
Received 27 July 2022, accepted 30 August 2022, date of publication 5 September 2022, date of current version 15 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204704

Energy-Efficient Precision-Scaled CNN
Implementation With Dynamic
Partial Reconfiguration
EMAN YOUSSEF1, HAMED A. ELSIMARY2, MAGDY A. EL-MOURSY3,
HASSAN MOSTAFA 4,5, (Senior Member, IEEE),
AND AHMED KHATTAB 5, (Senior Member, IEEE)
1Microelectronics Department, Electronics Research Institute (ERI), Cairo 12622, Egypt
2Computer Science Department, Cairo Higher Institute for Engineering, Computer Science, and Management, New Cairo 11477, Egypt
3Siemens EDA, Wilsonville, OR 97070, USA
4Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology, Giza 12578, Egypt
5Electronics and Electrical Communications Engineering Department, Cairo University, Giza 12613, Egypt

Corresponding author: Ahmed Khattab (akhattab@eng.cu.edu.eg)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ABSTRACT A convolutional neural network (CNN) classifies images with high accuracy. However, CNN
operation requires a large number of computations which consume a significant amount of power when
implemented on hardware. Precision scaling has been recently used to reduce the hardware requirements
and power consumption. In this paper, we present an energy-efficient precision-scaled CNN (EEPS-CNN)
architecture. Furthermore, the Field Programmable Gate Array (FPGA) is reconfigured during run time using
Dynamic Partial Reconfiguration (DPR). If the battery level decreases, the EEPS-CNN design with the most
appropriate power consumption is configured on the FPGA. DPR enables recognition applications to run at
a low power budget while sacrificing minor accuracy instead of termination. The proposed architecture is
implemented on Xilinx XC7Z020 FPGA and is evaluated on three datasets: MNIST, F-MNIST, and SVHN
datasets. The results show a 2.2X, 2.39X, and 2.38X reduction in the energy consumption, respectively, while
using only 7 bits to represent all inputs and network parameters. The accuracy of the proposed EEPS-CNN
is only 0.53%, 3.67%, and 0.88% less than 32-bit floating-point architectures for MNIST, F-MNIST, and
SVHN, respectively. Moreover, the results show up to 92.91X and 4.84X reductions in the power and energy
consumption of the proposed EEPS-CNN compared to related designs developed for the MNIST dataset.

15

16

INDEX TERMS Approximate computing, convolutional neural network, dynamic partial reconfiguration,
energy efficiency, precision scaling.

I. INTRODUCTION17

Neuromorphic computing simulates human brain activity18

using very-large-scale integration (VLSI) systems [1]. Con-19

volutional neural networks (CNNs) were inspired by the20

human brain for computer vision applications such as image21

and video classification, object detection, face recogni-22

tion, image segmentation, image matching, image super-23

resolution, regression and image correction. Due to the24

impressive performance of CNNs, they have been recently25

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilaria De Munari .

widely used in various application domains including - but 26

not limited to - Natural Language Processing (NLP) appli- 27

cations, time series prediction, medical signal identification, 28

autonomous driving and security applications [2]. For these 29

numerous applications, the implementation of a low power 30

consumption design is needed. The implementation of a CNN 31

using general-purpose processors consumes a large amount of 32

power because such processors are not optimized. A minor 33

accuracy loss is accepted since CNNs are mostly used in 34

error-reliance applications. 35

Thus motivated, approximate computing has been recently 36

used to reduce the complexity of CNN implementations. 37

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 95571

https://orcid.org/0000-0003-0043-5007
https://orcid.org/0000-0002-3425-9833
https://orcid.org/0000-0002-9872-1695

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

By applying approximate computing techniques, a signifi-38

cant improvement in energy efficiency is achieved with a39

minor loss in the achieved accuracy. For instance, the authors40

of [3] used various arithmetic approximate methods and par-41

allel computation to improve the performance of the hard-42

ware. Moreover, hybrid high radix encoding multiplier and43

Winograd convolution were used. Approximate multipliers44

were exploited to decrease the hardware cost while improving45

the neural network accuracy in [4]. In this paper, two types46

of approximate multipliers were used, which were deliber-47

ately designed using Cartesian Genetic Programing (CGP).48

The Mixed National Institute of Standards and Technology49

(MNIST) and Street View House Numbers (SVHN) datasets50

were used to evaluate the proposed techniques.51

In [5], an approximate floating-point multiplier was intro-52

duced using two approximation techniques. The results53

showed considerable energy reduction with a minor reduc-54

tion in the classification accuracy when evaluated using the55

MNIST and the Canadian Institute For Advanced Research56

(CIFAR-10) [6] datasets. Meanwhile, a small area, low57

power and high-speed CNN architecture was proposed in [7].58

ApproximateMAC (Multiply and Accumulate) units for con-59

volution and fully connected layers while using parallel mem-60

ory access were introduced. A stochastic neural network61

architecture was introduced while approximating the activa-62

tion function in [8]. The results showed a reduction in power,63

energy and area while achieving similar accuracy to the con-64

ventional convolutional neural network.65

In [9], efficient implementation of an Artificial Neural Net-66

work (ANN) was presented using approximate adders and67

approximate multipliers. This ANN architecture was intro-68

duced while using time-multiplexing architecture. In [10],69

the highest throughput was reached by implementing adap-70

tive switching between shallow and deep networks, and a71

new CNN architecture was proposed. A novel architecture to72

implement CNN was proposed in [11]. The proposed CNN73

architecture was trained on MATLAB for digit recognition74

for the MNIST dataset.75

Several works also tackled the implementation of neu-76

ral networks on Field Programmable Gate Arrays (FPGAs).77

The authors of [12] represented the ANN parameters using78

fixed-point numbers while using chip-memory only for hand-79

written digit recognition and phoneme recognition. The80

authors of [13] proposed approximate MAC units to design81

CNN accelerator using Xilinx XCZU9EG- 2ffvb1156 FPGA82

chip. This design was used to implement LENET-5 CNN83

to recognize MNIST dataset using high-level synthesis tool.84

A new approach for CNN implementation on FPGA was85

presented for the LENET network using 8 bits fine-tuning86

to represent the network parameters in [14]. The LENET87

CNN architecture was dynamically reconfigured to recog-88

nize two different datasets in [15]. In [16], a parallel con-89

volutional acceleration unit was introduced. Semi-floating90

point was used to represent feature maps and weights while91

using fixed point to perform convolutional layer operations.92

LENET-5 CNN was implemented on ZCU102 using the93

proposed design. In [17], the hls4ml library was used to 94

implement a neural network that was trained to recognize the 95

MNIST dataset on FPGA. 96

In [18], ResNet-18 was implemented on Xilinx 97

XC7VX690T, and 16 bits fixed-point arithmetic was used. 98

In [19], the Alex network was implemented on ZYNQ-702 99

FPGA, and Vivado 2015.1 tool was used for synthesis. This 100

design was tested with and without pipelining to assess the 101

time and power consumption. In [20], a hardware accelera- 102

tor design was developed to recognize the MNIST dataset. 103

Python programming language was used to model the pro- 104

vided deep neural network, and the function of Register 105

Transfer Level (RTL) was tested on ModelSim. Finally, 106

the architecture was implemented on Xilinx Zynq ZC-702. 107

In [21], hardware-software co-design was developed for neu- 108

ral network applications on the PYNQ-Z2 board. For this 109

aim, convolutional IP cores were implemented, and they were 110

used as Python overlays. In addition, the convolutional IP 111

core was used to accelerate the recognition of the MNIST 112

dataset. 113

A new structure for binary convolution was proposed 114

in [22] with the aim of decreasing the consumed power and 115

the hardware resources. In addition, full-BNN (Binary Neural 116

Network) and mixed-precision BNN were proposed. Finally, 117

the MNIST dataset was used to test the two proposed neural 118

networks on the DSP + Xilinx 352T FPGA board. In [23], 119

a new approach for implementing a Fully Connected Deep 120

Neural Network (FC DNN) and convolutional neural net- 121

work on FPGA was proposed. For the FC DNN, a mini- 122

mum number of computational units was used, while for 123

the CNN, parallel processing, as well as systolic architec- 124

ture were exploited. A CNN architecture was trained while 125

using different floating-point formats in [24]. In addition, the 126

MNIST dataset was used to verify the proposed accelerator 127

engine on FPGA. Verilog was used to implement the pro- 128

posed design in RTL, whilst it was verified by Vivado Sim- 129

ulator. In [25], LENET-5 CNN was implemented on FPGA. 130

Moreover, the CNN was accelerated using the parallelization 131

of the operations. The MNIST and other datasets were used 132

to evaluate the proposed design. 133

Furthermore, partial configuration was utilized to over- 134

come the FPGA resource limitations. This design was 135

tested on three datasets, namely, CIFAR-10, CIFAR-100 and 136

SVHN. A CNNwas implemented on Intel Cyclone 10 FPGA 137

to recognize MNIST dataset’s handwritten digits in [26]. 138

Fixed-point representation was used to represent all the net- 139

work weights and all the intermediate operations. Xilinx 140

XC7A100T FPGA was used to implement a CNN to recog- 141

nize the MNIST dataset in [27]. The CNN was trained using 142

MATLAB 2018. Multiplication and addition operations were 143

performed using fixed-point representation. 144

Pynq-Z2 FPGA [28], which contains DPR, was used to 145

implement convolutional layers represented by 8, 16, and 146

32-bit precision. The DPR feature in ZYNQ 7020 was uti- 147

lized to realize different CNNs and SNNs (spiking neural net- 148

works) on the same FPGA [29]. In [30], theDPR feature in the 149

95572 VOLUME 10, 2022

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

ZYNQ 702 board was used to accelerate the cryptocurrency150

dash mining.151

In this paper, we present the energy-efficient precision-152

scaled CNN architecture (EEPS-CNN) in which the CNN153

is approximated through precision scaling for all network154

parameters, which reduces the power consumption for the155

whole CNN hardware architecture, including memory, mul-156

tipliers, adders, and registers. This contrasts with the related157

literature in which precision scaling was used for only one158

component or one layer of the CNN. In EEPS-CNN, the159

CNN parameters are approximated by removing the least160

significant bits from the calculation. The majority of such bits161

are the bits of the fraction part. Instead of using 16 bits to162

represent each parameter, a lower number of bits has been163

used with an insignificant loss in accuracy and a significant164

saving in power and energy consumption. Furthermore, the165

proposed approximated CNN is implemented on an FPGA166

using Dynamic Partial Reconfiguration (DPR) in which dif-167

ferent bit-widths are used during the run-time to represent the168

network parameters to recognize the MNIST, F-MNIST, and169

SVHN datasets. The proposed convolution neural networks170

are implemented and tested to evaluate their energy and accu-171

racy performance using fixed-point representation for each172

parameter.173

The remainder of the paper is organized as follows.174

Section II presents the proposed EEPS-CNN architecture.175

The details of the hardware architecture developed to imple-176

ment the proposed EEPS-CNN is discussed in Section III.177

The experimental results are presented in Section IV. Finally,178

we conclude the paper in Section V.179

II. ENERGY-EFFICIENT PRECISION-SCALED180

CONVOLUTIONAL NEURAL NETWORK (EEPS-CNN)181

In this section, we present the proposed energy-efficient CNN182

architecture and how precision scaling is used to reduce its183

energy consumption.184

A. BASIC CONVOLUTIONAL NEURAL NETWORK185

ARCHITECTURE186

CNN is an ideal candidate for image recognition applications.187

However, many factors such as the training data, the prepro-188

cessing of data and the used optimizer (SGD, Adams) need to189

be carefully considered in order to achieve a high recognition190

accuracy. A CNN consists of two stages: a feature extrac-191

tion stage, and a classification stage. The feature extraction192

stage consists of alternating convolution (Conv) and pooling193

layers followed by the classification stage, which consists of194

a number of fully connected (FC) layers. Convolution lay-195

ers use a set of filters to extract the features from the input196

and generate feature maps as output. A nonlinear piecewise197

activation function is used after each convolution layer. The198

rectifier linear unit (ReLU) function is typically used in CNN199

because of its simple computation. The activation function of200

the non-linear ReLU [31] is given by201

f (z) = max(0, z). (1)202

At the pooling layer, the input is divided into rectangu- 203

lar regions. Then, an average or a maximum of each region 204

is generated at the output. The pooling layer is used to 205

down-sample the input representation. This reduces the com- 206

putational complexity and the memory usage of the network. 207

The pooling layer is described by its kernel size and stride. 208

In fully connected layers, the neurons are fully connected by 209

different weights. 210

In this paper, we propose the energy-efficient precision- 211

scaled CNN (EEPS-CNN) architecture which is structured as 212

two alternating convolutional and pooling layers, followed 213

by two fully connected layers as shown in Figure 1. The 214

proposed EEPS-CNN architecture is then used to design 215

three CNNs for the three considered datasets resulting in 216

the (EEPS-CNN-1) for MNIST dataset,1 (EEPS-CNN-2) for 217

F-MNIST dataset, and (EEPS-CNN-3) for SVHN dataset. 218

The MNIST dataset is handwritten digits with a dimension 219

28 × 28 gray scale [33]. The F-MNIST (Fashion MNIST) 220

is a dataset of Zalando’s article images with a dimension 221

28×28 gray scale [34]. The SVHN (Street ViewHouse Num- 222

bers) dataset is a real-world image dataset that is obtained 223

from house numbers in Google Street View images [35]. The 224

SVHN dataset is a real-world problem of recognizing digits 225

and numbers. SVHN is 32× 32 red-green-blue (RGB) color 226

images. 227

The designs of the proposed EEPS-CNN architecture have 228

the first convolutional layer with 2 filters for the MNIST 229

dataset and 4 filters for the F-MNIST and SVHN datasets, 230

with a dimension 3× 3 and a stride length of one. The input 231

image to the input convolution layer is padded to preserve 232

its spatial size. The second convolutional layer has 4 fil- 233

ters for the MNIST dataset and 8 filters for the F-MNIST 234

and SVHN datasets. Each convolution layer is followed by 235

a ReLU activation function. A 3 × 3 filter dimension is 236

used because a small filter size captures the fine details of 237

the image, while a bigger filter size leaves out small details 238

in the image. The selected 3 × 3 filter dimension needs a 239

small number of multiplications, which reduces the power 240

consumption of the hardware implementation. The pooling 241

layer is MaxPool with a dimension 2× 2 and a stride length 242

of two. The first fully connected layer has 20 neurons for 243

the MNIST dataset and 256 neurons for the F-MNIST and 244

SVHN datasets and is followed by a ReLU activation func- 245

tion. The second fully connected layer has 10 neurons and 246

is followed by softmax. Softmax is another activation func- 247

tion that is applied to the CNN layer [36]. Softmax converts 248

the output of the last layer of the CNN into a probability 249

distribution. 250

The network parameters and the number of multiplications 251

for each layer in each EEPS-CNNdesign are shown in Table 1 252

for MNIST, F-MNIST, and SVHN, where maps are the num- 253

ber of features extracted at each convolution layer. The num- 254

ber of layers, filters, and neurons is selected after making a 255

1A preliminary design of the architecture developed for the MNIST
dataset was presented in [32].

VOLUME 10, 2022 95573

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

FIGURE 1. Proposed EEPS-CNN architecture.

trade-off between the network accuracy and the number of256

multiplications.257

It is worth noting that reducing the number of multiplica-258

tions reduces the time needed to recognize the image, and259

hence, the energy consumption is reduced. Few filters are260

applied to reduce the number of multiplications. These filters261

have small dimensions 3 × 3. In addition, we use a small262

number of neurons at the fully connected layers.263

B. PRECISION SCALED CNN APPROXIMATION264

For digital circuits, approximate computing via precision265

scaling achieves reasonable power savings [37]. Precision266

scaling allows computing using fewer bits, which reduces267

the switching activity, and consequently, reduces the dynamic268

power consumption. Dynamic power is reduced linearly for269

adders and registers and quadratically for multipliers [38].270

To apply approximate computing through precision scaling,271

the network weights and inputs are quantized and represented272

with n bits using fixed-point number representation. The273

same number of bits is used for all CNN parameters, which274

is denoted by uniform quantization [38].275

The CNN parameters and test dataset should be quantized276

to the hardware’s available bitwidth n. The weights of each277

layer should be examined separately to determine the maxi-278

mum and minimum values for dividing the available bitwidth279

n into integer and fractional values, as shown in Figure 2,280

wherem is the number of bits required to represent the integer281

part using:282

m =

{
0, if Max < 1 & Min > -1.
dMax(log2(Max), log2(| Min |))e, otherwise

(2)283

Decreasing the bitwidth n results in reducing the number284

of bits used to represent the fraction part. Furthermore, the285

number of bits used to represent the integer part remains286

constant as long as n is greater thanm because the integer part287

has a greater impact on the CNN accuracy. The inputs and288

weights for each convolutional (Conv) and fully connected289

(FC) layer are quantized at n-bit, therefore, the multiplication290

results from the Conv and FC layers are quantized at 2n bits291

as shown in Figure 3.292

The multiplication operations at the convolution layer are293

shown in Figure 4. In Figure 4, we assume that the input has294

two channels with a 7 × 7 dimension, and there is a filter295

with a 3 × 3 dimension to illustrate the multiplication and296

FIGURE 2. Available n bitwidth decomposed into three parts.

FIGURE 3. Available 2n bitwidth decomposed into three parts.

FIGURE 4. Example of convolution operation, assuming two channels
input with dimension 7 × 7 input while using one filter. I : input, W :
weight, O: output.

accumulation operations. Each layer output is examined to 297

find the maximum and minimum values to decide the number 298

of bits needed to represent the integer part m as shown in 299

Figure 3 using (2) to avoid overflow, which may happen from 300

accumulation or to preserve unneeded bits for the fraction 301

part. 302

The test function applies repetitive truncation after each 303

multiplication and addition step, as shown in Figure 5. Such 304

repetitive truncation guarantees that the numbers generated 305

from the software test functions can be represented with 2n 306

bits. In addition, it guarantees that the fraction part can be rep- 307

resented using 2n−m− 1 bits. Finally, the last accumulation 308

result, which is represented by 2n bits, is truncated to n bits. 309

Truncation is needed to use the same hardware with the same 310

bitwidth for the following layer operations. 311

III. EEPS-CNN HARDWARE IMPLEMENTATION WITH 312

DYNAMIC PARTIAL RECONFIGURATION 313

In this section, we present the hardware architecture that 314

we develop to implement the proposed EEPS-CNN. Then, 315

95574 VOLUME 10, 2022

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

TABLE 1. Network parameters and number of multiplication for each CNN layer for MNIST, F-MNIST, and SVHN datasets.

FIGURE 5. Illustration of the quantization flow.

we discuss how we apply dynamic partial reconfiguration to316

the developed architecture.317

A. HARDWARE ARCHITECTURE318

The block diagram of the hardware architecture that we319

develop to recognize the MNIST, F-MNIST, and SVHN320

datasets is depicted in Figure 6. The developed architec-321

ture contains memory units, memory access units (MACs),322

computation units, ADD2 units, MaxPool units, ReLU units,323

register files, and one comparator. In our hardware architec-324

ture, n-bit fixed-point arithmetic units are used instead of325

the conventional 32-bit floating-point units, where n takes326

distinct values such as 16, 12, 10, 8, 7, 6, and 5 bits to327

reduce the power dissipation [39]. In what follows, we present328

the details of each component of the developed hardware329

architecture.330

FIGURE 6. EEPS-CNN hardware implementation.

1) MEMORY 331

The used memory contains four ROMs and one RAM. ROM1 332

stores the image under test. ROM2 stores the weights of the 333

Conv2 layer. ROM3 stores the biases of all CNN layers. 334

ROM4 stores the weights of the FC1 and FC2 layers. The 335

RAM stores the weights of the Conv1 layer and the interme- 336

diate results generated by each layer. 337

2) COMPUTATION UNIT 338

The computation and ADD2 units are intended for perform- 339

ing multiplications and additions on the convolutional and 340

fully connected layers. The computation unit contains three 341

processing elements (PEs) as shown in Figure 7. A single 342

PE consists of nine multipliers and four adders as shown 343

in Figure 8. Therefore, three vector multiplication-addition 344

operations are performed at the same time by three processing 345

elements. Figure 8 is a data flow graph (DFG), which demon- 346

strates how the functional units are reused in each cycle. Ini- 347

tially, the operands are multiplied using the nine multipliers. 348

The results are then added using the four adders. After that, 349

some of these adders are reused to finish the addition oper- 350

ations. The final accumulation is achieved using ADD 2-3 351

Units as shown in Figure 6, which contain other three adders, 352

VOLUME 10, 2022 95575

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

FIGURE 7. Architecture of the computation unit.

FIGURE 8. Architecture of the processing element.

and each adder can add two numbers, Therefore, the results353

are accumulated in one register at the register file, which is354

demonstrated in Figure 6. Moreover, these three adders are355

reused with different data from different resources by using356

multiplexers.357

3) MaxPool UNITS358

MaxPool units are used to perform MaxPool layer opera-359

tions. Fourteen MaxPool units are used for the MNIST and360

F-MNIST EEPS-CNNs, and sixteen MaxPool units are used361

for the SVHN EEPS-CNN. Figure 9 illustrates how the Max-362

Pool units are connected to the memory as eachMaxPool unit363

is connected with two columns of RAM. Figure 10 illustrates364

the architecture of each MaxPool unit which is composed of365

four registers and one comparator. Initially, the comparator366

compares two memory locations (L1/1 and L2/1 for MaxPool367

unit 1) and the maximum value is stored at REG1 as shown368

in Figure 10. Then, a comparison is made between the fol-369

lowing two memory locations (L1/2 and L2/2 for MaxPool370

unit 1) and the maximum value is stored at REG3 as shown371

in Figure 10. Finally, REG1 and REG3 are compared, and the372

maximum value is stored in the RAM for successive opera-373

tions of the CNN layers.374

4) MEMORY ACCESS (MAC) UNITS375

MAC units are used to access each memory row only once376

to reduce the image recognition time, which in turns reduces377

the energy consumption required to recognize the image.378

MAC units are used in the convolutional layer operations.379

As shown in Figure 11, each MAC unit contains nine n-bit380

registers as the convolution operation is applied to nine381

values. The nine registers are arranged in clusters of three382

FIGURE 9. Connection between memory and MaxPool unit.

FIGURE 10. Architecture of the MaxPool unit.

FIGURE 11. Architecture of the memory access units. The dashed squares
illustrate how the filters sweep on the input map.

registers. As shown in Figure 11, after the first three cycles 383

C1, C2, and C3, the memory contents L1/1, L2/1, L3/1, 384

L1/2, L2/2, L3/2, L1/3, L2/3, and L3/3 are stored at the 385

first nine registers (MAC unit 1), and the memory contents 386

L2/1, L3/1, L4/1, L2/2, L3/2, L4/2, L2/3, L3/3, and L4/3 are 387

stored at the second nine registers (MAC unit 2), and this 388

procedure continues until unit 28. After only one cycle of 389

C4, the memory contents L1/2, L2/2, L3/2, L1/3, L2/3, L3/3, 390

95576 VOLUME 10, 2022

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

FIGURE 12. Floor planning the MNIST dataset (a) Static part, (b) Dynamic part (16 bits), and (c) Dynamic part (5 bits).

L1/4, L2/4, and L3/4 are stored at the first nine registers391

(MAC unit 1), and the memory contents L2/2, L3/2, L4/2,392

L2/3, L3/3, L4/3, L2/4, L3/4, and L4/4 are stored at the sec-393

ond nine registers (MAC unit 2), and the same procedure is394

adopted up to the last MAC unit. Consequently, each succes-395

sive convolution operation needs only one cycle to access its396

operands, except for the first convolution operation, which397

takes three cycles. The output of the Conv1 layer is arranged398

in a similar way to the arrangement of the input image in399

the memory to use the MAC units in the following convo-400

lution layer operation. For MNIST and F-MNIST datasets,401

28 units are needed, but for the SVHN dataset, 32 units are402

needed.403

5) REGISTER FILE, ReLU UNITS, AND COMPARATOR UNIT404

Before being stored in the RAM, the multiplication results405

of the Conv and FC layers are accumulated in the register406

file. ReLUunits are used to performReLU activation function407

operations. The comparator compares the last ten neurons’408

outputs (i.e., FC2 outputs as shown in Figure 6) and gives the409

index of the neuron which has the maximum output.410

B. DYNAMIC PARTIAL RECONFIGURATION411

Dynamic partial reconfiguration (DPR) is a feature avail-412

able in modern FPGAs to solve the problem of limited hard-413

ware resources on FPGAs by allowing the reconfiguration of414

the programmable logic (PL) on the FPGA during the run415

time [40]. In DPR, the hardware design is divided into two416

parts: the static part and the dynamic part. The static part is the417

common part in all our designs, as it corresponds to the input418

ports, the output ports and Internal Configuration Access Port419

(ICAP) which manages the reconfiguration process. Mean-420

while, the dynamic part corresponds to the proposed hard-421

ware architecture, which include the computational unit and422

the other needed units that differ according to the target423

dataset and the number of used bits. For instance, Figure 12424

depicts the floor planning of the static part for the MNIST425

dataset, while Figures 12b and 12c show the floor planning426

FIGURE 13. DPR system block diagram.

of the dynamic part for the MNIST dataset in the case of 427

16 bits, and 5 bits, respectively. The static part is configured 428

using a full bit-stream at the boot time, while the dynamic 429

part is configured using partial bit-streams at the run time. 430

The dynamic part consists of one or more reconfigurable 431

partitions (RPs). Each RP is reconfigured with different par- 432

tial bit-streams without changing the static part. Sharing the 433

same programmable logic between multiple Reconfigurable 434

Modules (RMs) reduces the needed hardware resources. The 435

reconfiguration of the system from an operating design to 436

another needs a reconfiguration time that is a significant fac- 437

tor in DPR. The reconfiguration time is proportional to the 438

size of the partial bit-stream, which is proportional to the size 439

of the reconfigured region. 440

For the implementation of the proposed EEPS-CNNs, the 441

used FPGA platform is reconfigured with the appropriate 442

power level design during run-time using DPR. Figure 13 443

shows the block diagram of the developed DPR system. The 444

required partial bit-streams are transferred from DDR to the 445

ICAP by a processing system (PS). Then, the ICAP reconfig- 446

ures the RPs. According to the available power at the battery, 447

the required partial bit-streams are determined. 448

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 449

In this section, we first use Python programming to train 450

and test the performance of the three proposed EEPS-CNN 451

designs. Then, we implement them on an FPGA platform to 452

evaluate their accuracy and hardware characteristics. 453

VOLUME 10, 2022 95577

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

FIGURE 14. MNIST dataset (a) Model Accuracy, (b) Model Loss, and (c) Confusion Matrix.

FIGURE 15. F-MNIST dataset (a) Model Accuracy, (b) Model Loss, and (c) Confusion Matrix.

A. EEPS-CNNs TRAINING RESULTS454

The three designs of the proposed EEPS-CNN architecture455

are trained using the Python programming language to rec-456

ognize the three considered datasets: MNIST, F-MNIST, and457

SVHN. TheMNIST and F-MNIST datasets consist of 60,000458

samples for training and 10,000 samples for testing. The459

60,000 training samples are further divided into 52,200 sam-460

ples as a training set and 7,800 samples as a validation set.461

On the other hand, the SVHN dataset consists of 73,257 sam-462

ples for training and 26,032 samples for testing. The 73,257463

training samples are divided into 63,733 samples as a training464

set and 9,524 samples as a validation set.465

For the MNIST and F-MNIST datasets, images are prepro-466

cessed through normalization to limit the range of data to the467

[0-1] range. For the SVHN dataset, the original RGB images468

are transformed to gray scale using469

Y = 0.299 R+ 0.587 G+ 0.114B (3)470

where, R, G, and B are the red, green, and blue components,471

respectively. Then, the images are preprocessed through stan-472

dardization by subtracting the mean and dividing the result by473

the standard deviation.474

The designed EEPS-CNNs are trained with a 32 batch475

size using the adadelta optimization algorithm [41]. The476

test accuracy for the MNIST, Fashoin-MNIST, and SVHN 477

is 98.12%, 90.2%, and 87.11%, respectively. The network 478

accuracy is calculated using inputs and weights represented 479

by 32-bit floating-point number representation on high preci- 480

sionmachines using Python programming. As the complexity 481

of the dataset increases, the resulting recognition accuracy 482

decreases. The model accuracy, model loss and confusion 483

matrix for MNIST, Fashion MNIST and SVHN datasets are 484

shown in Figure 14, Figure 15 and Figure 16, respectively. 485

The model accuracy illustrates how the accuracy is improved 486

after each training epoch, while the model loss demonstrates 487

the sum of the errors for each sample in each epoch. For 488

the MNIST dataset, the accuracy improves and settles at a 489

high accuracy and the model loss decreases until it settles at 490

a low value after 18 epochs. However, in the Fashion MNIST 491

dataset, the accuracy improves and settles after only 5 epochs 492

for the validation set, while there is a continuous improve- 493

ment in the training set accuracy. The same is observed for 494

the decay behavior of the model loss. For the SVHN dataset, 495

the accuracy settles after only 2 epochs for the validation 496

set, whereas there is a continuous increase in the training set 497

accuracywith a similar trend for the decayingmodel loss. The 498

performance of the CNN is determined using the confusion 499

matrix. The sum of the numbers of the diagonal axis in each 500

95578 VOLUME 10, 2022

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

FIGURE 16. SVHN dataset (a) Model Accuracy, (b) Model Loss, and (c) Confusion Matrix.

TABLE 2. Number of bits needed to represent the integer part.

confusion matrix is equal to the corresponding classification501

accuracy. The smaller the values of the non-diagonal elements502

compared to the diagonal elements, the higher the accuracy503

as the case for the MNIST dataset shown in Figure 14c.504

B. EEPS-CNNs TESTING RESULTS505

Next, we evaluate the performance of the proposed designs506

using the test datasets. The network parameters and inputs507

are quantized and represented by n-bit fixed-point numbers,508

where n = 16, 12, 10, 8, 7, 6, and 5. Also, each layer output509

for each EEPS-CNN design is examined to decide the number510

of bits needed to represent the integer part (m) as shown in511

Table 2.512

The resulting accuracy and accuracy loss are listed in513

Table 3. The accuracy loss is the difference between the accu-514

racy obtained for the 32-bit floating-point operation (which is515

given as a percentage) and the accuracy obtained for the n-bit516

fixed-point operation (which is also given as a percentage).517

Consequently, the accuracy loss is given as a percentage that518

is the difference between the two percentages calculated as519

Acc. Loss[%] = Acc.Floating 32−bit [%]− Acc.Fixed n−bit [%]520

(4)521

The classification accuracy of the proposed EEPS-CNN522

design for each dataset, normalized to the fully accurate CNN523

(32-bit floating point), is shown in Figure 17. These results524

imply that for MNIST and SVHN EEPS-CNN designs, the525

accuracy loss is negligible (less than 1%) up to 7 bits, whereas526

FIGURE 17. Normalized accuracy of different EEPS-CNN designs.

for the F-MNIST design the accuracy loss is negligible to 527

8 bits. 528

C. HARDWARE IMPLEMENTATION RESULTS 529

Here, we present the hardware setup used to implement and 530

evaluate the performance of tested EEPS-CNNs. The hard- 531

ware architecture is modeled by VHDL language, designed 532

using Xilinx Vivado (v.2015.2), and implemented on a 533

Zynq-7000 evaluation board which contains xc7z020clg484- 534

1 FPGA. The proposed hardware architecture is synthesized 535

to recognize the MNIST, F-MNIST, and SVHN datasets. Fig- 536

ure 18a, Figure 18b, and Figure 18c show the floor plan- 537

ning of MNIST, F-MNIST, and SVHN in the case of 16-bits, 538

respectively. 539

The FPGA resource utilization for the MNIST is shown 540

in Table 4 alongside the reported resource utilization of the 541

ANN [12], LENET CNN [14], LENET-5 CNN [26] and 542

CNN [27] which were all designed to recognize the MNIST 543

VOLUME 10, 2022 95579

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

TABLE 3. CNN accuracy and loss for MNIST, F-MNIST, and SVHN datasets.

TABLE 4. FPGA resource utilization and Accuracy of EEPS-CNN for MNIST with different bitwidths, ANN [12], LENET CNN [14], LENET-5 CNN [26] and
CNN [27].

FIGURE 18. Floor planning of EEPS-CNN for (a) MNIST with 16 bits, (b) F-MNIST with 16 bits, and (c) SVHN with 16 bits.

dataset. The hardware design for the ANN [12] is imple-544

mented on a Xilinx ZC706 evaluation board which contains545

XC7Z045 FPGA. The synthesis for LENET CNN [14] is546

made for the Xilinx Zynq XC7Z020-CLG484 SoC on the547

ZedBoard development board. Intel Cyclone 10 is used to548

implement LENET-5 CNN [26] while using fixed-point rep-549

resentation. In [27], the fixed-point representation is used to550

implement the CNN on the Xilinx XC7A100T FPGA. Table 4551

implies that the proposed EEPS-CNN design for the MNIST 552

dataset significantly outperforms the existing designs as the 553

accuracy of the proposed design is less than that of ANN [12] 554

and CNN [14] only by almost 1% and is much higher than 555

the accuracy of LENET-5 CNN [26] and CNN [27]. More- 556

over, the utilization of the proposed design is orders of mag- 557

nitude less than those of ANN [12], LANET CNN [14], 558

LENET-5 CNN [26] and CNN [27]. For the F-MNIST, and 559

95580 VOLUME 10, 2022

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

TABLE 5. FPGA resource utilization of EEPS-CNN for F-MNIST with
different bitwidths.

TABLE 6. FPGA resource utilization of EEPS-CNN for SVHN with different
bitwidths.

SVHN EEPS-CNN implementation, Table 5 and Table 6560

summarize their FPGA resource utilization. For our three561

EEPS-CNN designs, Tables 4–6 show that when the number562

of used bits decreases, the needed resources are significantly563

reduced.564

The number of needed cycles to recognize one image for565

the MNIST dataset is 13715 cycles. With a system clock566

frequency of 50 MHz, the design recognizes 3645 images567

per second, and the time needed to recognize one image is568

13715 cycles × 20 ns = 0.27 ms. The number of needed569

cycles to recognize one image for the F-MNIST dataset is570

97647 cycles, which means that it recognizes 512 images571

per second, and the time needed to recognize one image is572

97647 cycles×20 ns = 1.95ms. The number of needed cycles573

to recognize one image for SVHN is 119023 cycles, which574

are interpreted to a classification throughput of 420 images575

per second and the time needed to recognize one image is576

119023 cycles × 20 ns = 2.38 ms. The recognition time577

and the throughput of the three datasets are summarized in578

Table 7. As expected, the recognition time increases, and579

consequently, the throughput decreases as the complexity of580

the neural network design and the dimension of the input581

image increase.582

Table 8 presents the power consumed by the different com-583

ponents of the three EEPS-CNN implementations for the584

MNIST, F-MNIST, and SVHN datasets. The energy con-585

sumed to recognize one image is calculated as the product of586

the total consumed power and the image recognition time and587

also shown in Table 8. The proposed EEPS-CNN architecture588

uses a fewer number of layers and a fewer number of neurons589

TABLE 7. Recognition time and Throughput of three EEPS-CNN
implementations.

which enable the use of a smaller number ofmultipliers which 590

saves more energy and power compared to the existing archi- 591

tecture (such as [12]) while achieving reasonable recognition 592

time. 593

The proposed hardware architecture achieves energy 594

reductions for the 12, 10, 8, 7, 6, and 5 bits cases compared to 595

the 16-bit case. As the number of bits decreases, the switch- 596

ing activity decreases, and hence, the consumed power and 597

energy decreases. More specifically, the energy reductions 598

for the MNIST dataset are 1.32X, 1.57X, 1.83X, 2.2X, 2.54X 599

and 2.75X. Likewise, the energy reductions are 1.38X, 1.65X, 600

2.07X, 2.39X, 2.76X and 3.25X for the F-MNIST dataset and 601

1.4X, 1.7X, 2.07X, 2.38X, 2.88X and 3.28X for the SVHN 602

dataset. The tradeoff between the energy and accuracy for the 603

MNIST, F-MNIST, and SVHN EEPS-CNN implementations 604

is depicted by Figure 19.Moreover, the proposed EEPS-CNN 605

for the MNIST dataset in the case of 16-bit achieves 92.91X 606

and 4.84X reductions in the power and energy consump- 607

tions compared to [12] as the consumed power and energy 608

are 33 mW and 9.05 µJ, respectively, as shown in Table 8. 609

Whereas, the power consumption of the design presented 610

in [12] is 5 W with static power and 3.066 W without static 611

power. In addition, the energy consumed by the design pre- 612

sented in [12] is 71 µJ with static energy and 43.8 µJ without 613

static energy. Moreover, the power and energy consumption 614

reductions compared to [27] are 29.55X and 4.42X, respec- 615

tively. Table 9 compares the power, energy per image and 616

the recognition time for the proposed EEPS-CNN design 617

for the MNIST dataset in the case of 16-bit as well as 618

for ANN [12] and CNN [27]. The power reduction of the 619

proposed EEPS-CNN is higher than the energy reduction 620

because the recognition time of the proposed EEPS-CNN 621

design is slightly higher than that of both [12] and [27] 622

(19.18X and 6.69X, respectively). 623

D. DYNAMIC PARTIAL RECONFIGURATION RESULTS 624

As mentioned in Section III, DPR is used to reconfigure the 625

FPGA during run-time using the design with the most appro- 626

priate power level. The ICAP processor is used to reconfigure 627

the FPGA during the run-time. The throughput of the ICAP 628

processor is 10 MBps. Hence, the reconfiguration time is 629

given by: 630

Reconfiguration Time =
Partial Bitstream File Size

ICAP Throughput
(5) 631

The partial bitstream file size is equal to 1.27 MB for 632

MNIST implementation and equals to 2.15 MB for both the 633

VOLUME 10, 2022 95581

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

TABLE 8. Power and energy consumption per image for the proposed EEPS-CNNs.

TABLE 9. Power, energy per image and the recognition time of EEPS-CNN for MNIST in case of 16-bit as well as for ANN [12] and CNN [27]. A fractional
reduction implies an increment rather than a decrement in value.

FIGURE 19. Accuracy loss vs. energy reduction with approximated CNN.

F-MNIST and SVHN implementations. According to (5), the634

reconfiguration times of the MNIST, F-MNIST and SVHN635

EEPS-CNN implementations are only 127 ms, 215 ms and636

215 ms, respectively.637

V. CONCLUSION638

In this paper, an efficient architecture to reduce the CNN639

energy consumption has been proposed. The consumed640

power has been reduced through precision scaling. Three641

energy-efficient precision scaled CNNs have been proposed642

for theMNIST, F-MNIST, and SVHN datasets. The proposed643

EEPS-CNN designs have been implemented using Xilinx644

Vivado (v.2015.2) and deployed on FPGA. Our experiments645

have demonstrated 2.2X, 2.39X, and 2.38X reduction in the646

energy consumption with a maximum of 0.53%, 3.67%, and647

0.88% loss in CNN accuracy for MNIST, F-MNIST, and648

SVHN designs, respectively, while using 7-bit to represent all649

network parameters, as compared to 16-bit. The experiments650

have also shown 92.91X and 4.84X reduction in the power651

and energy consumptions while having less than a 1% loss 652

in accuracy compared to existing hardware implementations. 653

We have further exploited DPR to reconfigure the FPGA 654

with the design with the most appropriate power level during 655

the run time if the battery level is decreased. Such DPR has 656

ensured continuity instead of termination at the expense of 657

image recognition accuracy. 658

Finally, it is worth mentioning that the uniform quan- 659

tization method optimized for the widely used MNIST, 660

F-MNIST and SVHN datasets in this paper can be applied 661

for other CNN architectures in which the difference in 662

the sensitivity of the CNN layer is not significant. How- 663

ever, CNN architectures in which different layers have 664

different sensitivities, non-uniform quantization might be 665

needed. Our future work will investigate the generalization 666

of quantization for other networks and datasets while relat- 667

ing the CNN layers’ sensitivities to the used quantization 668

approach. 669

ACKNOWLEDGMENT 670

The authors would like to acknowledge the support of the 671

Cloud Computing Center of Excellence at the Electronics 672

Research Institute (ERI) in Egypt and for providing access the 673

center’s Cloud and High Performance Computing facilities to 674

conduct the research presented in the paper. 675

REFERENCES 676

[1] A. Shrestha, H. Fang, Z. Mei, D. P. Rider, Q. Wu, and Q. Qiu, ‘‘A survey 677

on neuromorphic computing: Models and hardware,’’ IEEE Circuits Syst. 678

Mag., vol. 22, no. 2, pp. 6–35, 2nd Quart., 2022. 679

[2] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, ‘‘A survey of convo- 680

lutional neural networks: Analysis, applications, and prospects,’’ IEEE 681

Trans. Neural Netw. Learn. Syst., early access, Jun. 10, 2021, doi: 682

10.1109/TNNLS.2021.3084827. 683

[3] G. Lentaris, G. Chatzitsompanis, V. Leon, K. Pekmestzi, and D. Soudris, 684

‘‘Combining arithmetic approximation techniques for improved CNN 685

circuit design,’’ in Proc. 27th IEEE Int. Conf. Electron., Circuits Syst. 686

(ICECS), Nov. 2020, pp. 1–4. 687

95582 VOLUME 10, 2022

http://dx.doi.org/10.1109/TNNLS.2021.3084827

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

[4] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek, and688

J. Han, ‘‘Improving the accuracy and hardware efficiency of neural net-689

works using approximate multipliers,’’ IEEE Trans. Very Large Scale690

Integr. (VLSI) Syst., vol. 28, no. 2, pp. 317–328, Oct. 2020.691

[5] V. Leon, T. Paparouni, E. Petrongonas, D. Soudris, and K. Pekmestzi,692

‘‘Improving power of DSP and CNN hardware accelerators using approx-693

imate floating-point multipliers,’’ ACM Trans. Embedded Comput. Syst.,694

vol. 20, no. 5, pp. 1–21, Sep. 2021.695

[6] The CIFAR-10 Dataset. Accessed: Feb. 2022. [Online]. Available:696

https://www.cs.toronto.edu/~kriz/cifar.html697

[7] M. E. Elbtity, H.-W. Son, D.-Y. Lee, and H. Kim, ‘‘High speed, approxi-698

mate arithmetic based convolutional neural network accelerator,’’ in Proc.699

Int. SoC Design Conf. (ISOCC), Oct. 2020, pp. 71–72.700

[8] B. Li, Y. Qin, B. Yuan, and D. J. Lilja, ‘‘Neural network classifiers using701

a hardware-based approximate activation function with a hybrid stochas-702

tic multiplier,’’ ACM J. Emerg. Technol. Comput. Syst., vol. 15, no. 1,703

pp. 1–21, Jan. 2019.704

[9] M. E. Nojehdeh, L. Aksoy, and M. Altun, ‘‘Efficient hardware implemen-705

tation of artificial neural networks using approximate multiply-accumulate706

blocks,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),707

Jul. 2020, pp. 96–101.708

[10] M. Farhadi, M. Ghasemi, and Y. Yang, ‘‘A novel design of adaptive and709

hierarchical convolutional neural networks using partial reconfiguration on710

FPGA,’’ in Proc. IEEE High Perform. Extreme Comput. Conf. (HPEC),711

Sep. 2019, pp. 1–7.712

[11] P. Kumar, H. Yingge, I. Ali, Y.-G. Pu, K.-C. Hwang, Y. Yang, Y.-J. Jung,713

H.-K. Huh, S.-K. Kim, J.-M. Yoo, and K.-Y. Lee, ‘‘A configurable and714

fully synthesizable RTL-based convolutional neural network for biosensor715

applications,’’ Sensors, vol. 22, no. 7, p. 2459, Mar. 2022.716

[12] J. Park and W. Sung, ‘‘FPGA based implementation of deep neural net-717

works using on-chip memory only,’’ in Proc. IEEE Int. Conf. Acoust.,718

Speech Signal Process. (ICASSP), Mar. 2016, pp. 1011–1015.719

[13] M. Cho and Y. Kim, ‘‘FPGA-based convolutional neural network accel-720

erator with resource-optimized approximate multiply-accumulate unit,’’721

Electronics, vol. 10, no. 22, p. 2859, Nov. 2021.722

[14] A. Hadnagy, B. Feher, and T. Kovacshazy, ‘‘Efficient implementation of723

convolutional neural networks on FPGA,’’ in Proc. 19th Int. Carpathian724

Control Conf. (ICCC), May 2018, pp. 359–364.725

[15] H. Irmak, D. Ziener, and N. Alachiotis, ‘‘Increasing flexibility of FPGA-726

based CNN accelerators with dynamic partial reconfiguration,’’ in Proc.727

31st Int. Conf. Field-Program. Log. Appl. (FPL), Aug. 2021, pp. 306–311.728

[16] Y. Shi, T. Gan, S. Jiang, Y. Shi, T. Gan, and S. Jiang, ‘‘Design of parallel729

acceleration method of convolutional neural network based on FPGA,’’ in730

Proc. IEEE 5th Int. Conf. Cloud Comput. Big Data Analytics (ICCCBDA),731

Apr. 2020, pp. 133–137.732

[17] F. Alfonsi, A. Gabrielli, and E. Ronchieri, ‘‘Neural nets on FPGA733

a machine vision algorithm applied on MNIST dataset using Hls4ml734

library,’’ in Proc. Int. Conf. Comput. Sci. Appl. Cham, Switzerland:735

Springer, 2020, pp. 597–605.736

[18] S. Kala and S. Nalesh, ‘‘Efficient CNN accelerator on FPGA,’’ IETE737

J. Res., vol. 66, no. 6, pp. 733–740, Nov. 2020.738

[19] S. Hareth, H. Mostafa, and K. A. Shehata, ‘‘Low power CNN hardware739

FPGA implementation,’’ in Proc. 31st Int. Conf. Microelectron. (ICM),740

Dec. 2019, pp. 162–165.741

[20] J. Kwon and S. Kim, ‘‘Design of a low-area digit recognition accelera-742

tor using MNIST database,’’ Int. J. Informat. Visualizat., vol. 6, no. 1,743

pp. 53–59, 2022.744

[21] T. V. Huynh, ‘‘FPGA-based acceleration for convolutional neural networks745

on PYNQ-Z2,’’ Int. J. Comput. Digit. Syst., vol. 11, no. 1, pp. 441–450,746

2022.747

[22] L. Zhang, X. Tang, X. Hu, T. Zhou, and Y. Peng, ‘‘FPGA-based BNN748

architecture in time domain with low storage and power consumption,’’749

Electronics, vol. 11, no. 9, p. 1421, Apr. 2022.750

[23] A. K. Mukhopadhyay, S. Majumder, and I. Chakrabarti, ‘‘Systematic real-751

ization of a fully connected deep and convolutional neural network archi-752

tecture on a field programmable gate array,’’ Comput. Electr. Eng., vol. 97,753

Jan. 2022, Art. no. 107628.754

[24] M. Junaid, S. Arslan, T. Lee, and H. Kim, ‘‘Optimal architecture of755

floating-point arithmetic for neural network training processors,’’ Sensors,756

vol. 22, no. 3, p. 1230, Feb. 2022.757

[25] J. N. Pisharody, K. B. Pranav, M. Ranjitha, and B. Rajeshwari, ‘‘FPGA758

implementation and acceleration of convolutional neural networks,’’ in759

Proc. 6th Int. Conf. Converg. Technol. (I2CT), Apr. 2021, pp. 1–4.760

[26] R. Xiao, J. Shi, and C. Zhang, ‘‘FPGA implementation of CNN for hand- 761

written digit recognition,’’ in Proc. IEEE 4th Inf. Technol., Netw., Electron. 762

Autom. Control Conf. (ITNEC), Jun. 2020, pp. 1128–1133. 763

[27] D. Giardino, M. Matta, F. Silvestri, S. Spanò, and V. Trobiani, ‘‘FPGA 764

implementation of hand-written number recognition based on CNN,’’ Int. 765

J. Adv. Sci., Eng. Inf. Technol., vol. 9, no. 1, pp. 167–171, 2019. 766

[28] D. Cain, O. Eldash, K. Khalil, and M. Bayoumi, ‘‘Convolution processing 767

unit featuring adaptive precision using dynamic reconfiguration,’’ in Proc. 768

IEEE 7th World Forum Internet Things (WF-IoT), Jun. 2021, pp. 592–597. 769

[29] H. Irmak, F. Corradi, P. Detterer, N. Alachiotis, and D. Ziener, ‘‘A dynamic 770

reconfigurable architecture for hybrid spiking and convolutional FPGA- 771

based neural network designs,’’ J. Low Power Electron. Appl., vol. 11, 772

no. 3, p. 32, Aug. 2021. 773

[30] M. H. Abdulmonem, J. Essameddeen, M. H. Zakhari, S. Hanafi, and 774

H. Mostafa, ‘‘Hardware acceleration of dash mining using dynamic partial 775

reconfiguration on the ZYNQ board,’’ in Proc. 32nd Int. Conf. Microelec- 776

tron. (ICM), Dec. 2020, pp. 1–4. 777

[31] K. Hara, D. Saito, and H. Shouno, ‘‘Analysis of function of rectified linear 778

unit used in deep learning,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 779

Jul. 2015, pp. 1–8. 780

[32] E. Youssef, H. A. Elsemary, M. A. El-Moursy, A. Khattab, and H.Mostafa, 781

‘‘Energy adaptive convolution neural network using dynamic partial 782

reconfiguration,’’ in Proc. IEEE 63rd Int. Midwest Symp. Circuits Syst. 783

(MWSCAS), Aug. 2020, pp. 325–328. 784

[33] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST Database 785

of Handwritten Digits. Accessed: Feb. 2022. [Online]. Available: 786

http://yann.lecun.com/exdb/mnist/ 787

[34] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel 788

image dataset for benchmarking machine learning algorithms,’’ 2017, 789

arXiv:1708.07747. 790

[35] Y. Netzer, T.Wang, A. Coates, A. Bissacco, B.Wu, andA. Y. Ng. The Street 791

View House Numbers (SVHN) Dataset. Accessed: Feb. 2022. [Online]. 792

Available: http://ufldl.stanford.edu/housenumbers/ 793

[36] R. A. Dunne and N. A. Campbell, ‘‘On the pairing of the softmax activation 794

and cross–entropy penalty functions and the derivation of the softmax 795

activation function,’’ in Proc. 8th Aust. Conf. Neural Netw., vol. 181. Mel- 796

bourne, VI, Australia, Jun. 1997, p. 185. 797

[37] B. Moons and M. Verhelst, ‘‘DVAS: Dynamic voltage accuracy scal- 798

ing for increased energy-efficiency in approximate computing,’’ in Proc. 799

IEEE/ACM Int. Symp. Low Power Electron. Design (ISLPED), Jul. 2015, 800

pp. 237–242. 801

[38] B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, ‘‘Energy- 802

efficient ConvNets through approximate computing,’’ in Proc. IEEE Win- 803

ter Conf. Appl. Comput. Vis. (WACV), Mar. 2016, pp. 1–8. 804

[39] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, 805

‘‘Diannao: A small-footprint high-throughput accelerator for ubiquitous 806

machine-learning,’’ SIGARCH Comput. Archit. News, vol. 42, no. 1, 807

pp. 269–284, Feb. 2014. 808

[40] XILINX. (2017). UG909: Vivado Design Suite User Guide—Partial 809

Re-Configuration (v2017.1). [Online]. Available: https://www.xilinx. 810

com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado- 811

partial-reconfiguration.pdf 812

[41] Keras. Keras Optimizers. Accessed: Feb. 2022. [Online]. Available: 813

https://keras.io/optimizers/ 814

EMAN YOUSSEF received the B.Sc. degree in 815

electronics and electrical communication engi- 816

neering from Al-Azhar University, Egypt, in 2014, 817

and the M.Sc. degree in electronics and electrical 818

communication engineering from Cairo Univer- 819

sity, Egypt, in 2021. She worked at the Integrated 820

Technical Education Cluster, from 2014 to 2016. 821

She is currently working as a Research Assistant 822

at the Electronic Research Institute. Her research 823

interest includes the design of FPGA/ASIC. 824

VOLUME 10, 2022 95583

E. Youssef et al.: EEPS-CNN Implementation With Dynamic Partial Reconfiguration

HAMED A. ELSIMARY received the Ph.D. degree825

in electronics and electrical communications from826

Cairo University, Egypt, in 1993. He has a Fellow-827

ship to perform the Ph.D. research at the Rochester828

Institute of Technology, USA. He is currently a829

Professor in the Computer Science Department830

at Cairo Higher Institute for Engineering, Com-831

puter Science, andManagement. He has conducted832

Postdoctoral Research at Ohio State University.833

He has been a member of the Computer Engineer-834

ing Department, Prince Sattam Bin Abdulaziz University, Saudi Arabia, and835

a member of the VLSI Department, Electronics Research Institute, Cairo,836

Egypt. His research interests include computer architecture and VLSI circuit837

design.838

MAGDY A. EL-MOURSY received the B.S.839

degree (Hons.) in electronics and communications840

engineering and the master’s degree in computer841

networks from Cairo University, Cairo, Egypt,842

in 1996 and 2000, respectively, and the master’s843

and Ph.D. degrees in electrical engineering in the844

area of high-performanceVLSI/IC design from the845

University of Rochester, Rochester, NY, USA, in846

2002 and 2004, respectively. In Summer of 2003,847

he was with STMicroelectronics, Advanced Sys-848

tem Technology, San Diego, CA, USA. From September 2004 to September849

2006, he was a Senior Design Engineer at Portland Technology Develop-850

ment, Intel Corporation, Hillsboro, OR, USA. From September 2006 to851

February 2008, he was an Assistant Professor at the Information Engineering852

and Technology Department, German University in Cairo (GUC), Cairo.853

From 2014 to 2019, he was an Associate Professor at the Microelectronics854

Department, Electronics Research Institute, Cairo. He is currently a Senior855

Engineering Manager at the Integrated Circuits Verification Systems Divi-856

sion, Siemens EDA. He is the author of around 100 papers, six book chapters,857

and five books in the fields of high speed and low power CMOS design tech-858

niques and NoC/SoC and embedded systems. His research interests include859

SW/HW co-design, embedded systems, networks-on-chip/system-on-chip,860

interconnect design and related circuit level issues in high performance861

VLSI circuits, clock distribution network design, digital ASIC circuit design,862

VLSI/SoC/NoC design and validation/verification, circuit verification and863

testing, and low power design. He is a member of the IEEE VLSI Systems864

and Applications Technical Committee. He is an Associate Editor with the865

Editorial Board of Elsevier Microelectronics Journal, Journal of Circuits,866

Systems, and Computers, and International Journal of Circuits and Architec-867

ture Design and a Technical Program Committee of many IEEE Conferences868

such as ISCAS, ICAINA, PacRim CCCSP, ISESD, SIECPC, and IDT.869

HASSAN MOSTAFA (Senior Member, IEEE) 870

received the B.Sc. and M.Sc. degrees (Hons.) 871

in electronics engineering from Cairo University, 872

Cairo, Egypt, in 2001 and 2005, respectively, and 873

the Ph.D. degree in electrical and computer engi- 874

neering from the Department of Electrical and 875

Computer Engineering, University of Waterloo, 876

Waterloo, ON, Canada, in 2011. He was a NSERC 877

Postdoctoral Fellow with the Department of Elec- 878

trical and Computer Engineering, University of 879

Toronto, Toronto, ON. He was a Postdoctoral Researcher in collaboration 880

with the Fujitsu Research Laboratories in Japan and USA, with a focus 881

on the design of the next-generation FPGA. He is currently an Asso- 882

ciate Professor with the Nanotechnology and Nanoelectronics Program, 883

Zewail City of Science and Technology, Giza, Egypt, on leave from the 884

Department of Electronics and Electrical Communications, Cairo University. 885

He has authored/coauthored more than 170 papers in international journals 886

and conferences and five published books. His research interests include 887

neuromorphic computing, the IoT hardware security, software-defined radio, 888

reconfigurable low-power systems, analog-to-digital converters, low-power 889

circuits, subthreshold logic, variation-tolerant design, soft error-tolerant 890

design, statistical design methodologies, next-generation FPGA, spintron- 891

ics, memristors, energy harvesting, MEMS/NEMS, power management, and 892

optoelectronics. He has been a member of the IEEE Technical Committee of 893

VLSI Systems and Applications, since 2017. He was a recipient of the Uni- 894

versity of Waterloo SandFord Fleming TA Excellence Award, in 2008; the 895

Ontario Graduate Scholarship, in 2009; the Waterloo Institute of NanoTech- 896

nology Nanofellowship Research Excellence Award, in 2010; the Natural 897

Sciences and Engineering Research Council of Canada Prestigious Postdoc- 898

toral Fellowship, in 2011; and the University of Toronto Research Associate 899

Scholarship, in 2012. 900

AHMED KHATTAB (Senior Member, IEEE) was 901

born in Cairo, Egypt, in 1980. He received the 902

B.Sc. (Hons.) andM.Sc. degrees in electrical engi- 903

neering from Cairo University, Cairo, Egypt, in 904

2002 and 2004, respectively, the M.E.E. degree 905

from Rice University, in 2009, and the Ph.D. 906

degree in computer engineering from the Cen- 907

ter for Advanced Computer Studies (CACS), 908

University of Louisiana, Lafayette, in 2011. 909

He is currently a Professor with the Electron- 910

ics and Electrical Communications Engineering Department, Cairo Uni- 911

versity, where he joined in 2012, as an Assistant Professor. He has 912

authored/coauthored three books, four book chapters, over 100 journal and 913

conference publications, and a U.S. patent. His current research interests 914

include wireless networking including the Internet of Things (IoT), wireless 915

sensor networks, vehicular networks, cognitive radio networks, and secu- 916

rity and machine learning. He is a recipient of the Egypt State First Class 917

Medallion of Excellence, in 2019; the Egypt State Encouragement Award for 918

Engineering Sciences, in 2017; and the Cairo University Excellence Award 919

in Advanced Technology Sciences, in 2020. He has also won several awards 920

from different IEEE conferences and societies. 921

922

95584 VOLUME 10, 2022

