

Hardware-Accelerated ZYNQ-NET Convolutional
Neural Networks on Virtex-7 FPGA

Ahmed J. Abd El-Maksoud1, Amr Gamal1, Aya Hesham1, Gamal Saied1, Mennat-Allah Ayman1, Omnia Essam1, Sara M. Mohamed1,

 Eman El Mandouh2, Ziad Ibrahim2, Sara Mohamed2, Hassan Mostafa1,3

1Electronics and Electrical Communications Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt

2Mentor Graphics
3University of Science and technology, Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology, October Gardens, 6th of

October, Giza 12578, Egypt.

Email: hassanmostafahassan@gmail.com

Abstract—Convolutional neural network is a class of deep
neural networks that has made a great breakthrough in image
recognition. CNNs are commonly used to detect and classify
visual applications so that they are frequently embedded
in image classification tasks. The common trend nowadays is to
accelerate the processing of CNNs in order to use them in real-
time applications such as image classification and object
recognition. This paper presents the implementation of ZynqNet
CNN architecture on FPGA. The full ZynqNet CNN layers are
implemented on FPGA to reach the max acceleration and make
full use of all DSP units. Several optimizations techniques are
used in different design phases to improve processing speed,
utilized area, and power consumption. In addition, the proposed
hardware accelerator achieves 15.6 fps for ZynqNet CNN at
maximum frequency. The proposed architecture runs at two
different frequencies of 100MHz and 125MHz, and is
implemented on Virtex-7 FPGA.

Keywords—Accelerating CNNs; Convolutional Neural Networks
(CNNs); FPGA; Hardware accelerators; ZynqNet.

I. INTRODUCTION

In recent years, the effectiveness of artificial intelligence
(AI) is proved to solve a lot of complex problems. The goal is
to create an intelligent system that extracts features
automatically and recognizes specific patterns. AI is divided
into many subfields such as deep learning, machine learning,
and natural language processing [1].

 Deep convolutional neural network (DCNN) is one of the
popular artificial intelligence fields. During the past decade, it
has emerged in many applications such as video recognition,
image classification, biomedical systems, and self-driving
cars [2-5]. DCNN has become a state of art methodology for
computer vision problems. It consists of millions of learnable
parameters, which are evaluated through the training phase.

The topology of CNN is divided into multiple learning
stages that are composed of convolutional layers, non-linear
rectified (ReLU) layers, pooling layers, fully connected
layers, and softmax layer [6]. Every layer plays a specific role
to build a complete CNN model. The training of DCNN
models is commonly performed on graphics processing units
(GPUs) which have thousands of cores and large external
memory bandwidth. It does not require much effort to deploy
existing models or train new ones on GPUs using various
frameworks. While the training is carried few times during
the development phase, the inference process is performed
millions of times. This puts new limitations for applications
that have a limited power budget and tight latency constraints,
such as embedded systems or self-driving cars. As a result,
there is a growing demand for dedicated hardware accelerators
to get higher throughput and less power consumption.

Many researchers focus on building custom application-
specific integrated circuits (ASICs) for accelerating CNNs
inference workloads and getting the best performance [7].
Despite being an optimum solution, ASICs do not offer
enough flexibility to accommodate the rapid evolution of
CNN models and the deployment of new CNN layer types. On
the other hand, FPGAs offer interesting design capabilities
compared to other implementation types. FPGA-based
accelerators provide high throughput, low power
consumption, fast prototyping, and reconfigurability at a
reasonable cost. There are different types of architectures to
accelerate the CNN processing using FPGA [8-10].

ZynqNet CNN is a stripped-down version of SqueezeNet
CNN. It consists exclusively of convolutional layers, ReLU,
and global average pooling. It has top-1 and top-5 error rates
of 41.52% and 15.4%, respectively, on the ImageNet testing
dataset. ZynqNet has fewer error rates than SqueezeNet. Also,
the number of MAC operations reduced by 38%, and the total
number of activations is reduced by 40%, with respect to
SqueezeNet CNN. ZynqNet is developed by David Gschwend
in 2016. It has 2.5 Million parameters and consists of 27
convolutional layers and only one average pooling layer [11].

Researchers have provided various CNN accelerator
architectures on FPGA during recent years. The most similar
implementations to the proposed work are investigated for
further analysis. The first implementation is Gschwend’s
accelerator [11]. It is a hardware accelerator on FPGA that
allows classifying images using ZynqNet CNN. It implements
the full network based on a nested-loop approach which
minimizes the number of operations and memory access. The
accelerator is synthesized using High-Level Synthesis (HLS)
for the Xilinx Zynq XC-7Z045. Secondly, Mousouliotis
proposes a hardware accelerator that can process ZynqNet and
SqueezeNet. It’s implemented using HLS on Zynq-xc7z020
FPGA. It’s an improved version from SqueezeJet hardware
accelerator and achieves 11.54 fps for the ZynqNet CNN [12].
Finally, CNN-Grinder provides a workflow to accelerate
SqueezeNet and ZynqNet using both HLS and SDSoC design
methods. It achieves 14.49fps for ZynqNet on Zynq-xczu9eg
[13].

This paper is organized as follows; Section II discusses
Zynqnet architecture in detail. Section III shows the design
improvements and hardware implementation. Moreover,
Section IV shows the implementation results on FPGA and
comparisons with other work. Section V concludes the work.

II. THE PROPOSED ARCHITECTURE

The proposed accelerator is built based on fully pipelined
architecture. All ZynqNet CNN layers are implemented on

978-1-6654-0839-4/21/$31.00 ©2021 IEEE

2021 International Conference on Microelectronics (ICM)

70

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ic
ro

el
ec

tro
ni

cs
 (I

C
M

) |
 9

78
-1

-6
65

4-
08

39
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
M

52
66

7.
20

21
.9

66
49

56

Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:11:22 UTC from IEEE Xplore. Restrictions apply.

FPGA, which provided a massive acceleration for the whole
CNN. As shown in Fig. 1, each convolution layer is
implemented separately with their independent weights
memory and Multiply Accumulation units (MACs) for
performing the convolution operations. Two shared memories
are used to store the intermediate storage between layers
which are Conv1 and all Fire layers. Conv10 is interleaved
with one global average pooling layer to reduce the dimension
of features retaining the most dominant information. Finally,
the output prediction block is implemented to get the index of
the output prediction.

A. Convolution units

In the proposed design, each layer requires a specific
number of MACs to achieve full parallelism. It is chosen to
fully parallelize the processing of output filters. Therefore, the
number of used DSPs is with respect to the number of required
MACs. Also, each convolution layer is implemented in a
separate block with control signals during convolution
operation. Moreover, a separate weights memory is generated
for each block. The convolution operation is performed using
MAC units, and the output is fetched to the ReLU block.

Available DSP resources on the target FPGA is one of the
main challenges during the implementation. As the required
DSPs for full-layer implementation all convolution layers on
the FPGAs are 4448 DSPs, which is unfeasible by Virtex-7
DSPs that are equal to 3600 DSPs only. This problem is solved
by sharing a group of DSPs by the identical layers such as
fire2/expand3x3 and fire3/expand3x3 layers. By this
approach, the same 64 DSPs are used for the two layers. The
proposed convolution unit is shown in Fig. 2. It simply
consists of intermediate registers, kernels memory, counters,
adders, and multipliers.

B. Kernels memory

ZynqNet CNN has around 2.5M parameters, which are
either network weights or biases. The number of parameters
makes it feasible to implement ZynqNet architecture on
FPGAs. However, memory bottleneck requires careful
attention for memory organization in the design. Usually,

Fig. 1. The proposed architecture

Fig. 2. Convolution unit block diagram

fixed parameters are stored into Read Only Memories
(ROMs). In addition, the proposed implementation targets
acceleration speed at first priority, so off-chip memories are
not an option as they degrade the speed and increase the power
consumption. As mentioned in convolution blocks design,
each MAC block is responsible for one filter processing.
Therefore, fitting all design parameters into a large ROM
block increases the memory fetching latency for all MACs.
For example, a 10Kb memory is mapped to 64 MACs which
requires 64 cycles to fetch a new word. This method results in
speed degradation. Consequently, the adopted approach is to
use parallel ROMs. Each ROM is used for a group of filters
in the design, which grants low latency and consistency.

C. Intermediate memory storage

Each layer has output feature maps that have to be stored in
order to be passed to the next layer. Layers storage is made
using different resources in FPGA such as BRAMs and
register files. A shared memory of 3D BRAMs is used for all
layers so that they can read and write from the same memory.
The shared memory is divided into two memories to avoid
conflict between reading and writing during processing. The
current and next layer mutually changes between the
memories by reading from memory for the current layer and
writing the output in another memory.

D. Average pooling unit

 During the implementation of average pooling, two
optimization techniques are applied. Firstly, the Conv10 layer
does not run simultaneously in the proposed design as it is split
into two parts. To take the available resources into
consideration, the required number of accumulators for
average pooling is saved to half by exploiting the splitting of
the conv10 layer. Therefore, a multiplexer is used to select
between conv10 part-1 output or conv10 part-2 output, and the
multiplexer output is fetched to accumulators array. Secondly,
implementing divider blocks on hardware is area ad power-
consuming, so they are replaced by simple shifting right
operations. The accuracy of the result may be not as same as
convention dividing, but the difference is so little and the
result is acceptable. The schematic diagram for average
pooling is shown in Fig. 3 which consists of the parallel
multiplexer, accumulators array, registers, and shifting right
blocks array.

E. Output prediction unit

The output prediction layer is located after the average
pooling layer which is used to select the classified prediction.
It compares the 1024 outputs from average pooling to get the
max number which is the class index that refers to the output
prediction. One comparator, counter, and two registers are
needed as shown in Fig. 4. The unit processes the 1024 value
serially which may take 1024 cycles, but provide a utilized
area reduction more than parallel comparators.

Fig. 3. Average pooling unit implementation

2021 International Conference on Microelectronics (ICM)

71Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:11:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Output prediction unit implementation

III. DESIGN IMPROVEMENTS AND IMPLEMENTATION

 After finishing the design implementation and satisfying
all processing functionality. Several optimization techniques
and improvements are added to the design to improve the
acceleration or power consumption. The adopted
optimizations are categorized as follows.

A. Area-aware optimizations

1. Control sets reduction

A control set is the grouping of control signals (set, reset,
clock enable, and clock) that drives any given SRL,
LUTRAM, or register. Designs with fewer control sets have
more options and flexibility in terms of placement, generally
resulting in improved results, especially for the utilized area.
During these optimizations, the goal is to reduce the
controlling as possible.

2. Quantization of the fully connected layer

The fully connected layer has the most of ZynqNet CNN
model parameters. Hence, quantization of this layer from 16
to 10 bits makes an improvement in the area. Moreover, based
on simulation results, quantization of fully connected layer to
10 bits makes the design run at higher frequencies too.

3. Packing of expand layer parameters

Fire modules in ZynqNet consist of a Squeeze and 2
Expand layers. Usually, the Expand layers are working
simultaneously. Consequently, instead of allocating a separate
memory for each one, packing both Expand parameters in one
memory reduces the allocated memory.

4. Registering high fan-out nets

In the presence of tight timing constraints and high area
usage, fanout is preferred to be less than 500 cells. The
proposed design has all high fanout nets registered, so that
replicated cells consume flip-flops and not the LUTs.

B. Power consumption optimizations

DSPs and BRAMs have optional input/output pipelining
registers, which are responsible for timing and power
optimization. Pushing the pipeline flops or even non-pipelined
flops into big blocks improves timing paths. The movable
registers are preferred to be placed prior placement with
physical optimization.

C. Placement and Routing optimizations

1. Manual replication of signals

Routing congestion normally occurs due to high area
usage, tight timing constraints, and high fanout nets. High
fanout nets are replicated manually. This resolves the issue,
but increases the utilized area. Manual replication of high
fanout nets allows the placer to freely replace critical cells and
rearrange block placement according to new replicas sites.

2. Removing Global Reset Signal

By default, reset signals are the second-highest fanout
signals, with clock signals are in the first place. Therefore,
resets should be handled carefully in the huge designs. Unlike
clocks, reset signals have no dedicated buffers and global
routing, such as BUFG or BUFR depends on local routing
resources. FPGAs have embedded global reset that
reprograms the chip into the initial state or factory reset.
Depending on such utility, routing is totally improved while
keeping the same function.

D. Hardware implementation

The synthesis is performed for Xilinx Virtex-7 VC709
FPGA. The synthesis flow requires selecting how the tool
handles hierarchy, either full flat hierarchy, none flat, or
rebuilt flattening. The none-flattening synthesis and the
“AreaOptimized_high” directive lead to best results using
additional options such as (None flattening, Resource sharing,
Retiming, and Incremental synthesis). After design synthesis,
the implementation process is made successfully after
performing several physical optimizations with RTL (Register
Transfer Language) changes.

IV. DISCUSSION AND RESULTS

In this section, area utilization on Virtex-7 FPGA board
and power consumption are discussed. In addition, a
comparison between the proposed accelerator, Intel Core i7-
4510u, and NVidia GeForce840M is presented. Finally, a
comparison between the proposed work and other ZynqNet
implementations is presented. Firstly, the utilization of Virtex-
7 resources is shown in Table I. It is depicted from the table
that the BRAMs and DSPs are nearly fully utilized to make
full use of FPGA resources and use only on-chip memory for
memory storage.

Power consumption is an important metric to analyze the
performance of any hardware design. A lot of embedded and
IoT applications require a careful design for power
consumption requirements. The total power consumption in
the proposed design is 10.97W and 11.5W for frequencies
100MHz and 125MHz, respectively. BRAMs and DSPs
consume around 60% (6.42W) of the dissipated power.
Therefore, most power reduction efforts are focused on these
components. On the other hand, energy is a more accurate
metric to describe the performance of the design. The energy
consumption is 0.88J under a frequency of 100MHz, and
0.736J under a frequency of 125MHz.

In Table II, a comparison between the proposed
implementation, Intel Core i7-4510u, and NVidia
GeForce840M is presented. It is observed from the table that
the proposed implementation overcomes the GPU and the
CPU in terms the power consumption and processing speed.
The proposed hardware accelerator classifies 15.63 frames per
second (fps) at a frequency of 125 MHz, while the GPU
classifies 1.067fps at a frequency of 1.029 GHz and 30W.
Also, the CPU classifies 0.356fps with 15W at a frequency of
2GHz.

TABLE I. DESIGN UTILIZATION ON VIRTEX-7 FPGA
Resource Utilized Available Utilization

LUT 338922 433200 78.24%
LUTRAM 589 174200 0.34
FF 184723 866400 21.32%
BRAM 1413 1470 96.16%
DSP 3552 3600 98.67%

2021 International Conference on Microelectronics (ICM)

72Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:11:22 UTC from IEEE Xplore. Restrictions apply.

 In Table III, a comparison between the proposed design
and the latest implementations for ZynqNet CNN is presented
[11-13]. It is obvious that this is the fastest implementation
compared to other works with 15.63fps at a frequency of
125MHz. Also, the proposed implementation has the lowest
energy consumed per frame and highest power efficiency
(frames/Watt). Moreover, the proposed hardware accelerator
is fully implemented in native RTL (Verilog), while other
implementations are implemented using HLS or SDSoC.
Accordingly, the power consumption is large for Gschwend
work with 15.6W per frame, and it’s expected to very large in
Mousouliotis and CNN-Grinder implementations as they are
HLS and SDSoC implementations, respectively. For FPGA
utilization, the proposed implementation is designed to make
full use of all FPGA resources to provide the max
performance. As a result, the proposed implementation
provides the best performance in terms of number of frames
per second and number of frames per Watt.

V. CONCLUSION

 This paper presented the implementation of ZynqNet CNN
architecture on FPGA. The adopted approach was to
implement all ZynqNet layers on the FPGA to reach the max
acceleration and make full use of all DSP units. Various
optimizations and approximation techniques were used in
different design phases to improve processing speed, utilized
area, and power consumption. The proposed accelerator
achieved 15.6fps for ZynqNet CNN classification at a
frequency of 125MHz. Power consumption was measured as
11.5W at 125MHz, and 10.97W at 100MHz. Moreover, the
proposed accelerator run at two different frequencies of
100MHz and 125MHz. In addition, the proposed
implementation provided an improvement over benchmark
CPU and GPU such as Intel Core i7-4510u and Nvidia
GeForce840M. Furthermore, the design overcame previous
FPGA implementations in terms of power consumption and
processing speed. It was synthesized and implemented on
Virtex-7 FPGA. Finally, the achieved classification accuracy
was 57.5% on Virtex-7 FPGA.

TABLE II. COMPARISON BETWEEN THE PROPOSED HARDWARE
ACCELERATOR, INTEL CORE-I7, AND NVIDIA GEFORE840M

 Intel Core
i7-4510u

NVidia
GeForce840M

This Work

Frequency 2 GHz 1.029 GHz 125 MHz
Latency (Sec) 2.8125 0.9375 0.064
Power (Watt) 15 30 11.5
Performance (fps) 0.3556 1.067 15.63

ACKNOWLEDGMENT

 This work was partially funded by ONE Lab at Zewail
City of Science and Technology and Cairo University,
Siemens EDA (Mentor Graphics), ASRT, NTRA, and ITAC

REFERENCES
[1] S. A. Oke, “A Literature Review on Artificial Intelligence,”

International Journal of Information and Management Sciences, vol.
19, no. 4, pp. 535-570, 2008.

[2] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” Int. J. Comput. Vis, vol. 115, pp. 211-252, 2015.

[3] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for
Image Recognition,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pp. 770-778, Jun. 2016.

[4] H. Elhosary, M. H. Zakhari, M. A. Elgammal, K. A. H. Kelany, M. A.
Abd El Ghany, Khaled N. Salama, and H, Mostafa, “Hardware
Acceleration of High Sensitivity Power-Aware Epileptic Seizure
Detection System Using Dynamic Partial Reconfiguration,” IEEE
Access, vol. 9, pp. 75071-75081, 2021.

[5] M. Abdou, R. Mohammed, Z. Hosny, M. Essam, M. Zaki, M. Hassan,
M. Eid, and H. Mostafa, “End-to-End Crash Avoidance DeepIoT-based
Solution,” IEEE International Conference on Microelectronics (ICM
2019), Cairo, Egypt, pp. 103-107, 2019.

[6] S. Khan, H. Rahmani, S. A. A. Shah and M. Bennamoun, “A guide to
convolutional neural networks for computer vision,” Synth. Lectures
Comput. Vis., vol. 8, no. 1, pp. 1-207, 2018.

[7] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, et al., “EIE:
Efficient Inference Engine on Compressed Deep Neural Network,”
arXiv:1602.01528, 2016.

[8] A. J. Abd El-Maksoud et al., “FPGA Design of High-Speed
Convolutional Neural Network Hardware Accelerator, ” IEEE Novel
Intelligent and Leading Emerging Sciences conference (NILES 2021),
Cairo, Egypt, In Press.

 [9] E. Adel, R. Magdy, S. Mohamed, M. Mamdouh, and H. Mostafa,
“Accelerating Deep Neural Networks Using FPGA,” IEEE
International Conference on Microelectronics (ICM 2018), Sousse,
Tunisia, pp. 180-183, 2018.

[10] A. J. Abd El-Maksoud, M. Ebbed, A. H. Khalil and H. Mostafa, “Power
Efficient Design of High-Performance Convolutional Neural Networks
Hardware Accelerator on FPGA: A Case Study with GoogLeNet,” in
IEEE Access, doi: 10.1109/ACCESS.2021.3126838, Nov. 2021.

[11] D. Gschwend, “ZynqNet: An FPGA-Accelerated Embedded
Convolutional Neural Network,” vol. Master ETH-Zurich:Swiss
Federal Institute of Technology Zurich, 2016.

[12] P. G. Mousouliotis and L. P. Petrou, “Software-defined FPGA
accelerator design for mobile deep learning applications,”
arXiv:190203192, 2019.

[13] P. G. Mousouliotis and L. P. Petrou, “CNN-Grinder: From algorithmic
to high-level synthesis descriptions of CNNs for low-end-low-cost
FPGA SoCs,” Microprocessors Microsyst., vol. 73, Mar. 2020.

TABLE III. COMPARISON BETWEEN THE PROPOSED HARDWARE ACCELERATOR WITH OTHER ZYNQNET FPGA IMPLEMENTATIONS

Gschwend [11] Mousouliotis [12] CNN-Grinder [13] This work v1 This work v2

FPGA Zynq XC-7Z045 Zynq-xc7z020 Zynq-xczu9eg Virtex-7
Design Type HLS HLS SDSoC Full RTL design

Memory On/Off-chip On/Off-chip On/Off-chip On-chip
Precision 16-bit Floating point 8-bit Floating point 8-bit 15-bit 16-bit
FC layer precision 16-bit Floating point 8-bit Floating point 8-bit 15-bit 10-bit
Frequency (MHz) 200 100 100 100 125
Power (W) 7.8 - - 10.97 11.5
Performance (fps) 0.5 11.54 14.49 12.5 15.63
Inference time (Sec) 2 0.0866 0.069 0.08 0.064

Power Efficiency (frames/W) 0.0641 - - 1.139 1.359
Energy (frame/J) 15.6 - - 0.88 0.736

LUTs 154K 36.2K 34.5K 339K 283K
BRAMS 1090 96.5 97.5 2130 2130
DSPs 739 172 164 3552 3552

2021 International Conference on Microelectronics (ICM)

73Authorized licensed use limited to: Hassan Mostafa. Downloaded on March 19,2022 at 23:11:22 UTC from IEEE Xplore. Restrictions apply.

