IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 27 July 2022, accepted 30 August 2022, date of publication 5 September 2022, date of current version 15 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204704

== RESEARCH ARTICLE

Energy-Efficient Precision-Scaled CNN
Implementation With Dynamic
Partial Reconfiguration

EMAN YOUSSEF'!, HAMED A. ELSIMARY2, MAGDY A. EL-MOURSY3,
HASSAN MOSTAFA “45, (Senior Member, IEEE),
AND AHMED KHATTAB'“3, (Senior Member, IEEE)

"Microelectronics Department, Electronics Research Institute (ERI), Cairo 12622, Egypt

2Computer Science Department, Cairo Higher Institute for Engineering, Computer Science, and Management, New Cairo 11477, Egypt
3Siemens EDA, Wilsonville, OR 97070, USA

#Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology, Giza 12578, Egypt

SElectronics and Electrical Communications Engineering Department, Cairo University, Giza 12613, Egypt

Corresponding author: Ahmed Khattab (akhattab@eng.cu.edu.eg)

ABSTRACT A convolutional neural network (CNN) classifies images with high accuracy. However, CNN
operation requires a large number of computations which consume a significant amount of power when
implemented on hardware. Precision scaling has been recently used to reduce the hardware requirements
and power consumption. In this paper, we present an energy-efficient precision-scaled CNN (EEPS-CNN)
architecture. Furthermore, the Field Programmable Gate Array (FPGA) is reconfigured during run time using
Dynamic Partial Reconfiguration (DPR). If the battery level decreases, the EEPS-CNN design with the most
appropriate power consumption is configured on the FPGA. DPR enables recognition applications to run at
a low power budget while sacrificing minor accuracy instead of termination. The proposed architecture is
implemented on Xilinx XC7Z020 FPGA and is evaluated on three datasets: MNIST, F-MNIST, and SVHN
datasets. The results show a 2.2X, 2.39X, and 2.38X reduction in the energy consumption, respectively, while
using only 7 bits to represent all inputs and network parameters. The accuracy of the proposed EEPS-CNN
is only 0.53%, 3.67%, and 0.88% less than 32-bit floating-point architectures for MNIST, F-MNIST, and
SVHN, respectively. Moreover, the results show up to 92.91X and 4.84X reductions in the power and energy
consumption of the proposed EEPS-CNN compared to related designs developed for the MNIST dataset.

INDEX TERMS Approximate computing, convolutional neural network, dynamic partial reconfiguration,
energy efficiency, precision scaling.

I. INTRODUCTION

Neuromorphic computing simulates human brain activity
using very-large-scale integration (VLSI) systems [1]. Con-
volutional neural networks (CNNs) were inspired by the
human brain for computer vision applications such as image
and video classification, object detection, face recogni-
tion, image segmentation, image matching, image super-
resolution, regression and image correction. Due to the
impressive performance of CNNs, they have been recently
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widely used in various application domains including - but
not limited to - Natural Language Processing (NLP) appli-
cations, time series prediction, medical signal identification,
autonomous driving and security applications [2]. For these
numerous applications, the implementation of a low power
consumption design is needed. The implementation of a CNN
using general-purpose processors consumes a large amount of
power because such processors are not optimized. A minor
accuracy loss is accepted since CNNs are mostly used in
error-reliance applications.

Thus motivated, approximate computing has been recently
used to reduce the complexity of CNN implementations.
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By applying approximate computing techniques, a signifi-
cant improvement in energy efficiency is achieved with a
minor loss in the achieved accuracy. For instance, the authors
of [3] used various arithmetic approximate methods and par-
allel computation to improve the performance of the hard-
ware. Moreover, hybrid high radix encoding multiplier and
Winograd convolution were used. Approximate multipliers
were exploited to decrease the hardware cost while improving
the neural network accuracy in [4]. In this paper, two types
of approximate multipliers were used, which were deliber-
ately designed using Cartesian Genetic Programing (CGP).
The Mixed National Institute of Standards and Technology
(MNIST) and Street View House Numbers (SVHN) datasets
were used to evaluate the proposed techniques.

In [5], an approximate floating-point multiplier was intro-
duced using two approximation techniques. The results
showed considerable energy reduction with a minor reduc-
tion in the classification accuracy when evaluated using the
MNIST and the Canadian Institute For Advanced Research
(CIFAR-10) [6] datasets. Meanwhile, a small area, low
power and high-speed CNN architecture was proposed in [7].
Approximate MAC (Multiply and Accumulate) units for con-
volution and fully connected layers while using parallel mem-
ory access were introduced. A stochastic neural network
architecture was introduced while approximating the activa-
tion function in [8]. The results showed a reduction in power,
energy and area while achieving similar accuracy to the con-
ventional convolutional neural network.

In [9], efficient implementation of an Artificial Neural Net-
work (ANN) was presented using approximate adders and
approximate multipliers. This ANN architecture was intro-
duced while using time-multiplexing architecture. In [10],
the highest throughput was reached by implementing adap-
tive switching between shallow and deep networks, and a
new CNN architecture was proposed. A novel architecture to
implement CNN was proposed in [11]. The proposed CNN
architecture was trained on MATLAB for digit recognition
for the MNIST dataset.

Several works also tackled the implementation of neu-
ral networks on Field Programmable Gate Arrays (FPGAs).
The authors of [12] represented the ANN parameters using
fixed-point numbers while using chip-memory only for hand-
written digit recognition and phoneme recognition. The
authors of [13] proposed approximate MAC units to design
CNN accelerator using Xilinx XCZU9EG- 2ffvb1156 FPGA
chip. This design was used to implement LENET-5 CNN
to recognize MNIST dataset using high-level synthesis tool.
A new approach for CNN implementation on FPGA was
presented for the LENET network using 8 bits fine-tuning
to represent the network parameters in [14]. The LENET
CNN architecture was dynamically reconfigured to recog-
nize two different datasets in [15]. In [16], a parallel con-
volutional acceleration unit was introduced. Semi-floating
point was used to represent feature maps and weights while
using fixed point to perform convolutional layer operations.
LENET-5 CNN was implemented on ZCU102 using the
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proposed design. In [17], the hls4ml library was used to
implement a neural network that was trained to recognize the
MNIST dataset on FPGA.

In [18], ResNet-18 was implemented on Xilinx
XC7VX690T, and 16 bits fixed-point arithmetic was used.
In [19], the Alex network was implemented on ZYNQ-702
FPGA, and Vivado 2015.1 tool was used for synthesis. This
design was tested with and without pipelining to assess the
time and power consumption. In [20], a hardware accelera-
tor design was developed to recognize the MNIST dataset.
Python programming language was used to model the pro-
vided deep neural network, and the function of Register
Transfer Level (RTL) was tested on ModelSim. Finally,
the architecture was implemented on Xilinx Zynq ZC-702.
In [21], hardware-software co-design was developed for neu-
ral network applications on the PYNQ-Z2 board. For this
aim, convolutional IP cores were implemented, and they were
used as Python overlays. In addition, the convolutional TP
core was used to accelerate the recognition of the MNIST
dataset.

A new structure for binary convolution was proposed
in [22] with the aim of decreasing the consumed power and
the hardware resources. In addition, full-BNN (Binary Neural
Network) and mixed-precision BNN were proposed. Finally,
the MNIST dataset was used to test the two proposed neural
networks on the DSP + Xilinx 352T FPGA board. In [23],
a new approach for implementing a Fully Connected Deep
Neural Network (FC DNN) and convolutional neural net-
work on FPGA was proposed. For the FC DNN, a mini-
mum number of computational units was used, while for
the CNN, parallel processing, as well as systolic architec-
ture were exploited. A CNN architecture was trained while
using different floating-point formats in [24]. In addition, the
MNIST dataset was used to verify the proposed accelerator
engine on FPGA. Verilog was used to implement the pro-
posed design in RTL, whilst it was verified by Vivado Sim-
ulator. In [25], LENET-5 CNN was implemented on FPGA.
Moreover, the CNN was accelerated using the parallelization
of the operations. The MNIST and other datasets were used
to evaluate the proposed design.

Furthermore, partial configuration was utilized to over-
come the FPGA resource limitations. This design was
tested on three datasets, namely, CIFAR-10, CIFAR-100 and
SVHN. A CNN was implemented on Intel Cyclone 10 FPGA
to recognize MNIST dataset’s handwritten digits in [26].
Fixed-point representation was used to represent all the net-
work weights and all the intermediate operations. Xilinx
XC7A100T FPGA was used to implement a CNN to recog-
nize the MNIST dataset in [27]. The CNN was trained using
MATLAB 2018. Multiplication and addition operations were
performed using fixed-point representation.

Pyng-Z2 FPGA [28], which contains DPR, was used to
implement convolutional layers represented by 8, 16, and
32-bit precision. The DPR feature in ZYNQ 7020 was uti-
lized to realize different CNNs and SNNs (spiking neural net-
works) on the same FPGA [29]. In [30], the DPR feature in the
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ZYNQ 702 board was used to accelerate the cryptocurrency
dash mining.

In this paper, we present the energy-efficient precision-
scaled CNN architecture (EEPS-CNN) in which the CNN
is approximated through precision scaling for all network
parameters, which reduces the power consumption for the
whole CNN hardware architecture, including memory, mul-
tipliers, adders, and registers. This contrasts with the related
literature in which precision scaling was used for only one
component or one layer of the CNN. In EEPS-CNN, the
CNN parameters are approximated by removing the least
significant bits from the calculation. The majority of such bits
are the bits of the fraction part. Instead of using 16 bits to
represent each parameter, a lower number of bits has been
used with an insignificant loss in accuracy and a significant
saving in power and energy consumption. Furthermore, the
proposed approximated CNN is implemented on an FPGA
using Dynamic Partial Reconfiguration (DPR) in which dif-
ferent bit-widths are used during the run-time to represent the
network parameters to recognize the MNIST, F-MNIST, and
SVHN datasets. The proposed convolution neural networks
are implemented and tested to evaluate their energy and accu-
racy performance using fixed-point representation for each
parameter.

The remainder of the paper is organized as follows.
Section II presents the proposed EEPS-CNN architecture.
The details of the hardware architecture developed to imple-
ment the proposed EEPS-CNN is discussed in Section III.
The experimental results are presented in Section IV. Finally,
we conclude the paper in Section V.

Il. ENERGY-EFFICIENT PRECISION-SCALED
CONVOLUTIONAL NEURAL NETWORK (EEPS-CNN)

In this section, we present the proposed energy-efficient CNN
architecture and how precision scaling is used to reduce its
energy consumption.

A. BASIC CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURE

CNN is an ideal candidate for image recognition applications.
However, many factors such as the training data, the prepro-
cessing of data and the used optimizer (SGD, Adams) need to
be carefully considered in order to achieve a high recognition
accuracy. A CNN consists of two stages: a feature extrac-
tion stage, and a classification stage. The feature extraction
stage consists of alternating convolution (Conv) and pooling
layers followed by the classification stage, which consists of
a number of fully connected (FC) layers. Convolution lay-
ers use a set of filters to extract the features from the input
and generate feature maps as output. A nonlinear piecewise
activation function is used after each convolution layer. The
rectifier linear unit (ReLU) function is typically used in CNN
because of its simple computation. The activation function of
the non-linear ReLU [31] is given by

f(2) = max(0, z). €))
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At the pooling layer, the input is divided into rectangu-
lar regions. Then, an average or a maximum of each region
is generated at the output. The pooling layer is used to
down-sample the input representation. This reduces the com-
putational complexity and the memory usage of the network.
The pooling layer is described by its kernel size and stride.
In fully connected layers, the neurons are fully connected by
different weights.

In this paper, we propose the energy-efficient precision-
scaled CNN (EEPS-CNN) architecture which is structured as
two alternating convolutional and pooling layers, followed
by two fully connected layers as shown in Figure 1. The
proposed EEPS-CNN architecture is then used to design
three CNNs for the three considered datasets resulting in
the (EEPS-CNN-1) for MNIST dataset,! (EEPS-CNN-2) for
F-MNIST dataset, and (EEPS-CNN-3) for SVHN dataset.
The MNIST dataset is handwritten digits with a dimension
28 x 28 gray scale [33]. The F-MNIST (Fashion MNIST)
is a dataset of Zalando’s article images with a dimension
28 x 28 gray scale [34]. The SVHN (Street View House Num-
bers) dataset is a real-world image dataset that is obtained
from house numbers in Google Street View images [35]. The
SVHN dataset is a real-world problem of recognizing digits
and numbers. SVHN is 32 x 32 red-green-blue (RGB) color
images.

The designs of the proposed EEPS-CNN architecture have
the first convolutional layer with 2 filters for the MNIST
dataset and 4 filters for the F-MNIST and SVHN datasets,
with a dimension 3 x 3 and a stride length of one. The input
image to the input convolution layer is padded to preserve
its spatial size. The second convolutional layer has 4 fil-
ters for the MNIST dataset and 8 filters for the F-MNIST
and SVHN datasets. Each convolution layer is followed by
a ReLU activation function. A 3 x 3 filter dimension is
used because a small filter size captures the fine details of
the image, while a bigger filter size leaves out small details
in the image. The selected 3 x 3 filter dimension needs a
small number of multiplications, which reduces the power
consumption of the hardware implementation. The pooling
layer is MaxPool with a dimension 2 x 2 and a stride length
of two. The first fully connected layer has 20 neurons for
the MNIST dataset and 256 neurons for the F-MNIST and
SVHN datasets and is followed by a ReL.U activation func-
tion. The second fully connected layer has 10 neurons and
is followed by softmax. Softmax is another activation func-
tion that is applied to the CNN layer [36]. Softmax converts
the output of the last layer of the CNN into a probability
distribution.

The network parameters and the number of multiplications
for each layer in each EEPS-CNN design are shown in Table 1
for MNIST, F-MNIST, and SVHN, where maps are the num-
ber of features extracted at each convolution layer. The num-
ber of layers, filters, and neurons is selected after making a

A preliminary design of the architecture developed for the MNIST
dataset was presented in [32].
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Convolution With Trainable

Filter
Input Image ‘ Convolution 1 Pooling 1 Convolution 2 Poolingl‘ ‘ FC1 FC2 ‘

Feature Extraction Classification

FIGURE 1. Proposed EEPS-CNN architecture.

trade-off between the network accuracy and the number of
multiplications.

It is worth noting that reducing the number of multiplica-
tions reduces the time needed to recognize the image, and
hence, the energy consumption is reduced. Few filters are
applied to reduce the number of multiplications. These filters
have small dimensions 3 x 3. In addition, we use a small
number of neurons at the fully connected layers.

B. PRECISION SCALED CNN APPROXIMATION

For digital circuits, approximate computing via precision
scaling achieves reasonable power savings [37]. Precision
scaling allows computing using fewer bits, which reduces
the switching activity, and consequently, reduces the dynamic
power consumption. Dynamic power is reduced linearly for
adders and registers and quadratically for multipliers [38].
To apply approximate computing through precision scaling,
the network weights and inputs are quantized and represented
with n bits using fixed-point number representation. The
same number of bits is used for all CNN parameters, which
is denoted by uniform quantization [38].

The CNN parameters and test dataset should be quantized
to the hardware’s available bitwidth n. The weights of each
layer should be examined separately to determine the maxi-
mum and minimum values for dividing the available bitwidth
n into integer and fractional values, as shown in Figure 2,
where m is the number of bits required to represent the integer
part using:

0, if Max < 1 & Min > -1.
m=
[Max(log,(Max), loga(] Min |))], otherwise

(@)

Decreasing the bitwidth n results in reducing the number
of bits used to represent the fraction part. Furthermore, the
number of bits used to represent the integer part remains
constant as long as n is greater than m because the integer part
has a greater impact on the CNN accuracy. The inputs and
weights for each convolutional (Conv) and fully connected
(FC) layer are quantized at n-bit, therefore, the multiplication
results from the Conv and FC layers are quantized at 2n bits
as shown in Figure 3.

The multiplication operations at the convolution layer are
shown in Figure 4. In Figure 4, we assume that the input has
two channels with a 7 x 7 dimension, and there is a filter
with a 3 x 3 dimension to illustrate the multiplication and
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1bit m n- m-1

FIGURE 2. Available n bitwidth decomposed into three parts.

‘ S ‘ Integer Part Fraction Part

1bit m 2n- m-1

FIGURE 3. Available 2n bitwidth decomposed into three parts.
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1 8
00'1' = Z Zlk.j+iWk.j + Bias
k=0j=0

FIGURE 4. Example of convolution operation, assuming two channels
input with dimension 7 x 7 input while using one filter. I: input, W:
weight, O: output.

accumulation operations. Each layer output is examined to
find the maximum and minimum values to decide the number
of bits needed to represent the integer part m as shown in
Figure 3 using (2) to avoid overflow, which may happen from
accumulation or to preserve unneeded bits for the fraction
part.

The test function applies repetitive truncation after each
multiplication and addition step, as shown in Figure 5. Such
repetitive truncation guarantees that the numbers generated
from the software test functions can be represented with 2n
bits. In addition, it guarantees that the fraction part can be rep-
resented using 2n — m — 1 bits. Finally, the last accumulation
result, which is represented by 2n bits, is truncated to n bits.
Truncation is needed to use the same hardware with the same
bitwidth for the following layer operations.

lIl. EEPS-CNN HARDWARE IMPLEMENTATION WITH
DYNAMIC PARTIAL RECONFIGURATION

In this section, we present the hardware architecture that
we develop to implement the proposed EEPS-CNN. Then,
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TABLE 1. Network parameters and number of multiplication for each CNN layer for MNIST, F-MNIST, and SVHN datasets.

Layer Name MNIST (EEPS-CNN-1) F-MNIST (EEPS-CNN-2) SVHN (EEPS-CNN-3)
Size Number of Size Number of Size Number of
Multiplications Multiplications Multiplications
Input Image 28x28 - 28x28 - 32x32 -
Convolution 1 28x28 2 maps 14112 28x28 4 maps 28224 32x32 4 maps 36864
Pooling 1 14x14 2 maps - 14x14 4 maps - 16x16 4 maps -
Convolution 2 12x12 4 maps 5184 12x12 8 maps 10368 14x14 8 maps 14112
Pooling 2 6x6 4 maps - 6x6 8 maps - 7x7 8 maps -
Fully Connected 1 20 2880 256 73728 256 100352
Fully Connected 2-Output 10 200 10 2560 10 2560

[ b= (Weight * Input) |

Truncate b to (2n) with
fraction bart = (2n-m-1)

| a=a+tb |

Truncate a to (2n) with
fraction bart = (2n-m-1)

All Numbers are
Added ?

| Final Result=a + Bias |

Truncate Final Result to
(n) with fraction bart =
(n-m-1)

FIGURE 5. lllustration of the quantization flow.

we discuss how we apply dynamic partial reconfiguration to
the developed architecture.

A. HARDWARE ARCHITECTURE

The block diagram of the hardware architecture that we
develop to recognize the MNIST, F-MNIST, and SVHN
datasets is depicted in Figure 6. The developed architec-
ture contains memory units, memory access units (MACs),
computation units, ADD2 units, MaxPool units, ReLU units,
register files, and one comparator. In our hardware architec-
ture, n-bit fixed-point arithmetic units are used instead of
the conventional 32-bit floating-point units, where n takes
distinct values such as 16, 12, 10, 8, 7, 6, and 5 bits to
reduce the power dissipation [39]. In what follows, we present
the details of each component of the developed hardware
architecture.
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FIGURE 6. EEPS-CNN hardware implementation.

Reg_File Out 3Units-

1) MEMORY

The used memory contains four ROMs and one RAM. ROM1
stores the image under test. ROM2 stores the weights of the
Conv2 layer. ROM3 stores the biases of all CNN layers.
ROM4 stores the weights of the FC1 and FC2 layers. The
RAM stores the weights of the Conv1 layer and the interme-
diate results generated by each layer.

2) COMPUTATION UNIT

The computation and ADD?2 units are intended for perform-
ing multiplications and additions on the convolutional and
fully connected layers. The computation unit contains three
processing elements (PEs) as shown in Figure 7. A single
PE consists of nine multipliers and four adders as shown
in Figure 8. Therefore, three vector multiplication-addition
operations are performed at the same time by three processing
elements. Figure 8 is a data flow graph (DFG), which demon-
strates how the functional units are reused in each cycle. Ini-
tially, the operands are multiplied using the nine multipliers.
The results are then added using the four adders. After that,
some of these adders are reused to finish the addition oper-
ations. The final accumulation is achieved using ADD 2-3
Units as shown in Figure 6, which contain other three adders,
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Inputs Weights

Output
Computational Unit

FIGURE 7. Architecture of the computation unit.

Inputs Weights

FIGURE 8. Architecture of the processing element.

and each adder can add two numbers, Therefore, the results
are accumulated in one register at the register file, which is
demonstrated in Figure 6. Moreover, these three adders are
reused with different data from different resources by using
multiplexers.

3) MaxPool UNITS

MaxPool units are used to perform MaxPool layer opera-
tions. Fourteen MaxPool units are used for the MNIST and
F-MNIST EEPS-CNNSs, and sixteen MaxPool units are used
for the SVHN EEPS-CNN. Figure 9 illustrates how the Max-
Pool units are connected to the memory as each MaxPool unit
is connected with two columns of RAM. Figure 10 illustrates
the architecture of each MaxPool unit which is composed of
four registers and one comparator. Initially, the comparator
compares two memory locations (LI/1 and L2/] for MaxPool
unit 1) and the maximum value is stored at REG1 as shown
in Figure 10. Then, a comparison is made between the fol-
lowing two memory locations (L1/2 and L2/2 for MaxPool
unit 1) and the maximum value is stored at REG3 as shown
in Figure 10. Finally, REG1 and REG3 are compared, and the
maximum value is stored in the RAM for successive opera-
tions of the CNN layers.

4) MEMORY ACCESS (MAC) UNITS

MAC units are used to access each memory row only once
to reduce the image recognition time, which in turns reduces
the energy consumption required to recognize the image.
MAC units are used in the convolutional layer operations.
As shown in Figure 11, each MAC unit contains nine n-bit
registers as the convolution operation is applied to nine
values. The nine registers are arranged in clusters of three
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FIGURE 10. Architecture of the MaxPool unit.
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FIGURE 11. Architecture of the memory access units. The dashed squares
illustrate how the filters sweep on the input map.

registers. As shown in Figure 11, after the first three cycles
Cl, C2, and C3, the memory contents Li/I, L2/1, L3/I,
Li/2, L2/2, L3/2, L1/3, L2/3, and L3/3 are stored at the
first nine registers (MAC unit 1), and the memory contents
L2/1, L3/1, L4/1, L2/2, L3/2, L4/2, L2/3, L3/3, and L4/3 are
stored at the second nine registers (MAC unit 2), and this
procedure continues until unit 28. After only one cycle of
C4, the memory contents L1/2, L2/2, L3/2, L1/3, L2/3, L3/3,
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(a) MNIST static part.

(b) MNIST dynamic part (16 bits).

(c) MNIST dynamic part (5 bits).

FIGURE 12. Floor planning the MNIST dataset (a) Static part, (b) Dynamic part (16 bits), and (c) Dynamic part (5 bits).

Li/4, L2/4, and L3/4 are stored at the first nine registers
(MAC unit 1), and the memory contents L2/2, L3/2, L4/2,
L2/3, L3/3, L4/3, L2/4, L3/4, and L4/4 are stored at the sec-
ond nine registers (MAC unit 2), and the same procedure is
adopted up to the last MAC unit. Consequently, each succes-
sive convolution operation needs only one cycle to access its
operands, except for the first convolution operation, which
takes three cycles. The output of the Convl1 layer is arranged
in a similar way to the arrangement of the input image in
the memory to use the MAC units in the following convo-
lution layer operation. For MNIST and F-MNIST datasets,
28 units are needed, but for the SVHN dataset, 32 units are
needed.

5) REGISTER FILE, ReLU UNITS, AND COMPARATOR UNIT
Before being stored in the RAM, the multiplication results
of the Conv and FC layers are accumulated in the register
file. ReLU units are used to perform ReL.U activation function
operations. The comparator compares the last ten neurons’
outputs (i.e., FC2 outputs as shown in Figure 6) and gives the
index of the neuron which has the maximum output.

B. DYNAMIC PARTIAL RECONFIGURATION

Dynamic partial reconfiguration (DPR) is a feature avail-
able in modern FPGAs to solve the problem of limited hard-
ware resources on FPGAs by allowing the reconfiguration of
the programmable logic (PL) on the FPGA during the run
time [40]. In DPR, the hardware design is divided into two
parts: the static part and the dynamic part. The static part is the
common part in all our designs, as it corresponds to the input
ports, the output ports and Internal Configuration Access Port
(ICAP) which manages the reconfiguration process. Mean-
while, the dynamic part corresponds to the proposed hard-
ware architecture, which include the computational unit and
the other needed units that differ according to the target
dataset and the number of used bits. For instance, Figure 12
depicts the floor planning of the static part for the MNIST
dataset, while Figures 12b and 12c¢ show the floor planning
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FIGURE 13. DPR system block diagram.

of the dynamic part for the MNIST dataset in the case of
16 bits, and 5 bits, respectively. The static part is configured
using a full bit-stream at the boot time, while the dynamic
part is configured using partial bit-streams at the run time.
The dynamic part consists of one or more reconfigurable
partitions (RPs). Each RP is reconfigured with different par-
tial bit-streams without changing the static part. Sharing the
same programmable logic between multiple Reconfigurable
Modules (RMs) reduces the needed hardware resources. The
reconfiguration of the system from an operating design to
another needs a reconfiguration time that is a significant fac-
tor in DPR. The reconfiguration time is proportional to the
size of the partial bit-stream, which is proportional to the size
of the reconfigured region.

For the implementation of the proposed EEPS-CNNSs, the
used FPGA platform is reconfigured with the appropriate
power level design during run-time using DPR. Figure 13
shows the block diagram of the developed DPR system. The
required partial bit-streams are transferred from DDR to the
ICAP by a processing system (PS). Then, the ICAP reconfig-
ures the RPs. According to the available power at the battery,
the required partial bit-streams are determined.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first use Python programming to train
and test the performance of the three proposed EEPS-CNN
designs. Then, we implement them on an FPGA platform to
evaluate their accuracy and hardware characteristics.
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FIGURE 14. MNIST dataset (a) Model Accuracy, (b) Model Loss, and (c) Confusion Matrix.

0.94

—— train | — train

val val
0.92 4
0.45 4 \
0.90 1 0.40
>
O
© 0.8 Y § 0354
g 3 '
0.86 4 0.30
<<

Tshirttop L2 © 16 19 4

Trouser
800

22 1

0

ol 2 v 2 o 4
Pullover ©
0

Dress
600

Coat{ 2

sandal{ 0
400

True Label

Sneaker { 0
200

Bag 2

5
1
0
shirt{91 0
0
0
0

Ankle boot{ 0

R & & & & S
¢ L& F R o
R S C &K 2 o
&\\&’\@Qo\\o 4 «*

00 125 150 175 00 25 50

Epoch
(a) F-MNIST Model Accuracy.

0.0 2.5 5.0 75

75

(b) E-MNIST Model Loss.

Epoch

10.0 125 15.0 175 < v&}

Predicted Label

(c) F-MNIST Confusion Matrix.

FIGURE 15. F-MNIST dataset (a) Model Accuracy, (b) Model Loss, and (c) Confusion Matrix.

A. EEPS-CNNs TRAINING RESULTS

The three designs of the proposed EEPS-CNN architecture
are trained using the Python programming language to rec-
ognize the three considered datasets: MNIST, F-MNIST, and
SVHN. The MNIST and F-MNIST datasets consist of 60,000
samples for training and 10,000 samples for testing. The
60,000 training samples are further divided into 52,200 sam-
ples as a training set and 7,800 samples as a validation set.
On the other hand, the SVHN dataset consists of 73,257 sam-
ples for training and 26,032 samples for testing. The 73,257
training samples are divided into 63,733 samples as a training
set and 9,524 samples as a validation set.

For the MNIST and F-MNIST datasets, images are prepro-
cessed through normalization to limit the range of data to the
[0-1] range. For the SVHN dataset, the original RGB images
are transformed to gray scale using

Y =0299R+0.587 G+ 0.114B 3)

where, R, G, and B are the red, green, and blue components,
respectively. Then, the images are preprocessed through stan-
dardization by subtracting the mean and dividing the result by
the standard deviation.

The designed EEPS-CNNs are trained with a 32 batch
size using the adadelta optimization algorithm [41]. The
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test accuracy for the MNIST, Fashoin-MNIST, and SVHN
is 98.12%, 90.2%, and 87.11%, respectively. The network
accuracy is calculated using inputs and weights represented
by 32-bit floating-point number representation on high preci-
sion machines using Python programming. As the complexity
of the dataset increases, the resulting recognition accuracy
decreases. The model accuracy, model loss and confusion
matrix for MNIST, Fashion MNIST and SVHN datasets are
shown in Figure 14, Figure 15 and Figure 16, respectively.
The model accuracy illustrates how the accuracy is improved
after each training epoch, while the model loss demonstrates
the sum of the errors for each sample in each epoch. For
the MNIST dataset, the accuracy improves and settles at a
high accuracy and the model loss decreases until it settles at
a low value after 18 epochs. However, in the Fashion MNIST
dataset, the accuracy improves and settles after only 5 epochs
for the validation set, while there is a continuous improve-
ment in the training set accuracy. The same is observed for
the decay behavior of the model loss. For the SVHN dataset,
the accuracy settles after only 2 epochs for the validation
set, whereas there is a continuous increase in the training set
accuracy with a similar trend for the decaying model loss. The
performance of the CNN is determined using the confusion
matrix. The sum of the numbers of the diagonal axis in each
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FIGURE 16. SVHN dataset (a) Model Accuracy, (b) Model Loss, and (c) Confusion Matrix.
TABLE 2. Number of bits needed to represent the integer part. 120%
= MNIST M Fashion MNIST SVHN
Layer MNIST F-MNIST SVHN
Name (EEPS-CNN-1) (EEPS-CNN-2) (EEPS-CNN-3) 100% -
m-bit m-bit m-bit
Convl 3 2 2 2
Conv2 4 3 3 g 80%
FC1 5 4 4 3
FC2 7 7 6 <
73 60% -
N
E
confusion matrix is equal to the corresponding classification S 40% 1
accuracy. The smaller the values of the non-diagonal elements
compared to the diagonal elements, the higher the accuracy 20% |
as the case for the MNIST dataset shown in Figure 14c.

B. EEPS-CNNs TESTING RESULTS

Next, we evaluate the performance of the proposed designs
using the test datasets. The network parameters and inputs
are quantized and represented by n-bit fixed-point numbers,
where n = 16, 12, 10, 8, 7, 6, and 5. Also, each layer output
for each EEPS-CNN design is examined to decide the number
of bits needed to represent the integer part (m) as shown in
Table 2.

The resulting accuracy and accuracy loss are listed in
Table 3. The accuracy loss is the difference between the accu-
racy obtained for the 32-bit floating-point operation (which is
given as a percentage) and the accuracy obtained for the n-bit
fixed-point operation (which is also given as a percentage).
Consequently, the accuracy loss is given as a percentage that
is the difference between the two percentages calculated as

Acc. LOSS[%] — ACC.Flaating 32—bit [%] _ ACC.FiXEd n—Dbit [%]

“

The classification accuracy of the proposed EEPS-CNN
design for each dataset, normalized to the fully accurate CNN
(32-bit floating point), is shown in Figure 17. These results
imply that for MNIST and SVHN EEPS-CNN designs, the
accuracy loss is negligible (less than 1%) up to 7 bits, whereas
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FIGURE 17. Normalized accuracy of different EEPS-CNN designs.

for the F-MNIST design the accuracy loss is negligible to
8 bits.

C. HARDWARE IMPLEMENTATION RESULTS

Here, we present the hardware setup used to implement and
evaluate the performance of tested EEPS-CNNs. The hard-
ware architecture is modeled by VHDL language, designed
using Xilinx Vivado (v.2015.2), and implemented on a
Zynq-7000 evaluation board which contains xc7z020clg484-
1 FPGA. The proposed hardware architecture is synthesized
to recognize the MNIST, F-MNIST, and SVHN datasets. Fig-
ure 18a, Figure 18b, and Figure 18c show the floor plan-
ning of MNIST, F-MNIST, and SVHN in the case of 16-bits,
respectively.

The FPGA resource utilization for the MNIST is shown
in Table 4 alongside the reported resource utilization of the
ANN [12], LENET CNN [14], LENET-5 CNN [26] and
CNN [27] which were all designed to recognize the MNIST
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TABLE 3. CNN accuracy and loss for MNIST, F-MNIST, and SVHN datasets.

Number Of Bits MNIST (EEPS-CNN-1) | F-MNIST (EEPS-CNN-2) SVHN (EEPS-CNN-3)

Accuracy Accuracy | Accuracy Accuracy Accuracy Accuracy
Loss Loss Loss

16-bit 98.12 % 0% 90.2 % 0% 86.80 % 0.31 %

12-bit 98.12 % 0% 90.15 % 0.05 % 86.80 % 0.31 %
10-bit 98.08 % 0.04% 90.07 % 0.13 % 86.785% 0.325 %

8-bit 97.87 % 0.25 % 89.37 % 0.83 % 86.793% 0.31 %

7-bit 97.60 % 0.53 % 86.53 % 3.67 % 86.23% 0.88 %

6-bit 96.07 % 2.09 % 80.21 % 9.99 % 84.3% 2.81 %

5-bit 81.71 % 16.72 % 44.27 % 45.93 % 75.85% 11.26 %

TABLE 4. FPGA resource utilization and Accuracy of EEPS-CNN for MNIST with different bitwidths, ANN [12], LENET CNN [14], LENET-5 CNN [26] and
CNN [27].

Number of Bits Slice Slice F7 F8 DSP BRAM Accuracy
(LUTs) (Registers) | MUXes | MUXes

16 18190 8466 1085 166 0 0 98.12 %

12 12458 6362 741 118 0 0 98.12 %

10 9921 5350 632 94 0 0 98.08 %

Proposed Design 8 7481 4290 594 71 0 0 97.87 %
7 6039 3760 501 59 0 0 97.60 %

6 5360 3230 394 46 0 0 96.07 %

5 4592 2697 366 - 0 0 81.71 %

3-bit without DSP 124862 130237 - - 0 323 (36 Kb) 98.92 %

ANN [12] 3-bit with DSP 121173 130802 - - 900 323 (36 Kb) 98.92 %

8-bit 213593 136677 - - 900 750.5 (36 Kb) -
LENET CNN [14] 8-bit 52840 81932 - - 169 148 (18 Kb) 99.107 %
LENET-5 CNN [26] 18-bit 12588 48765 - - 274 0 97.57 %
CNN [27] 9-bit 15769 106400 - - 0 73 (36 kb) 90 %

; E b
E ; B

(a) MNIST with 16 bits. (b) F-MNIST with 16 bits. (c) SVHN with 16 bits.

FIGURE 18. Floor planning of EEPS-CNN for (a) MNIST with 16 bits, (b) F-MNIST with 16 bits, and (c) SVHN with 16 bits.

dataset. The hardware design for the ANN [12] is imple-
mented on a Xilinx ZC706 evaluation board which contains
XC772045 FPGA. The synthesis for LENET CNN [14] is
made for the Xilinx Zynq XC7Z020-CLG484 SoC on the
ZedBoard development board. Intel Cyclone 10 is used to
implement LENET-5 CNN [26] while using fixed-point rep-
resentation. In [27], the fixed-point representation is used to
implement the CNN on the Xilinx XC7A100T FPGA. Table 4
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implies that the proposed EEPS-CNN design for the MNIST
dataset significantly outperforms the existing designs as the
accuracy of the proposed design is less than that of ANN [12]
and CNN [14] only by almost 1% and is much higher than
the accuracy of LENET-5 CNN [26] and CNN [27]. More-
over, the utilization of the proposed design is orders of mag-
nitude less than those of ANN [12], LANET CNN [14],
LENET-5 CNN [26] and CNN [27]. For the F-MNIST, and

VOLUME 10, 2022



E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

IEEE Access

TABLE 5. FPGA resource utilization of EEPS-CNN for F-MNIST with

TABLE 7. Recognition time and Throughput of three EEPS-CNN

implementations.

Dataset Recognition Time Throughput
(ms) (images/second)
MNIST 0.27 3645.64
F-MNIST 1.95 512.05
SVHN 2.38 420.09

different bitwidths.

Number Slice Slice F7 F8 Block
of Bits (LUTSs) (Registers) MUXes | MUXes RAM
(36 Kb)

16 18672 8239 1268 4438 80

12 13447 6191 871 336 60

10 10304 5167 691 280 50

8 7758 4143 554 224 40

7 6328 3631 598 205 35

6 5518 3119 436 168 30

5 4561 2604 434 144 25

TABLE 6. FPGA resource utilization of EEPS-CNN for SVHN with different

bitwidths.
Number Slice Slice F7 F8 Block
of Bits (LUTs) (Registers) MUXes | MUXes RAM
(36 Kb)

16 19651 9103 1053 512 80
12 13303 6839 820 386 60
10 11122 5707 815 322 50
8 8307 4575 692 256 40
7 6660 4009 606 226 35
6 5978 3443 549 200 30
5 4846 2874 450 168 25

SVHN EEPS-CNN implementation, Table 5 and Table 6
summarize their FPGA resource utilization. For our three
EEPS-CNN designs, Tables 4—6 show that when the number
of used bits decreases, the needed resources are significantly
reduced.

The number of needed cycles to recognize one image for
the MNIST dataset is 13715 cycles. With a system clock
frequency of 50 MHz, the design recognizes 3645 images
per second, and the time needed to recognize one image is
13715 cycles x 20 ns = 0.27 ms. The number of needed
cycles to recognize one image for the F-MNIST dataset is
97647 cycles, which means that it recognizes 512 images
per second, and the time needed to recognize one image is
97647 cycles x20 ns = 1.95 ms. The number of needed cycles
to recognize one image for SVHN is 119023 cycles, which
are interpreted to a classification throughput of 420 images
per second and the time needed to recognize one image is
119023 cycles x 20 ns = 2.38 ms. The recognition time
and the throughput of the three datasets are summarized in
Table 7. As expected, the recognition time increases, and
consequently, the throughput decreases as the complexity of
the neural network design and the dimension of the input
image increase.

Table 8 presents the power consumed by the different com-
ponents of the three EEPS-CNN implementations for the
MNIST, F-MNIST, and SVHN datasets. The energy con-
sumed to recognize one image is calculated as the product of
the total consumed power and the image recognition time and
also shown in Table 8. The proposed EEPS-CNN architecture
uses a fewer number of layers and a fewer number of neurons
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which enable the use of a smaller number of multipliers which
saves more energy and power compared to the existing archi-
tecture (such as [12]) while achieving reasonable recognition
time.

The proposed hardware architecture achieves energy
reductions for the 12, 10, 8, 7, 6, and 5 bits cases compared to
the 16-bit case. As the number of bits decreases, the switch-
ing activity decreases, and hence, the consumed power and
energy decreases. More specifically, the energy reductions
for the MNIST dataset are 1.32X, 1.57X, 1.83X, 2.2X, 2.54X
and 2.75X. Likewise, the energy reductions are 1.38X, 1.65X,
2.07X,2.39X, 2.76X and 3.25X for the F-MNIST dataset and
14X, 1.7X, 2.07X, 2.38X, 2.88X and 3.28X for the SVHN
dataset. The tradeoff between the energy and accuracy for the
MNIST, F-MNIST, and SVHN EEPS-CNN implementations
is depicted by Figure 19. Moreover, the proposed EEPS-CNN
for the MNIST dataset in the case of 16-bit achieves 92.91X
and 4.84X reductions in the power and energy consump-
tions compared to [12] as the consumed power and energy
are 33 mW and 9.05 uJ, respectively, as shown in Table 8.
Whereas, the power consumption of the design presented
in [12] is 5 W with static power and 3.066 W without static
power. In addition, the energy consumed by the design pre-
sented in [12] is 71 wuJ with static energy and 43.8 ©J without
static energy. Moreover, the power and energy consumption
reductions compared to [27] are 29.55X and 4.42X, respec-
tively. Table 9 compares the power, energy per image and
the recognition time for the proposed EEPS-CNN design
for the MNIST dataset in the case of 16-bit as well as
for ANN [12] and CNN [27]. The power reduction of the
proposed EEPS-CNN is higher than the energy reduction
because the recognition time of the proposed EEPS-CNN
design is slightly higher than that of both [12] and [27]
(19.18X and 6.69X, respectively).

D. DYNAMIC PARTIAL RECONFIGURATION RESULTS

As mentioned in Section III, DPR is used to reconfigure the
FPGA during run-time using the design with the most appro-
priate power level. The ICAP processor is used to reconfigure
the FPGA during the run-time. The throughput of the ICAP
processor is 10 MBps. Hence, the reconfiguration time is
given by:

Partial Bitstream File Size

Reconfiguration Time = Q)
ICAP Throughput

The partial bitstream file size is equal to 1.27 MB for
MNIST implementation and equals to 2.15 MB for both the
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TABLE 8. Power and energy consumption per image for the proposed EEPS-CNNs.

Number MNIST (EEPS-CNN-1) F-MNIST (EEPS-CNN-2) SVHN (EEPS-CNN-3)

of Power (mW) Energy Power (mW) Energy Power (mW) Energy
Bits Clock | Signal| Logic| Total | (uJ) Clock | Signal| Logic/ BRAM Total | (uJ) Clock | Signal| Logic/ BRAM Total | (uJ)
16-bit 14 9 10 33 9.05 14 12 15 50 91 177.72 15 15 20 45 95 226.14
12-bit 12 6 7 25 6.86 12 8 9 37 66 128.89 12 10 12 34 68 161.87
10-bit 11 5 5 21 5.76 11 6 7 31 55 107.41 12 7 9 28 56 133.31
8-bit 10 4 4 18 4.94 10 4 5 25 44 85.93 10 6 7 23 46 109.50
7-bit 9 3 3 15 4.11 9 4 3 22 38 74.21 10 5 5 20 40 95.22
6-bit 8 3 2 13 3.57 8 3 3 19 33 64.45 8 4 4 17 33 78.56
5-bit 8 2 2 12 3.29 7 3 2 16 28 54.68 8 4 3 14 29 69.03

TABLE 9. Power, energy per image and the recognition time of EEPS-CNN for MNIST in case of 16-bit as well as for ANN [12] and CNN [27]. A fractional

reduction implies an increment rather than a decrement in value.

EEPS-CNN (16-bit) ANN [12] Reduction CNN [27] Reduction
Power (Watt) 0.033 3.066 92.91X 0975 29.55X
Energy/Image (uJ) 9.05 43.8 4.84X 39.98 442X
Recognition Time (ms) 02743 0.0143 oeX 0.041 s X

80%
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FIGURE 19. Accuracy loss vs. energy reduction with approximated CNN.

F-MNIST and SVHN implementations. According to (5), the
reconfiguration times of the MNIST, F-MNIST and SVHN
EEPS-CNN implementations are only 127 ms, 215 ms and
215 ms, respectively.

V. CONCLUSION

In this paper, an efficient architecture to reduce the CNN
energy consumption has been proposed. The consumed
power has been reduced through precision scaling. Three
energy-efficient precision scaled CNNs have been proposed
for the MNIST, F-MNIST, and SVHN datasets. The proposed
EEPS-CNN designs have been implemented using Xilinx
Vivado (v.2015.2) and deployed on FPGA. Our experiments
have demonstrated 2.2X, 2.39X, and 2.38X reduction in the
energy consumption with a maximum of 0.53%, 3.67%, and
0.88% loss in CNN accuracy for MNIST, F-MNIST, and
SVHN designs, respectively, while using 7-bit to represent all
network parameters, as compared to 16-bit. The experiments
have also shown 92.91X and 4.84X reduction in the power
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and energy consumptions while having less than a 1% loss
in accuracy compared to existing hardware implementations.
We have further exploited DPR to reconfigure the FPGA
with the design with the most appropriate power level during
the run time if the battery level is decreased. Such DPR has
ensured continuity instead of termination at the expense of
image recognition accuracy.

Finally, it is worth mentioning that the uniform quan-
tization method optimized for the widely used MNIST,
F-MNIST and SVHN datasets in this paper can be applied
for other CNN architectures in which the difference in
the sensitivity of the CNN layer is not significant. How-
ever, CNN architectures in which different layers have
different sensitivities, non-uniform quantization might be
needed. Our future work will investigate the generalization
of quantization for other networks and datasets while relat-
ing the CNN layers’ sensitivities to the used quantization
approach.
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