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Abstract 

ADCs are very important electronic modules. Any communication receiver or even 

any device that needs an analog interface must contain an ADC. Also it’s an 

important part of most embedded systems applications that communicate with analog 

interfaces. 

The target of our designed ADC is to be integrated inside an SDR (Software Defined 

Radio).The time-based ADC is considered an essential block in designing software 

radio receivers because it exhibits higher speed and lower power consumption 

compared to the conventional ADCs, especially, at scaled down CMOS technologies. 

While CMOS technology continues to scale down very fast, conventional voltages to 

digital converters are facing challenging obstacles concerning accuracy, resolution 

and power. In particular, due to supply voltage reduction, the voltage domain is 

becoming noisier. In addition, the relatively high threshold voltage makes the 

available headroom very small for any sophisticated analog architectures. These 

challenges make the conventional ADCs incapable of providing the high speed 

required to adopt them at the UWB receivers front-end. 

On the positive side of scaling, with decreased rising and falling times, the switching 

characteristics of MOS transistors offer excellent timing accuracy at high frequencies. 

Consequently, the time based ADCs (TADC) appears as the best solution to achieve 

the front-end ADCs high speed requirements. 

The T-ADC is mainly composed of two blocks which are the VTC (Voltage-to-Time 

Converter) and the TDC (Time-to-Digital Converter). The T-ADC briefly converts 

the analog signal to time delay through the VTC. Then, the time-represented signal is 

converted to a digital one through the TDC. 

Our project is to design a 5GS/s 4-bit nyquist rate time based ADC, which is the 

fastest achieved speed with this number of bits. We have no restriction on power 

consumption and any reasonable dynamic range is acceptable. After that, we will 

implement the layout of the ADC and it should be fabricated afterwards under the 

65nm technology. 
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Chapter 1: Introduction 

 

An analog-to-digital converter (ADC) is a device that converts a continuous physical 

(analog) quantity representing real-world phenomenon e.g., light, sound, temperature 

or pressure to a digital number that represents the quantity's amplitude. 

The input of an analog-to-digital converter (ADC) consists of a signal that can take 

theoretically infinite number of values (continuous amplitude). In contrast, the output 

of the ADC has defined number of levels or states (discrete amplitude). The number 

of states is almost always a power of two -- that is, 2, 4, 8, 16, etc. 

The main goal of ADC is to digitize the analog signals, which means to record and 

store the analog signals in numbers so that the microprocessor will be able to read, 

understand and manipulate the data. Digital signals are more efficiently than analog 

signals, as digital impulses, which are well-defined and orderly, are easier for 

electronic circuits to distinguish from noise because in digital technology the 

translation of information is into binary format (zero or one) where each bit is 

representative of two distinct amplitudes. Analog to digital converter is an important 

block used in mixed analog/digital systems. For example, Analog-to-digital 

converters are integral to current music reproduction technology, Digital signal 

processing system, some scientific instruments like Digital imaging systems and 

radar. Any communication must contain an ADC. Also it’s an important part of most 

embedded systems applications that communicate with analog interfaces.  

1.1 ADCs Types 

ADCs are divided into two main types according to the sampling frequency. The first 

type is called the Nyquist rate ADCs. Like flash ADC and successive-approximation 

ADC .In this type the sampling frequency is equal to twice the maximum frequency in 

the input signal bandwidth (Nyquist frequency) which is suitable for applications that 

require high input signal frequency. The second type is called oversampling ADCs. 

Oversampling conversion technique uses sampling frequency much larger than twice 

the input signal frequency. This technique is used for applications with low input 

signal frequency and high resolution requirements. ADCs are divided into two main 

http://searchcio-midmarket.techtarget.com/definition/analog
http://searchcio-midmarket.techtarget.com/definition/voltage
http://en.wikipedia.org/wiki/Digital_imaging
http://en.wikipedia.org/wiki/Radar
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types according to the way of conversion. The first type converts the analog input 

signal into digital code directly (conventional ADC). In the second type the 

conversion is done indirectly by converting the analog input signal into an 

intermediate representation then converting the intermediate representation into 

digital code. Time based analog to digital converter (TADC) is an example on this 

type. It is important to know that the above two classifications are not exclusive. ADC 

can use direct or indirect conversion with sampling frequency equals to Nyquist 

frequency or larger sampling frequency [1]. 

1.1.1 Nyquist Rate-Conventional ADCs 

1.1.1.1 Digital Ramp ADC 

Known as the stair step-ramp, or simply counter ADC converter. The basic idea is to 

connect the output of a counter to the input of a digital to analog converter (DAC), 

then compare the analog output of the DAC with the analog input signal If 

Comparator output is high then continue counting else stop counting. The circuit's 

need to count all the way from 0 at the beginning of each count cycle, which is 

suitable only for relatively slow sampling of the analog signal. A diagram of ramp 

ADC is shown in figure 1-1. 

 

Figure  1-1 Ramp ADC  
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1.1.1.2 Successive Approximation ADC 

Instead of counting up in binary sequence, this Register counts by trying all values of 

bits starting with the most-significant bit and finishing at the least-significant bit. The 

most Significant Bit (MSB) set to one and remaining bits set to zero. Then the digital 

output is compared to the input signal. If Comparator output is high, MSB remains 

high. On the other hand, if comparator output is low, the MSB is set to zero. The 

conversion process continues for the next largest MSB in the same way [1]. Figure 1-

2 shows the implantation of successive approximation ADC. 

 

Figure  1-2 successive approximation ADC [1] 

1.1.1.3 Flash ADC 

Also called the parallel ADC converter, it is the fastest type of ADCs. It consists of 

ladder of well-matched resistors connected to a reference voltage and      parallel 

comparators, each one comparing the input signal to a certain reference voltage. Each 

reference voltage is one LSB greater than the reference voltage immediately below it 

The comparator generates a logical '0' or '1' depending if the measured voltage is 

above or below the reference voltage producing a thermometer code. The 

thermometer code is then decoded to the appropriate digital output code using priority 

encoder [1]. The main disadvantage of this type of ADC is that it uses large number 

of comparators which results in large area and more power consumption. Figure 1-3 

shows flash ADC diagram. 
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Figure  1-3 Flash ADC [1] 

1.1.2 Over Sampling-Conventional ADCs 

1.1.2.1 Sigma-Delta Modulator 

The basic concept of the sigma-delta modulator is the use of high sampling rate and 

feedback for improving the effective resolution of the quantizer [1]. In a conventional 

ADC, an analog signal is integrated, or sampled, with a sampling frequency and 

subsequently quantized in a multi-level quantizer into a digital signal. This process 

introduces quantization error noise. The first step in a delta-sigma modulation is delta 

modulation. In delta modulation the change in the signal (its delta) is encoded, rather 

than the absolute value. The result is a stream of pulses, as opposed to a stream of 

numbers as is the case with PCM. In delta-sigma modulation, the accuracy of the 

modulation is improved by passing the digital output through a 1-bit DAC and adding 
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(sigma) the resulting analog signal to the input signal, thereby reducing the error 

introduced by the delta-modulation. figure 1-4 shows sigma-delta Modulator diagram. 

 One of the most important sigma-delta modulator characteristics is the oversampling 

ratio (OSR) which defined as the ratio of the sampling frequency 𝑓𝑠 to the Nyquist 

frequency. 

 

Figure  1-4 Sigma-delta modulator [1] 

1.1.3 Indirect Conversion ADCs (Time-Based ADCs) 

In this type the conversion is indirectly done by converting the analog input signal 

into an intermediate representation (time/frequency) then converting the intermediate 

representation into digital code [1]. 

The main advantage of time based ADC is to make use of CMOS technology scaling. 

While CMOS technology continues to scale down very fast, conventional voltages to 

digital ADCs are facing challenging obstacles concerning accuracy, resolution and 

power. In particular, due to supply voltage reduction, the voltage domain is becoming 

noisier. In addition, the relatively high threshold voltage makes the available 

headroom very small for any sophisticated analog architectures. On the positive side 

of scaling, with decreased rising and falling times, the switching characteristics of 

MOS transistors offer excellent timing accuracy at high frequencies [1].it will be 

discussed in the following chapters. 

1.2 ADC Characteristics 

There are many characteristics and parameters used to define the performance of 

ADCs which is useful to decide which type of ADCs is suitable for a certain 

application. These characteristics can be critical in some application. So, for these 

application we need to know the following ADC characteristics 
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1.2.1 Static Specifications 

Static specifications for ADC define the performance of the ADC for a DC input 

signal, they represent errors due to non-idealities in circuit implementation of the 

ADC which do not depend on time 

1.2.1.1 Offset Error 

Also referred as zero scale error, is defined as a constant difference between the ADC 

characteristic and the ideal one at zero input voltage [1] as shown in figure 1-5, this 

error is a result of the offset voltage of the operational amplifier and it can be easily 

overcome using calibration by measuring a reference point and subtracting that value 

from future samples. 

 

Figure  1-5 Offset error 

1.2.1.2 Gain Error 

Defined as the difference of the slope of the actual output values and the ideal output 

values [1] as shown in figure 1-6. 

 

Figure  1-6 Gain error  

Gain error can be removed be measuring a second reference point to determine the 

actual gain.  
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1.2.1.3 Differential And Integral Non-linearity 

For an ideal ADC the output is divided into    uniform steps with the same width. 

The differential non-linearity (DNL) is defined as the deviation from the ideal step 

width and it is not possible to remove its effects with calibration. DNL errors 

accumulate to produce a total Integral Non-Linearity (INL). INL is defined as the 

deviation of an actual transfer function from the ideal one which is straight line [1]. 

Figure 1-7 illustrate these errors. 

 

 
Figure  1-7 DNL&INL errors 

 

1.2.1.4 Missing Codes 

ADC is said to have no missing codes when the input voltage is swept over its range 

(ramp input) and all possible output code combinations appear [1]. A DNL error of 

<±1LSB guarantees no missing codes. Figure 1-8 show missing codes error. 

 

 
Figure  1-8 Missing code error 

1.2.2 Dynamic Specifications 

The specifications of the ADC that depend on time (dynamic)  
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1.2.2.1 ADC Conversion Time and Sampling Rate 

The conversion time of the ADC is the time it takes for the analog signal to be 

converted to become a digital signal. Sampling rate is the reciprocal of the conversion 

time and it is defined as the speed at which the ADC can convert the analog input into 

digital bits continuously 

 

1.2.2.2 Signal to Noise Ratio 

Signal-to-noise ratio, often written S/N or SNR, is a measure of signal strength 

relative to background noise [2]. The ratio is usually measured in decibels (dB). 

          (
                       

                                            
)       (1-1) 

For the quantization noise only (ignoring the circuit noise) and for n-bit integers with 

equal distance between quantization levels (uniform quantization) the SNR is given 

by 

               (1-2) 

1.2.2.3 Signal to Noise and Distortion Ratio 

SINAD measurement is most widely used for measuring and specifying the sensitivity 

of a radio receiver. SINAD often defined as the ratio of the total received power  to 

the noise-plus-distortion power [2] 

            (
                       

                            
)      (1-3) 

1.2.2.4 Effective Number of Bits 

A measure of the signal-to-noise-and-distortion ratio used to compare actual analog 

to-digital converter (ADC) performance to an ideal ADC [3]. Since the ideal ADC 

SNR (due to the quantization noise only) is larger than the system SNDR, the actual 

number of bits will be less than the one got from equation (1-2). ENOB is the number 

of bits that if we substitute in the equation (1-2), the value of SNR will equal to the 

system SINAD value. 

ENOB is obtained using the following formula  

     
          

    
                   (1-4) 

 

 

http://searchnetworking.techtarget.com/definition/signal
http://whatis.techtarget.com/definition/noise
http://en.wikipedia.org/wiki/Quantization_(signal_processing)
http://en.wikipedia.org/wiki/Power_(physics)


9 

 

Chapter 2: Time-Based ADCs 

A time based analog to digital converter (TADC) is the type of ADCs that perform the 

analog to digital conversion in an indirect way by first converting analog signal to 

time (frequency) domain then converting the time representation into digital code. 

This way of conversion helps us to eliminate the problems which faces us in 

traditional design ways of ADCs due to CMOS scaling and to make use of excellent 

timing characteristics of small MOS transistors. 

There are several ADC architectures that we can use to design time-based ADC. In 

this chapter we will describe these architectures.  

2.1 Integrating ADC 

It is also called slope ADC. Integrating ADCs perform analog to digital conversion in 

time domain. Figure 2-1 shows diagram of a single slope ADC. The sampled input 

voltage (Vs) is stored on a capacitor. Then, Vs is discharged by a constant current 

source and this generates a ramp voltage at the capacitor output. A counter is start 

counting by the start of the ramp and stops when the ramp voltage is zero [4].  

 

Figure  2-1Single slope ADC [4] 

The counter digital output is proportional to the input signal. This architecture is 

simple and has low complexity but its sampling speed is low. In order to have a high 

speed some researchers replaced the counter with advanced time to digital conversion 

techniques. 
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2.2 AFC/FDC Based ADCs  

Voltage-to-frequency-conversion based ADC consists of two blocks. The block is the 

analog voltage to frequency converter (AFC). It converts the input signal to 

frequency. Then the second block, frequency to digital converter (FDC) converts 

frequency to digital code [4].  Figure 2-2 shows the diagram of this ADC. 

 

Figure  2-2 AFC/FDC based ADC [1] 

2.2.1 Analog Voltage to Frequency Converter (AFC) 

The voltage to frequency converter is based on using ring voltage controlled oscillator 

(ring VCO) [1]. 

As we can see from figure 2-3, a ring VCO generally consists of chain of delay cells 

connected in series, and a ring is formed by connecting the output of the last stage to 

the input of the first stage. 

 

Figure  2-3 Ring VCO [1] 

The delay cell can be implemented by using single-input-single-output and the 

number of delay cells (𝑀) must be an odd number. 

To understand how the ring works, assume that we have an odd number of cells 

(inverters) and the output of the first stage is one. As the output of the first stage is the 

input of the second stage. This results in making the output of the second stage to be 

zero, the same procedure continue in all the ring stages until we reach the last stage 

which output is one. The output of the last stage force the output of the first stage to 
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switch to zero and this output start to propagate in the ring until the output of the first 

stage is forced again to be one and so on [1]. As we can see, it takes two loops 

through the ring to complete one period 

We can write the relation between the period of oscillation 𝑇 and the delay of one 

delay cell 𝑡  as: 

𝑇    𝑀  𝑡         (2-1) 

  
 

 
         (2-2) 

 Where T is the period, td is the delay of one delay cell, M is the number of cells (odd 

number) and F is the frequency. Figure 2-4 illustrates the output of each cell. 

 

 

Figure  2-4 the output of the cell [1] 

In addition to the condition on M and the above equations, we can control F by 

modulating td using Vin and choosing M an odd number. 

Then, it is helpful to design a parameter which defines ratio of change in output 

frequency to change in input voltage, we can call it tuning parameter kvco 

     
  

    
   

  

    
       (2-3) 
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2.2.2 Frequency to Digital Converter (FDC) 

FDC is used to convert the frequency modulated signal into a digital code. FDC do its 

job by counting and quantizing the number of rising edges of the frequency 

modulated signal during the sampling interval [1] 𝑇𝑟𝑒𝑓 = 1/ 𝑟𝑒𝑓. 

The simplest FDC may be implemented simply as a count and dump converter as 

shown in figure 2-5 

 

Figure  2-5 the simplest FDC [1] 

Figure 2-6 shows the timing diagram of the input and output 

 

Figure  2-6 Timing diagram of simple FDC [1] 

The drawback of this type is the counter resetting operation, which is a limiting factor 

for high speed operation [1]. We can overcome this drawback by using counter with 

no upper limit followed by digital differentiator as we do not need to reset the counter 

every 𝑇𝑟𝑒𝑓.The non-limited counter can be realized as a modulo 2
n 

counter on the 

condition that the maximum number of received rising edges during 𝑇𝑟𝑒𝑓 is smaller 

than the module of the counter to avoid signal aliasing. The differentiation is done by 
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subtract two consecutive readings of the counter. Figure 2-7 shows this 

implementation. 

 

Figure  2-7 Non limited counter implementation of the FDC [1] 

we can use modulo 2
1
 arithmetic (D-flip-flop), If the maximum received number of 

edges during 𝑇𝑟𝑒𝑓 is smaller than two and the subtraction operation can be done using 

an XOR gate as shown in figure 2-8 

 

Figure  2-8 Modulo 2
1
diagram of FDC 

Another kind of the FDC is based on phase version of the sigma-delta modulator [1] 

as shown in figure 2-9 

 

Figure  2-9 Sigma-delta modulator based FDC [1] 
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 Figure 2-10 shows the timing diagram of the FDC signals. Simply we compare the 

phase of the signal Fout with the reference signal Fref using D flip-flop. The output 

from the D-flip-flop can be seen to correspond to the sign of the phase difference, and 

thus the D-flip-flop acts as a phase quantizer, giving a one-bit approximation of the 

phase difference. This signal is feedback to control the divide ratio of the dual 

modulus frequency divider DMD. This forces the DMD to divide alternately by the 

higher and the lower modulus, causing the phase of the divided-down input to follow 

the phase of the reference signal, and causing the output bit stream from the 

comparator to possess a duty cycle that represent the input frequency and in turn the 

input voltage signal. 

 

Figure  2-10 Timing diagram of FDC signals [1] 

The discriminator can uniquely converts the input frequency into digital output if and 

only if we can maintain the input frequencies between   × 𝑓𝑟𝑒𝑓 and (  + 1) 𝑓𝑟𝑒f, 

where   and   + 1 are the DMD divider ratios. If the input frequency doesn't fall in 

this region aliasing will occur. 

2.3 VTC/TDC Based ADCs  

Voltage-to-time-conversion based ADC consists of two blocks, voltage to time 

converter (VTC) and time to digital converter (TDC). We use the VTC block to 

convert the change in the voltage signal into a delay between two signals. Then we 
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use TDC to convert this delay into digital code [1]. Figure 2-11 shows the block 

diagram of this ADC.  

 

 

Figure  2-11VTC/TDC based ADC [1] 

 

2.3.1 Voltage to Time Converter (VTC) 

The VTC block, can be implemented using single-input-single-output inverter [1]. 

The conversion is done by controlling the current flows through the upper two 

transistors (M1, and M3) using the analog input signal thus we can control the 

charging or discharging rate of the capacitor connected to the output of the inverter is 

as shown in figure 2-12 So we control the time it takes 𝑉𝑜𝑢𝑡 to reaches a certain 

voltage. 

 

Figure  2-12 current starved inverter [1] 
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The main problem with this cell is the nonlinearity between the controlled voltage 

(𝑉𝑖𝑛) and the delay value. This nonlinearity results in introducing distortion. 

Designers try to improve the linearity of this cell. 

2.3.2 Time to Digital Converter (TDC) 

The basic idea of the TDC is converting the amount of delay between the two signals 

that are named "The modulated signals" coming out of the VTC into digital 

thermometer code which is converted by the decoder into the desired number of 

number of bits of the ADC [1]. The two modulated signals coming from the VTC are 

named "Start" and "Stop" signals. There are several TDC architectures. We will 

illustrate them in the following pages. 

2.3.2.1 Counter Based Approach 

The first and the simplest way to implement the Time to digital converter is using a 

simple counter as shown in figure 2-13, the clock signal that is connected to the 

counter is the CP signal which is used to trigger the counter to start counting with the 

positive edge of this signal [5]. 

In order to measure the difference between the Start and Stop signals we have to 

count the number of rising edges of the clock and with the knowledge of the clock 

period which is equal to Tcp then we can conclude the difference ∆T easily. 

 

Figure  2-13 counter approach timing diagram [5] 

The main problem of this technique is that the start and stop signal are not 

synchronized with the clock, which leads to the appearance of the measurement error 

∆Tstart which is equal to the time difference between the rising edge of the start 
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signal and the succeeding rising edge of the clock, also similarly leads to the 

appearance of ∆Tstop as shown in figure 3.1. 

From figure 3.1 the interval ∆T could be calculated from these relations 

 𝑇    𝑇   (𝑇    𝑇    )   𝑇    𝑇        

    𝑇    𝑇      𝑇       

    𝑇             (2-4) 

 𝑇         𝑇     

 𝑇        𝑇     

    𝑇       𝑇       𝑇   𝑇         (2-5) 

Where N is the number of counts, and εT is the quantization error; this error takes 

place due to the conversion of the voltage signal from the continuous voltage domain 

to the digital domain which contains certain number of levels defined by the number 

of bits of the ADC. Equ 3.3 illustrates that the quantization error is varying from –Tcp 

to Tcp and since our aim is to minimize the quantization error as much as we can in 

order to achieve better accuracy for the system, all we need is to minimize the period 

of the clock (Tcp) and so minimizing εT. 

So it’s recommended to trigger the counter by a clock with very high frequency to 

achieve better performance. However, increasing the frequency will lead to higher 

power consumption. Also the CMOS oscillators are not available any more at high 

frequency, so we will need to use LC oscillators with high cost. The solution of this 

dilemma is to divide the clock into smaller time intervals; this in turn will lead to 

decrease the quantization error. Sooner or later the counter approach is not considered 

as an efficient solution for case of high frequencies.  
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2.3.2.2 Digital Delay Line Approach 

As mentioned earlier the solution of the problems of the previous technique, the clock 

signal must be divided into smaller time intervals which means that each counter 

clock cycle has to be sub-divided asynchronously by a time to digital converter [5] as 

shown in figure 2-14. 

 

Figure  2-14 TDC Principle of subdivision timing diagram [5] 

The interval ∆T calculations became more accurate due to dividing the interval into M 

subdivisions, leading to decreasing the quantization error and so better performance. 

In order to maintain the M subdivisions we can use a ring oscillator with M stages to 

generate M equally spaced versions of the clock signal. Achieving higher accuracy 

could be done by using a delay chain formed from delay cells in order to produce 

delayed versions of the original reference clock. In this case time the resolution will 

depend on the delay of the delay elements in the chain. 

 

Figure  2-15 the delayed versions of the clock signal [5] 
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figure 2-15 illustrates the basic idea of the TDC, assuming that the start signal is 

leading the stop by ∆T, the TDC will let the start signal pass through a chain 

containing delay elements with a known delay equals to  that in turn will delay the 

start by N times. At the rising edge of the stop signal when N* = ∆T, there will be 

some delayed versions of start whose values are logic '1'  and other delayed versions 

of start whose values are logic '0'. The number of delayed versions who have logic '1' 

value will aid in calculating the period ∆T by this relation 

 𝑇               (2-6) 

In order to implement the system to achieve this timing diagram, a chain of delay 

elements is used with a D flip-flop as shown in figure 2-16. The buffer is used to 

perform the job of the delay element in the chain. The input of the D of the flip-flop is 

connected to the output of the buffer and the clock is connected to the stop signal in 

order to make the flip flop acts as a comparator which will store the value of the start 

signal and make it available at its output at the rising edge of the stop signal. This 

technique is used to produce the thermometer code as explained previously. 

 

Figure  2-16 delay Line approach implementation [4] 

 

The main disadvantage of this approach is the large size of the buffer as the designer 

is forced to use 2 stages of CMOS inverters that will lead to suffering from wasted 

area. More over the resolution of the ADC in this design is restricted by the delay of a 

single delay element that couldn't be smaller than . 
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2.3.2.3 Inverter Based Digital Delay Line Approach 

The previous approach was depending on the delay chain technique that uses the 

buffer as a delay element, and as earlier we have revealed its pros and cons. In this 

technique the buffer is replaced by single CMOS inverter and so the resolution 

decreases resulting in better performance [6]. However, on the other hand there is 

some correlation due to common process steps during manufacturing of NMOS and 

PMOS devices which make this approach not preferable.  

Sometimes the steps of these processes are systematic like the formation of the gate 

oxide and the gate lithography. However, there are also completely independent 

process steps such as the ion implantation for threshold voltage adjustment. This leads 

to systematic non-linearity of the converter characteristic that in turn imbalances the 

delays again and so the rising and falling edges are not the same any more. 

 

Figure  2-17 inverter based delay line implementation [6] 

This approach is not recommended if the effect variations became quite obvious; so In 

order to overcome these problems a Symmetrical differential ended flip-flop is used. 

In this case we have two delay lines each is formed from CMOS inverters not buffers, 

one of them is for the original start signal and the other is for the inverted version of 

the start signal. 

Both signals the original and the inverted are connected to the inputs of the 

differential ended flip-flop, and as usual the stop signal will be connected to the clock 

of the flip-flop. In order to over-come the inverting effect of the CMOS inverter the 

two signals must be twisted at the input of the flip-flop as illustrated in figure 2-17. 
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The placement of the edge aligner is due to the presence of variations in the CMOS 

process that leads to an inequality between the rising and falling edges of the original 

and inverted start signal, so it's placed to make them the same. 

2.3.2.4 Vernier Oscillator Approach 

The previous implementation still suffers from many problems such as the restriction 

on the resolution as it depends on the delay of single delay element. In other words we 

can't achieve a certain delay smaller than the delay of the CMOS inverter/buffer. This 

approach has deviated from the usual path a little bit by replacing the delay line by 

slow, fast oscillators and phase detector [7]. This helped in enhancing the resolution 

of the ADC because it moved away from the single delay chain technique. Figure 2-

18 shows the Vernier oscillator approach implementation 

 

Figure  2-18 Vernier oscillator approach implementation [7] 

The basic idea of this technique is that the start signal triggers the slow oscillator and 

the stop signal triggers the fast one. Since the start signal is leading the stop by ΔT, 

the two signals of the oscillators are connected to the input of phase detector which is 

responsible for subtracting the phase of the two signals till locking takes place. 

Locking takes place when the signal of the fast and slow oscillators became aligned 

on the same edge as shown in figure 2-19. Once locking took place it will disable the 

counter and it will stop counting. The difference between the two signals can calculate 

by the aid of the number of counts using this relation 

 𝑇     𝑇  𝑇          (2-7)  

Where N is the number of counts, Ts is the period of the slow oscillator, and Tf is the 

period of the fast oscillator. 



22 

 

 

Figure  2-19 Vernier oscillator technique timing diagram [7] 

Although this approach solved the problem of resolution in the delay line and the 

mismatch in the CMOS inverter, it's restricted by the delay of the phase detector. This 

is solved by modifying the design of the phase detector in order to achieve smaller 

resolution and so better performance.  

2.3.2.5 Vernier Delay Line Approach 

The Final technique that is considered the most efficient one as it compromises all the 

disadvantages of the above approaches and it also has most of their advantages is the 

vernier delay line technique. 

In order to solve the resolution problem that is restricted by the delay of single delay 

element; this technique used two delay lines rather than using only one to achieve 

differential delay. The first delay line is used to delay the start signal; it consists of a 

chain of delay elements that have delay larger than the delay of the delay elements 

used in the second delay line which are used for delaying the stop signal [4] as shown 

in figure 2-20. 
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Figure  2-20 Vernier delay line technique core [4] 

By using this idea the resolution will depend on the difference between the delays of 

the two cells not their pure delay which is the main advantage of this technique. The 

difference between the start and stop signal in this case could be given by the 

following relation 

 𝑇     𝑡  𝑡         (2-8)  

Where N is the number of stages of the delay line, t1 is the delay of the buffer in the 

delay line of the start signal, and similarly t2 is for the stop signal. 
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Chapter 3: VTC Analysis 

Our project is to design a 5GS/s 4-bit nyquist rate time based ADC, which is the 

fastest achieved speed with this number of bits. We will use 65nm technology to 

implement our design. We have no restriction on power consumption and any 

reasonable dynamic range is acceptable. 

In this chapter will discuss the VTC block and its analysis including an explanation of 

the operation of the circuit, optimization of the output linearity and schematic diagram 

of the VTC. Also we will present the simulations results and layout of this block. 

In chapter 4 we will discuss the TDC block and in chapter 5 we will present the 

simulation results and performance of the overall system. 

3.1 Operation of VTC Block 

The main role of VTC is to convert from analog signal (voltage) to time and this 

conversion is done by using inverter and control the rate which the capacitor 

connected to the output of it is charged or discharged by the analog input signal. This 

architecture is called current starved inverter [1]. 

3.1.1 Current Starved Inverter Cell 

As shown in figure 3-1 it is an example of current starved inverter. The upper two 

transistors (M1 and M3) are the normal inverter, while M2 is to control the current 

flows in the inverter when the capacitor is discharging.  

 

Figure  3-1current starved inverter [1] 
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By controlling the discharging current of 𝐶𝐿 according to equation 3-1, through the 

varying of the input voltage 𝑉𝑖𝑛, we control the time it takes 𝑉𝑜𝑢𝑡 to reaches a certain 

voltage, say the threshold voltage of another inverter driven by 𝑉𝑜𝑢𝑡. 

   
     

  
        (3-1)  

The main problem with this delay cell is the nonlinearity between the controlled 

voltage (𝑉𝑖) and the delay value. There are 2 main reasons for nonlinearity we will 

discuss them. 

3.1.1.1 Tracking error 

In real life, 𝑉𝑖𝑛 is not varying slowly, If 𝑉𝑖𝑛 is assumed to vary linearly, then 𝑉c falls 

down nonlinearly as shown in Figure 3-2 (solid line). Thus 𝑉c crosses 𝑉𝑡 at a time 

that is different than the case when 𝑉𝑖𝑛 is constant. If the 𝑉𝑖𝑛 is sampled using sample 

and hold block so 𝑉𝑖𝑛 will be constant while 𝑉c is falling (dotted line in Figure 3-2). 

If 𝑉𝑖𝑛 is increasing with time, this means that the current discharging the capacitor 

increases, and so the output voltage will cross the threshold earlier than the explicit 

S/H case. But if 𝑉𝑖𝑛 is decreasing with time, the output voltage will cross the 

threshold latter than the explicit S/H case [1]. 

 

Figure  3-2 tracking error [1] 

The difference between the two times (for implicit S/H and for constant 𝑉𝑖𝑛) is called 

the tracking error. It will limit the maximum frequency of the 𝑉𝑖𝑛 for a given 

resolution in terms of the number of bits. 

The decision to use sample and hold block or not is depend on the tracking error, if it 

is less than the time corresponding to 1 LSB change in the 𝑉𝑖𝑛 (𝑡1𝐿   ) (this 1 LSB 
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change is calculated for 2 values of 𝑉𝑖𝑛. In each value, 𝑉𝑖𝑛 is assumed to be explicitly 

sampled and hence constant in the sampling window) so we don't need to use sample 

and hold block. This is shown in Figure 3-3. Note that because 𝑉𝑖𝑛 is constant, the 

two dotted lines have constant (but different) slopes. This is because 𝑉𝑖𝑛 increases 

from 𝑉 𝑜𝑛𝑠𝑡 to 𝑉 𝑜𝑛𝑠𝑡 + 𝑉1𝐿 , where 𝑉1𝐿   is the voltage corresponding to 1 LSB (= 

Full scale/  ) where n is the number of bits. 

 

Figure  3-3 relation between t𝒆𝒓𝒓𝒐𝒓 and t1𝑳𝑺𝑩 [1] 

3.1.1.2 Non ideality of transistor  

As we explained above we control the discharging current of 𝐶𝐿, through the varying 

of the input voltage 𝑉𝑖𝑛. And we need current to be constant so we will adjust 

transistor to operate is saturation mode. The relation between the current and 𝑉𝑖𝑛 is 

given by  

    𝑉   𝑉    
         (3-2) 

And this relation shows that the current doesn't change linearly with 𝑉𝑖𝑛. 

3.1.2 The Main Core of VTC 

Figure 3-4 shows that M1-M4 make up a voltage-starved inverter, while M5-M6 form 

a standard CMOS inverter used to sharpen the edges of the signal Vout (t). The gate 

input to M3 is the input signal to the VTC (Vin) [2]. In this analysis, it will be 

assumed that Vin can be considered constant over a single VTC conversion cycle. The 

reason for this is that the VTC is only sensitive to the input for a short time during the 

switching process, so it effectively samples the input. The gate input to M4 is a DC 

bias voltage (Vconst) used to tune the linearity of the VTC. 
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Figure  3-4VTC core circuit [2] 

Since the M1-M2 inverter has starving devices between M2 and ground but not 

between M1 and VDD, the delay which falling edges of CLK take to be passed 

through VDD is minimized.  However, rising edges of CLK will be slowed down by 

the starved inverter, depending on the value of Vin. The delay on this edge, and how 

it varies with Vin, is what we are interested in analyzing.  

A basic summary of the VTC operation is as follows: When a rising edge occurs on 

Clk(t), Cout starts to discharge so Vout(t) begins to decrease from VDD at a rate 

dependent on Vin. When this ramping signal reaches the threshold of the M5-M6 

inverter, a rising edge is triggered on the inverter output. 

3.2  Design Procedure  

We need to design VTC operates with clock 5Gsample/s, good linearity between 

input voltage (Vin) and delay, fine dynamic range of input voltage ( difference 

between smallest input and largest input while VTC is working right ) and fine range 

of delay to release specifications on TDC block.  

We will design range of delay to be 50 psec and dynamic range of input not to be less 

than 100 mv so it is hard to get these specifications from single cell of VTC as we 

operate at high frequency. The period of CLK is 200psec and we interested at rising 

edges only so we have only 100psec so it is hard to have delay range of 50 psec from 

it with fine linearity so we will use differential VTC. 
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3.2.1  VTC Half Cell 

 First we will design VTC half cell and then we will use two half cells to form 

differential VTC. Figure 3-5 shows that M1-M4 make up a voltage-starved inverter, 

while M5-M6 form a standard CMOS inverter used to sharpen the edges of the signal 

Vout(t) and M7-M10 form a standard CMOS buffer to avoid loading effect.  

 

Figure  3-5 VTC half cell [2] 

We need to have delay range of 25psec from the single cell in order to have delay 

range of 50psec from the final differential VTC. 

3.2.1.1 Duty-Cycle Adjustment  

Since we are interested in rising edges of CLK only, we have only 100p to change the 

delay of discharging of Cout. So we will adjust the duty cycle of the CLK to have 

more flexibility in the minimum delay and maximum delay so the period which the 

CLK is VDD will be 125 psec. 

We can design circuit to change the duty cycle also we can do this from CLK 

generator. 

3.2.1.2  Biasing Adjustment 

 We are interested to have high linearity between Vin and delay as well as fine 

dynamic range (not less than 100m). First Vconst will be the minimum voltage to 

have M4 in saturation mode, so if Vconst is equal Vth so any voltage of source of M2 

will make M4 in saturation mode. Second we need the current of transistor M4 is 

enough to discharge the Cout to the threshold of the inverter (M5-M6) and to 
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determine the smallest delay and largest delay we want as we can change them 

through increase or decrease the current of M4. 

As well as VB (biasing voltage of M3) will be the minimum voltage to have M3 in 

saturation mode then we will sweep on Vin to have the best linearity and the proposed 

delay range. 

3.2.2  Differential VTC 

The VTC is a differential circuit composed of two half-cells. Each half cell is fed by 

the same clock and bias voltages with complementary RF inputs. So we will double 

delay range and dynamic range and improve the linearity so the delay range will be 

larger than 50psec and dynamic range will be larger than 100mv. 

3.3 Schematic Simulation Results  

We have designed various VTC blocks which have different specifications. We can 

control in the design parameters(dynamic range of the input signal and delay range 

position) by controlling the current passes in the transistor connected to Vin(control 

dynamic range) and by controlling the current passes in the transistor connected to 

Vconst (control delay range position) 

In the following sections we will present the results of these different designs. 

3.3.1 5 Giga Sample/s VTC  

We have 2 designs achieve this speed but they are different in dynamic range and 

delay range position. The duty cycle of the CLK(200 ps) is 62.5 %. 

3.3.1.1 VTC with 200 mV Dynamic Range  

Figure 3-6 shows the delay between Vc and the CLK, Figure 3-7 shows the delay 

between the output of the VTC half cell and the CLK and figure 3-8 shows the delay 

between the two half cells. 
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Figure  3-6 the delay between Vc and the CLK of 5 GSample/s VTC with 200mV dynamic range 

 

Figure  3-7 the delay between the output of the VTC half cell and the CLK 5 GSample/s VTC with 

200mV dynamic range 

 

Figure  3-8 the delay between the two half cells 5 GSample/s VTC with 200mV dynamic range 
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Figures 3-6 and 3-7 show that the delay range of the half cell =25 ps while figure 3-8 

shows that differential delay between 2 half cells =50 ps.  

3.3.1.2 VTC with 140 mV Dynamic Range  

Figure 3-9 shows the delay between Vc and the CLK, Figure 3-10 shows the delay 

between the output of the VTC half cell and the CLK and figure 3-11 shows the delay 

between the two half cells. 

 

Figure  3-9 the delay between Vc and the CLK of 5 GSample/s VTC with 140mV dynamic range 

 

 

Figure  3-10 the delay between the output of the VTC half cell and the CLK 5 GSample/s VTC with 

140mV dynamic range 
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Figure  3-11 the delay between the two half cells 5 GSample/s VTC with 140mV dynamic range 

Figures 3-9 and 3-10 show that the delay range of the half cell =25 ps while figure 3-

11 shows that differential delay between 2 half cells =50 ps.  

3.3.2 6.6 Giga Sample/s VTC  

We have 2 designs achieve this speed but they are different in dynamic range and 

delay range position.. The duty cycle of the CLK(150 ps) is 66.7 %. These designs 

may help us in future to make ADC work on speed higher than 5 Giga sample/s  

3.3.2.1 VTC with 240 mV Dynamic Range  

Figure 3-12 shows the delay between Vc and the CLK, Figure 3-13 shows the delay 

between the output of the VTC half cell and the CLK and figure 3-14 shows the delay 

between the two half cells. 

 

Figure  3-12 the delay between Vc and the CLK of 6.6 GSample/s VTC with 240mV dynamic range 
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Figure  3-13 the delay between the output of the VTC half cell and the CLK 6.6 GSample/s VTC with 

240mV dynamic range 

 

 

Figure  3-14 the delay between the two half cells 6.6 GSample/s VTC with 240mV dynamic range 

 

Figures 3-12 and 3-13 show that the delay range of the half cell =25 ps while figure 3-

14 shows that differential delay between 2 half cells =50 ps.  

3.3.2.2 VTC with 180 mV Dynamic Range  

Figure 3-15 shows the delay between Vc and the CLK, Figure 3-16 shows the delay 

between the output of the VTC half cell and the CLK and figure 3-17 shows the delay 

between the two half cells. 
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Figure  3-15 the delay between Vc and the CLK of 6.6 GSample/s VTC with 180mV dynamic range 

 

 

Figure  3-16 the delay between the output of the VTC half cell and the CLK 6.6 GSample/s VTC with 

180mV dynamic range 
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Figure  3-17 the delay between the two half cells 6.6 GSample/s VTC with 180mV dynamic range 

Figures 3-15 and 3-16 show that the delay range of the half cell =25 ps while figure 3-

17 shows that differential delay between 2 half cells =50 ps.  

3.4 Layout and Post Layout Simulation Results 

We have built only the lower dynamic range VTCs on layout level as they have better 

linearity. 

3.4.1 5 Giga Sample/s VTC Layout  

Figure 3-18 shows the layout of 5 Giga Sample/s VTC with dynamic range=140 mV 

 

Figure  3-18 5 Giga Sample/s VTC layout 
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Figures 3-19 show that the delay range of the half cell =25 ps while figure 3-20 shows 

that differential delay between 2 half cells =50 ps.  

 

Figure  3-19 the delay between the output of the VTC half cell and the CLK 5 GSample/s VTC with 

140mV dynamic range after the layout 

 

Figure  3-20 the delay between the two half cells 5 GSample/s VTC with 140mV dynamic range after 

the layout 

After layout the dynamic range become 152 mv. 

3.4.2 6.6 Giga Sample/s VTC  

Figure 3-21 shows the layout of 6.6 Giga Sample/s VTC with dynamic range=180 

mV 
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Figure  3-21 6.6 Giga Sample/s VTC layout 

Figures 3-22 show that the delay range of the half cell =25 ps while figure 3-23 shows 

that differential delay between 2 half cells =50 ps.  

 

Figure  3-22 the delay between the output of the VTC half cell and the CLK 6.6 GSample/s VTC with 

180mV dynamic range after the layout 
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Figure  3-23 the delay between the two half cells 6.6 GSample/s VTC with 180mV dynamic range after 

the layout 

 

After layout the dynamic range become 188 mv. 
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Chapter 4: 4-bit Vernier Delay Line TDC Analysis  

 
In This chapter we will illustrate the TDC block used in our design, which 

architecture we have used to achieve the specifications of our design, and the 

simulation results of the TDC block.  

Figure 4-1 shows the TDC block. It consists from vernier delay line (VDL), decision 

flip flops and retiming circuit [2]. Also there is a encoder as a final block  after 

retiming circuit which converts the 15-bit thermometer-coded output of the VDL (T1 

through T15) to a 4-bit binary output (B0 through B3).  

 

Figure  4-1TDC block [8] 

In the following sections we will illustrate each part of TDC block 

4.1 Delay Line Structure  

As mentioned in the above sections the pros and the cons of many techniques used in 

implementing the time to digital converter block. After comparing all the above 

approaches we concluded that the vernier delay line is the most appropriate technique 

that will fit our design due to the required high speed. The used design is quite similar 

to the vernier delay line approach but with a little modification. Since the difference 

between the 2 signals coming out from the VTC block is equal to 50psec and so this 

range is divided on the fifteen cells in the TDC and so the delay of each cell can be 

calculated from relation 4-1 

𝑇  
       

   = 3.125 psec       (4-1) 
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The first cell is used to delay the start and stop signals by -7tδ (or -21.875psec) and 

the other remaining cells each delay the two signals by tδ (or 3.125psec) till the end of 

the delay chain. The output of each delay cell is connected to the input of the flip-flop 

and similar to the vernier delay line; the cell shown in figure 4-2 is differentially 

ended so there are two delay chains one of them connected to the D and the other to 

the CLK input of the flip-flop. 

 

Figure  4-2delay line core [2] 

The flip-flop in turn will act as a comparator or decision block at the time of the rising 

edge of the stop signal. The flip-flop outputs make up the 15-bit thermometer code 

representation of the TDC output. The output of the flip-flop will be a group of ones 

and zeros representing the period between the start and stop signal. The number of 

ones in the code represents the number of the shifted versions of the start signal 

whose rising edges were leading the rising edge of the stop signal. This code will 

enter the encoder that will count the number of ones in the code and convert them to 

the desired four bits in the digital domain. The first delay stage, a delay of −7tδ (or -

21.875ps) is introduced between the signals start and stop. Each subsequent delay 

stage (2 through 15) adds a positive tδ (or 3.125ps) to the delay between the two 

signals. It can be seen that the delay between the two signals sweeps through the 

range of -7tδ to +7tδ as the signals travel through the VDL.  

 

The main reason of using the first cell to delay the two signals by -7tδ is to make the 

delay cells in the delay chain cover all the time difference between the two signals as 

explained in figure 4-3. Assuming the two signals entering the TDC block were 

aligned and so ∆T=0. In order to convert this value to binary code first the two signals 

are being shifted by -7tδ and then pass through 15 delay cell each delay tδ. So when 
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reaching the 7th cell the difference between both signals will be -1tδ; and after 

reaching the 15th cell the difference will be 7tδ. So it’s quite obvious that using the 

first cell enabled the system to sweep on all the period. 

 

 

Figure  4-3 Delay line waveforms [2] 

 

As mentioned before the flip-flop output will be ‘0’ when its clock signal (Bi) arrives 

before its input signal (Ai), or in other words when Δti > 0. The output will be ‘1’ 

when the data arrives before the clock, or when Δti < 0. 

4.2 Delay Cell Structure   

The delay line shown above in figure 4-2 consists of cascaded delay cells which is the 

core of the TDC.  

In order to illustrate how the delay cell works, we are going to show the core of this 

block as shown in figure 4-4. Mainly it is implemented  using starved inverter which 

consists of 6 transistors; the basic CMOS inverter is formed from the 2 transistors M4 

and M5 that are followed by another inverter formed from the transistors M7 and M8.  
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For normal operation the transistors mentioned above must operate in linear (triode) 

region; however the devices M3 and M6 which control the amount of current passing 

through the inverter must operate in saturation region.  

The transistors M1 and M2 are comparatively small as they have quarter the width of 

the remaining transistors, the purpose of using these devices will be illustrated in the 

calibration section but here we will only note that they are biased to ensure that a 

minimum amount of current is able to flow even if M3 and M6 enter cut-off mode, 

and to make sure that other transistors are functionally working if the threshold 

voltage had changed in fabrication. 

 

Figure  4-4Delay Cell Schematic [2] 

The bias voltages Vgn and Vgp are used to control the rising and falling edges of the 

delay cell, this is done by controlling the amount of current passing through the 

starved inverter. 

 

4.2.1 Delay Cell Tuning  

As mentioned in the above section changing the value of the bias voltages Vgn and 

Vgp will control the rising and falling edges of the delay cell, now we will illustrate 

how this is done. 
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Knowing that the propagation time for the rising and falling edges tpLH and tpHL 

respectively are respectively are defined as the time taken by the output to reach 50% 

of the full scale are given by relations 4-2 and 4-3 [2]. 

      
      

     
         (4-2) 

     
      

     
         (4-3) 

Where VDD is the supply voltage, CL is the output load capacitance, and IDP and 

IDN are the drain currents of the PMOS and NMOS transistors respectively. In order 

to have equal propagation times for the rising and falling edges we have to make the 

drain currents of the PMOS and NMOS transistors equal as both transistors are 

charging or discharging the same load capacitance [2]. 

The drain currents in both transistors are given by the following equations 

    
         

   
                (4-4) 

 
    

         

   
                  (4-5) 

 
where μn and μp are the electron and hole mobilities respectively, Cox is oxide 

capacitance per unit area, WN and WP are the NMOS and PMOS gate widths, L is the 

gate length, and VTN and VTP are the absolute NMOS and PMOS threshold 

voltages. So we have to adjust the device widths so that the ratio 
  

  
 is equal to 

  

  
 and 

bias voltages Vgn and Vgp must be set together according to equation 4-6  

                  (4-6) 

This results in equal propagation delays for the rising and falling edges. 

So it’s quite obvious from equations 4-4 and 4-5 that changing the value of VgN and 

VgP will lead to changing the value of the drain current drawn from the NMOS and 

PMOS devices respectively, referring to equations 4-2 and 4-3 changing the drain 

currents will lead to change tpLH and tpHL and then giving the ability to control the 

delay of the signal; This is the main idea of the delay cell block. 



44 

 

Figure 4-5 shows the absolute delay produced by the delay as VgN is swept and Vgp 

is set to VDD-Vgn. 

 

Figure  4-5 absolute delay produced by the delay 

 

4.2.2 Differential Delay Cell  

As shown in the previous figure no value of Vgn can produce the required delay 

(3.125ps)   

Due to this problem one of the approaches mentioned above in the types of the TDC 

blocks was the vernier delay line approach. This approach depends on the placing 2 

chains of delay cells one of them has higher delay than the other. So depending on 

this technique we can define the time tδ is the time difference between the 2 cells 

which can be easily achieved. 

The delay cell will be differentially ended. To illustrate this on the above structure we 

just note that the delay cell of the start signal is considered as voltage controlled delay 

unit that could be controlled using the values of the bias voltages Vgn and Vgp. The 

delay cell of the stop signal has constant delay and has the same structure as the start; 

however the only difference is in replacing the Vgn by VDD and the Vgp by Vss. 

Figure 4-6 shows the block diagram of the start and stop Delay Cells 
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Figure  4-6 The start and stop Delay Cells [2] 

 

Figure 4-7 shows the differential delay produced by the the delay as VgN is swept and 

Vgp is set to VDD-Vgn 

 

Figure  4-7 the differential delay produced by the the delay as VgN 

 
For the delay of -7tδ, the configuration of figure 4-8 is used. The same delay cell that 

is shown in figure 4-6 is used, but with 2 elements in series each produces half the 

required delay. To produce a delay in the opposite direction of the tδ circuit, the top 
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path introduces minimum delay while the bottom path delay is controlled using VgN 

and VgP.  

 
Figure  4-8 differential delay block for generating  -7tδ [2] 

 

Using 2 elements instead of 7 decreases the power consumption and layout area for 

the circuit. Although -7tδ (-21.875ps) is within the tuning range of the absolute delay 

(Figure 4-5) and it would be possible to save much more area by using a single delay 

element in the bottom path and no element at all in the top path, this was considered 

too risky as any process variation beyond what the simulator predicts could make it 

impossible to reach the desired delay. 
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4.2.3 Delay Cell Layout 

The completed layout for the delay cell is shown in figure 4-9. The total area is 

           

 

Figure  4-9 the layout of the delay cell 
Figure 4-10 shows the absolute delay produced by the delay after layout as VgN is 

swept and Vgp is set to VDD-Vgn 
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Figure  4-10 the absolute delay produced by the delay after layout 

 

Figure 4-11 shows the differential delay produced by the delay after layout as VgN is 

swept and Vgp is set to VDD-Vgn 

 

Figure  4-11 the differential delay produced by the delay after layout 
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4.3 TDC Buffer 

4.3.1 TDC Buffer Structure 

The second basic building block in the time to digital converter (TDC) is the buffer 

cell which acts as the connecting point between the delay cell and the flip-flop. The 

block of the buffer is also differential ended. One of them is used for the start signal 

coming out from the voltage controlled delay unit that is the one controlled by the 

bias sources Vgn and Vgp. The other one is used for the stop signal coming from the 

delay cell whose Vgn and Vgp are connected to VDD and GND respectively. Figure 

4-12 shows the buffer cell of stop signal schematic 

 

Figure  4-12 Buffer cell of stop signal schematic [2] 

The main aim of using the buffer cell is to fasten the rising and falling edges of the 

input signal to the flip-flop. Due to the large load capacitance seen from the delay cell 

block due to the cascade stages of the delay chain, and the cascade stages of the flip-
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flops; this leads to degrade the fastness of the signal whether in the rising edge or in 

the falling edge of the input signal. 

In order to solve this dilemma, it was a must to connect a buffer between the delay 

cell and the flip-flop to aid in sharpening the rising and falling edges of the signal 

entering the flip-flop. 

Speaking about the buffer cell of the stop signal which is shown in figure 4-12. It 

consists of two cells of CMOS inverter placed in cascade. The extra inverter formed 

by the two devices M5 and M6 is used to deliver the signal to the re-clocking stage 

which is discussed in the next section. 

 

Figure  4-13 buffer cell of start signal schematic [2] 

 

Considering the buffer cell of the start cell; it is the ordinary CMOS buffer which is 

formed from two inverters placed in cascade as shown in figure 4-13. The sizing of 

the devices in this block is large in order to make the output rising and falling edges 

fast. 
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4.3.2 TDC Buffer Layout 

The completed layout for the buffer is shown in figure 4-14. The total area is    

       .  

 

Figure  4-14 TDC buffer layout 

4.4 TDC Decision Flip Flop 

According to the delay cell outputs, we want a block to determine if the stop signal is 

preceding the start signal or not. If the stop signal was preceding the start signal, the 

output is one. If not, the output is zero.  As described in the past section, each delay 

cell adds or subtracts a delay of 3.125ps. Accordingly, we have three critical states: 

1. The two signals are coincident on each other. We want the output to be one. 

2. The stop signal is preceding the start signal by 3.125ps. We want the output to 

be one) 

3. The start signal is preceding the stop signal by 3.125ps. We want the output to 

be zero) 
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In the view of the flip-flop design, this is translated to a setup time of nearly -3ps, 

which is a tight restriction. We tried many types of flip-flops but they all failed to 

achieve the required performance like the SDFF and K-6, Dual Rail ETL. 

Finally, we reached this design in figure 4-15. It’s somehow similar to the mC2MOS 

Latch but with many improvements.  

 

 

Figure  4-15 flip flop circuit diagram 

4.4.1 Design Details 

At first we need the inversion of the clock to be delayed by 3ps only to the clock 

signal which is considered a very fast inversion. And since we are interested only in 

the rising edge of the clock, we will enlarge the width of the NMOS transistor. 

However, the capacitance is exponentially increasing with the width of the transistor 

as in figure 4-16. Consequently we don’t want to enlarge the width of the NMOS 

transistor above certain values to avoid the increase in the capacitance and so the 

delay of the output. The solution is to use several transistors in parallel to each other 

with a smaller size so the capacitance will increase linearly instead of exponentially. 

The same idea is used again in the design. 
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Figure  4-16 Cdd VS W 

The idea of the design is based on capturing the value of the “D” input of the flip-flop 

during the negative half cycle of the clock till the critical time where the “CLK” and 

“D” are coincident on each other. In the positive half cycle, output is enabled 

presenting the last change occurred in “D” during the negative half cycle. A latch is 

added in the middle and at the end to keep the level of the signals especially in the 

critical cases demonstrated before. 

The most challenging part of the design was catching any change in the input till the 

case of coincident inputs. We designed the flip-flop to achieve the cases we are 

required to face as in figure 4-17. For example we do not have to predict a “D” input 

changing from one to zero just before the “CLk” edge. Consequently, the transistors 

that we need them large are the NMOS transistors.  

 

Figure  4-17 critical cases simulation results before layout 

 



54 

 

4.5 TDC Re-clocking and Pipelining  

After designing the flip-flop block and before taking the output and connecting it to 

the encoder circuit; there was an essential block placed between those blocks known 

as the re-clocking circuit. 

Due to the presence of delay line that is followed by stages of cascaded flip-flops; the 

output of the 1
st
 flip-flop will not be at the same time of the 15

th
 one so they have to 

be synchronized before encoded. More important point is that From simulations it is 

shown that the time delay between the first and last flip-flop outputs exceeds the 

5GHz clock period of 200ps, directly encoding these outputs would result in errors  

The main idea of the re-clocking is to make the outputs of all flip-flops become 

aligned on the same rising edge before they are being encoded by the encoder [2]. 

In order to implement the circuit we used two approaches; one of them is using chain 

of buffers to delay the signal, and the other is based on using chain of flip-flops.  

4.5.1 Design Using Buffers  

Speaking about the 1st approach it's based on CMOS inverter design that is used to 

form a buffer cell. As illustrated in figure 4-18 the first row is the original flip-flops of 

the TDC block and assuming that we have only 4 stages not fifteen for simplicity. The 

output of the 1
st
 flip-flop to be aligned with the 4

th
 flip-flop it will pass through 3 

buffers to delay it by the same amount of time taken until the last signal come out 

from the 4
th

 flip-flop and then their rising edges become aligned, similarly the output 

of the 2
nd

 and 3
rd

 flip flop. 
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Figure  4-18 Re-clocking using buffer cells 

As explained in figure 4-18 after all the signals path through the buffer chain they are 

connected again to the input of another flip-flops which are triggered by the same 

clock. In this case we can't use an external input from off chip to trigger these flip-

flops because its phase would likely not be aligned with the data being re-clocked. In 

order to solve this dilemma the clock signal was taken from the end of the delay line 

and inverted in order to fit with the signals needed to be re-clocked because it will be 

subjected to the same process variations as the data. The clock signal is labeled 

"clkrsmp" in figure 4-2. 

4.5.2 Design Using Flip-flops: 

As mentioned before, we need the outputs of the decision flip flops to be ready 

together at the same time. However, this would not happen with this design. The 

delay between the output of the first flip-flop and the output of the last flip-flop is 

more than 200ps because the clock entering the 15
th

 flip-flop is delayed by 15 delay 

stages more than the clock entering the first flip-flop. This means that when the output 

of the last flip-flop is ready, its corresponding correct output of the first-flop will be 

lost and replaced by another output corresponding to a new input as there is always a 

new input each 200ps. Consequently, we want to save the output of the flip-flops, 

synchronize them together and at the same time receive new inputs. This is done by a 

pipelined re-clocking system. 

The idea is based on adding a series of flip-flops after the decision flip-flop to save 

the output of the flip- flop each 200ps. The ideal case is to save the output each 200ps 

and receive a new input correspondingly.  However, we do not need to adjust the 

clock of the re-clocking flip-flop precisely on 200ps to avoid importing a new clock to 
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the system and avoid the synchronization problems with the existing clock. The 

solution is that we can use the delayed versions of the clock to perform the re-

clocking task. Fig 4-19 shows the delayed versions of clocks 

 

 

 

 

 

 

 

 

 

 

 

 

In the re-clocking part, the re-clocking clocks should be connected to several flip-

flops beside the main decision flip-flops. This may result in an over loading effect. 

Consequently, the signals used in re-clocking will be generated from a separated 

output from the buffer. 

Now we want to determine the number of re-clocking flip-flops after each decision 

flip-flop. To get a correct number, we should try on the worst case condition. This 

worst case condition happens when two consecutive edges entering the clock flip-flop 

are in a case where they are too close to each other.  As mentioned in the VTC 

section, the clocks are pulse modulated according to the input voltage. Consequently, 

this worst case condition would happen when entering the smallest possible value to 

the VTC followed by the largest possible value in the form of consecutive pulses. 

This would result in a series of consecutive clocks of narrow pulses then wide pulses. 

Figure  4-19 delayed versions of the stop signal in the delay cell 
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In this case, the time between two consecutive rising edges would be the least. Here 

we can choose which clocks we should use in each stage of re-clocking to be in the 

safe side away from any errors.  Let’s take an example as in figure 4-20; we want to 

adjust the output of the first decision flip-flop. 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in figure 4-20, we will first draw all the 15 delayed versions of the stop 

signals in the delay cells. And then, we will draw the output of the first flip-flop on 

the first clock signal. Now we want to choose a delayed version of this clock to save 

this output. There are two conditions on the delay between the two chosen clock 

versions to correctly decide the number of flip-flops: 

 

1) The rising edge of the delayed clock version should be delayed enough so that the 

output of the flip-flop is ready. 

 

2) The rising edge of the delayed clock version should not be too far that it wouldn’t 

Figure  4-20 delayed versions of stop signal with decision flip flop outputs 
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come after the output of the decision flip-flop is changed. i.e: the delay between the 

rising edge of the main clock and the re-clocking clock should be less than 200ps. In 

the shown example I chose to re-clock using the 4
th

, 6
th

, 8
th

, 10
th

, 12
th 

and the 14
th

 stop 

signals from the delay cells. This means that 6 flip-flops are used to re-clock the first 

decision flip-flop outputs.  

Similarly, the rest decision flip-flop outputs are re-clocked in the same way. 

At the end, the first flip-flop will have the largest number of flip-flops (6 flip-flops as 

in the example) and the number will decrease gradually till zero re-clocking flip-flops 

at the last decision flip-flop. 

The number of flip-flops demonstrated in the example can be minimized greatly but it 

would be better to perform this minimization after the post layout simulations of the 

delay cell and decision flip-flops to get correct results. 

After the demonstrated re-clocking stages, we want to register all the outputs entering 

the Encoder using the same clock and also all the outputs from the encoder. This 

clock must make the outputs ready at a rate of 5GS/sec precisely. We cannot use the 

rising edges of the delayed version of the clocks as we did before, it will not be true as 

the distance between these edges is varying according to the input voltage and we 

want a 200ps varied edges. Instead, we can use the falling edge in this final stage of 

re-clocking as the falling edge comes every 200ps precisely and is not pulse 

modulated like the rising edge. Consequently, we will use an inverter after the last 

delay cell to invert the stop signal and then, we will use this signal as the re-clocking 

signal.  

Regarding the flip-flop used in re-clocking, it nearly doesn’t have any constraints like 

the decision flip-flop. As a result, we will use a simplified design of the decision flip-

flop by removing all the unused transistors as shown in fig 4-21 
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Figure  4-21 reclocking flip flop circuit diagram 

 

Figure  4-22 simulation results of the flip flop 

Figure 4-22 shows the simulation results of the reclocking flip flop. 

 Re-clocking using flip-flops is better than re-clocking using buffers because any 

mismatch or error in the layout or the fabrication process may lead to different 

timings in the buffer results. However, these mismatches or errors in the flip-flops 

wouldn’t affect the results as the case in the buffers because the output of each stage 

is observed at the delay cell clock edges only.  

Let’s take another example to figure out how is re-clocking done. For example, if the 

input was minimum then maximum, all the re-clocking outputs will change from zero 

to one and then from one to zero, Etc. 
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Figure 4-23 shows the reclocking of the output of the first decision flip-flop “T1” and 

the stages it passes by until it is out. 

 

Figure  4-23 reclocking output stages 

 

Figure 4-24 shows the output of the re-clocking circuit that are inputs to the decoder 

in this case. 
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Figure  4-24 the output of the re-clocking circuit that are inputs to the decoder 
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4.6 TDC Encoder 

The VDL output consists of 15 bit forming 16 possible combination, a series of n 

consecutive ones followed by (15-n) consecutive zeros are produced starting from 15 

consecutive zeros then one followed by 14 consecutive zero and so on till 15 

consecutive ones, the final block in the TDC is the thermometer encoder which 

converts the 15-bit thermometer-coded output of the VDL (T1 through T15) to a 4-bit 

binary output (B0 through B3). 

According to the specific sequence described above the encoder in this case is a 

priority encoder in which the output bits depend on the position of the last ‘1’ in the 

sequence as shown in the following table 

output of the VDL (T1 through T15) binary output (B0 through B3) 
000000000000000 0000 
100000000000000 1000 
110000000000000 0100 
111000000000000 1100 
111100000000000 0010 
111110000000000 1010 
111111000000000 0110 
111111100000000 1110 
111111110000000 0001 
111111111000000 1001 
111111111100000 0101 
111111111110000 1101 
111111111111000 0011 
111111111111100 1011 
111111111111110 0111 
111111111111111 1111 

Table 1 15 to 4 priority encoder 

4.6.1 TDC Encoder Architecture  

Different  architectures can be used for the encoder as ROM implementation or Tree 

implementation, however ROM are complex, area and power consuming and not  fast 

enough for 5GS/s operation. Tree architecture is faster than ROMs. It also introduce 

uniform loading of the thermometer bits but requires high number of logic gates. 

Using Karnaugh maps to directly map the thermometer-coded inputs to the binary 

outputs minimizes the amount of logic required, with comparable speed to the tree 

architecture. Using sum-of-product approach we can easily get the expression for each 
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of the 4 output bits from the previous table while considering other compensations as 

a do not care state.  

The expressions are as follows  

 
B0=T15 +T13.𝑇  ̅̅ ̅̅ ̅ + T11.𝑇  ̅̅ ̅̅ ̅ + T9.𝑇  ̅̅ ̅̅ ̅ + T7.𝑇 ̅̅̅̅  + T5.𝑇 ̅̅̅̅  + T3.𝑇 ̅̅̅̅  + T1.𝑇 ̅̅̅̅  
 
B1=T14 +T10.𝑇  ̅̅ ̅̅ ̅ + T6.𝑇 ̅̅̅̅  + T2.𝑇 ̅̅̅̅   
 
B2=T12 + T4.𝑇 ̅̅̅̅   
 
B3=T8 
 
 
This architecture requires a total of 11 2-input AND gates and 11 2-input OR gates. 

However the OR gate has bad performance at 5GS/s because of the lower mobility of 

holes as compared to electrons, The OR gate has two series PMOS (M1 and M2) in 

the pull-up network (PUN) as shown in the figure below. PMOS device M1 pull the 

output node up to VDD through the resistance of M2. Increasing the width of the 

device increased the drive current but also increased the parasitic capacitance at the 

gate and drain of M1, resulting in no net increase in switching speed. In the AND 

gate, PMOS transistors of the PUN are connected in parallel so each transistor switch 

quickly on its own [2] .figure 4-25 shows the Schematics for (a) AND gate and (b) 

OR gate 

 

Figure  4-25 Schematics for (a) AND gate and (b) OR gate [2] 
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Because of the above problem, the encoder has to be designed using only AND logic. 

The conversion from OR gates to NAND gates was done using boolean algebra. 

Figure 4-26 below shows this conversion. 

 

Figure  4-26 the conversion from OR gate to NAND gate 

 

Thus the encoder is designed using ANDs and NANDs only. No additional inverters 

are needed to invert the thermometer outputs since the flip-flops produce both Q and 

 ̅ (differential outputs).the Schematic for NAND gate is shown if figure 4-27 

 

Figure  4-27 Schematic for NAND gate [2] 

An observation can be made about this logic that there are no logic gates between the 

inputs and B3, while there are 4 gates between the inputs and B0. This results in a 

significant timing mismatch at 5GS/s. so, dummy logic gates have to be inserted so 

that each output has 4 gates between the input and output to have the same 

propagation delay in all outputs and avoid this mismatching. This implementation 

requires 15 AND gates and 17 OR gates. The final implementation is shown in the 

figure 4-28 
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Figure  4-28 Final Minimum-Logic encoder Design [2] 
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The total delay of the encoder should be less than 200ps so it can encode outputs each 

cycle ,so the individual gate should be fast enough to withstand this speed, 

As mentioned before the propagation delay decreases by increasing the sizing of 

transistor which lead to increase the current driven but at certain size the increase in 

the  load capacitance due to increasing size starts to  be significant and no net 

decrease in the propagation delay is achieved by increasing sizing above this point. 

By sweeping on the sizing of the transistors while measuring the propagation delay 

the ratio 
 

 
 is chosen to be 4um in nmos and 8um in pmos  

Figure 4-29 shows the output of the encoder due to ramp input, the output starts from 

all zeros and increases monotonically till all ones  

 

Figure  4-29 the output of the encoder due to ramp input 
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4.6.2 TDC Encoder Layout 

The completed layout for the encoder is shown in figure 4-30. The total area is 

             

 

Figure  4-30 the layout of the encoder 

Figure 4-31 shows the post layout results of the encoder due to ramp input 

 
Figure  4-31post layout results of the encoder due to ramp input 
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Chapter 5: ADC Simulation Results &Performance 

To achieve the requirements of our time based ADC we have used the 5 Giga 

sample/s VTC block with dynamic range =140 mV which we have illustrated in 

chapter 3 and we have used   the TDC block illustrated in chapter 4. 

In this chapter we will present the simulation results and characteristics of our time 

based ADC. 

5.1 Checking ADC Functionality  

To check if the ADC works or not we will apply sin wave as input with reasonable 

frequency (for example 502 MHz) and convert the output to analog using DAC and 

check the output fit with the input sin wave or not. Figure 5-1 show the output if no 

sample and hold exists while figure 5-2 shows the output in presence of sample and 

hold circuit. 

 

Figure  5-1output due to sin wave input without using sample and hold circuit 
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Figure  5-2 output due to sin wave input using sample and hold circuit 

5.2 ADC Output Codes  

Figure 5-3 shows the output codes due to different input voltages   

 

Figure  5-3 output codes VS input voltage 
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5.3 Effective Number of Bits ENOB 

We calculated the ENOB at 3 frequencies with and without the sample and hold 

circuit. 

5.3.1 Low Frequency 502 MHz 

Figure 5-4 shows the frequency domain of the output due to input frequency =502 

MHz without sample and hold and figure 5-5 shows the frequency domain of the 

output due to input frequency =502 MHz with sample and hold circuit. 

 

Figure  5-4 the frequency domain of the output due to input frequency =502 MHz without sample and 

hold circuit 

 

Figure  5-5 the frequency domain of the output due to input frequency =502 MHz with sample and hold 

circuit 

ENOB without sample and hold circuit=3.25 

ENOB using sample and hold circuit= 3.23 
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5.3.2 High Frequency 2457 MHz 

Figure 5-6 shows the frequency domain of the output due to input frequency =2457 

MHz without sample and hold and figure 5-7 shows the frequency domain of the 

output due to input frequency =2457 MHz with sample and hold circuit. 

 

Figure  5-6 the frequency domain of the output due to input frequency =2457 MHz without sample and 

hold circuit 

 

Figure  5-7 the frequency domain of the output due to input frequency =2457 MHz with sample and 

hold circuit 

ENOB without sample and hold circuit=3.62 

ENOB using sample and hold circuit= 3.53 
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5.3.3 Practical High Frequency 1098 MHz 

Figure 5-8 shows the frequency domain of the output due to input frequency =1098 

MHz with sample and hold circuit 

 

Figure  5-8 frequency domain of the output due to input frequency =1098 MHz with sample and hold 

circuit 

ENOB using sample and hold circuit= 3.34 

5.4 Layout and Simulated Power Consumption  

As mentioned in previous chapters the layout of all blocks is done and tested using 

post-layout simulations .The completed layout for the T-ADC is shown in figure 5-9. 

The total active chip area is 68.3um x121.5 um. The simulated power consumption of 

the full TDC running at 5GS/s, is 13.34mw with a 1V supply. 

 

 
Figure  5-9 full layout of T-ADC 
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Chapter 6: Conclusion and Future Work  

In this thesis, we reviewed the concept of time-based analog-to-digital conversion 

using a VTC and a TDC block which employs a completely different technique from 

the conventional ADC and quantizes time at predefined amplitude intervals. 

The main product of this work is a 4-bit, 5GS/s ADC and its layout and it should be 

fabricated afterwards under the 65nm technology. At the maximum input frequency of 

2457, 1098 and 502 MHz, the ENOB is 3.6, 3.3 and 3.2 respectively. 

This work has made several important contributions, including: 

 

 This ADC uses the fastest achieved sampling speed (5GS/s) with this number 

of bits. 

 

 Improving the re-clocking techniques used in other designs  

 

 A tunable TDC against process variation with 3.125ps resolution  

 

 A VTC with speed up to 6.6Gs/s , dynamic range 140mv and delay 50ps  

 

 

6.1 Future Work 

There is plenty of more work to be done to improve the performance of ADC. Some 

suggestions will be offered for future research stemming from the presented work. 

6.1.1 Modifying the Layout  

Since the performance of circuit after layout is not identical with schematic, the size 

of transistors could be modified for layout oriented. To reduce the parasitic effects, 

layout should be improved from a better floor plan.  

6.1.2 Increase the ADC Speed to 6.6GS/s 

As mentioned before the VTC sampling speed is up to 6.6GS/s so we can increase the 

system sampling speed by making some modifications to the TDC core. 
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6.1.3 Adding an On-chip TDC Automatic Calibration Algorithm 

 
An automatic calibration algorithm tunes the delay tuning circuits. It would be 

possible to integrate this logic on-chip using a finite state machine. Instead using a 

code running on a PC to calibrate the chip. 

The idea of calibration is simple. It is mainly based on testing a large number of 

samples and calculating the ENOB. Based on these samples, if the ENOB was small, 

we can count how many times each code was generated. Each code must be generated 

a certain number of times. By comparing the output results with the pre-saved results, 

we can calibrate the TDC through the voltage sources of the delay cells until 

maintaining an acceptable ENOB. 

The merit of this way of calibration is that we don’t need to calibrate the VTC, as this 

way of TDC calibration calibrates the VTC also in return. 

6.1.4 Minimizing the Number of Flip-flops in Re-clocking 

As proposed in the re-clocking part we can minimize the number of flip-flops greatly. 

For example instead of using six re-clocking flip-flops after the first decision flip-

flop, we can only use two or three. 

There are two ways of minimizing the number of flip-flops: 

1) Using more delayed versions of clocks in re-clocking as proposed before. 

For example, as shown in figure 6-1 using clock 6 instead of clock 4 for the first re-

clocking flip flop after the first decision flip-flop instead of clock 4. 

2) Using the same clock of decision flip-flop in the re-clocking flip-flop: 

This means that each re-clocking stage will be of a 200ps delay. For example, using 

clock 1 in all the re-clocking stage if the first decision flip-flop. 
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Figure  6-1 delayed versions of the clock signal  

6.1.5 Optimize the Power Consumptions  

In our design there is no limitation on power consumption. We can modify our blocks 

to maintain a certain level of power consumption   
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Appendix 

 Layout Tutorial  

We are going to illustrate step by step how to implement the layout of a given circuit 

for example CMOS inverter using "tsmc65nm" technology and how to check the 

functionality of the circuit using DRC,LVS and PEX simulations. 

 Building the layout  

The first step is to open the Virtuoso window and select a certain schematic file that is 

implemented earlier or draw a new one. The input/output pins must be higher case as 

shown in figure 1. 

 

 

Figure 1: Circuit schematic 

After finishing the design of the circuit, press check and save first to ensure that there 

are errors in the connections. In order to open the layout window go to the menu bar 

and hit "Launch>>Layout XL" as shown in figure 2.  

A dialogue box will appear asking if you want to create a new layout for this design 

or you have already implemented it before and you just want to modify in it as shown 

in figure 3. If this is your first time to draw the layout then check the button "Create 

New", if not press "Open Existing" and press "OK". 
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Figure 2: The launch window 

Once you press "OK" another dialogue box will appear as illustrated in figure 4. Take 

care that the name of the layout file must be the same name of the schematic file and 

press "OK". 

 

Figure 3: Startup option window 

After closing this window; the layout window will appear joined by another window 

entitled "LSW" which contains the palette of metals, poly-silicon, thin-oxide, N-

select, P-select…..etc. 
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Metals in "tsmc65nm" technology are named as "M1" for metal 1, "M2" for metal 2 

and so on. Poly-silicon is named as "PO", the active (Thin-oxide) is named as "OD", 

the N-select is "NP" and similarly the P-select is "PP". 

 

Figure 4: The new file window 

In order to bring the transistors automatically in the layout window go to the menu bar 

and press "Connectivity>>Generate>>All from sources" If this is the first time to 

create the layout as mentioned in Fig 5. But if the layout file exists already and you 

only want to modify something press "Connectivity>>Update>>Components and 

nets". 

 

Figure 5: The connectivity window 



80 

 

For both cases the same dialogue box will appear like the one shown in figure 6. 

Considering the generate part, there are 3 check boxes "Instances" which is 

responsible for the placement of the transistors; "IO pins" which is responsible for 

placing the I/O pins; and "PR boundaries" which is responsible for placing the 

boundaries and we don't need it in this step so uncheck it as mentioned in figure 6. 

 

Figure 6: The generate/update window 

Select the next tab "I/O pins" then select all the pins as shown in figure 7 then choose 

the type of the pin to be metal 1 and do the same for the 2 menus as illustrated in 

figure 7. 

 

Figure 7: The I/O pin tab 
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After choosing M1 pin for both menus you have to check the box called "Create label 

as" and choose "label" then press options and change the "Height" to "0.1" instead of 

"1" as mentioned in figure 8. Press update and notice that the set of pins are all 

updated. 

 

Figure 8: The set pin label dialogue box 

Before starting to draw in the layout file; first you must make some steps every time 

you open the layout file whether creating a new one or editing an existing one. First 

you have to Press "Ctrl+F" in order to make the layout of the transistors appear. Then 

in order to make the movement of the transistors and components become easy press 

"E". The dialogue box shown in figure 9 will appear, choose the selected options as in 

the figure and press "OK". 

 

Figure 9: The display options window 
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In order to check the DRC while drawing the layout to make the drawing more easy; 

you have to go to the menu bar select "Options>>DRD edit". A dialogue box will 

appear you have to choose "Notify" as in figure 10. 

 

Figure 10: The DRD options window 

Now you shall start drawing the connections you need in the circuit using some 

shortcuts that is very helpful while drawing. 

"Shift+Z": zoom out. 

"Ctrl+Z": zoom in. 

"M": move. 

"S": stretching. 

"R": drawing rectangle. 

"P": drawing polygon. 

Once you finish the connections of the cell, you will need to connect the I/O pins. All 

you have to do is to press "Q" on the text of the pin for example the word "VDD" and 

choose metal 1 then connect it. 
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Running DRC  

"DRC" stands for "Design Rule Check". The main aim of this type of analysis is to 

check that the connections you have done in the layout design will work correctly and 

doesn't violate the standard design rules of the used technology. 

In order to perform this type of analysis, you go to the menu bar and choose 

"Calibre>>Run DRC" a dialogue box will appear as shown in figure 11 asking you for 

the path of the run-set files. As you see in the figure; I have already included the path 

of the file then hit "OK". Press "Run DRC" button and wait until the error list appears. 

Some errors will not be removed until the circuit is fabricated like density errors, 

floating gate errors, ESD errors, and R.1 errors so ignore these errors if there is 

nothing except them and move to the next step. 

 

Figure 11: The DRC window 

 

 Running LVS 

"LVS" stands for "Layout Versus Schematic". This type of analysis checks the 

connections you have done in the layout design and compares it with the connections 

in the schematic design. If the connections were the same then the LVS simulation 

will pass, if not there will be some errors appearing in the LVS report. 
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In order to run this type of simulation, you have to go to the menu bar and choose 

"Calibre>>Run LVS" then a dialogue box will appear like the one shown in figure 12 

asking you to attach the run-set files then press "OK". After this window disappears 

you have to press the "Run LVS" button. 

 

Figure 12: The LVS window 

If your connections were correct the result of the simulation will be a green happy 

smile appearing at the left of the screen as shown in figure 13. If there was something 

wrong in the connection then open the LVS report and check the position of the error. 

 

Figure 13: The LVS result window 
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 Running PEX 

"PEX" stands for "Parasitic Extraction". In this type of simulation the program 

extracts all the parasitic resistances and capacitances that can appear in your design 

and take it in consideration. This in turn will help you to perform post layout 

simulation which means that running the system after extracting the parasitic 

resistances and capacitances; and then comparing the results with the original results 

of the schematic. 

 

Figure 14: The PEX options window 

Running this type of simulation is done by heading to the menu bar and pressing 

"Calibre>>Run PEX". The same window asking for the run-set files that appeared in 

the previous two types will appear again and you will do the same steps then press 

"Run PEX" button. The window shown in figure 14 will appear and you have to 

choose the same options then press "OK" and wait until the window in figure 15 

appears notifying you that the PEX simulation is finished with zero errors and zero 

warnings. 
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Figure 15: The PEX result window 

 

After the appearance of this window you have to close the PEX, and the Layout 

window and save the state.  Then open a new schematic file and build a test-bench for 

the circuit you have just built its layout like the one drawn in Figure 16. 

 

  Figure 16: The test-bench schematic 

Then open the ADE L and run the desired analysis you perform for your project. 

Before hitting the run button first you have to go to the menu bar select 

"Setup>>Environment" as mentioned in figure 17. 
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Figure 17: The ADE L window 

A new window will appear showing you the types of simulations that the program is 

going to run. So in order to make the program run the circuit after extracting the 

parasitic resistances and capacitances you need to place the word "calibre" before the 

word "schematic" as in figure 18. 

 

Figure 17: The Environment options window 

After setting these options you have to run the simulation and see the difference 

between the output in the case of schematic and case of layout. If the results aren't 

satisfying you have to go back to the layout and modify the connections in order to 

have small capacitance and resistance to decrease the delay then run LVS,PEX again. 
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ENOB Calculation Tutorial 

To calculate the ENOB we can use either the histogram method or the fast Fourier 

transform (FFT) method.in the following section we will describe the FFT method in 

details.  

FFT method  

In the FFT method a specified length of data is recorded from the output of the ADC. 

For best results, the test must be arranged so that an exact integer number of input 

cycles occurs during the test period -this is known as coherent sampling. In other 

words, the following should be true 

𝑓   
 

𝑀
    

Where: J is an integer which is relatively prime to M, fs is the sampling frequency and 

M is the record length. 

 
The condition of being relatively prime means that M and J have no common factors, 

i.e., their greatest common divisor is one. For the recommended frequency there are 

exactly J cycles in a record .If M is a power of two, then any odd value for J meets the 

relatively prime condition. That condition also guarantee that M uniformly distributed 

phases will be sampled.  

Steps of FFT method 

The following steps show how we can apply FFT method on the ADC 

 Use a sin wave as an input signal for our system with an amplitude matching 

the full scale input span of the ADC. 

 Calculate ENOB at different input frequencies (502, 1098, 2457…etc.). We 

choose numbers that Fs is not multiple from to obtain right results.  

 If the ADC is nyquist one the practical Fin to calculate at is Fin=Fs/5 

 Take 1024 samples from the output (or 512, 2048…etc.) and choose J that 

satisfy the condition  𝑓   
 

 
    

 Run the simulation on the cadence and choose the transient stop time to 

achieve the required number of samples. 

 Convert the output code of the ADC to analog signal by applying DAC 

equation on it 

  Generate a table from the output graph. Table start by the first right output 

value from the ADC, end at the time achieve the require number of samples 

and step size =1/Fs 
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 Import this table to the MATLAB and run the code  

MATLAB code 

This codes is obtained from sigma-delta ADC toolbox and we edited in it to be 

suitable for our design 

Cadence_Output=data(:,2); %%to extract output from the table of the 

Cadence 
data_stream =Cadence_Output; 
dc_offset = sum(data_stream)./length(data_stream); 
data_stream = data_stream-dc_offset; 
N = length(data_stream);    %Length of your timedomain data (remove 

some samples for settling) 
w=hann(N)/(N/4);    %Hann window %to adjust fft results  
%plot(w) 

  
bw=2500e6; %BW of your system %if ADC is nyquist BW=.5FS 
Fs=5000e6; %sampling freq 
Fin=2457e6;  %frequency of the input test sin wave 
f=Fin/Fs;           % Normalized signal frequency 
fB=N*(bw/Fs);       % Base-band frequency bins (the BW you are 

looking at) 
[snr,ptot,psig,pnoise,output_W]=calcSNR(data_stream,f,3,fB,w,N);  
ENOB=(snr-1.76)/6.02    % Equivalent resolution in bits 
L=length(data_stream); 
 fx=linspace(-Fs/2,Fs/2,L); %frequency axis 
 plot(fx,20*log10(fftshift(output_W)*1000)) 

---------------------------------------functions used in the code-------------------------------- 

function [snrdB,ptotdB,psigdB,pnoisedB,output_W] = 

calcSNR(vout,f,fBL,fBH,w,N) 
% SNR calculation in the time domain (P. Malcovati, S. Brigati) 
% 
% [snrdB,ptotdB] = calcSNR(vout,f,fBL,fBH,w,N) 
% [snrdB,ptotdB,psigdB] = calcSNR(vout,f,fBL,fBH,w,N) 
% [snrdB,ptotdB,psigdB,pnoisedB] = calcSNR(vout,f,fBL,fBH,w,N) 
% 
% vout:         Sigma-Delta bitstream taken at the modulator output 
% f:            Normalized signal frequency (fs = 1) 
% fBL:          Base-band lower limit frequency bins 
% fBH:          Base-band upper limit frequency bins 
% w:            Windowing vector 
% N:            Number of samples 
% 
% snrdB:        SNR in dB 
% ptotdB:       Sigma-Delta modulator output power spectral density 

(vector) in dB 
% psigdB:       Extracted signal power spectral density (vector) in 

dB 
% pnoisedB:     Noise power spectral density (vector) in dB 

  
fBL=ceil(fBL); 
fBH=ceil(fBH); 

signal=(N/sum(w)).*sinusx(vout(1:N).*w,f,N);    % Extracts sinusoidal 

signal  
noise=vout(1:N)-signal;                     % Extracts noise 

components 
stot=((abs(fft((vout(1:N).*w)'))).^2);      % Bitstream PSD 
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ssignal=(abs(fft((signal(1:N).*w)'))).^2;   % Signal PSD 
snoise=(abs(fft((noise(1:N).*w)'))).^2;     % Noise PSD 
pwsignal=sum(ssignal(fBL:fBH));             % Signal power 
pwnoise=sum(snoise(fBL:fBH));           % Noise power 
output_W=stot; 
snr=pwsignal/pwnoise; 
snrdB=dbp(snr); 
norm=sum(stot(1:N/2));%/sum(vout(1:N).^2)*N;    % PSD normalization 
if nargout > 1 
    ptot=stot/norm;  
    ptotdB=dbp(ptot); 
end 
if nargout > 2 
    psig=ssignal/norm; 
    psigdB=dbp(psig); 
end 
if nargout > 3 
    pnoise=snoise/norm; 
    pnoisedB=dbp(pnoise); 
end 

 
function y = dbp(x) 
% Calculates the input value in dB dbp(x) = 10*log10(x) 
% (by S. Brigati, P. Malcovati) 
% 
% y = dbp(x) 
% 
% x:    Input 
% 
% y:    Output in dB 

  
y = -Inf*ones(size(x)); 
nonzero = x~=0; 
y(nonzero) = 10*log10(abs(x(nonzero))); 

 
function y = dbv(x) 
% Calculates the input value in dB dbp(x) = 20*log10(x) 
% (by S. Brigati, P. Malcovati) 
% 
% y = dbv(x) 
% 
% x:    Input 
% 
% y:    Output in dB 

  
y = -Inf*ones(size(x)); 
nonzero = x~=0; 
y(nonzero) = 20*log10(abs(x(nonzero))); 

 
function outx = sinusx(in,f,n) 
% Extracts of a sinusoidal signal (S. Brigati, P. Malcovati) 
% 
% outx = sinusx(in,f,n) 
% 
% in:       Input data vector 
% f:        Normalized input signal frequency 
% n:        Number of simulation points 
% 
% outx:     Sinusoidal signal 
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sinx=sin(2*pi*f*[1:n])'; 
cosx=cos(2*pi*f*[1:n])'; 
in=in(1:n); 
a1=2*sinx.*in; 
a=sum(a1)/n; 
b1=2*cosx.*in; 
b=sum(b1)/n; 
outx=a.*sinx + b.*cosx; 

 


