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Abstract—Convolutional Neural Networks get increasingly 

importance nowadays as they enable machines to interact with the 

surrounding environment, which paves the way for computer 

vision applications. FPGA implementations of CNN architectures 

have higher speed and lower power consumption compared to 

GPUs and CPUs. This paper proposes a high-speed hardware 

accelerator on FPGA for SqueezeNet CNN to accelerate its 

processing without decreasing the classification accuracy. Several 

ideas are applied to solve the memory bottleneck issue such as 

using Ping-Pong memory and deploying several FIFOs in the 

design. The architecture is built as a pipelined unit to process 

SqueezeNet CNN layer by layer. Different parallelism techniques 

are applied while processing the convolution layers to speedup 

layers processing. Moreover, the proposed accelerator classifies 

248.76 fps at a frequency of 100MHz, and 427.4 fps at a frequency 

of 172 MHz. The proposed accelerator is implemented on Virtex-

7 FPGA, and overcomes Geforce RTX 2080Ti GPU and several 
SqueezeNet FPGA implementations. 

Keywords—Convolutional Neural Networks (CNNs); FPGAs; 

Hardware Accelerators; SqueezeNet. 

I. INTRODUCTION  

     Artificial Intelligence plays a vital role in bridging the 
gap between the capabilities of humans and machines [1]. It 
uses the knowledge for a multitude of tasks such as image and 
video recognition, image classification, biomedical 
applications, and autonomous vehicles [2-4]. The 
advancements in computer vision with deep learning have 
been evolved with time. Convolutional Neural Network 
(CNN) is one of these popular algorithms which has become 
a state of art methodology for image recognition and is used 
successfully in object classification, and face detection [5-7]. 

CNNs typically have millions of learnable parameters 
which are initialized firstly. Then, they are evaluated through 
training iterations till getting the desired accuracy. The 
evaluated weights are saved for the testing or inference phase 
where they are used to classify the images immediately. CNN 
requires huge resources and billions of computations for a 
single frame. There are a lot of proposed architectures to 
accelerate the CNN processing using FPGA [8-10].  

Convolutional neural networks are constructed by 
stacking different types of neural layers, such as convolution 
layers, fully connected layers, and pooling layers. CNN 
structure usually consists of feature extractor and classifier. 
Firstly, the feature extractor which extracts frame features 
across the CNN layers which are Convolutional layers or 
pooling layers. Secondly, the Classifier, which is implemented 
using fully connected layers. It computes every class score and 
decides the output class. Convolution layers are constructed 
with weights and biases and they are grouped as the model 
parameters. 

Recent research on deep learning is focused primarily to 
achieve higher accuracy which usually increases the model 
size. On the other hand, smaller CNN architectures offer at 
least three advantages while maintaining the same accuracy. 
Firstly, it requires less time during the training process. 
Secondly, it requires lower memory storage. Finally, it is more 
feasible to be deployed on FPGAs. 

SqueezeNet is one of the popular CNN architectures [11]. 
SqueezeNet uses 50x fewer parameters than AlexNet with the 
same accuracy level on ImageNet dataset. SqueezeNet is 
designed with three main strategies: 

i. Replace 3x3 filters with 1x1 filters so the parameters 
are decreased by 9X. 

ii. Decrease the number of input channels that is used as 

input to 3x3conv layers in Expand layer to maintain 

the number of parameters in the CNN model.  

iii. Use down-sampling in the network so that the 

convolution layers have large activation maps, which 

leads to higher classification accuracy. 
 

As depicted from the above three strategies. Strategy i and 
ii decrease the number of parameters in the CNN model while 
attempting to keep the accuracy. On the other hand, Strategy 
iii maximizes the accuracy with a limited budget of 
parameters. 

SqueezeNet simply begins with a convolution layer 
(conv1), followed by 8 Fire modules (fire2–9), and ends with 
a final convolution layer (conv10) as shown in Fig. 1. 
Furthermore, Maxpooling layers with a stride of 2 are added 
after conv1, fire4, fire8, and conv10 layers. 

SqueezeNet uses only 3x3 and 1x1 convolution kernels in 
the fire module. The 1x1 filters are used to shrink the input 
feature map size to 3x3 filters. It reduces the computation of 
the following 3x3 convolution layers. Consequently, this 
technique enables SqueezeNet to use 50x fewer parameters. In 
addition, it achieves the same accuracy as AlexNet. 
SqueezeNet uses an average pooling layer to calculate 
classification scores instead of the fully connected layers. 
Adding an average pooling layer reduces the number of 
computations and memory storage. 

 

Fig. 1. SqueezeNet CNN [11] 
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 Hardware accelerators have become one of the popular 
topics in research. There are a lot of different implementations 
especially for FPGA implementation. For SqueezeNet 
accelerators implementations, SqueezeJet accelerator is a 
High-Level Synthesis (HLS) design for convolutional neural 
networks. It achieves 4.36x speedup more than Intel Core-i3 
for squeezeNet at 100MHz frequency [12]. Moreover, the 
Edge-net accelerator processes 9 frames per second (fps) at 
100MHz frequency [13]. It’s implemented on DE10-Nano 
with an accuracy loss of 2%.  

This paper is organized as follows, Section II presents the 
proposed architecture. Section III shows the implementation 
in detail.  Moreover, Section IV discusses the implementation 
results. Finally, Section V concludes the work. 

II. THE ARCHITECTURE 

The design purpose of this architecture is to build a well-
designed block using available FPGA resources and reuse the 
block in different fire modules. The proposed architecture is 
shown in Fig. 2. The architecture is pipelined architecture 
which processes SqueezeNet CNN layer by layer. 
Consequently, SqueezeNet layers such as Conv1 layer, eight 
Fire modules, and Maxpooling are computed iteratively. The 
accelerator is initially implemented in 16-bit fixed-point 
representation, but it’s reduced to 13-bit precision to save 
FPGA resources while keeping the inference accuracy.  

Each layer is running for a specific number of clock cycles 
depending on the executed fire module in this stage. The 
output of the squeeze layer is stored in the FIFO before 
loading it as input to the Expand layers. Alternately, the output 
of the expand layers is stored in the data memory, which is 
fetched again as input for the next stage and so on.  

The processing of each squeeze layer is accelerated by 
processing 8 filters across 16 channels in parallel. Moreover, 
the parallelism in expand layer is done by processing 16 
Filters across 8 channels at the same time. It is worth 
mentioning that squeeze layers always have a high number of 
input feature map (IFM) channels (64, 128, 256, 384, 512) and 
low number of filters (16, 32, 48, 64). On other hand, the 
expand layer has a low number of input channels (16, 32, 48, 
64), but with a high number of filters (64, 128, 256, 384, 512). 
Therefore, choosing different parallelism methods in each of 
them is required.  

A. Data Memory 

The data memory is designed to have multiple ports equal 
to the number of channels fed to the adder tree in one cycle. 
In this case, the number of ports is 16. In order to achieve this 
huge number of ports with block RAMs, the data is divided 
across several block RAMs. Every clock cycle 16 data ports 
are read from the memory.  

The expand stage writes 16 activation values to the 
memory in one cycle where the 16 values are divided equally 
between expand 1x1 and expand 3x3 blocks. The first 8 
activation values come from expand 1x1 and the second 8 
values from expand 3x3. Both expand 1x1 and expand 3x3 
blocks write in different locations in the memory. 
Accordingly, we use dual-port block RAMs where each port 
is independent of the other.   

B. Weights Memory  

 The weights memory has the same distribution as the 
data memory for one filter. In this design, 8 filters run in 
parallel, so that 8 copies of the same weight are generated, but  

 

Fig. 2. The proposed Architecture 

with different initialization for each filter. Weights are stored 
in ROMs that are implemented using either BRAMs or LUTs. 
The BRAM approach is chosen for layers with a lot of weights 
such as expand1x1 and expand3x3. The LUTs approach is 
better for low depth memories so LUTs are used to store the 
weights for the squeeze layer. On the other hand, squeeze 
weights are distributed into different memories which enables 
parallel data reading to be made every clock cycle. There are 
16 Memories for each row. Hence, there are 16 values read 
from the squeeze module. Moreover, Expand Layer 
parallelism is applied by processing 16 filters across 8 
channels. There are 10 expand weights required for the same 
channel every clock cycle. Memory is divided between 
Expand1x1 filters and Expand3x3 filters with two separate 
memory address ports.  

C. Ping-Pong Memory 

 The structure of Ping-Pong memory is shown in Fig. 3. 
Every clock cycle, 16 data ports are read from the memory by 
the squeeze unit. The memory is used for FIRE-2, FIRE-4, 
FIRE-6, FIRE-7, and FIRE-8 layers in addition to the pooling 
layer. When a fire stage starts, the squeeze layer reads data 
from memory A and processes it. After that, the expand layer 
processes the output of the squeeze layer and stores the data 
into memory B. In the next fire stage, the squeeze layer reads 
the data from memory B while the expand layer stores it in 
memory A. This alternating process is achieved using Ping-
Pong memories where the control signal decides which of the 
two memories will receive the input data along with the 
required signals such as the address and write enable. 

D. The Intermediate FIFO  

 The intermediate FIFO holds the output data of the 
squeeze stage and passes it to the expand stage. Once the 
squeeze finishes processing a pixel, a new pixel gets stored in 
the buffer. After the buffer gets filled with W+2 entries the 
expand stage starts processing the data in the buffer. FIFO is 
chosen to store the intermediate results between the modules 
because it is easily implemented by a chain of registers and 
required data is accessed easily (No addresses). Since the 
FIFO size is 2W+3, so all pixels of a 3x3 window are fetched 
at the same time after filling the whole FIFO (2w+3 cycles) as 
shown in Fig. 4. 

 

Fig. 3. Ping-Pong Memory 
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Fig. 4. FIFO Dataflow 

III. IMPLEMENTATION INSIGHTS 

 In this section, several implementation insights are 
presented such as CNN software model training, design 
improvements, and validation methodology. 

A. CNN Model Training 

 The SqueezeNet model is trained for internal building 
security application. Therefore, the model is trained on 10 
classes from ImageNet dataset. These classes are different 
types of weapons. The top-1 classification accuracy of the 
software model is around 72%.  

B. Implementation Improvments 

 The accuracy of the hardware model is usually a little 
lower than the software model. However, the actual difference 
between the calculated accuracy and the software model 
accuracy is very large. After analyzing the issue, it is found 
that the hardware, which uses fixed-point representation, 
overflows causing the numbers to wrap around. Accordingly, 
a saturation limit is used on the numbers to prevent wrapping 
which improved the hardware accuracy. The second 
modification is to use dynamic fixed-point representation to 
change the fraction part width across layers. After several 
experiments, it is found that earlier layers need fewer bits for 
the integer part and more for the fraction part and vice versa 
for the last layers. This improves the hardware accuracy, but 
it is still away from the software accuracy. The third 
modification is made by retraining the model on clipped 
ReLU, then it’s applied on the hardware level. This makes the 
hardware and software models have almost the same 
accuracy. Finally, the inference accuracy is tested versus the 
precision to check if the later one can be reduced. It’s found 
that the inference accuracy started to reduce from 12-bit, so a 
precision of 13-bit is selected while keeping the inference 
accuracy and reducing the FPGA utilizations by 3% LUTs, 
3% REGs, and 7% BRAMs.  

 Firstly, the HDL design is implemented on Virtex-7 series 
FPGA on 100 MHz with minimum positive slack. The goal is 
to increase the frequency to 200 MHz, but several issues are 
faced during the design such as fanout, wire delay, and floor 
planning. Firstly, the fanout problem is created by increasing 
design parallelism. Parallelism leads to high fanout which 
causes high cell and net delays. High fanout leads to large wire 
delay, so buffers are inserted to reduce the delay. The tool is 
constrained for buffers insertion to reach the required 
frequency. Secondly, low utilization makes the tool spread the 
logic cells over the FPGA to avoid creating congestion 
regions. This makes the blocks to be allocated far away from 
each other which creates long routes and high wire delays. 
Consequently, custom FPGA floor planning is used to place 
the blocks near to each other, which decreases the wire delay 
and improves the frequency.  

C. Verification Methodology 

 Comparing the implemented design on FPGA with the 
software model is important to make sure of the hardware 
results. MATLAB model is implemented to test the HDL 
design. Firstly, it is used to compare the intermediate results 
of HDL design with the software model to check the 
equivalence of the results. Also, test benches are created and 

executed for each module. Finally, a top-level test bench is 
used after the final integration between all accelerator 
modules to validate the results. 

IV. DISCUSSION AND RESULTS 

 In this section, design synthesis, the processing time for 
each layer, and power consumption are discussed. In addition, 
a comparison between the proposed accelerator and GPU of 
Geforce RTX 2080Ti is presented. Finally, a comparison 
between SqueezeNet implementations and the proposed work 
is investigated. 

 The synthesis is performed on Xilinx Virtex-7 VC709 
FPGA. It is noted that the FPGA resources are mostly utilized 
by the main FIFO, pooling block, and the Fire blocks. Fire 
blocks have most of the BRAMs and DSPs due to large 
weights storage and multipliers count.  

 Power consumption is an important metric to analyze the 
performance of any hardware design. A lot of embedded 
applications require a careful design with specific power 
consumption requirements. The total on-chip power in the 
proposed design is 8.9W. BRAMs and DSPs consume around 
60% (5W) of dissipated power. Therefore, most power 
reduction efforts are focused on these components. These 
results are obtained at a frequency equals to 100 MHz. on the 
other hand, energy is a more accurate metric to describe the 
performance of the design. The energy consumption is 
35.78mJ under an operating frequency of 100 MHz. Expand 
block is the most power-consuming unit.  As the expand block 
has the most DSPs and weights ROMs which have the most 
computations. 

 In Table I, the processing time is recorded for each layer 
at two different frequencies of 100MHz and 172MHz. It is 
noticed that Conv1 layer is a bottleneck layer. The high-speed 
performance of the proposed accelerator is attributed to the 
applied parallelism in addition to overlapping between layers. 
The expand layer is processed while the squeeze layer still 
running and the pooling layer begins while squeeze and 
Expand are running. Moreover, the FIFO module enables the 
start of Expand or pooling layers even if the complete output 
of squeeze module is not loaded yet, as explained before. 

In Table II, a comparison between the proposed 
implementation and GeForce RTX 2080Ti GPU is presented. 
The proposed hardware accelerator is compared with two 
versions using a 13-bit fixed-point representation with a 
dynamic clipped ReLU activation function at two different 
operating frequencies. It is observed from the table that the 
proposed implementation has better power consumption 
results for both frequencies. The proposed design classifies 

TABLE I.  PROCESSING TIME OF EACH LAYER IN SQUEEZENET  

Layer 

This work  
(100 MHz) 

This work v2  
(172 MHz) 

Processing Time (µs) 

Conv1 & pooling1 1021.725 595.328 

Fire2 255.805 149.05 

Fire3 & pooling2 511.325 297.933 

Fire4 260.765 151.939 

Fire5 & pooling3 521.245 303.713 

Fire6 199.955 116.5 

Fire7 294.045 171.33 

Fire8 397.075 231.36 

Fire9 522.525 304.46 

Conv10 32.035 18.67 

Total 4.016 ms 2.34 ms 
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427.4 frames per second (fps) at a frequency of 172 MHz 
while the GPU classifies 331.1 fps at frequency of 1.545 GHz. 
Also, the classification accuracy is less than GPU by 0.03% 
only which is a good hardware result. 

 Another comparison is presented between the proposed 
work and the latest implementations for SqueezeNet CNN on 
different FPGAs. As shown in Table III, it is clear that this 
implementation is the fastest compared to [13] and [14] work 
with 248.76 fps with 100 MHz frequency. Although the 
processor consumes more power, it has the best energy 
consumption results. Moreover, the classification accuracy is 
higher than other works with 69.6% top-1 accuracy. Finally, 
the number of classes is 10 classes in the proposed work and 
1000 classes for other implementations. However, the 
SqueezeNet model will not change except for Conv10 layer 
and Softmax layer. The Softmax processing time and power 
consumption are negligible compared to other SqueezeNet 
layers. In addition, the Conv10 layer processing time is 
32.035µs and 18.67µs at a frequency speed of 100MHz and 
172MHz, respectively. If the number of classes is increased to 
1000, the processing time for Conv10 is estimated to be 
7.19ms with 138.99fps at a frequency of 100MHz, and 4.2ms 
with 237.73fps at frequency 172MHz. Consequently, the 
proposed work still overcomes [13] and [14]. It is worthy to 
mention that parallelism can be increased to speed up the 
processing. Moreover, the proposed work is implemented 
especially for a building security application with 10 classes, 
and there are no FPGA implementations for SqueezeNet with 
only 10 classes. 

V. CONCLUSION 

 This work proposed a design of a high-speed hardware 
accelerator on FPGA. The accelerator was designed to process 
SqueezeNet CNN. Several ideas were applied to solve the 
memory bottleneck problem such as using Ping-Pong memory  

TABLE II.  COMPARISON BETWEEN TWO VERSIONS OF THE PROPOSED 

IMPLEMENTATION AND GEFORCE RTX 2080TI GPU 

TABLE III.  COMPARISON BETWEEN DIFFERENT IMPLEMENTATIONS 

FOR SQUEEZENET ON FPGA 

 [13] [14] This work 

FPGA De10 board Zynq7020 
Virtex-7 

V709 

No. of Classes 1000 1000 10 

Frequency (MHz) 100 - 100 

Power (Watt) 2 7.95 8.9 

Time (ms) 110 1030 4.02 

Energy (mJ) 220 8,188 35.78 

Top-1 Accuracy 55% 57.5% 69.6% 

Performance (fps) 9.1 1 248.76 

U
tiliz

a
tio

n
 

BRAMS - 80% 61.77% 

DSPs - 95% 73.8% 

FF - 48% 15.47% 

LUTs - 102% 19.32% 

and deploying several FIFOs in the design. The architecture 
was built as a pipelined unit using available FPGA resources. 
After that, this block was used to process different fire 
modules/layers of SqueezeNet in sequence. Moreover, 
different parallelism techniques were applied while 
processing the convolution layers to speedup layers 
processing. SqueezeNet was firstly trained for the application 
of internal building security with 10 classes. Fixed-point 
representation overflow was solved by using clipped RelU and 
dynamic fixed-point representation to keep the classification 
accuracy. Processing speed was the main goal without 
increasing the utilized area or decreasing classification 
accuracy. In addition, the proposed accelerator consumed 
8.9W and classified 248.76 fps at 100 MHz, and 427.4 fps at 
172 MHz. The proposed accelerator gave a higher processing 
speed (fps) over Geforce RTX 2080Ti at 172 MHz. Moreover, 
it overcame previous SqueezeNet FPGA implementations in 
the performance (fps) and classification accuracy.  
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 This work 

 

This work 

v2 

GeForce RTX  

2080TI 

Frequency 100 MHz 172 MHz 1.545 GHz 

Latency (ms) 4.02 2.34 3.02 

Power (Watt) 8.9 17.4 55 

Performance (fps) 248.76 427.4 331.1 

Top-1 Accuracy 69.6% 69.6% 69.9% 
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