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Abstract—Convolutional neural network is a class of deep 
neural networks that has made a great breakthrough in image 
recognition. CNNs are commonly used to detect and classify 
visual applications so that they are frequently embedded 
in image classification tasks. The common trend nowadays is to 
accelerate the processing of CNNs in order to use them in real-
time applications such as image classification and object 
recognition. This paper presents the implementation of ZynqNet 
CNN architecture on FPGA. The full ZynqNet CNN layers are 
implemented on FPGA to reach the max acceleration and make 
full use of all DSP units. Several optimizations techniques are 
used in different design phases to improve processing speed, 
utilized area, and power consumption. In addition, the proposed 
hardware accelerator achieves 15.6 fps for ZynqNet CNN at 
maximum frequency. The proposed architecture runs at two 
different frequencies of 100MHz and 125MHz, and is 
implemented on Virtex-7 FPGA.   
 
Keywords—Accelerating CNNs; Convolutional Neural Networks 
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I. INTRODUCTION 

In recent years, the effectiveness of artificial intelligence 
(AI) is proved to solve a lot of complex problems. The goal is 
to create an intelligent system that extracts features 
automatically and recognizes specific patterns. AI is divided 
into many subfields such as deep learning, machine learning, 
and natural language processing [1].  

 Deep convolutional neural network (DCNN) is one of the 
popular artificial intelligence fields. During the past decade, it 
has emerged in many applications such as video recognition, 
image classification, biomedical systems, and self-driving 
cars [2-5]. DCNN has become a state of art methodology for 
computer vision problems. It consists of millions of learnable 
parameters, which are evaluated through the training phase. 

The topology of CNN is divided into multiple learning 
stages that are composed of convolutional layers, non-linear 
rectified (ReLU) layers, pooling layers, fully connected 
layers, and softmax layer [6]. Every layer plays a specific role 
to build a complete CNN model. The training of DCNN 
models is commonly performed on graphics processing units 
(GPUs) which have thousands of cores and large external 
memory bandwidth. It does not require much effort to deploy 
existing models or train new ones on GPUs using various 
frameworks.  While the training is carried few times during 
the development phase, the inference process is performed 
millions of times. This puts new limitations for applications 
that have a limited power budget and tight latency constraints, 
such as embedded systems or self-driving cars. As a result, 
there is a growing demand for dedicated hardware accelerators 
to get higher throughput and less power consumption. 

Many researchers focus on building custom application-
specific integrated circuits (ASICs) for accelerating CNNs 
inference workloads and getting the best performance [7]. 
Despite being an optimum solution, ASICs do not offer 
enough flexibility to accommodate the rapid evolution of 
CNN models and the deployment of new CNN layer types. On 
the other hand, FPGAs offer interesting design capabilities 
compared to other implementation types. FPGA-based 
accelerators provide high throughput, low power 
consumption, fast prototyping, and reconfigurability at a 
reasonable cost. There are different types of architectures to 
accelerate the CNN processing using FPGA [8-10]. 

ZynqNet CNN is a stripped-down version of SqueezeNet 
CNN. It consists exclusively of convolutional layers, ReLU, 
and global average pooling. It has top-1 and top-5 error rates 
of 41.52% and 15.4%, respectively, on the ImageNet testing 
dataset. ZynqNet has fewer error rates than SqueezeNet. Also, 
the number of MAC operations reduced by 38%, and the total 
number of activations is reduced by 40%, with respect to 
SqueezeNet CNN. ZynqNet is developed by David Gschwend 
in 2016. It has 2.5 Million parameters and consists of 27 
convolutional layers and only one average pooling layer [11]. 

Researchers have provided various CNN accelerator 
architectures on FPGA during recent years. The most similar 
implementations to the proposed work are investigated for 
further analysis. The first implementation is Gschwend’s 
accelerator [11]. It is a hardware accelerator on FPGA that 
allows classifying images using ZynqNet CNN. It implements 
the full network based on a nested-loop approach which 
minimizes the number of operations and memory access. The 
accelerator is synthesized using High-Level Synthesis (HLS) 
for the Xilinx Zynq XC-7Z045. Secondly, Mousouliotis 
proposes a hardware accelerator that can process ZynqNet and 
SqueezeNet. It’s implemented using HLS on Zynq-xc7z020 
FPGA. It’s an improved version from SqueezeJet hardware 
accelerator and achieves 11.54 fps for the ZynqNet CNN [12]. 
Finally, CNN-Grinder provides a workflow to accelerate 
SqueezeNet and ZynqNet using both HLS and SDSoC design 
methods. It achieves 14.49fps for ZynqNet on Zynq-xczu9eg 
[13]. 

This paper is organized as follows; Section II discusses 
Zynqnet architecture in detail. Section III shows the design 
improvements and hardware implementation. Moreover, 
Section IV shows the implementation results on FPGA and 
comparisons with other work. Section V concludes the work. 

II. THE PROPOSED ARCHITECTURE 

The proposed accelerator is built based on fully pipelined 
architecture. All ZynqNet CNN layers are implemented on 
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FPGA, which provided a massive acceleration for the whole 
CNN.  As shown in Fig. 1, each convolution layer is 
implemented separately with their independent weights 
memory and Multiply Accumulation units (MACs) for 
performing the convolution operations. Two shared memories 
are used to store the intermediate storage between layers 
which are Conv1 and all Fire layers. Conv10 is interleaved 
with one global average pooling layer to reduce the dimension 
of features retaining the most dominant information. Finally, 
the output prediction block is implemented to get the index of 
the output prediction.  

A. Convolution units 

In the proposed design, each layer requires a specific 
number of MACs to achieve full parallelism. It is chosen to 
fully parallelize the processing of output filters. Therefore, the 
number of used DSPs is with respect to the number of required 
MACs. Also, each convolution layer is implemented in a 
separate block with control signals during convolution 
operation. Moreover, a separate weights memory is generated 
for each block. The convolution operation is performed using 
MAC units, and the output is fetched to the ReLU block. 

Available DSP resources on the target FPGA is one of the 
main challenges during the implementation. As the required 
DSPs for full-layer implementation all convolution layers on 
the FPGAs are 4448 DSPs, which is unfeasible by Virtex-7 
DSPs that are equal to 3600 DSPs only. This problem is solved 
by sharing a group of DSPs by the identical layers such as 
fire2/expand3x3 and fire3/expand3x3 layers. By this 
approach, the same 64 DSPs are used for the two layers. The 
proposed convolution unit is shown in Fig. 2. It simply 
consists of intermediate registers, kernels memory, counters, 
adders, and multipliers. 

B. Kernels memory  

ZynqNet CNN has around 2.5M parameters, which are 
either network weights or biases. The number of parameters 
makes it feasible to implement ZynqNet architecture on 
FPGAs. However, memory bottleneck requires careful 
attention for memory organization in the design. Usually, 

 
Fig. 1. The proposed architecture 

 
Fig. 2. Convolution unit block diagram 

fixed parameters are stored into Read Only Memories 
(ROMs). In addition, the proposed implementation targets 
acceleration speed at first priority, so off-chip memories are 
not an option as they degrade the speed and increase the power 
consumption. As mentioned in convolution blocks design, 
each MAC block is responsible for one filter processing. 
Therefore, fitting all design parameters into a large ROM 
block increases the memory fetching latency for all MACs. 
For example, a 10Kb memory is mapped to 64 MACs which 
requires 64 cycles to fetch a new word. This method results in 
speed degradation. Consequently, the adopted approach is to 
use parallel ROMs.  Each ROM is used for a group of filters 
in the design, which grants low latency and consistency. 

C. Intermediate memory storage 

Each layer has output feature maps that have to be stored in 
order to be passed to the next layer. Layers storage is made 
using different resources in FPGA such as BRAMs and 
register files. A shared memory of 3D BRAMs is used for all 
layers so that they can read and write from the same memory. 
The shared memory is divided into two memories to avoid 
conflict between reading and writing during processing. The 
current and next layer mutually changes between the 
memories by reading from memory for the current layer and 
writing the output in another memory. 

D. Average pooling unit 

 During the implementation of average pooling, two 
optimization techniques are applied. Firstly, the Conv10 layer 
does not run simultaneously in the proposed design as it is split 
into two parts. To take the available resources into 
consideration, the required number of accumulators for 
average pooling is saved to half by exploiting the splitting of 
the conv10 layer. Therefore, a multiplexer is used to select 
between conv10 part-1 output or conv10 part-2 output, and the 
multiplexer output is fetched to accumulators array. Secondly, 
implementing divider blocks on hardware is area ad power-
consuming, so they are replaced by simple shifting right 
operations. The accuracy of the result may be not as same as 
convention dividing, but the difference is so little and the 
result is acceptable. The schematic diagram for average 
pooling is shown in Fig. 3 which consists of the parallel 
multiplexer, accumulators array, registers, and shifting right 
blocks array. 

E. Output prediction unit 

The output prediction layer is located after the average 
pooling layer which is used to select the classified prediction. 
It compares the 1024 outputs from average pooling to get the 
max number which is the class index that refers to the output 
prediction. One comparator, counter, and two registers are 
needed as shown in Fig. 4. The unit processes the 1024 value 
serially which may take 1024 cycles, but provide a utilized 
area reduction more than parallel comparators. 

 
Fig. 3. Average pooling unit implementation 

2021 International Conference on Microelectronics (ICM)

71Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:11:22 UTC from IEEE Xplore.  Restrictions apply. 



 
Fig. 4. Output prediction unit implementation 

III. DESIGN IMPROVEMENTS AND IMPLEMENTATION 

 After finishing the design implementation and satisfying 
all processing functionality. Several optimization techniques 
and improvements are added to the design to improve the 
acceleration or power consumption. The adopted 
optimizations are categorized as follows. 

A. Area-aware optimizations 

1. Control sets reduction 

A control set is the grouping of control signals (set, reset, 
clock enable, and clock) that drives any given SRL, 
LUTRAM, or register. Designs with fewer control sets have 
more options and flexibility in terms of placement, generally 
resulting in improved results, especially for the utilized area. 
During these optimizations, the goal is to reduce the 
controlling as possible. 

2. Quantization of the fully connected layer 

The fully connected layer has the most of ZynqNet CNN 
model parameters. Hence, quantization of this layer from 16 
to 10 bits makes an improvement in the area. Moreover, based 
on simulation results, quantization of fully connected layer to 
10 bits makes the design run at higher frequencies too. 

3. Packing of expand layer parameters 

Fire modules in ZynqNet consist of a Squeeze and 2 
Expand layers. Usually, the Expand layers are working 
simultaneously. Consequently, instead of allocating a separate 
memory for each one, packing both Expand parameters in one 
memory reduces the allocated memory. 

4. Registering high fan-out nets 

In the presence of tight timing constraints and high area 
usage, fanout is preferred to be less than 500 cells. The 
proposed design has all high fanout nets registered, so that 
replicated cells consume flip-flops and not the LUTs. 

B. Power consumption optimizations 

DSPs and BRAMs have optional input/output pipelining 
registers, which are responsible for timing and power 
optimization. Pushing the pipeline flops or even non-pipelined 
flops into big blocks improves timing paths. The movable 
registers are preferred to be placed prior placement with 
physical optimization. 

C. Placement and Routing optimizations 

1. Manual replication of signals 

Routing congestion normally occurs due to high area 
usage, tight timing constraints, and high fanout nets. High 
fanout nets are replicated manually. This resolves the issue, 
but increases the utilized area. Manual replication of high 
fanout nets allows the placer to freely replace critical cells and 
rearrange block placement according to new replicas sites. 

2. Removing Global Reset Signal 

By default, reset signals are the second-highest fanout 
signals, with clock signals are in the first place. Therefore, 
resets should be handled carefully in the huge designs. Unlike 
clocks, reset signals have no dedicated buffers and global 
routing, such as BUFG or BUFR depends on local routing 
resources. FPGAs have embedded global reset that 
reprograms the chip into the initial state or factory reset. 
Depending on such utility, routing is totally improved while 
keeping the same function. 

D. Hardware implementation 

The synthesis is performed for Xilinx Virtex-7 VC709 
FPGA. The synthesis flow requires selecting how the tool 
handles hierarchy, either full flat hierarchy, none flat, or 
rebuilt flattening. The none-flattening synthesis and the 
“AreaOptimized_high” directive lead to best results using 
additional options such as (None flattening, Resource sharing, 
Retiming, and Incremental synthesis). After design synthesis, 
the implementation process is made successfully after 
performing several physical optimizations with RTL (Register 
Transfer Language) changes.  

IV. DISCUSSION AND RESULTS 

In this section, area utilization on Virtex-7 FPGA board 
and power consumption are discussed. In addition, a 
comparison between the proposed accelerator, Intel Core i7-
4510u, and NVidia GeForce840M is presented. Finally, a 
comparison between the proposed work and other ZynqNet 
implementations is presented. Firstly, the utilization of Virtex-
7 resources is shown in Table I. It is depicted from the table 
that the BRAMs and DSPs are nearly fully utilized to make 
full use of FPGA resources and use only on-chip memory for 
memory storage. 

Power consumption is an important metric to analyze the 
performance of any hardware design. A lot of embedded and 
IoT applications require a careful design for power 
consumption requirements. The total power consumption in 
the proposed design is 10.97W and 11.5W for frequencies 
100MHz and 125MHz, respectively. BRAMs and DSPs 
consume around 60% (6.42W) of the dissipated power. 
Therefore, most power reduction efforts are focused on these 
components. On the other hand, energy is a more accurate 
metric to describe the performance of the design. The energy 
consumption is  0.88J under a frequency of 100MHz, and 
0.736J under a frequency of 125MHz. 

In Table II, a comparison between the proposed 
implementation, Intel Core i7-4510u, and NVidia 
GeForce840M is presented. It is observed from the table that 
the proposed implementation overcomes the GPU and the 
CPU in terms the power consumption and processing speed. 
The proposed hardware accelerator classifies 15.63 frames per 
second (fps) at a frequency of 125 MHz, while the GPU 
classifies 1.067fps at a frequency of 1.029 GHz and 30W. 
Also, the CPU classifies 0.356fps with 15W at a frequency of 
2GHz.  

TABLE I.  DESIGN UTILIZATION ON VIRTEX-7 FPGA 
Resource Utilized Available Utilization 

LUT 338922 433200 78.24% 
LUTRAM 589 174200 0.34 
FF 184723 866400 21.32% 
BRAM 1413 1470 96.16% 
DSP 3552 3600 98.67% 
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 In Table III, a comparison between the proposed design 
and the latest implementations for ZynqNet CNN is presented 
[11-13]. It is obvious that this is the fastest implementation 
compared to other works with 15.63fps at a frequency of 
125MHz. Also, the proposed implementation has the lowest 
energy consumed per frame and highest power efficiency 
(frames/Watt). Moreover, the proposed hardware accelerator 
is fully implemented in native RTL (Verilog), while other 
implementations are implemented using HLS or SDSoC. 
Accordingly, the power consumption is large for Gschwend 
work with 15.6W per frame, and it’s expected to very large in 
Mousouliotis and CNN-Grinder implementations as they are 
HLS and SDSoC implementations, respectively. For FPGA 
utilization, the proposed implementation is designed to make 
full use of all FPGA resources to provide the max 
performance. As a result, the proposed implementation 
provides the best performance in terms of number of frames 
per second and number of frames per Watt. 

V. CONCLUSION 

 This paper presented the implementation of ZynqNet CNN 
architecture on FPGA. The adopted approach was to 
implement all ZynqNet layers on the FPGA to reach the max 
acceleration and make full use of all DSP units. Various 
optimizations and approximation techniques were used in 
different design phases to improve processing speed, utilized 
area, and power consumption. The proposed accelerator 
achieved 15.6fps for ZynqNet CNN classification at a 
frequency of 125MHz. Power consumption was measured as 
11.5W at 125MHz, and 10.97W at 100MHz. Moreover, the 
proposed accelerator run at two different frequencies of 
100MHz and 125MHz. In addition, the proposed 
implementation provided an improvement over benchmark 
CPU and GPU such as Intel Core i7-4510u and Nvidia 
GeForce840M. Furthermore, the design overcame previous 
FPGA implementations in terms of power consumption and 
processing speed. It was synthesized and implemented on 
Virtex-7 FPGA. Finally, the achieved classification accuracy 
was 57.5% on Virtex-7 FPGA. 

TABLE II.  COMPARISON BETWEEN THE PROPOSED HARDWARE 
ACCELERATOR, INTEL CORE-I7, AND NVIDIA GEFORE840M 

 Intel Core 
i7-4510u 

NVidia 
GeForce840M 

This Work 

Frequency 2 GHz 1.029 GHz 125 MHz 
Latency (Sec) 2.8125 0.9375 0.064 
Power (Watt) 15 30 11.5 
Performance (fps) 0.3556 1.067 15.63 
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TABLE III.  COMPARISON BETWEEN THE PROPOSED HARDWARE ACCELERATOR WITH OTHER ZYNQNET FPGA IMPLEMENTATIONS 
 

Gschwend [11] Mousouliotis [12] CNN-Grinder [13] This work v1 This work v2 
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BRAMS 1090 96.5 97.5 2130 2130 
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