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Abstract 

As Modern digital integrated circuits go more complex and the numbers of SoCs on a 

small electronic chip are rapidly increased, the need for a more sophisticated communication 

infrastructure between different IP cores and system on-chips is raised. NoCs is like a trivial 

solution to the restrictions created by the limited bandwidth and flexibility y of current cross-

bars and buses. It helps to overcome the clock skew problem on large chips.  

The interconnection networks are relatively simple and it is easy to design an inter-

connection network that replaces and solves regular crossbars and buses problems. 

Unfortunately, if the basic principles are not understood it is also easy to design an intercon-

nection network that works poorly if at all.  

In this thesis we present one of a simple NoCs for the purpose of working on FPGAs 

platforms, we start our thesis with couple of introductory chapters gathered from reliable and 

rich resources in field that enable the reader to begin his first steps and find his path in inter-

connection design. 

In the following chapters we introduce our simple router "CHIP-LINK" from the very 

beginning of FPGAs and passing through all the design flow starting with the behavioural 

modelling down to the lower levels ending with implementation a floorplan of the proposed 

design and simulation results. 
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 Overview on FPGA 1
1.1 What is FPGA??? 

FPGA which is an abbreviation to Field –Programmable Gate Array, is a pre-fabricated sil-

icon device that can be programmed to be any digital circuit or digital system that the designer 

need.  

FPGA consists of array of logic blocks of different types such as memories, multipliers, 

processors and other logic blocks. These blocks placed and interconnected by routing fabric.  

These arrays of blocks are surrounded by input-output blocks which are considered to be 

the interface between FPGA and the outside world.  

The input-output blocks and the routing fabric connected the logic blocks are programmed 

to make FPGA add certain function by a certain programmable technique.  

The programming process change the connection between the blocks and choose the input-

output blocks that the designer need to do the function which means that it makes a change in 

the behavior of pre-fabricated chip after fabrication. 

 

Figure 1 
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1.2 The difference between FPGA and micro-controllers. 

In the field of digital electronics and communications, micro-controllers are known as 

simple computers that can be placed in a single chip and programmed to do simple tasks for 

other hardware. 

Micro-controllers have some peripherals embedded in it such as memory and timers. 

They can be designed to do its certain task as a dedicated device . 

FPGA contains millions of logic blocks that can be electrically programmed to perform 

a certain task ,its more flexible than controllers as the micro-controllers has its own circuitry 

and instruction set which makes a restriction on the programming to do a certain task .But 

FPGA have a bigger usage area. 

FPGA consumes power than controllers making them un suitable for applications where 

power drain is an issue. 

FPGA takes a longer time to set up than micro-controller as you would have to write all 

the code from scratch and convert it to machine language; also building devices with FPGA 

are more costly than micro-controllers, that are why FPGA’s are usually seen in products that 

have a high degree of complexity but with low demand. 

In the market level, when the demand rises and mass-production becomes necessary, the 

circuit is moved to AISC. 

 

1.3 ASIC technology 

ASIC which is an abbreviation to application-specific integrated circuit, is a micro-chip 

designed for a specific application. 

ASIC take months to fabricate and cost hundreds of thousands up to millions of dollars 

during fabrication process. It is much more than FPGA fabrication cost. 

The draw-backs of FPGA over ASIC appears in area, speed and power consumption in 

which FPGA occupies area 20 to 30 times more than the area occupied by ASIC. Speed per-

formance in FPGA is 3 to 4 times slower than ASIC speed chip. Also FPGA consumes 10 

times dynamic power than ASIC power consumption. 

These disadvantages of FPGA in area, speed and power consumption arises from the 

programmable routing fabric in FPGA. 

ASIC design is more difficult and expensive. Also the investment required to produce 

a perfect useful design consists of more items in terms of money and time such as CAD tools 
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for verification, simulation and timing analysis. So due to these high cost and the need for 

higher return on investment most digital design forward towards FPGA implementation. But 

in the market field the most importance thing is to have a perfect product to be acceptable for 

users so the companies have the capability to go to ASIC technology and handle high cost in 

order to make a perfect product due to the disadvantages of FPGA implementation. So the op-

timized design in FPGA to get rid of its draw-backs in area speed and power consumption will 

spared high cost and makes the market field more comfortable. 

“Figure 2” shows that the cost to build ASIC starts higher than FPGA but in a certain level in 

manufacturing the cost of FPGA reaches the cost of ASIC at a critical point. 

 

Figure 2                                                              

In deep volume in k units the cost of FPGA becomes more than that in ASIC and continue to 

be more high which makes FPGA has no value in the market field due to the higher cost in the 

future. 

The optimized design will introduce new technology in the world of digital design like 

nanotechnology [4]. 
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Figure 3 shows that the routing power becomes more significant percentage of the total power 

and expected to exceed the logic power with technology scaling. The increased inter-connect 

and routing complexity reduces FPGA speed and scalability. This is the reason of why design-

ers seek to optimize the routing techniques in FPGA. 

 

 

 

Figure 3 Different Graphs for both routing and logic Dynamic power 
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 Network on chips 2
 

2.1 Overview 

Due to the draw-backs of FPGA in area, speed and power consumption, electronics en-

gineers must be able to solve these problems by optimizing the design in FPGA to make FPGA 

more reliable and usable in human life. 

Engineers introduce the solution by making a full-network fabricated in FPGA chip 

which called network on chip technology in FPGA system design and from here we are able to 

get rid of the dis-advantages. 

Due to the increasing of logic blocks and the need to integrate millions of blocks in a 

single system on chip like FPGA, communication management becomes more critical as more 

functions that supported latency and bandwidth requirements in an interconnect fabric must be 

introduced. 

Designers call network on chip technology a front-end solution to a back-end problem. 

It is like to make more bridges between two nodes to facilitate the traffic of data between these 

two nodes.  

We can summarize why we use network on chip in digital systems on chip due to four reasons: 

1. Reduce wire routing congestion. 

2. Ease timing closure. 

3. Higher operating frequencies. 

4. Changing IP Protocol easily. 
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Figure 4 

 

In the previous figure, there is an example of network in system on chip which is a block con-

tains a large number of logic blocks connecting with each other by routers that introduces 

multi paths come and go between the logic blocks. 

By looking to these figure, you will be able to understand that network on chip is like 

building bridges and paved roads in an empty area. 

We will discuss the requirements of why we use network on chip in the following points: 

 

2.2 First routing congestion 

Network on chip avoids routing congestion by reducing number of connected wires in a 

single fabricated chip. 

Routing congestion becomes more significant factor in digital systems when number of 

IP blocks increased in it. 

Wire routing congestion occurs in digital systems when a lot of wires are routed in a 

narrow space which leads to errors in routing process and introduces more delay. 

Since the wires that carry the data are routed after power supply and clock wires as the 

signal wires are smaller and shorter than clock wires and power supply wires so the signal 

wires are constrained because they must be routed in a manner that accommodates the existing 

power supply at clock wires. 
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As system on chip designs becomes more complex, routing congestion increases system 

on chip complexity due to shrinking sizes of transistors which lead to: 

1. More transistors per area make the system design more complex. 

2. Large system on chip enables the opportunity to integrate more IP blocks on one chip. 

The number of wires required for system on chip grows proportional to the square of 

number of transistors in one chip. 

3. The cross-sectional size of wires connecting IP blocks shrinks less than size of transis-

tors. 

 

 

2.3 Second timing closure   

Network on chip introduces solution of the problem of timing closure in which system 

on chip with old generations suffers from the problem of delay and not managing the time ac-

curately but now in new generation SoC, network on chip introduces a design in pipelining 

concept to overcome the timing closure issue. 

Pipelining concept is to make some operations at the same time and it will be discussed later 

in this book. 

 

2.4 Third operating frequency 

NoC technology simplifies the hardware requires for switching and routing functions so 

it makes the design to reach higher operating frequency. 

By applying the pipelining concept, more data transferred in a less time and the bandwidth 

will be managed better so the system will be operated at higher frequencies. 

Also network on chip follows GALS technology which is synchronous modules with 

locally generated clocks with asynchronous connections between them. 

GALS is an abbreviation to globally asynchronization locally synchronization. 

 

2.5 Fourth changing IP 

NoC deals with packets in which there is a block that splitting the data into packets 

which are small versions of the original data. These blocks are placed before the router and 

called network interface cores NIC. 
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Network on chip change the formation of data from original data into packets. In net-

work engineering, we call this issue changing from IP to transport layer. 
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 Basics of networking 3
3.1 Introduction 

Because the demand for interconnection networks that have grown more rapidly than 

the capability of the underlying wires, interconnection networks have become a critical bottle-

neck in most systems. 

The main function of the network is that introducing the connection between the cores 

like processors, multipliers and logic blocks to perform the transferring of data between them 

accurately.  

The transferring process of the data must be accurate which means that translation of 

data between two points' source and destination without losses and without losses in band-

width. 

Inter-connection networks are used in digital systems which have many components to 

connect. In computer systems, networks are used to connect processors with memories and I/O 

ports. Also in FPGA, networks are used to connect the logic blocks with each other and con-

nect with the input-output blocks to make all available paths to make the using of FPGA more 

simple and reliable to the designers and users.  

Networks are more important in FPGA as FPGA contains millions of blocks which need 

to be connected with each other. 

Also inter-connected networks are used to connect many FPGA’s with each other fabricated in 

a single chip. 

Inter-connection network play an important role in the performance of the system in 

which the inter-connection networks between the cores determines the latency and bandwidth 

of the system which are two key performances in the digital systems.  

There are some things that we must interest when we deal with networks in which these things 

are considered to be the basics of networking [1], they are:  

1. Network Topology. 

2. Routing Algorithms. 

3. Flow Control. 

4. Router Architecture. 

5. Performance of Network.               
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3.2 Network Topology 

In communication networks, network topology is a description of the arrangement of nodes 

and lines in the network. 

There are two types to describe a specific network physical topology and logical topology. 

Physical topology of a network is the geometry lay-out description of the network while logi-

cal topology refers to how signals in the paths go in a certain direction. 

There are many types of physical topology like: 

1. Bus Topology in which all the nodes in the network connect with the main bus as in 

Fig 5. 

2. Star Topology in which all the nodes connect with the main node as in Fig 6. 

3. Ring Topology in which all the nodes connect with each other in a circle way as in 

4. Fig 7. 

5. Token Ring Topology is the same as ring but the signals go in only one direction. 

6. Mesh Topology in which all the nodes connect with each other as in Fig 8. 

7. Tree Topology which is a combination of much architecture in one architecture as in 

fig 9. 

 

 

Figure 6 Star Network Topology 

 

 

Figure 5 Bus Network Topology 

Figure 7 Mesh Network topology 
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Figure 9 Tree Network Topology 

 

 

 

1. Torus topology in which all nodes connected with each other like mesh topology but 

in more than one dimension like 2-D in fig 3.6 and 3-D in fig 3.7. 

Figure 8 Ring Network Topology 
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Figure 10 

 

Figure 11 

 

 

 

 

 

Figure 12 Different Network Connection topologies  
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3.3 Routing algorithms 

Routing is the main work done by a network in which the router is responsible to man-

age the traffic in the network and find the best route for the data to go on. 

The most important criterion for routing is where and when the routing function is determined. 

The router can perform its role in the network by getting some information about the network 

status in order to make the decisions for choosing the best path for the data to transfer between 

the source and the destination. 

There are many routing algorithms that the router follows to collect its information about the 

network or to choose the perfect path for the data between the two nodes: 

1. Deterministic routing algorithm in which it generates the same single routing path for 

given pair of source and destination addresses which is the shortest one. 

2. Oblivious routing algorithm in which it don't take into consideration any other infor-

mation except the addresses, equally to deterministic routing. The routing decision is 

oblivious to the status of network traffic. Any deterministic routing is oblivious, but 

oblivious routing is not necessarily deterministic. 

 

3. Adaptive routing algorithm in which it uses information about network traffic and 

channel status to avoid congested or faulty regions of the network. Adaptive routing 

do two main tasks, firstly the routing function as it delivers to a set of output channels 

if exists. Secondly the output selection function as it selects one of free output chan-

nels if exists using local status information. 

 

 

Routing algorithms are implemented using look up tables as the source nodes and the 

router have routing tables which includes all information about the network like the number of 

nodes in the network and the status of paths. The router uses these tables to maintain its algo-

rithm [3][1]. 

 

 

 

3.4 Core network interface   

CNI or core network interface is a digital circuit placed between the network and the IP 

cores which are the source of the data. 
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The function of the network is to transfer the data from core to another core but the network 

doesn’t deal with the data, it deals with small versions of these data. 

The core network interface split the data into packets before entering the data to the 

network to realize packet switching concept. 

 

                 

Figure 13 Shows the implementation of core interface network and its components. 

  

The CNI architecture assumed in this research provides simple traffic translation to enable 

inter-core communication across the network-on-chip. For more complex systems, other func-

tionality may be added to this base model as necessary. Other researchers present a thorough 

examination of additional functionality that may be added [5]. 
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 Router Architecture  4
Router is the block that performs routing process and manages the traffic in the network. 

By considering the router as a closed box, it has inputs and outputs. The inputs are called input 

channels and outputs are called output channels in which each input or output channel repre-

sent a node in the network and the router connect between these nodes and transfer data 

between them. 

The router consists of two main blocks which responsible of do two main functions: 

1. Data-path block. 

2. Control unit block. 

The data path block is the block that responsible of transfer the data from input chan-

nels to output channels while the control unit block is the block that controls the routing 

process in which it is makes the decisions on the path and knows when the data transfer and 

when the router is stall. 

The data path block consists of input and output buffers and switches. Control unit 

block consists of arbiters, switch allocators and virtual channel allocators. All these parts will 

be discussed later in detail in chapter 5. 

 

Figure 14 Router Data path  
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The router deals with the data at different levels in which we have: 

1. Data or Information, this is the original data that the router wants to transfer between 

two nodes. 

2. Packets, this is the data after splitting in which the network doesn't deal with the orig-

inal data but the data is splitting into small versions of it called packets. The data was 

splitting by the network interface core. 

3. Flits , this is small versions of packets in which the router deals with the data at flit 

level when it works pipelined. 

4. Credits , this is the flits that move from output channels to input channels to tell the 

control blocks that the data received and the output buffer is allocated by these data. In 

other way, we can describe the credit that the number which describes the number of 

occupied locations in the buffer. 

5. For example, the output buffer has 4 locations in which each location can carry one 

flit. If the output buffer has 3 flits so the credit field at the output will have 3.   

 

The router consists of some components in which each component do its role in the routing 

process as follows:  

- Buffers  are the blocks that responsible of storing the data in it. This process is very 

important as the router store the data at its input until the data is received correctly at 

the output and with no errors to guaranteed accurate transmitting and receiving. Also 

the importance of storing the data at the input appears when all the paths and routes in 

the router are allocated so the data must be maintained in the input buffer until a path 

become free to avoid router congestion. Storing the data at the output buffer is very 

important as the data must be stalled until the next node or the next router in the net-

work become free to receipt it. 

 

- The switch is the block that responsible of connecting the input and output channels 

of the router. It is considered to be the heart of the router. There is much architecture 

that can implement the switch with them such as a single bus connects the input and 

output buffers or can take cross-bar architecture. Architectures of switches will be dis-

cussed in chapter 5 in detail. 

- Switch allocator is the block which controls the switch and tell it which input will be 

connected to which output. 
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- The physical channel is the link or the wire that carry the data. Now, in the new gen-

eration of digital systems the data is needed to reach more than one destination and the 

routers becomes very complex so designers split the physical channel to group of 

channels which called virtual channels. Each virtual channel can carry different data 

or the same data which transfer to different destinations. With the use of virtual chan-

nels concept, the router can do its function by following pipelining concept. 

- Virtual channel allocator is the block that allocates the virtual channels to the flits. It 

does its task to complete the path between input and output.       

 

4.1 Router Pipelining  

Pipelining is the exploitation of all resources in all times by making all the re-sources 

work at the same time. 

When all the blocks in the router such as buffer, switches and allocators work in the 

same times and in all cycles, we say that this router is router-based pipelined. 

The great advantage of following the pipelined concept is managing the time and overcoming 

the delay. 

For example, a router has 4 cycles pipelining to get the flit from input to output in which: 

- First cycle is route computation, in this cycle the router do its calculations to know the 

destination of the data based on the information that it takes from the head flit. The 

head flit is the first flit in the packet. 

- Second cycle is virtual channel allocation, in this cycle the allocator allocates a virtual 

channel for the flit. 

- Third cycle is switch allocation, in this cycle the allocator allocates the switch for the 

flit. 

- Fourth cycle is switch traversal, in this cycle the process of transferring the flit is done 

and the flit reaches the output buffer waiting for entering the next node in the network.  

If the data consists of 4 flits so in case of non-pipelined router each flit will take 4 cycles 

to reach to the output port so the 4 flits will take 16 cycles to reach their destination. But in 

case of pipelined-router when a flit is in a stage from four stages, another flit will be in another 

stage at the same time so the 4 flits will take 7 cycles to reach their destination as shown in 

figure. 
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Figure 15 

Note that this is ideal case in which this description of the stages of the pipelined router 

hasn’t take in consideration the happen of the stalls. 

Note that the head flit only will make route computation and virtual channel allocation 

because these two stages must be made at packet level and there is no need for all flits in 

the same packet to enter these stages. 

Now, in modern routers the designers optimize the pipeline process to make the sys-

tem more speed by many methods such as speculation method which is a method depend on a 

technique that predict the next step with high success percentage and this done by using either 

hardware or software. Now, the design will be more complex but more optimized into the best.  

Also designers can play in hardware and make it smarter to get an advantage such as 

making virtual channel allocation and switch allocation in the same cycle. 

Stalls means something happen makes the router stop in a cycle or more for a certain flit. 

There are packet stall and flit stall. When the router fails in virtual channel allocation so this is 

called packet stall and when it fails in switch allocation so it is called flit stall. 

Packet stall occurs due to virtual channel is busy. For example, the head flit of one 

packet is arrived before tail flit of the previous packet so the virtual channel is allocated to the 

first packet while the second packet is stalled. Also, routing cannot be completed due to some 

errors such as the router fails to allocate a virtual channel so it repeats the allocation in the 

next cycle. 

Flit stall occurs when there is a fail occurs in switch allocation so the router need to 

repeat the allocation in the next cycle. Also, if the output buffer is full so there is no credit 

available so the flit is unable to do switch allocation until the output buffer free a location. Al-

so, flit stall occur when input buffer is empty so there is no flits available to do switch 

allocation.   
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 Theory of Allocation 5
 

5.1 Overview 

Concept of allocation rose as many NoC’s are using packet switching technique to make 

the best use of network limited resources and to distribute these resources fairly to requesting 

agents, unlike circuit switching where each resource is dedicated to a specific agent. 

The resources to be managed in a NoC are the output ports as multiple packets may 

compete to request a specific port and to share a specific route, this conflict will be settled by a 

Channel allocator (or a Virtual channel allocator for more advanced allocation). Other possi-

ble resource is the transmission bus (or crossbar) that is limited by a small size to reduce total 

area on chip so it has to be managed to multiple agents, a switch allocator will be used to dis-

tribute this resource to multiple packets traversal on a single bus. 

 

 

Figure 16 (A) Shared-bus between agents  (B) Shared output ports be-

tween agents 

 

5.2 Arbiters  

The control paths of routers are largely composed of allocators which depend mainly on 

arbiters to distribute a single resource to a multiple agents. 

The process of arbiters is to generate grants G to a set of requests R under two conditions: 

- Grants only generated to agents issued their requests. 

- Single grant to each request. 
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5.2.1 Fixed priority arbiter 

This kind of arbiters distributes its resource on a linear fixed order, either ascending or 

descending order and it has the simplest design among all arbiters. 

the idea of his arbiters is to grant access to the first agent  issued its request and this can be 

implemented by inverting that issued request as carry for the other agents to block the from 

passing their request through . The basic implementing cell is shown in figure 6.3 and in figure 

6.4 is a 4 agents fixed priority arbiter. 

  

                                     

Figure 17 Basic cell of fixed priority arbiter 
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Figure 18 Implementation of 4 agent fixed-priority 

5.2.2 Round Robin arbiter 

It's a sort and an extension of priority arbiters as fixed priority arbiters, priority is 

granted to a specific agent by setting a signal p, when the arbitration is done this agent be-

comes the lowest priority and the next agent becomes the highest priority. 

But some applications require unfair distribution of grants among agents so a 

weighted Round Robin is a good solution for such applications. So a weighted agent grants the 

resource or a time equal is weight divided by the total weights of the requests. 
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Figure 19 (A) Round-robin arbiter   (B) 4-agents round-robin 

 

5.2.3 Matrix arbiter 

This kind of arbiters implements a least recently served order of priority, which means 

that for a pair of requests A,B  there is a state bit  IA,B that tells whether  A is higher in priority 

than B or not. If one request received its grants it clears all its state bits to become lowest in 

priority. 

That state bit is stored in a register, and for every pair of inputs there is a register to store their 

state bit(s) that gives the Matrix scheme figure 6.7. 
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Figure 20 Matrix arbiter 

5.2.4 6.2.4 Queuing arbiter 

As it may appear of the name, that kind of arbiter relays on serving the first issued re-

quest "first come first serve" or "FIFO" policy. 

When agent issues a request it also sets a counter and a time indicator and a set of comparators   

that help to determine which agents issued its request first. 
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Figure 21 Queuing arbiter 

                                             

5.2.5 Tree arbiter 

To avoid large sizes of arbiters in large applications tree arbiters divides the requests issued by 

agents into groups. The arbitration process is done over two or more stages 

first selecting between groups and selecting agent among all agents in each group. 
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Figure 22 Tree arbiter 

 

5.2.6 6.2.6 Dynamic-Priority arbiter 

The kind of arbiters prioritizes grants to agents that satisfy certain criteria. That can be used in 

NoC which has more dynamic algorithms like adaptive routing these arbiters can give high 

priority for low traffic ports for example. 
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5.3 6.3 Allocation 

                               

Figure  32  4X3 allocator 

The purpose of allocation is to match a set of resources to a set of agents which may re-

quest one or more resource in a way that each at most one destined output port is assigned to 

one requesting input port.                                                                             

The process of allocation is subjected to two main constraints: 

- Resources are only granted to agents requests, non-destined resources aren't   granted. 

- Each single agent grants at most a single resource and vice versa. 

 

Allocators can mathematically modelled by its number of requests and agents for example 

aI X K allocator means that we have a set of I agents are requesting a group of K resources . 

The allocator is to generate a vector of grants equals the number of resources and provide this 

grant to each winning agent.  
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5.3.1 Separable Allocation 

In a separable allocator we perform two arbitrations one arbitration is done at input 

ports and the other is done at the output ports. 

In input first allocator arbitration is done firstly at the input ports selecting a single request at 

each port then arbitration is done at the output ports to select a request for each output ports. 

That kind of arbitration may not get maximum matching as a winning agent may lock 

the only request from other agents. 

A separable allocator can also be realized by performing the output arbitration first 

and then the input arbitration where the first rank of three 4-input arbiters selects the winning 

request for each output port. Only one of the resulting signals will be asserted for each output 

port. The input arbiters then take as input, pick the winning request for each input, and output 

this result on grant signals ensuring that at most one of grants s asserted for each input. 

         

 

Figure 24 (B) Output first separable allocator  (A) Input first separable al-

locator 

 

5.3.2 Lonely output Allocation  

To solve the problem of locking input with one request in separable input first alloca-

tors, lonely output allocator was introduced to overcome this problem by adding a stage before 

the input arbiters that counts the number of requests for each output. The input arbiters then 

give priority to requests for outputs that have low request counts the lonely outputs. This re-

duces the number of conflicts at the output stage, resulting in a better matching. 
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Figure 25 Lonely output allocator 

 

5.3.3 Parallel iterative Allocation 

It's a version of separable allocators but it depends on a series of probabilistic separa-

ble arbitration.  

Randomizing the arbitrations acts to probabilistically stagger the input arbiters, this 

makes it unlikely that they will all pick the same input, and it also can eliminate that input is 

repeatedly locked out due to deterministic priority adjustments. 

 

5.3.4 ISLIP Allocation  

ISLIP is another version of separable allocators. it   uses round-robin arbiters and 

changes priority   when that arbiter generates a winning grant. That algorithm   helped to re-

duce conflicts at the output stage.  Priorities are updated so that a winning request has the 

lowest priority in the next round.  
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Figure 26 Rotating priority of ISLIP Arbiters  

 

5.3.5 6.3.5 Wave front Allocation  

Unlike the separable allocators this wave front allocation makes he both the input 

stage and output stage arbitration at same time. 

The wave front allocator works by granting row and column tokens broken to a diago-

nal group of cells, in effect giving this group priority. 

A cell with a row(column) token that is unable to use the token passes the token to the 

right (down),wrapping around at the end of the array. These tokens propagate in a wave front 

from the priority diagonal group, hence the name of the allocator. If a cell with a request re-

ceives both a row and a column token, either because it was part of the original priority group 

or because the tokens were passed around the array, it grants the re-quest and stops the propa-

gation of tokens. To improve fairness, the diagonal group receiving tokens are rotated each 

cycle. However, this only ensures weak fairness. 
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Figure 27 Wave-front allocator 

 

5.3.6 Multi stage Allocation  

Some applications require multiple stages of allocation. For example, in a router, we might 

want to grant requests to high-priority packets first and then allocate any remaining resources 

to lower-priority packets. In another application, we might want to grant requests for multicast 

traffic first and then allocate remaining ports to unicast traffic.  
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Figure 28 Multistage Allocator 
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 Buffers & switches  6
6.1 Buffers 

Input Buffers hold the flits waiting for virtual channels and the switch bandwidth also 

output buffers hold the flits to enter the next node. 

The flow control protocol allocates space in these buffers to hold flits. The buffers provide 

space for arriving flits so that the incoming channel needn't be slowed when a packet is de-

layed due to a pipeline stall or a contention for a virtual channel or physical channel. 

There are many techniques to design the buffer and partitioning it as follows: 

1. Using of central memory for all input ports in which all the ports hold their flits in the 

same memory as in Fig 6.1.1 

2. Using of a memory per physical channel as in Fig 6.1.2. 

3. Using of a memory per virtual channel as in Fig 6.1.3. 

 

Note that the third technique is the best because it is the fastest one but it is complex so we 

choose our design depending on what we need and what we prefer in our circumstances and in 

our project. 

 

 

 

 

Figure 29 One Large Main memory for all ports 
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Figure 30 Single memory for each port 

 

 

 

 

 

Figure 31 Virtual channel explanation   

 

The lost ring in the design of buffers that how we manage the data inside it, how data enter 

and leave the buffer. There are two famous techniques in these issue: 

1. Circular buffer technique. 

2. Linked list technique.  
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These techniques are similar to C++ programming language in managing the data inside 

the memory in which the circular buffer technique is similar to mnanging the data inside an 

array in C++ and linked list is similar to managing the data inside dynamically allocated 

memory inC++ [1]. 

 

6.2 Switches 

The switch is the main part of router. It is where that packets and flits are actually rout-

ed to their wanted output port. The most important design parameter with a switch is its 

“Speedup” -the ratio of the switch bandwidth to the minimum switch bandwidth needed to 

support full throughput on all i/ps & o/ps. 

 

6.2.1 Bus Switches 

When a flit time consists of more internal clock cycles (phit times) than the number of 

ports, a bus may be used as a switch, as illustrated in Figure 17.5. The timing of this type of 

bus switch is shown in Figure 17.6. Each input port of the switch accepts phits of a flit and 

accumulates them until it has at least P phits, where P is the number of input switch ports. 

Once an input port has P phits, it arbitrates for the bus. When it acquires the bus, it transmits 

the P phits, possibly an entire flit, broadside to any combination of output units. The receiving 

output units then DE serialize them and transmit them one at a time to the downstream logic. 

 

The Timing diagram in Fig. 6.2.1 shows a 4 × 4 bus switch in which each flit consists 

of four phits. Flits a,f,k, and p arrive on the four input ports, one phit at a time, during the first 

flit time; flits b, g, l, and q arrive during the second flit time; and flits c, h, m, and r arrive dur-

ing the third flit time. While the ith flits are arriving, the (i−1)th flits are transmitted broadside 

across the bus, one flit being transmitted each phit time, and the (i − 2)th flits are being serial-

ized on the output ports. 
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Figure 32 Bus Switch Timing diagram  

 

6.2.2 Crossbar switches 

n x m crossbar switch can connect from n inputs to m outputs. 

 

 

 

 

 

 

 

 

 

 

  

Speed up: it is the ratio of provided bandwidth to required bandwidth. 

We can provide speedup on the input of the crossbar, the output of the crossbar or on both 
sides. 

This speedup can be provided in space (additional inputs) or time (higher bandwidth inputs). 

 

 

Figure 33  Symbol for a 4 ×  5 crossbar switch. 
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Figure 35 Input speedup 

This switch has input speed up of two resulting in a simpler allocation problem. 

 

Figure 36 Output speed up 

Figure 34   Original crossbar with no speed up 
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Figure 37  Switch speed up of two 

 

 

 

 

Figure 38  

This graph shows the relation between throughput and the input speedup . 
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 Chapter 7  chip-link router 7
7.1 First Simple Router 

After explaining each part in the router designed for NoC purpose we started our first 

step by designing a simple router without buffers - just single reg at each port. 

7.1.1  Allocator: 

We needed just to check that we can achieve the function of routing so we   used fixed 

priority arbiter in implementing our Allocator [1]. 

The code : 

module arbiter(clk, thisPort, r0, r1, r2, r3, select, shift) ; 

input clk ;                                         // chip clock 

input [1:0] thisPort ;                        // identifies this output port 
input [3:0] r0,r1,r2,r3 ;                    // top four bits of each input phit 

output [3:0] select ;                         // radial select to multiplexer 

output shift ;                                    // directs shifter to discard upper two bits  

wire [3:0] grant, select, head, payload, match, request, hold ; 

wire [2:0] pass ; 

reg [3:0] last ; 

wire avail ; 
assign head = {r3[3:2]==3,r2[3:2]==3,r1[3:2]==3,r0[3:2]==3} ; 

assign payload = {r3[3:2]==2,r2[3:2]==2,r1[3:2]==2,r0[3:2]==2} ; 

assign match = 

{r3[1:0]==thisPort,r2[1:0]==thisPort,r1[1:0]==thisPort,r0[1:0]==thisPort} ; 

assign request = head & match ; 

assign pass = {pass[1:0],avail} &~ request[2:0] ; 

assign grant = request & {pass,avail} ; 
assign hold = last & payload ; 

assign select = grant | hold ; 

assign avail = ~(|hold) ; 

assign shift = |grant ; 

always @(posedge clk) last = select ; 

endmodule 
 

Here you can see that we use a combinational circuit as there is no dependency on previous or 

current state of grants just only dependency on the input requests. 

If you track the code you will find it implements the following circuit "see Fig. 33". 
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Figure 39 Fixed priority Arbiter  

7.1.2  Rest of the Datapath: 

Then we used this arbiter block with other registers and multiplexers to make the full 

simple router implementation. 

The code: 

// simple four-input four output router with dropping flow control 

module simple_router(clk,i0,i1,i2,i3,o0,o1,o2,o3) ; 

input clk ;                                                   // chip clock 

input [17:0] i0,i1,i2,i3 ;                           // input phits  

output [17:0] o0,o1,o2,o3 ;                  // output phits  

reg [17:0] r0,r1,r2,r3 ;                           // outputs of input registers 

reg [17:0] o0,o1,o2,o3 ;                        // output registers 

wire [17:0] s0,s1,s2,s3 ;                        // output of shifters  
wire [17:0] m0,m1,m2,m3 ;                // output of multiplexers 

wire [3:0] sel0, sel1, sel2, sel3 ;         // multiplexer control 

wire shift0, shift1, shift2, shift3 ;       // shifter control 

// the four allocators 

alloc a0(clk, 2'b00, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel0, shift0) ; 

alloc a1(clk, 2'b01, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel1, shift1) ; 

alloc a2(clk, 2'b10, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel2, shift2) ; 
alloc a3(clk, 2'b11, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel3, shift3) ; 

// multiplexers 

mux4_18 mx0(sel0, r0, r1, r2, r3, m0) ; 

mux4_18 mx1(sel1, r0, r1, r2, r3, m1) ; 

mux4_18 mx2(sel2, r0, r1, r2, r3, m2) ; 

mux4_18 mx3(sel3, r0, r1, r2, r3, m3) ; 

// shifters 

shiftp sh0(shift0, m0, s0) ; 
shiftp sh1(shift1, m1, s1) ; 

shiftp sh2(shift2, m2, s2) ; 

shiftp sh3(shift3, m3, s3) ; 

// flip flops 

always @(posedge clk) 

begin 

r0=i0 ; r1=i1 ; r2=i2 ; r3=i3 ; 
o0=s0 ; o1=s1 ; o2=s2 ; o3=s3 ; 

end 

endmodule  
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Then we simulated it and run net list drawing to give the following RTL. 

 

Figure 40 Netlist simple router 

7.2  Second Full Router 

Our Full router passed by some steps to be in its final form which consists of fifo input 

buffers, Routing table "address translation block", Allocator, Cross bar and fifo output buffers. 

we can simplify these steps for illustration as following. 

7.2.1  Allocator: 

As we know the allocator is one of the most important blocks that the whole routing 

and resources allocation depends on - good allocation technique give the most optimum tech-

nique. 

We choose the Islip allocation technique which have the advantage over other allocation tech-

niques as we illustrated before and as this figure shows fig 7.3 . 
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Figure 41 Islip graph versus other allocations 

 

The Islip allocation technique uses 3 way hand shake for granting a given resource to a given 

agent which may introduce delay to our router so we needed to make it more simple so all 

what we need from Islip technique is that it achieves the fair round-robin plus granting that 

most of the output ports which have conflict are granted to one input port only, which we 

achieved by the following allocator code with just only one cycle not 3 cycles as the iSLP al-

location technique. 

Arbiter The code: 

/* 

*************************************************** 

* Round-robin arbiter with variable Priority vector 
*************************************************** 

*/ 

`timescale 1ns/1ps  

module arbiter(clk,  

rst,  

req,  

grant, 
anyGrant); 

parameter N = 4; 

parameter S = 2; // ceil of log_2 of N - put manually 

parameter CHOISE = 0;  // 0 blind round-robin and 1 true round robin 

// I/O interface 

input           clk; 

input           rst; 
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input  [N-1:0]  req; 

output [N-1:0]  grant; 

output          anyGrant; 

// internal pointers 
reg [N-1:0] Priority; // one-hot Priority vector 

//reg [N-1:0] trig; 

// Outputs of combinational logic - real wires - declared as regs for use in a 

always block 

// Better to change to wires and use generate statements in the future  

 reg [N-1:0]  g[S:0]; // S levels of Priority generate 

reg [N-1:0]  p[S-1:0]; // S-1 levels of Priority propagate  

//reg [N-1:0]  gf[s:0]; // 
// internal synonym wires of true outputs anyGrant and grant  

wire anyGnt; 

wire [N-1:0] gnt; 

//wire [N-1:0] gntf; 

assign anyGrant = anyGnt; 

assign grant = gnt; 

//assign trig = req & clk; 
//assign gntf = gnt; 

///////////////////////////////////////////////// 

// Parallel prefix arbitration phase 

///////////////////////////////////////////////// 

integer i,j; 

// arbitration phase 

//always@(posedge clk) begin   
always@(req  or Priority) 

begin 

// transfer request vector to the first propagate positions 

p[0] = {~req[N-2:0], ~req[N-1]}; 

// transfer Priority vector to the first generate positions 

g[0] = Priority; 

// first log_2n - 1 prefix levels 

for (i=1; i < S; i = i + 1) begin 
for (j = 0; j < N ; j = j + 1) begin 

if (j-2**(i-1) < 0) begin 

g[i][j] = g[i-1][j] | (p[i-1][j] & g[i-1][N+j-2**(i-1)]);            

p[i][j] = p[i-1][j] & p[i-1][N+j-2**(i-1)]; 

end else begin 

g[i][j] = g[i-1][j] | (p[i-1][j] & g[i-1][j-2**(i-1)]);            

p[i][j] = p[i-1][j] & p[i-1][j-2**(i-1)]; 
end             

end 

end   

// last prefix level 

for (j = 0; j < N; j = j + 1) begin 

if (j-2**(S-1) < 0)  

g[S][j] = g[S-1][j] | (p[S-1][j] & g[S-1][N+j-2**(S-1)]);            

else 
g[S][j] = g[S-1][j] | (p[S-1][j] & g[S-1][j-2**(S-1)]);            

end 

end       

//end 

// any grant generation at last prefix level 

assign anyGnt = ~(p[S-1][N-1] & p[S-1][N/2-1]); 
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// output stage logic 

assign gnt  = req & g[S];   

///////////////////////////////////////////////// 

// Pointer update logic 
// ------------------------ 

// Version 1 - blind round robin CHOISE = 0 

// Priority visits each input in a circural manner irrespective the granted 

output 

// ------------------------ 

// Version 2 - true round robin CHOISE = 1 

// Priority moves next to the granted output 

// ------------------------ 
// Priority moves only when a grant was given, i.e., at le ast one active request 

////////////////////////////////////////////////// 

always@(posedge clk) 

begin 

if (rst == 1'b1) begin 

Priority <= 1; 

end else begin 
// update pointers only if at leas one match exists 

if (anyGnt == 1'b1) begin   

if (CHOISE == 0) begin // blind circular round robin 

// shift left one-hot Priority vector 

Priority[N-1:1] <= Priority[N-2:0]; 

Priority[0] <= Priority[N-1];   

end else begin // true round robin 
// shift left one-hot grant vector 

Priority[N-1:1] <= grant[N-2:0]; 

Priority[0] <= grant[N-1];   

end     

end 

end 

end 

endmodule 
// The code in compination between the code written by G. Dimitrakopoulos 

((Nov. 2008)) and some updates we writes them. 
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The following code gives us a very similar results to the Islip allocation technique but with 

less delay and one clock cycle granting. Arbiter, Allocator Net list and wave Form simulation. 

 

Figure 42 Allocator Netlist 

 

 

    

 

Figure 43 Arbiter Netlist 
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Figure 44 Arbiter Waveform 

 

This arbiter is a simple form of Islip arbiter with only one cycle grant generation where the 

priority vector is not incremented unless a grant to that port is generated “non-blind round-

robin”. 

 

 

 

 

 

7.2.2  The FIFO Buffers: 

The specifications of our buffers are somehow matches perfect to a dual port memory imple-

menting FIFO with generic size and width. 

The code: 

`define BUF_WIDTH 3    // BUF_SIZE = 16 -> BUF_WIDTH = 4, no. of bits to 

be used in pointer 
`define BUF_SIZE ( 1<<`BUF_WIDTH ) 

module fifo( clk, rst, buf_in, buf_out, wr_en, rd_en, buf_empty, buf_full, 

fifo_counter ); 

input                 rst, clk, wr_en, rd_en;    

// reset, system clock, write enable and read enable. 

input [7:0]           buf_in;                    
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// data input to be pushed to buffer 

output[7:0]           buf_out;                   

// port to output the data using pop. 

output                buf_empty, buf_full;       
// buffer empty and full indication  

output[`BUF_WIDTH :0] fifo_counter;              

// number of data pushed in to buffer    

reg[7:0]              buf_out; 

reg                   buf_empty, buf_full; 

reg[`BUF_WIDTH :0]    fifo_counter; 

reg[`BUF_WIDTH -1:0]  rd_ptr, wr_ptr;           // pointer to read and write 

addresses   
reg[7:0]              buf_mem[`BUF_SIZE -1 : 0]; //   

always @(fifo_counter) 

begin 

buf_empty = (fifo_counter==0); 

buf_full = (fifo_counter== ̀ BUF_SIZE); 

end 

always @(posedge clk or posedge rst) 
begin 

if( rst ) 

fifo_counter <= 0; 

else if( (!buf_full && wr_en) && ( !buf_empty && rd_en ) ) 

fifo_counter <= fifo_counter; 

else if( !buf_full && wr_en ) 

fifo_counter <= fifo_counter + 1; 
else if( !buf_empty && rd_en ) 

fifo_counter <= fifo_counter - 1; 

else 

fifo_counter <= fifo_counter; 

end 

always @( posedge clk or posedge rst) 

begin 

if( rst ) 
buf_out <= 0; 

else 

begin 

if( rd_en && !buf_empty ) 

buf_out <= buf_mem[rd_ptr]; 

else 

buf_out <= buf_out; 
end 

end 

always @(posedge clk) 

begin 

if( wr_en && !buf_full ) 

buf_mem[ wr_ptr ] <= buf_in; 

else 

buf_mem[ wr_ptr ] <= buf_mem[ wr_ptr ]; 
end 

always@(posedge clk or posedge rst) 

begin 

if( rst ) 

begin 

wr_ptr <= 0; 
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rd_ptr <= 0; 

end 

else 

begin 
if( !buf_full && wr_en )    wr_ptr <= wr_ptr + 1; 

else  wr_ptr <= wr_ptr; 

if( !buf_empty && rd_en )   rd_ptr <= rd_ptr + 1; 

else rd_ptr <= rd_ptr; 

end 

end 

endmodule  
 

 

 

This FIFO gives us more signals that will be used in future progress such as buffer count 

where we can use in Adaptive Routing and Adaptive allocation. 

 

 

Figure 45 FIFO Netlist 

7.2.3  Control  

The Control Block which is responsible for delete granted flits form input buffers and 

open the cross bar to be saved in the output buffers. 

The code: 

module control(flitin0, 

flitin1, 

flitin2, 

flitin3, 

flitin4, 

flitin5, 

flitin6, 

flitin7, 
grantin0, 

grantin1, 

grantin2, 

grantin3, 

portout0, 
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portout1, 

portout2, 

portout3, 

erase, 
enable); 

input[7:0] flitin0; 

input[7:0] flitin1; 

input[7:0] flitin2; 

input[7:0] flitin3; 

input[3:0] grantin0; 

input[3:0] grantin1; 

input[3:0] grantin2; 
input[3:0] grantin3; 

output[7:0] portout0; 

output[7:0] portout1; 

output[7:0] portout2; 

output[7:0] portout3; 

output [3:0] erase,enable; 

reg [3:0] en; 
//Code starts here 

always @(grantin0,grantin1,grantin2,grantin3) 

begin 

begin 

 if(grantin0 !==(4'd0)) 

 en[0]=1'b1; 

 else 
 en[0]=1'b0; 

end 

begin 

 if(grantin1 !== (4'd0)) 

 en[1]=1'b1; 

 else 

 en[1]=1'b0; 

end 
begin 

 if(grantin2 !== (4'd0)) 

 en[2]=1'b1; 

 else 

 en[2]=1'b0; 

end 

begin 
 if(grantin3 !== (4'd0)) 

en[3]=1'b1; 

else 

en[3]=1'b0; 

end 

end 

assign erase =(grantin0 | grantin1 | grantin2 | grantin3); 

assign enable =en; 
//module mux4_18(Sel, A, B, C, D, Y); 

mux4_18 m0 (grantin0,flitin0,flitin1,flitin2,flitin3,portout0); 

mux4_18 m1 (grantin1,flitin0,flitin1,flitin2,flitin3,portout1); 

mux4_18 m2 (grantin2,flitin0,flitin1,flitin2,flitin3,portout2); 

mux4_18 m3 (grantin3,flitin0,flitin1,flitin2,flitin3,portout3); 

endmodule 
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7.2.4  Routing Table  

We used a technique which is similar to packet switching where each flit of data car-

ries its destination Address and a payload. 

The routing table or Address translation block function can be summarized in translating the 

Address of the Network to port address in the router. 

The routing table is configurable in our deterministic routing Network. 

 

7.2.5  Router as a whole block 

Here we gathered all the blocks and accurately signalled them to give us this router Fig 7.7. 

 

 

Figure 46 Router Netlist 

                                                     

Router signals  

1- clk: Clock signal               

Synchronous clock for the whole router or Network. 

2- rst: reset signal                 

Restets the router or the network and all its internal blocks. 

3- iN: input data port n        

Input Data ports. 

4- oN: output port N            

Output Data Ports. 
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5- ewN: enable write N         

This signal is set high when there is valid data at the input data port. 

6- erN: enable read N 

This input signal is set high indicating that blocks are ready to read the flits. 

7- pfN: port free N 

This output signal is set high when the input buffers is not full. 

8- neN: not empty N 

This output signal is set high when the output buffers is not empty. 

 

Simulation wave form 

 

Figure 47 The router simulation waveform 

7.3 Simulation and layout results  

7.3.1 Simulation results  

Chip link was designed and implemented using VERILOG HDL , compilation and func-

tionality verification were made using Modelsim EDA program .  

The figure below shows router operation while sending and routing stream of packets through 

the different input ports .  

packets routed to the destined output ports are shown in figure , delay can be estimated know-

ing the data input  and output instants .   
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First packets stream         First output      Second packets stream            Second output 

 

Figure 48 

 

 

After functionality verification the design was imported for logic synthesises, and initial 

delay and area estimation.  
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Figure 49 slack histogram  

Best path (largest slack) 

 

Figure 50 largest slack 
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Worst path (smallest slack ) 

 

Figure 51 Smallest slack 

 

 

Using SoC encounter EDA to generate a floor plan of CHIP Link router.  

obtained reports shows : 

geometric violations N/A 

Max cap violations N/A 

Fan out load N/A 

placement violations  

 

N/A 

total logic gates 9598 

Total standard cells  1742 

 

total area 10366.2 µm  

total delay for data 4 ns 

operational frequency 250 MHZ 

 

 

 

 

 

 



Page 61 of 66 

 

Obtained floorplan  

 

Figure 52 Full floorplan 

 

A closer look in Figure 50  

 

Figure 53 Closer look to the layout 
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 Conclusion  8
Network on chip technology is the solution that makes digital systems like FPGA has 

more meaning and more useful in human life. It makes the performance of the digital systems 

better. 

Now, system on chip become more complex and contains millions of IP cores which makes 

stresses on its performance to decrease step by step in area, speed and power consumption. 

In order to beat the draw-backs, designers are able to optimize the programmable rout-

ing fabric inside digital systems by introducing NoC technology in which building a complete 

network embedded in the digital chip to manage the data traffic between IP cores and make the 

system do its role faster and better. 

Chip-Link router is a simple router based-on the next generations in FPGA’s chips. 

The router consists of 9598 logic gates and 1742 standard cells. 

Chip-Link arbiter is a simple form of Islip arbiter with only one cycle grant generation 

where the priority vector is not incremented unless a grant to that port is generated “non-blind 

round-robin”. 

The operating frequency is 250 MHz and the maximum delay for the router to get the 

data from its input to its output is 4 n sec. 

The design can be optimized in the future to have best results and best performance 

and makes FPGA grows in the human life and market field so that the investment will be high.  
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 Appendix 1 9
 

Arbiter  arbiter variable priority round robin arbiter 

Signal in/out Description  

Clk Input clock 

Rst Input rest signal 

Req N bits Input defines the requests for a given resource output port. 

Grant  N bits Output defines the grant signal for certain agent "input port" 

Any grant  Output is high when any agent is granted the resource. 

 

Allocator  Allocator iSLP single granting cycle. 

Signal in/out Description  

Clk  Input clock 

Rst Input rest signal 

Req0,Req1,Req2,Req3 N bits Input define the request for each output port. 

Gnt0,Gnt1,Gnt2,Gnt3 N bits output defines the grant signal for each input port. 

 

Control   Control and bus switch generates enable write and erase 

signals for output and input buffers respectively. 

Signal in/out Description  

flitin0,flitin1,flitin2,flitin3 M bits Input Data. 

grantin0,grantin1,grantin2,grantin3 N bits Input grant signals form allocator. 

portout0,portout1,portout2,portout3 M bits Output Data Bus. 

Enable N bits output signal for enable write for output buffers. 

Erase  N bits output signal for erase data from input buffers. 
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Fifo  FIFO input and output buffers. 

Signal in/out Description  

Clk  Input clock. 

Rst Input reset. 

Wr_en Input enable write signal to write in the buffers. 

Rd_en Input enable read signal to read form the buffers. 

Buf_in M bits Input for input data. 

Buf_out M bits Output for output data. 

Buf_empty Output signal is high when the buffer is empty. 

Buf_full Output signal is high when the buffer is full. 

Fifo_counter Buffer_width Output signal gives the count of the buffer 

occupation. 
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