
July, 2014

Faculty Of Engineering ,Cairo University

[ADPLL] ALL DIGITAL PHASE LOCKED LOOP

ii

LOW POWER, SMALL AREA
ALL DIGITAL PHASE

LOCKED LOOP (ADPLL)

By

Ammar Mohammad Ibrahim

Ammar Mohammad Hussein

Mohammad Abdel-Lateef Abdel-Tawab

A thesis submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Science in Electronics and
Electrical Communications Department,

Faculty of Engineering

Cairo University

 Supervised by
 Dr. Hassan Mostafa

July, 2014

iii

ABSTRACT

ADPLL

The objective of the thesis is to design an All Digital Phase Locked Loop (ADPLL)

with low power. The design consists of three main blocks: Digitally Controlled

Oscillator (DCO), Phase Detector (PD) and Loop Filter (LF). The DCO is considered

as the heart of the ADPLL as it consumes the most power for the whole system. The

design went through two different approaches, standard cells and custom cells .This

design can be used in Clock and Data Recovery (CDR) system as an application.

This thesis presents a low power all digital phase locked loop (ADPLL) in 65 nm

CMOS process with 1.2 V power supply. It operates in the frequency range of 100 –

300 MHz. The ADPLL uses a digitally controlled oscillator with two stages, fine

tuning stage and coarse tuning stage. The source of oscillation for this DCO is the ring

oscillator.

The proposed ADPLL uses also a phase-frequency detector (PFD) and shift registers

for the loop filter. It achieved power consumption at 200 MHz of 0.6 mW and a lock

time of 1 uS.

The last design step of the ADPLL is the layout, some modification applied to the

layout to satisfy the required specifications, at the end of this thesis a comparison

between the required and the achieved specifications in schematic and layout level.

Design considerations of the ADPLL circuit components and implementation using

Cadence, Synopsys and Mentor tools are presented; the AMS tool is used frequently in

the standard cells flow.

iv

TABLE OF CONTENTS

List of Figures .. v
Acknowledgments ... vii
Acronyms ... viii
Chapter 1: Introduction ... 1
Chapter 2: Custom Cells Approach ... 5

2.1 DCO .. 5
 2.1.1 Ring Oscillator.. 6
 2.1.2 Fine stage ... 11
 2.1.3 Coarse stage .. 16
 2.1.4 Conclusion and final results ... 20
2.2 PFD .. 24
2.3 Loop Filter .. 26
2.4 Overall Design .. 28
 2.4.1 Extreme Reference Frequency .. 28
 2.4.2 Intermediate Reference Frequency .. 29
 2.4.3 Frequency step response .. 31
 2.4.4 Jitter calculation .. 33

Chapter 3: Standard Cells Approach ... 34
3.1 PFD .. 34
3.2 Loop Filter .. 36
3.3 PFD and Loop Filter .. 37
3.3 Overall Design ... 38

Chapter 4: Layout .. 43
4.1 DCO ... 43
 4.1.1 DCV ... 43
 4.1.2 DCV2 ... 44
 4.1.3 Ring Oscillator.. 45
 4.1.4 Complete DCO .. 46
4.2 PFD .. 47
4.3 Loop Filter .. 49
4.4 Overall Design .. 50
4.5 Conclusion .. 51

References .. 52
Appendix A: AMS Tutorial ... 53
Appendix B: Logic Synthesis .. 107
Appendix C: Importing Synthesized Design into Cadence Composer 124
Appendix D: Standard Cell Placement and Routing .. 138
Appendix E: Power Calculation ... 161

v

LIST OF FIGURES

Figure 1.1: Block diagram of the PLL ... 1
Figure 1.2: The Overall block diagram of the ADPLL .. 2
Figure 1.3: Jitter Illustration .. 3
Figure 2.1: DCO symbol view .. 5
Figure 2.2: DCO internal structure .. 6
Figure 2.3: Ring oscillator block diagram ... 6
Figure 2.4: A Schematic view for the inverter ... 7
Figure 2.5: Simulation results of the inverter ... 8
Figure 2.6: Simulation results for the ring oscillator without delay cells .. 8
Figure 2.7: A schematic view of the HDC ... 9
Figure 2.8: The ring oscillator with HDC cells .. 10
Figure 2.9: Simulation results for the ring oscillator with HDC cells.. 10
Figure 2.10: A schematic view for the DCV cell ... 11
Figure 2.11: The gate capacitance of NAND gate .. 12
Figure 2.12: Simulation results for the NAND based DCV Cell... 13
Figure 2.13: A block diagram for the DCV building block ... 13
Figure 2.14: DCV array internal structure .. 14
Figure 2.15: A symbol view for the DCV array ... 15
Figure 2.16: Period step Vs. frequency steps ... 16
Figure 2.17: A schematic view for the DCV2 cell .. 17
Figure 2.18: DCV2 block ... 18
Figure 2.19: DCV2 array .. 19
Figure 2.20: A symbol view for the DCV2 array .. 20
Figure 2.21: Different output periods of the DCO .. 21
Figure 2.22: Different output waveforms of the DCO ... 22
Figure 2.23: Period steps versus code ... 22
Figure 2.24: Frequency steps versus code .. 23
Figure 2.25: PFD schematic .. 24
Figure 2.26: State diagram of the PFD.. 25
Figure 2.27: PFD simulation results .. 25
Figure 2.28: Digital control signals used to switch a set of varactors .. 26
Figure 2.29: Schematic view of the shift register ... 27
Figure 2.30: Reference = 100MHz .. 28
Figure 2.31: DCO delay ... 29
Figure 2.32: Reference= 250MHz ... 29
Figure 2.33: Effect of using counter .. 30
Figure 2.34: Frequency counter .. 31
Figure 2.35: frequency step response .. 32
Figure 2.36: Eliminating the oscillations ... 32
Figure 2.37: Eye-diagram of the ADPLL .. 33
Figure 3.1: PFD schematic .. 35
Figure 3.2: Loop Filter schematic .. 36
Figure 3.3: PFD and Loop Filter .. 37
Figure 3.4: Overall ADPLL (standard cells) ... 38

file:///C:/Users/hp/Desktop/Thesis_v3/Thesis_v3.docx%23_Toc393108546

vi

Figure 3.5: AMS of the overall ADPLL without the counter ... 38
Figure 3.6: AMS simulation of the overall ADPLL with counter.. 39
Figure 3.7: AMS of the ADPLL with counter. .. 40
Figure 3.8: The standard cells of both PFD and Loop Filter ... 41
Figure 3.9: The transistor level of the standard D flip flop in cadence. ... 42
Figure 4.1: DCV layout .. 43
Figure 4. 2: DCV block layout .. 44
Figure 4. 3: DCV array layout ... 44
Figure 4. 4: DCV2 layout ... 44
Figure 4. 5: DCV2 block layout. ... 45
Figure 4. 6: DCV2 array layout ... 45
Figure 4. 7: Ring Oscillator layout.. 45
Figure 4. 8: Final DCO layout .. 46
Figure 4. 9: DCO operating range in layout. .. 47
Figure 4. 10: PFD layout .. 47
Figure 4.11: PFD pre-layout simulation. ... 48
Figure 4.12: PFD post-layout simulation. ... 48
Figure 3.13: Shift Register layout.. 49
Figure 4.14: Pre-layout simulation of the Shift Register .. 49
Figure 4.15: Post-layout simulation of the Shift Register .. 50
Figure 4.16: The overall layout ... 50
Figure 4.17: Overall post layout simulation ... 50

vii

ACKNOWLEDGMENTS

First of all we would like to thank ALLAH for his mercy supporting us through this

project. We wish to express sincere appreciation to Dr. Hassan Mostafa for his

assistance in the preparation of this project. In addition, special thanks to our teaching

assistance Eng. Mahmoud Nagib Sawaby for helping us with the needs and ideas

of the standard cells approach and to Eng. Mohammad Wagih Emam for his time

and effort for answering our questions and helping deal with Cadence toolkit. Thanks

also to our friend Eng. Islam Abdou for installing the AMS tool in Cadence.

viii

ACRONYMS

ADPLL All Digital Phase Locked Loop

AMS Analog Mixed Simulation

DCO Digitally Controlled Oscillator

DCV Digitally Controlled Varactor

DFF D Flip Flop

DPLL Digital Phase Locked Loop

HDC Hysteresis Delay Cell

LF Loop Filter

LPLL Linear Phase Locked Loop

PD Phase Detector

PFD Phase Frequency Detector

PLL Phase Locked Loop

SR Shift Register

VCO Voltage Controlled Oscillator

1

C h a p t e r 1

INTRODUCTION

The PLL represents one of the most active topics in signal processing and

communication theory. The initial ideas started as early as 1919 in the context

of synchronization of oscillators. The theory of phase-locked loop was based

on the theory of feedback amplifiers. The PLL contributed significantly to

communications and motor servo systems. Due to the rapid development of

integrated circuits (IC’s) since the 1970’s, PLLs are widely used in modern signal

processing and communication systems, and it is expected that PLL will

contribute to improvement in performance and reliability of future

communication systems. The applications of PLLs include filtering, frequency

synthesis, motor speed control, frequency modulation, demodulation, signal

detection, frequency tracking and many other applications.

The PLL consists of three main blocks VCO, Loop Filter and Phase detector as

shown in figure 1.1.

Figure 1.1: Block diagram of the PLL

2

There are many types of PLL according to the internal blocks and designing

techniques as following:

1. LPLL: Linear Phase Locked Loop which contains a VCO and RC circuit

for the Loop Filter block and uses a multiplier to detect the phase

difference between the reference frequency and the VCO output

frequency.

2. DPLL: Digital Phase Locked Loop was the very first digital PLL; it was in

effect a hybrid device ONLY the phase detector was built as a digital

block like EXOR.

3. ADPLL: All Digital Phase Locked Loop in which all the blocks are built

as digital blocks.

 ADPLL consists of the same three main blocks mentioned previously except for

the VCO; it will be replaced by the DCO as shown in figure 1.2

Figure 1.2: The Overall block diagram of the
ADPLL

3

PLL in general has its own parameters such as:

 The operating frequency range: the range of frequencies that PLL can
lock on them.

 The lock time: the time which PLL needs to lock on the reference
frequency.

 The Jitter: undesired deviation from the true periodicity of an assumed
periodic signal.

What is Jitter?

Jitter is the undesired deviation from true periodicity of an assumed periodic

signal, Deviation (expressed in ± ps) can occur on either the leading edge or the

trailing edge of a signal. Jitter may be induced and coupled onto a clock signal

from several different sources and is not uniform over all frequencies.

Period of ring oscillator vibrates in a random manner T=T+T` where T` is a

random value. In high-quality circuits range of T` is relatively small compared to

T. This variation in oscillator period is called jitter. Local temperature effects

cause the period of a ring oscillator to wander above and below the long-term

average period when the local silicon is cold, the propagation delay is slightly

shorter, causing the ring oscillator to run at a slightly higher frequency, which

eventually raises the local temperature. When the local silicon is hot, the

propagation delay is slightly longer, causing the ring oscillator to run at a slightly

lower frequency, which eventually lowers the local temperature.

Figure 1.3: Jitter Illustration

4

We considered the DCO as the first design stage, because it consumes about

50% of the system power and covers the most area of the whole system area. The

design went through two approaches the custom cells and the standard cells. The

DCO is done in the custom approach however; the rest of the design went

through both approaches.

The proposed ADPLL has the following specifications:

 Power < 1 .

 Area < 0.01 .

 Frequency Range from 100 MHz to 300 MHz.

 Lock time < 10 .

 Peak to Peak Jitter < 20

 R.M.S. Jitter < 5

In the following chapters we are going to discuss the design steps in details for

each block of the ADPLL to satisfy these requirements.

Frequently Asked Question about ADPLL:

 Why digital? What is the problem of the analog (linear) one?

 Basically, the ADPLL consumes less power than the linear PLL.

 ADPLL can be easily scaled down to another technology.

 Linear PLL needs an off chip components such as capacitors and

resistors (for the loop filter) which do not have a fixed and stable

value because they may suffer from aging.

 ADPLL covers less area than linear PLL.

5

C h a p t e r 2

CUSTOM CELLS APPROACH

2.1 Digitally Controlled Oscillator

The digitally controlled oscillator (DCO) is considered the heart of the PLL as it

controls the overall system performance and consumes the most power and area

of the whole design. The proposed DCO follows a full custom design approach

to make it easier to control its area and power. It consists of three main blocks:

1. A ring oscillator

2. A fine tuning stage (DCV Array)

3. A Coarse tuning stage (DCV2 Array)

Figure 2.1 is the symbol view of the DCO.

Figure 2.1: DCO symbol view

Another figure for the internal block diagram of the DCO is figure 2.2, figuring

out its three main blocks.

6

Figure 2.2: DCO internal structure

We will start our discussion by investigating the internal structure of the ring

oscillator followed by the fine tuning stage (DCV Array) and finally the coarse

tuning stage (DCV2 Array).

2.1.1 Ring Oscillator

The ring oscillator is the source of oscillation for the DCO. It consists of an odd

number of inverters in a cascaded configuration with a feedback from the output

to the input. Figure 2.3 is a block diagram for the proposed ring oscillator.

Figure 2.3: Ring oscillator block diagram

7

The design of the ring oscillator follows a full custom approach. The following is

the schematic view (figure 2.4) of the basic cell for the ring oscillator, the inverter.

Figure 2.4: A Schematic view for the inverter

The simulation result for the inverter can be found in figure 2.5.

8

Figure 2.5: Simulation results of the inverter

Next step is to simulate the ring oscillator as cascaded inverters without any delay

cells. Simulation result for this step is shown in figure 2.6.

Figure 2.6: Simulation results for the ring oscillator
without delay cells

9

The problem with the simulation results of this ring oscillator is that, the output

frequency is in range of GHZ (Period = 144.5 ps) not MHZ and our lock range

is from 100 MHZ to 300 MHZ. To solve this problem, we added delay cells to

the internal nodes of the ring oscillator. The delay cells to be added to the ring

oscillator are Hysteresis Delay Cells (HDC). Each HDC cell consists of two cross

coupled inverters. The schematic view of the HDC cell can be found in the figure

2.7.

Figure 2.7: A schematic view of the HDC

The schematic view of the ring oscillator with HDC cells attached to it, is in

figure 2.8.

10

Figure 2.8: The ring oscillator with HDC cells

The simulation result for this modified ring oscillator is in figure 2.9 and it

increased the period of oscillation from 144.5 ps to 678.3 ps.

Figure 2.9: Simulation results for the ring oscillator
with HDC cells

11

2.1.2 A fine tuning stage (DCV Array)

For the proposed DCO, we use a fine tuning stage to give a step change in the

period of oscillation of about 48 ps. The DCV cell is a NAND based delay cell. A

schematic view of this DCV cell can be found in figure 2.10.

Figure 2.10: A schematic view for the DCV cell

The idea of operation of this cell is that, the gate capacitance seen from node CL

(It refers to the load capacitance and it is connected to the output node of each

inverter in the ring oscillator) can be changed according to the gate voltage

applied to the node D (it refers to digital input bit of the DCO). The formula of

12

the resulting gate capacitance for this NAND based cell in both cases (when D is

high and when it is low) is as follows in figure 2.11:

 (a)

 (b)

 (c)

Figure 2.11: The gate capacitance
of NAND gate

Where p0 is probability second input (B) to be equal the ZERO and p1 is

probability second input to be equal the ONE (p0 + p1 = 1). The simulation

result in figure 2.12 illustrates changing the gate capacitance with the gate voltage

(CL) in two cases, when D is high and when it is low. From this result, it seems

that we can achieve high capacitance for the case when the digital input bit is high

(D=1) and we can get a low capacitance when it is low (D=0). Increasing the load

capacitance for each node of the ring oscillator output means increasing the delay

as the value of RC constant will be increased. For the ring oscillator and for a

typical inverter, the propagation delay can be calculated from the following

formula:

13

Where CL is the output capacitance of the inverters of ring oscillator which is the

gate capacitance of the delay cells. Reqp and Reqn are the equivalent resistances

of the PMOS and NMOS transistors respectively.

Figure 2.12: Simulation results for the NAND
based DCV Cell

We use this NAND based DCV cell as a building element for a DCV block in

the fine tuning stage. Every twelve DCV cells are connected to a single input

which is the digital input bit (D). The output of this block consists of six nodes

from C1 to C6. These nodes are connected to the corresponding outputs of six

inverters in the ring oscillator. A block diagram for the DCV block is in figure

2.13.

Figure 2.13: A block diagram for the DCV building
block

14

We then use this DCV block to construct the DCV array consisting of sixteen

DCV blocks. All outputs of the sixteen blocks (C1 to C6) are connected to the

same six nodes of the ring oscillator but each input from the DCV blocks is

connected to a different external digital bit so, for the DCV array of the fine

tuning stage we have a digital word of sixteen bits. Figure 2.14 is the internal

structure of the DCV array:

Figure 2.14: DCV array internal structure

A symbol view of this DCV array is shown below in figure 2.15:

15

Figure 2.15: A symbol view for the DCV array

An important thing to notice here is that, although we achieved a fixed step in

period of about 48ps for fine stage, the step in output frequency is not fixed

because the relation between the frequency and period is not linear. For the same

period step we get many frequency steps depending on the location of this period

step in time access. For example, our DCO period range is from 3.3 ns to 10 ns

consider adding a period step to the first period in range, from 3.3 ns to 3.348 ns

(3.3ns+48ps), 3.3 ns corresponds to a frequency of 303 MHZ and 3.348 ns

corresponds to a frequency of 298.686 MHZ so a period step of 48 ps from 3.3

ns to 3.348 ns causes a frequency step of 4.314 MHZ. Let’s consider the same

period step added to another period in another location in time access, for the

last period of output oscillation from the DCO which is 10 ns, the period before

this one is 9.952 ns (10 ns – 48 ps), 9.952 ns corresponds to a frequency of

100.482 MHZ and 10 ns corresponds to a frequency of 100 MHZ, so the same

period step of 48 ps when added to the period 9.952 ns we get a frequency step

of 0.482 MHZ. For these two cases we get two different frequency steps of 4.314

MHZ and 0.482 MHZ although the period step of fine stage is constant.

Conclusion is that, although the period step for fine stage is constant we will get

different frequency steps (not fixed) because the relation between frequency and

16

period is not linear. Figure 2.16 illustrates why we get different frequency steps

for the same period step.

Figure 2.16: Period step Vs. frequency steps

2.1.3 A coarse tuning stage (DCV2 Array)

After using the fine tuning DCV array we achieved a relatively small step change

in output period of the DCO and consequently a relatively small frequency steps.

For the coarse stage we need to get larger frequency steps to reduce the lock time

of the PLL, to achieve these larger frequency steps we have to use delay cells with

larger period steps than the fine tuning stage (48 ps), so we used another delay

cell to get this larger period step. The delay cell used for coarse tuning stage is

also based on the NAND configuration but with a transmission gate in the

beginning. The enable line for this transmission gate is the external digital input

bit (D) and the input to it is the load capacitance node (CL) which is connected

to the output of each inverter in the ring oscillator. Figure 2.17 is a schematic

view for this delay cell.

17

Figure 2.17: A schematic view for the DCV2 cell

When the external input is low (D=0), the CL node will be disconnected from

the NAND cell and introduces low capacitance and consequently low delay.

When the external input is high (D=1), the CL node is now connected to the

NAND cell and can see the gate capacitance of it. The two cases of D=0 and

D=1 here are different from those in fine tuning stage, as in fine tuning stage the

CL node was connected to NAND cell in both cases that’s why the period step in

fine stage was relatively small. In coarse stage, the CL node is connected only

when D=1 so we can say that, in coarse stage the node CL can see the

capacitance of the NAND cell or it cannot see it, so the period step here is larger

than the period step in fine stage. For coarse stage we achieved a period step of

380 ps. Another advantage for using the DCV2 cell is that, it helped us increase

the largest output period of the DCO (10 ns) without affecting the smallest

period (3.3 ns) by changing the sizing of the NAND cell in this DCV2 cell

We use this NAND based DCV2 cell as a building element for a DCV2 block in

the coarse tuning stage. Every eight DCV2 cells are connected to a single input

18

which is the digital input bit (D). The output of this block consists of four nodes

from CL1 to CL4. These nodes are connected to the corresponding outputs of

four inverters in the ring oscillator. These four inverters are following the six

inverters used in the fine stage. A block diagram for the DCV2 block is in figure

2.18.

Figure 2.18: DCV2 block

We then use this DCV2 block to construct the DCV2 array consisting of sixteen

DCV2 blocks. All outputs of the sixteen blocks (CL1 to CL4) are connected to

the same four nodes of the ring oscillator but each input DCV2 blocks is

connected to a different external digital bit so, for the DCV2 array of the coarse

tuning stage we have a digital word of sixteen bits. The following figure is the

internal structure of the DCV2 array (Figure 2.20).

19

Figure 2.19: DCV2 array

A symbol view of this DCV2 array is shown in figure 2.20.

20

Figure 2.20: A symbol view for the DCV2 array

2.1.4 Conclusion and final results

In this section we introduced the proposed DCO which is consisting of three

main blocks:

1. A ring oscillator

2. A fine tuning stage

3. A coarse tuning stage

The output period for this DCO ranges from 3.3 ns to 10 ns which is equivalent

to a lock range from 100 MHZ to 300 MHZ. We used HDC cells to add a fixed

delay to the ring oscillator and DCV cells for both fine and coarse tuning stages

to add a programmable delay. The fine tuning stage gives a small step (48 ps) in

period and consequently small steps in frequency. The coarse tuning stage gives

large period step (380 ps) and consequently large steps in output frequency.

21

The following table in figure 2.21 shows different output periods of the DCO

according to different values for the digital words of both fine and coarse tuning

stages.

Figure 2.21: Different output periods of the DCO

The simulation result in figure 2.22 is different output waveforms for the DCO.

22

Figure 2.22: Different output waveforms of the
DCO

Figure 2.23 is the period steps versus the digital code according to the above

table, one coarse step change followed by one fine step change. From this figure,

one can easily notice the coarse step is larger than the fine step. The start point of

our range is 3.3 ns and the end point is 10 ns corresponds to the lock range for

the proposed DCO (100 MHZ to 300 MHZ).

Figure 2.23: Period steps versus code

Figure 2.24 is the output frequency versus the 32-bit digital input word (16-bit

word for fine stage and 16-bit word for coarse stage).

23

Figure 2.24: Frequency steps versus code

24

2.2 PFD

 A phase detector is a circuit capable of delivering an output signal that is proportional to

the phase difference between its two input signals Ref_Freq and DCO_Out as mentioned

in figure 1.2. When the PLL moved into digital territory, digital phase detectors become

popular, such as EXOR gate, the edge-triggered JK-flip flop, and the so-called phase-

frequency detector (PFD).The PFD differs greatly from the other phase detector types as

its name implies, its output signal depends not only on phase error but also on frequency

error when the PLL has not yet acquired lock. The PFD is built from two D-flip flops,

whose outputs are denoted UP and DOWN(DN) as shown in figure 2.25, these two

signals are the digital representation of the phase/frequency error. The PFD can be in

one of four states:

 UP=0, DN=0

 UP=1, DN=0

 UP=0, DN=1

 UP=1, DN=1

The fourth state is inhibited, however, by an

additional gate. Whenever both flip flops are in

the 1 state, a logic low level appears at their reset

inputs, which reset both flip flops. We assign the

symbols -1, 0, and 1 to these three states :

 UP=0, DN=0 state -1

 UP=1, DN=0 state 0

 UP=0, DN=1 state 1

 The actual state of the PFD is determined by the positive-going transients of the

signals Ref_Freq and DCO_Out, as explained by the state diagram in figure 2.26, a

positive transition of Ref_Frq forced the PFD to go into its next higher state,

unless it is already in the 1 state. In analogy, a positive edge of DCO_Out forces

the PFD into its next lower state, unless it is already in the -1 state.

Figure 2.25: PFD schematic

25

Figure 2.26: State diagram of the PFD

To see how the PFD works in a real PLL system, we consider the waveforms in

figure 2.27,this figure shows the three cases:

a) First 25ns shows the case where Ref_Freq leads, therefore the PFD toggles

between states 0 and 1.

b) If Ref_Freq lags as in the next 25ns, the PFD now toggles between states

-1 and 0.

c) The signals Ref_Freq and DCO_Out are ‘exactly’ in phase; both positive

edges occur at the same time; hence the PFD will stay in state 0 forever.

Figure 2.27: PFD simulation results

26

2.3 Loop Filter:

The Loop filter stage controls the output capacitance by changing the number of

DCV cells that are turned on, as shown in figure 2.28 the digital control signals is

used to increase/decrease the DCO frequency for a certain period of time by

reducing /increasing the capacitance. If the input to the DCV is ‘1’, it provides

more capacitive load at the output. If more number of cells are on (input is ‘1’),

then it acts as more capacitive load on the ring oscillator which reduces the DCO

frequency.

Figure 2.28: digital control signals used to switch a set of varactors

In order to control each of the fine DCV array and the coarse DCV array

individually, we have used two 16-bits bi-directional loadable shift registers and

here part of the schematic view for each shift register in figure 2.29

27

Figure 2.29: Schematic view of the shift register

Initially, 8 DCV cells of each array are on, this achieved by using asynchronous

Reset and Preset signals. Depending on the up/down signals from PFD, the

frequency is either increased or decreased. When phase and frequency

acquisition starts, if the output of PFD is up, then the contents of the shift

register are left shifted and bit ‘0’ is pushed into Q<15> and hence the

capacitive load decreases and the frequency increases. Likewise, if it is down,

the contents of the shift register are right shifted and bit ‘1’ is pushed into

Q<0>. This reduces the frequency of the DCO as the capacitive loading at the

output increases.

28

2.4 Overall Design

In this section the simulation results of the whole system will be introduced.

2.4.1 Extreme Reference frequency

First let the input (reference frequency) signal be an extreme, let’s say the minimum

frequency in the desired range (100-300MHz) as in figure 2.30.And by knowing

Figure 2.30: Reference = 100MHz

that the DCO frequency initially equals to the center frequency (200MHz), then the

shift register should get only DOWN pulses from the PFD, which activates all the

DCV cells and introduces the lowest frequency .now what about the lock time ?

Actually this depends on two factors, the:

i. CLK used for the loop filter: this means the rate of changing in DCO

frequency at a certain time. It’s clear that we need to increase the frequency

of this CLK to get smaller lock time.

ii. DCO Delay : this means time needed by the DCO to change its frequency

after one step delay as shown in figure 2.31, where one DCV cell is

deactivated after two cycles, the effect of this step appears after exactly two

cycles, this time is considered as the DCO delay, thus the CLK above in part

(i) should take in consideration this delay to get the true UP/DN pulse

after the new change in the DCO frequency.

29

Figure 2.31: DCO delay

 2.4.2 Intermediate Reference frequency

Now let’s consider this case, reference = 250MHz as below in figure 2.32.

Figure 2.32: Reference= 250MHz

It’s clear that average frequency is almost equals to the reference, but the problem that

appears here due to the wide steps of the course stage (up to 31MHz), which results to

these oscillations with a very high peak-to-peak value. Simply to solve this problem, the

coarse stage must be stopped after being operating separately from the fine stage. This is

applied using a 4bit Counter to count the maximum number of steps needed by the

coarse stage, which is 16 at the worst case, after that a carry signal is used to turn off the

coarse shift register and activates the fine one. The simulation results of this idea are

30

shown in figures 2.33a, 2.33b and 2.33c.

Figure 2.33: Effect of using counter

a) Control signals

b) Frequency response

c) Digital words of Both SRs

31

In this example the reset signal of the whole system was designed to start the DCO

oscillations at the center frequency, this is achieved by activating four DCV cells

from each array, to calculate this frequency as explained in section 2.1 :

Period (ps) = 3270 + Coarse_1’s × (380) + Fine_1’s × (48) = 5ns (200MHz).

Through the first stage the fine SR is stopped as shown in figure 2.33a and 2.33c,

and at the end of this stage the DCO frequency was undecided between two

frequencies around the reference corresponding to the digital words which clarified

in figure 2.33c, after that the course stage stopped using the carry signal at 38n as

shown in figure 2.33a.At the same time the fine stage started, this can be observed

through the frequency response in figure 2.33b ,where the very small slopes appears

after the 38ns.

2.4.3 Frequency step response

It was necessary to consider in our design that the Reference signal frequency may

be changed during the loop, because this PLL targets a low power clock and data

recovery system. But in order to detect this change, the loop filter won't be a simple

shift registers as it now because a certain controlling circuit must be added. Actually

we have replaced the coarse SH by a frequency counter circuit which is one of

Digital Instruments that can be used to measure signal frequency and period, the

basic idea is illustrated in the following figure:

Figure 2.34: Frequency counter

We have implemented this idea by generating the Gate signal (figure 2.34) from the

reference frequency, and the input clock source (time base) signal which used to

trigger the counter from a ring oscillator which already discussed in section 2.1.1.

32

After counting the N pulses mentioned in figure 2.34, this number is therefore

mapped to the 16 bit to control the coarse DCV array. Note that at the end of each

counting period, the counted value should mapped synchronously and the counter

should cleared. In the following the whole system simulation result after using the

frequency counter :

Figure 2.35: frequency step response

After this modification on the system to become capable of reacting with the step

system response, the consumed power is increased from 0.25 to 0.6 mWatt due

to the high frequency clock added. Also the lock time at the worst case does not

exceed 300ns. Now there is one more enhancement needed

The last improvement needed, is to reduce the oscillation of the fine stage around

the reference, this is achieved by slowing its clock frequency. Figure 2.36 shows the

result after this modification.

Figure 2.36: Eliminating the oscillations

33

As expected, slowing the fine SR led to the expansion of the time lock until the

time of 1us as figure 2.36 shows.

2.4.4 Jitter calculation :

Figure 2.37 shows the eye-diagram of DCO output clock when locked at 300 MHz

plotted using Cadence tools. In this eye-diagram, each and every cycle of

the DCO output clock are overlapped on one clock period (after the DCO clock is

locked to the reference) and the maximum deviation that can be obtained from the

graph is measured as peak-to-peak jitter. Number of cycles that are taken into

account are 100. The delay is measured at 50% voltage levels and the period jitter

determines how noisy and stable the oscillator output signal is.

Figure 2.37: Eye-diagram of the ADPLL

The peak-to-peak jitter for this implementation when the feedback signal is

locked at 300 MHz is 35 ps.

34

C h a p t e r 3

STANDARD CELLS APPROACH

Standard Cells Approach means that the targeted block will be written with one

of the Hardware Description Language HDL codes such as Verilog or VHDL,

and then can be translated into an hardware circuit using Standard Cells library.

Thanks to AMS we are able to simulate and test the targeted block with analog

blocks in cadence environment.

One big advantage of using such approach is that the designer is not have to deal

with the block gates at the transistor level and check the sizing of the logic gates .

This approach also made the layout step very easy and effective in area.

3.1 PFD

As mentioned before, the Phase and Frequency Detector (PFD) will be used as a

phase detector to detect the phase and the frequency difference between the

reference signal and the output signal of the DCO.

First of all, we will write the code of our PFD using Verilog programming

language , we will design a block which has:

 Two input ports (reference signal and DCO output).

 Two output ports (Up and Down).

The Up signal indicates that the system should increase the DCO frequency (i.e.

the reference frequency is higher than the DCO frequency) and the Down signal

indicates that the system should decrease the DCO frequency.

35

And using Synplify PRO we translated our PFD into the corresponding standard

cells schematic as shown in figure 3.1

Figure 3.1: PFD schematic

This PFD can be imported as Verilog code in cadence also , see appendix A for

more details.

module dff (input d,clk,reset,output reg q);
always@(posedge clk,negedge reset)
if(~reset)
q<=1'b0;
else
q<=d;
endmodule

module pfd (input refSignal,dcoSignal,output up,dn);
wire intReset;
assign intReset=~(up&dn);
dff up_dff(1'b1,refSignal,intReset,up);
dff dn_dff(1'b1,dcoSignal,intReset,dn);
endmodule

36

3.2 Loop Filter

The Loop Filter used here is simply a 16 bits shift register ,following the same

procedure of PFD ,we got the schematic view of the Loop Filter as shown in

figure 3.2.

Figure 3.2: Loop Filter schematic

module loopFilter (input up,dn,reset, output reg [15:0] q);
wire ored;
assign ored = up | dn;
always @(posedge ored, negedge reset)
if(~reset) //active low reset(level sensitive)
q<= 16'b11110000_00000000;
else if(up & ~dn)
q <= {q[14:0],1'b0};

else if(dn & ~up)
q <= {1'b1,q[15:1]};
endmodule

37

We used two Loop Filters, one as a Coarse and the other as a fine, the Coarse

one is responsible for the large step change in the DCO output frequency while

the fine one is responsible for the small step change.

3.3 PFD and Loop Filter

Now, we have PFD and Loop Filter as functional blocks, so we can connect

them together as shown in figure 3.3.

Figure 3.3: PFD and Loop Filter

Now , we have our functional block (PFD + Loop Filter) so we can import it to

cadence environment and connect it with the custom designed DCO.

38

3.4 Overall Design

Figure 3.4: Overall ADPLL (standard cells)

Using AMS we can simulate analog and digital(functional) blocks together and

check the functionality of our ADPLL and the result was as shown in figure 3.5

Figure 3.5: AMS of the overall ADPLL without the
counter

39

As we can see that the DCO output frequency is oscillating around the reference

frequency and that is due to the coarse large steps, so we need to stop the coarse

shift register to eliminate the large oscillations.

4 bits counter is used for that purpose and when the counter carry bit activated

the coarse shift register is turned off and the fine one is turned on as shown in

figure 3.6

Figure 3.6: AMS simulation of the overall ADPLL
with counter

40

And the result of the Overall ADPLL as a functional (behavioral) block was as

shown in figure 3.7.

Figure 3.7: AMS of the ADPLL with counter.

From the above figure we found that the lock time is less than 150 ns which

means that our lock time restriction (lock time < 10 us) is satisfied.

But, the problem is, the above design assuming the reference frequency is fixed

and will not exposed to a step change.

All the above simulation results is done considering the functional behavioral of

the PFD and the Loop Filter (as code only).

We did the technology mapping using Design Compiler by converting the

functional Verilog code of the PFD and the Loop Filter into a netlist to generate

a mapped code which contains the needed standard cells to achieve the block

functionality.

41

We extracted the transistor level schematic of the PFD and the Loop Filter

successfully using the standard cells of UMC65nm digital kit as shown in

figure3.8.

a) Imported schematic of PFD in cadence

b) Imported schematic of Loop Filter in cadence

c) Imported schematic of PFD and Loop Filter
together in cadence

Figure 3.8: The standard cells of both PFD and
Loop Filter

42

As an example we took a snap shot of one standard block inside the PFD

schematic in figure 3.8.a. above

Figure 3.9: The transistor level of the standard D
flip flop in cadence.

43

C h a p t e r 4

LAYOUT

The last step of the design flow is the layout, first of all DCO is considered as the

core of the ADPLL so as we started the design in the schematic scope with the

DCO , we will start with the DCO in the layout scope and we believe that the

range will be changed due to the capacitance and the resistance added by the

layout (i.e. more delay).

4.1 DCO

The proposed DCO depends mainly on the delay cells (HDCs and DCVs) and

because of the layout, the delay is not the same as schematic any more.

4.1.1 DCV

Figure 4.1: DCV layout

44

Figure 4. 2: DCV block layout

Figure 4. 3: DCV array layout

4.1.2 DCV2

Figure 4. 4: DCV2 layout

45

Figure 4. 5: DCV2 block layout.

Figure 4. 6: DCV2 array layout

4.1.3 Ring Oscillator

Figure 4. 7: Ring Oscillator layout

46

4.1.4 Complete DCO

Figure 4. 8: Final DCO layout

The DCO range was from 3.33 ns to 10 ns of period (i.e. from 100 MHz to 300

MHz), but after constructing the layout directly without any modification to the

sizing of DCVs or removing any fixed delay cells , the DCO range was from 11

ns to 16 ns (i.e. from 62.5 MHz to 90 MHz) which is out of our required range,

so we had to remove the fixed delay cells (i.e. HDCs) but the range was still not

satisfied, so we started to modify the length of the transistors in the DCV2 cells

because the problem was with the lower bound of the required range (i.e. 100

MHz) and also increase the supply voltage source from 1.2v to 1.5v to satisfy the

required range, and finally we have got 3.236 ns to 9.952 ns (i.e. 100.48 MHz to

309.02 MHz) as shown in figure 4.9.

47

Figure 4. 9: DCO operating range in layout.

4.2 PFD

Figure 4. 10: PFD layout

The proposed PFD consists of two D flip flop and OR gate. At the first time ,

when simulating the layout directly with power supply voltage 1.2v , we found

that the functionality of the PFD is not working correctly, so we decreased the

supply voltage to 1v and the PFD worked properly as shown in figure 4.10 and

figure 4.11.

48

Figure 4.11: PFD pre-layout simulation.

Figure 4.12: PFD post-layout simulation.

49

4.3 Loop Filter

As mentioned earlier , the proposed Loop Filter in ADPLL is a shift register,

which contains D FF’s and some combinational blocks.

Figure 3.13: Shift Register layout

The post-layout simulation result was different from the pre-layout simulation

due to the delay produced by the layout capacitance and resistance as shown in

figure 4.12 and figure 4.13, but that is not a big deal. As we can see in figure 4.12

in the time period 2.5ns to 5ns the shift occurs at the positive edge of the CLK

signal because the up and down signal are different , but in the same time slot in

figure 4.13 the shift occurred once due to the delay produced by the layout.

Figure 4.14: Pre-layout simulation of the Shift
Register

50

Figure 4.15: Post-layout simulation of the Shift

Register

4.4 Overall Design

After constructing the layout of each block in the system, the layout of the overall

design can be constructed as shown in figure 4.16

Figure 4.16: The overall layout

Figure 4.17: Overall post layout simulation

51

4.5 Conclusion

A comparison between the Required Specifications and Achieved Specifications

is held as shown below

Required Specifications Achieved Specifications

Power < 1 mW 0.6 mW

Area < 0.01 From Layout= 0.0086

Lock time < 10 1

P-to-P jitter < 20 ps 35 ps

52

References

[1] Roland E. Best, “Phase Locked Loops, Design, simulation and

applications 5th Edition” New York McGraw-Hill, 2003.

[2] Duo Sheng, Ching-Che Chung and Chen-Yi Lee, "An Ultra-Low-Power

and Portable Digitally Controlled Oscillator for SoC Applications" IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS

BRIEFS, VOL. 54, NO. 11, NOVEMBER 2007.

[3] SALEH R. AL-ARAJI, ZAHIR M. HUSSAIN and MAHMOUD A. AL-

QUTAYRI ,"DIGITAL PHASE LOCK LOOPS, Architectures and

Applications" Springer,2006.

[4] Pao-Lung Chen, Ching-Che Chung, and Chen-Yi Lee "A Portable

Digitally Controlled Oscillator Using Novel Varactors " IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS

BRIEFS, VOL. 52, NO. 5, MAY 2005.

[5] João Baptista Martins, Ricardo Reis and José Monteiro, "Capacitance and

Power Modeling at Logic-Level".

[6] CADENCE, “Virtuoso AMS Designer Environment Tutorials”, 2008.

[7] CADENCE, “Virtuoso AMS Designer Simulator User Guide”, 2006.

[8] CADENCE, “Virtuoso AMS Environment User Guide”, 2006.

[9] Alain Vachoux, “Top-Down Digital Design Flow” Version 6.0, October

2011.

[10] Ahmed Ahmed, Hussein Mohamed, Khaled Ebrahim, Khaled Mohamed

and Mohamed Sherif "All Digital Phase Locked Loop (ADPLL)", July

2013

53

A p p e n d i x A

AMS TUTORIAL

Through this tutorial you will learn how to simulate a system containing digital

Verilog blocks, digital VHDL blocks and analog blocks. This tutorial is mainly

divided into two parts, part 1 and part 2. For part 1, we are going to simulate a

digital Verilog inverter with an analog inverter and compare the outputs of them,

and then we put them in a cascaded configuration (analog inverter after digital

Verilog inverter) to work together as a buffer. The idea of this cascaded

configuration is to make sure that, the connect rules between the digital block and

analog block are established correctly. For part 2, we are going to simulate

another design contains three main blocks, a digital Verilog 4-bit counter, an

analog 4-bit inverter and a digital VHDL 4-bit inverter. This design is organized

as follows; an external clock signal and reset signal are applied to the Verilog 4-bit

counter. The output of the Verilog 4-bit counter is labeled as count_out<3:0>

and is applied as an input to the next block which is the analog 4-bit inverter. The

output of the analog 4-bit inverter is labeled as vhdl_inv<3:0> and is applied as

an input to the last block which is VHDL 4-bit inverter. The output of the

VHDL 4-bit inverter is labeled as vhdl_out<3:0>. We are interested in these

signals, count_out<3:0>, vhdl_inv<3:0> and vhdl_out<3:0>. If everything is

correct, the final output, vhdl_out<3:0> will be the same as the counter output

count_out<3:0>. A block diagram for this design can be found in part 2 section.

Part1:

The following steps are to simulate both the digital Verilog inverter and the

analog inverter and compare both outputs. Another configuration for these two

inverters is to put them in cascade to work as a buffer. We use a library called

ams_tutorial to include all circuits in this tutorial.

Firstly, we will make a cell view for the digital Verilog inverter.

54

After pressing the OK button, you’ll get this menu

55

It is a little difficult to edit your code in this text editor so, we will use another

text editor called “gedit” by typing the command editor=”gedit” in the CIW

window.

You can now see your cell view and double click on it to edit the code using gedit

text editor

56

A new window will open up after double clicking your cell view as follows:

57

Edit the code and save it.

After closing it, you’ll get a menu asking to create a symbol view for your circuit,

press “yes”.

You can use the created symbol as is or edit it.

58

We will edit it to take the form of an inverter (optional step).

59

We put a something like square wave inside the symbol view to differentiate

between it and the analog inverter. Now it is time to create the analog inverter.

60

To create a symbol choose, Create > cellview > from cellview as follows

Press ok for the next window

61

We will edit the symbol view to looks like the following (optional). We put a

something like a sine wave inside the symbol to differentiate it from the digital

inverter.

62

Next step is to make a test bench for a circuit containing both the digital Verilog

inverter and the analog one.

63

Put labels for input signal, Verilog output and analog output signals.

For the input source, a good choice is a periodic signal to test both, high state and

low state. We use Vpulse as an input signal.

64

For this tutorial we use Vsupply = 1.2 v. We will use this value in connect rules

also.

65

The final schematic after adding labels and sources looks like the following

66

Close this schematic and create another cell view for it of type config. Make sure

to choose type config (important).

67

You will get a menu like the following

Press Use Template and choose AMS for Name field from the following

menu.

68

Press OK and choose view as schematic for the section Top Cell like the

following.

After pressing OK you will get the following menu. Choose File>Save

69

Notice that, inv_tb is now having two views, config and schematic.

70

Double click on config and press OK from the following menu

It will open the config view of your circuit. Choose check and Save.

71

Then Launch > IDE L to start simulating your circuit

(This must be done from the config view not schematic view)

72

Then choose Setup>Simulation/Directory/Host.. from the following menu

Choose simulator as ams and press OK

73

The next step is to edit the connection rules. Choose Setup>Connect Rules

74

You will get a menu looks like the following.

For this tutorial we use Vsupply=1.2v which is not included in the attached rules

so we will choose any one and edit it using the Customize button. We will set

Vsup to 1.2v instead of 1.8v and vthi to 0.8v (2*Vsup/3) and vtlo to 0.4v

(Vsup/3). Do not forget to press the button Change after changing any value of

these values. Vthi means threshold value for high logic and vtlo means threshold

value for low logic. The range between vtlo and vthi is called the forbidden zone.

75

76

77

Then choose analysis and we will simulate the circuit for 10ns

78

Then select the signals to be plotted Outputs>To Be Plotted>Select On

Schematic

We are interested in these signals, input, analog_out and Verilog_out.

79

Then Run Simulation. The following are the results from both the analog inverter

and the Verilog digital inverter and they are the same.

80

We will now try the cascaded configuration of both inverters to act as a buffer.

The simulation result can be found in the following figure. One can simply notice

that, the analog_out signal is the same as the input signal. (The operation of a

typical buffer).

81

Part2:

In this part we are going to simulate a design consisting of 3 main blocks, digital

Verilog 4-bit counter, analog 4-bit inverter and digital VHDL 4-bit inverter. The

block diagram of this circuit is as follows

82

The analog inverters are taken from Part 1 and the codes for Verilog counter and

VHDL inverter is as follows

We will start by importing both the Verilog counter and the VHDL inverter into

virtuoso. The following figure is to import the Verilog counter.

module count4(input clk,reset,output[3:0] dout);
reg[3:0] count_reg;
wire[3:0] count_next;
//state register
always@(posedge clk,posedge reset)
 if(reset)
 count_reg <= 0;
 else
 count_reg <= count_next;
//next state logic
assign count_next = count_reg+1;
//output logic

assign dout = count_reg;
endmodule

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity vhdl_inv is
port (x: in STD_LOGIC_VECTOR (3 downto 0);
y: out STD_LOGIC_VECTOR (3 downto 0));
end;
architecture behavioral of vhdl_inv is
begin
y <= not x;
end;

83

Choose Target Library and Verilog file as follows

84

You will get a menu like the following after pressing OK. You may press Yes to

view the logfile.

85

The logfile looks like the following. Reporting that your import process has been

completed.

Now check your target library (ams_tutorial in out example) to find the Verilog

counter count4 with two views, functional (The Verilog code) and symbol.

86

Double click on functional to check the code.

Double click on symbol view to check the symbol. You may need to edit it, we

will just leave it as is.

87

Next step is to import the VHDL 4-bit inverter.

88

Choose your target library (ams_tutorial in our example) and VHDL file. Leave

all other fields as they are.

After pressing OK you will get the following menu, press Yes to check the

logfile.

89

Now you can check your cell, named vhdl_inv.

Double click on behavioral view and entity view to check the code.

90

You can edit the symbol. We will use it as it is.

91

Next step is to make the test bench for the block diagram mentioned in the

beginning of this section. We will name it mixed_tb (optional).

92

Choose create>wire (wide) to create buses.

Connect these blocks together as follows

93

Add labels for buses by pressing l.

94

Add labels for the wires connected to the buses.

After pressing OK, left click on the first wire and move to the last wire across the

wires between them and finally left click on the last wire.

95

96

Add sources to your design clk, reset, VDD and GND. For the clk we use

Vpulse with period 2ns.

97

For the reset signal, we use Vpwl with the following configuration for an active

high reset.

98

The final schematic after adding sources and labels is as follows

99

Check and Save then close this schematic and create a config view for it as we

did for Part 1.

100

Choose the ams simulator as we did for Part 1 and edit connect rules then

select signal to be plotted.

101

We are interested in plotting these signals, count_out<3:0>, vhdl_inv<3:0> and

vhdl_out<3:0>.

102

Then Run Simulation.

103

From the results figure, we can select the digital signals of vhdl_out<3:0> and

convert them to a bus.

104

105

Simulation results are as follows

106

For more details, please check the following videos:

http://youtu.be/QzHU-FyISIo

http://youtu.be/AN641gYyFj4

http://youtu.be/SLAEHGnrwuE

Conclusion

In this tutorial we have learned how to use AMS simulator to simulate digital

Verilog codes with digital VHDL code and analog blocks. This tutorial assumes

that, you have the AMS tool integrated with Cadence Virtuoso. For further

information, please check the video notes of this tutorial in the reference page.

http://youtu.be/QzHU-FyISIo
http://youtu.be/AN641gYyFj4
http://youtu.be/SLAEHGnrwuE

107

A p p e n d i x B

LOGIC SYNTHESIS

This tutorial presents the main steps to perform the logic synthesis of a digital

Verilog 4-bit counter with the Synopsys Design Vision and Design Compiler

tools. We divide this tutorial into two parts, part 1 and part 2. For part 1, we

make all the steps using the Design Vision graphical environment. For part 2, we

make the same steps using a TCL (Tool Command Language) script.

Part 1:

First step is to start the Design Vision graphical environment. In command

window type:

dc_shell and press enter then type gui_start. You should get the following menu:

Next step is to edit setup menu to add your target library and link library; the

libraries to which your design will be mapped. To do this step choose File->

Setup and from the following menu remove default libraries and add yours.

108

The following step is to analyze your Verilog code to check it and see if it is

synthesizable. Choose File-> Analyze from the main menu and using the Add

button select all your Verilog sources to be analyzed then press OK.

Next step is to elaborate your design. The elaboration phase performs a generic

pre-synthesis of the analyzed model. It essentially identifies the registers that will

be inferred.

109

To do this step choose File -> Elaborate from the main menu and from the

elaboration menu select the top level file of your design and press OK as seen in

the following figure.

After pressing OK in the elaboration menu, the main menu will be updated with

your design which is count4 in this tutorial.

You can display the elaborated schematic by selecting your design in the

hierarchy window and then clicking the Create Design Schematic icon or

by right click on your design entity then choose Schematic View. The following

is the elaborated schematic view for our design.

110

It is a good idea to save your design to this point. Choose File -> Save as and

from the following window choose a name and click Save.

You can type this command in Design Vision to generate a report of the

hierarchy of the design, report_hierarchy. You can also use this command to report

all used cells and operating voltage of your design, report_design.

Now we are going to define our design constraints like area and clock speed. For

this step select your design in the hierarchy window then click the Create

Symbol View icon . You will get a window like this one.

111

Now select your clock signal from the symbol view and choose Attributes ->

Specify Clock to define the clock period and its duty cycle. For our example we

choose a clock period of 10 ns and duty cycle of 50% like the following figure.

112

Next step is to define the constraints on design area by choosing Attributes ->

Optimization Constraints -> Design Constraints from Design Vision main

window. We choose area to be equal to zero to get the minimum area for our

design.

113

Next step is to compile your design. After this step your design will be mapped to

real standard cells from your target technology library. From the main window of

Design Vision, choose Design -> Compile Design, you will get a menu like the

following figure, click OK.

As seen in the following figure, your design is now mapped to real standard cells.

You can check the schematic view of your design now to see it in terms of

standard cells.

114

A good idea is to save your design now using File -> Save As and choose an

appropriate name, for use we name it count4_clk10ns_mapped.ddc.

To report your design constraints to check if there are any violations on your

design constraints, choose Design -> Report Constraints. Continue like the

following figure.

You will get a report like the following.

115

This report says that, area is violated and this is expected because we set the max

area earlier to zero to achieve a minimum area, now this minimum area can be

seen under the field of Actual Area in this report and it is 47.16 in our case.

Slack equals to Required Area minus the Actual Area achieved by Design

Vision, one would like always to get a positive slack. Positive slack means that,

constraint is met but negative slack means constraint is violated.

Choose Design -> Report Area to check the overall area of your design.

116

After clicking OK you will get a report for your design area like the following

figure.

To check timing of your design, choose Timing -> Report Timing Path.

117

You will get a timing report like the following one; from this figure we notice that

our timing slack is positive and equals to 9.75 ns i.e. timing constraint is met and

we can reduce the required clock period by 9.75 ns. Now we know that min clock

period for our design is, 10 ns - 9.75 ns = 0.25 ns.

A good way to visualize your timing paths and determine the critical path can be

done using Timing -> Path Slack. Choose OK from the following menu.

118

You will get a histogram for slacks of all timing paths in your design like the

following one.

119

In this histogram, the path with the smallest slack is the worst (critical) path in

your design. In our example, the worst paths have a slack of 9.74 ns. When

selecting any path from this histogram you can see the equivalent path on your

circuit by moving to your schematic view. The selected path above is shown in

schematic as follows.

Other reports can be useful for you like resources report, you can get it from

Design -> Report Design Resources as following.

120

In the following steps, we will export the netlist file and all needed files to be used

in the following design stages like automatic place and route using SOC

Encounter.

Before exporting the netlist file you have to type the following command in

Design Compiler command line.

change_names -rules verilog -hierarchy -verbose

This command is to apply some verilog naming rules to your design before

exporting the gate level netlist file.

Now, save your netlist verilog file using File -> Save As then type an appropriate

name and change the format to verilog like the following figure.

121

The output gate level netlist file from this step is as follows.

This file will be used in appendix C and is also used as an input to the automatic

place and route tool, SOC Encounter to generate the layout for your design.

Next step is the post synthesis timing data extraction. In this step we extract the

standard delay format file which can be used in post synthesis simulation. To get

this file, type the following command in the command line of Design Vision.

write_sdf -version 2.1 coun4_clk10ns_mapped_vlog.sdf

You can fine this file and all report files you’ve generated earlier in your working

directory.

The following command is to generate a file includes all your design constraints

in TCL format and will be used in standard cell placement and routing (SOC

Encounter).

write_sdc -nosplit count4_clk110ns_mapped.sdc

module count4 (clk, reset, count);
output [3:0] count;
input clk, reset;
wire n1, n2, n3;
wire [3:0] count_next;

DFQRM2RA count_reg_reg_0_ (.D(n1), .CK(clk), .RB(reset), .Q(count[0]));
DFQRM2RA count_reg_reg_1_ (.D(count_next[1]), .CK(clk), .RB(reset), .Q(
 count[1]));
DFQRM2RA count_reg_reg_2_ (.D(count_next[2]), .CK(clk), .RB(reset), .Q(
 count[2]));
DFQRM2RA count_reg_reg_3_ (.D(count_next[3]), .CK(clk), .RB(reset), .Q(
 count[3]));
XOR2M2RA U3 (.A(count[3]), .B(n2), .Z(count_next[3]));
XNR2M2RA U5 (.A(count[2]), .B(n3), .Z(count_next[2]));
XNR2M2RA U7 (.A(count[1]), .B(n1), .Z(count_next[1]));
ND2M2R U9 (.A(count[1]), .B(count[0]), .Z(n3));
NR2B1M2R U10 (.NA(count[2]), .B(n3), .Z(n2));
INVM2R U11 (.A(count[0]), .Z(n1));
endmodule

122

For more details, please check the following video:

http://youtu.be/pD85Hnsi2cc

Part 2:

The same steps of part 1 can be done by using this TCL script. The code is self

documented, please read it carefully and edit all needed fields according to your

design.

Design Setup (change library files according to your technology)

set link_library /home/eslam/Desktop/synopsys/uk65lscllmvbbr_120c25_tc.db

set target_library /home/eslam/Desktop/synopsys/uk65lscllmvbbr_120c25_tc.db

#Analyze

analyze -format verilog {/home/eslam/Desktop/synopsys/count4.v}

#elaborate (count4 is the name of the top level module)

elaborate count4 -architecture verilog -library DEFAULT -update

write -hierarchy -format ddc -output /home/eslam/Desktop/synopsys/count4.ddc

#timing & area constraints (clk is the clock name in my verilog file-edit according to

your design (ns))

create_clock -name "clk" -period 10 -waveform { 0 5 } { clk }

set_max_area 0

#compile design

compile

#export design (reports and netlist and timing files)

write -hierarchy -format ddc -output

/home/eslam/Desktop/synopsys/count4_clk10ns_mapped.ddc

#generate design reports

report_constraint -nosplit -all_violators > /home/eslam/Desktop/synopsys/allviol.rpt

report_area > /home/eslam/Desktop/synopsys/area.rpt

report_timing > /home/eslam/Desktop/synopsys/timing.rpt

report_resources -nosplit -hierarchy > /home/eslam/Desktop/synopsys/resources.rpt

report_reference -nosplit -hierarchy > /home/eslam/Desktop/synopsys/references.rpt

report_hierarchy > hierarchy.rpt

report_design > design.rpt

#add some verilog naming rules before exporting the gate level netlist file

change_names -rules verilog -hierarchy -verbose

write -hierarchy -format verilog -output

/home/eslam/Desktop/synopsys/count4_clk10ns_mapped.v

write_sdf -version 2.1 count4_mapped_vlog.sdf

write_sdc -nosplit count4_vlog.sdc

puts "Finished"

http://youtu.be/pD85Hnsi2cc

123

For more details, please check the following video:

http://youtu.be/gH6ZMh3IQBI

Conclusion

Using this tutorial we’ve learned how to convert our functional verilog code into

a gate level netlist file, i.e. a file containing standard cells from our technology

library and learned how to define design constraints like timing and area

constraints and how to analyze timing paths using a timing histogram and finally

how to generate all needed reports and files which can be used in next design

steps like automatic place and route.

http://youtu.be/gH6ZMh3IQBI

124

A p p e n d i x C

IMPORTING SYNTHESIZED DESIGN INTO CADENCE COMPOSER
SCHEMATIC VIEW

In this tutorial we are going to simulate a digital 4-bit Verilog counter to test its

function first without any timing analysis then we will use the synthesized version

(output of Design Compiler) of this counter and import it into CADENCE

Composer as a schematic view containing all standard cells needed for this

counter from our technology library, so in this part we will simulate the 4-bit

counter in two levels of design:

1. Pre-synthesis functional Verilog simulation using AMS simulator

2. Post-synthesis transistor level simulation using Spectre simulator

1. Pre-synthesis functional Verilog simulation using AMS simulator

The following is the digital 4-bit Verilog code used for this tutorial:

For this tutorial, we will make new work library and name it post_synthesis as

following:

module count4(input clk,reset,output[3:0] count);
reg[3:0] count_reg;
wire[3:0] count_next;

//state register
always@(posedge clk,negedge reset)
if(~reset)
count_reg <= 0;
else
count_reg <= count_next;
//next state logic
assign count_next = count_reg+1;
//output logic
assign count = count_reg;
endmodule

125

126

We should attach this work library to our technology library which is umc65ll in

our tutorial.

We make similar steps to those done in appendix A to import this Verilog code

into cadence as following:

127

After ending this process, you will get a functional and symbol view for your

counter.

128

Double click on functional view to check your code.

Now, it’s time to make a test bench for this code to generate simulations results

for it.

129

For this code we use an active low reset signal, this is how to get this reset signal

using library sources:

130

Use similar steps to that in appendix A to create new config view for your test

bench and don’t forget to change the simulator to AMS and edit the connection

rules.

131

You must start the simulation from this config view as we noticed in appendix A.

The simulation results for this Verilog 4-bit counter are in the following figure:

132

2. Post-synthesis transistor level simulation using Spectre simulator

Now, we are going to import our synthesized Verilog code (standard cells

description of our counter – output of Design Compiler) into CADENCE

composer and simulate it in the transistor level using Spectre simulator. We use

similar steps as we did to import the functional Verilog code but the only

different part in import menu is that, you must specify your standard cells library

(for us, it is umc65stdcells) as shown in the following figure :

133

Transistors used in each standard cell in umc65stdcells are taken from the

technology library we’ve included earlier, the umc65ll. You can have a look on

the mapped code of this counter in the following figure:

134

After ending this process successfully, there will be a schematic view added to

your cell views of the counter.

Double click on this schematic view to check the internal structure of your

counter in terms of your standard cells.

module count4 (clk, reset, count);
output [3:0] count;
input clk, reset;
wire n1, n2, n3;
wire [3:0] count_next;

DFQRM2RA count_reg_reg_0_ (.D(n1), .CK(clk), .RB(reset), .Q(count[0]));
DFQRM2RA count_reg_reg_1_ (.D(count_next[1]), .CK(clk), .RB(reset), .Q(
 count[1]));
DFQRM2RA count_reg_reg_2_ (.D(count_next[2]), .CK(clk), .RB(reset), .Q(
 count[2]));
DFQRM2RA count_reg_reg_3_ (.D(count_next[3]), .CK(clk), .RB(reset), .Q(
 count[3]));
XOR2M2RA U3 (.A(count[3]), .B(n2), .Z(count_next[3]));
XNR2M2RA U5 (.A(count[2]), .B(n3), .Z(count_next[2]));
XNR2M2RA U7 (.A(count[1]), .B(n1), .Z(count_next[1]));
ND2M2R U9 (.A(count[1]), .B(count[0]), .Z(n3));
NR2B1M2R U10 (.NA(count[2]), .B(n3), .Z(n2));
INVM2R U11 (.A(count[0]), .Z(n1));
endmodule

135

You can also check the internal structure of each standard cell in your counter by

pressing shift+E on this cell. The following are the internal structures of two

standard cells used in this counter:

136

Now, it is time to test this schematic. An important notice here is that; don’t

forget to connect power nodes (VDD and GND) and bulk nodes of transistors

(VBN and VBP). We did not make this step when simulating the functional

Verilog code because there were no transistors in this schematic and we were just

simulating the code.

The simulation results for the transistor level schematic of the counter are in the

following figure. One can easily notice, the same output as the functional Verilog

code is achieved.

137

For more details please check this video:

http://youtu.be/FLjRAzKSvxc

3. Conclusion

In this tutorial, we have simulated a digital Verilog 4-bit counter in two different

design levels, one is to simulate the pre-synthesis Verilog code to test its

functionality only and another one is to simulate the post-synthesis code after

being mapped to real standard cells from your technology library. Both

simulations give the same results.

http://youtu.be/FLjRAzKSvxc

138

A p p e n d i x D

STANDARD CELL PLACEMENT AND ROUTING

In this tutorial we will learn how to import the gate level netlist file (which we get

from SYNOPSYS Design Vision) into CADENCE SOC Encounter to do the

placement and routing of the standard cells used in our example, the 4-bit

counter. You may import the final layout from this step into CADENCE layout

editor to check it through DRC, LVS and PEX and make the post layout

simulation. The tutorial is divided into two parts, part 1 and part 2. For part 1 we

make all the steps using the graphical environment and for part 2, we make the

same steps using a TCL (Tool Command Language) script.

Part 1:

The starting window for SOC Encounter looks like the following figure.

139

Choose Design -> Import Design, the following window will show up. Fill it

with your gate level netlist in the field of Verilog Netlist then choose your

Timing Libraries as follows, for Max Timing Libraries choose the file with

worst case conditions and for Min Timing Libraries, choose the file with best

case conditions and finally for Common Timing Libraries, choose the file with

typical case conditions. For LEF files you need to add the LEF files from your

technology kit. For Timing Constraints File, add the SDC file which we got

from Design Vision in logic synthesis step.

Now move to the Advanced tab and choose Power to add names for your

power nets, make sure to type proper names like in you LEF file. To know the

power net names in your technology kit you can check the LEF file and search

for "power" to know the name for power net and ground net. For our

technology library, net names are VDD and VSS. You may need to save this

configuration to use it again instead of inserting all fields from the beginning, to

do this step choose Save and the OK.

140

It is a good idea to save your design using Design -> Save Design As -> SoCE.

Next step is to specify the floorplan for your design, choose Floorplan ->

Specify Floorplan. Define an aspect ratio of 1 and core utilization of 85%

which means that 15% of the core area will be free for possible future cell

replacements. Choose core to die boundary large enough to hold the power

rings, we choose it as 0.6 microns. This is enough for this design as there will be

one power ring and one ground ring of 0.1 micron and spacing between them of

0.1 micron also.

141

Your floor plan will look like the following one.

142

Choose Floorplan -> Connect Global Nets to connect power nets to your

design. From the following menu type VDD in pin name and VDD in the field

of To Global Net then click on Add to List. Make similar steps for VSS then

Apply and Close this window.

143

In the command window you will get a report of these connected power pins like

the following figure.

Next step is to add power rings to your design. To do this, choose Power ->

Power Planning -> Add Rings and the following window will show up. From

this window, choose the width of your power rings and the spacing between

them.

144

Your floorplan will now look like the following one.

145

Save your design to this point using Design -> Save Design AS -> SoCE and

choose an appropriate name, we choose count4_clk10ns-pring.enc.

Now, it is possible to route the power grid. Select Route -> Special Route then

clock OK. After this step you will get the following.

Next step is to add well taps to your design so that your VDD and GND are

connected to substrate and n-wells respectively. This is to help tie them to your

VDD and GND levels so that they don't drift too much. Choose Place ->

Physical Cells -> Add Well Tap. Choose the well tap from your technology

library and click OK.

146

Next step is placing the standard cells. Choose Place -> Standard Cells and

check the following menu then click OK.

147

Your standard cells are now placed and you can check them.

To check placement, choose Place -> Check Placement and click OK.

148

After clicking OK we got these violations, there was an overlapping between

some standard cells.

To solve these violations we edited the aspect ratio again from Floorplan ->

Specify Floorplan and the problem had been solved.

149

Check the file named .checkPlace in your work directory to make sure that there

are no violations.

Now choose Timing -> Optimize to make the timing optimization for Pre-

CTS.

150

Click OK in the following menu.

Now choose Clock -> Design Clock then click Gen Spec and select your

CLKBUF cells.

151

Then clock OK.

Now choose Clock -> Display -> Display Clock Tree. From the following

menu you can display the clock phase delay.

152

Now choose Timing -> Optimize then select Post-CTS and click OK.

Open your terminal window and check the WNS field (Worst Negative Slack)

which means the slack of the critical path in your design.

Now choose Timing -> NanoRoute -> Route. From the following menu

check the required fields and click OK.

153

Next step is the post route timing optimization. Choose Timing -> Optimize

and choose Post-Route then OK.

Next step is to add filler cells. Choose Place -> Physical Cells -> Add Filler

and select filler cells from your technology library. Filler cells will fill remaining

holes in the rows and ensure the continuity of power/ground rails and N+/P+

wells.

The following steps are to check your design. To check connectivity, choose

Verify -> Verify Connectivity then press OK in the following window.

154

To check geometry of your design, choose Verify -> Verify Geometry then

click OK.

155

You can now generate some useful reports. Choose Design -> Report ->

Netlist Statistics and check your command window to see this report file.

You can also check the number of gates used in your design by choosing Design

-> Report -> Gate Count and click OK in the next window.

156

In command window, type report_timing to get a timing report for your design.

To export a standard delay format file type the following in command window

write_sdf count4_clk10ns_pared.sdf -version 2.1

The P+R netlist may be different from the imported netlist as cells may have

been added or replaced during clock tree synthesis (CTS) and various timing

optimization phases. To export this netlist choose Design -> Save -> Netlist

and click OK in the following window.

The next step is to export this layout to a file which can be used in virtuoso

layout editor, choose Design -> Save -> GDS/OASIS. Choose an appropriate

Map File. The library name is the design library name in virtuoso. Choose

merge files and merge it with the .gds files from your technology library.

157

For more details please check this video:

http://youtu.be/udPMw9_rZL0

http://youtu.be/udPMw9_rZL0

158

Part 2:

The same steps of part 1 will be done here using this TCL script.

Importing the Design

loadConfig Default.conf

setDrawView fplan

fit

saveDesign count4-import.enc

#Floorplanning the Design

floorPlan -r 1 0.85 0.6 0.6 0.6 0.6

saveDesign count4-fplan.enc

#Power Planning

clearGlobalNets

globalNetConnect VDD -type pgpin -pin VDD -inst * -module {} -verbose

globalNetConnect VSS -type pgpin -pin VSS -inst * -module {} -verbose

addRing \

-around core \

-nets {VSS VDD} \

-center 1 \

-width_bottom 0.1 -width_right 0.1 -width_top 0.1 -width_left 0.1 \

-spacing_bottom 0.1 -spacing_right 0.1 -spacing_top 0.1 -spacing_left 0.1 \

-layer_bottom ME1 -layer_right ME2 -layer_top ME1 -layer_left ME2 \

-bl 1 -br 1 -rb 0 -rt 0 -tr 0 -tl 0 -lt 1 -lb 1

#placing well taps

addWellTap -cell WT3R -maxGap 10 -skipRow 1 -startRowNum 2 -prefix WELLTAP

#special route

sroute \

-connect { blockPin corePin floatingStripe } \

-blockPin { onBoundary bottomBoundary rightBoundary } \

-allowJogging 1

saveDesign count4.enc

#Placing the standard cells

setPlaceMode -timingDriven true

placeDesign -prePlaceOpt

setDrawView place

checkPlace

optDesign -preCTS -outDir /home/eslam/Desktop/encounter

saveDesign count4-placed.enc

#Synthesizing a Clock Tree

createClockTreeSpec -output count4_spec.cts \

159

-bufferList CKBUFM12R CKBUFM16R CKBUFM1R CKBUFM20R CKBUFM22RA CKBUFM24R

CKBUFM26RA CKBUFM2R CKBUFM32R CKBUFM3R CKBUFM40R \

CKBUFM48R CKBUFM4R CKBUFM6R CKBUFM8R CKINVM12R CKINVM16R CKINVM1R

CKINVM20R CKINVM22RA CKINVM24R CKINVM26RA \CKINVM2R CKINVM32R CKINVM3R

CKINVM40R CKINVM48R CKINVM4R CKINVM6R CKINVM8R

clockDesign -specFile pfd_loopF_spec.cts \

 -outDir /home/eslam/Desktop/encounter

optDesign -postCTS -outDir /home/eslam/Desktop/encounter

saveDesign count4-cts.enc

#Routing the Design

setNanoRouteMode -routeWithTimingDriven true -routeTdrEffort 5

routeDesign

optDesign -postRoute -outDir /home/eslam/Desktop/encounter

saveDesign count4-routed.enc

#Design Finishing

addFiller \

 -cell { FIL16R FIL1R FIL2R FIL32R FIL4R FIL64R FIL8R FILE16R FILE32R FILE3R FILE4R

FILE64R FILE6R \FILE8R FILEP16R FILEP32R FILEP64R FILEP8 } \

 -prefix FIL

setDrawView place

saveDesign count4-filled.enc

#Checking the Design

verifyConnectivity -type all -report connectivity.rpt

verifyGeometry -report geometry.rpt

#Generating Reports

reportNetStat

reportGateCount -outfile gateCount.rpt

summaryReport -outdir /home/eslam/Desktop/encounter

#Design Export

write_sdf -version 2.1 -precision 4 count4_pared.sdf

saveNetlist -excludeLeafCell count4_pared.v

streamOut count4_pared.gds \

-mapFile streamOut_me_pinOnly.map \

-libName count4_pared \

-merge uk65lscllmvbbr.gds

For more details, please check the following video:

http://youtu.be/NEfx3igkzME

http://youtu.be/NEfx3igkzME

160

Conclusion

Through this tutorial, we started with a gate level netlist (The file we got from

SYNOPSYS Design Vision) and followed all the steps to place and route the

standard cells in this netlist file. The final output from this tutorial is a layout file

and timing constraints files which can be used for post layout simulations.

161

A p p e n d i x E

 POWER CALCULATION

The method to measure power using Cadence Spectre is described in this tutorial,

the 2-bit inverter in the below figure is used as an example to show how power

measurement is done in cadence spectre .

The equations we need to apply to Calculate the average power consumed are :

 The Instantaneous Power :
 P (t) = Power supply voltage (VDD) * current drawn from
 power supply at time
 Then the Average Power

:

The following changes needs to be done for the measurement of the power drawn

from the power supply .

1. Changes to the Existing Schematic :

 On the top-level of the schematic, add a Vdc source (from the

analog library) and connect its positive terminal to the VDD.

 Select the Vdc source (a white box appears around the selected

item), and press Q, an edit object properties window will appear

Type he power supply value (which is 3v in this example) across

DC Voltage and press OK.

Important note :This addition of the Vdc source has to be done only to the top-

level of the design schematic and SHOULD NOT be done for each of the

blocks in the project.

Now, Save the sheet (check and save) and go to the analog-environment window

to perform the simulation.

162

 Figure 1

2. Simulation

 Make all the necessary set-up for the simulation

 To plot the current drawn from the VDD, select Output-> To Be

Plotted - > Select on Schematic in the analog-environment window

and then select the -ve terminal of the Vdc source in the schematic

(because the current plotted for a certain node is the input to this

node).

 A circle appears in the schematic as shown in figure 2, make sure

the circle appears. If it does not appear, then you are plotting the

voltage and not the current.

 Figure 2

163

 Simulate the circuit and the plot of the output current from the

VDD will be as shown in figure 3

 Figure 3

 Select the tools -> calculator from the analog-environment window

 To create TRAN current expression, check the (it) choice and then

reselect the -ve terminal of the Vdc source in the schematic, after

that select the function “INTEG” from the built-in functions.

Figure 4 clarify this step.

 Figure 4

164

 The calculator window will appear as shown in figure 5 .This

simulation (for the 2-bit inverter) is done from 0n to 20ns. Let’s

find the average power consumed by this circuit in this period, thus

the integration should performed in this period (figure 5).In the

Signal text box, multiply the current waveform by 3 and divide by

20ns (figure 5).Press OK.

 Figure 5

 The expression for power calculation appears in the result text-box.

Press “EVAL” from the keypad in the calculator. The average

power consumed by this circuit will be displayed in the result text-

box, as shown in figure 6.

 Figure

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

