOMLY GENERATED

MAPS FOR THIS IMPLEMENTATION AND RELATED WORK

Probability of a

node being an

obstacle

This

implementation

Time (ms)

Yuzhi Zhou et

al [3]

Time (ms)

10% 0.198 1.059

20% 0.379 1.087

30% 0.556 1.160

40% 0.765 1.144

50% 1.078 1.088

C. Comparison

In table II the results are compared with related work [1].

This implementation achieves better performance due to the

Memory Manager’s mechanism of fetching data from the

memory. As the probability of a node being an obstacle

increases, the timing becomes closer to the older

implementation. This is because more obstacles mean more

cache misses which leads to halting the design to grab the

needed data. Consequently, bringing the implementation

closer to direct memory access implementation.

VII. CONCLUSION

This paper proposed a fast RTL implementation of A*

Path Planning algorithm. The design uses parallelism to do the

eight calculations and queue insertions at the same time. It also

uses a cache-like module to overcome the memory bottlenecks

present in other hardware implementations. Using shift

registers with the optimal parameters in the internal design of

the priority queue led to one cycle read and write with the least

area usage available. This implementation shows an average

of time enhancement by 50% in solving the map reaching up

to five times speedup at maps with low probability of

obstacles when comparing it to previous implementations of

the algorithm.

This paper proposes a fast implementation that meets

requirements of real-time applications which can relax the

constrains of the modules in the real-time systems. This give

more room for other modules, like V2V Communication [8],

to increase their accuracy using the saved path planning time.

VIII. ACKNOWLEDGMENT

This work was partially funded by ONE Lab at Zewail

City of Science and Technology and Cairo University,

Siemens EDA (Mentor Graphics), ASRT, NTRA, and ITAC

IX. REFRENCES

[1] M.A. Hassan, M.K. Abbas, A. Osama, D. Anwar, M.

Azzam, S. Shafiey, H. Mostafa, and I. Sobh, “GG-

Net: Gaze guided network for self-driving car“,

Society for Imaging Science and Technology,

Electronics Imaging – Autonomous Vehicles and

Machines (EI-AVM’2021), no. 171, United States,

pp. 1-7, 2021.

[2] M. Abdou, R. Mohammed, Z. Hosny, M. Essam, M.

Zaki, M. Hassan, M. Eid, and H. Mostafa, “End-to-

End Crash Avoidance DeepIoT-based Solution”,

IEEE International Conference on Microelectronics

(ICM 2019), Cairo, Egypt, pp. 103-107, 2019.

[3] X. J. ,. a. T. W. Yuzhi Zhou, "FPGA Implementation

of A∗ Algorithm for Real-Time," International

Journal of Reconfigurable Computing, p. 11, 2020.

[4] P. Lester, "A* Pathfinding for Beginners," 2005.

[Online]. Available: http://www. gamedev.

net/reference/articles/article2003..

[5] Red Blob Games, "Heuristics From Amit's thoughts

on path finding," [Online]. Available:

http://theory.stanford.edu/~amitp/GameProgrammin

g/Heuristics.html.

[6] J. R. a. K. G. S. Sung-Whan Moon, "Scalable

Hardware Priority Queue Architectures for High-

Speed Packets Switches," vol. 49, no. 11, p. 13,

November 2000.

[7] S.-H. P. a. D.-W. K. Young-Ho Seo, "High-level

hardware design of digital comparator with multiple

inputs," Integration, the VLSI Journal, vol. 68, p. 9,

2019.

[8] A. Hosny, M. Yousef, W. Gamil, M. ADEL, H.

Mostafa, and S. M. Darwish, “Demonstration of

Forward Collision Avoidance Algorithm Based on

V2V Communication “, IEEE International

Conference on Modern Circuits and Systems

Technology (MOCAST 2019), Thessaloniki,

Greece, pp. 1-4, 2019.

.

2021 International Conference on Microelectronics (ICM)

8Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:13:39 UTC from IEEE Xplore. Restrictions apply.

