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Abstract: With the anticipated growth of the internet of things (IoT) market, many low-power
wide-area (LPWA) technologies have been introduced to connect a wide range of IoT devices with
varying performance requirements. The narrowband internet of things (NB-IoT) is a 3rd generation
partnership project (3GPP) standardized LPWA technology that meets most IoT service requirements.
In this paper, the design and implementation of the physical uplink transmitting chain as well as the
physical downlink receiving chain of the NB-IoT user equipment (UE) are presented. Both chains’
main blocks are designed to follow the 3GPP NB-IoT LTE standard Release 14 (Rel-14). The whole
design is experimentally implemented on the Virtex 7 (VC 709) Connectivity kit, and all performance
metrics are reported. Moreover, an NB-IoT base station is implemented and integrated with the
two prototyped UEs to set-up an NB-IoT system, which is employed to send data from one UE to
another UE through the NB-IoT base station using two FPGAs (one to implement the sending UE
and the other one to implement the receiving UE) and three universal software radio peripherals
(USRPs) B200 (one to implement the RF front-end of the transmitting UE FPGA, one to implement
the base station RF front-end, and one to implement the RF front-end of the receiving UE FPGA).
Experimental results show that the implemented NB-IoT system is working successfully, as the two
NB-IoT UEs communicate together successfully through the NB-IoT base station and exchange the
data properly.

Keywords: NPDSCH; NPUSCH; NB-IoT; LTE; 3GPP; FPGA; USRP; PHY layer; IoT; LPWA

1. Introduction

Internet of things (IoT) represents the concept of the communication between plen-
teous limited-power devices from various environments over a large-scale interconnected
network without human involvement [1]. Over the last few years, the IoT has been
successfully deployed in diverse fields, such as intelligent environment, medical care,
and transportation logistics [1,2].

With the anticipated evolution of the IoT market, the number of IoT devices has
remarkably increased worldwide from 15.41 billion in 2015 to 23.14 billion in 2018, and it
is expected to extend to 75.44 billion in 2025 [3]. Thus, many communication protocols
and standards have been recently developed to support a wide range of IoT applications.
These protocols and standards, such as near-field communication (NFC), ZigBee, low-
energy Bluetooth (BLE), and wireless-fidelity (Wi-Fi), are mostly dedicated to short-range
applications [4]. On the other hand, new low-power wide-area (LPWA) technologies
have been developed to achieve wide-range communications, such as long-range wide
area network (LoRaWAN), Sigfox, and weightless special interest group (SIG), that all
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operate in the unlicensed spectrum and have massive connectivity but require building
new infrastructures [4,5]. Moreover, the cellular systems have been considered potential
solutions to provide massive connectivity for machine-type communication (MTC) devices.
Therefore, the 3rd Generation Partnership Project (3GPP) has introduced a new cellular
technology standard known as narrowband internet of things (NB-IoT) to support the IoT
applications [6,7].

The NB-IoT operates in a licensed spectrum, as it is based on the 3GPP long-term
evolution (LTE), and contrary to other unlicensed LPWA technologies, the same infrastruc-
ture of LTE is utilized in NB-IoT [8]. Furthermore, most features of LTE are inherited in
NB-IoT, minimizing the complexity of LTE channels and signals to meet the constraints of
low power and low cost in NB-IoT. Additionally, the number of these channels is decreased
to fit the new frame structure of NB-IoT. The LTE protocol stacks in the evolved node B
(eNB) and the user equipment (UE) are deployed in NB-IoT with a significant reduction in
each layer’s functionalities [5,6].

The NB-IoT system is designed to occupy a bandwidth of 180 kHz, corresponding to
one LTE physical resource block (PRB), which is deployed in three possible operation modes
defined by 3GPP to ensure the coexistence with LTE carriers without decaying the LTE
performance. These operation modes are in-band mode, guard-band mode, and standalone
mode (in the liberated GSM channels) [9]. Furthermore, the number of repetitions reaches
up to 128 and 2048 repetitions in uplink and downlink, respectively, and that indeed
improves the coverage [7].

A detailed description of the main building blocks of the narrowband physical uplink
shared channel (NPUSCH) transmitter and narrowband physical downlink shared channel
(NPDSCH) receiver as specified by 3GPP standard is provided in this work. In addition,
experimental results, including area utilization, power consumption, and clock latency of an
FPGA hardware implementation of both NPUSCH and NPDSCH channels, are presented.
The narrowband physical shared channels are responsible for the delivery of both user
plane data as well as control information. However, only user plane data processing is
discussed in this work.

The main contributions of this work can be listed as follows:

• Chain integration is performed between the uplink transmitter and downlink receiver,
including the base station model between them.

• A whole chain results for bit error rate (BER) versus signal-to-noise ratio (SNR), and it
is compared with the ideal case.

• The whole chain is synthesized and implemented on the FPGA, which acts as a
UE model.

• Mimic the reality by building a prototype using two FPGAs connected to USRPs to
serve as the UEs.

• Several hardware techniques are adopted to reduce power consumption while meeting
all of the 3GPP standard requirements.

• An in-depth explanation is given of the hardware architecture of each block of the
whole communication blocks, which paves the way to further work on the hardware
implementation of the NB-IoT transceiver chain.

The remainder of the paper is organized as follows. Section 2 describes the detailed
design and implementation of both the NPUSCH transmitting chain and the NPDSCH
receiving chain. The system integration with MATLAB and register transfer level (RTL),
as well as the implementation on field programmable gate array (FPGA) are presented
in Section 3. The NB-IoT system architecture and hardware components are presented
in Section 4. The system implementation, including the hardware set-up, is depicted in
Section 5. At last, Section 6 concludes this work.

2. NB-IoT System Detailed Design and Implementation

As illustrated in Figure 1, the implemented NB-IoT system consists of two main parts
as follows:
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1. The NPUSCH transmitter chain.
2. The NPDSCH receiver chain.

Figure 1. Detailed block diagram of the NB-IoT transceiver.

2.1. NPUSCH Transmitter Chain Implementation

In the uplink, the physical (PHY) layer receives a data transport block of a specified
size from the MAC layer along with other upper layer parameters. The maximum transport
block size TBSmax for NB-IoT is 2536 bits [9]. The following subsections present the detailed
implementation of each block in the transmitting chain.

2.1.1. Cyclic Redundancy Check (CRC)

The CRC is an error detection technique in which a checksum is generated and
appended to the payload. In NB-IoT, the checksum (CRC bits) is 24 bits, generated by
24 registers and XORs according to the following polynomial [10]:

CRC24(D) = D24 + D23 + D18 + D17 + D14 + D11 + D10 + D7 + D6 + D5 + D4 + D3 + D + 1 (1)

As shown in Figure 2, the CRC block is implemented as a shift register with the length
of the CRC polynomial with the input data stream connected to the least significant flip-flop.
The flip-flops that correspond by location to the ones in the CRC polynomial are connected
to XORs to be XOR-ed with ones. In the meantime, multiplexers are placed to decide
whether the register content or the XOR output will be passed to the next block [10,11].

Figure 2. CRC block diagram [12].

2.1.2. Turbo Encoder

In recent years, turbo codes are the most potentially leading development in coding
theory, as introducing turbo codes has provided a new way to look at the problem of
constructing good codes and decoding them with low complexity. Due to the performance
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of turbo codes, which is close to the Shannon limit, this coding technique is used in
various storage and communication systems to help the receiver correct the received
data [13]. The turbo encoder, which is recommended by 3GPP standardization for NB-
IoT communication systems, consists of two recursive systematic convolutional encoders,
which are usually identical but not necessary. Both convolutional encoders comprise three
shift registers XOR-ed with the polynomials in (3) and (4), and one internal interleaver
to change the order of the input bits before entering the second convolutional encoder.
In addition, the coding rate of the turbo encoder is 1/3, and therefore, it has three outputs
with one output sequence of a systematic channel code that is always identical to the input
sequence [11,12].

The transfer function of the 8-state constituent code for the parallel concatenated
convolutional code (PCCC) is as follows:

G(D) = [1,
g1(D)

g0(D)
] (2)

where:
g0(D) = 1 + D2 + D3 (3)

g1(D) = 1 + D + D3 (4)

When starting to encode the input bits, the shift registers of the 8-state constituent
encoders shall initially have all zeros values. The turbo encoder’s output is d(0)k = xk,

d(1)k = zk, d(2)k = z
′
k, f or k = 0, 1, 2, K − 1 [10]. The input bits of the turbo encoder are

denoted by c0, c1, c2, c3,. . . , c(K−1), while the output bits from the internal interleaver are

denoted by c
′
0, c

′
1,. . . , c

′
(K−1), which are the input to the second 8-state constituent encoder.

The relationship between them is as follows [10,11]:

c
′
i = cπ(i), i = 0, 1, (K− 1) (5)

The relationship between the input index π and the output index i implies the follow-
ing quadratic form:

π(i) = ( f1.i + f2.i2)modK (6)

where the f1 and f2 are based on the the block size, k. The trellis termination bits appended
to the turbo encoder’s output are as follows:

d(0)K = xK d(0)K+1 = zK+1 d(0)K+2 = x
′
K d(0)K+3 = zK+1

′ (7)

d(1)K = zK d(1)K+1 = xK+2 d(1)K+2 = z
′
K d(1)K+3 = xK+1

′ (8)

d(2)K = xK+1 d(2)K+1 = zK+2 d(2)K+2 = x
′
K+1 d(2)K+3 = zK+2

′ (9)

The turbo encoder detailed block diagram, consists of [11]:

• A lookup table (LUT) to store the values of f1 and f2.
• A buffer for storing the input stream and a restoring division unit for index calculation.
• A block for shifting and XOR-ing the input stream. Therefore, it consists of a shift

register, a multiplexer to release the input data after K cycles for generating the trellis
termination bits, and a counter to count of TBS.

• An output controller block to assign the positions of the 12 trellis terminations bits in
the proper locations in the three streams.
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2.1.3. Rate Matcher

The main functionality of the rate matching block is to match the number of bits in
the transport block to the number of bits that can be transmitted in a given allocation [11].
In addition, it controls the turbo encoder’s rate, which gives a 1/3 rate, as the rate can
be adjusted according to the downlink control information (DCI) and the channel quality
information. Using rate matching, any arbitrary code rate can be achieved from a fixed-rate
mother code [14]. As shown in Figure 3, the design of the rate matcher block consists of the
following [10]:

• The 32-bit serial-to-parallel converters, one for each stream.
• One port RAMs of size 128× 32 bit as the maximum number of rows corresponding

to TBS of 2536 bit is 81 rows.
• A control unit.

Figure 3. Rate matcher block diagram.

The block’s operation starts with the write state. As the input streams are received
serially and then turned into parallel to be stored in the 2D array, a 32-bit serial-to-parallel
converter is used to write data row by row [10,11]. Afterward, the read state starts from the
ninth column in the first sub-block interleaver or from the nineteenth column in the second
sub-block interleaver if the redundancy version value (rvidx) equals 0 or 2, respectively.
The staring column, k0, is determined according to the following equation [14,15]:

k0 = RTc
subblock.(24.rvidx + 2) (10)

where RTc
subblock is the number of rows.

2.1.4. Channel Interleaver

This block has a crucial function, especially for the deep-fading channels where errors
often occur in bursts, and consecutive bits in the same symbol may suffer from this type of
burst noise. Therefore, the channel interleaver is responsible for dividing this error into a
set of discrete errors and reordering bits so that the error happens in only one bit within
the same symbol [11].

The channel interleaving process is specified as a two-step procedure as follows [10]:

• Store bits in up-to-down rows.
• Read bits from left-to-right columns.
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This mainly depends on the number of rows and columns, as the number of columns,
Ncol, is defined as follows:

Ncol = (Nsymbols − 1) ∗ Nslots (11)

where Nslots = 2, 4, 8, or 16 and Nsymbols = 7. Moreover, the number of rows can be defined
as follows:

Nrow = G/Ncol (12)

where G is defined as follows:

G = Ncol ∗ Nsc ∗ NRU ∗Qm (13)

where NRU is the number of resource unit repetitions and has a maximum value of 10, Qm is
the modulation indicator and has a maximum value of 2. Nsc has a maximum combination
of 24 with the number of slots, Nslots. Thus, G has a maximum value of 2880 and is always
factorizable by 12 [9,10].

The channel interleaver’s block diagram is depicted in Figure 4. To make it possible
to use the RAM, bits are packed into a 12-bit long register and then stored. Furthermore,
reading is carried out for 12 bits by 12 bits. The main drawbacks of using the RAM are
using more logic, and one bit is read from each row (12-bit stored packet). Therefore,
the number of readings is equivalent to the total number of bits. However, these drawbacks
are acceptable compared to using 2880 flip-flops, which results in higher area utilization
and power consumption.

Figure 4. Block diagram of the channel interleaver unit.

The RAM memory is controlled by the finite state machine (FSM) with three states
as follows:

• State 0: Idle state, awaits the input’s arrival. It also works as a reset state.
• State 1: Writing state, works on storing incoming bits 12 by 12.
• State 2: Reading state, reads the stored bits according to the calculated number of

columns and number of rows.

2.1.5. Scrambler

The scrambler block adds randomness to the data stream before applying the mod-
ulation techniques to it. Therefore, the scrambler can eliminate the long run of zeros or
ones, which cause idle and reset cases. It also helps in clock recovery and having no DC
component. In addition, changing the scrambling codes helps in security.

Scrambling/descrambling implementation is based on a pseudo random sequence
generated from two 31-bit linear feedback shift registers (LFSRs). The two sequences of the
two LFRS get XOR-ed, and the output is called a golden sequence. The sequence of the first
LFSR is configured by the following polynomial [9]:

x1(n) = 1 + D3 + D0 (14)
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where x1 is initialized as follows:

x1(0) = 1, x1(n) = 0, n = 1, 2, . . . , 30 (15)

and the sequence of second LFSR is configured as follows:

x2(n) = 1 + D3 + D2 + D1 + D0 (16)

where x2 is initialized for each codeword, q as follows:

Cinit = nRNTI .214 + q.213 + (
ns

2
).29 + Ncell

ID (17)

where nRNTI corresponds to the radio network temporary identifier (RNTI) associated with
the NPUSCH transmission, ns is the number of the time slot, and Ncell

ID is the physical layer
cell identity.

Then, the two sequences get XOR-ed to have the golden sequence cn. Afterward,
the golden sequence gets XORed with the input data. Due to the golden sequence’s
initialization taking a 1600 clock cycles, it is initialized simultaneously when the subframe
gets ready.

2.1.6. Modulation

This block is utilized to map the incoming bits into symbols based on the constellation
of BPSK and QPSK, which are defined in [9].

For the BPSK, each input bit is mapped to the corresponding symbol in each clock
cycle, while each of the two bits is mapped to the corresponding symbol that, in turns, takes
two clock cycles in the case of QPSK [9]. A LUT is used to map the corresponding symbols.

2.1.7. Fast Fourier Transfom (FFT)

The modulated symbols pass through the fast Fourier transform (FFT) block, which
performs the single-carrier frequency-division multiple access (SC-FDMA) modulation
technique to reduce the peak to average power ratio (PAPR), which correspondingly
reduces the power consumption [16]. The FFT block has to support the different values of
the number of subcarriers, which can be 1, 3, 6, or 12 subcarriers, as stated in [9].

To cope with the continuous stream of QPSK or BPSK modulated symbols, the choice
of a pipelined implementation is necessary to avoid buffering before the FFT block, which
can cost a lot in leakage power and area [17–19]. In addition, with the continuous stream at
the input, the FFT unit also has to calculate the different points (3, 6, 12), which necessitates
that the pipeline shares resources efficiently.

The algorithm is mainly based on two ideas: the first one is to reuse a single 3-point
FFT pipeline in calculating the 6- and 12-point FFTs, and to reuse the 6-point FFT butterfly
stage pipeline to calculate the 12-point FFT as is illustrated in Figure 5. This can be possible
by initially reordering the input samples. The second idea is to increase the time utilization
of the 3-point FFT pipeline by freezing the inputs for 3 clock cycles so that all inputs are
available, and hence the calculations can be serialized without adding delay. This results in
a hardware reduction by half.



Electronics 2023, 12, 1966 8 of 27

Figure 5. FFT resource sharing.

2.1.8. Narrowband Demodulation Reference Signal (NDMRS)

In NB-IoT Uplink channel, NDMRS are used as pilots for channel estimation in the
receiver chain. The channel estimation block’s main function is to estimate the changes that
occur in the data bits while they go through the channel so that the change can be reversed
and the data can be corrected. This channel correction is performed by sending pilots—
NDMRS—with the data bits which will be affected also by the channel, and the receiver
generates these pilots using upper layer parameters. Following that, if the received pilots
are divided by the generated ones, this creates the channel effectwhich will be delivered to
the equalizer to reverse it [10].

2.1.9. Resource Element Mapper (REM)

The REM’s function is to assign the FFT symbols to the proper subcarriers at the
IFFT block’s input. As in the case of 12-point FFT, all FFT symbols are allocated to the
12 subcarriers. Whereas, in the case of 6-point FFT, the output 6 symbols of the FFT are
assigned to specific 6 subcarriers out of the 12 subcarriers, and the remainder is zero-
padded; the same is conducted for the 3-point FFT case. The symbols’ location within the
12 subcarriers is calculated according to information from the upper layer in the case of 3
and 6 subcarriers [9,10,12].

2.1.10. Inverse Fast Fourier Transform (IFFT)

IFFT block is responsible for transforming the frequency subchannels into the time
domain samples to be transmitted through the radio frequency (RF) blocks. It is challenging
for the IFFT block to be at the end of the transmitting chain, as it must satisfy the required
output rate (i.e., new SC-FDMA symbol in each SC-FDMA symbol duration) and not only
generate this symbol within this duration, but also with a fixed rate [12].

The IFFT subcarriers are packed into groups of 12 subcarriers with 15 kHz spacing
between each adjacent subcarrier; each group is recognized as a resource block, and the NB-
IoT has only one resource block per the UE transmitter. To implement the IFFT block, which
supports 12 subcarriers (the maximum number of allocated subcarriers), a 16-point IFFT
is used due to its minimum area utilization in order to decrease the power consumption
and the latency of the block. In addition, the reduced output sample rate of this block
is compensated using an upsample filter to improve the rate to a proper rate for the
digital-to-analog converter (DAC) block [12].

The design of the IFFT block consists of 4 stages, each consisting of butterflies. The first
stage needs one butterfly, the second needs two butterflies, the third needs four butterflies,
and the last one requires eight butterflies as shown in Figure 6.
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Figure 6. IFFT detailed block diagram.

2.1.11. Interpolation

This block aims to upsample the IFFT output, add a certain number of samples at the
starting of each symbol, known as cyclic prefix (CP), to remove the intercarrier interference
(ICI) and the intersymbol interference (ISI), and convert the symbols from parallel to serial
flow of samples [9]. The interpolation procedure varies with the frequency spacing, ∆ f
as follows:

• When ∆ f = 15 kHz, the upsampling becomes 8 times to convert the 16 samples
to 128 samples with 10 samples for the CP of the first symbol in the time slot, and
9 samples for the CP of the other 6 symbols in the same slot.

• When ∆ f = 3.75 kHz, the upsampling becomes 32 times to convert the 16 samples
to 512 samples with 40 samples for the CP of the first symbol in the time slot, and
36 samples for the CP of the other 6 symbols in the same slot.

2.2. NPDSCH Receiver Chain Implementation
2.2.1. Coarse Synchronization

The synchronization process is performed in both time and frequency by using the
narrowband physical synchronization signal (NPSS). The first step of the synchronization
procedure is coarse synchronization, which has simple computations and reduces the
complexity of its following step, refined synchronization [5]. The coarse synchronization
block makes use of the NPSS periodicity and the good correlation properties to estimate
the time and frequency offsets with reasonable accuracy, frequency offset 50 Hz accuracy,
and time offset 2 samples accuracy, performs CP removal and down-sampling after the syn-
chronization process is terminated, and provides information about the symbol’s position
to facilitate the remaining chain’s operations or serve the high layer requests.

The synchronization procedure introduced in [20] is implemented in this work using
the metric of reduction and normalization method presented in [21]. This implementation
provides good performance at the minimum SNRs, in terms of speed and residual time and
frequency errors, which are all investigated using an experimental FPGA-based hardware
implementation method. As illustrated in Figure 7, the synchronization procedure consists
of three steps, where the green color for the timing stages and the off-white color for the
correlation (auto or cross) stages. The first step is to use a reduced averaged time domain
auto-correlation metric to acquire a coarse timing by detecting the NPSS and a fractional
frequency offset (FFO) estimate, leveraging the repetitive nature of the NPSS. This auto-
correlation metric originally has one frame of 19,200 samples length, but it is reduced by
a factor of 16 to decrease the memory requirements. Since the detection process has low
resolution at low SNRs, it is averaged over frames to reduce the impact of the additive white
Gaussian noise (AWGN). The metric is stored and when the maximum exceeds a certain
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threshold; it is considered a possible solution, and it is tested throughout the following
procedure’s step. The second step is to refine the timing estimate and to estimate the integer
frequency offset (IFO) using a time domain cross-correlation metric. The auto-correlation
peak is considered false if the maximum does not overtake another certain threshold and
therefore the procedure goes back to the first step. Otherwise, it continues to step three.
The third and last step implements the same metric of the second step multiple times on a
local time–frequency grid to refine the timing and frequency estimates [20].

Figure 7. The coarse synchronization procedure.

The data flow through the states can be defined as follows:

• The time domain samples are stored in a buffer that has the size of one NPSS symbol
to implement the lag and the multiplication operation in (18); hence each input sample
will be multiplied with the conjugate of the oldest sample stored in the buffer.

R(k) =
k+Nw−1

∑
i=k

(
r(i) • S

(
mod

(
i/Ns

, 11
)))

•
(

r(i + Ns) • S
(

mod
(

i/Ns
+ 1, 11

)))∗
(18)

where R(k) is the auto-correlation metric calculated in a single frame for a sample
with index, k = 1, 2,. . . , 19,199, and Nw represent the auto-correlation window and are
equal to 1370, which is the length of 10 symbols and each has the length of Ns = 137
samples. r is the received signal given by (19), and S refers to the code cover defined
in [9,20].

r(n) = [x(n) ∗ h(n)] . e−j 2πεn
N + w(n), ε = εi + ε f (19)

where x(n) is the transmitted baseband OFDM signal, h(n) is the impulse response of
the multipath channel, and w(n) represents the AWGN. ε represents the frequency
offset normalized to the subcarrier spacing and it has two components: the integer
frequency offset, εi and the fractional frequency offset, ε f .

• The resulting products will be stored in buffers that have, in total, the length of
the auto-correlation window, but the separation is sign based. The aim is to keep
all the products that have the same sign—resulting from the code cover—together
in buffers so that each buffer contains products that have the same sign. As the
operation progresses, new products will push old products down into the buffers
chain, and accordingly, their sign will change at the transitions. This technique is
complemented by creating an accumulator to each buffer to add all the incoming
products minus the outgoing products. Thus, at each moment, these accumulators
will contain the summations of their buffers and by adding them according to the sign
pattern, the total summation of (18) can be defined. Figure 8 depicts this state.
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(a) (b)

Figure 8. Illustration of the sign-based buffers partitioning and the single-symbol buffer. (a) The
derivation of buffers’ sign-pattern from code cover. (b) The operation of the single-symbol buffer.

• At each arriving sample, the buffers will be added accordingly, and the result of these
additions will be reduced in number by adding them, then the resulting value will
be a metric entry, as it will be added through the normalization filter as mentioned
in (20) and (21). These values will be stored, and the maximum will be compared to
the threshold until a peak is found. This will conclude the states of the buffers filling
and the NPSS search.

Rr(m) =
16(m+1)−1

∑
i=16m

R(i), m = 0, 1, 2, . . . , 1199 (20)

A(m) = A(m) • (1− α) + Rr(m) • α, 0 < α < 1 (21)

where Rr(m) is the reduced metric for one frame and A(m) is the final form of the
metric as the values accumulated through previous frames are updated with new
values using the normalization filter that has the factor α.

• The last two steps in the procedure begin with loading compressed NPSS samples into
a complete symbol to be used in the cross-correlation calculations. The operation will
be implemented by alternating between the states “IFO and Refinement Calculations”
and “Cross-Corr”, as the first state captures all time hypotheses’ samples, and sorts
last iterations metric whereas, the second state performs the cross-calculation itself by
using CORDIC phase rotators fed by phase accumulators to perform the calculation
for all frequency hypotheses at a certain time hypothesis. Following that, the result is
stored and compared to the threshold. To sum it up, the decision making and sample
capturing are performed in the state “IFO and Refinement Calculations”, and the
actual calculation is done in the state “Cross-Corr”.

• In step two, if the cross-correlation maximum passes the threshold, the state machine
will proceed as mentioned above through step three and into normal operation in the
state “Locked”, and if not, the state machine will return to the first state through an
intermediate reset the state “False Peak State”.

2.2.2. Carrier Frequency Offset (CFO)

The functionality of the CFO block is to cancel the frequency offset that introduces
the ICI and impacts the orthogonality of subcarrier. The frequency offset occurs due to
the following:

• Frequency difference between the transmitter and receiver oscillators.
• Oscillator instabilities.
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It is divided into two types; the integer carrier frequency offset, ε ICFO that comes from
the coarse synchronization block, and the fractional carrier frequency offset εFCFO that
comes from the fine synchronization block. The received signal can be defined as follows:

b(n) =
1
N

N−1

∑
k=0

A(k)G(k)e
i2Π(k+ε)n

N + w(n) , n = 0, 1, 2, . . . .N − 1 (22)

The A(k) is the modulated data, N is the number of subcarrier used, G(k) is the
channel gain at kth subcarrier, w(n) is the AWGN noise, and ε is the frequency offset, which
is determined in (23) as

ε = ε ICFO + εFCFO (23)

The effect of the offset on the received symbol can be canceled by multiplying (22) by
the exponential raised to the phase conjugate to the estimated offset as follows:

b̂(n) = b(n)e
−i2Π(ε)n

N (24)

where b̂(n) is the corrected symbol. As a complex exponential represents rotation of b(n),
the CORDIC design is utilized with its rotation mode [22], and the phase accumulator is
used to accumulate the offset each cycle. In the CORDIC implementation, 15 stages and
the recursive pipelined design are implemented. Moreover, that design has lower area and
consumes lower power than that in [23,24].

2.2.3. Fast Fourier Transform (FFT)

The Cooley–Tukey algorithm is considered a breakthrough in implementing fast
Fourier transform (FFT), which reduces the DFT complexity. The DFT of a signal in the
time domain x(n) is introduced as follows:

x(k) =
n−1

∑
k=0

x(n)Wkn
N (25)

The Wkn
N = e−j 2πnk

N is known as the twiddle, which is a complex value. In order to
compute the N point of the DFT, it is required to perform O

(
N2) operations; however, by

using the FFT, the required operations are down to O
(

Nlog2
(

N2)).
The implemented algorithm is 16-point FFT using Radix 22 single-pass delay feedback

(SDF) algorithm, which is the best fit for the limited NB-IoT power budget. The SDF is
implemented with parallelization P = 1 to reduce the power consumption and the area
of the design. It also helps in enhancing the block latency and performance [25]. Radix
22 has been developed to inherit the simple control structure of radix 2, and it has the
advantage of saving hardware, i.e., reducing the number of used multipliers in contrast
with radix 4 [26,27].

The output of the CFO block passes first through a synchronous first in first out (FIFO),
then enters the FFT block. As depicted in Figure 9, the block mainly consists of memory
and a butterfly, where the butterfly’s output is stored in the 3D memory. Therefore, it is
stored in the same row, which helps in power optimization as there is no need to use an
address generated circuit. Moreover, as the pipeline is deployed, there is no need to have a
large memory like the memory-based algorithm. That improves the design performance
and reduces the leakage power and the switching activity. At last, the 16-point FFT requires
the data to pass through four stages to complete their operation, but only three stages are
implemented, as the fourth stage is shared with the first stage to reduce the consumed
resources and the power consumption. In addition, the bit reversal operation for the FFT
output symbols is performed while storing in the storage element before entering to the
resource de-mapper.
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Figure 9. FFT detailed block diagram.

2.2.4. Resource Element De-Mapper

The PRB consists of NDL
symb consecutive OFDM symbols in the time domain and NRB

sc

consecutive subcarriers in the frequency domain, as it comprises NDL
symb × NRB

sc resource
elements (REs), corresponding to one time slot and 180 kHz in the frequency domain. PRBs
are numbered from 0 to NDL

RB − 1 in the frequency domain [28,29]. Resource block pair
consists of two resource blocks: the even numbered frame and the odd numbered frame.
As in NB-IoT, the normal CP is used, where ∆ f = 15 kHz, NRB

sc = 12, and NDL
symb = 7.

Therefore, the subframe is 12× 14, and only one antenna port is used. Then the NB-IoT
carrier uses one LTE PRB in the frequency domain where there are 12 subcarriers of 15 kHz
for a total bandwidth of 180 kHz [28,29].

As shown in Figure 10, the resource de-mapper takes the output of the FFT and
then the output is stored in its memory to be used by the channel estimation, channel
equalization, and fine synchronization using the row and column address. The block
includes a 16× 14 storage element memory, which stores the unsorted FFT output, and
when it is full, an enable signal is raised to let the resource de-mapper get the symbols
column by column. Correspondingly, it takes 14 clock cycles to fill the resource de-mapper.
Thus, the time in which the resource de-mapper is kept unchanged is approximately 1 ms
as stated in the 3GPP standard [9].

Figure 10. REM detailed block diagram.

In the storage element memory, the bit-reversing of the FFT output takes place, and
the symbols stored in this memory are in-order. Then, when transferring the data from
storage element memory to resource element de-mapper the symbols are resorted as the
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last six symbols stored in first six symbols and the first six symbols are stored in last six
places in memory.

2.2.5. Channel Estimation

The channel estimation process attempts to define the effect of the channel on trans-
mitted signals. In NPDSCH, the pilot-based channel estimation is used by generating some
symbols, known as pilots at the transmitter and generating the same symbols at the receiver
to find the relation between the received and original symbols and get a rough estimation
of the channel. These pilots are carried by the narrowband reference signal (NRS), which
exists in all the subframes transmitted, except the NPSS subframes and the narrowband
secondary synchronization signal (NSSS) subframes [5]. The values of the NRS pilots are
calculated as follows [9]:

r(l,ns)(m) = 1/
√

2(1− 2c(2m)) + j1/
√

2(1− 2c(2m + 1)) (26)

where l defines the number of NRS symbols, as it can be 5 or 6 symbols. ns is the time slot
number, taking values from 0 to 9. m equals 0, 1, . . . , 2NmaxDL

RB as the NmaxDL
RB = 1 so, m is

just equal to 0 or 1. Moreover, c refers to pseudo-random sequence generation defined by a
length-31 gold sequence as follows:

c(n) = (x1(n + Nc) + x2(n + Nc))mod(2) (27)

x1(n + 31) = (x1(n + 3) + x1(n))mod(2) (28)

x2(n + 31) = (x2(n + 3) + x2(n + 2) + x2(n + 1) + x2(n))mod(2) (29)

The first m-sequence has a constant initialization as follows:

x1 initialized with x1(0) = 1, and x1(n) = 0, n = 1, 2, · · · , 30 (30)

while the second m-sequence is based on the application. Therefore, the NRS generation x2
has the following initialization, Cinit:

Cinit = 210(7(ns + 1) + l + 1)
(

2Ncell
ID + 1

)
+ 2Ncell

ID + NCP (31)

where Ncell
ID is an input, ns is the time slot number, Nc equals 1600 clock cycles, and

NCP = 1 for the normal CP.
Moreover, the locations of the NRS symbols can be determined as follows [9]:

k = 6m +
(

v + vshi f t

)
mod(6) , v =

{
0 if l = 5
3 if l = 6

(32)

where k refers to the place of a pilot to be in which row, ranged from 0 to 11, as the row refers
to the subcarrier and the variables, and v and vshi f t define the position in the frequency
domain for the reference signal as vshi f t is equal to Ncell

ID mod(6).
There are many channel estimation algorithms used in NB-IoT receiver but there is a

trade-off between the complexity of the design and its performance. Accordingly, the least
square (LS) channel estimation algorithm [30] is selected to be adopted in the implemented
chain, and to compensate the performance, the interpolation process is deployed to obtain
better performance with low complexity. The used interpolation is linear interpolation,
which is calculated every subframe, as the channel estimation gets 12 different outputs,
HLS, and each is used by the equalizer with one of the 12 subcarriers [31]. Furthermore,
the extended typical urban (ETU) model is deployed according to the 3GPP standard [32].
The specification for the channel model used in simulation is a Rayleigh fading channel
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with an extended typical urban delay profile, maximum Doppler frequency shift equal to
5 Hz, and a sampling frequency equal to 1.92 MHz.

Let the signal at the receiver after the channel effect be y, as y = xH + n. Here, x is
the transmitted signal, H is the channel frequency response, and n is the AWGN. Then,
the least square channel estimation algorithm is HLS = x−1y, as the channel estimation
block aims to divide the received pilots over the transmitted pilots to get the channel effect
on the transmitted symbols [30].

Figure 11 depicts the block diagram of the channel estimation block. The transmit-
ted/generated pilots are extracted out of the NRS generator and the received pilots are
determined from the resource mapper. Then, the channel frequency response is calculated,
and the four channel frequency responses obtained from the eight pilots are stored. At last,
interpolation is performed to get the 12 channel frequency responses for the equalizer.

Figure 11. Channel estimation block diagram.

2.2.6. Channel Equalizer

After estimating the channel effect, the equalizer plays its role to cancel the intersymbol
interference (ISI) and the noise by divided the channel effect over all the transmitted
symbols as follows [9]:

yk = sk ×
hk
heq

+
nk
heq

(33)

where yk is the equalized symbol, sk is the received symbol, hk represents the channel, heq
is the estimated value of the channel, and nk is the AWGN value.

The block diagram of the channel equalizer block is shown in Figure 12. The main
sub-block of the equalizer block is the complex divider but instead, the complex multiplier
can be used to reduce the area utilization and the power consumption.

Figure 12. Equalizer block diagram.
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2.2.7. Parallel to Serial and NRS Removal

In this block, the inputs should be applied serially starting from the modulation block
to the CRC block. Additionally, the NRS symbols need to be removed from the equalizer’s
output, as the data at the transmitter do not contain them.

2.2.8. Symbol De-Mapper and Demodulation

In the demodulation process, the received symbols are mapped to values of ‘0’ or ‘1’
based on the constellation tables. The techniques used in demodulation are hard decision
and soft decision, which both use log likelihood ratio (LLR). The soft decision technique
gives less bit error rate (BER) than that of the hard decision technique, but due to using
QPSK modulation, which gives small BER compared to, for example, 16 QAM, the hard
decision technique is used [9,23].

The symbol de-mapper block takes the most significant bit (MSB) of each bus I, Q
that comes from the NRS removal block, then the symbol is de-mapped based on its sign.
The inputs of this block are two buses; each sends 12 serial bits and it also works with the
double rate of the NRS removal block [9].

2.2.9. De-Scrambler

The de-scrambler block has the same working operation of the scrambler block dis-
cussed earlier in the NPUSCH transmitter chain. The resource de-mapper provides the
frame and subframe numbers and when the resource de-mapper completes its function
and raises its done signal, the De-scrambling starts to work. After initialization, the de-
scrambler sends a ready signal to the channel equalizer block. Additionally, the output of
de-mapper, which is 24 serial bits is the gold sequence’s code word length, and the rate of
the de-scrambler is equal to the de-modulation rate. The de-scrambler measures the length
of the time slot in the resource de-mapper. If it equals 10 symbols, it stops and stores the
remaining code for the next slot, as the NRS signals are not descrambled [9].

2.2.10. Rate De-Matcher

The function of this block is to reverse the rate matching process. The output of the
rate de-matcher block is three original data streams that are generated from the tail biting
convolutional encoder in the transmitter [33].

As illustrated in Figure 13, the rate de-matcher mainly consists of a bit collection sub-
block and de-interleaver sub-blocks. The bit collection sub-block includes a memory with
size of (3×(TBSmax + 24)× log2(max repetition size)), which will be (7680× 12). The size
of this memory is large because in this release, the maximum TBS is 2536 bits [32]. The input
to this sub-block is the data stream of the circular buffer in the transmitter with any length
according to the upper layer set parameter. The de-interleaver sub-block consists of four
memories; each has a size of the number of columns multiplied by the number of rows
for the maximum TBS, which equals 32× 80 [34]. This sub-block should comprise three
memories to store the whole data stream, but here, there are four memories, as the fourth
memory is used for the consecutive input stream.

Figure 13. Rate de-matcher block diagram.
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2.2.11. Channel Decoder

Forward error correction (FEC) is one of the techniques applied to detect and correct
errors in the received data without the need for retransmissions. The convolution encoding
with Viterbi decoding is considered a powerful method for the FEC, where the data are
convoluted and then transmitted into a noisy channel. This process involves an insertion of
redundant data, which helps in detecting and correcting errors due to those noisy channels.
The Viterbi algorithm is the most powerful method for decoding the convoluted data in
terms of bit error rates and efficiency, as it tracks down the most likely sequences that the
encoder has gone through, and uses this information to deduce the original message [35].

A (k, n, m) convolutional encoder has m stages, k bits entering the shift register at
each time instant and n output bits, which are formed using the following generator
sequences [10]:

G0 = [1011011], G0 = 1 + 2 + 8 + 16 = 133 (Octal) (34)

G1 = [1111001], G1 = 1 + 8 + 16 + 32 + 64 = 171 (Octal) (35)

G2 = [1110101], G2 = 1 + 4 + 16 + 32 + 64 = 165 (Octal) (36)

The encoder rate R is equal to k/n.
The Viterbi decoder applies a tree search procedure to optimally detect the received

data sequence. It calculates a measure of similarity between the received signal, entering
each state at time and all the trellis paths, and removes all candidates that are not possible
based on the maximum likelihood (ML) choice. Each received sequence goes through a
number of computations starting with branch metric computation, where the Hamming
distance is calculated and is then followed by path metric computation, where errors are
accumulated and stored to be used in the decision making. At the end of the received
sequence, a trace back procedure starts from the path with the least number of errors [35].

The decoding of the convolutional codes is done by applying the modified circular
Viterbi algorithm, which performs several iterations of the Viterbi algorithm until a tail
biting pattern is found. The decoding steps can be listed as follows [35]:

• Start the Viterbi algorithm with initial metrics set to zero.
• Compute the survival path based on the path with the least accumulated metric.
• If this path is a tail biting path, decoding stops and the survival path is decoded.
• If the survival path is not a tail biting path, metrics are updated with final metrics of

the previous iteration.
• Apply the Viterbi algorithm on the same message, until a new survivor path is obtained.
• If the new survivor path is a tail biting path, the algorithms stops.
• If maximum number of iterations is reached, the algorithm stops, and the best survival

path is decoded.

The decoded sequence is stored in a last in first out (LIFO) memory to be passed in
order after the tail biting condition is checked correctly.

2.2.12. CRC

The CRC block in the NPDSCH receiver uses the same technique as the transmitter,
and if the remainder is zero, that means the data are correct; otherwise, the data are
incorrect. The CRC block receives the data from the viterbi decoder and passes them to the
upper layer [10].

2.2.13. RAM Memory Resources Sharing

Due to the large similarly-sized memory requirements in the synchronization block
and the rate de-matcher block and the fact that the two blocks do not simultaneously
access their memories, it becomes appealing to share the RAM resources of these blocks.
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Mainly, the sharing is made possible by multiplexing the two clocks of the blocks with the
selection of the LOCKED signal which indicates the activity of the synchronization process.
This signal is also used to multiplex the inputs to the RAM, the pointers, and the enables.
Additionally, a multiplexing process is implemented to help implement the rate de-matcher
RAM as multiple smaller RAM blocks.

3. System Integration

In this section, the integration with MATLAB and RTL and the synthesis results are
presented. The experimental implementation using FPGA is highlighted as well.

3.1. MATLAB Integration

After modeling the chain’s blocks using MATLAB, a NPDSCH transmitter is designed
using MATLAB built-in functions based on 3GPP standard Rel-14. Then, the channel
model ETU is added with a maximum Doppler shift of 5 Hz, 9 taps, and a maximum
excess tap delay of 5 µs [32]. A noise model using AWGN is applied with the minimum
required SNR for the design, −12.6 dB [20]. Finally, frequency and time offsets are applied,
where the range of frequency offset is [−35:35] kHz and time offset range is [0:192,000]
samples [20]. In addition, the receiver’s chain is added in a generic format to satisfy all TBSs
and repetition ranges. The system is tested for repetitions of 1, 32, 64, 128, 256, 512, and 1024
under SNR ranges [−14:20] dB. The designed model is compared with the reference model
by MathWorks [36] as shown in Figure 14 [36]. The two models are not completely identical,
as the MathWorks model uses the following:

• A perfect synchronization.
• A perfect frequency correction using exponential, but cordic in the presented model.
• A perfect channel estimation.
• A soft symbol de-mapper.
• A soft decoding.

Figure 14. BLER vs. SNRfor MATLAB and RTL designed model compared with ideal model.

3.2. RTL Integration

In the specification phase, the signal interface for each block and the output rate from
each block are defined that helps in the chain integration. MATLAB is used to generate
a text file, which the test bench reads a symbol per clock cycle from. The RTL system is
tested with the same way used in MATLAB as a python script is used to run MATLAB,
generating the files, then ModelSIM is run to simulate the design. Finally, MATLAB is run
again to calculate the BER and the BLER that are illustrated in Figure 15.
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Figure 15. RTL BER vs. SNR.

3.3. Synthesis Results

The whole design is synthesized using Xilinix Vivado 28 nm. The Vivado utilization
of the whole chain implemented on Virtex 7 is depicted in Table 1.

Table 1. VIVADO utilization for Virtex 7 for whole chain.

Resouce Utilization Available Utilization (%)

LUT 50,728 433,200 11.71

LUTRAM 3016 174,200 1.73

FF 31,896 866,400 3.68

BRAM 69 1470 4.69

DSP 80 3600 2.22

IO 4 850 0.47
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3.4. FPGA Implementation

The generated files from MATLAB are stored into a read only memory (ROM), and
the interface of the chain to the ROM is created. By using the debugging tools in VIVADO,
virtual input output (VIO), and integrated logic analyzer (ILA), the output should be
observed from the chain to make sure that the results are correct. Additionally, the mixed-
mode clock manager (MCMM) in FPGA is used to generate deferent clock domains to
make sure that the phases between them do not change as time passes.

4. System Architecture

As illustrated in Figure 16, the implemented NB-IoT system consists of two user
equipment (UE1 and UE2) and the NB-IoT base station. The UE1 implements the NB-IoT
transmitting chain to transmit its data to the base station, which in turn sends these data to
the UE2. The UE2 implements the NB-IoT receiving block chain to receive the data from
the implemented base station.

Two field programmable gate arrays (FPGAs) and two NI universal software radio
peripherals (USRPs) are used for both UEs. In addition, another NI USRP is deployed
as the base station. For the software part, MATLAB is used to build the NB-IoT base
station as well as the NB-IoT transmitting and receiving chains that are converted to RTL
to implement them on the FPGAs. Additionally, GNU radio is used to interface with the
USRPs, which act as the system’s radio frequency (RF) front end.

UE 1

(FPGA + USRP)

UE 2

(FPGA +USRP)

NB-IoT Base Station

(USRP)

Figure 16. The block diagram for the implemented NB-IoT system.

The connection between FPGA and the USRP in the UE1 can be illustrated as follows.
The NB-IoT transmitting chain is implemented on the FPGA, which sends the generated
orthogonal frequency-division multiplexing (OFDM) symbols to the USRP. Therefore,
the USRP starts to transmit the symbols towards the base station.

4.1. The Universal Software Radio Peripheral (USRP)

The USRP consists of three basic functional blocks: the baseband section, the IF
section, and the RF section, as shown in Figure 17. The RF section contains the RF circuit
(USRP’s Daughterboard) responsible for transmitting and receiving the RF signal at the
operating frequency. The IF section (the USRP motherboard) contains the processing FPGA
that performs the signal processing, such as filtering, modulation, and demodulation.
Additionaly, it contains the analog-to-digital converter (ADC) and the digital-to-analog
converter (DAC).
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Figure 17. Architecture of USRP.

In this work, NI USRP B200 is used, which has the following features:

• It is the first fully integrated USRP that covers RF range from 70 MHz to 6 GHz.
• It uses SuperSpeed USB 3.0.
• It covers up to 56 MHz of instantaneous bandwidth.
• It is a full duplex device and SISO (1 TX and 1 RX).

4.2. The Field Programmable Gate Array (FPGA)

By using the debugging tools in VIVADO, virtual input output (VIO) and integrated
logic analyzer (ILA), the inputs and the outputs should be observed from the chain to make
sure that the results are correct. Additionally, the MCMM in FPGA is used to generate
deferent clock domains to make sure that the phases between them do not change as
time passes.

From the UL view, the generated files from MATLAB are programmed into a RAM
and make the interface of the chain to the RAM. The data are transmitted by the USRP after
receiving from the UL and then the DL is started with the same method. At last, it is possible
to check the BER on FPGA by comparing the received data with the transmitted data.

5. NB-IoT System Implementation

In this section, the implemented GNU radio companion (GRC) flowgraphs are illus-
trated for the transmitting/receiving uplink, the transmitting/receiving downlink, and the
whole system’s hardware set-up.

5.1. The Transmitting Uplink

The flowgraph shown in Figure 18 is implemented to send the OFDM symbols file
from the UE1 toward the base station using the USRP. The flowgraph consists of the
following blocks:

• File Source: It is the head of the flowgraph and contains the transmitted symbols file.
• Packet Encoder: It packetizes the transmitted bytes into frames and has two necessary

parameters (samples/symbol and bits/symbol).
• GMSK Mod: it is responsible for the GMSK modulation process with the same value of

the samples/symbol parameter of the packet encoder block and has a filtering degree
of WTb = 0.3.

• Multiply Constant: It multiplies the input stream by a scalar or a vector constant to
control SNR.
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• UHD: USRP Sink: It is the block for combining with the USRP and sends the stream to
it to start transmitting it.

Figure 18. GRC flowgraph of the transmitting uplink.

5.2. The Receiving Uplink

To receive the transmitted symbols on the base station, the flowgraph shown in
Figure 19 is designed, and that is certainly the reversed flow of the transmitting uplink
flowgraph starting with the block of UHD: USRP Source, which is responsible for combining
with the USRP and makes it ready for the reception and passing through a low pass filter,
GMSK demodulation, and packet decoding. The block of WX GUI FFT Sink is used to
ensure that the USRP does receive the data, as this block generates an FFT plot that gives a
peak with the USRP reception. The flow ends with the File Sink block, in which the location
of the received data are defined.

Figure 19. GRC flowgraph of the receiving uplink.

5.3. The Transmitting Downlink

After receiving the symbols on the base station’s USRP, the MATLAB base station is
run and, alternately, has two files of the real and the imaginary parts of the symbols, which
are sent separately to the base station’s USRP to start to transmit them toward the UE2.

In Figure 20, two flowgraphs on GNU radio are illustrated of this part, as one is enabled
at a time, and they are the same flow of the transmitting uplink part, only changing the file
added to the file source block to the generated files from the base station MATLAB code.
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Figure 20. GRC flowgraph of the transmitting downlink.

5.4. The Receiving Downlink

In this part, the data transmitted from the UE1 to the UE2 through the base station are
received correctly using the flowgraph shown in Figure 21. These two flows are the same
as those of the receiving uplink part.

(a)

(b)

Figure 21. GRC flowgraph of the receiving downlink. (a) For receiving the file of the real components
of data. (b) For receiving the file of the imaginary components of data.
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5.5. Hardware Set-Up

Here, the whole system setup is presented; as mentioned before, three USRPs are
utilized working at a frequency of 900 MHz and a gain of 30 dB and two FPGAs. As shown
in Figure 22, the two FPGAs and the three USRPs are ready for transmission and reception.
The parameters of NB-IoT hardware setup components are described in Table 2.

Table 2. NB-IoT hardware setup components.

(1) and (A) The USRP and the FPGA of the UE1, respectively

(2) and (B) The USRP and the FPGA of the UE2, respectively

(3) The USRP of the base station

Figure 22. NB-IoT Hardware Setup.

As illustrated in Figure 23, when the USRP of the base station receives the data from
the UE1, its red LED turns on, and the FFT plot on GNU Radio has a peak.

Figure 23. Receiving data on the base station.

Then, when the base station MATLAB code finishes running, two files are generated;
one contains the real part of OFDM symbols, and the other contains their imaginary part.
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Finally, the USRP of the UE2 receives the data from the base station, as its red LED
turns on, and the FFT plot on GNU Radio has a peak as shown in Figure 24.

Figure 24. Receiving data on the second UE (UE2).

6. Conclusions

In this paper, the implementation of the NPDSCH receiver chain and the NPUSCH
transmitter chain is presented starting from the algorithm design and passing through the
hardware implementation, MATLAB and RTL simulations, and synthesis for each block in the
chain. Then, the chain integration is performed, and then MATLAB and RTL are simulated
and tested on FPGA Virtex 7. The chain meets all 3GPP NB-IoT LTE standard Release 14 (Rel-14)
specifications, and it has a maximum rate of 98.666 Kbps. This rate is calculated according to
some assumptions, TBS = 296, including pilots, and coding 1/3, then taking three subframes
with respect to the upper layer; therefore, Max Rate = 296/3 ms = 98.666 Kbps and a latency of
1.45 ms. Furthermore, the implementation of the NB-IoT system, comprising two UEs and an
implemented NB-IoT base station, is successful, as data sent from one UE to another through the
base station are correctly received. As the base station is modeled on MATLAB, the NPUSCH
base station receiver receives the data from the FPGA (UE 1), and it passes them to be sent again
through the NPDSCH base station transmitter to be received on the receiving FPGA (UE 2).
The USRP is used in this model to be the RF part of our system. This model tests the Tx and Rx
chains to send different TBSs. The future work is to share more memory resources across the
chain, implement soft demodulation and soft decoding to enhance performance, and optimize
on the block level, in turn, reducing area and power.
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