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ABSTRACT 

ADPLL 

The objective of the thesis is to design an All Digital Phase Locked Loop (ADPLL) 

with low power. The design consists of three main blocks: Digitally Controlled 

Oscillator (DCO), Phase Detector (PD) and Loop Filter (LF). The DCO is considered 

as the heart of the ADPLL as it consumes the most power for the whole system. The 

design went through two different approaches, standard cells and custom cells .This 

design can be used in Clock and Data Recovery (CDR) system as an application. 

This thesis presents a low power all digital phase locked loop (ADPLL) in 65 nm 

CMOS process with 1.2 V power supply. It operates in the frequency range of 100 – 

300 MHz. The ADPLL uses a digitally controlled oscillator with two stages, fine 

tuning stage and coarse tuning stage. The source of oscillation for this DCO is the ring 

oscillator.  

The proposed ADPLL uses also a phase-frequency detector (PFD) and shift registers 

for the loop filter. It achieved power consumption at 200 MHz of 0.6 mW and a lock 

time of 1 uS. 

The last design step of the ADPLL is the layout, some modification applied to the 

layout to satisfy the required specifications, at the end of this thesis a comparison 

between the required and the achieved specifications in schematic and layout level. 

Design considerations of the ADPLL circuit components and implementation using 

Cadence, Synopsys and Mentor tools are presented; the AMS tool is used frequently in 

the standard cells flow. 
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C h a p t e r  1  

INTRODUCTION 
 

The PLL represents one of the most active topics in signal processing and 

communication theory. The initial ideas started as early as 1919 in the context 

of synchronization of oscillators. The theory of phase-locked loop was based 

on the theory of feedback amplifiers. The PLL contributed significantly to 

communications and motor servo systems. Due to the rapid development of 

integrated circuits (IC’s) since the 1970’s, PLLs are widely used in modern signal 

processing and communication systems, and it is expected that PLL will 

contribute to improvement in performance and reliability of future 

communication systems. The applications of PLLs include filtering, frequency 

synthesis, motor speed control, frequency modulation, demodulation, signal 

detection, frequency tracking and many other applications. 

The PLL consists of three main blocks VCO, Loop Filter and Phase detector as 

shown in figure 1.1. 

 

Figure 1.1: Block diagram of the PLL 
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There are many types of PLL according to the internal blocks and designing 

techniques as following: 

1. LPLL: Linear Phase Locked Loop which contains a VCO and RC circuit 

for the Loop Filter block and uses a multiplier to detect the phase 

difference between the reference frequency and the VCO output 

frequency. 

2. DPLL: Digital Phase Locked Loop was the very first digital PLL; it was in 

effect a hybrid device ONLY the phase detector was built as a digital 

block like EXOR. 

3. ADPLL: All Digital Phase Locked Loop in which all the blocks are built 

as digital blocks. 

 

 ADPLL consists of the same three main blocks mentioned previously except for 

the VCO; it will be replaced by the DCO as shown in figure 1.2 

 

 

Figure 1.2: The Overall block diagram of the 
ADPLL 
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PLL in general has its own parameters such as: 

 The operating frequency range: the range of frequencies that PLL can 
lock on them. 

 The lock time: the time which PLL needs to lock on the reference 
frequency. 

 The Jitter: undesired deviation from the true periodicity of an assumed 
periodic signal. 

 
What is Jitter?  

Jitter is the undesired deviation from true periodicity of an assumed periodic 

signal, Deviation (expressed in ± ps) can occur on either the leading edge or the 

trailing edge of a signal. Jitter may be induced and coupled onto a clock signal 

from several different sources and is not uniform over all frequencies.  

Period of ring oscillator vibrates in a random manner T=T+T` where T` is a 

random value. In high-quality circuits range of T` is relatively small compared to 

T. This variation in oscillator period is called jitter. Local temperature effects 

cause the period of a ring oscillator to wander above and below the long-term 

average period when the local silicon is cold, the propagation delay is slightly 

shorter, causing the ring oscillator to run at a slightly higher frequency, which 

eventually raises the local temperature. When the local silicon is hot, the 

propagation delay is slightly longer, causing the ring oscillator to run at a slightly 

lower frequency, which eventually lowers the local temperature. 

 

Figure 1.3: Jitter Illustration 
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We considered the DCO as the first design stage, because it consumes about 

50% of the system power and covers the most area of the whole system area. The 

design went through two approaches the custom cells and the standard cells. The 

DCO is done in the custom approach however; the rest of the design went 

through both approaches. 

The proposed ADPLL has the following specifications: 

 Power < 1   . 

 Area < 0.01    . 

 Frequency Range from 100 MHz to 300 MHz. 

 Lock time < 10   . 

 Peak to Peak Jitter < 20     

 R.M.S. Jitter < 5     

In the following chapters we are going to discuss the design steps in details for 

each block of the ADPLL to satisfy these requirements.  

 

Frequently Asked Question about ADPLL: 

 Why digital? What is the problem of the analog (linear) one? 

 Basically, the ADPLL consumes less power than the linear PLL. 

 ADPLL can be easily scaled down to another technology. 

 Linear PLL needs an off chip components such as capacitors and 

resistors (for the loop filter) which do not have a fixed and stable 

value because they may suffer from aging.  

 ADPLL covers less area than linear PLL. 
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C h a p t e r  2  

CUSTOM CELLS APPROACH 

2.1 Digitally Controlled Oscillator 

The digitally controlled oscillator (DCO) is considered the heart of the PLL as it 

controls the overall system performance and consumes the most power and area 

of the whole design. The proposed DCO follows a full custom design approach 

to make it easier to control its area and power. It consists of three main blocks: 

1. A ring oscillator  

2. A fine tuning stage (DCV Array) 

3. A Coarse tuning stage (DCV2 Array) 

Figure 2.1 is the symbol view of the DCO. 

 

Figure 2.1: DCO symbol view 

Another figure for the internal block diagram of the DCO is figure 2.2, figuring 

out its three main blocks. 
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Figure 2.2: DCO internal structure 

We will start our discussion by investigating the internal structure of the ring 

oscillator followed by the fine tuning stage (DCV Array) and finally the coarse 

tuning stage (DCV2 Array). 

2.1.1 Ring Oscillator 

The ring oscillator is the source of oscillation for the DCO. It consists of an odd 

number of inverters in a cascaded configuration with a feedback from the output 

to the input. Figure 2.3 is a block diagram for the proposed ring oscillator. 

 

Figure 2.3: Ring oscillator block diagram 
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The design of the ring oscillator follows a full custom approach. The following is 

the schematic view (figure 2.4) of the basic cell for the ring oscillator, the inverter. 

 

Figure 2.4: A Schematic view for the inverter 

The simulation result for the inverter can be found in figure 2.5. 
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Figure 2.5: Simulation results of the inverter 

Next step is to simulate the ring oscillator as cascaded inverters without any delay 

cells. Simulation result for this step is shown in figure 2.6. 

 

Figure 2.6: Simulation results for the ring oscillator 
without delay cells 
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The problem with the simulation results of this ring oscillator is that, the output 

frequency is in range of GHZ (Period = 144.5 ps) not MHZ and our lock range 

is from 100 MHZ to 300 MHZ. To solve this problem, we added delay cells to 

the internal nodes of the ring oscillator. The delay cells to be added to the ring 

oscillator are Hysteresis Delay Cells (HDC). Each HDC cell consists of two cross 

coupled inverters. The schematic view of the HDC cell can be found in the figure 

2.7. 

 

Figure 2.7: A schematic view of the HDC 

The schematic view of the ring oscillator with HDC cells attached to it, is in 

figure 2.8. 
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Figure 2.8: The ring oscillator with HDC cells 

The simulation result for this modified ring oscillator is in figure 2.9 and it 

increased the period of oscillation from 144.5 ps to 678.3 ps. 

 

Figure 2.9: Simulation results for the ring oscillator 
with HDC cells 
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2.1.2 A fine tuning stage (DCV Array) 

For the proposed DCO, we use a fine tuning stage to give a step change in the 

period of oscillation of about 48 ps. The DCV cell is a NAND based delay cell. A 

schematic view of this DCV cell can be found in figure 2.10. 

 

Figure 2.10: A schematic view for the DCV cell 

The idea of operation of this cell is that, the gate capacitance seen from node CL 

(It refers to the load capacitance and it is connected to the output node of each 

inverter in the ring oscillator) can be changed according to the gate voltage 

applied to the node D (it refers to digital input bit of the DCO). The formula of 
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the resulting gate capacitance for this NAND based cell in both cases (when D is 

high and when it is low) is as follows in figure 2.11: 

 

                                ( a ) 

 

                                ( b ) 

 

                                              ( c ) 

Figure 2.11: The gate capacitance 
of NAND gate 

Where p0 is probability second input (B) to be equal the ZERO and p1 is 

probability second input to be equal the ONE (p0 + p1 = 1). The simulation 

result in figure 2.12 illustrates changing the gate capacitance with the gate voltage 

(CL) in two cases, when D is high and when it is low. From this result, it seems 

that we can achieve high capacitance for the case when the digital input bit is high 

(D=1) and we can get a low capacitance when it is low (D=0). Increasing the load 

capacitance for each node of the ring oscillator output means increasing the delay 

as the value of RC constant will be increased. For the ring oscillator and for a 

typical inverter, the propagation delay can be calculated from the following 

formula: 

 



13 
 

Where CL is the output capacitance of the inverters of ring oscillator which is the 

gate capacitance of the delay cells. Reqp and Reqn are the equivalent resistances 

of the PMOS and NMOS transistors respectively.  

 

Figure 2.12: Simulation results for the NAND 
based DCV Cell 

We use this NAND based DCV cell as a building element for a DCV block in 

the fine tuning stage. Every twelve DCV cells are connected to a single input 

which is the digital input bit (D). The output of this block consists of six nodes 

from C1 to C6. These nodes are connected to the corresponding outputs of six 

inverters in the ring oscillator. A block diagram for the DCV block is in figure 

2.13. 

 

Figure 2.13: A block diagram for the DCV building 
block 
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We then use this DCV block to construct the DCV array consisting of sixteen 

DCV blocks. All outputs of the sixteen blocks (C1 to C6) are connected to the 

same six nodes of the ring oscillator but each input from the DCV blocks is 

connected to a different external digital bit so, for the DCV array of the fine 

tuning stage we have a digital word of sixteen bits. Figure 2.14 is the internal 

structure of the DCV array: 

 

Figure 2.14: DCV array internal structure 

A symbol view of this DCV array is shown below in figure 2.15: 
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Figure 2.15: A symbol view for the DCV array 

An important thing to notice here is that, although we achieved a fixed step in 

period of about 48ps for fine stage, the step in output frequency is not fixed 

because the relation between the frequency and period is not linear. For the same 

period step we get many frequency steps depending on the location of this period 

step in time access. For example, our DCO period range is from 3.3 ns to 10 ns 

consider adding a period step to the first period in range, from 3.3 ns to 3.348 ns 

(3.3ns+48ps), 3.3 ns corresponds to a frequency of 303 MHZ and 3.348 ns 

corresponds to a frequency of 298.686 MHZ so a period step of 48 ps from 3.3 

ns to 3.348 ns causes a frequency step of 4.314 MHZ. Let’s consider the same 

period step added to another period in another location in time access, for the 

last period of output oscillation from the DCO which is 10 ns, the period before 

this one is 9.952 ns (10 ns – 48 ps), 9.952 ns corresponds to a frequency of 

100.482 MHZ and 10 ns corresponds to a frequency of 100 MHZ, so the same 

period step of 48 ps when added to the period 9.952 ns we get a frequency step 

of 0.482 MHZ. For these two cases we get two different frequency steps of 4.314 

MHZ and 0.482 MHZ although the period step of fine stage is constant. 

Conclusion is that, although the period step for fine stage is constant we will get 

different frequency steps (not fixed) because the relation between frequency and 
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period is not linear. Figure 2.16 illustrates why we get different frequency steps 

for the same period step.  

 

Figure 2.16: Period step Vs. frequency steps 

 

2.1.3 A coarse tuning stage (DCV2 Array) 

After using the fine tuning DCV array we achieved a relatively small step change 

in output period of the DCO and consequently a relatively small frequency steps. 

For the coarse stage we need to get larger frequency steps to reduce the lock time 

of the PLL, to achieve these larger frequency steps we have to use delay cells with 

larger period steps than the fine tuning stage (48 ps), so we used another delay 

cell to get this larger period step. The delay cell used for coarse tuning stage is 

also based on the NAND configuration but with a transmission gate in the 

beginning. The enable line for this transmission gate is the external digital input 

bit (D) and the input to it is the load capacitance node (CL) which is connected 

to the output of each inverter in the ring oscillator. Figure 2.17 is a schematic 

view for this delay cell. 
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Figure 2.17: A schematic view for the DCV2 cell 

When the external input is low (D=0), the CL node will be disconnected from 

the NAND cell and introduces low capacitance and consequently low delay. 

When the external input is high (D=1), the CL node is now connected to the 

NAND cell and can see the gate capacitance of it. The two cases of D=0 and 

D=1 here are different from those in fine tuning stage, as in fine tuning stage the 

CL node was connected to NAND cell in both cases that’s why the period step in 

fine stage was relatively small. In coarse stage, the CL node is connected only 

when D=1 so we can say that, in coarse stage the node CL can see the 

capacitance of the NAND cell or it cannot see it, so the period step here is larger 

than the period step in fine stage. For coarse stage we achieved a period step of 

380 ps. Another advantage for using the DCV2 cell is that, it helped us increase 

the largest output period of the DCO (10 ns) without affecting the smallest 

period (3.3 ns) by changing the sizing of the NAND cell in this DCV2 cell                                                                                                                 

We use this NAND based DCV2 cell as a building element for a DCV2 block in 

the coarse tuning stage. Every eight DCV2 cells are connected to a single input 
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which is the digital input bit (D). The output of this block consists of four nodes 

from CL1 to CL4. These nodes are connected to the corresponding outputs of 

four inverters in the ring oscillator. These four inverters are following the six 

inverters used in the fine stage. A block diagram for the DCV2 block is in figure 

2.18. 

 

Figure 2.18: DCV2 block  

We then use this DCV2 block to construct the DCV2 array consisting of sixteen 

DCV2 blocks. All outputs of the sixteen blocks (CL1 to CL4) are connected to 

the same four nodes of the ring oscillator but each input DCV2 blocks is 

connected to a different external digital bit so, for the DCV2 array of the coarse 

tuning stage we have a digital word of sixteen bits. The following figure is the 

internal structure of the DCV2 array (Figure 2.20). 



19 
 

 

Figure 2.19: DCV2 array 

A symbol view of this DCV2 array is shown in figure 2.20. 
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Figure 2.20: A symbol view for the DCV2 array 

2.1.4 Conclusion and final results  

In this section we introduced the proposed DCO which is consisting of three 

main blocks:  

1. A ring oscillator  

2. A fine tuning stage  

3. A coarse tuning stage 

The output period for this DCO ranges from 3.3 ns to 10 ns which is equivalent 

to a lock range from 100 MHZ to 300 MHZ. We used HDC cells to add a fixed 

delay to the ring oscillator and DCV cells for both fine and coarse tuning stages 

to add a programmable delay. The fine tuning stage gives a small step (48 ps) in 

period and consequently small steps in frequency. The coarse tuning stage gives 

large period step (380 ps) and consequently large steps in output frequency.  
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The following table in figure 2.21 shows different output periods of the DCO 

according to different values for the digital words of both fine and coarse tuning 

stages. 

 

Figure 2.21: Different output periods of the DCO 

The simulation result in figure 2.22 is different output waveforms for the DCO. 
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Figure 2.22: Different output waveforms of the 
DCO 

Figure 2.23 is the period steps versus the digital code according to the above 

table, one coarse step change followed by one fine step change. From this figure, 

one can easily notice the coarse step is larger than the fine step. The start point of 

our range is 3.3 ns and the end point is 10 ns corresponds to the lock range for 

the proposed DCO (100 MHZ to 300 MHZ). 

 

Figure 2.23: Period steps versus code 

Figure 2.24 is the output frequency versus the 32-bit digital input word (16-bit 

word for fine stage and 16-bit word for coarse stage). 
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Figure 2.24: Frequency steps versus code 
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2.2 PFD 

    A phase detector is a circuit capable of delivering an output signal that is proportional to 

the phase difference between its two input signals Ref_Freq and DCO_Out as mentioned 

in figure 1.2. When the PLL moved into digital territory, digital phase detectors become 

popular, such as EXOR gate, the edge-triggered JK-flip flop, and the so-called phase-

frequency detector (PFD).The PFD differs greatly from the other phase detector types as 

its name implies, its output signal depends not only on phase error but also on frequency 

error when the PLL has not yet acquired lock. The PFD is built from two D-flip flops, 

whose outputs are denoted UP and DOWN(DN) as shown in figure 2.25, these two 

signals are the digital representation of the phase/frequency error. The PFD can be in 

one of four states:  

 UP=0, DN=0 

 UP=1, DN=0 

 UP=0, DN=1 

 UP=1, DN=1 

The fourth state is inhibited, however, by an  

additional gate. Whenever both flip flops are in 

the 1 state, a logic low level appears at their reset 

inputs, which reset both flip flops. We assign the 

symbols -1, 0, and 1 to these three states : 

 UP=0, DN=0   state -1  

 UP=1, DN=0   state  0 

 UP=0, DN=1   state  1 

    The actual state of the PFD is determined by the positive-going transients of the 

signals Ref_Freq and DCO_Out, as explained by the state diagram in figure 2.26, a 

positive transition of Ref_Frq forced the PFD to go into its next higher state, 

unless it is already in the 1 state. In analogy, a positive edge of DCO_Out forces 

the PFD into its next lower state, unless it is already in the -1 state. 

Figure 2.25: PFD schematic 
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Figure 2.26: State diagram of the PFD 

To see how the PFD works in a real PLL system, we consider the waveforms in 

figure 2.27,this figure shows the three cases: 

a) First 25ns shows the case where Ref_Freq leads, therefore the PFD toggles 

between states 0 and 1. 

b) If Ref_Freq lags as in the next 25ns, the PFD now toggles between states  

-1 and 0. 

c) The signals Ref_Freq and DCO_Out are ‘exactly’ in phase; both positive 

edges occur at the same time; hence the PFD will stay in state 0 forever.  

 

Figure 2.27: PFD simulation results 
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2.3 Loop Filter: 

The  Loop filter stage controls the output capacitance by changing the number of 

DCV cells that are turned on, as shown in figure 2.28 the digital control signals is 

used to increase/decrease the DCO frequency for a certain period of time by 

reducing /increasing the capacitance. If the input to the DCV is ‘1’, it provides 

more capacitive load at the output. If more number of cells are on (input is ‘1’), 

then it acts as more capacitive load on the ring oscillator which reduces the DCO 

frequency. 

 

Figure 2.28: digital control signals used to switch a set of varactors 

 

 

 

 

 

In order to control each of the fine DCV array and the coarse DCV array 

individually, we have used two 16-bits bi-directional loadable shift registers and 

here part of the schematic view for each shift register in figure 2.29 
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Figure 2.29: Schematic view of the shift register 

 

 

 

Initially, 8 DCV cells of each array are on, this achieved by using asynchronous 

Reset and Preset signals. Depending on the up/down signals from PFD, the 

frequency is either increased or decreased. When phase and frequency 

acquisition  starts, if the output of PFD is up, then the contents of the shift 

register are left shifted and bit ‘0’ is pushed into Q<15> and hence  the 

capacitive load decreases and the frequency increases. Likewise, if it is down, 

the contents of the shift register are right shifted and bit ‘1’ is pushed into 

Q<0>. This reduces the frequency of the DCO as the capacitive loading at the 

output increases. 
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2.4 Overall Design  

In this section the simulation results of the whole system will be introduced.  

2.4.1 Extreme Reference frequency 

First let the input (reference frequency) signal be an extreme, let’s say the minimum 

frequency in the desired range (100-300MHz) as in figure 2.30.And by knowing 

 

Figure 2.30: Reference = 100MHz  
 

that the DCO frequency initially equals to the center frequency (200MHz), then the 

shift register should get only DOWN pulses from the PFD, which activates all the 

DCV cells and introduces the lowest frequency .now what about the lock time ? 

Actually this depends on two factors, the: 

i. CLK used for the loop filter: this means the rate of changing in DCO 

frequency at a certain time. It’s clear that we need to increase the frequency 

of this CLK to get smaller lock time. 

 

ii. DCO Delay : this means time needed by the DCO to change its frequency 

after one step delay as shown in figure 2.31, where one DCV cell is 

deactivated after two cycles, the effect of this step appears after exactly two 

cycles, this time is considered as the DCO delay, thus the CLK above in part 

( i ) should take in consideration this delay to get the true UP/DN pulse 

after the new change in the DCO frequency. 
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Figure 2.31: DCO delay   

    2.4.2 Intermediate Reference frequency 

Now let’s consider this case, reference = 250MHz as below in figure 2.32.

 

Figure 2.32: Reference= 250MHz  

It’s clear that average frequency is almost equals to the reference, but the problem that 

appears here due to the wide steps of the course stage (up to 31MHz), which results to 

these oscillations with a very high peak-to-peak value. Simply to solve this problem, the 

coarse stage must be stopped after being operating separately from the fine stage. This is 

applied using a 4bit Counter to count the maximum number of steps needed by the 

coarse stage, which is 16 at the worst case, after that a carry signal is used to turn off the 

coarse shift register and activates the fine one. The simulation results of this idea are 
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shown in figures 2.33a, 2.33b and 2.33c.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.33: Effect of using counter  

a) Control signals 

b) Frequency response 

c) Digital words of Both SRs 
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In this example the reset signal of the whole system was designed to start the DCO 

oscillations at the center frequency, this is achieved by activating four DCV cells 

from each array, to calculate this frequency as explained in section 2.1 : 

Period (ps) = 3270 + Coarse_1’s × (380) + Fine_1’s × (48) = 5ns (200MHz). 

Through the first stage the fine SR is stopped as shown in figure 2.33a and 2.33c, 

and at the end of this stage the DCO frequency was undecided between two 

frequencies around the reference corresponding to the digital words which clarified 

in figure 2.33c, after that the course stage stopped using the carry signal at 38n as 

shown in figure 2.33a.At the same time the fine stage started, this can be observed 

through the frequency response in figure 2.33b ,where the very small slopes appears 

after the 38ns. 

2.4.3 Frequency step response  

It was necessary to consider in our design that the Reference signal frequency may 

be changed during the loop, because this PLL targets a low power clock and data 

recovery system. But in order to detect this change, the loop filter won't be a simple 

shift registers as it now because a certain controlling circuit must be added. Actually 

we have replaced the coarse SH by a frequency counter circuit which is one of 

Digital Instruments that can be used to measure signal frequency and period, the 

basic idea is illustrated in the following figure: 

 

Figure 2.34: Frequency counter  

We have implemented this idea by generating the Gate signal (figure 2.34) from the 

reference frequency, and the input clock source (time base) signal which used to 

trigger the counter from a ring oscillator which already discussed in section 2.1.1. 
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After counting the N pulses mentioned in figure 2.34, this number is therefore 

mapped to the 16 bit to control the coarse DCV array. Note that at the end of each 

counting period, the counted value should mapped synchronously and the counter 

should cleared. In the following the whole system simulation result after using the 

frequency counter : 

 
 

Figure 2.35: frequency step response 
 

After this modification on the system to become capable of reacting with the step 

system response, the consumed power is increased from  0.25  to  0.6 mWatt due 

to the high frequency clock added. Also the lock time at the worst case does not 

exceed 300ns. Now there is one more enhancement needed  

The last improvement needed, is to reduce the oscillation of the fine stage around 

the reference, this is achieved by slowing its clock frequency. Figure 2.36 shows the 

result after this modification. 

 

Figure 2.36: Eliminating the oscillations 
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As expected, slowing the fine SR led to the expansion of the time lock until the 

time of 1us as figure 2.36 shows. 

2.4.4 Jitter calculation : 

Figure 2.37  shows the eye-diagram of DCO output clock when locked at 300 MHz  

plotted  using  Cadence  tools.  In  this  eye-diagram,  each  and  every  cycle  of  

the DCO output clock are overlapped on one clock period (after the DCO clock is 

locked to the reference) and the maximum deviation that can be obtained from the 

graph is measured  as  peak-to-peak  jitter. Number  of  cycles  that  are  taken  into  

account  are 100. The delay is measured at 50% voltage levels and the period jitter 

determines how noisy and stable the oscillator output signal is. 

 

Figure 2.37: Eye-diagram of the ADPLL  

The  peak-to-peak  jitter  for  this  implementation  when  the  feedback  signal  is  

locked at 300 MHz is 35 ps.  
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C h a p t e r  3  

STANDARD CELLS APPROACH 

Standard Cells Approach means that the targeted block will be written with one 

of the Hardware Description Language HDL codes such as Verilog or VHDL,  

and then can be translated into an hardware circuit using Standard Cells library. 

Thanks to AMS we are able to simulate and test the targeted block with analog 

blocks in cadence environment. 

One big advantage of using such approach is that the designer is not have to deal 

with the block gates at the transistor level and check the sizing of the logic gates . 

This approach also made the layout step very easy and effective in area. 

 

3.1 PFD 

As mentioned before, the Phase and Frequency Detector (PFD) will be used as a 

phase detector  to detect the phase and the frequency difference between the 

reference signal and the output signal of the DCO. 

First of all, we will write the code of our PFD using Verilog programming 

language , we will design a block which has: 

 Two input ports (reference signal and DCO output). 

 Two output ports (Up and Down). 

The Up signal indicates that the system should increase the DCO frequency (i.e. 

the reference frequency is higher than the DCO frequency) and the Down signal 

indicates that the system should decrease the DCO frequency. 
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And using Synplify PRO we  translated our PFD into the corresponding standard 

cells schematic as shown in figure 3.1 

 

Figure 3.1: PFD schematic   

This PFD can be imported as Verilog code in cadence also , see appendix A for 

more details. 

 

 

 

 

 

module dff (input d,clk,reset,output reg q); 
always@(posedge clk,negedge reset) 
if(~reset) 
q<=1'b0; 
else 
q<=d; 
endmodule 
 
module pfd (input refSignal,dcoSignal,output up,dn); 
wire intReset; 
assign intReset=~(up&dn); 
dff up_dff(1'b1,refSignal,intReset,up); 
dff dn_dff(1'b1,dcoSignal,intReset,dn); 
endmodule 
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3.2 Loop Filter 

The Loop Filter used here is simply a 16 bits shift register ,following the same 

procedure of PFD ,we got the schematic view of the Loop Filter as shown in 

figure 3.2. 

 

 

 

 

 

 

Figure 3.2: Loop Filter schematic  

module loopFilter ( input up,dn,reset, output reg [15:0] q);  
wire ored; 
assign ored = up | dn; 
always @(posedge ored, negedge reset) 
if(~reset) //active low reset(level sensitive) 
q<= 16'b11110000_00000000; 
else if(up & ~dn) 
q <= {q[14:0],1'b0}; 

else if(dn & ~up) 
q <= {1'b1,q[15:1]}; 
endmodule 
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We used two Loop Filters, one as a Coarse and the other as a fine, the Coarse 

one is responsible for the large step change in the DCO output frequency while 

the fine one is responsible for the small step change. 

 

3.3 PFD and Loop Filter 

Now, we have PFD and Loop Filter as functional blocks, so we can connect 

them together as shown in figure 3.3. 

 

 

Figure 3.3: PFD and Loop Filter 

 

Now , we have our functional block (PFD + Loop Filter) so we can import it to 

cadence environment and connect it with the custom designed DCO. 
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3.4 Overall Design 

 

Figure 3.4: Overall ADPLL (standard cells) 

Using AMS we can simulate analog and digital(functional) blocks together and 

check the functionality of our ADPLL and the result was as shown in figure 3.5 

 

Figure 3.5: AMS of the overall ADPLL without the 
counter 
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As we can see that the DCO output frequency is oscillating around the reference 

frequency and that is due to the coarse large steps, so we need to stop the coarse 

shift register to eliminate the large oscillations. 

4 bits counter is used for that purpose and when the counter carry bit activated 

the coarse shift register is turned off and the fine one is turned on as shown in 

figure 3.6 

 

 

Figure 3.6: AMS simulation of the overall ADPLL 
with counter 
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And the result of the Overall ADPLL as a functional (behavioral ) block was as 

shown in figure 3.7.

 

Figure 3.7: AMS of the ADPLL with counter. 

From the above figure we found that the lock time is less than 150 ns which 

means that our lock time restriction (lock time < 10 us) is satisfied. 

But, the problem is, the above design assuming the reference frequency is fixed 

and will not exposed to a step change. 

All the above simulation results is done considering the functional behavioral of 

the PFD and the Loop Filter (as code only). 

We did the technology mapping using Design Compiler by converting the 

functional Verilog code of the PFD and the Loop Filter into a netlist to generate 

a mapped code which contains the needed standard cells to achieve the block 

functionality. 
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We extracted the transistor level schematic of the PFD and the Loop Filter 

successfully using the standard cells of UMC65nm digital kit as shown in 

figure3.8. 

 

a) Imported schematic of PFD in cadence 

 

 

b) Imported schematic of Loop Filter in cadence 

 

c) Imported schematic of PFD and Loop Filter 
together in cadence  

Figure 3.8: The standard cells of both PFD and 
Loop Filter 
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As an example we took a snap shot of one standard block inside the PFD 

schematic in figure 3.8.a. above  

 

Figure 3.9: The transistor level of the standard D 
flip flop in cadence. 
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C h a p t e r  4  

LAYOUT 

The last step of the design flow is the layout, first of all DCO is considered as the 

core of the ADPLL so as we started the design in the schematic scope with the 

DCO , we will start with the DCO in the layout scope and we believe that the 

range will be changed due to the capacitance and the resistance added by the 

layout (i.e. more delay ). 

4.1 DCO     

The proposed DCO depends mainly on the delay cells (HDCs and DCVs) and 

because of the layout, the delay is not the same as schematic any more. 

4.1.1 DCV 

 

Figure 4.1: DCV layout 
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Figure 4. 2: DCV block layout 

 

Figure 4. 3: DCV array layout 

4.1.2 DCV2 

 

Figure 4. 4: DCV2 layout 
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Figure 4. 5: DCV2 block layout. 

 

Figure 4. 6: DCV2 array layout 

 

4.1.3 Ring Oscillator 

 

Figure 4. 7: Ring Oscillator layout 
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4.1.4 Complete DCO 

 

Figure 4. 8: Final DCO layout 

The DCO range was from 3.33 ns to 10 ns of period (i.e. from 100 MHz to 300 

MHz), but after constructing the layout directly without any modification to the 

sizing of DCVs or removing any fixed delay cells , the DCO range was from 11 

ns to 16 ns (i.e. from 62.5 MHz to 90 MHz ) which is out of our required range, 

so we had to remove the fixed delay cells (i.e. HDCs) but the range was still not 

satisfied, so we started to modify the length of the transistors in the DCV2 cells 

because the problem was with the lower bound of the required range (i.e. 100 

MHz) and also increase the supply voltage source from 1.2v to 1.5v to satisfy the 

required range, and finally we have got 3.236 ns to 9.952 ns (i.e. 100.48 MHz to 

309.02 MHz) as shown in figure 4.9. 
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Figure 4. 9: DCO operating range in layout. 

 

4.2 PFD 

 

Figure 4. 10: PFD layout 

 

The proposed PFD consists of two D flip flop and OR gate. At the first time , 

when simulating the layout directly with power supply voltage 1.2v , we found 

that the functionality  of the PFD is not working correctly, so we decreased the 

supply voltage to 1v and the PFD worked properly as shown in figure 4.10 and 

figure 4.11. 
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Figure 4.11: PFD pre-layout simulation. 

 

 

Figure 4.12: PFD post-layout simulation. 
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4.3 Loop Filter 

As mentioned earlier , the proposed Loop Filter in ADPLL is a shift register, 

which contains D FF’s and some combinational blocks. 

 

Figure 3.13: Shift Register layout 

The post-layout simulation result was different from the pre-layout simulation 

due to the delay produced by the layout capacitance and resistance as shown in 

figure 4.12 and figure 4.13, but that is not a big deal. As we can see in figure 4.12 

in the time period 2.5ns to 5ns the shift occurs at the positive edge of the CLK 

signal because the up and down signal are different , but in the same time slot in 

figure 4.13 the shift occurred once due to the delay produced by the layout. 

 

Figure 4.14: Pre-layout simulation of the Shift 
Register 
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Figure 4.15: Post-layout simulation of the Shift 

Register 

4.4 Overall Design  

After constructing the layout of each block in the system, the layout of the overall 

design can be constructed as shown in figure 4.16 

 

Figure 4.16: The overall layout 

 

Figure 4.17: Overall post layout simulation 
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4.5 Conclusion 
 
A comparison between the Required Specifications and Achieved Specifications 

is held as shown below 

Required Specifications Achieved Specifications 

Power < 1 mW 0.6 mW 

Area < 0.01     From Layout= 0.0086    

Lock time < 10    1    

P-to-P jitter < 20 ps 35 ps 
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A p p e n d i x  A  

AMS TUTORIAL 

Through this tutorial you will learn how to simulate a system containing digital 

Verilog blocks, digital VHDL blocks and analog blocks. This tutorial is mainly 

divided into two parts, part 1 and part 2. For part 1, we are going to simulate a 

digital Verilog inverter with an analog inverter and compare the outputs of them, 

and then we put them in a cascaded configuration (analog inverter after digital 

Verilog inverter) to work together as a buffer. The idea of this cascaded 

configuration is to make sure that, the connect rules between the digital block and 

analog block are established correctly. For part 2, we are going to simulate 

another design contains three main blocks, a digital Verilog 4-bit counter, an 

analog 4-bit inverter and a digital VHDL 4-bit inverter. This design is organized 

as follows; an external clock signal and reset signal are applied to the Verilog 4-bit 

counter.  The output of the Verilog 4-bit counter is labeled as count_out<3:0> 

and is applied as an input to the next block which is the analog 4-bit inverter. The 

output of the analog 4-bit inverter is labeled as vhdl_inv<3:0> and is applied as 

an input to the last block which is VHDL 4-bit inverter. The output of the 

VHDL 4-bit inverter is labeled as vhdl_out<3:0>. We are interested in these 

signals, count_out<3:0>, vhdl_inv<3:0> and vhdl_out<3:0>. If everything is 

correct, the final output, vhdl_out<3:0> will be the same as the counter output 

count_out<3:0>. A block diagram for this design can be found in part 2 section. 

Part1:                                                                                                                                       

The following steps are to simulate both the digital Verilog inverter and the 

analog inverter and compare both outputs. Another configuration for these two 

inverters is to put them in cascade to work as a buffer. We use a library called 

ams_tutorial to include all circuits in this tutorial. 

Firstly, we will make a cell view for the digital Verilog inverter. 
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After pressing the OK button, you’ll get this menu 



55 
 

 

It is a little difficult to edit your code in this text editor so, we will use another 

text editor called “gedit” by typing the command editor=”gedit” in the CIW 

window. 

 

You can now see your cell view and double click on it to edit the code using gedit 

text editor  
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A new window will open up after double clicking your cell view as follows: 
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Edit the code and save it. 

 

After closing it, you’ll get a menu asking to create a symbol view for your circuit, 

press “yes”. 

 

You can use the created symbol as is or edit it.  
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We will edit it to take the form of an inverter (optional step). 
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We put a something like square wave inside the symbol view to differentiate 

between it and the analog inverter. Now it is time to create the analog inverter. 
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To create a symbol choose, Create > cellview > from cellview as follows 

 

Press ok for the next window 
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We will edit the symbol view to looks like the following (optional). We put a 

something like a sine wave inside the symbol to differentiate it from the digital 

inverter. 
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Next step is to make a test bench for a circuit containing both the digital Verilog 

inverter and the analog one. 
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Put labels for input signal, Verilog output and analog output signals. 

 

For the input source, a good choice is a periodic signal to test both, high state and 

low state. We use Vpulse as an input signal. 
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For this tutorial we use Vsupply = 1.2 v. We will use this value in connect rules 

also. 
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The final schematic after adding labels and sources looks like the following  
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Close this schematic and create another cell view for it of type config. Make sure 

to choose type config (important).  
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You will get a menu like the following  

 

Press Use Template and choose AMS for Name field from the following 

menu. 
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Press OK and choose view as schematic for the section Top Cell like the 

following. 

 

After pressing OK you will get the following menu. Choose File>Save 
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Notice that, inv_tb is now having two views, config and schematic. 
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Double click on config and press OK from the following menu 

 

It will open the config view of your circuit. Choose check and Save. 
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Then Launch > IDE L to start simulating your circuit 

(This must be done from the config view not schematic view) 
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Then choose Setup>Simulation/Directory/Host..  from the following menu 

 

Choose simulator as ams and press OK  
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The next step is to edit the connection rules. Choose Setup>Connect Rules  
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You will get a menu looks like the following.  

 

For this tutorial we use Vsupply=1.2v which is not included in the attached rules 

so we will choose any one and edit it using the Customize button. We will set 

Vsup to 1.2v instead of 1.8v and vthi to 0.8v (2*Vsup/3) and vtlo to 0.4v 

(Vsup/3). Do not forget to press the button Change after changing any value of 

these values. Vthi means threshold value for high logic and vtlo means threshold 

value for low logic. The range between vtlo and vthi is called the forbidden zone. 



75 
 

 



76 
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Then choose analysis and we will simulate the circuit for 10ns  
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Then select the signals to be plotted Outputs>To Be Plotted>Select On 

Schematic 

 

We are interested in these signals, input, analog_out and Verilog_out. 
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Then Run Simulation. The following are the results from both the analog inverter 

and the Verilog digital inverter and they are the same. 
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We will now try the cascaded configuration of both inverters to act as a buffer. 

 

The simulation result can be found in the following figure. One can simply notice 

that, the analog_out signal is the same as the input signal. (The operation of a 

typical buffer). 
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Part2:                                                                                                                                     

In this part we are going to simulate a design consisting of 3 main blocks, digital 

Verilog 4-bit counter, analog 4-bit inverter and digital VHDL 4-bit inverter. The 

block diagram of this circuit is as follows  
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The analog inverters are taken from Part 1 and the codes for Verilog counter and 

VHDL inverter is as follows  

 

 

 

 

 

 

 

 

We will start by importing both the Verilog counter and the VHDL inverter into 

virtuoso. The following figure is to import the Verilog counter. 

module count4(input clk,reset,output[3:0] dout); 
reg[3:0] count_reg; 
wire[3:0] count_next; 
//state register     
always@(posedge clk,posedge reset) 
    if(reset) 
    count_reg <= 0; 
    else 
    count_reg <= count_next;        
//next state logic 
assign count_next = count_reg+1;  
//output logic 

assign dout = count_reg;          
endmodule 

library IEEE;  
use IEEE.STD_LOGIC_1164.all; 
entity vhdl_inv is 
port (x: in STD_LOGIC_VECTOR (3 downto 0); 
y: out STD_LOGIC_VECTOR (3 downto 0)); 
end; 
architecture behavioral of vhdl_inv is 
begin 
y <= not x; 
end; 
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Choose Target Library and Verilog file as follows  
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You will get a menu like the following after pressing OK. You may press Yes to 

view the logfile.  
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The logfile looks like the following.  Reporting that your import process has been 

completed. 

 

Now check your target library (ams_tutorial in out example) to find the Verilog 

counter count4 with two views, functional (The Verilog code) and symbol. 
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Double click on functional to check the code. 

 

Double click on symbol view to check the symbol. You may need to edit it, we 

will just leave it as is. 
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Next step is to import the VHDL 4-bit inverter.  
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Choose your target library (ams_tutorial in our example) and VHDL file. Leave 

all other fields as they are. 

 

After pressing OK you will get the following menu, press Yes to check the 

logfile. 
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Now you can check your cell, named vhdl_inv. 

 

Double click on behavioral view and entity view to check the code. 
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You can edit the symbol. We will use it as it is. 
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Next step is to make the test bench for the block diagram mentioned in the 

beginning of this section. We will name it mixed_tb (optional). 

 

 



92 
 

Choose create>wire (wide) to create buses. 

 

Connect these blocks together as follows  
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Add labels for buses by pressing l. 
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Add labels for the wires connected to the buses. 

 

After pressing OK, left click on the first wire and move to the last wire across the 

wires between them and finally left click on the last wire. 
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Add sources to your design clk, reset, VDD and GND. For the clk we use 

Vpulse with period 2ns. 
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For the reset signal, we use Vpwl with the following configuration for an active 

high reset. 
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The final schematic after adding sources and labels is as follows  
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Check and Save then close this schematic and create a config view for it as we 

did for Part 1. 
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Choose the ams simulator as we did for Part 1 and edit connect rules then 

select signal to be plotted. 



101 
 

 

We are interested in plotting these signals, count_out<3:0>, vhdl_inv<3:0> and 

vhdl_out<3:0>. 

 



102 
 

 

 

Then Run Simulation. 
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From the results figure, we can select the digital signals of vhdl_out<3:0> and 

convert them to a bus. 
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Simulation results are as follows  
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For more details, please check the following videos: 

http://youtu.be/QzHU-FyISIo 

http://youtu.be/AN641gYyFj4 

http://youtu.be/SLAEHGnrwuE 

 

Conclusion                                                                                                                                             

In this tutorial we have learned how to use AMS simulator to simulate digital 

Verilog codes with digital VHDL code and analog blocks. This tutorial assumes 

that, you have the AMS tool integrated with Cadence Virtuoso. For further 

information, please check the video notes of this tutorial in the reference page. 

 

 

 

 

 

 

 

http://youtu.be/QzHU-FyISIo
http://youtu.be/AN641gYyFj4
http://youtu.be/SLAEHGnrwuE
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A p p e n d i x  B  

LOGIC SYNTHESIS 

This tutorial presents the main steps to perform the logic synthesis of a digital 

Verilog 4-bit counter with the Synopsys Design Vision and Design Compiler 

tools. We divide this tutorial into two parts, part 1 and part 2. For part 1, we 

make all the steps using the Design Vision graphical environment. For part 2, we 

make the same steps using a TCL (Tool Command Language) script. 

Part 1: 

 

First step is to start the Design Vision graphical environment. In command 

window type:  

dc_shell and press enter then type gui_start. You should get the following menu: 

 

Next step is to edit setup menu to add your target library and link library; the 

libraries to which your design will be mapped. To do this step choose File-> 

Setup and from the following menu remove default libraries and add yours. 
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The following step is to analyze your Verilog code to check it and see if it is 

synthesizable. Choose File-> Analyze from the main menu and using the Add 

button select all your Verilog sources to be analyzed then press OK. 

 

Next step is to elaborate your design. The elaboration phase performs a generic 

pre-synthesis of the analyzed model. It essentially identifies the registers that will 

be inferred.  
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To do this step choose File -> Elaborate from the main menu and from the 

elaboration menu select the top level file of your design and press OK as seen in  

the following figure. 

 

After pressing OK in the elaboration menu, the main menu will be updated with 

your design which is count4 in this tutorial.  

 

You can display the elaborated schematic by selecting your design in the 

hierarchy window and then clicking the Create Design Schematic icon  or 

by right click on your design entity then choose Schematic View. The following 

is the elaborated schematic view for our design. 
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It is a good idea to save your design to this point. Choose File -> Save as and 

from the following window choose a name and click Save. 

 

You can type this command in Design Vision to generate a report of the 

hierarchy of the design, report_hierarchy.  You can also use this command to report 

all used cells and operating voltage of your design, report_design.  

Now we are going to define our design constraints like area and clock speed. For 

this step select your design in the hierarchy window then click the Create 

Symbol View icon . You will get a window like this one. 



111 
 

 

Now select your clock signal from the symbol view and choose Attributes -> 

Specify Clock to define the clock period and its duty cycle. For our example we 

choose a clock period of 10 ns and duty cycle of 50% like the following figure. 
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Next step is to define the constraints on design area by choosing Attributes -> 

Optimization Constraints -> Design Constraints from Design Vision main 

window. We choose area to be equal to zero to get the minimum area for our 

design. 
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Next step is to compile your design. After this step your design will be mapped to 

real standard cells from your target technology library. From the main window of 

Design Vision, choose Design -> Compile Design, you will get a menu like the 

following figure, click OK.  

 

As seen in the following figure, your design is now mapped to real standard cells. 

 

You can check the schematic view of your design now to see it in terms of 

standard cells. 
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A good idea is to save your design now using File -> Save As and choose an 

appropriate name, for use we name it count4_clk10ns_mapped.ddc. 

To report your design constraints to check if there are any violations on your 

design constraints, choose Design -> Report Constraints. Continue like the 

following figure. 

 

You will get a report like the following. 
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This report says that, area is violated and this is expected because we set the max 

area earlier to zero to achieve a minimum area, now this minimum area can be 

seen under the field of Actual Area in this report and it is 47.16     in our case. 

Slack equals to Required Area minus the Actual Area achieved by Design 

Vision, one would like always to get a positive slack. Positive slack means that, 

constraint is met but negative slack means constraint is violated. 

Choose Design -> Report Area to check the overall area of your design. 
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After clicking OK you will get a report for your design area like the following 

figure. 

 

To check timing of your design, choose Timing -> Report Timing Path. 
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You will get a timing report like the following one; from this figure we notice that 

our timing slack is positive and equals to 9.75 ns i.e. timing constraint is met and 

we can reduce the required clock period by 9.75 ns. Now we know that min clock 

period for our design is, 10 ns - 9.75 ns = 0.25 ns. 

 

A good way to visualize your timing paths and determine the critical path can be 

done using Timing -> Path Slack. Choose OK from the following menu. 
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You will get a histogram for slacks of all timing paths in your design like the 

following one. 
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In this histogram, the path with the smallest slack is the worst (critical) path in 

your design. In our example, the worst paths have a slack of 9.74 ns. When 

selecting any path from this histogram you can see the equivalent path on your 

circuit by moving to your schematic view. The selected path above is shown in 

schematic as follows. 

 

Other reports can be useful for you like resources report, you can get it from 

Design -> Report Design Resources as following. 
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In the following steps, we will export the netlist file and all needed files to be used 

in the following design stages like automatic place and route using SOC 

Encounter.  

Before exporting the netlist file you have to type the following command in 

Design Compiler command line. 

change_names -rules verilog -hierarchy -verbose  

This command is to apply some verilog naming rules to your design before 

exporting the gate level netlist file. 

 

 

 

Now, save your netlist verilog file using File -> Save As then type an appropriate 

name and change the format to verilog like the following figure. 
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The output gate level netlist file from this step is as follows. 

 

 

 

 

 

 

 

 

 

 

This file will be used in appendix C and is also used as an input to the automatic 

place and route tool, SOC Encounter to generate the layout for your design. 

Next step is the post synthesis timing data extraction. In this step we extract the 

standard delay format file which can be used in post synthesis simulation. To get 

this file, type the following command in the command line of Design Vision. 

write_sdf -version 2.1 coun4_clk10ns_mapped_vlog.sdf 

You can fine this file and all report files you’ve generated earlier in your working 

directory. 

 

The following command is to generate a file includes all your design constraints 

in TCL format and will be used in standard cell placement and routing (SOC 

Encounter). 

write_sdc -nosplit count4_clk110ns_mapped.sdc 

 

module count4 ( clk, reset, count ); 
output [3:0] count; 
input clk, reset; 
wire   n1, n2, n3; 
wire   [3:0] count_next; 
 
DFQRM2RA count_reg_reg_0_ ( .D(n1), .CK(clk), .RB(reset), .Q(count[0]) ); 
DFQRM2RA count_reg_reg_1_ ( .D(count_next[1]), .CK(clk), .RB(reset), .Q( 
        count[1]) ); 
DFQRM2RA count_reg_reg_2_ ( .D(count_next[2]), .CK(clk), .RB(reset), .Q( 
        count[2]) ); 
DFQRM2RA count_reg_reg_3_ ( .D(count_next[3]), .CK(clk), .RB(reset), .Q( 
        count[3]) ); 
XOR2M2RA U3 ( .A(count[3]), .B(n2), .Z(count_next[3]) ); 
XNR2M2RA U5 ( .A(count[2]), .B(n3), .Z(count_next[2]) ); 
XNR2M2RA U7 ( .A(count[1]), .B(n1), .Z(count_next[1]) ); 
ND2M2R U9 ( .A(count[1]), .B(count[0]), .Z(n3) ); 
NR2B1M2R U10 ( .NA(count[2]), .B(n3), .Z(n2) ); 
INVM2R U11 ( .A(count[0]), .Z(n1) ); 
endmodule 
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For more details, please check the following video: 

http://youtu.be/pD85Hnsi2cc 

 

Part 2: 

 

The same steps of part 1 can be done by using this TCL script. The code is self 

documented, please read it carefully and edit all needed fields according to your 

design. 

# Design Setup (change library files according to your technology) 

set link_library /home/eslam/Desktop/synopsys/uk65lscllmvbbr_120c25_tc.db  

set target_library /home/eslam/Desktop/synopsys/uk65lscllmvbbr_120c25_tc.db 

#Analyze 

analyze -format verilog {/home/eslam/Desktop/synopsys/count4.v} 

#elaborate (count4 is the name of the top level module) 

elaborate count4 -architecture verilog -library DEFAULT -update 

write -hierarchy -format ddc -output /home/eslam/Desktop/synopsys/count4.ddc 

#timing & area constraints (clk is the clock name in my verilog file-edit according to 

your design (ns)) 

create_clock -name "clk" -period 10 -waveform { 0 5  }  { clk  } 

set_max_area 0 

#compile design 

compile 

#export design (reports and netlist and timing files) 

write -hierarchy -format ddc -output 

/home/eslam/Desktop/synopsys/count4_clk10ns_mapped.ddc 

#generate design reports  

report_constraint -nosplit -all_violators > /home/eslam/Desktop/synopsys/allviol.rpt 

report_area > /home/eslam/Desktop/synopsys/area.rpt 

report_timing > /home/eslam/Desktop/synopsys/timing.rpt 

report_resources -nosplit -hierarchy > /home/eslam/Desktop/synopsys/resources.rpt 

report_reference -nosplit -hierarchy > /home/eslam/Desktop/synopsys/references.rpt 

report_hierarchy > hierarchy.rpt 

report_design > design.rpt 

#add some verilog naming rules before exporting the gate level netlist file 

change_names -rules verilog -hierarchy -verbose 

write -hierarchy -format verilog -output 

/home/eslam/Desktop/synopsys/count4_clk10ns_mapped.v 

write_sdf -version 2.1 count4_mapped_vlog.sdf 

write_sdc -nosplit count4_vlog.sdc 

puts "Finished" 

http://youtu.be/pD85Hnsi2cc
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For more details, please check the following video: 

http://youtu.be/gH6ZMh3IQBI 

 

 

Conclusion  

 

Using this tutorial we’ve learned how to convert our functional verilog code into 

a gate level netlist file, i.e. a file containing standard cells from our technology 

library and learned how to define design constraints like timing and area 

constraints and how to analyze timing paths using a timing histogram and finally 

how to generate all needed reports and files which can be used in next design 

steps like automatic place and route. 

 

 

 

http://youtu.be/gH6ZMh3IQBI




124 
 

A p p e n d i x  C  

IMPORTING SYNTHESIZED DESIGN INTO CADENCE COMPOSER 
SCHEMATIC VIEW 

In this tutorial we are going to simulate a digital 4-bit Verilog counter to test its 

function first without any timing analysis then we will use the synthesized version 

(output of Design Compiler) of this counter and import it into CADENCE 

Composer as a schematic view containing all standard cells needed for this 

counter from our technology library, so in this part we will simulate the 4-bit 

counter in two levels of design: 

1. Pre-synthesis functional Verilog simulation using AMS simulator  

2. Post-synthesis transistor level simulation using Spectre simulator  

1. Pre-synthesis functional Verilog simulation using AMS simulator  

The following is the digital 4-bit Verilog code used for this tutorial: 

 

 

 

 

 

 

For this tutorial, we will make new work library and name it post_synthesis as 

following: 

module count4(input clk,reset,output[3:0] count); 
reg[3:0] count_reg; 
wire[3:0] count_next; 
 
//state register 
always@(posedge clk,negedge reset) 
if(~reset) 
count_reg <= 0; 
else  
count_reg <= count_next; 
//next state logic 
assign count_next = count_reg+1; 
//output logic 
assign count = count_reg; 
endmodule 
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We should attach this work library to our technology library which is umc65ll in 

our tutorial. 

 

We make similar steps to those done in appendix A to import this Verilog code 

into cadence as following: 
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After ending this process, you will get a functional and symbol view for your 

counter. 
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Double click on functional view to check your code. 

 

Now, it’s time to make a test bench for this code to generate simulations results 

for it. 
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For this code we use an active low reset signal, this is how to get this reset signal 

using library sources: 
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Use similar steps to that in appendix A to create new config view for your test 

bench and don’t forget to change the simulator to AMS and edit the connection 

rules. 
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You must start the simulation from this config view as we noticed in appendix A. 

The simulation results for this Verilog 4-bit counter are in the following figure: 
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2. Post-synthesis transistor level simulation using Spectre simulator  

Now, we are going to import our synthesized Verilog code (standard cells 

description of our counter – output of Design Compiler) into CADENCE 

composer and simulate it in the transistor level using Spectre simulator. We use 

similar steps as we did to import the functional Verilog code but the only 

different part in import menu is that, you must specify your standard cells library 

( for us, it is umc65stdcells ) as shown in the following figure : 
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Transistors used in each standard cell in umc65stdcells are taken from the 

technology library we’ve included earlier, the umc65ll. You can have a look on 

the mapped code of this counter in the following figure: 
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After ending this process successfully, there will be a schematic view added to 

your cell views of the counter. 

 

Double click on this schematic view to check the internal structure of your 

counter in terms of your standard cells. 

module count4 ( clk, reset, count ); 
output [3:0] count; 
input clk, reset; 
wire   n1, n2, n3; 
wire   [3:0] count_next; 
 
DFQRM2RA count_reg_reg_0_ ( .D(n1), .CK(clk), .RB(reset), .Q(count[0]) ); 
DFQRM2RA count_reg_reg_1_ ( .D(count_next[1]), .CK(clk), .RB(reset), .Q( 
        count[1]) ); 
DFQRM2RA count_reg_reg_2_ ( .D(count_next[2]), .CK(clk), .RB(reset), .Q( 
        count[2]) ); 
DFQRM2RA count_reg_reg_3_ ( .D(count_next[3]), .CK(clk), .RB(reset), .Q( 
        count[3]) ); 
XOR2M2RA U3 ( .A(count[3]), .B(n2), .Z(count_next[3]) ); 
XNR2M2RA U5 ( .A(count[2]), .B(n3), .Z(count_next[2]) ); 
XNR2M2RA U7 ( .A(count[1]), .B(n1), .Z(count_next[1]) ); 
ND2M2R U9 ( .A(count[1]), .B(count[0]), .Z(n3) ); 
NR2B1M2R U10 ( .NA(count[2]), .B(n3), .Z(n2) ); 
INVM2R U11 ( .A(count[0]), .Z(n1) ); 
endmodule 
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You can also check the internal structure of each standard cell in your counter by 

pressing shift+E on this cell. The following are the internal structures of two 

standard cells used in this counter: 
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Now, it is time to test this schematic. An important notice here is that; don’t 

forget to connect power nodes (VDD and GND) and bulk nodes of transistors 

(VBN and VBP). We did not make this step when simulating the functional 

Verilog code because there were no transistors in this schematic and we were just 

simulating the code.  

The simulation results for the transistor level schematic of the counter are in the 

following figure. One can easily notice, the same output as the functional Verilog 

code is achieved. 
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For more details please check this video: 

http://youtu.be/FLjRAzKSvxc 

 

3. Conclusion 

In this tutorial, we have simulated a digital Verilog 4-bit counter in two different 

design levels, one is to simulate the pre-synthesis Verilog code to test its 

functionality only and another one is to simulate the post-synthesis code after 

being mapped to real standard cells from your technology library. Both 

simulations give the same results. 

 

 

 

http://youtu.be/FLjRAzKSvxc
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A p p e n d i x  D  

STANDARD CELL PLACEMENT AND ROUTING 

In this tutorial we will learn how to import the gate level netlist file (which we get 

from SYNOPSYS Design Vision) into CADENCE SOC Encounter to do the 

placement and routing of the standard cells used in our example, the 4-bit 

counter. You may import the final layout from this step into CADENCE layout 

editor to check it through DRC, LVS and PEX and make the post layout 

simulation. The tutorial is divided into two parts, part 1 and part 2. For part 1 we 

make all the steps using the graphical environment and for part 2, we make the 

same steps using a TCL (Tool Command Language) script. 

Part 1: 

The starting window for SOC Encounter looks like the following figure. 
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Choose Design -> Import Design, the following window will show up. Fill it 

with your gate level netlist in the field of Verilog Netlist then choose your 

Timing Libraries as follows, for Max Timing Libraries choose the file with 

worst case conditions and for Min Timing Libraries, choose the file with best 

case conditions and finally for Common Timing Libraries, choose the file with 

typical case conditions. For LEF files you need to add the LEF files from your 

technology kit.  For Timing Constraints File, add the SDC file which we got 

from Design Vision in logic synthesis step.   

 

Now move to the Advanced tab and choose Power to add names for your 

power nets, make sure to type proper names like in you LEF file.  To know the 

power net names in your technology kit you can check the LEF file and search 

for "power" to know the name for power net and ground net.  For our 

technology library, net names are VDD and VSS.  You may need to save this 

configuration to use it again instead of inserting all fields from the beginning, to 

do this step choose Save and the OK. 
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It is a good idea to save your design using Design -> Save Design As -> SoCE. 

Next step is to specify the floorplan for your design, choose Floorplan -> 

Specify Floorplan.  Define an aspect ratio of 1 and core utilization of 85% 

which means that 15% of the core area will be free for possible future cell 

replacements.  Choose core to die boundary large enough to hold the power 

rings, we choose it as 0.6 microns. This is enough for this design as there will be 

one power ring and one ground ring of 0.1 micron and spacing between them of 

0.1 micron also. 
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Your floor plan will look like the following one. 
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Choose Floorplan -> Connect Global Nets to connect power nets to your 

design.  From the following menu type VDD in pin name and VDD in the field 

of To Global Net then click on Add to List.  Make similar steps for VSS then 

Apply and Close this window.   
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In the command window you will get a report of these connected power pins like 

the following figure. 

 

Next step is to add power rings to your design. To do this, choose Power -> 

Power Planning -> Add Rings and the following window will show up.  From 

this window, choose the width of your power rings and the spacing between 

them. 
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Your floorplan will now look like the following one. 
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Save your design to this point using Design -> Save Design AS -> SoCE and 

choose an appropriate name, we choose count4_clk10ns-pring.enc. 

Now, it is possible to route the power grid. Select Route -> Special Route then 

clock OK. After this step you will get the following. 

 

Next step is to add well taps to your design so that your VDD and GND are 

connected to substrate and n-wells respectively. This is to help tie them to your 

VDD and GND levels so that they don't drift too much. Choose Place -> 

Physical Cells -> Add Well Tap. Choose the well tap from your technology 

library and click OK. 
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Next step is placing the standard cells. Choose Place -> Standard Cells and 

check the following menu then click OK. 



147 
 

 

Your standard cells are now placed and you can check them. 

 

To check placement, choose Place -> Check Placement and click OK.  
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After clicking OK we got these violations, there was an overlapping between 

some standard cells. 

 

To solve these violations we edited the aspect ratio again from Floorplan -> 

Specify Floorplan and the problem had been solved. 
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Check the file named .checkPlace in your work directory to make sure that there 

are no violations. 

 

Now choose Timing -> Optimize to make the timing optimization for Pre-

CTS. 
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Click OK in the following menu. 

 

 

Now choose Clock -> Design Clock then click Gen Spec and select your 

CLKBUF cells. 
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Then clock OK. 

Now choose Clock -> Display -> Display Clock Tree. From the following 

menu you can display the clock phase delay. 
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Now choose Timing -> Optimize then select Post-CTS and click OK. 

 

Open your terminal window and check the WNS field (Worst Negative Slack) 

which means the slack of the critical path in your design. 

Now choose Timing -> NanoRoute -> Route. From the following menu 

check the required fields and click OK. 
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Next step is the post route timing optimization. Choose Timing -> Optimize 

and choose Post-Route then OK. 

 

Next step is to add filler cells. Choose Place -> Physical Cells -> Add Filler 

and select filler cells from your technology library.  Filler cells will fill remaining 

holes in the rows and ensure the continuity of power/ground rails and N+/P+ 

wells. 

The following steps are to check your design. To check connectivity, choose 

Verify -> Verify Connectivity then press OK in the following window. 
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To check geometry of your design, choose Verify -> Verify Geometry then 

click OK. 
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You can now generate some useful reports. Choose Design -> Report -> 

Netlist Statistics and check your command window to see this report file. 

You can also check the number of gates used in your design by choosing Design 

-> Report -> Gate Count and click OK in the next window. 
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In command window, type report_timing to get a timing report for your design. 

To export a standard delay format file type the following in command window 

write_sdf count4_clk10ns_pared.sdf -version 2.1 

The P+R netlist may be different from the imported netlist as cells may have 

been added or replaced during clock tree synthesis (CTS) and various timing 

optimization phases. To export this netlist choose Design -> Save -> Netlist 

and click OK in the following window. 

 

The next step is to export this layout to a file which can be used in virtuoso 

layout editor, choose Design -> Save -> GDS/OASIS. Choose an appropriate 

Map File. The library name is the design library name in virtuoso.  Choose 

merge files and merge it with the .gds files from your technology library. 
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For more details please check this video: 

http://youtu.be/udPMw9_rZL0 

 

 

 

 

 

 

 

 

 

 

http://youtu.be/udPMw9_rZL0
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Part 2: 

The same steps of part 1 will be done here using this TCL script. 

# Importing the Design  

loadConfig Default.conf   

setDrawView fplan 

fit 

saveDesign count4-import.enc  

#Floorplanning the Design  

floorPlan -r 1 0.85 0.6 0.6 0.6 0.6 

saveDesign count4-fplan.enc  

#Power Planning  

clearGlobalNets 

globalNetConnect VDD -type pgpin -pin VDD -inst * -module {} -verbose 

globalNetConnect VSS -type pgpin -pin VSS -inst * -module {} -verbose 

addRing \ 

-around core \ 

-nets {VSS VDD} \ 

-center 1 \ 

-width_bottom 0.1 -width_right 0.1 -width_top 0.1 -width_left 0.1 \ 

-spacing_bottom 0.1 -spacing_right 0.1 -spacing_top 0.1 -spacing_left 0.1 \ 

-layer_bottom ME1 -layer_right ME2 -layer_top ME1 -layer_left ME2 \ 

-bl 1 -br 1 -rb 0 -rt 0 -tr 0 -tl 0 -lt 1 -lb 1 

#placing well taps 

addWellTap -cell WT3R -maxGap 10 -skipRow 1 -startRowNum 2 -prefix WELLTAP 

#special route 

sroute \ 

-connect { blockPin corePin floatingStripe } \ 

-blockPin { onBoundary bottomBoundary rightBoundary } \ 

-allowJogging 1 

saveDesign count4.enc 

#Placing the standard cells  

setPlaceMode -timingDriven true 

placeDesign -prePlaceOpt 

setDrawView place 

checkPlace  

optDesign -preCTS -outDir /home/eslam/Desktop/encounter 

saveDesign count4-placed.enc 

#Synthesizing a Clock Tree 

createClockTreeSpec -output count4_spec.cts \ 
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-bufferList CKBUFM12R CKBUFM16R CKBUFM1R CKBUFM20R CKBUFM22RA CKBUFM24R 

CKBUFM26RA CKBUFM2R CKBUFM32R CKBUFM3R CKBUFM40R \ 

CKBUFM48R CKBUFM4R CKBUFM6R CKBUFM8R CKINVM12R CKINVM16R CKINVM1R 

CKINVM20R CKINVM22RA CKINVM24R CKINVM26RA \CKINVM2R CKINVM32R CKINVM3R 

CKINVM40R CKINVM48R CKINVM4R CKINVM6R CKINVM8R 

clockDesign -specFile pfd_loopF_spec.cts \ 

            -outDir /home/eslam/Desktop/encounter 

optDesign -postCTS -outDir /home/eslam/Desktop/encounter 

saveDesign count4-cts.enc 

#Routing the Design 

setNanoRouteMode -routeWithTimingDriven true -routeTdrEffort 5 

routeDesign  

optDesign -postRoute -outDir /home/eslam/Desktop/encounter 

saveDesign count4-routed.enc 

#Design Finishing  

addFiller \ 

   -cell { FIL16R FIL1R FIL2R FIL32R FIL4R FIL64R FIL8R FILE16R FILE32R FILE3R FILE4R 

FILE64R FILE6R \FILE8R FILEP16R FILEP32R FILEP64R FILEP8 } \ 

   -prefix FIL 

setDrawView place 

saveDesign count4-filled.enc   

#Checking the Design  

verifyConnectivity -type all -report connectivity.rpt 

verifyGeometry -report geometry.rpt 

#Generating Reports  

reportNetStat 

reportGateCount -outfile gateCount.rpt 

summaryReport -outdir /home/eslam/Desktop/encounter 

#Design Export  

write_sdf -version 2.1 -precision 4 count4_pared.sdf 

saveNetlist -excludeLeafCell count4_pared.v 

streamOut count4_pared.gds \ 

-mapFile streamOut_me_pinOnly.map \ 

-libName count4_pared \ 

-merge uk65lscllmvbbr.gds 

 

For more details, please check the following video: 

http://youtu.be/NEfx3igkzME 

 

 

 

http://youtu.be/NEfx3igkzME
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Conclusion 

Through this tutorial, we started with a gate level netlist (The file we got from 

SYNOPSYS Design Vision) and followed all the steps to place and route the 

standard cells in this netlist file. The final output from this tutorial is a layout file 

and timing constraints files which can be used for post layout simulations.  
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A p p e n d i x  E  

                 POWER CALCULATION 

The method to measure power using Cadence Spectre is described in this tutorial, 

the 2-bit inverter in the below figure is used as an example to show how power 

measurement is done in cadence spectre . 

The equations we need to apply to Calculate the average power consumed are : 

  The Instantaneous Power : 
          P (t) = Power supply voltage ( VDD ) * current drawn from             
                       power supply at time  
  Then the Average Power 

:               
 

           
                    
           

  

The following changes needs to be done for the measurement of the power drawn 

from the power supply . 

1. Changes to the Existing Schematic : 

 On the top-level of the schematic, add a Vdc source (from the 

analog library) and connect its positive terminal to the VDD. 

 Select the Vdc source (a white box appears around the selected 

item), and press Q, an edit object properties window will appear 

Type he power supply value ( which is 3v in this example ) across 

DC Voltage and press OK.  

Important note :This addition of the Vdc source has to be done only to the top-

level of the design schematic and SHOULD NOT be done for each of the 

blocks in the project. 

Now, Save the sheet (check and save) and go to the analog-environment window 

to perform the simulation. 
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                                                            Figure 1  

2. Simulation 

 Make all the necessary set-up for the simulation  

 To plot the current drawn from the VDD, select Output-> To Be 

Plotted - > Select on Schematic in the analog-environment window 

and then select the -ve terminal of the Vdc source in the schematic 

( because the current plotted for a certain node is the input to this 

node ).  

 A circle appears in the schematic as shown in figure 2, make sure 

the circle appears. If it does not appear, then you are plotting the 

voltage and not the current. 

 

                                                          Figure 2  
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 Simulate the circuit and the plot of the output current from the 

VDD will be as shown in figure 3 

 

                                                                       Figure 3 

 Select the tools -> calculator from the analog-environment window  

 To create TRAN current expression, check the (it) choice and then 

reselect the -ve terminal of the Vdc source in the schematic, after 

that select the function “INTEG” from the built-in functions. 

Figure 4 clarify this step. 

 

                                                                 Figure 4 
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 The calculator window will appear as shown in figure 5 .This 

simulation (for the 2-bit inverter) is done from 0n to 20ns. Let’s 

find the average power consumed by this circuit in this period, thus 

the integration should performed in this period (figure 5).In the 

Signal text box, multiply the current waveform by 3 and divide by 

20ns (figure 5).Press OK. 

 

                                                                  Figure 5 

 The expression for power calculation appears in the result text-box. 

Press “EVAL” from the keypad in the calculator. The average 

power consumed by this circuit will be displayed in the result text-

box, as shown in figure 6. 

 

                                                                   Figure
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