
FPGA Design of High-Speed Convolutional Neural

Network Hardware Accelerator

Ahmed J. Abd El-Maksoud1, Abdallah Mohamed1, Ahmed Tarek1, Amr Adel1, Amr Eid1, Farida Khaled1, Fatma Khaled1, Ziad Ibrahim2

Eman El Mandouh2, and Hassan Mostafa1,3

1Electronics and Electrical Communications Engineering Department, Cairo University, Giza, Egypt

2Mentor Graphics

3University of Science and technology, Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology, October Gardens, 6th of

October, Giza 12578, Egypt.

Email: hassanmostafahassan@gmail.com

Abstract—Convolutional Neural Networks get increasingly

importance nowadays as they enable machines to interact with the

surrounding environment, which paves the way for computer

vision applications. FPGA implementations of CNN architectures

have higher speed and lower power consumption compared to

GPUs and CPUs. This paper proposes a high-speed hardware

accelerator on FPGA for SqueezeNet CNN to accelerate its

processing without decreasing the classification accuracy. Several

ideas are applied to solve the memory bottleneck issue such as

using Ping-Pong memory and deploying several FIFOs in the

design. The architecture is built as a pipelined unit to process

SqueezeNet CNN layer by layer. Different parallelism techniques

are applied while processing the convolution layers to speedup

layers processing. Moreover, the proposed accelerator classifies

248.76 fps at a frequency of 100MHz, and 427.4 fps at a frequency

of 172 MHz. The proposed accelerator is implemented on Virtex-

7 FPGA, and overcomes Geforce RTX 2080Ti GPU and several
SqueezeNet FPGA implementations.

Keywords—Convolutional Neural Networks (CNNs); FPGAs;

Hardware Accelerators; SqueezeNet.

I. INTRODUCTION

 Artificial Intelligence plays a vital role in bridging the
gap between the capabilities of humans and machines [1]. It
uses the knowledge for a multitude of tasks such as image and
video recognition, image classification, biomedical
applications, and autonomous vehicles [2-4]. The
advancements in computer vision with deep learning have
been evolved with time. Convolutional Neural Network
(CNN) is one of these popular algorithms which has become
a state of art methodology for image recognition and is used
successfully in object classification, and face detection [5-7].

CNNs typically have millions of learnable parameters
which are initialized firstly. Then, they are evaluated through
training iterations till getting the desired accuracy. The
evaluated weights are saved for the testing or inference phase
where they are used to classify the images immediately. CNN
requires huge resources and billions of computations for a
single frame. There are a lot of proposed architectures to
accelerate the CNN processing using FPGA [8-10].

Convolutional neural networks are constructed by
stacking different types of neural layers, such as convolution
layers, fully connected layers, and pooling layers. CNN
structure usually consists of feature extractor and classifier.
Firstly, the feature extractor which extracts frame features
across the CNN layers which are Convolutional layers or
pooling layers. Secondly, the Classifier, which is implemented
using fully connected layers. It computes every class score and
decides the output class. Convolution layers are constructed
with weights and biases and they are grouped as the model
parameters.

Recent research on deep learning is focused primarily to
achieve higher accuracy which usually increases the model
size. On the other hand, smaller CNN architectures offer at
least three advantages while maintaining the same accuracy.
Firstly, it requires less time during the training process.
Secondly, it requires lower memory storage. Finally, it is more
feasible to be deployed on FPGAs.

SqueezeNet is one of the popular CNN architectures [11].
SqueezeNet uses 50x fewer parameters than AlexNet with the
same accuracy level on ImageNet dataset. SqueezeNet is
designed with three main strategies:

i. Replace 3x3 filters with 1x1 filters so the parameters
are decreased by 9X.

ii. Decrease the number of input channels that is used as

input to 3x3conv layers in Expand layer to maintain

the number of parameters in the CNN model.

iii. Use down-sampling in the network so that the

convolution layers have large activation maps, which

leads to higher classification accuracy.

As depicted from the above three strategies. Strategy i and
ii decrease the number of parameters in the CNN model while
attempting to keep the accuracy. On the other hand, Strategy
iii maximizes the accuracy with a limited budget of
parameters.

SqueezeNet simply begins with a convolution layer
(conv1), followed by 8 Fire modules (fire2–9), and ends with
a final convolution layer (conv10) as shown in Fig. 1.
Furthermore, Maxpooling layers with a stride of 2 are added
after conv1, fire4, fire8, and conv10 layers.

SqueezeNet uses only 3x3 and 1x1 convolution kernels in
the fire module. The 1x1 filters are used to shrink the input
feature map size to 3x3 filters. It reduces the computation of
the following 3x3 convolution layers. Consequently, this
technique enables SqueezeNet to use 50x fewer parameters. In
addition, it achieves the same accuracy as AlexNet.
SqueezeNet uses an average pooling layer to calculate
classification scores instead of the fully connected layers.
Adding an average pooling layer reduces the number of
computations and memory storage.

Fig. 1. SqueezeNet CNN [11]

Proceedings of NILES2021:
3rd Novel Intelligent and Leading Emerging Sciences Conference

384
978-1-6654-2157-7/21/$31.00 ©2021 IEEE

 Hardware accelerators have become one of the popular
topics in research. There are a lot of different implementations
especially for FPGA implementation. For SqueezeNet
accelerators implementations, SqueezeJet accelerator is a
High-Level Synthesis (HLS) design for convolutional neural
networks. It achieves 4.36x speedup more than Intel Core-i3
for squeezeNet at 100MHz frequency [12]. Moreover, the
Edge-net accelerator processes 9 frames per second (fps) at
100MHz frequency [13]. It’s implemented on DE10-Nano
with an accuracy loss of 2%.

This paper is organized as follows, Section II presents the
proposed architecture. Section III shows the implementation
in detail. Moreover, Section IV discusses the implementation
results. Finally, Section V concludes the work.

II. THE ARCHITECTURE

The design purpose of this architecture is to build a well-
designed block using available FPGA resources and reuse the
block in different fire modules. The proposed architecture is
shown in Fig. 2. The architecture is pipelined architecture
which processes SqueezeNet CNN layer by layer.
Consequently, SqueezeNet layers such as Conv1 layer, eight
Fire modules, and Maxpooling are computed iteratively. The
accelerator is initially implemented in 16-bit fixed-point
representation, but it’s reduced to 13-bit precision to save
FPGA resources while keeping the inference accuracy.

Each layer is running for a specific number of clock cycles
depending on the executed fire module in this stage. The
output of the squeeze layer is stored in the FIFO before
loading it as input to the Expand layers. Alternately, the output
of the expand layers is stored in the data memory, which is
fetched again as input for the next stage and so on.

The processing of each squeeze layer is accelerated by
processing 8 filters across 16 channels in parallel. Moreover,
the parallelism in expand layer is done by processing 16
Filters across 8 channels at the same time. It is worth
mentioning that squeeze layers always have a high number of
input feature map (IFM) channels (64, 128, 256, 384, 512) and
low number of filters (16, 32, 48, 64). On other hand, the
expand layer has a low number of input channels (16, 32, 48,
64), but with a high number of filters (64, 128, 256, 384, 512).
Therefore, choosing different parallelism methods in each of
them is required.

A. Data Memory

The data memory is designed to have multiple ports equal
to the number of channels fed to the adder tree in one cycle.
In this case, the number of ports is 16. In order to achieve this
huge number of ports with block RAMs, the data is divided
across several block RAMs. Every clock cycle 16 data ports
are read from the memory.

The expand stage writes 16 activation values to the
memory in one cycle where the 16 values are divided equally
between expand 1x1 and expand 3x3 blocks. The first 8
activation values come from expand 1x1 and the second 8
values from expand 3x3. Both expand 1x1 and expand 3x3
blocks write in different locations in the memory.
Accordingly, we use dual-port block RAMs where each port
is independent of the other.

B. Weights Memory

 The weights memory has the same distribution as the
data memory for one filter. In this design, 8 filters run in
parallel, so that 8 copies of the same weight are generated, but

Fig. 2. The proposed Architecture

with different initialization for each filter. Weights are stored
in ROMs that are implemented using either BRAMs or LUTs.
The BRAM approach is chosen for layers with a lot of weights
such as expand1x1 and expand3x3. The LUTs approach is
better for low depth memories so LUTs are used to store the
weights for the squeeze layer. On the other hand, squeeze
weights are distributed into different memories which enables
parallel data reading to be made every clock cycle. There are
16 Memories for each row. Hence, there are 16 values read
from the squeeze module. Moreover, Expand Layer
parallelism is applied by processing 16 filters across 8
channels. There are 10 expand weights required for the same
channel every clock cycle. Memory is divided between
Expand1x1 filters and Expand3x3 filters with two separate
memory address ports.

C. Ping-Pong Memory

 The structure of Ping-Pong memory is shown in Fig. 3.
Every clock cycle, 16 data ports are read from the memory by
the squeeze unit. The memory is used for FIRE-2, FIRE-4,
FIRE-6, FIRE-7, and FIRE-8 layers in addition to the pooling
layer. When a fire stage starts, the squeeze layer reads data
from memory A and processes it. After that, the expand layer
processes the output of the squeeze layer and stores the data
into memory B. In the next fire stage, the squeeze layer reads
the data from memory B while the expand layer stores it in
memory A. This alternating process is achieved using Ping-
Pong memories where the control signal decides which of the
two memories will receive the input data along with the
required signals such as the address and write enable.

D. The Intermediate FIFO

 The intermediate FIFO holds the output data of the
squeeze stage and passes it to the expand stage. Once the
squeeze finishes processing a pixel, a new pixel gets stored in
the buffer. After the buffer gets filled with W+2 entries the
expand stage starts processing the data in the buffer. FIFO is
chosen to store the intermediate results between the modules
because it is easily implemented by a chain of registers and
required data is accessed easily (No addresses). Since the
FIFO size is 2W+3, so all pixels of a 3x3 window are fetched
at the same time after filling the whole FIFO (2w+3 cycles) as
shown in Fig. 4.

Fig. 3. Ping-Pong Memory

Proceedings of NILES2021:
3rd Novel Intelligent and Leading Emerging Sciences Conference

385

Fig. 4. FIFO Dataflow

III. IMPLEMENTATION INSIGHTS

 In this section, several implementation insights are
presented such as CNN software model training, design
improvements, and validation methodology.

A. CNN Model Training

 The SqueezeNet model is trained for internal building
security application. Therefore, the model is trained on 10
classes from ImageNet dataset. These classes are different
types of weapons. The top-1 classification accuracy of the
software model is around 72%.

B. Implementation Improvments

 The accuracy of the hardware model is usually a little
lower than the software model. However, the actual difference
between the calculated accuracy and the software model
accuracy is very large. After analyzing the issue, it is found
that the hardware, which uses fixed-point representation,
overflows causing the numbers to wrap around. Accordingly,
a saturation limit is used on the numbers to prevent wrapping
which improved the hardware accuracy. The second
modification is to use dynamic fixed-point representation to
change the fraction part width across layers. After several
experiments, it is found that earlier layers need fewer bits for
the integer part and more for the fraction part and vice versa
for the last layers. This improves the hardware accuracy, but
it is still away from the software accuracy. The third
modification is made by retraining the model on clipped
ReLU, then it’s applied on the hardware level. This makes the
hardware and software models have almost the same
accuracy. Finally, the inference accuracy is tested versus the
precision to check if the later one can be reduced. It’s found
that the inference accuracy started to reduce from 12-bit, so a
precision of 13-bit is selected while keeping the inference
accuracy and reducing the FPGA utilizations by 3% LUTs,
3% REGs, and 7% BRAMs.

 Firstly, the HDL design is implemented on Virtex-7 series
FPGA on 100 MHz with minimum positive slack. The goal is
to increase the frequency to 200 MHz, but several issues are
faced during the design such as fanout, wire delay, and floor
planning. Firstly, the fanout problem is created by increasing
design parallelism. Parallelism leads to high fanout which
causes high cell and net delays. High fanout leads to large wire
delay, so buffers are inserted to reduce the delay. The tool is
constrained for buffers insertion to reach the required
frequency. Secondly, low utilization makes the tool spread the
logic cells over the FPGA to avoid creating congestion
regions. This makes the blocks to be allocated far away from
each other which creates long routes and high wire delays.
Consequently, custom FPGA floor planning is used to place
the blocks near to each other, which decreases the wire delay
and improves the frequency.

C. Verification Methodology

 Comparing the implemented design on FPGA with the
software model is important to make sure of the hardware
results. MATLAB model is implemented to test the HDL
design. Firstly, it is used to compare the intermediate results
of HDL design with the software model to check the
equivalence of the results. Also, test benches are created and

executed for each module. Finally, a top-level test bench is
used after the final integration between all accelerator
modules to validate the results.

IV. DISCUSSION AND RESULTS

 In this section, design synthesis, the processing time for
each layer, and power consumption are discussed. In addition,
a comparison between the proposed accelerator and GPU of
Geforce RTX 2080Ti is presented. Finally, a comparison
between SqueezeNet implementations and the proposed work
is investigated.

 The synthesis is performed on Xilinx Virtex-7 VC709
FPGA. It is noted that the FPGA resources are mostly utilized
by the main FIFO, pooling block, and the Fire blocks. Fire
blocks have most of the BRAMs and DSPs due to large
weights storage and multipliers count.

 Power consumption is an important metric to analyze the
performance of any hardware design. A lot of embedded
applications require a careful design with specific power
consumption requirements. The total on-chip power in the
proposed design is 8.9W. BRAMs and DSPs consume around
60% (5W) of dissipated power. Therefore, most power
reduction efforts are focused on these components. These
results are obtained at a frequency equals to 100 MHz. on the
other hand, energy is a more accurate metric to describe the
performance of the design. The energy consumption is
35.78mJ under an operating frequency of 100 MHz. Expand
block is the most power-consuming unit. As the expand block
has the most DSPs and weights ROMs which have the most
computations.

 In Table I, the processing time is recorded for each layer
at two different frequencies of 100MHz and 172MHz. It is
noticed that Conv1 layer is a bottleneck layer. The high-speed
performance of the proposed accelerator is attributed to the
applied parallelism in addition to overlapping between layers.
The expand layer is processed while the squeeze layer still
running and the pooling layer begins while squeeze and
Expand are running. Moreover, the FIFO module enables the
start of Expand or pooling layers even if the complete output
of squeeze module is not loaded yet, as explained before.

In Table II, a comparison between the proposed
implementation and GeForce RTX 2080Ti GPU is presented.
The proposed hardware accelerator is compared with two
versions using a 13-bit fixed-point representation with a
dynamic clipped ReLU activation function at two different
operating frequencies. It is observed from the table that the
proposed implementation has better power consumption
results for both frequencies. The proposed design classifies

TABLE I. PROCESSING TIME OF EACH LAYER IN SQUEEZENET

Layer

This work
(100 MHz)

This work v2
(172 MHz)

Processing Time (µs)

Conv1 & pooling1 1021.725 595.328

Fire2 255.805 149.05

Fire3 & pooling2 511.325 297.933

Fire4 260.765 151.939

Fire5 & pooling3 521.245 303.713

Fire6 199.955 116.5

Fire7 294.045 171.33

Fire8 397.075 231.36

Fire9 522.525 304.46

Conv10 32.035 18.67

Total 4.016 ms 2.34 ms

Proceedings of NILES2021:
3rd Novel Intelligent and Leading Emerging Sciences Conference

386

427.4 frames per second (fps) at a frequency of 172 MHz
while the GPU classifies 331.1 fps at frequency of 1.545 GHz.
Also, the classification accuracy is less than GPU by 0.03%
only which is a good hardware result.

 Another comparison is presented between the proposed
work and the latest implementations for SqueezeNet CNN on
different FPGAs. As shown in Table III, it is clear that this
implementation is the fastest compared to [13] and [14] work
with 248.76 fps with 100 MHz frequency. Although the
processor consumes more power, it has the best energy
consumption results. Moreover, the classification accuracy is
higher than other works with 69.6% top-1 accuracy. Finally,
the number of classes is 10 classes in the proposed work and
1000 classes for other implementations. However, the
SqueezeNet model will not change except for Conv10 layer
and Softmax layer. The Softmax processing time and power
consumption are negligible compared to other SqueezeNet
layers. In addition, the Conv10 layer processing time is
32.035µs and 18.67µs at a frequency speed of 100MHz and
172MHz, respectively. If the number of classes is increased to
1000, the processing time for Conv10 is estimated to be
7.19ms with 138.99fps at a frequency of 100MHz, and 4.2ms
with 237.73fps at frequency 172MHz. Consequently, the
proposed work still overcomes [13] and [14]. It is worthy to
mention that parallelism can be increased to speed up the
processing. Moreover, the proposed work is implemented
especially for a building security application with 10 classes,
and there are no FPGA implementations for SqueezeNet with
only 10 classes.

V. CONCLUSION

 This work proposed a design of a high-speed hardware
accelerator on FPGA. The accelerator was designed to process
SqueezeNet CNN. Several ideas were applied to solve the
memory bottleneck problem such as using Ping-Pong memory

TABLE II. COMPARISON BETWEEN TWO VERSIONS OF THE PROPOSED

IMPLEMENTATION AND GEFORCE RTX 2080TI GPU

TABLE III. COMPARISON BETWEEN DIFFERENT IMPLEMENTATIONS

FOR SQUEEZENET ON FPGA

 [13] [14] This work

FPGA De10 board Zynq7020
Virtex-7

V709

No. of Classes 1000 1000 10

Frequency (MHz) 100 - 100

Power (Watt) 2 7.95 8.9

Time (ms) 110 1030 4.02

Energy (mJ) 220 8,188 35.78

Top-1 Accuracy 55% 57.5% 69.6%

Performance (fps) 9.1 1 248.76

U
tiliz

a
tio

n

BRAMS - 80% 61.77%

DSPs - 95% 73.8%

FF - 48% 15.47%

LUTs - 102% 19.32%

and deploying several FIFOs in the design. The architecture
was built as a pipelined unit using available FPGA resources.
After that, this block was used to process different fire
modules/layers of SqueezeNet in sequence. Moreover,
different parallelism techniques were applied while
processing the convolution layers to speedup layers
processing. SqueezeNet was firstly trained for the application
of internal building security with 10 classes. Fixed-point
representation overflow was solved by using clipped RelU and
dynamic fixed-point representation to keep the classification
accuracy. Processing speed was the main goal without
increasing the utilized area or decreasing classification
accuracy. In addition, the proposed accelerator consumed
8.9W and classified 248.76 fps at 100 MHz, and 427.4 fps at
172 MHz. The proposed accelerator gave a higher processing
speed (fps) over Geforce RTX 2080Ti at 172 MHz. Moreover,
it overcame previous SqueezeNet FPGA implementations in
the performance (fps) and classification accuracy.

ACKNOWLEDGMENT

 This work was partially funded by Mentor Graphics and
ONE Lab at Zewail City of Science and Technology, Egypt
and Cairo University, Egypt.

REFERENCES

[1] S. A. Oke, “A Literature Review on Artificial Intelligence,”
International Journal of Information and Management Sciences, vol.

19, no. 4, pp. 535-570, 2008.

[2] SR. Ke et al., “A Review on Video-Based Human Activity
Recognition,” Computers, vol. 2, no. 2, pp. 88-131, 2013.

[3] H. Elhosary, M. H. Zakhari, M. A. Elgammal, K. A. H. Kelany, M. A.

Abd El Ghany, Khaled N. Salama, and H, Mostafa, “Hardware
Acceleration of High Sensitivity Power-Aware Epileptic Seizure

Detection System Using Dynamic Partial Reconfiguration,” IEEE
Access, vol. 9, pp. 75071-75081, 2021.

[4] M. Abdou, R. Mohammed, Z. Hosny, M. Essam, M. Zaki, M. Hassan,
M. Eid, and H. Mostafa, “End-to-End Crash Avoidance DeepIoT-based

Solution,” IEEE International Conference on Microelectronics (ICM
2019), Cairo, Egypt, pp. 103-107, 2019.

[5] K. Annapurani and D. Ravilla, “CNN based Image Classification

Model,” IJITEE, vol. 8, no. 11, pp. 1106-1114, 2019.

[6] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” Commun.

ACM, vol. 60, no. 2, pp. 84-90, Jun. 2012.

[7] A. Khan, A. Sohail, U. Zahoora and A. S. Qureshi, “A Survey of the
Recent Architectures of Deep Convolutional Neural Networks,”

arXiv:1901.06032, 2019.

[8] E. Adel, R. Magdy, S. Mohamed, M. Mamdouh, and H. Mostafa,
“Accelerating Deep Neural Networks Using FPGA,” IEEE

International Conference on Microelectronics (ICM 2018), Sousse,
Tunisia, pp. 180-183, 2018.

[9] M. Motamedi, P. Gysel, V. Akella and S. Ghiasi, “Design Space

Exploration of FPGA-based Deep Convolutional Neural Networks,”
Proc. IEEE Asia South Pacific Design Auto. Conf. (ASP-DAC), pp.

575-580, Jan. 2016.

[10] R. Osama and H. Mostafa, “Implementation of Deep Neural Networks

on FPGA-CPU platform Using Xilinx SDSOC,” Springer Analog
Integrated Circuits and Signal Processing, vol. 106, pp. 399-408, 2021.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally and

K. Keutzer, “SqueezeNet: AlexNet-level Accuracy with 50x Fewer
Parameters and < 0.5 MB Model Size,” arXiv:1602.07360, 2016.

[12] P. G. Mousouliotis and L. P. Petrou, “SqueezeJet: High-level Synthesis

Accelerator Design for Deep Convolutional Neural Networks,” 14th
International Symposium ARC 2018, pp. 55-66, May 2018.

[13] K. Pradeep, K. Kamalavasan, R. Natheesan and A. Pasqual, “Edgenet:

Squeezenet Like Convolution Neural Network on Embedded FPGA,”
25th IEEE International Conference on Electronics Circuits and

Systems (ICECS), pp. 81-84, 2018.

[14] M. Arora and S. Lanka, “Accelerating SqueezeNet on FPGA,” [Online]
Available: https://lankas.github.io/15-618Project/

 This work

This work

v2

GeForce RTX

2080TI

Frequency 100 MHz 172 MHz 1.545 GHz

Latency (ms) 4.02 2.34 3.02

Power (Watt) 8.9 17.4 55

Performance (fps) 248.76 427.4 331.1

Top-1 Accuracy 69.6% 69.6% 69.9%

Proceedings of NILES2021:
3rd Novel Intelligent and Leading Emerging Sciences Conference

387

	Introduction
	Dataset and setup
	methods
	Predicting numbers of each insect separately
	Predicting numbers of all insects together

	Conclusion

