
Page 1 of 66

"CHIP LINK"

A NOC ROUTER FOR NEXT GENERATION FPGA

A DISSERTION

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS

AND ELECTRICAL COMMUNICATIONS

ENGINEERING

 OF CAIRO UNIVERSITY

 IN PARIAL FULFILLMENT OF THE REQUIREMENTS FOR

 THE DEGREE OF BACHELOR

 MARWAN A. THABET

 ISLAM I. GAD

 KHALED M. TAREK

 MAHMOUD M. MOHAMMED

 OMAR M. ABDEL KARIM

 AMR M. AMR

 JULY 2014

Page 2 of 66

Abstract

As Modern digital integrated circuits go more complex and the numbers of SoCs on a

small electronic chip are rapidly increased, the need for a more sophisticated communication

infrastructure between different IP cores and system on-chips is raised. NoCs is like a trivial

solution to the restrictions created by the limited bandwidth and flexibility y of current cross-

bars and buses. It helps to overcome the clock skew problem on large chips.

The interconnection networks are relatively simple and it is easy to design an inter-

connection network that replaces and solves regular crossbars and buses problems.

Unfortunately, if the basic principles are not understood it is also easy to design an intercon-

nection network that works poorly if at all.

In this thesis we present one of a simple NoCs for the purpose of working on FPGAs

platforms, we start our thesis with couple of introductory chapters gathered from reliable and

rich resources in field that enable the reader to begin his first steps and find his path in inter-

connection design.

In the following chapters we introduce our simple router "CHIP-LINK" from the very

beginning of FPGAs and passing through all the design flow starting with the behavioural

modelling down to the lower levels ending with implementation a floorplan of the proposed

design and simulation results.

Page 3 of 66

Acknowledgements

All thanks to God, the Almighty, for helping us by giving us the patience and courage to

introduce this work.

With deep appreciation we would like to thank Dr/ Hassan Mustafa for his aid and support

all over the year.

Page 4 of 66

Table of Contents

Abstract .. 2

Acknowledgements ... 3

Table of Contents... 4

1 Overview on FPGA... 8

1.1 What is FPGA??? ... 8

1.2 The difference between FPGA and micro-controllers.. 9

1.3 ASIC technology ... 9

2 Network on chips ...12

2.1 Overview ...12

2.2 First routing congestion ...13

2.3 Second timing closure ...14

2.4 Third operating frequency ...14

2.5 Fourth changing IP..14

3 Basics of networking..16

3.1 Introduction..16

3.2 Network Topology ..17

3.3 Routing algorithms ...20

3.4 Core network interface ..20

4 Router Architecture ..22

4.1 Router Pipelining ..24

5 Theory of Allocation ..26

5.1 Overview ...26

2.5 Arbiters ..26

5.2.1 Fixed priority arbiter ..27

5.2.2 Round Robin arbiter ...28

5.2.3 Matrix arbiter...29

5.2.4 6.2.4 Queuing arbiter..30

5.2.5 Tree arbiter ..31

5.2.6 6.2.6 Dynamic-Priority arbiter...32

2.5 6.3 Allocation ...33

5.3.1 Separable Allocation ..34

5.3.2 Lonely output Allocation ..34

5.3.3 Parallel iterative Allocation ...35

5.3.4 ISLIP Allocation ..35

5.3.5 6.3.5 Wave front Allocation ..36

Page 5 of 66

5.3.6 Multi stage Allocation ..37

6 Buffers & switches...39

6.1 Buffers ...39

6.2 Switches...41

6.2.1 Bus Switches ...41

6.2.2 Crossbar switches...42

7 Chapter 7 chip-link router ..45

7.1 First Simple Router ...45

7.1.1 Allocator: ..45

7.1.2 Rest of the Datapath: ..46

7.2 Second Full Router ...47

7.2.1 Allocator: ..47

7.2.2 The FIFO Buffers:..52

7.2.3 Control ..54

7.2.4 Routing Table ..56

7.2.5 Router as a whole block..56

7.3 Simulation and layout results ...57

7.3.1 Simultation results..57

8 Conclusion ..62

9 Appendix 1..64

Page 6 of 66

Figure 1 .. 8

Figure 2 ...10

Figure 3 Different Graphs for both routing and logic Dynamic power 11

Figure 4 ...13

Figure 6 Star Network Topology...17

Figure 5 Bus Network Topology ...17

Figure 9 Tree Network Topology ..18

Figure 7 Mesh Network topology ...17

Figure 8 Ring Network Topology ...18

Figure 10 ...19

Figure 11 ...19

Figure 12 Different Network Connection topologies ..19

Figure 13 Shows the implementation of core interface network and its components. 21

Figure 14 Router Data path ..22

Figure 15 ...25

Figure 16 (A) Shared-bus between agents (B) Shared output ports between agents26

Figure 17 Basic cell of fixed priority arbiter ..27

Figure 18 Implementation of 4 agent fixed-priority..28

Figure 19 (A) Round-robin arbiter (B) 4-agents round-robin ..29

Figure 20 Matrix arbiter...30

Figure 21 Queuing arbiter ..31

Figure 22 Tree arbiter ..32

Figure 55 4X3 allocator ...33

Figure 24 (B) Output first separable allocator (A) Input first separable allocator34

Figure 25 Lonely output allocator...35

Figure 26 Rotating priority of ISLIP Arbiters ..36

Figure 27 Wave-front allocator ...37

Figure 28 Multistage Allocator ...38

Figure 29 One Large Main memory for all ports ..39

Figure 30 Single memory for each port ...40

Figure 31 Virtual channel explanation...40

Figure 32 Bus Switch Timing diagram ..42

Figure 33 Symbol for a 4 × 5 crossbar switch. ...42

Figure 35 Input speedup..43

Figure 36 Output speed up ..43

Figure 34 Original crossbar with no speed up ...43

Figure 37 Switch speed up of two ...44

file:///G:/the%20thesis%203.docx%23_Toc393117894
file:///G:/the%20thesis%203.docx%23_Toc393117896
file:///G:/the%20thesis%203.docx%23_Toc393117897
file:///G:/the%20thesis%203.docx%23_Toc393117921
file:///G:/the%20thesis%203.docx%23_Toc393117924

Page 7 of 66

Figure 38 ...44

Figure 39 Fixed priority Arbiter..46

Figure 40 Netlist simple router ...47

Figure 41 iSLP graph versus other allocations ...48

Figure 42 Allocator Netlist...51

Figure 43 Arbiter Netlist ..51

Figure 44 Arbiter Waveform ..52

Figure 45 FIFO Netlist ..54

Figure 46 Router Netlist ..56

Figure 47 The router simulation waveform..57

Figure 48 ...58

Figure 49 slack histogram ..59

Figure 50 largest slack ...59

Figure 51 Smallest slack ..60

Figure 52 Full floorplan ..61

Figure 53 Closer look to the layout ..61

Page 8 of 66

 Overview on FPGA 1
1.1 What is FPGA???

FPGA which is an abbreviation to Field –Programmable Gate Array, is a pre-fabricated sil-

icon device that can be programmed to be any digital circuit or digital system that the designer

need.

FPGA consists of array of logic blocks of different types such as memories, multipliers,

processors and other logic blocks. These blocks placed and interconnected by routing fabric.

These arrays of blocks are surrounded by input-output blocks which are considered to be

the interface between FPGA and the outside world.

The input-output blocks and the routing fabric connected the logic blocks are programmed

to make FPGA add certain function by a certain programmable technique.

The programming process change the connection between the blocks and choose the input-

output blocks that the designer need to do the function which means that it makes a change in

the behavior of pre-fabricated chip after fabrication.

Figure 1

Page 9 of 66

1.2 The difference between FPGA and micro-controllers.

In the field of digital electronics and communications, micro-controllers are known as

simple computers that can be placed in a single chip and programmed to do simple tasks for

other hardware.

Micro-controllers have some peripherals embedded in it such as memory and timers.

They can be designed to do its certain task as a dedicated device .

FPGA contains millions of logic blocks that can be electrically programmed to perform

a certain task ,its more flexible than controllers as the micro-controllers has its own circuitry

and instruction set which makes a restriction on the programming to do a certain task .But

FPGA have a bigger usage area.

FPGA consumes power than controllers making them un suitable for applications where

power drain is an issue.

FPGA takes a longer time to set up than micro-controller as you would have to write all

the code from scratch and convert it to machine language; also building devices with FPGA

are more costly than micro-controllers, that are why FPGA’s are usually seen in products that

have a high degree of complexity but with low demand.

In the market level, when the demand rises and mass-production becomes necessary, the

circuit is moved to AISC.

1.3 ASIC technology

ASIC which is an abbreviation to application-specific integrated circuit, is a micro-chip

designed for a specific application.

ASIC take months to fabricate and cost hundreds of thousands up to millions of dollars

during fabrication process. It is much more than FPGA fabrication cost.

The draw-backs of FPGA over ASIC appears in area, speed and power consumption in

which FPGA occupies area 20 to 30 times more than the area occupied by ASIC. Speed per-

formance in FPGA is 3 to 4 times slower than ASIC speed chip. Also FPGA consumes 10

times dynamic power than ASIC power consumption.

These disadvantages of FPGA in area, speed and power consumption arises from the

programmable routing fabric in FPGA.

ASIC design is more difficult and expensive. Also the investment required to produce

a perfect useful design consists of more items in terms of money and time such as CAD tools

Page 10 of 66

for verification, simulation and timing analysis. So due to these high cost and the need for

higher return on investment most digital design forward towards FPGA implementation. But

in the market field the most importance thing is to have a perfect product to be acceptable for

users so the companies have the capability to go to ASIC technology and handle high cost in

order to make a perfect product due to the disadvantages of FPGA implementation. So the op-

timized design in FPGA to get rid of its draw-backs in area speed and power consumption will

spared high cost and makes the market field more comfortable.

“Figure 2” shows that the cost to build ASIC starts higher than FPGA but in a certain level in

manufacturing the cost of FPGA reaches the cost of ASIC at a critical point.

Figure 2

In deep volume in k units the cost of FPGA becomes more than that in ASIC and continue to

be more high which makes FPGA has no value in the market field due to the higher cost in the

future.

The optimized design will introduce new technology in the world of digital design like

nanotechnology [4].

Page 11 of 66

Figure 3 shows that the routing power becomes more significant percentage of the total power

and expected to exceed the logic power with technology scaling. The increased inter-connect

and routing complexity reduces FPGA speed and scalability. This is the reason of why design-

ers seek to optimize the routing techniques in FPGA.

Figure 3 Different Graphs for both routing and logic Dynamic power

Page 12 of 66

 Network on chips 2

2.1 Overview

Due to the draw-backs of FPGA in area, speed and power consumption, electronics en-

gineers must be able to solve these problems by optimizing the design in FPGA to make FPGA

more reliable and usable in human life.

Engineers introduce the solution by making a full-network fabricated in FPGA chip

which called network on chip technology in FPGA system design and from here we are able to

get rid of the dis-advantages.

Due to the increasing of logic blocks and the need to integrate millions of blocks in a

single system on chip like FPGA, communication management becomes more critical as more

functions that supported latency and bandwidth requirements in an interconnect fabric must be

introduced.

Designers call network on chip technology a front-end solution to a back-end problem.

It is like to make more bridges between two nodes to facilitate the traffic of data between these

two nodes.

We can summarize why we use network on chip in digital systems on chip due to four reasons:

1. Reduce wire routing congestion.

2. Ease timing closure.

3. Higher operating frequencies.

4. Changing IP Protocol easily.

Page 13 of 66

Figure 4

In the previous figure, there is an example of network in system on chip which is a block con-

tains a large number of logic blocks connecting with each other by routers that introduces

multi paths come and go between the logic blocks.

By looking to these figure, you will be able to understand that network on chip is like

building bridges and paved roads in an empty area.

We will discuss the requirements of why we use network on chip in the following points:

2.2 First routing congestion

Network on chip avoids routing congestion by reducing number of connected wires in a

single fabricated chip.

Routing congestion becomes more significant factor in digital systems when number of

IP blocks increased in it.

Wire routing congestion occurs in digital systems when a lot of wires are routed in a

narrow space which leads to errors in routing process and introduces more delay.

Since the wires that carry the data are routed after power supply and clock wires as the

signal wires are smaller and shorter than clock wires and power supply wires so the signal

wires are constrained because they must be routed in a manner that accommodates the existing

power supply at clock wires.

Page 14 of 66

As system on chip designs becomes more complex, routing congestion increases system

on chip complexity due to shrinking sizes of transistors which lead to:

1. More transistors per area make the system design more complex.

2. Large system on chip enables the opportunity to integrate more IP blocks on one chip.

The number of wires required for system on chip grows proportional to the square of

number of transistors in one chip.

3. The cross-sectional size of wires connecting IP blocks shrinks less than size of transis-

tors.

2.3 Second timing closure

Network on chip introduces solution of the problem of timing closure in which system

on chip with old generations suffers from the problem of delay and not managing the time ac-

curately but now in new generation SoC, network on chip introduces a design in pipelining

concept to overcome the timing closure issue.

Pipelining concept is to make some operations at the same time and it will be discussed later

in this book.

2.4 Third operating frequency

NoC technology simplifies the hardware requires for switching and routing functions so

it makes the design to reach higher operating frequency.

By applying the pipelining concept, more data transferred in a less time and the bandwidth

will be managed better so the system will be operated at higher frequencies.

Also network on chip follows GALS technology which is synchronous modules with

locally generated clocks with asynchronous connections between them.

GALS is an abbreviation to globally asynchronization locally synchronization.

2.5 Fourth changing IP

NoC deals with packets in which there is a block that splitting the data into packets

which are small versions of the original data. These blocks are placed before the router and

called network interface cores NIC.

Page 15 of 66

Network on chip change the formation of data from original data into packets. In net-

work engineering, we call this issue changing from IP to transport layer.

Page 16 of 66

 Basics of networking 3
3.1 Introduction

Because the demand for interconnection networks that have grown more rapidly than

the capability of the underlying wires, interconnection networks have become a critical bottle-

neck in most systems.

The main function of the network is that introducing the connection between the cores

like processors, multipliers and logic blocks to perform the transferring of data between them

accurately.

The transferring process of the data must be accurate which means that translation of

data between two points' source and destination without losses and without losses in band-

width.

Inter-connection networks are used in digital systems which have many components to

connect. In computer systems, networks are used to connect processors with memories and I/O

ports. Also in FPGA, networks are used to connect the logic blocks with each other and con-

nect with the input-output blocks to make all available paths to make the using of FPGA more

simple and reliable to the designers and users.

Networks are more important in FPGA as FPGA contains millions of blocks which need

to be connected with each other.

Also inter-connected networks are used to connect many FPGA’s with each other fabricated in

a single chip.

Inter-connection network play an important role in the performance of the system in

which the inter-connection networks between the cores determines the latency and bandwidth

of the system which are two key performances in the digital systems.

There are some things that we must interest when we deal with networks in which these things

are considered to be the basics of networking [1], they are:

1. Network Topology.

2. Routing Algorithms.

3. Flow Control.

4. Router Architecture.

5. Performance of Network.

Page 17 of 66

3.2 Network Topology

In communication networks, network topology is a description of the arrangement of nodes

and lines in the network.

There are two types to describe a specific network physical topology and logical topology.

Physical topology of a network is the geometry lay-out description of the network while logi-

cal topology refers to how signals in the paths go in a certain direction.

There are many types of physical topology like:

1. Bus Topology in which all the nodes in the network connect with the main bus as in

Fig 5.

2. Star Topology in which all the nodes connect with the main node as in Fig 6.

3. Ring Topology in which all the nodes connect with each other in a circle way as in

4. Fig 7.

5. Token Ring Topology is the same as ring but the signals go in only one direction.

6. Mesh Topology in which all the nodes connect with each other as in Fig 8.

7. Tree Topology which is a combination of much architecture in one architecture as in

fig 9.

Figure 6 Star Network Topology

Figure 5 Bus Network Topology

Figure 7 Mesh Network topology

Page 18 of 66

Figure 9 Tree Network Topology

1. Torus topology in which all nodes connected with each other like mesh topology but

in more than one dimension like 2-D in fig 3.6 and 3-D in fig 3.7.

Figure 8 Ring Network Topology

Page 19 of 66

Figure 10

Figure 11

Figure 12 Different Network Connection topologies

Page 20 of 66

3.3 Routing algorithms

Routing is the main work done by a network in which the router is responsible to man-

age the traffic in the network and find the best route for the data to go on.

The most important criterion for routing is where and when the routing function is determined.

The router can perform its role in the network by getting some information about the network

status in order to make the decisions for choosing the best path for the data to transfer between

the source and the destination.

There are many routing algorithms that the router follows to collect its information about the

network or to choose the perfect path for the data between the two nodes:

1. Deterministic routing algorithm in which it generates the same single routing path for

given pair of source and destination addresses which is the shortest one.

2. Oblivious routing algorithm in which it don't take into consideration any other infor-

mation except the addresses, equally to deterministic routing. The routing decision is

oblivious to the status of network traffic. Any deterministic routing is oblivious, but

oblivious routing is not necessarily deterministic.

3. Adaptive routing algorithm in which it uses information about network traffic and

channel status to avoid congested or faulty regions of the network. Adaptive routing

do two main tasks, firstly the routing function as it delivers to a set of output channels

if exists. Secondly the output selection function as it selects one of free output chan-

nels if exists using local status information.

Routing algorithms are implemented using look up tables as the source nodes and the

router have routing tables which includes all information about the network like the number of

nodes in the network and the status of paths. The router uses these tables to maintain its algo-

rithm [3][1].

3.4 Core network interface

CNI or core network interface is a digital circuit placed between the network and the IP

cores which are the source of the data.

Page 21 of 66

The function of the network is to transfer the data from core to another core but the network

doesn’t deal with the data, it deals with small versions of these data.

The core network interface split the data into packets before entering the data to the

network to realize packet switching concept.

Figure 13 Shows the implementation of core interface network and its components.

The CNI architecture assumed in this research provides simple traffic translation to enable

inter-core communication across the network-on-chip. For more complex systems, other func-

tionality may be added to this base model as necessary. Other researchers present a thorough

examination of additional functionality that may be added [5].

Page 22 of 66

 Router Architecture 4
Router is the block that performs routing process and manages the traffic in the network.

By considering the router as a closed box, it has inputs and outputs. The inputs are called input

channels and outputs are called output channels in which each input or output channel repre-

sent a node in the network and the router connect between these nodes and transfer data

between them.

The router consists of two main blocks which responsible of do two main functions:

1. Data-path block.

2. Control unit block.

The data path block is the block that responsible of transfer the data from input chan-

nels to output channels while the control unit block is the block that controls the routing

process in which it is makes the decisions on the path and knows when the data transfer and

when the router is stall.

The data path block consists of input and output buffers and switches. Control unit

block consists of arbiters, switch allocators and virtual channel allocators. All these parts will

be discussed later in detail in chapter 5.

Figure 14 Router Data path

Page 23 of 66

The router deals with the data at different levels in which we have:

1. Data or Information, this is the original data that the router wants to transfer between

two nodes.

2. Packets, this is the data after splitting in which the network doesn't deal with the orig-

inal data but the data is splitting into small versions of it called packets. The data was

splitting by the network interface core.

3. Flits , this is small versions of packets in which the router deals with the data at flit

level when it works pipelined.

4. Credits , this is the flits that move from output channels to input channels to tell the

control blocks that the data received and the output buffer is allocated by these data. In

other way, we can describe the credit that the number which describes the number of

occupied locations in the buffer.

5. For example, the output buffer has 4 locations in which each location can carry one

flit. If the output buffer has 3 flits so the credit field at the output will have 3.

The router consists of some components in which each component do its role in the routing

process as follows:

- Buffers are the blocks that responsible of storing the data in it. This process is very

important as the router store the data at its input until the data is received correctly at

the output and with no errors to guaranteed accurate transmitting and receiving. Also

the importance of storing the data at the input appears when all the paths and routes in

the router are allocated so the data must be maintained in the input buffer until a path

become free to avoid router congestion. Storing the data at the output buffer is very

important as the data must be stalled until the next node or the next router in the net-

work become free to receipt it.

- The switch is the block that responsible of connecting the input and output channels

of the router. It is considered to be the heart of the router. There is much architecture

that can implement the switch with them such as a single bus connects the input and

output buffers or can take cross-bar architecture. Architectures of switches will be dis-

cussed in chapter 5 in detail.

- Switch allocator is the block which controls the switch and tell it which input will be

connected to which output.

Page 24 of 66

- The physical channel is the link or the wire that carry the data. Now, in the new gen-

eration of digital systems the data is needed to reach more than one destination and the

routers becomes very complex so designers split the physical channel to group of

channels which called virtual channels. Each virtual channel can carry different data

or the same data which transfer to different destinations. With the use of virtual chan-

nels concept, the router can do its function by following pipelining concept.

- Virtual channel allocator is the block that allocates the virtual channels to the flits. It

does its task to complete the path between input and output.

4.1 Router Pipelining

Pipelining is the exploitation of all resources in all times by making all the re-sources

work at the same time.

When all the blocks in the router such as buffer, switches and allocators work in the

same times and in all cycles, we say that this router is router-based pipelined.

The great advantage of following the pipelined concept is managing the time and overcoming

the delay.

For example, a router has 4 cycles pipelining to get the flit from input to output in which:

- First cycle is route computation, in this cycle the router do its calculations to know the

destination of the data based on the information that it takes from the head flit. The

head flit is the first flit in the packet.

- Second cycle is virtual channel allocation, in this cycle the allocator allocates a virtual

channel for the flit.

- Third cycle is switch allocation, in this cycle the allocator allocates the switch for the

flit.

- Fourth cycle is switch traversal, in this cycle the process of transferring the flit is done

and the flit reaches the output buffer waiting for entering the next node in the network.

If the data consists of 4 flits so in case of non-pipelined router each flit will take 4 cycles

to reach to the output port so the 4 flits will take 16 cycles to reach their destination. But in

case of pipelined-router when a flit is in a stage from four stages, another flit will be in another

stage at the same time so the 4 flits will take 7 cycles to reach their destination as shown in

figure.

Page 25 of 66

Figure 15

Note that this is ideal case in which this description of the stages of the pipelined router

hasn’t take in consideration the happen of the stalls.

Note that the head flit only will make route computation and virtual channel allocation

because these two stages must be made at packet level and there is no need for all flits in

the same packet to enter these stages.

Now, in modern routers the designers optimize the pipeline process to make the sys-

tem more speed by many methods such as speculation method which is a method depend on a

technique that predict the next step with high success percentage and this done by using either

hardware or software. Now, the design will be more complex but more optimized into the best.

Also designers can play in hardware and make it smarter to get an advantage such as

making virtual channel allocation and switch allocation in the same cycle.

Stalls means something happen makes the router stop in a cycle or more for a certain flit.

There are packet stall and flit stall. When the router fails in virtual channel allocation so this is

called packet stall and when it fails in switch allocation so it is called flit stall.

Packet stall occurs due to virtual channel is busy. For example, the head flit of one

packet is arrived before tail flit of the previous packet so the virtual channel is allocated to the

first packet while the second packet is stalled. Also, routing cannot be completed due to some

errors such as the router fails to allocate a virtual channel so it repeats the allocation in the

next cycle.

Flit stall occurs when there is a fail occurs in switch allocation so the router need to

repeat the allocation in the next cycle. Also, if the output buffer is full so there is no credit

available so the flit is unable to do switch allocation until the output buffer free a location. Al-

so, flit stall occur when input buffer is empty so there is no flits available to do switch

allocation.

Page 26 of 66

 Theory of Allocation 5

5.1 Overview

Concept of allocation rose as many NoC’s are using packet switching technique to make

the best use of network limited resources and to distribute these resources fairly to requesting

agents, unlike circuit switching where each resource is dedicated to a specific agent.

The resources to be managed in a NoC are the output ports as multiple packets may

compete to request a specific port and to share a specific route, this conflict will be settled by a

Channel allocator (or a Virtual channel allocator for more advanced allocation). Other possi-

ble resource is the transmission bus (or crossbar) that is limited by a small size to reduce total

area on chip so it has to be managed to multiple agents, a switch allocator will be used to dis-

tribute this resource to multiple packets traversal on a single bus.

Figure 16 (A) Shared-bus between agents (B) Shared output ports be-

tween agents

5.2 Arbiters

The control paths of routers are largely composed of allocators which depend mainly on

arbiters to distribute a single resource to a multiple agents.

The process of arbiters is to generate grants G to a set of requests R under two conditions:

- Grants only generated to agents issued their requests.

- Single grant to each request.

Page 27 of 66

5.2.1 Fixed priority arbiter

This kind of arbiters distributes its resource on a linear fixed order, either ascending or

descending order and it has the simplest design among all arbiters.

the idea of his arbiters is to grant access to the first agent issued its request and this can be

implemented by inverting that issued request as carry for the other agents to block the from

passing their request through . The basic implementing cell is shown in figure 6.3 and in figure

6.4 is a 4 agents fixed priority arbiter.

Figure 17 Basic cell of fixed priority arbiter

Page 28 of 66

Figure 18 Implementation of 4 agent fixed-priority

5.2.2 Round Robin arbiter

It's a sort and an extension of priority arbiters as fixed priority arbiters, priority is

granted to a specific agent by setting a signal p, when the arbitration is done this agent be-

comes the lowest priority and the next agent becomes the highest priority.

But some applications require unfair distribution of grants among agents so a

weighted Round Robin is a good solution for such applications. So a weighted agent grants the

resource or a time equal is weight divided by the total weights of the requests.

Page 29 of 66

Figure 19 (A) Round-robin arbiter (B) 4-agents round-robin

5.2.3 Matrix arbiter

This kind of arbiters implements a least recently served order of priority, which means

that for a pair of requests A,B there is a state bit IA,B that tells whether A is higher in priority

than B or not. If one request received its grants it clears all its state bits to become lowest in

priority.

That state bit is stored in a register, and for every pair of inputs there is a register to store their

state bit(s) that gives the Matrix scheme figure 6.7.

Page 30 of 66

Figure 20 Matrix arbiter

5.2.4 6.2.4 Queuing arbiter

As it may appear of the name, that kind of arbiter relays on serving the first issued re-

quest "first come first serve" or "FIFO" policy.

When agent issues a request it also sets a counter and a time indicator and a set of comparators

that help to determine which agents issued its request first.

Page 31 of 66

Figure 21 Queuing arbiter

5.2.5 Tree arbiter

To avoid large sizes of arbiters in large applications tree arbiters divides the requests issued by

agents into groups. The arbitration process is done over two or more stages

first selecting between groups and selecting agent among all agents in each group.

Page 32 of 66

Figure 22 Tree arbiter

5.2.6 6.2.6 Dynamic-Priority arbiter

The kind of arbiters prioritizes grants to agents that satisfy certain criteria. That can be used in

NoC which has more dynamic algorithms like adaptive routing these arbiters can give high

priority for low traffic ports for example.

Page 33 of 66

5.3 6.3 Allocation

Figure 32 4X3 allocator

The purpose of allocation is to match a set of resources to a set of agents which may re-

quest one or more resource in a way that each at most one destined output port is assigned to

one requesting input port.

The process of allocation is subjected to two main constraints:

- Resources are only granted to agents requests, non-destined resources aren't granted.

- Each single agent grants at most a single resource and vice versa.

Allocators can mathematically modelled by its number of requests and agents for example

aI X K allocator means that we have a set of I agents are requesting a group of K resources .

The allocator is to generate a vector of grants equals the number of resources and provide this

grant to each winning agent.

Page 34 of 66

5.3.1 Separable Allocation

In a separable allocator we perform two arbitrations one arbitration is done at input

ports and the other is done at the output ports.

In input first allocator arbitration is done firstly at the input ports selecting a single request at

each port then arbitration is done at the output ports to select a request for each output ports.

That kind of arbitration may not get maximum matching as a winning agent may lock

the only request from other agents.

A separable allocator can also be realized by performing the output arbitration first

and then the input arbitration where the first rank of three 4-input arbiters selects the winning

request for each output port. Only one of the resulting signals will be asserted for each output

port. The input arbiters then take as input, pick the winning request for each input, and output

this result on grant signals ensuring that at most one of grants s asserted for each input.

Figure 24 (B) Output first separable allocator (A) Input first separable al-

locator

5.3.2 Lonely output Allocation

To solve the problem of locking input with one request in separable input first alloca-

tors, lonely output allocator was introduced to overcome this problem by adding a stage before

the input arbiters that counts the number of requests for each output. The input arbiters then

give priority to requests for outputs that have low request counts the lonely outputs. This re-

duces the number of conflicts at the output stage, resulting in a better matching.

Page 35 of 66

Figure 25 Lonely output allocator

5.3.3 Parallel iterative Allocation

It's a version of separable allocators but it depends on a series of probabilistic separa-

ble arbitration.

Randomizing the arbitrations acts to probabilistically stagger the input arbiters, this

makes it unlikely that they will all pick the same input, and it also can eliminate that input is

repeatedly locked out due to deterministic priority adjustments.

5.3.4 ISLIP Allocation

ISLIP is another version of separable allocators. it uses round-robin arbiters and

changes priority when that arbiter generates a winning grant. That algorithm helped to re-

duce conflicts at the output stage. Priorities are updated so that a winning request has the

lowest priority in the next round.

Page 36 of 66

Figure 26 Rotating priority of ISLIP Arbiters

5.3.5 6.3.5 Wave front Allocation

Unlike the separable allocators this wave front allocation makes he both the input

stage and output stage arbitration at same time.

The wave front allocator works by granting row and column tokens broken to a diago-

nal group of cells, in effect giving this group priority.

A cell with a row(column) token that is unable to use the token passes the token to the

right (down),wrapping around at the end of the array. These tokens propagate in a wave front

from the priority diagonal group, hence the name of the allocator. If a cell with a request re-

ceives both a row and a column token, either because it was part of the original priority group

or because the tokens were passed around the array, it grants the re-quest and stops the propa-

gation of tokens. To improve fairness, the diagonal group receiving tokens are rotated each

cycle. However, this only ensures weak fairness.

Page 37 of 66

Figure 27 Wave-front allocator

5.3.6 Multi stage Allocation

Some applications require multiple stages of allocation. For example, in a router, we might

want to grant requests to high-priority packets first and then allocate any remaining resources

to lower-priority packets. In another application, we might want to grant requests for multicast

traffic first and then allocate remaining ports to unicast traffic.

Page 38 of 66

Figure 28 Multistage Allocator

Page 39 of 66

 Buffers & switches 6
6.1 Buffers

Input Buffers hold the flits waiting for virtual channels and the switch bandwidth also

output buffers hold the flits to enter the next node.

The flow control protocol allocates space in these buffers to hold flits. The buffers provide

space for arriving flits so that the incoming channel needn't be slowed when a packet is de-

layed due to a pipeline stall or a contention for a virtual channel or physical channel.

There are many techniques to design the buffer and partitioning it as follows:

1. Using of central memory for all input ports in which all the ports hold their flits in the

same memory as in Fig 6.1.1

2. Using of a memory per physical channel as in Fig 6.1.2.

3. Using of a memory per virtual channel as in Fig 6.1.3.

Note that the third technique is the best because it is the fastest one but it is complex so we

choose our design depending on what we need and what we prefer in our circumstances and in

our project.

Figure 29 One Large Main memory for all ports

Page 40 of 66

Figure 30 Single memory for each port

Figure 31 Virtual channel explanation

The lost ring in the design of buffers that how we manage the data inside it, how data enter

and leave the buffer. There are two famous techniques in these issue:

1. Circular buffer technique.

2. Linked list technique.

Page 41 of 66

These techniques are similar to C++ programming language in managing the data inside

the memory in which the circular buffer technique is similar to mnanging the data inside an

array in C++ and linked list is similar to managing the data inside dynamically allocated

memory inC++ [1].

6.2 Switches

The switch is the main part of router. It is where that packets and flits are actually rout-

ed to their wanted output port. The most important design parameter with a switch is its

“Speedup” -the ratio of the switch bandwidth to the minimum switch bandwidth needed to

support full throughput on all i/ps & o/ps.

6.2.1 Bus Switches

When a flit time consists of more internal clock cycles (phit times) than the number of

ports, a bus may be used as a switch, as illustrated in Figure 17.5. The timing of this type of

bus switch is shown in Figure 17.6. Each input port of the switch accepts phits of a flit and

accumulates them until it has at least P phits, where P is the number of input switch ports.

Once an input port has P phits, it arbitrates for the bus. When it acquires the bus, it transmits

the P phits, possibly an entire flit, broadside to any combination of output units. The receiving

output units then DE serialize them and transmit them one at a time to the downstream logic.

The Timing diagram in Fig. 6.2.1 shows a 4 × 4 bus switch in which each flit consists

of four phits. Flits a,f,k, and p arrive on the four input ports, one phit at a time, during the first

flit time; flits b, g, l, and q arrive during the second flit time; and flits c, h, m, and r arrive dur-

ing the third flit time. While the ith flits are arriving, the (i−1)th flits are transmitted broadside

across the bus, one flit being transmitted each phit time, and the (i − 2)th flits are being serial-

ized on the output ports.

Page 42 of 66

Figure 32 Bus Switch Timing diagram

6.2.2 Crossbar switches

n x m crossbar switch can connect from n inputs to m outputs.

Speed up: it is the ratio of provided bandwidth to required bandwidth.

We can provide speedup on the input of the crossbar, the output of the crossbar or on both
sides.

This speedup can be provided in space (additional inputs) or time (higher bandwidth inputs).

Figure 33 Symbol for a 4 × 5 crossbar switch.

Page 43 of 66

Figure 35 Input speedup

This switch has input speed up of two resulting in a simpler allocation problem.

Figure 36 Output speed up

Figure 34 Original crossbar with no speed up

Page 44 of 66

Figure 37 Switch speed up of two

Figure 38

This graph shows the relation between throughput and the input speedup .

Page 45 of 66

 Chapter 7 chip-link router 7
7.1 First Simple Router

After explaining each part in the router designed for NoC purpose we started our first

step by designing a simple router without buffers - just single reg at each port.

7.1.1 Allocator:

We needed just to check that we can achieve the function of routing so we used fixed

priority arbiter in implementing our Allocator [1].

The code :

module arbiter(clk, thisPort, r0, r1, r2, r3, select, shift) ;

input clk ; // chip clock

input [1:0] thisPort ; // identifies this output port
input [3:0] r0,r1,r2,r3 ; // top four bits of each input phit

output [3:0] select ; // radial select to multiplexer

output shift ; // directs shifter to discard upper two bits

wire [3:0] grant, select, head, payload, match, request, hold ;

wire [2:0] pass ;

reg [3:0] last ;

wire avail ;
assign head = {r3[3:2]==3,r2[3:2]==3,r1[3:2]==3,r0[3:2]==3} ;

assign payload = {r3[3:2]==2,r2[3:2]==2,r1[3:2]==2,r0[3:2]==2} ;

assign match =

{r3[1:0]==thisPort,r2[1:0]==thisPort,r1[1:0]==thisPort,r0[1:0]==thisPort} ;

assign request = head & match ;

assign pass = {pass[1:0],avail} &~ request[2:0] ;

assign grant = request & {pass,avail} ;
assign hold = last & payload ;

assign select = grant | hold ;

assign avail = ~(|hold) ;

assign shift = |grant ;

always @(posedge clk) last = select ;

endmodule

Here you can see that we use a combinational circuit as there is no dependency on previous or

current state of grants just only dependency on the input requests.

If you track the code you will find it implements the following circuit "see Fig. 33".

Page 46 of 66

Figure 39 Fixed priority Arbiter

7.1.2 Rest of the Datapath:

Then we used this arbiter block with other registers and multiplexers to make the full

simple router implementation.

The code:

// simple four-input four output router with dropping flow control

module simple_router(clk,i0,i1,i2,i3,o0,o1,o2,o3) ;

input clk ; // chip clock

input [17:0] i0,i1,i2,i3 ; // input phits

output [17:0] o0,o1,o2,o3 ; // output phits

reg [17:0] r0,r1,r2,r3 ; // outputs of input registers

reg [17:0] o0,o1,o2,o3 ; // output registers

wire [17:0] s0,s1,s2,s3 ; // output of shifters
wire [17:0] m0,m1,m2,m3 ; // output of multiplexers

wire [3:0] sel0, sel1, sel2, sel3 ; // multiplexer control

wire shift0, shift1, shift2, shift3 ; // shifter control

// the four allocators

alloc a0(clk, 2'b00, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel0, shift0) ;

alloc a1(clk, 2'b01, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel1, shift1) ;

alloc a2(clk, 2'b10, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel2, shift2) ;
alloc a3(clk, 2'b11, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel3, shift3) ;

// multiplexers

mux4_18 mx0(sel0, r0, r1, r2, r3, m0) ;

mux4_18 mx1(sel1, r0, r1, r2, r3, m1) ;

mux4_18 mx2(sel2, r0, r1, r2, r3, m2) ;

mux4_18 mx3(sel3, r0, r1, r2, r3, m3) ;

// shifters

shiftp sh0(shift0, m0, s0) ;
shiftp sh1(shift1, m1, s1) ;

shiftp sh2(shift2, m2, s2) ;

shiftp sh3(shift3, m3, s3) ;

// flip flops

always @(posedge clk)

begin

r0=i0 ; r1=i1 ; r2=i2 ; r3=i3 ;
o0=s0 ; o1=s1 ; o2=s2 ; o3=s3 ;

end

endmodule

Page 47 of 66

Then we simulated it and run net list drawing to give the following RTL.

Figure 40 Netlist simple router

7.2 Second Full Router

Our Full router passed by some steps to be in its final form which consists of fifo input

buffers, Routing table "address translation block", Allocator, Cross bar and fifo output buffers.

we can simplify these steps for illustration as following.

7.2.1 Allocator:

As we know the allocator is one of the most important blocks that the whole routing

and resources allocation depends on - good allocation technique give the most optimum tech-

nique.

We choose the Islip allocation technique which have the advantage over other allocation tech-

niques as we illustrated before and as this figure shows fig 7.3 .

Page 48 of 66

Figure 41 Islip graph versus other allocations

The Islip allocation technique uses 3 way hand shake for granting a given resource to a given

agent which may introduce delay to our router so we needed to make it more simple so all

what we need from Islip technique is that it achieves the fair round-robin plus granting that

most of the output ports which have conflict are granted to one input port only, which we

achieved by the following allocator code with just only one cycle not 3 cycles as the iSLP al-

location technique.

Arbiter The code:

/*

* Round-robin arbiter with variable Priority vector

*/

`timescale 1ns/1ps

module arbiter(clk,

rst,

req,

grant,
anyGrant);

parameter N = 4;

parameter S = 2; // ceil of log_2 of N - put manually

parameter CHOISE = 0; // 0 blind round-robin and 1 true round robin

// I/O interface

input clk;

input rst;

Page 49 of 66

input [N-1:0] req;

output [N-1:0] grant;

output anyGrant;

// internal pointers
reg [N-1:0] Priority; // one-hot Priority vector

//reg [N-1:0] trig;

// Outputs of combinational logic - real wires - declared as regs for use in a

always block

// Better to change to wires and use generate statements in the future

 reg [N-1:0] g[S:0]; // S levels of Priority generate

reg [N-1:0] p[S-1:0]; // S-1 levels of Priority propagate

//reg [N-1:0] gf[s:0]; //
// internal synonym wires of true outputs anyGrant and grant

wire anyGnt;

wire [N-1:0] gnt;

//wire [N-1:0] gntf;

assign anyGrant = anyGnt;

assign grant = gnt;

//assign trig = req & clk;
//assign gntf = gnt;

///

// Parallel prefix arbitration phase

///

integer i,j;

// arbitration phase

//always@(posedge clk) begin
always@(req or Priority)

begin

// transfer request vector to the first propagate positions

p[0] = {~req[N-2:0], ~req[N-1]};

// transfer Priority vector to the first generate positions

g[0] = Priority;

// first log_2n - 1 prefix levels

for (i=1; i < S; i = i + 1) begin
for (j = 0; j < N ; j = j + 1) begin

if (j-2**(i-1) < 0) begin

g[i][j] = g[i-1][j] | (p[i-1][j] & g[i-1][N+j-2**(i-1)]);

p[i][j] = p[i-1][j] & p[i-1][N+j-2**(i-1)];

end else begin

g[i][j] = g[i-1][j] | (p[i-1][j] & g[i-1][j-2**(i-1)]);

p[i][j] = p[i-1][j] & p[i-1][j-2**(i-1)];
end

end

end

// last prefix level

for (j = 0; j < N; j = j + 1) begin

if (j-2**(S-1) < 0)

g[S][j] = g[S-1][j] | (p[S-1][j] & g[S-1][N+j-2**(S-1)]);

else
g[S][j] = g[S-1][j] | (p[S-1][j] & g[S-1][j-2**(S-1)]);

end

end

//end

// any grant generation at last prefix level

assign anyGnt = ~(p[S-1][N-1] & p[S-1][N/2-1]);

Page 50 of 66

// output stage logic

assign gnt = req & g[S];

///

// Pointer update logic
// ------------------------

// Version 1 - blind round robin CHOISE = 0

// Priority visits each input in a circural manner irrespective the granted

output

// ------------------------

// Version 2 - true round robin CHOISE = 1

// Priority moves next to the granted output

// ------------------------
// Priority moves only when a grant was given, i.e., at le ast one active request

//

always@(posedge clk)

begin

if (rst == 1'b1) begin

Priority <= 1;

end else begin
// update pointers only if at leas one match exists

if (anyGnt == 1'b1) begin

if (CHOISE == 0) begin // blind circular round robin

// shift left one-hot Priority vector

Priority[N-1:1] <= Priority[N-2:0];

Priority[0] <= Priority[N-1];

end else begin // true round robin
// shift left one-hot grant vector

Priority[N-1:1] <= grant[N-2:0];

Priority[0] <= grant[N-1];

end

end

end

end

endmodule
// The code in compination between the code written by G. Dimitrakopoulos

((Nov. 2008)) and some updates we writes them.

Page 51 of 66

The following code gives us a very similar results to the Islip allocation technique but with

less delay and one clock cycle granting. Arbiter, Allocator Net list and wave Form simulation.

Figure 42 Allocator Netlist

Figure 43 Arbiter Netlist

Page 52 of 66

Figure 44 Arbiter Waveform

This arbiter is a simple form of Islip arbiter with only one cycle grant generation where the

priority vector is not incremented unless a grant to that port is generated “non-blind round-

robin”.

7.2.2 The FIFO Buffers:

The specifications of our buffers are somehow matches perfect to a dual port memory imple-

menting FIFO with generic size and width.

The code:

`define BUF_WIDTH 3 // BUF_SIZE = 16 -> BUF_WIDTH = 4, no. of bits to

be used in pointer
`define BUF_SIZE (1<<`BUF_WIDTH)

module fifo(clk, rst, buf_in, buf_out, wr_en, rd_en, buf_empty, buf_full,

fifo_counter);

input rst, clk, wr_en, rd_en;

// reset, system clock, write enable and read enable.

input [7:0] buf_in;

Page 53 of 66

// data input to be pushed to buffer

output[7:0] buf_out;

// port to output the data using pop.

output buf_empty, buf_full;
// buffer empty and full indication

output[`BUF_WIDTH :0] fifo_counter;

// number of data pushed in to buffer

reg[7:0] buf_out;

reg buf_empty, buf_full;

reg[`BUF_WIDTH :0] fifo_counter;

reg[`BUF_WIDTH -1:0] rd_ptr, wr_ptr; // pointer to read and write

addresses
reg[7:0] buf_mem[`BUF_SIZE -1 : 0]; //

always @(fifo_counter)

begin

buf_empty = (fifo_counter==0);

buf_full = (fifo_counter== ̀ BUF_SIZE);

end

always @(posedge clk or posedge rst)
begin

if(rst)

fifo_counter <= 0;

else if((!buf_full && wr_en) && (!buf_empty && rd_en))

fifo_counter <= fifo_counter;

else if(!buf_full && wr_en)

fifo_counter <= fifo_counter + 1;
else if(!buf_empty && rd_en)

fifo_counter <= fifo_counter - 1;

else

fifo_counter <= fifo_counter;

end

always @(posedge clk or posedge rst)

begin

if(rst)
buf_out <= 0;

else

begin

if(rd_en && !buf_empty)

buf_out <= buf_mem[rd_ptr];

else

buf_out <= buf_out;
end

end

always @(posedge clk)

begin

if(wr_en && !buf_full)

buf_mem[wr_ptr] <= buf_in;

else

buf_mem[wr_ptr] <= buf_mem[wr_ptr];
end

always@(posedge clk or posedge rst)

begin

if(rst)

begin

wr_ptr <= 0;

Page 54 of 66

rd_ptr <= 0;

end

else

begin
if(!buf_full && wr_en) wr_ptr <= wr_ptr + 1;

else wr_ptr <= wr_ptr;

if(!buf_empty && rd_en) rd_ptr <= rd_ptr + 1;

else rd_ptr <= rd_ptr;

end

end

endmodule

This FIFO gives us more signals that will be used in future progress such as buffer count

where we can use in Adaptive Routing and Adaptive allocation.

Figure 45 FIFO Netlist

7.2.3 Control

The Control Block which is responsible for delete granted flits form input buffers and

open the cross bar to be saved in the output buffers.

The code:

module control(flitin0,

flitin1,

flitin2,

flitin3,

flitin4,

flitin5,

flitin6,

flitin7,
grantin0,

grantin1,

grantin2,

grantin3,

portout0,

Page 55 of 66

portout1,

portout2,

portout3,

erase,
enable);

input[7:0] flitin0;

input[7:0] flitin1;

input[7:0] flitin2;

input[7:0] flitin3;

input[3:0] grantin0;

input[3:0] grantin1;

input[3:0] grantin2;
input[3:0] grantin3;

output[7:0] portout0;

output[7:0] portout1;

output[7:0] portout2;

output[7:0] portout3;

output [3:0] erase,enable;

reg [3:0] en;
//Code starts here

always @(grantin0,grantin1,grantin2,grantin3)

begin

begin

 if(grantin0 !==(4'd0))

 en[0]=1'b1;

 else
 en[0]=1'b0;

end

begin

 if(grantin1 !== (4'd0))

 en[1]=1'b1;

 else

 en[1]=1'b0;

end
begin

 if(grantin2 !== (4'd0))

 en[2]=1'b1;

 else

 en[2]=1'b0;

end

begin
 if(grantin3 !== (4'd0))

en[3]=1'b1;

else

en[3]=1'b0;

end

end

assign erase =(grantin0 | grantin1 | grantin2 | grantin3);

assign enable =en;
//module mux4_18(Sel, A, B, C, D, Y);

mux4_18 m0 (grantin0,flitin0,flitin1,flitin2,flitin3,portout0);

mux4_18 m1 (grantin1,flitin0,flitin1,flitin2,flitin3,portout1);

mux4_18 m2 (grantin2,flitin0,flitin1,flitin2,flitin3,portout2);

mux4_18 m3 (grantin3,flitin0,flitin1,flitin2,flitin3,portout3);

endmodule

Page 56 of 66

7.2.4 Routing Table

We used a technique which is similar to packet switching where each flit of data car-

ries its destination Address and a payload.

The routing table or Address translation block function can be summarized in translating the

Address of the Network to port address in the router.

The routing table is configurable in our deterministic routing Network.

7.2.5 Router as a whole block

Here we gathered all the blocks and accurately signalled them to give us this router Fig 7.7.

Figure 46 Router Netlist

Router signals

1- clk: Clock signal

Synchronous clock for the whole router or Network.

2- rst: reset signal

Restets the router or the network and all its internal blocks.

3- iN: input data port n

Input Data ports.

4- oN: output port N

Output Data Ports.

Page 57 of 66

5- ewN: enable write N

This signal is set high when there is valid data at the input data port.

6- erN: enable read N

This input signal is set high indicating that blocks are ready to read the flits.

7- pfN: port free N

This output signal is set high when the input buffers is not full.

8- neN: not empty N

This output signal is set high when the output buffers is not empty.

Simulation wave form

Figure 47 The router simulation waveform

7.3 Simulation and layout results

7.3.1 Simulation results

Chip link was designed and implemented using VERILOG HDL , compilation and func-

tionality verification were made using Modelsim EDA program .

The figure below shows router operation while sending and routing stream of packets through

the different input ports .

packets routed to the destined output ports are shown in figure , delay can be estimated know-

ing the data input and output instants .

Page 58 of 66

First packets stream First output Second packets stream Second output

Figure 48

After functionality verification the design was imported for logic synthesises, and initial

delay and area estimation.

Page 59 of 66

Figure 49 slack histogram

Best path (largest slack)

Figure 50 largest slack

Page 60 of 66

Worst path (smallest slack)

Figure 51 Smallest slack

Using SoC encounter EDA to generate a floor plan of CHIP Link router.

obtained reports shows :

geometric violations N/A

Max cap violations N/A

Fan out load N/A

placement violations

N/A

total logic gates 9598

Total standard cells 1742

total area 10366.2 µm

total delay for data 4 ns

operational frequency 250 MHZ

Page 61 of 66

Obtained floorplan

Figure 52 Full floorplan

A closer look in Figure 50

Figure 53 Closer look to the layout

Page 62 of 66

 Conclusion 8
Network on chip technology is the solution that makes digital systems like FPGA has

more meaning and more useful in human life. It makes the performance of the digital systems

better.

Now, system on chip become more complex and contains millions of IP cores which makes

stresses on its performance to decrease step by step in area, speed and power consumption.

In order to beat the draw-backs, designers are able to optimize the programmable rout-

ing fabric inside digital systems by introducing NoC technology in which building a complete

network embedded in the digital chip to manage the data traffic between IP cores and make the

system do its role faster and better.

Chip-Link router is a simple router based-on the next generations in FPGA’s chips.

The router consists of 9598 logic gates and 1742 standard cells.

Chip-Link arbiter is a simple form of Islip arbiter with only one cycle grant generation

where the priority vector is not incremented unless a grant to that port is generated “non-blind

round-robin”.

The operating frequency is 250 MHz and the maximum delay for the router to get the

data from its input to its output is 4 n sec.

The design can be optimized in the future to have best results and best performance

and makes FPGA grows in the human life and market field so that the investment will be high.

Page 63 of 66

References:

[1] William J. Dally and Brian Towles ,”Principles and Practices of Interconnection

Networks”.

[2] Daniel U. Becker, ” Efficient Microarchitecture for Network on chip routers”.

[3] Nick McKeown, ” The iSLIP Scheduling Algorithm for Input-Queued Switches”.

 [4] P. Bhojwani and R. Mahapatra, "Core network interface architecture and latency con-
strained on-chip communication".
[5] Ian Kuon, Russell Tessier, and Jonathan Rose, ” FPGA Architecture: Survey
and Challenges” .
[6] Suman K. Mandal, Nikhil Gupta, Ayan Mandal, Javier Malave, Jason D. Lee and Rabi N.
Mahapatra, ” NoCBench: A Benchmarking Platform for Network on Chip”.
[7] SoC/ASIC/SoC-FPGA/S-ASIC Design and Verification, Intelop Corporation.

Page 64 of 66

 Appendix 1 9

Arbiter arbiter variable priority round robin arbiter

Signal in/out Description

Clk Input clock

Rst Input rest signal

Req N bits Input defines the requests for a given resource output port.

Grant N bits Output defines the grant signal for certain agent "input port"

Any grant Output is high when any agent is granted the resource.

Allocator Allocator iSLP single granting cycle.

Signal in/out Description

Clk Input clock

Rst Input rest signal

Req0,Req1,Req2,Req3 N bits Input define the request for each output port.

Gnt0,Gnt1,Gnt2,Gnt3 N bits output defines the grant signal for each input port.

Control Control and bus switch generates enable write and erase

signals for output and input buffers respectively.

Signal in/out Description

flitin0,flitin1,flitin2,flitin3 M bits Input Data.

grantin0,grantin1,grantin2,grantin3 N bits Input grant signals form allocator.

portout0,portout1,portout2,portout3 M bits Output Data Bus.

Enable N bits output signal for enable write for output buffers.

Erase N bits output signal for erase data from input buffers.

Page 65 of 66

Fifo FIFO input and output buffers.

Signal in/out Description

Clk Input clock.

Rst Input reset.

Wr_en Input enable write signal to write in the buffers.

Rd_en Input enable read signal to read form the buffers.

Buf_in M bits Input for input data.

Buf_out M bits Output for output data.

Buf_empty Output signal is high when the buffer is empty.

Buf_full Output signal is high when the buffer is full.

Fifo_counter Buffer_width Output signal gives the count of the buffer

occupation.

Page 66 of 66

