
ASIC-FPGA Gap for a RISC-V Core
Implementation for DNN Applications

Abstract—Recently, an emerging instruction set called RISC-V
has been considered a paradigm in the computer architecture
domain, which has easily got the attention of the hardware
community. This is because it is fully open-source, which opens
wide horizons for development and innovation. As deep learning
applications (DL) are becoming more common, it is very im-
portant to evaluate the processors’ performance handling such
tasks. In these lights, we evaluate a RISC-V core performance
executing a DL task. We also measure the gap between its ASIC
and FPGA implementations in terms of power and area. We find
that ASIC achieves better optimization in both aspects more than
the FPGA.

Index Terms—RISC-V, Rocket Chip, ASIC, FPGA, DNN

I. INTRODUCTION

Over the computer levels of abstractions, the hardware-
software mapping, which is represented by the Instruction-Set
Architecture (ISA) concept, plays a significant role in shaping
computer technologies around us. This mapping takes so
many loads off developers’ and researchers’ shoulders,
who may be concerned with a certain level of abstraction.
This is because the ISA interfaces the software layers with
the hardware layers. However, the commercial ISAs are
proprietary, which means that it cannot be used by other
entities other than their original owners, like the famous Intel
x86, IBM Power Architecture, and ARM AARCH32/64.
Provided that, it has been becoming more challenging
for scholars to develop novel techniques that address
the emerging computer architectures. Accordingly, the need
for such open-source instructions has rocketed for a long time.

To eliminate this need, an emerging ISA called RISC-V
[1] developed at the University of California, Berkeley has
been solving this issue. It is completely free-to-use, and
its source is available for computer architects to contribute
further development to the existing paradigms. The RISC-V
ISA has been the backbone of many novel processors, such
as the Rocket Chip [2] and the PULPino [3]. Moreover, in
2020, Microchip announced its first SoC FPGA development
kit that relies on the RISC-V ISA [4].

Concerning implementing any of these cores, designers
usually differentiate between implementing using Application-
Specific Integrated Circuit (ASIC) and Field Programmable
Gate Arrays (FPGA). While the former usually comprise
more trade-off optimization, the latter represents a feasible
mean to prototype the design. However, the FPGAs have
become no longer limited to prototyping purposes and now

are being used to accelerate different functions in data centers.

In this paper, we distinguish the gap between the ASIC
and FPGA implementations of one of the famous RISC-V
Cores, which is the Rocket Chip [2], in terms of power and
area. These trade-offs are measured based on implementation
using 28-nm Xilinx Zynq-7000 FPGA and a 28-nm CMOS
standard-cell ASIC. We use this to highlight the different
efficiencies of both approaches. Also, we evaluate the
performance of a certain configuration of the Rocket Chip
when a Deep Neural Network application runs on it.

This paper is organized as follows. Section II demonstrates
the essential background of this work. Section III introduces
the methodology and implementations done within this work.
The gap between ASIC and FPGA is illustrated in section IV,
while section V concludes the work.

II. BACKGROUND

A. Rocket Chip

Rocket Chip is a RISC-V SoC generator, which generates
a full multi-core system with many components like
Rocket Core and memory coherent protocols [2]. It is a
parameterizable chip generator that can be easily configured
to include or exclude different hardware blocks, such as IEEE
Floating Point Unit (FPU), types and number of cores, caches,
etc. The generation mainly targets producing tiles which
may contain different core types (e.g. In-Order Rocket Core,
Out-of-Order BOOM Core). Figure 1 depicts the different
components that comprise the Rocket Chip generator. The
Rocket Chip Generator is coded in Chisel [5], which is based
on Scala.

Technically, the Rocket Chip generator supports different
types of RISC-V instructions with the capacity to execute
both RV32 and RV64 modes. For example, it supports the
base mode (I), with existing extensions that include Multiply
and Divide (M), and single-precision (F), etc. It also provides
architects with many useful interfaces like AXI4, AHB, and
APB. However, the tile generated provides a distinguished
interface called RoCC Interface, which stands for Rocket
Custom Co-processor Interface. The significant role of this
interface is to provide developers with an easy way to couple
their own custom accelerators with the core inside the tile.

Proceedings of NILES2021:
3rd Novel Intelligent and Leading Emerging Sciences Conference

393
978-1-6654-2157-7/21/$31.00 ©2021 IEEE

Original
Typewritten text
Abdelrahman Hussein and Hassan Mostafa

Fig. 1. Different components of which the Rocket Chip generator consists
(e.g. cache generator, Tile generator, etc.) [2]

B. Deep Neural Networks

Deep Neural Networks (DNNs) are one example of Deep
Learning architectures, which is mainly based on Artificial
Neural Networks (ANNs). DNNs have been achieving great
progress in numerous tasks and applications such as speech
recognition, natural language processing (NLP), and computer
vision [6], [7]. Figure 2 shows the general structure of the
DNN. Mainly, it consists of input layers (in green), hidden
layers (in blue), and output layers (in red).

Fig. 2. General representation of a DNN

With regard to computer vision applications, Convolution
Neural Network (CNN) has proven a significant success in
visual tasks (e.g. object recognition, object detection) [8]. This
happens because of its great capacity to learn how to extract
features. There are many famous CNN architectures that have
achieved state-of-the-art results in various visual tasks like
AlexNet [9], ResNet [8], and LeNet-5 [10]. Each of these
architectures differs in the number of parameters (i.e. weights),
computation cost, and overall performance against different
applications. In this work, we use the LeNet-5 to evaluate the
Rocket Core performance against a simple deep learning task
like classification. Table I depicts the LeNet-5 architecture,
where it consists of two convolutional layers that extracts the
features of the input image, and fully connected layers to carry
out the inference task. It is also important to note that all the
activation functions used across the LeNet-5 architecture are

TABLE I
LENET-5 ARCHITECTURE

Layer Feature Map Size Kernel Size
Input 1 32x32 -

CONV Layer 6 28x28 5x5
Average Pooling 6 14x14 2x2

CONV Layer 16 10x10 5x5
Average Pooling 16 5x5 2x2

CONV Layer 120 1x1 5x5
Fully Connected Layer - 84 -
Fully Connected Layer - 10 -

all tanh, except for the last layer (i.e. output layer), which uses
the softmax activation to calculate the likelihood of belonging
to each class.

C. Hardware Development Flow

Compared to general-purpose processors, which can be
used to execute different types of functions via software
development, custom hardware development provides
dominant performance if it is adopted to implement the same
function. This is because it leverages its nature to execute
a function without the need to transform the function into
specific instructions of the processor, which may leak required
parallelism. In [11], the author highlights this significant gap
between general-purpose processors, and custom hardware
(i.e. ASIC and FPGA). It can be concluded that custom
hardware provides a higher level of parallelism, hence, a
better overall performance (for an application that reflects
sufficient parallelism). This is because the architect in such
scenario can duplicate the number of Processing Engines
(PEs), which accordingly increases the level of parallelism.

Conventionally, custom hardware implementation can
be done using either FPGA or ASIC. FPGA, as its name
reflects, provides developers with extensive reconfigurability,
unlike ASICs, because of its internal structure. Internally,
an FPGA consists of Configurable Logic Blocks (CLBs),
memory blocks, Digital Signal Processing (DSP) slices. All
these items are distributed over a grid of programmable
interconnects that connect all FPGA blocks to each others
and to the outer IO cells. All of these building blocks are
comprised in figure 3.

On the other hand, the ASIC flow relies on a given CMOS
standard-cell library, which is a standard approach to design
ASIC [12], [13]. This requires the architects to consider
various development phases to ensure that the chip design
shall perform the expected task. On the contrary to FPGA,
ASIC flow does not reflect any flexibility after development.
In return, it achieves way less power consumption and better
performance than FPGA [11].

III. METHODOLOGY AND IMPLEMENTATION

With regard to the Rocket Chip used, we generate a Rocket
Tile, which includes an in-order Rocket Core coupled with an

Proceedings of NILES2021:
3rd Novel Intelligent and Leading Emerging Sciences Conference

394

Fig. 3. Internal FPGA structure

Fig. 4. Tethering Rocket Chip with the programmable system (PS) side

FPU, and L1 Cache. For the ASIC and FPGA resources and
power evaluation, caches are excluded.

A. FPGA Flow

To implement the Rocket Chip on the FPGA, we used
Xilinx Zynq-7000 Zedboard FPGA, which has an ARM
dual-core Cortex A9 MPCore. For this purpose, we adopt the
official Github repository [14]. The Rocket Tile is tethered
with the ARM processor as shown in figure 4. The CPU runs
a Xilinx PetaLinux operating system, on which a Front-End
server runs. This server is responsible for executing RISC-V
instructions on the Rocket Tile. The Rocket Chip in this
implementation operates on 25 MHz.

We use this implementation for two purposes; to identify re-
source utilization for the Rocket Tile on FPGA, and to evaluate
the number of execution clock cycles required to perform a DL
task. For the Rocket Tile, the post-implementation resources
utilization and dynamic power on FPGA are concluded in
tables II and III, respectively. The post-routing layout is
highlighted in red in figure 5. Since the FPGA contains DSP
slices that perform mathematical operations, we constrained
the design so that it would not infer a DSP slice. This is for
the purpose of making a fair comparison with the ASIC flow.

TABLE II
SINGLE-CORE ROCKET TILE RESOURCES UTILIZATION ON FPGA

Module Slice LUTs Slice Registers
Rocket Core 5.9K 2K

TLMasterXBar 44 15
PTW 0.6K 0.5K

FrontEnd (For Branching Purposes) 3.2K 3.4K
FPU 16.5K 3.8K

TLBuffer 0.5K 15
Rocket Tile (Total) 26.7K (50.2%) 9.7K (9.17%)

TABLE III
SINGLE-CORE ROCKET TILE RESOURCES UTILIZATION ON FPGA

Module Dynamic Power (in mW)
Rocket Core 14.36

TLMasterXBar 0.018
PTW 2.733

FrontEnd (For Branching Purposes) 9.101
FPU 9.152

TLBuffer 1.434
Rocket Tile (Total) 36.8

Fig. 5. Post-Routing layout of Rocket Tile (highlighted in red)

B. Performance Evaluation

In order to evaluate the performance of the Rocket Chip
executing a Deep Learning task, we use LeNet-5 architecture
coded in C [15]. The network is trained to infer two different
datasets; MNIST hand-written digits (figure 6), and MNIST
Fashion (figure 7). The model is trained for each of the
two datasets and achieved test accuracy 96% for the hand-
written digits, and 91% for the fashion dataset. The model
is then cross-compiled using the RISC-V tool-chain into the
compatible instructions. Since this task comprises floating-
point tasks, it is essential to configure the Rocket Tile to
include an FPU block.

The performance is evaluated using the scheme shown in
figure 4 in order to determine the number of clock cycles
spent to successfully perform the inference task. For accuracy
considerations, the number of clock cycles is fetched from
the Control/Status Register (CSR). The inference latency was
2.2 seconds/image, operating at the same frequency 25 MHz.
The inference latency is the same for images from any of
the two datasets because the execution relies on the compiled
instructions, which does not change by changing the dataset.

Proceedings of NILES2021:
3rd Novel Intelligent and Leading Emerging Sciences Conference

395

Fig. 6. MNIST hand-written digits dataset

Fig. 7. MNIST fashion dataset

C. ASIC Flow

To get the required insights about the ASIC-FPGA gap,
we synthesize the same Rocket Tile to generate the equivalent
netlist. The synthesis is done using Synopsys Design Compiler.
The Rocket Tile operates at a frequency of 25 MHz, which is
identical to its counterpart on FPGA. The chip post-synthesis
layout is shown in figure 8. All memory blocks (e.g. caches)
are excluded during this process. Area and power consumption
of the design are presented in table IV, based on UMC 28-nm
standard-cell technology.

Fig. 8. Post-Synthesis layout of Rocket Tile

TABLE IV
ROCKET TILE POST-SYNTHESIS AREA AND POWER CONSUMPTION

USING

Operational Voltage (in V) Area (in µm2) Power (in mW)
0.7 52.7K 11.24

1.05 52.7K 25.30

IV. ASIC-FPGA GAP REALIZATION

A. Power Gap
As stated in tables III and IV, the FPGA consumes at least

1.5x more power for the same Rocket Tile than the power
consumed by the ASIC when it operates on 1.05 operational
voltage. The ASIC power consumption drops to lower power
consumption (11.24 mW), which makes the FPGA consumes
3.2x more power than the ASIC. This raises the ASIC as an
efficient choice for applications that need significant power
optimization.

B. Area Gap
As demonstrated in section II, there are many significant

differences between ASIC and FPGA in terms of area and
power. For this purpose, Rocket Tile’s implementation on
ASIC and FPGA is compared in terms of these two factors.
Both flows can estimate the power consumption directly with a
few commands to execute after synthesis or routing. However,
in terms of the area, it is much easier to determine the chip
area in ASIC than it is in FPGA. This is because the FPGA
flow relies on reporting resources utilization not the actual
total area of resources that are consumed by the design.

However, this can be possible if the area of each of the
different individual slices is known. We estimate the area of
the LUT slice and the register slice using the method proposed
in [16], which can be summed up in table V.

TABLE V
FPGA CELL AREA AND ROCKET TILE TOTAL AREA

Cell Type Cell Area (in µm2) Count Total Area
Register 9.03952 9.7K 87.683K

LUT 9.05388 26.7K 241.738K
Total Area 329.421K

As noticed, the FPGA achieves more than 6.2x larger
area than its counterpart on ASIC. This does not take into
consideration the routing for both, which will likely affect the
individual area for each of them.
This can be justified because the FPGA would need more
logic elements to perform a specific function, due to its limited
resources, unlike ASIC, which relies on a larger library that
contains a variety of cells that differ in all trade-offs. This
makes the optimization task much easier in ASIC flow than it
is in FPGA flow.

V. CONCLUSION

In this article, we generated a Rocket Tile that contained a
single-core in-order Rocket Core with an FPU. We evaluated
its performance to handle a DL inference task by measur-
ing the inference latency determined from the number of
clock cycles required to achieve this task. Furthermore, we
distinguished the power and area gaps between ASIC and
FPGA flows. We found that ASIC offered a more optimized
implementation than its counterpart in FPGA. This should be
considered for our future attempt to design an accelerator for
the Rocket Chip.

Proceedings of NILES2021:
3rd Novel Intelligent and Leading Emerging Sciences Conference

396

REFERENCES

[1] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The risc-v
instruction set manual. volume 1: User-level isa, version 2.0,” CALI-
FORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEER-
ING AND COMPUTER SCIENCES, Tech. Rep., 2014.

[2] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[3] A. Traber, F. Zaruba, S. Stucki, A. Pullini, G. Haugou, E. Flamand, F. K.
Gurkaynak, and L. Benini, “Pulpino: A small single-core risc-v soc,” in
3rd RISCV Workshop, 2016.

[4] A. Chandler. The industry’s first soc fpga development kit based
on the risc-v instruction set architecture is now available. [Online].
Available: https://www.microchip.com/pressreleasepage/industry-s-first-
soc-fpga-development-kit-for-risc-v

[5] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012.
IEEE, 2012, pp. 1212–1221.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[7] K. Noda, Y. Yamaguchi, K. Nakadai, H. G. Okuno, and T. Ogata,
“Audio-visual speech recognition using deep learning,” Applied Intel-
ligence, vol. 42, no. 4, pp. 722–737, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[10] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[11] E. Vansteenkiste, “New fpga design tools and architectures,” Ph.D.
dissertation, Ghent University, 2016.

[12] D. Chinnery and K. Keutzer, Closing the gap between ASIC & custom:
tools and techniques for high-performance ASIC design. Springer
Science & Business Media, 2002.

[13] M. J. S. Smith, Application-specific integrated circuits. Addison-Wesley
Reading, MA, 1997, vol. 7.

[14] Rocket chip on zynq fpgas. [Online]. Available: https://github.com/ucb-
bar/fpga-zynq

[15] Lenet-5. [Online]. Available: https://github.com/fan-wenjie/LeNet-5
[16] N. Gamal, H. Fahmy, Y. Ismail, and H. Mostafa, “Design guidelines

for embeded nocs on fpgas,” in 2016 17th International Symposium on
Quality Electronic Design (ISQED). IEEE, 2016, pp. 69–74.

Proceedings of NILES2021:
3rd Novel Intelligent and Leading Emerging Sciences Conference

397

	Introduction
	Dataset and setup
	methods
	Predicting numbers of each insect separately
	Predicting numbers of all insects together

	Conclusion

