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Abstract 

 

Implantable Seizure Detector & Predictor  

Neural disorders such as epilepsy are caused by malfunctioning nerve cell 

activity in the brain. These malfunctions cause episodes called seizures. Epilepsy hits 

more than 65 million people worldwide; nearly 80% of cases occur in developing 

countries. Over a lifetime, 1 in 26 people will be diagnosed with epilepsy. Seizures 

can cause a range of symptoms from momentarily staring blankly to loss of 

consciousness and uncontrollable twitching. Some seizures can be milder than others, 

but even minor seizures can be dangerous if they occur during activities like 

swimming or even driving. Epilepsy is not fully cured yet. In some cases, seizures do 

not respond to medication, also patients become drug resistive after five years 

maximum. Thus, neuro-stimulation should be considered.   

Hereby, this project is addressing helping these people to live normal life again by 

predicting & detecting the seizures to overcome their effect.  

The project outcome will be simulations of these prediction & detection algorithms on 

Matlab. Following that, a complete synthesizable behavioral design written with 

VHDL will be tested on FPGA Spartan-6 kit. The next phase should be a complete 

ASIC (Application Specific Integrated Circuit) design that will be conducted to 

produce a test chip that contains the implemented algorithms. 
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Chapter 1: Introduction 

 

Epilepsy is a neurological disorder of the brain that more than 65 million people 

globally suffer from. According to the World Health Organization (WHO), epilepsy is 

characterized by recurrent seizures, which are physical reactions to sudden, usually 

brief, excessive electrical discharges in a group of brain cells. Uncontrolled attacks 

can put patients at risk of suffering oro-facial trauma. 

The data flow diagram of seizure detection system consists of several blocks as shown 

in Figure 1. Data acquisition block is responsible for passing the input Intracranial 

Electroencephalography (iEEG) signal with fixed rate to the following blocks. The 

feature extraction block is responsible for calculating specific features for iEEG input 

signal on different domains. The classifier block is responsible of monitoring the 

features to make sure that the condition of the seizure is not valid. When it is valid, 

the decision making block take the final call as this block gets input from each feature 

and classifier. 

 

 

Fig. 1. Data flow diagram of the seizure detection system. 

1.1 Historical Background 

Thousands of years ago, ancient civilizations were mystified by the epileptic 

condition. Ancient Greeks thought that one got epilepsy by offending the moon 

goddess Selene. Ancient Romans believed that epilepsy came from the demons. 

Ancient Babylonians thought similarly, but that different spirits caused the different 

types of seizures. All came up with their own explanations as to who or what the 

cause was because none of them could comprehend it. 

 

In 400 BC, Hippocrates, the “Father of Medicine”, wrote On the Sacred Disease, 

where he refuted the idea that epilepsy was a curse or prophetic power: 

“It is thus with regard to the disease called Sacred: It appears to me to 
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be nowise more divine nor more sacred than other diseases, but has a 

natural cause like other affections.”  

The word “epilepsy” is derived from the Greek “epilepsia”, which means, “to 

take hold of” or “to seize”. The first documented incidence of epilepsy was more than 

3,000 years ago in ancient Babylonia, where the condition was referred to 

as “miqtu”. In both Ancient Greece and Babylonia, people saw epilepsy as a 

supernatural, but perhaps holy phenomenon. 

Epilepsy has been viewed differently by various cultures. During World War II, 

the Nazi Eugenics Laws mandated that persons with epilepsy must be sterilized. 

Epileptics were highly discriminated against and treated very differently than 

the average person. In fact, this type of discrimination still exists in today‟s society. 

In modern-day Africa, people with epilepsy are finding it difficult to cope with 

the social consequences of the disorder as well as the exclusion from education and 

employment. This is further compounded by the fact that a large proportion of 

people there with epilepsy are not taking Anti-Epileptic Drugs (AEDs). The lack 

of health services makes it very difficult for people with epilepsy to be a functional 

part of society. 

Discrimination is equally present in western culture as well. Up until 1980, 

various states in America forbade epileptics to marry. The Americans with 

Disabilities Act of 1990 made it illegal to discriminate against people with epilepsy 

in the workplace. Those whose seizures can be effectively controlled are not 

considered disabled under the act. The ability to predict and control seizure activity 

would dramatically improve the lifestyle of people with epilepsy, hence the 

motivation of this research.  

1.2 Epilepsy Today 

Epilepsy is classified as the second most serious neurological condition known 

to man after stroke. It affects nearly 65 million people around the world, which is 

approximately 1% of the world‟s population. As many as one out of ten people will 

have a seizure sometime during their lives, but the majority will not have epilepsy 

as the underlying cause of the convulsions lie outside the brain. Approximately 
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one in 50 people will have some form of epilepsy at some point in their life. About 

75 people are diagnosed with epilepsy every day. Only about 3-5% of people with 

epilepsy will be affected by flashing lights (photosensitive epilepsy). It‟s a common 

misconception that all epileptics are affected by quick visual stimuli; this is actually 

quite uncommon. Only about two out of 10,000 people in the general population 

have this condition.  

At the present time, it is estimated that from 1.5 to 2 million people in the 

United States alone have an active form of epilepsy. Today, there are many 

people living with epilepsy whose lives have been greatly improved by modern 

science. In fact, many people who have had epilepsy have also been able to have 

successful careers or become very famous. Alfred Nobel, founder of the Nobel 

Prize and the inventor of dynamite, had epilepsy. Other famous/well-known people 

with epilepsy include Fyodor Dostoevsk, Neil Young, George Gerswhin, Philip K. 

Dick, Napoleon I, and Joan of Arc. These people, and many others, give the word 

‟disability‟ a different meaning. 

1.3 Epileptic Seizure Prediction 

One of the most debilitating aspects of epilepsy is the lack of warning before a 

seizure occurs. As a result, common day to day tasks such as driving or using 

a knife become much more hazardous. In some patients, seizures occur hundreds 

of times a day, but they can also be as infrequent as once every few years. These 

limitations can have a debilitating effect on quality of life, and hinder basic everyday 

activities. 

The ability to predict seizures could lead the way to novel diagnostic and therapeutic 

methods for the treatment of patients with epilepsy. Real-time prediction of epileptic 

state transitions and early onset prediction provide time to administer preventive 

interventions possibly terminating the seizure before it happens. Also, a lead-time 

could give epileptic patients enough time to remove themselves from harms away. It 

would give them the ability to do things that people without epilepsy take for granted 

as they will already know that they are not facing any seizures for a while, which is 

the lead-time period.  
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1.4 Goal: Epileptic Seizure Control 

Once a robust seizure prediction algorithm is in place, a device that could 

somehow control the seizure would be possible. An implanted system that activates a 

mini-AED delivery system to deliver the medications directly into the epileptogenic 

focus or activate a stimulator would be feasible. A so-called “brain pacemaker” which 

appropriately stimulates the vagus nerve at the predicted onset time could also reduce 

the frequency and ferocity of epileptic seizures. However, if the true prediction rate is 

too high and the false prediction rate is too low, these medications and therapeutic 

treatments would be administered too often. This would result in a whole slew of 

clinical side-effects, most of which would be neuropsychological. A careful balance 

of all the influential parameters is required for the optimal automated seizure 

prediction algorithm which would put us on the path to the ultimate goal: Seizure 

Control. 

 

1.5 Organization 

In Chapter 1, a brief introduction to the problem is given, and the goals of this 

thesis are provided. 

Chapter 2 provides some information on the epileptic condition 

as well as some information on iEEG signals in relation 

to epilepsy. An overview of the time series analysis techniques is given. Also, a 

literature review of the current progress in the field of seizure detection is presented. 

Chapter 3 outlines the proposed system for seizure state prediction. Also presented 

here are some new methods and algorithms that were created during the 

course of this research to contribute to the field of seizure prediction. 

Chapter 4 discusses the results of the seizure prediction algorithms that were 

proposed in Chapter 3. The optimized feature set is presented for different types 

of iEEG signals, and the strength of the dynamic real-time classification system is 

discussed. 

Chapter 5 summarizes the conclusions of this research and provides a discussion 

about the research methods. Possible ways to improve the results and algorithms 

are given as possible future work. 
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Chapter 2: Background  

 

This chapter gives an overview of epilepsy and provides its relation to iEEG 

signals. The different states of a seizure are provided along with a discussion about 

the brain waves during each period. In the following section, all of the numerical 

methods that were implemented in the system are provided. 

2.1 The Neurological Condition: Epilepsy  

Epilepsy is a serious neurological disorder characterized by recurrent 

unprovoked seizures due to abnormal or excessive neuronal activity in the brain. This 

condition is characterized by chronic abnormal bursts of electrical spikes in the brain. 

The region of seizure generating tissue, known as the epileptogenic focus, can be the 

result of structural abnormalities in the brain which may or may not be genetic. In 

cases where the cause is known, the epileptic condition is referred to as symptomatic 

epilepsy. In cases where there is no identifiable cause, but by deduction a genetic 

basis is presumed, the condition is referred to as idiopathic epilepsy. Cases that 

don‟t fit into either of these two categories are considered to be cryptogenic epilepsy.  

Epileptic seizures are characterized by uncontrollable movements such as shaking of 

the arms or legs, known as convulsions. Some may lose consciousness, which 

may consist of a complete collapse or the patient simply gazing into space. Fainting 

spells with incontinence, followed by excessive fatigue, is common in more serious 

types of seizures. Distorted perceptions, odd sounds, and sudden feelings of fear 

for no apparent reason are characteristic of the “aura”, which is felt just prior to 

the seizure. These “auras” can happen anywhere from a day before the seizure to 

just a few seconds prior. A select few can predict that they will have a seizure by 

themselves just by understanding the “aura”.  

Seizures are usually treated with medications known as Anti-Epileptic Drugs  

(AEDs). AEDs attempt to stop the occurrence of seizures, but do not serve as a cure 

for epilepsy. With the correct AEDs, approximately 70% of people with epilepsy 

could have their seizures controlled or stopped for maximum time of five years. For 

people who cannot control their seizures with AEDs, epileptic surgery is quite 
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common. This type of surgery involves the resection of sections of the brain that 

comprise the epileptogenic focus. It has been shown to greatly reduce the severity of 

epileptic seizures in patients, or in some cases, stop them completely. Vagus Nerve 

Stimulation (VNS) is a treatment of epilepsy which attenuates seizure frequency, 

severity, and duration by chronic intermittent stimulation of the vagus nerve. It is 

intended for use as an adjunctive treatment with AED medications. The patient is 

implanted with a VNS therapy system which directly stimulates the vagus nerve at 

predetermined time intervals. 

2.2 Epilepsy & iEEG signals 

iEEG is a recording of the electrical activity in the brain at different frequencies. 

It was first developed in 1924 by Hans Berger, a German psychiatrist, who revealed 

the practical and diagnostic use of this test. Special sensors are placed strategically 

around the head that are connected to a machine which records the electrical impulses, 

either on screen or on paper. Trained neurologists are able to look at the different 

frequencies in the iEEG and recognize patterns in it which provide information about 

the epileptic condition. 

2.2.1 Brain Waves  

Raw iEEG signals are usually described in terms of the four basic brain waves: 

Alpha [7.5-13] Hz, Beta [13-30] Hz, Delta [0-3.5] Hz, and Theta [3.5-7.5] Hz. These 

bands represent the most prominent activity in the brain.  

Alpha Waves  

Alpha waves are comprised of brain signals of the frequency range [7.5-13] Hz. 

Healthy alpha waves promote mental resourcefulness, aid in the ability to mentally 

coordinate, and enhance the overall sense of relaxation and fatigue. With healthy 

alpha waves, one can move quickly and efficiently to accomplish tasks at hand.  

Alpha waves appear to bridge the conscious and subconscious mind and are quite 

prominent in normal relaxed adults. It is present throughout most of an individual‟s 

life, but specially beyond the 13th year when it dominates the resting tracing  

(normal iEEG tracings).  
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The most important recorded wave in a normal adult iEEG is the occipital alpha 

waves, which are best obtained from the back of the head when the subject is resting 

quietly with the eyes closed, but not asleep. Interference in this band can be caused by 

opening the eyes or excitement. These waves are blocked by both excitement or by 

opening the eyes.  

Beta Waves  

Beta waves are considered “fast” brain activity (above 13Hz). These waves are 

seen on both sides of the brain in a symmetrical distribution and are most evident in 

the frontal region of the brain. This band may be absent or reduced in areas with 

cortical damage. It is generally the normal rhythm in those who are alert, anxious, or 

who have their eyes open.  

Delta Waves  

Delta waves are comprised of the lowest frequencies in the brain, specifically from [0- 

3.5] Hz. They usually occur in the deep sleep state and in some abnormal processes 

in the brain. These waves are the dominant rhythm in infants up to one year of 

age and are present in stages III and IV of sleep. The delta band tends to be the 

highest in amplitude and also the slowest of the waves. Increasing delta waves mean 

a decrease in our awareness of the physical world, which is a characteristic property 

of seizure activity. Our unconscious mind is also represented through delta waves. 

Peak performers decrease their Delta waves when high focus and peak performance 

are required.  

Theta Waves  

Theta activity is classified as rhythmic, slow waves from the frequency range of 

[3.5-7.5] Hz. It has connection with creativity, intuition, learning, daydreaming, 

fantasizing, and is a repository for memories, emotions, and sensations. The presence 

of these waves reflects the state between wakefulness and sleep. Theta waves 

are abnormal in awaken adults, but are perfectly normal in children up to 13 years 

old and during sleep. Theta waves are also observed during anxiety, pain, behavioral 

activation, and behavioral inhibition. The appearance of excess Theta waves 

is an indicator of abnormalities in the brain.  
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2.2.2 Epileptic States  

The different stages of an epileptic seizure are referred to as ictal states. These 

states represent the different stages of an epileptic seizure in its most general sense.  

1) Interictal State  

The interictal state refers to the normal resting state containing no seizure activity, 

but the iEEG is still characterized by the epileptic condition (irregular neuronal 

activity). Given the possibility of seizures, the chronic interictal period is interesting 

because of the presence of natural homeostatic mechanisms that prevent seizure 

generation. It is unsure which factors or mechanisms try to maintain homeostasis 

in the brain, and it is also unsure if these mechanisms differ for various types of 

seizures and epileptic syndromes. This period comprises more than 99% of patients‟ 

lives. In this way, the interictal period can be used by neurologists to diagnose an 

epileptic condition. The iEEG tracings would normally exhibit small spikes and 

other abnormalities known by neurologists as subclinical seizures. These are not 

real seizures, but rather little hints from the brain that something is abnormal. 

2) Preictal State [Seizure Onset] 

The preictal state refers to a period of time occurring before a seizure, but does 

not refer to the normal state of the brain. This state defines that a seizure is going 

to occur within a certain period of time. The presence of a preictal period is 

still being debated by several researchers. Lehnertz and Litt state that in some 

conditions, the transition can take a considerable amount of time, opening the 

potential for the application of electrophysiological techniques to predict seizure 

onset anywhere from minutes to hours before occurrence. 

Onset of a clinical seizure is defined as the time at which the transition between 

the interictal and preictal state occurs. It is characterized by a sudden change in the 

frequency characteristics of the iEEG. The alpha band has a tendency to decrease 

in frequency and increase in amplitude. The transition from the preictal to the 

ictal state, for a focal epileptic seizure, consists of a gradual change from chaotic 

to ordered waveforms. In each type of epilepsy, the transitional period may differ, 

and the transition can have significantly different characteristics. 
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3) Ictal State to Seizure Termination 

The period of time during which the seizure is in its activation period is referred to 

as the ictal state. It is characterized by an iEEG tracing that exhibits significantly 

higher amplitudes and frequencies. There is an immediate alteration in 

synchronization and rhythmicity that takes place across widespread areas of the 

cerebral cortex. The patterns that are normally seen throughout the resting tracing 

suddenly become extremely erratic and unpredictable. Loss of consciousness and 

involuntary muscle twitching during this period is very common. Other symptoms 

such as incontinence are also common during this state. The patient typically has 

no control over their body at this point and convulsions tend to be prominent. 

4) Postictal State  

The end of an epileptic seizure represents a transition from the ictal state back to an 

individual‟s normal or interictal state. This is referred to as the postictal state and 

signifies the recovery period of the brain. Focal or generalized neurological deficit, 

ranging from postictal depression to aphasia or paralysis is prevalent during this 

state. This period is associated with a difficulty in thinking clearly and a variety 

of other cognitive defects. The postictal state could last from seconds to hours 

depending on the severity of the seizure and the efficacy of the AEDs. Disturbances 

or aftershocks are seen in the iEEG, which may just be the presence of natural 

mechanisms acting to terminate the seizure and restore homeostasis.  

Often postictal deficits are a consequence of the natural mechanisms that act 

to terminate a seizure suggesting that interventions designed to exploit these same 

homeostatic events could exacerbate postictal dysfunction.  

Attention and concentration is generally very difficult during this period. Poor 

short term memory and decreased verbal and interactive skills are noticeable. Postictal 

migraine headaches are very common due to the pressure resulting from cerebral 

edema. At this point, patients are unaware that they have had a seizure, but these 

symptoms are evidence enough for an experienced epileptic.  
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2.3 Time Series Analysis  

A time series is an ordered sequence of values of a variable at equally spaced 

time intervals. Time series analysis is comprised of methods that attempt to identify 

the nature of a phenomenon represented by a sequence of observations. This requires 

that patterns of observed time series data are properly identified and mathematically 

described. 

2.3.1 Sampling  

Sampling is the operation of transforming a time signal from the continuous to 

the discrete time domain. Let xa(t) be a continuous-time signal that is sampled 

uniformly at t = nT, generating the sequence x[n] where  

x[n] = xa(nT), n = 0, 1, 2, 3, . . .    (2.1) 

with T being the sampling period. The reciprocal of T is referred to as the 

sampling frequency fs. In order to reconstruct the original signal completely and 

accurately, the Nyquist-Shannon Sampling theorem must be adhered to. This theorem 

states that a band-limited signal can be reconstructed perfectly from the discrete 

sampled signal given that the sampling rate is more than twice the frequency. 

Therefore, the frequency that is half of the sampling rate fs, also known 

as the folding frequency or the Nyquist frequency, is the highest frequency that can be 

represented in a sampled signal without being affected by aliasing or under-sampling. 

In equation (2.2), also known as the Nyquist Condition, the Nyquist 

frequency is denoted as Ωm.  

ΩT ≥ 2Ωm, where ΩT = 2π/T    (2.2) 

“Aliasing” is the phenomenon in which high-frequency components of a function of 

time can translate into low frequencies if the sampling rate is too low. Thus, any 

component in x(t) higher than the folding frequency is aliased (or folded) into the 

frequencies that are below the folding frequency. Figure 2.1 illustrates the effects of 

aliasing.  
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Figure 2.1: Effects of aliasing on a discretely sampled signal. 

As seen in Figure 2.1, the reconstructed signal contains frequencies that are 

lower than those in the original signal due to aliasing. The sampled signal does not 

satisfy the Nyquist Condition.  

Brain waves are an example of a continuous time signal which, when sampled 

with an iEEG machine, becomes a discrete time series in the form of equation (2.1). 

In general, when any signal is discretely sampled, ‟information‟ is lost from the 

resulting time series. The frequency of the sampled signal must be high enough 

to preserve the frequency information from within the signal. The problem with iEEG 

signals is that it is difficult to tell what the appropriate sampling frequency is because 

of its unpredictable nature. According to Castellaro, most of the prominent 

frequencies in iEEG signals lie between 0 and 46Hz. This means that the lowest 

feasible sampling rate would be fs = 92Hz. To satisfy the Nyquist condition, all iEEG 

signals used in testing the algorithms introduced in this paper were collected at a 

minimum of 250Hz –average of 256 Hz-.  

2.3.2 Windowing  

A window function is a function that defines a signal within a defined interval and 

is zero everywhere outside. It is multiplied by the original signal to give a clearer 

perspective of the signal in the frequency domain. The most basic window function is 

the Rectangular Window, also known as the Dirichlet Window, stated as:  
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iEEG signals cannot be classified at every discrete point collected in an iEEG signal. 

There is just not enough information at each time point. The system must be given a 

window of the signal with enough information to make a sensible judgement about 

the state of the signal at each moment in time. The length of the window must also be 

at least the Nyquist rate or else it will not be able to recognize the relevant frequencies 

that are present. But it is also unclear how much of the signal is necessary to give the 

system enough information to properly identify classes within the signal. iEEG 

signals tend to be arbitrary by nature, and with some epileptic states, the frequency 

component of the signal can vary with time depending on the severity of the 

condition. During the ictal period, the frequency components of an iEEG signal 

become extremely erratic and unpredictable. Due to this irregularity, a rectangular 

window is more appropriate for frequency analysis of these signals. 
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Chapter 3: Seizure Detection Features 

 

In this chapter, we are discussing the different features that can be used to detect 

an epileptic seizure. The features mentioned in this chapter belong either to time 

domain or wavelet domain. 

Detection algorithms employ mathematical operations on recorded data to demarcate 

them into baseline and non-baseline (seizure) states. These mathematical operators 

maybe linear or non-linear features extracted from the raw data that help enhance the 

boundary of demarcation. 

3.1 Time Domain Features 

3.1.1 Energy 

 

This feature reflects the instantaneous power of the signal. A sliding rectangular 

window is used to calculate the instantaneous energy as described in equations (3.1) 

and (3.2). 

 

 [ ]    ( )                                                               (   ) 

    [ ]   
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In equations (3.1) and (3.2) and from this point forward, x(i) refers to the 

i
th

 sample of data given by the vector „x‟ ,and „k‟ represents the window number of 

size „N‟. An average of the instantaneous energy is obtained using a rectangular 

window to sum the energies as shown in equation (3.2). 
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Figure 3.1: Seizure representation using energy feature 

 

3.1.2 Coastline  

 

The coastline feature represents the sum of the absolute value of the distance between 

consecutive data points; it can be described by equation (3.3). 

  ( )   ∑   | [  (   )   ]   [    (   )   ]|           (   )

 

   

 

It is to be noted that the line length feature is an adaptation of the original fractal 

dimensionality index that proposed by Michael J. Katz at 1988 and it is analogous to 

the described feature. The Neuropace responsive stimulation device employs line 

length as one of the tools in its detection algorithm. 
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Figure 3.2: Seizure representation using coastline feature 

 

3.1.3 Hjorth Variance Parameter 

 

Hjorth parameters have been used extensively on iEEG based statistical calculations. 

The first parameter is termed as „activity‟ and is equal to the variance of the signal 

amplitude. 
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In equations (3.4) and (3.5), the variance of a window of N samples is calculated and 

averaged to obtain the mean variance. „k‟ represents the mean of the k
th

 window of 

data. 
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3.1.4 RMS Amplitude 

 

The root mean squared amplitude represents the average instantaneous power of the 

signal. The cerebral function monitor is a widely used tool in detection of seizures. 

The RMS amplitude is analogous to the amplitude integrated iEEG used by the CFM. 
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By definition, the RMS amplitude is similar to the energy estimate and can be defined 

by equation (3.6), and we picked these features to study the effect of combining 

mathematically similar detection features on the overall algorithm efficacy. 

 

 

Figure 3.3: Seizure representation using RMS amplitude feature 

 

3.1.5 Non-linear Autocorrelation 

 

The autocorrelation definition is a value that represents the similarity between a signal 

and a shifted version of itself. This feature is used in an algorithm that is based on the 
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observation that all seizures can be identified by a repetitive spiking pattern with 

similar maxima and minima.  

A set of 1024 samples (window of 4 seconds with sampling rate equals 256 

samples/second) is taken. Then these points are reshaped into 16 columns and 64 

rows, the maximum and minimum values for each row are computed. Autocorrelation 

is the difference between the maximum and the minimum value of each row with its 

shifted version. So, autocorrelation matrix consists of 64 (16*4) points. 

By plotting this matrix, each column represents the point and its shifted versions in 

time. If there are similarities between the autocorrelation graphs this means the 

seizure could be located on the similarity sample. 
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Where     is the i
th

 highest value,      is the i
th

 lowest value, and    (  ) and 

   (  ) are the max and min values of each row in the data matrix and stored in    

matrix. 
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3.2 Wavelet Domain Features 

A wavelet is a mathematical function useful in digital signal processing and image 

compression. The use of wavelets for these purposes is a recent development, 

although the theory is not new. The principles are similar to those of Fourier analysis, 

which was first developed in the early part of the 19th century. 

In signal processing, wavelets make it possible to recover weak signals from noise. 

This has proven useful specially in the processing of X-ray and magnetic-resonance 

images in medical applications. Images processed in this way can be "cleaned up" 

without blurring or muddling the details.  
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Wavelet transform employs long time windows for more precise low frequency 

information, and short time intervals for high frequency information. The wavelet 

transform had better resolution and high performance for representation and 

visualization of the epilepsy activity than the short time Fourier transform. We use 

Discrete Wave transformations in our tests as it could analyze the signal at different 

frequency bands with different resolutions. The signals are decomposed into five 

different scales; we use two built-in functions in MATLAB to do this which are 

"wavedec" and "detcoef". We extract three features using this domain which are: 

average energy, fluctuation index and coefficient of variation. 

3.2.1 Relative Energy 

 

The relative energy indicates the strength of the signal as it gives the area under the 

curve of power at any interval of time. For the Daubechies wavelet, the sum of square 

of coefficients of the wavelet series is the energy of the iEEG signal. The energy of 

iEEG signal with limited length is given by: 
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, where   is the sampling interval and   is the number of DWT coefficients 

   presented at scale  . The relative energy of the scale is computed as: 
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, where   is the number of the wavelet scales. 

3.2.2 Coefficient of Variation 

 

The standard deviation   shows how the features' values vary compared to the mean 

value  . We use mean value to measure the mean amplitude. The coefficient of 

variation Vc can measure the variations of the signal amplitude. The coefficient of 
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variation gives smaller values in pre-seizure period and increases gradually as the 

seizure comes closer. The corresponding coefficient of variance can be expressed as: 
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, where   is the number of DWT coefficients   presented at scale  . 

 

3.2.3 Fluctuation Index 

 

The fluctuation index is proposed to measure the intensity of iEEG signal‟s changes. 

It could be found that the fluctuation index of the iEEG during seizures usually 

becomes greater than that during the non-seizure periods. The mathematical 

description is as shown in equation (3.15) 
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, where   is the number of DWT coefficients   presented at scale  . 
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3.3 Results of Time Domain Features Analysis 

As there are five time domain features being tested, we needed to avoid some of 

them to get the most efficient combination of features. Thus the following survey is 

done. The results illustrated in this section are obtained from a study done on five 

female Long Evans rats (250–350 g). The results are normalized to the worst 

performing feature in order to set the boundaries of each feature‟s performance in 

comparison to the reference; allowing for fair comparison. Moreover, the comparison 

is done between five selected features from the previously demonstrated features in 

this chapter. 

3.3.1 Feature Efficacy Results 

 

Keeping in mind the definition of false positive (FP) and false negative (FN), that is 

false positive is a false warning of a seizure and false negative is a missed seizure that 

is not detected. 

 

The percentage of time spent under false positives is reported instead of the absolute 

number of false positives or the false positive rate. This is in accordance with 

suggestions made with regards to the utility of reporting false positive rates, 

sensitivity and specificity for evaluating prediction and detection algorithms. On each 

testing dataset, the detection efficacy is calculated using equation (3.16). 

 

                    
               

 
                          (    ) 

 

Figure (3.4) shows a bar plot of the detection efficacy of the compared features. The 

detection efficacy recorded for each animal was averaged across the five different 

animals used in this study to obtain an estimate of the detection efficacy for the 

feature under study. Figure (3.4) (Left) uses a box plot to illustrate the distribution of 

detection efficacy across animals for each of the features compared in this study. The 

median and distribution of the data around it are captured using the box plot. The false 

positive and negative rates were also normalized to the worst performing feature and 

do not represent the absolute numbers for each feature. The normalized plots shown in 

Figure (3.4) capture the trend between the features under comparison in this study. In 
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all the plots in Figure (3.4), a lower value indicates a better performance in the bar 

and box plots, as noted earlier. 

 

Figure 3.4: (Left) Box plot showing the distribution of detection efficacy for all the 

features under comparison and (Right) (Top) normalized plot of percentage time spent 

in false positives for the same features and (Bottom) normalized plot of percentage 

time spent in false negatives. 

 

3.3.2 Hardware Analysis Results 

 

The features under comparison in the prospective study were implemented using 

standard CMOS digital library cells. The total power consumption and area on silicon 

were normalized and averaged to calculate the hardware cost function in each case. 

Figure (3.5) compares the normalized hardware cost function for each of the 

compared features and also plots out the individual components contributing to the 

same. The hardware cost function was calculated by averaging power and area on 

chip which were already normalized with the largest power and area obtained from 

the individual features (Equation (3.17)). 

 

                        (                        )        (    ) 
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Figure 3.5: (Clockwise from top, left) Bar graphs comparing cell leakage power, 

average dynamic power, total area on chip and normalized hardware metric for each 

of the compared features in the study. 

3.3.3 Detection Algorithm Design Space (DADS) 

 

The normalized hardware cost function was plotted with the normalized detection 

efficacy to obtain the two-dimensional detection algorithm design space for the 

features under comparison. 

 

Every feature under evaluation is represented by these two coordinates in the 

described design space. Features lying in the lower left corner closer to the origin 

would be ideally desired as this would imply high detection efficacy combined with 

low hardware cost. 

 

Figure 3.6 plots the design space for the current study based on the results obtained 

above. The presented design space is a visualization of a classical design trade-off 

seen most engineering problems, and its application to adapting seizure detection 

algorithms for hardware implementation. 
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Figure 3.6: Design space illustrating hardware and detection efficacies for all the 

compared features in the study. 

 

3.3.4 Discussion of Results 

 

The definition of false positives and false negatives used, which are mentioned in 

Section 3.3.1, led to inherently assigning more importance to the false negatives 

during the training procedure. The detection efficacy numbers reported were highly 

sensitive to even a single missed seizure. The absolute numbers of percent time spent 

in false warnings were therefore much lower than the corresponding false negative 

numbers. The results summarized in Figure (3.4) reflect the expected penalty towards 

missed seizures. The Hjorth variance parameter and the RMS amplitude parameters 

turned out to be the best performing features from those compared in detecting 

seizures based on their average detection rates. Detection features that were 

mathematically similar understandably showed a high similarity in detection efficacy 

as well. The detection efficacies reported in Figure (3.4) are absolute values, obtained 

prior to normalization whereas the reported percent time spent in false positives and 

false negatives are normalized. 
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From the summary of hardware performance in Figure (3.5), the coastline feature 

consumed the lowest average power, obtained by calculating the mean of leakage and 

dynamic power consumption. The RMS amplitude feature was the most costly 

feature, as can be explained by the implementation of the square root function on 

chip.  

The detection algorithm design space (DADS) shown in Figure (3.6) helps in 

prioritizing the choice of detection algorithm based on the requirements of the 

application. For example, an implantable monitoring device implementing an 

algorithm to aid in screening for seizures may be able to tolerate a much higher false 

positive rate in exchange for extended battery life, whereas an implanted stimulator 

would want to minimize the number of false positives that trigger therapeutic 

intervention, even if it meant a higher hardware cost.  

 

Typically, a combination of features is used to increase the detection efficacy. In 

choosing features to combine, it is important to consider their relative locations in this 

space. We illustrate the design of one such optimized combination with an example in 

the next section. We also demonstrate how the code sign of hardware and algorithm 

results in a more optimal location in the DADS as compared to a blind combination. 

Of the compared features in this study, the coastline method was the most hardware 

efficient and the RMS feature was the least. In terms of detection efficacy, the Hjorth 

variance parameter outperformed all the compared features and the non-linear 

autocorrelation feature was the least effective in detection per the definitions used for 

efficacy. 

 

 



25 

 

Chapter 4: Seizure Classification  

 

In this chapter, we are going to introduce the concept of classifying the results of 

certain feature examination into seizure or non-seizure, going through the 

classification techniques used for this purpose and reaching to the technique we are 

implementing in our project. 

4.1 Introduction 

Features by themselves cannot tell us if there is a seizure in a specific time or 

not. Of course you could see an anomaly in the feature itself but you need an 

algorithm that detects the seizure buried inside the extracted feature. 

Classification is the stage where we classify the feature into two groups: Seizure and 

Non-Seizure. So, it is more likely to be an algorithm that is applied on a feature to 

make a decision based on its results. 

For example, Figure (4.1) shows raw data from iEEG signal of a patient, the red part 

of the signal marks occurrence of a seizure. Figures (4.2) and (4.3) show the output 

from feature extraction when two different features are examined, which are coastline 

and energy respectively. Figure (4.2) can clearly approve the presence of seizure 

represented by the intensity of the feature around the sample number 100, but it is not 

the case in Figure (4.3), where other there are more bulks of feature intensities found 

at other samples along the signal.  

This confirms the need for an algorithm to operate on the output from the feature 

extraction from the raw data; hereby we introduce the classifier. The classifier is 

needed to precisely make the decision whether the output describes a seizure or non-

seizure. 

We have used two classification techniques which are the Support Vector Machine 

(SVM) and Multi-window Event Based Counting Classifier in this purpose as 

discussed in the upcoming sections. 
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Figure 4.1: Raw data with the red part marking occurrence of a seizure 

 

Figure 4.2: Output of feature extraction using coastline feature 

 

Figure 4.3: Output of feature extraction using energy feature 
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4.2 Support Vector Machine (SVM) Classifier 

In machine learning, SVM is a learning model with associated learning 

algorithms that analyze data used for classification and regression analysis. Given a 

set of training features, each marked for belonging to one of two categories (in our 

case it‟s either seizure or non-seizure), an SVM training algorithm builds a model that 

assigns new examples into one category or the other.  

Another way to look at the SVM model is that it‟s a representation of the features as 

points in space, mapped so that the examples of the separate categories are divided by 

a clear gap that is as wide as possible. New testing features (new epochs of features 

that were not used in training the SVM) are then mapped into that same space and 

predicted to belong to a category based on which side of the gap they fall on. 

Therefore, A Support Vector Machine (SVM) is a discriminative classifier formally 

defined by a separating hyperplane. In other words, to detect the seizures after 

training, The SVM just compares the new data with the trained data and puts the new 

data in its best related area as shown in Figure (4.4) (Consider the red dots are 

seizures and the blue dots are non-seizures). 

 

Figure 4.4: Example for a SVM model. The training of the model creates the 

threshold line which divides the space into two areas (Seizure area and not Seizure 

area). 
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Let us consider the following simple problem: For a linearly separable set of 2D 

points which belong to one of two classes, find a separating straight line. 

 

Figure 4.5: An SVM model with one feature presented in space. 

Note: In this example we deal with lines and points in the Cartesian plane instead of 

hyperplanes and vectors in a high dimensional space. This is a simplification of the 

problem. However, the same concepts apply to tasks where the examples to classify 

lie in a space whose dimension is higher than two. 

In Figure (4.5) you can see that there exist multiple lines that offer a solution to the 

problem. We can intuitively define a criterion to estimate the worth of the lines: A 

line is bad if it passes too close to the points because it will be noise sensitive and it 

will not generalize correctly.  

Therefore, our goal should be to find the line passing as far as possible from all 

points. Then, the operation of the SVM algorithm is based on finding the hyperplane 

that gives the largest minimum distance to the training examples. Twice, this distance 

receives the important name of margin within SVM‟s theory. Therefore, the optimal 

separating hyperplane maximizes the margin of the training data. 

How is the optimal hyperplane computed? Let‟s introduce the notation used to define 

formally a hyperplane: 

 ( )        
                                            (   ) 

where β is known as the weight vector and β
T
 as the bias. 
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Figure 4.6: An SVM model with one feature presented in space where we can see the 

optimal hyperplane. 

The optimal hyperplane can be represented in an infinite number of different ways by 

scaling of β and β
T
 in equation (4.1). As a matter of convention, among all the 

possible representations of the hyperplane, the one chosen is represented by equation 

(4.2): 

 |     
  |                                             (   ) 

where x symbolizes the training examples closest to the hyperplane. In general, the 

training examples that are closest to the hyperplane are called support vectors. This 

representation is known as the canonical hyperplane. 

Now, we use the result of geometry that gives the distance between a point x and a 

hyperplane (β, βo): 

          
|     

  |

|| ||
                                (   ) 

In particular, for the canonical hyperplane, the numerator is equal to one and the 

distance to the support vectors is 
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Recall that the margin introduced in the previous section, here denoted as M, is twice 

the distance to the closest examples:   
 

|| ||
 

Finally, the problem of maximizing M is equivalent to the problem of minimizing a 

function L(β) subject to some constraints. The constraints model the requirement for 

the hyperplane to classify correctly all the training examples xi. Formally, 
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where    in equation (4.5) represents each of the labels of the training examples. 

This is a problem of Lagrangian optimization that can be solved using Lagrange 

multipliers to obtain the weight vector β and the bias βo of the optimal hyperplane. 

4.3 Multi-window Event Based Counting Classifier  

This algorithm is much simpler than the SVM algorithm. We apply two thresholds α 

and β, where α is the threshold amplitude and β denotes the lower limit for passing the 

value α. 

 

Figure 4.7: Illustration of the multi-window event based counting classifier. 

To illustrate, in Figure (4.7) α=2000 joules (the red line) and β=12. At X=69 the 

Energy(Y)=5316.5 Joules, so starting from this point we have passed the threshold α a 

number of 13 consecutive times which is more than the value of threshold β which is 

totally fine, but it cannot be less than 12 consecutive times. When the two thresholds 
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are satisfied the classifier generates logic „1‟s vector of length equal to or more than 

the value of β as shown in the lower graph in Figure (4.7). 

If we don‟t satisfy the two thresholds the classifier generates a vector of logic „0‟s as 

shown in the flowchart illustrated below in Figure (4.8). To illustrate, at X=31 the 

Energy (Y) = 10788.982 which is more than the value of α, but we passed α only 1 

time so we the classifier generates logic „0‟s. 

 

 

 

 

 

 

 

 

 

Figure 4.8:  Flowchart shows the flow of the modified thresholding algorithm. 
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Chapter 5: Proposed Detection Algorithm 

 

In this chapter, we will be proposing the detection algorithm that is finally 

implemented in our project, reached through examining many mixed algorithms, 

testing their results and comparing between them in terms of different design aspects. 

5.1  Selected Features and Mixed Algorithms 

 To make the process of simulation smooth and domain-based, wavelet-domain 

features are tested alone with SVM classifier as well as time-domain features are tested 

alone with SVM classifier to compare between both types of features.  

As mentioned in 3.3.4, processing the data on five features is power consuming and a 

combination of the best two features out of the time-domain ones is preferable. As 

shown in Figure (3.6), DADS of all time-domain features is plotted. 

Based on the Figure mentioned, we illustrate the design of one such optimized 

combination with an example in the next section. We also demonstrate how the co-

design of hardware and algorithm results in amore optimal location in the DADS as 

compared to a blind combination. 

Of the compared features in this study, the coastline feature is the most hardware 

efficient and Hjorth variance parameter has the best detection efficiency. However, it 

has very complicated hardware. So, we had the idea of using two features with less 

detection accuracy than Hjorth parameter alone but have simpler hardware. Thus, we 

chose accumulated energy and coastline features to represent time-domain features. 

 

5.2 Algorithm-hardware co-optimization 

In this section, we intend to combine selected features from the analysis to 

construct a highly efficient seizure detection algorithm for minimum possible 

hardware cost. The energy feature was found to be the second efficient detection 

feature. In order to construct an algorithm that outperforms this feature, we create a 

simple combination using the energy feature as a primary feature. The addition of a 

second feature in the combination comes at a hardware cost.  
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In order to find the most hardware efficient way of increasing the detection efficacy, 

we combine the primary feature with the lowest power consuming feature from the 

compared set. In this case, the coastline feature turned out to have the lowest 

hardware cost associated with it, as can be seen from the DADS in Figure (3.6).  

It is to be noted that combining features located closely in the design space may not 

result in an optimized solution as such combinations double the hardware cost, 

decreasing the hardware efficacy by a factor of two. Any increase in detection 

efficacy of the combination would now have to justify the twofold increase in 

hardware. On the other hand, simple combination of a low hardware cost feature with 

a highly detection efficient feature would only increase the hardware by a small 

amount. In such a case, any increase in the detection efficiency of the combination 

would yield a much higher detection efficacy per unit hardware cost added. This is 

illustrated in the described example. The goal of the example combination is to 

improve the detection efficacy of the energy feature without significantly adding to 

the hardware cost. A simple combination technique was used with both „AND‟ and 

„OR‟ operations. Figure (5.1) captures the effect of this combination on the design 

space. The „OR‟ combination improves the detection efficacy while the „AND‟ 

combination improves the hardware cost. 

 

Figure 5.1: Design space reflecting changes in detection and hardware efficacy due 

to a simple OR and AND combination of two selected features. 

 

The choice of which combination to use would depend on the specific needs of the 

application. Once the combination has been set and the target detection efficacy is 
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met, co-optimization of hardware and algorithm would allow for maximizing 

detection efficacy for minimal hardware cost. Thus, in our design we care about 

efficacy so we chose OR combination. 

 

Now, we have two algorithms; the first one consists of average energy, fluctuation 

index and coefficient of variation features followed by modified SVM classifier 

representing wavelet-domain features as shown Figure (5.2).  

 

     

 

 

Figure 5.2: First algorithm which represents wavelet-domain features with 

modified SVM classifier. 

The second algorithm is having accumulated energy, coastline features followed by 

modified SVM classifier representing time-domain features as shown in Figure (5.3). 

 

 

 

Figure 5.3: Second algorithm which represents time-domain features with modified 

SVM classifier. 

 

Finally, as the time-domain features require no domain conversion, we derived a new 

algorithm; the proposed algorithm, which is the selected time-domain features –

accumulated energy and coastline- followed by multi-window event-based counting 

threshold classifier without the SVM block as shown below in Figure (5.4). This is 

easier to implement that using SVM. However, the thresholds become more sensitive 

and they need very fine tuning. 

Average Energy + 

Fluctation index + 

Coeffiecient of 
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SVM with 
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Accumulated Energy 
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SVM with 

counter 
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Figure 5.4: Third algorithm which represents time-domain features with multiwindow 

event-based counting threshold without SVM block. 

5.3  Input Data 

This database, collected at the Children‟s Hospital Boston, consists of iEEG 

recordings from pediatric subjects with intractable seizures. Subjects were monitored 

for up to several days following withdrawal of anti-seizure medication in order to 

characterize their seizures and assess their candidacy for surgical intervention. We 

tested all our algorithms on 5 patients of these dataset (Patients number 1, 3, 5, 19 and 

21).  

As some seizures could be in terms of tens of seconds, we needed the operating 

window to be less than 5 seconds in order for the classifier to work properly. 

However, we perform a division operation in the Energy feature to get the average 

energy value. To optimize the hardware implementation afterwards, we thought of 

choosing the window to be multiple of 2 seconds; as 2 seconds or 4 seconds. The both 

options are applicable and we chose our window to be 4 seconds. 

Thus, the data is divided into epochs, each epoch is 4 seconds. And each second is 

represented by 256 points (the sampling frequency is 256 Hz) For training data, one 

hour is taken from each patient's data and classified as shown in Table 5.1. 

Patient# Seizure epochs Non- Seizure epochs 

1 8 712 

3 11 709 

5 23 697 

19 16 704 

21 10 710 

Table 5.1: Seizure and non-seizure epochs in the training data for each patient. 

Accumulated Energy 

+ Coastline  

Multi-window Event 

Based Counting 

Threshold Classifier 
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For the testing data, they are classified as follows in Table 5.2. 

Patient# Number of Hours Seizure epochs Non- Seizure epochs 

1 4 Hours 50 2830 

3 3 Hours 28 2132 

5 4 Hours 88 2792 

19 2 Hours 31 1409 

21 37 Hours 59 26581 

Table 5.2: Seizure and non-seizure epochs in the testing data for each patient. 

 

5.4  Comparison Metrics 

To be able to compare different algorithms, we need to settle on fair metrics for all 

the algorithms. These metrics are sensitivity, specificity and accuracy. They are 

calculated using four other metrics; True Positives (TP), True Negatives (TN), False 

Positives (FP) and False Negatives (FN). These four metrics are obtained after 

running the detection algorithm on the input iEEG data as described in equations 5.1, 

5.2 and 5.3 below.  

            
  

     
                        (   ) 

 

            
  

     
                        (   ) 

 

         
     

           
                        (   ) 
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5.5  Results 

 Using MATLAB, we conduct simulations for the three algorithms using the input 

data stated above and obtain the following results in Tables (5.3), (5.4) and (5.5). 

 

Patient# TP FP TN FN Sensitivity Specificity Accuracy 

1 38 0 2522 35 52% 100% 98.66% 

3 8 328 26237 67 55% 98.7% 98.51% 

5 52 34 2751 41 55.9% 98.77% 97.39% 

19 7 0 2790 29 19.44% 100% 98.973% 

21 5 66 1222 23 17.85% 94.87% 93.23% 

Average     40.03% 98.46% 97.35% 

Table 5.3: Results of first algorithm of wavelet-domain features with SVM classifier. 

 

Patient# TP FP TN FN Sensitivity Specificity Accuracy 

1 50 5 2547 23 68.49% 99.8% 98.93% 

3 59 305 26258 16 78.66% 98.85% 98.79% 

5 79 116 2671 14 84.94% 95.83% 95.48% 

19 21 8 2781 15 58.33% 99.71% 99.18% 

21 29 3 2003 3 90.62% 99.85% 99.7% 

Average     76.2% 98.8% 98.41% 

Table 5.4: Results of second algorithm of time-domain features with SVM classifier. 
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Patient# TP FP TN FN Sensitivity Specificity Accuracy 

1 12 5 701 1 92.64% 99.29% 99.16% 

3 12 10 695 1 91.3% 98.47% 98.33% 

5 16 2 694 7 68.75% 99.78% 98.75% 

19 7 0 677 9 45.45% 100% 98.7% 

21 10 2 711 0 100% 99.76% 99.76% 

Average     79.62% 99.46% 98.94% 

Table 5.5: Results of third algorithm of time-domain features with multiwindow 

event-based counting threshold. 

5.6  Conclusion and Proposed Algorithm 

 Based on the previous results, it is obvious that the third algorithm exhibits the best 

performance metrics; accuracy of 98.94%. Also, it requires no domain transformation 

–automatic data processing- in contrary to wavelet-domain algorithm.  

This algorithm shows better performance due to the removal of all complex 

mathematical formulae. As both SVM & wavelet-domain features are mathematically 

complex blocks and need much more processing than our proposed algorithm. 

The final block diagram of the proposed algorithm –the third one- is illustrated in 

Figure (5.5). 

Decision making block is the responsible for deciding whether this is a seizure or not 

depending on the results of thresholds block and as the result of the threshold blocks 

are either '1' for seizure signal and '0' for non-seizure signal, so the decision making 

block is a logic combination between threshold blocks' outputs. This logic 

combination could be OR-gate or AND-gate. However, AND-gate is selective so the 

algorithm could miss seizures –as they could be detected by one feature not by the 

other- so the efficiency of the overall system decreases. So, the best option is OR-

gate. 
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Figure 5.5: Block diagram of the proposed seizure detection algorithm. 
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Chapter 6: Seizure Prediction  

 

Prediction was our idea from the beginning. The project was about seizure 

detection and stimulator only but we introduced prediction block before the detection 

and stimulator. In this chapter we are going to discuss the importance of prediction 

and techniques used for this purpose.  

6.1  Introduction  

What is the importance of prediction?  What are the benefits of predicting a 

seizure? Before answering these questions, what will happen if the prediction block 

does not exist, the detection, which is the core of the project will work all the time 

trying to detect the seizure and can‟t be turned off as not to miss any seizure. This will 

consume much power as the features implemented in detection algorithm, which are 

coastline and average energy, have high complexity resulting from division, 

summation and square root blocks which cause relatively high computing power, and 

power consumption is one of the most important key parameters in digital design 

scheme. 

We thought about reducing the consumed power by turning off the detector and turn it 

on only in case of receiving a trigger from the all-the-time powered on prediction 

block as shown in Figure 6.1. This is the importance of the predictor to trigger the 

detector. 

 

 

 

 

 

  

Figure 6.1: Flow chart showing the data flow starting from processing, passing by 

prediction to detection 

Data processing 
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activity ? 
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Now, the predictor will work all the time, when it predicts a seizure, the detector will 

work and predictor turns off until the detecting block examine the signal predicted to 

contain seizure and decide whether to trigger the stimulator device in case of true 

detection or not to trigger it in case of false detection. After a time the predictor turns 

on again and the detector goes off and so on. 

We must ensure in our idea that the predictor have to consume power less than that 

consumed by the detector otherwise the predictor will be no longer necessary. 

There are a lot of features that can be used in prediction like non-linear features, 

wavelet domain features, time domain features and statistical values features (e.g.: 

mean, variance). 

Predicting seizures potentially carries even greater advantages compared with seizure 

detection. Such devices might be useful both in preventing accidents and in improving 

outcomes, ultimately allowing early treatment or even prevention of seizures. A 

survey of 141 patients with epilepsy found that more than 90% of respondents 

believed that the development of means to predict seizures was important. These 

patients voiced a preference for sensitivity over specificity in seizure prediction. 

Prediction systems must be able to identify preictal changes that – if present – occur 

within minutes, hours, or days prior to seizures. Note that the features used to predict 

seizures in advance may or may not be the same as those used to detect the presence 

of a seizure. 

 

6.2  Prediction Techniques I 

Throughout our research and survey phase of the project, we tested the following 

techniques: 

6.2.1 The Information Theory Based Analysis and Entropy 

There are many techniques used in signal analysis using information theory basis. In 

our research, we investigated Shannon entropy, spectral entropy, approximate 

entropy, sample entropy and Lempel-Ziv complexity techniques. In this section, we 

are going to investigate some of these techniques mentioning their mathematical 

representations. 
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6.2.1.1 Shannon Entropy 

This technique is one of the most basic techniques in information theory, implying the 

Equation (6.1). 

   ∑  

 

   

    (  )                               (   ) 
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 (  )

 
                                                 (   ) 

  

where N(xj) is the amount of samples that fall into bin j of total J bins to the total 

samples N. iEEG Shannon entropy has been correlated with Desflurane effect 

compartment concentrations. It has also been used in order analyze long term iEEG 

coming from patients with frontal lobe epilepsy. 

 

6.2.1.2 Spectral Entropy 
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Where S is the total spectrum and Sj is the spectrum at frequency bin j of total J bins. 

 

6.2.1.3 Lempel-Ziv Complexity 

It has been used in a wide variety of applications including biomedical signal analysis, 

quantifying regularity of time series and genome data analysis and classification. The 

Lempel–Ziv measure estimates the rate of recurrence of patterns along a time series, 

reflecting a signal‟s complexity. Lempel– Ziv has been applied to epileptic iEEG 

signal showing increased values during ictal periods. 
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6.2.2 Non-linear Methods (Lyapunov Exponent) 

This method along with the Lempel-Ziv complexity method are very complex, we 

tried them on MATLAB, but with no satisfying results, so we did not proceed using 

them further more in our research. Another reason for not using all the non-linear 

methods is that they consume huge power. In this case, the advantage of prediction is 

lost. As a result we investigated another approach which is the linear methods 

approach. 

6.2.3 Linear Methods 

Linear methods, in general, consume less power than the non-linear ones. We 

investigated some of these methods, including Hjorth parameters, accumulated energy 

and others that use statistical measures as mean and variance. 

These linear techniques are used usually in detection, but we applied some 

modifications to them to make them usable in prediction, and this was of great 

advantage to us. 

6.2.4 Seizure Prediction System Proposed by Araabi 

It comprises three stages: preprocessing, feature extraction and thresholding, and rule-

based decision making as illustrated in Figure (6.1). 

6.2.4.1 Preprocessing 

The purpose of this stage was first to remove both high frequency noise and low 

frequency activity and subsequently to divide the iEEG signal into quasi-stationary 

segments. For this two-fold purpose, the iEEG data were band-pass filtered between 

0.5 and 100 Hz using a 4th order digital Butterworth filter, and notch filtered to 

remove 50 Hz power line noise. Then, the filtered iEEG data were partitioned into 

non over lapping 10-second segments. 

 

Figure 6.2: Seizure prediction system proposed by Araabi 



44 

 

6.2.4.2 Feature Extraction and Thresholding  

This stage aimed at extracting relevant features, which contained specific 

characteristic properties of iEEG signal, and were suitable for the seizure prediction 

task. 

 

Figure 6.3: Spatial combiner block in the rule-based decision making stage 

6.2.4.3 Rule-based Decision Making 

The rule-based decision making stage included a spatial combiner to integrate the 

spatial information obtained from the multichannel iEEG data, and feature integrators 

to combine the information embedded in different features in a way to obtain 

maximum sensitivity and specificity for seizure prediction. 

6.2.4.3.1 Spatial Combiner 

The spatial combiner included the criteria for spatially combining the information 

embedded in features values extracted from the iEEG of different channels, as 

illustrated in Figure (6.2). The spatial combiner worked on a single feature-

multichannel basis. The spatial combiner was applied to each feature separately to 

identify multichannel seizure precursors. 

6.2.4.3.2 Feature Integrator I 

This feature integrator integrated decisions made for any segment in the previous step 

to locate seizure precursors as shown in Figure (6.3). 
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Figure 6.4: Feature integrator I block in the rule-based decision making stage 

6.2.4.3.3 Feature Integrator II 

This feature integrator integrated flag Is and flag IIs. For any segment, if a flag II was 

raised using the univariate measures while a flag I was also raised using the bivariate 

measures (provided that their flag values exceeded a significance threshold Tc2), then 

a flag III, which represented a definitive seizure precursor, is raised for that segment. 

This is shown in Figure (6.4). 

6.2.4.3.4 Post-processing 

In the post-processing step, any flag IIIs not followed by at least three other flag IIIs 

were rejected as short false predictions representing precursors whose lengths did not 

exceed 40 sec. All of the remaining flag IIIs were considered as definite predictions. 

 

Figure 6.5: Feature integrator II block in the rule-based decision making stage 



46 

 

6.2.5 Results for the previous algorithms 

The results of the previous algorithms were not satisfactory at all, either they consume 

a lot of running time on Matlab, or the output is not as expected. Thus, we started 

innovating new algorithms. 

 

6.3  Prediction Techniques II 

As mentioned above, we started innovating new prediction algorithms. We thought 

that we need a simpler technique based on statistical values to be operated with 

minimum power.  

6.3.1 Forecasting Technique 

The simplest forecasting model is the mean model, which works on the time series 

signal that consists of independently and identically distributed values. Then, the next 

value should be predicted to be equal to the historical sample mean. To forecast one 

sample, we use the following equation 

 

                   ̅  (        )         (   ) 

where  ̅ is the sample mean of   size population, is   critical t-value and        is 

standard error of the forecast which measures the forecasting risk. 
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where   is the standard deviation of   size population and        is standard error of 

the mean which measures the parameter risk.  
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As we are interested in seizure-like activities which is rare and have low possibilities, 

thus 95% is a suitable confidence interval and corresponding t-value equals 2 as 

mentioned in Robert Nau's, “Review of basic statistics and the simplest forecasting 

model: the sample mean”. Now, as we operate on a window that consists of 1024 
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samples; therefore we are going to use 1st second in the window to forecast the next 

second and so on as shown in Figure 6.6. 

 

 

 

 

Figure 6.6: Showing how the window is divided (a) to use every second to forecast 

the following second (b) 

 

Moreover, as shown in equation (6.5), this algorithm does not forecast the whole 

window; it just uses the previous window's statistical features –mean and standard 

deviation- to forecast a sample. Thus, we consider predicted second consists of 

identical samples that are equal to the forecasted sample. Thus,       and     to 

achieve 95% confidence interval. After calculating each predicted group of samples, 

we calculate the cross-correlation between each second and its predicted version as 

well as the auto-correlation of the second with itself. The nearer the cross-correlation 

value to auto-correlation value, the more accurate prediction is, which means that 

there is no seizure-like activity.  

 

6.3.2 Mean with Basic Threshold Technique 

As the previous algorithm is complicated and difficult to be implemented as the cross-

correlation function and auto-correlation functions are very hardware-demanding 

algorithms, we thought of simplifying this technique to only use the mean value. We 

permit decreasing in the accuracy of the prediction block as it just triggers the 

detection block to simplify the hardware and reduce the overall system power 

consumption. This algorithm is comparing the mean of each two consecutive 

windows by the following condition 

       
       ⁄                  (    ) 

 

(a) 

(b) 



48 

 

If this condition is valid, then there is an expected seizure-like activity that could 

happen. Thus, the prediction block triggers the detection block. 

 

6.3.3 Mean with Basic Threshold Technique 

 To avoid the fine tuning required for the previous algorithm's threshold and to 

be able to track the patient's status, we introduce an adaptive algorithm in which the 

value of the threshold swings between more options to overcome triggering the 

detection block too much. It depends on comparing the windows' means as the 

previous algorithm and to be more accurate the value of the threshold doesn't change 

after one comparison, it changes after having the same result for specific number of 

windows; also it depends on the detection block decision as shown in the following 

flowchart in Figure 6.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Flowchart of the adaptive threshold algorithm 
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6.4  Detailed Data Flow 

After the preprocessing of the input iEEG data including sampling and window 

partitioning, the basic data unit that we deal with is the window –which is 4 seconds 

of the recorded input iEEG data sampled with 256 Hz-. 

The first block is the prediction block. As long as the prediction block's condition is 

not satisfied, the system stays in this block. Once the condition is true, the detection 

block is triggered and is ready to work on the next input window.  

The windows' counter is the block that responsible for handling the operation of 

prediction and detection blocks. Once the detection block is triggered and ready to 

work, the windows' counter counts certain number of windows in which if the 

detection block failed to detect a seizure, the detection block is turned off and the 

prediction block is triggered again. The final data flow diagram is shown in Figure 6.8 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Data flow diagram for the final prediction and detection algorithms 
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6.5  Simulations and Results  

To be able to get fair results, we got the same input data used with the detection 

algorithm only, to compare the sensitivity, specificity and accuracy of the standalone 

detection algorithm with these of the full algorithm –prediction and detection 

algorithms together- as shown in Tables 5.1 and 5.2. 

It is to be noted that the data flow diagram shown in Figure (6.8) considers the 

detection block working with the proposed algorithm previously illustrated in Figure 

(5.5). 

We have four testing metrics to test this algorithm. The first three are the sensitivity, 

the specificity and the accuracy of the overall algorithm which should match the 

standalone detection results which are average sensitivity of 79.62%, average 

specificity of 99.46% and average accuracy of 98.94%. 

The fourth metric is the detection block duty time; as the detection block –without the 

prediction block- works 100% of the time. After deploying one of these prediction 

algorithms, the detection block only works when it is triggered by the prediction block 

which for sure decreases its working time. However, this working duration varies 

depending on the used prediction algorithm –if the prediction algorithms' accuracy is 

low, it is a must to trigger the detection block too much which means the detection 

block works most of the time. Therefore, the detection block duty time may be close 

to 100%. Thus, we need the overall accuracy to be maximum as much as possible and 

the detection block duty time to be minimum as much as possible. 
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6.5.1 Forecasting Technique Results 

As shown below in Table 6.1, the full algorithm- prediction with detection 

algorithms- accuracy is 96.57% which is somehow close to 98.94%. However, the 

detection duty time is 93% which means that the prediction block triggers the 

detection block frequently and the detection block almost works as a standalone 

without any power consumption. 

Patient# Detection 
Duty Time 

Sensitivity Specificity Accuracy 

1 93.82% 68.57% 95.47% 95.14% 

3 93.23% 50% 97.28% 96.46% 

5 93.92% 67.39% 99.1% 98.1% 

Average 93.66% 61.99% 97.28% 96.57% 

  

Table 6.1: Results for the forecasting algorithm 

6.5.2 Mean with Basic Threshold Technique Results 

In contrary to the forecasting algorithm, the basic mean algorithm's accuracy is 97%, 

which is better than the accuracy of the forecasting algorithm as a predictor. Also, the 

detection duty time is much better as well as shown in Table 6.2. However, the basic 

mean algorithm is incapable of tracking the patient's status causing a problem of the 

threshold's fine tuning. 

Patient# Detection 
Duty Time 

Sensitivity Specificity Accuracy 

1 50.59% 68.57% 96.1% 95.76% 

3 88.92% 39.22% 98.2% 97.15% 

5 79.64% 65.22% 99.18% 98.1% 

Average 73.05% 57.67% 97.82% 97% 

 

Table 6.2: Results for the mean with basic threshold algorithm 
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6.5.3 Adaptive Threshold Technique Results 

The adaptive algorithm shows the best results among the three prediction algorithms 

as shown in Table 6.3. 

 

Patient# Detection 
Duty Time 

Sensitivity Specificity Accuracy 

1 50.59% 68.57% 96.1% 95.76% 

3 8.85% 54.9% 97.88% 97.12% 

5 51.72% 63.04% 99.5% 98.33% 

Average 37.05% 62.17% 97.83% 97.07% 

 

Table 6.3: Results for the adaptive threshold algorithm 

 

6.5.4 Final Results 

We deployed the adaptive threshold algorithm-which is totally developed by our team 

and is introduced for the first time- as it showed much flexibility in determining the 

prediction threshold as well as there are no mathematical complications with 97.07% 

accuracy which is very close to the standalone detection algorithm. Also, as 

mentioned in Table 6.3, it reaches high detection accuracy with the least detection 

block duty time (37.05%) among all the other prediction algorithms. 
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Chapter 7: Hardware Design Implementation   

 

We have implemented the full prediction & detection algorithm – adaptive threshold 

predictor with energy/coastline features and multi-window event based classifier- in 

VHDL to be able to take our design to the next phase; which is the hardware 

implementation. 

 

7.1  Finite State Machine  

Our design is founded based on Finite state machine technique, as we designed four 

state machines; one for prediction block, one for energy branch, one for coastline 

branch & one for decision making as shown in Figures 7.1, 7.2 & 7.3. 

 

Figure 7.1: Prediction Branch Finite State Machine 
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Figure 7.2: Energy Branch Finite State Machine 

 

 

Figure 7.3: Coastline Branch Finite State Machine 

 

7.2  VHDL Code  

Full code is mentioned in appendix F. This code is synthesizable, tested on FPGA and 

working as expected. 
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7.3  ISIM Results  

The output signal resembles the final output after all the prediction and detection took 

place, as shown in below Figure 7.4. 

 

Figure 7.4: Results from ISim Simulation for the full VHDL code 

 

7.4  RTL Schematic 

As shown below in Figure 7.5, the RTL schematic of the system generated from the 

VHDL code resembles the block diagram of the overall system –Prediction with 

adaptive threshold algorithm followed detection with energy & coastlines feature then 

decision making block. 
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Figure 7.5: RTL schematic of the VHDL code 
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Chapter 8: FPGA Interface   

8.1 Introduction 

FPGA stands for “Field Programmable Gate Array”. As you may already know, 

FPGA essentially is a huge array of gates which can be programmed and 

reconFigured anytime anywhere. “Huge array of gates” is an oversimplified 

description of FPGA.  

FPGA is indeed much more complex than simple array of gates. Some FPGAs has 

built in hard blocks such as Memory controllers, high speed communication 

interfaces, PCIe (Peripheral Component Interconnect Express) Endpoints and many 

other blocks. But the point is, there are a lot gates inside the FPGA which can be 

arbitrarily connected together to make a circuit of your choice. More or less like 

connecting individual logic gate ICs. FPGAs are manufactured by companies like 

Xilinx, Altera, Microsemi and others. 

FPGA is one of the main digital design process stages, used for many purposes such 

as: customizing SoC (System on Chip) with field upgradable blocks, and ASIC 

emulation and verification, the latter is the case in our project. 

8.2 Procedure 

We used Xilinx Spartan 6 in our testing, and here is a small tutorial for how to run the 

code on FPGA   

Step 1: Assign your inputs and outputs to certain switches and leds. 

This is done by generating an UCF file by the following steps : 

• Project > New Source > Implementation Constraint File 

• Open the file.ucf which is added to your project  

• Open the hardware user guide to know which pins are corresponding to the 

required switches and leds 

• Assign the inputs and the outputs to the required pins for example if you have 

an input whose name is (IN1) and you want to enter this input from switch 

(S2.2) which corresponds to pin (Y6) and you want to show the output whose 



58 

 

name is (OUT1) on (GPIO_LED_1) which corresponds to pin (AB4). You 

should write the following in the UCF file 

NET  IN1 LOC="Y6"; NET OUT1 LOC="AB4"; 

Step 2: Configure the clock of your design (If it is needed)  

• Add the IPcore of the clock wizard as shown in Figure 8.1 & 8.2 

 

Figure 8.1: Screenshot for the clock wizard in step 2-1 

 

Figure 8.2: Screenshot for the clock wizard in step 2-2 

 

• Input the clock crystal frequency embedded on the FPGA and choose single 

ended capable pin as shown in Figure 8.3 
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Figure 8.3: Screenshot for the clock wizard core generator 

 

• Then click next and add the output clock you need to be generated by the 

clock wizard and turn off the rest of the output clock as shown in Figure 8.4  

 

 

Figure 8.4: Screenshot for the clock wizard core generator while choosing the output 

frequency 

 

• Uncheck the locked and finally click Generate. 

• Then go to the generated clock wizard file (.xco) instance and choose View 

HDL instantiation Template, select the part shown below and copy it into your 

code as a component and then copy the other part as an instance of this 

component as shown in Figure 8.5 
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Figure 8.4: Screenshot for HDL instantiation Template 

 

• Then you must define the oscillator pin that you have used in (.ucf). As shown 

in Figure 8.5 that the single ended clock pin is AB13 so you should write this 

line in the (.ucf) 

NET CLK LOC="AB13"; 
 

Figure 8.5: Screenshot from Spartan-6 I/O Manual 
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Step 3: Check that (Synthesize, Implement Design and Generate Programming File ) 

are done without any errors as shown in Figure 8.1  

 

Figure 8.6: Screenshot for the final output of step 3 

 

Step 4: Burn the code on the FPGA and this can be done by the following steps: 

• Double Click on ConFigure Target Device, The ISE Impact will be opened.  

• Make sure that the USB_JTAG cable is connected to the computer. 

• In the ISE Impact, Click on Boundary Scan on the top left and then press 

Ctrl+I to initialize chain as shown in Figure 8.7 and Figure 8.8. 

 

 

Figure 8.7: Screenshot for the boundary scan 
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Figure 8.8: Screenshot to initialize the chain 

 

• Now the ISE Impact will find the FPGA  

• Double Click on the FPGA icon then add the .bit file which will be found in 

the directory of your project as shown in Figure 8.9 

 

 

Figure 8.9: Screenshot to load the .bit file 
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•  Right click on the FPGA IC and click program or choose program from the 

side toolbar as shown in Figure 8.10. 

  

 

Figure 8.10: Screenshot for programming the .bit file 

 

• Then a message “Program Succeeded” is displayed on the screen. 
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Chapter 9: Conclusion and Next Phase 

9.1 Conclusion 

Hereby we tried to deliver our humble work all over the past 10 months starting from 

surveying more than 100 papers to countless run Matlab simulations and written 

VHDL lines trying to enrich the human race with this simple output just in case 

someone would discover this is somehow beneficial to help these people who suffer 

from the symptoms of epileptic seizures. 

 

9.2 Next Phase 

The next phase –as we see it- should include two tracks; technical track as converting 

this proposed design to ASIC design followed by fabrication to test these algorithms 

on layout level, and a non-technical track by marketing for the system among the 

biomedical systems companies to get the suitable capital to help completing the 

research and sustaining the development of this project. 
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Appendices 

Appendix A: Prediction MATLAB Full Code 

A.1 Main Code: mainCode.m 

clc 
clear 
close all 

  
file_name='chb03_36.edf'; 
%---------------------------- Preset Values-------------------------- 
channel=4;                  %Channel number in the .edf file 
patient_number =3;  

%The patient number according to http://physionet.org/pn6/chbmit/ 
data=ReadEDF(file_name);    %The data vector 

  
predictionTecnhnique=input('Please enter 1 for Forcasting prediction 

technique,2 for Basic Mean prediction technique, or 3 for Adaptive 

prediction technique'); 

  
while(predictionTecnhnique<1 || predictionTecnhnique>3) 
   predictionTecnhnique=input('Wrong Choice. Please enter 1 for 

Forcasting prediction technique,2 for Basic Mean prediction 

technique, or 3 for Adaptive prediction technique'); 
end 

  
seconds = 5;%The number of seconds within a window 
fs = 256;%The sampling frequency 
start_1 =1725;%The start of a seizure within an .edf file 
ending_1 =1778;%The end of a seizure within an .edf file 
no_of_windows_detection = 15;%If we enter the detection state, we 

will stay in that state for 15 windows  

  
%------------------------------Thresholds---------------------------- 
threshold_coastline_1=10;%The beta threshold 
threshold_coastline_2=2e4;%The alpha threshold 
threshold_energy_1=6;%The beta threshold 
threshold_energy_2=0.3e4;%The alpha threshold 

  
threshold_prediction_forecasting = 0.9;%Forecasting threshold 

  
threshold_prediction_basic_mean = 1;%Basic mean threshold 

  
thre_pred_low =1;%Adaptive threshold first threshold 
thre_pred_mid =2;%Adaptive threshold second threshold 
thre_pred_high=3;%Adaptive threshold third threshold 

  

  
%---------------- Preprocessing ----- DO NOT CHANGE------------------ 

  
data=cell2mat(data(:,channel)); 
[data,window_length,DataLength] = PreProcessing(data,seconds,fs); 

  
predictionArray = zeros(1,DataLength); 
detectionArray = zeros(1,DataLength); 
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energyarray = zeros(1,DataLength); 
coastlinearray = zeros(1,DataLength); 
DecisionMatrix = zeros(1,DataLength/window_length); 
not_seizure = data; 

  

  
%%%if there are more than one seizure, just add more than of the next 
%%%variables, seizure_NUMBER is seizure place as samples & 
%%%seizure_window_NUMBER is seizure place as windows 
seizure_1 = zeros(1,DataLength); 
seizure_1((start_1*fs):(ending_1*fs)) = 

data((start_1*fs):(ending_1*fs)); 
seizure_window_1 = zeros(1,DataLength/window_length); 
seizure_window_1(floor(start_1/seconds):floor(ending_1/seconds))=ones

(1,length(floor(start_1/seconds):floor(ending_1/seconds))); 

  
%--------------Initial values to run the code-----DO NOT CHANGE------ 
thre_predArray =[thre_pred_low thre_pred_mid thre_pred_high]; 
meanValue = 0; 
counterOnes = 0; 
counterZeros= 0; 
counterDetection =0; 
counterPredictionThreshold=3; 
threshold_decision = 0; 
prediction_detectionFlag =0; 

%This flag is responsible for switching between the detection state 

and the prediction state 
Decision=0; 
final_threshold=thre_pred_mid; 
counterCL =0; 
counterE=0; 
detectionDutyCounter=0; 

  
%------------------Code Core------ DO NOT CHANGE--------------------- 
j=1;    %A counter that loops over the data vector window by window 
i=1;    %A pointer that points at the start of every window within 

the data vector 
while (j<=DataLength/window_length) 

  
    datawithinwindow = data(i:i+window_length-1); 

  
    %-----------------------Prediction Block-------------------------

------ 

  
    if (prediction_detectionFlag == 0) 

         
       if(predictionTecnhnique==1) 
      prediction_detectionFlag= 

PredictionForecast(datawithinwindow,window_length,threshold_predictio

n_forecasting); 
       end 

         
     if(predictionTecnhnique==2)    
      [prediction_detectionFlag,meanValue]= 

PredictionBasicMean(datawithinwindow,meanValue,threshold_prediction_b

asic_mean); 
     end 

      
        if(predictionTecnhnique==3)    
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[prediction_detectionFlag,meanValue,counterOnes,counterZe

ros,counterDetection,final_threshold] = 

PredictionAdaptive(datawithinwindow,thre_predArray,final_

threshold,counterPredictionThreshold,counterOnes,counterZ

eros,counterDetection,meanValue,Decision,prediction_detec

tionFlag); 
        end 
         j=j+1;  
         i=i+window_length; 

          

          
%----------------Detection Block-------- DO NOT CHANGE--------------- 

  
    elseif (prediction_detectionFlag == 1) 
        predictionArray(i)=1000; %1000 just to be visible in stem  
        k=1;  %A counter responsible for counting the number of 

windows withing the detection state 
        z=i;  %A pointer that points at the start of every window 

within the data vector 
        while((k<=no_of_windows_detection || Decision==1) && 

j<=DataLength/window_length)  
             datawithinwindow = data(z:z+window_length-1); 
             EnergyValue =  EnergyAvg(datawithinwindow); 
             CoastLineValue = CoastLine(datawithinwindow); 
             [Classifier1,counterCL] = CoastLineThreshold( 

CoastLineValue,threshold_coastline_1,threshold_coastline_2,counterCL)

; 
             [Classifier2,counterE] = EnergyThreshold( 

EnergyValue,threshold_energy_1,threshold_energy_2,counterE); 
             detectionDutyCounter=detectionDutyCounter+1; 

              
%--------------Decision Making Block-------- DO NOT CHANGE----------- 
             Decision = (Classifier1 || Classifier2);  
             if(Decision ==1) 
                  detectionArray(z:z+window_length-1) = 1000;    

%1000 just to be visible in stem  
                  DecisionMatrix(j) =1; 

%The vector that carries the ORed value of the 

Average Energy and the Coastline Classifiers 
              end 
             k=k+1; 
             j=j+1; 
             z=z+(seconds*fs); 
        end 
       prediction_detectionFlag =0; 
      i=z; 
    end 
end 

  

  
%-----------------------Output Handling------------------------------ 

  
stem(predictionArray,'g') 
hold on 
stem (detectionArray,'k') 
hold on 
plot(not_seizure,'b') 
 hold on 
plot(seizure_1,'r') 
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legend('Detection Block Trigger','Detected Seizure','Normal iEEG 

Data','Seizure Part') 
     if(predictionTecnhnique==1)    
title(['Prediction using Forecasting Technique for patient number ' 

num2str(patient_number)]) 
     elseif(predictionTecnhnique==2) 
title(['Prediction using Mean with Basic Threshold Technique for 

patient number ' num2str(patient_number)]) 
     else 
title(['Prediction using Adaptive Threshold Technique for patient 

number ' num2str(patient_number)]) 
     end 

  
[TN TP FN FP] = parameters(seizure_window_1,DecisionMatrix); 
TP 
FP 
TN  
FN  

 
[DetectionDuty]= detectionDutyCounter*100/(DataLength/window_length); 
DetectionDuty 

 

A.2 Coastline Function Code: Coastline.m 

%This function calculates the coastline of a window 
function [ CL ] = CoastLine( datawithinwindow ) 

  
window_length = length(datawithinwindow); 
Dist_bet_2_succsessive=zeros(1,window_length); 

  
for i=2:1:window_length 
    Dist_bet_2_succsessive(i-1)=abs(datawithinwindow(i)-

datawithinwindow(i-1)); 
end 

  
CL=sum(Dist_bet_2_succsessive); 

     
end 
 

A.3 Coastline Thresholding Code: CoastlineThreshold.m 

 
%This function calculates the multiwindow even based classifier of 

coastline 
function [ classifier_CL,counter ] = CoastLineThreshold( 

CoastLineValue,threshold_coastline_1,threshold_coastline_2,counter ) 
if CoastLineValue >=threshold_coastline_2 
    sez_coastline=1; 
else 
    sez_coastline=0; 
end 

  
if sez_coastline==0 
    counter=0; 
elseif sez_coastline==1 
    counter=counter+1; 
end 
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if counter>=threshold_coastline_1 
    classifier_CL =1; 
else  
    classifier_CL=0; 
end 
  

A.4 Average Energy Function Code: EnergyAvg.m 

 

%This function calculates the Average Energy of a window 
function [ Eavg ] = EnergyAvg( datawithinwindow ) 

  
window_length = length(datawithinwindow); 
E=datawithinwindow.^2; 
Eavg =1/window_length*sum(E);  
End 

 

A.5 Average Energy Thresholding Code: EnergyThreshold.m 

 
%This function calculates the multi window event based classifier of 

Average Energy 
Function [classifier_E,counter]= 

EnergyThreshold(EnergyValue,threshold_energy_1,threshold_energy_2,cou

nter ) 

  
if EnergyValue >=threshold_energy_2 
    sez_energy=1; 
else 
    sez_energy=0; 
end 

  
if sez_energy==0 
    counter=0; 
elseif sez_energy==1 
    counter=counter+1; 
end 

      
if counter>=threshold_energy_1 
    classifier_E =1; 
else  
    classifier_E=0; 

  
end 

A.6 Efficiency Parameters Function Code: parameters.m 

 
%This function calculates the True Positives, The True Negatives, The 

False 
%Positives, and The False Negatives. 
function [TN TP FN FP] = 

parameters(original_signal,calculated_signal) 
    TN = 0;  
    TP = 0; 
    FN = 0; 
    FP = 0; 
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    length_original = length(original_signal); 
    length_calculated = length(calculated_signal); 
    min_length = min(length_calculated,length_original); 
    for i=1:1:min_length 
        if(original_signal(i) == calculated_signal(i)) 
            if(original_signal(i) == 1) 
                TP = TP + 1; 
            else 
                TN = TN + 1; 
            end 
        else 
            if((original_signal(i) == 0)&&(calculated_signal(i)==1)) 
                FP = FP + 1 ; 
            else 
                FN = FN + 1; 
            end 
        end 
    end 
end 

A.7 Adaptive Prediction Function Code: PredictionAdaptive.m 

 
%This function calculates the adaptive prediction 
function 

[prediction,meanvalue,counterOnes,counterZeros,counterDetection,final

_threshold] = 

PredictionAdaptive(datawithinwindow,thre_predArray,final_threshold,th

reshold2,counterOnes,counterZeros,counterDetection,oldmean,DetectionD

ecision,predictionflag) 

  
meanvalue = mean(abs(datawithinwindow)); 

  
if (predictionflag ==1 && DetectionDecision ==0) 
    counterDetection = counterDetection+1; 

     
elseif(predictionflag ==1 && DetectionDecision ==1) 
    counterDetection =0; 
    counterZeros=0; 
    counterOnes=0; 
end 

     
if ((meanvalue/oldmean>final_threshold))  

             
    prediction=1; 
    counterOnes=counterOnes+1; 
    counterZeros=0;         
else  
    prediction =0; 
    counterZeros=counterZeros+1; 
    counterOnes=0; 
end 

  
if counterZeros>=threshold2 
    counterOnes=0; 
    counterZeros=0; 
    counterDetection =0; 
    threshold_decision=1; 
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elseif counterOnes>=threshold2 && counterDetection>=threshold2 
    counterOnes=0; 
    counterZeros=0; 
    counterDetection =0; 
    threshold_decision =-1;  

     
else threshold_decision=0; 
end 

  
switch threshold_decision 
    case -1 
        if(final_threshold == thre_predArray(3)) 
            final_threshold = thre_predArray(2); 
        else final_threshold = thre_predArray(1); 
        end     
    case 1 
        if(final_threshold == thre_predArray(1)) 
            final_threshold = thre_predArray(2); 
        else final_threshold = thre_predArray(3); 
        end    
    case 0 
        final_threshold=final_threshold;          
    otherwise 
        final_threshold = thre_predArray(2); 
end  
end 

A.8 Basic Mean Function Code: PredictionBasicMean.m 

 

%This function calculates the basic mean prediction 
  function [prediction,meanvalue] = 

PredictionBasicMean(datawithinwindow,oldmean,threshold) 

  
meanvalue = mean(abs(datawithinwindow)); 

     
if ((meanvalue/oldmean>threshold))  

             
    prediction=1; 

             
else  
    prediction =0; 

     
end     

A.9 Forecast Technique Function Code: PredictionForecast.m 

 
%This function calculates the forecasting prediction 
function [ prediction ] = PredictionForecast( 

data,window_length,threshold) 

  
prediction = 0; 
k=1; 
for i=1:(window_length)/4:window_length,  
    quawindow=data(i:i+window_length/4-1); 
    meanvalue(k) = mean(quawindow); 
    S(k) = std(quawindow); 
    newsample1(i:i+window_length/4-1) =meanvalue(k)+(2*S(k));  
    newsample2(i:i+window_length/4-1) =meanvalue(k)-(2*S(k)); 
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    k=k+1; 
end 
    oldquart1 = newsample1(i:i+window_length/4-1); 
    oldquart2 = newsample2(i:i+window_length/4-1); 

  
newsample1 = newsample1(1:3*window_length/4); 
newsample2 = newsample2(1:3*window_length/4); 
datanew = data(window_length/4+1:window_length); 

  
sim0 = max(abs(xcorr(datanew,datanew))); 
sim1 = max(abs(xcorr(newsample1,datanew))); 
sim2 = max(abs(xcorr(newsample2,datanew))); 

  
    if(sim1 > sim2) 
        simf =sim1; 
    else simf =sim2; 
    end 

     
    if (simf/sim0 >= threshold) 
        prediction =0; 

         
    else prediction =1; 
    end 

 

A.10 Pre-processing Function Code: PreProcessing.m 

 

%This function calculates window length, and the data vector length. 
function [data_filtered, window_length,DataLength ] = PreProcessing( 

data,number_of_seconds,fs ) 

  
window_length = number_of_seconds*fs; 
DataLength = window_length*floor(length(data)/(window_length)); 
data_filtered=data; 
end 
 

 

  

 

 

 

 



74 

 

Appendix B: Detection MATLAB Codes 

B.1 Coastline Feature 

abs_bet_2_succsessive=zeros(length(data),1);%This vector will have 

the absolute difference between two successive EEG data points  
k=1;%The window number  
for i=2:1:length(data) 
    if i+N-1>length(data) 
        break 
    end 
    abs_bet_2_succsessive(k)=abs(data(i)-data(i-1)); 
    k=k+1; 
end 

 

CL=zeros(1,length(data)/N);%coastline vector 
k=1; 
i=1; 
for i=1:N:length(abs_bet_2_succsessive) 
  if i+N-1>length(abs_bet_2_succsessive) 
    break 
end   
CL(k)=sum(abs_bet_2_succsessive(i:i+N-1)); 
k=k+1; 
end 

 

B.2 Coastline Thresholding 

%The alpha Thresholding 

 

threshold_coastline_1=40000;%The Alpha threshold 

 
for i=1:length(CL) 
    if CL(i)>=threshold_coastline_1 
        sez_coastline(i)=1; 
    else 
        sez_coastline(i)=0; 
    end 
end 

 
%The Beta Thresholding 

 

threshold_coastline_2=5;%The Beta threshold 

 
counter=0;%If this variable is more than or equal Beta then we have a 

seizure event else otherwise 
for i=1:length(sez_coastline) 
     if sez_coastline(i)==0 
        counter=0; 
        classifier_CL(i)=0; %classifier_CL variable is the output of 

the %multi-window event classifier 
        continue 
     end 

      
     if sez_coastline(i)==1 
     counter=counter+1; 
     end 
     if counter>=threshold_coastline_2 
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         classifier_CL(i-counter+1:i)=ones(1,length(i-counter+1:i)); 
     end 
end 

B.3 Average Energy Feature 

E=data.^2; 
k=1; 
for i1=1:N:length(data) 
    if i1+N-1 >length(E) 
        break; 
    end 
    Eavg(k)=1/N*sum(E(i1:i1+N-1));%This is the Average Energy Vector 
    k=k+1; 
end 

B.4 Average Energy Thresholding  

threshold_energy_1=2000;  %The Alpha threshold 

 
%The Alpha Thresholding 
for i=1:length(Eavg) 
    if Eavg(i)>=threshold_energy_1 
        sez_E(i)=1; 
    else 
        sez_E(i)=0; 
    end 
end 

 
%The Beta Thresholding 

 

threshold_energy_2=12;%The Beta threshold 

 
counter=0;%If this variable is more than or equal Beta then we have a 

seizure event else otherwise 
for i=1:length(sez_E) 
     if sez_E(i)==0 
        counter=0; 
        classifier_E(i)=0; ;%classifier_E vector is the output of the 

multi-window event %based classifier 
        continue 
     end 
     if sez_E(i)==1 
     counter=counter+1; 
     end 
     if counter>=threshold_energy_2 
         classifier_E(i-counter+1:i)=ones(1,length(i-counter+1:i)); 
     end 
end 

 

B.5 Final Decision 

EavgORCL=classifier_CL | classifier_E; 

%This vector is the ORing between the %coastline classifier and the 

Average eneregy classifier 
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B.6 Actual Seizure Locations Vector 

seconds=4;%The number of seconds in each window 
start=362;%Start of the seizure in seconds 
ending=414;%End of seizure in seconds 

 
sez_true=zeros(1,length(classifier_E)); 

%This vector is the actual locations %of the seizure based on the 

summary of the pateint. Each point in this %vector contains 

information about the whole window 

 
sez_true(floor(start/seconds):floor(ending/seconds))=ones(1,length(fl

oor(start/seconds):floor(ending/seconds))); 

 

B.7 Plotting The Results 

Figure 
subplot(6,1,1) 
stem(CL(40:140)) 
title('CL') 

  
subplot(6,1,3) 
stem(classifier_CL(40:140)) 
title('CL Classifier') 

  
subplot(6,1,2) 
stem(Eavg(40:140)) 
title('Eavg') 

  
subplot(6,1,4) 
stem(classifier_E(40:140)) 
title('Eavg Classifier') 

  
subplot(6,1,5) 
stem(EavgORCL(40:140)) 
title('EavgORCL') 

  
subplot(6,1,6) 
stem(sez_true(40:140)) 
title('True Siezure Locations') 
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Appendix C: MATLAB Codes for Wavelet Domain Features & 

SVM 

C.1 Partitioning the data into epochs based on N 

k=1; 
for i=1:N:length(data) 
    if i+N-1 >length(data) 
        break; 
    end 
    partitonedData(k,:)=data(i:i+N-1);%This matrix contains the 

partitioned data 
    k=k+1; 
end 

 

C.2 Pre-requirements to calculate the wavelet features 

Please read the documentation of the following MATLAB functions: 
wavedec 
detcoef 

 

The code: 
fs=256;%The sampling frequency 
for i=1:length(partitonedData(:,1)) 
    [C,L]=wavedec(transpose(partitonedData(i,:)),5,'db4'); 
    [D1,D2,D3,D4,D5]=detcoef(C,L,[1,2,3,4,5]); 
    Length=length(D1); 
    D=zeros(Length,5); 
    D(:,1)=D1+D(:,1); 
    D(1:length(D2),2)=D2+D(1:length(D2),2); 
    D(1:length(D3),3)=D3+D(1:length(D3),3); 
    D(1:length(D4),4)=D4+D(1:length(D4),4); 
    D(1:length(D5),5)=D5+D(1:length(D5),5); 
    T=1/fs; 

C.3 Calculating the Fluctuation Index Feature 

    temp=zeros(length(D1),1); 
    for i2=1:4 
        temp=temp+abs(D(:,i2+1)-D(:,i2)); 
    end 
    FI(i,:)=(1/5).*temp; %The Fluctutation index matrix 

 

C.4 Calculating the Coefficient of variation Feature 

mean=zeros(length(D1),1); 
for i4=1:5 
mean=mean+D(:,i4); 
end 
temp=zeros(length(D1),1); 
for i4=1:5 
    temp=temp+(D(:,i4)-mean).^2; 
end 
temp2=(1/5).*temp; 
sigma=sqrt(temp2); 
CoeffVar(i,:)=(sigma.^2)./(mean.^2);%the coefficient of variation 

matrix 
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C.4 Calculating the Relative Energy Feature 

E=D.^2 *T/5; 
Etot=E(:,1)+E(:,2)+E(:,3)+E(:,4)+E(:,5); 
sum=0; 
for i3=1:length(Etot) 
sum=Etot(i3)+sum; 
end 
ER(i,:)=Etot./sum;%the relative energy matrix 

 
end% end of for loop whose counter is I (the most outer loop) 

 

 

C.5 Support Vector Machine (SVM) 

It is worth mentioning that you can train/test any set of features, but here we will use 

the Average Energy and the Coastline features as an example. 

 

C.6 SVM Training 

First, look up the svmtrain function in MATLAB documentation. You could train 

the SVM with any length of features. However, the longer the length of the training 

data, the smarter the SVM is. 

 
trainingData=[Eavg' CL'];%If you you want to train the time domain 

features uncomment this and comment the previous line 

 
svmTrain=svmtrain(trainingData, sez_true);%The output structure of 

svmtrain function 

 

 

C.7 SVM Testing 

Here you should first load a new file (chb03_05.edf for example), then you have to 

calculate the same features you trained in order to classify and test them. 

 svmTest=[Eavg' CL'];%this vector is different from the trainingData 
vector. %it comes from the new loaded file. 

 

svmClassification=svmclassify(svmTrain,svmTest);%The output vector 

that %represents the SVM classifier 
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Appendix D: EEG Data Signal Reading MATLAB Code 

D.1 Loading Data into MATLAB environment 

 

%Here we are using the file “chb03_01.edf” 

channel=4;%The Channel number in the edf file 
data=ReadEDF('chb03_01.edf'); 
data=cell2mat(data(:,channel));%Now data variable is a vector which 

has the raw data of the EEG signal of channel number 4 for the file 

chb03_01.edf 

 

D.2 ReadEDF.m Function 

 
function [data, header] = readEDF(filename) 

  
fid = fopen(filename,'r','ieee-le'); 

  
%%% HEADER LOAD 
% PART1: (GENERAL)  
hdr = char(fread(fid,256,'uchar')');  
header.ver=str2num(hdr(1:8));            % 8 ascii : version of this 

data format (0) 
header.patientID  = char(hdr(9:88));     % 80 ascii : local patient 

identification 
header.recordID  = char(hdr(89:168));    % 80 ascii : local recording 

identification 
header.startdate=char(hdr(169:176));     % 8 ascii : startdate of 

recording (dd.mm.yy) 
header.starttime  = char(hdr(177:184));  % 8 ascii : starttime of 

recording (hh.mm.ss) 
header.length = str2num (hdr(185:192));  % 8 ascii : number of bytes 

in header record 
reserved = hdr(193:236); % [EDF+C       ] % 44 ascii : reserved 
header.records = str2num (hdr(237:244)); % 8 ascii : number of data 

records (-1 if unknown) 
header.duration = str2num (hdr(245:252)); % 8 ascii : duration of a 

data record, in seconds 
header.channels = str2num (hdr(253:256));% 4 ascii : number of 

signals (ns) in data record 

  
%%%% PART2 (DEPENDS ON QUANTITY OF CHANNELS) 

  
header.labels=cellstr(char(fread(fid,[16,header.channels],'char')')); 

% ns * 16 ascii : ns * label (e.g. EEG FpzCz or Body temp) 
header.transducer 

=cellstr(char(fread(fid,[80,header.channels],'char')')); % ns * 80 

ascii : ns * transducer type (e.g. AgAgCl electrode) 
header.units = cellstr(char(fread(fid,[8,header.channels],'char')')); 

% ns * 8 ascii : ns * physical dimension (e.g. uV or degreeC) 
header.physmin = 

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8 ascii 

: ns * physical minimum (e.g. -500 or 34) 
header.physmax = 

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8 ascii 

: ns * physical maximum (e.g. 500 or 40) 
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header.digmin = 

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8 ascii 

: ns * digital minimum (e.g. -2048) 
header.digmax = 

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8 ascii 

: ns * digital maximum (e.g. 2047) 
header.prefilt 

=cellstr(char(fread(fid,[80,header.channels],'char')')); % ns * 80 

ascii : ns * prefiltering (e.g. HP:0.1Hz LP:75Hz) 
header.samplerate = 

str2num(char(fread(fid,[8,header.channels],'char')')); % ns * 8 ascii 

: ns * nr of samples in each data record 
reserved = char(fread(fid,[32,header.channels],'char')'); % ns * 32 

ascii : ns * reserved 

  

  
f1=find(cellfun('isempty', regexp(header.labels, 'EDF Annotations', 

'once'))==0); % Channels number with the EDF Annotations 
f2=find(cellfun('isempty', regexp(header.labels, 'Status', 

'once'))==0); % Channels number with the EDF Annotations 
f=[f1(:); f2(:)]; 
%%%%%% PART 3: Loading of signals 

  
%Structure of the data in format EDF: 

  
%[block1 block2 .. , block N], where N=header.records 
% Block structure: 
% [(d seconds of 1 channel) (d seconds of 2 channel) ... (d seconds 

of Ñh channel)], Where Ñh - quantity of channels, d - duration of the 

block 
% Ch = header.channels 
% d = header.duration 

  
Ch_data = fread(fid,'int16'); % Loading of signals 

  

  
fclose(fid); % close a file 

  
%%%%% PART 4: Transformation of the data 
if header.records<0, % If the quantity of blocks is not known 
R=sum(header.duration*header.samplerate); % Length of one block 
header.records=fix(length(Ch_data)./R); % Quantity of written down 

blocks 
end 

  
% Separating a read signal into blocks 
Ch_data=reshape(Ch_data, [], header.records); 

  
% establishing calibration parametres 

  
sf = (header.physmax - header.physmin)./(header.digmax - 

header.digmin); 
dc = header.physmax - sf.* header.digmax; 

  
data=cell(1, header.channels); 
Rs=cumsum([1; header.duration*header.samplerate]); % ñòðîêà èíäåêñîâ 

ïîäáëîêîâ êàíàëîâ Rs(k):Rs(k+1)-1 

  
% separating of signals of everyone the channel from blocks  
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% and recording of signals in structure of cells 

  
for k=1:header.channels 

  
data{k}=reshape(Ch_data(Rs(k):Rs(k+1)-1, :), [], 1); 
if sum(k==f)==0 % non Ànnotation 
% Calibration of the data 
data{k}=data{k}.*sf(k)+dc(k); 
end 
end 

  
% PART 5: ANNOTATION READ 
    header.annotation.event={}; 
    header.annotation.starttime=[]; 
    header.annotation.duration=[]; 
    header.annotation.data={}; 

     
if sum(f)>0 

     
try 

   
for p1=1:length(f) 
Annt=char(typecast(int16(data{f(p1)}), 'uint8'))';    

     
% separate of annotation on blocks 
Annt=buffer(Annt, header.samplerate(f(p1)).*2, 0)'; 
ANsize=size(Annt); 
    for p2=1:ANsize(1) 
   % search TALs starttime 
    Annt1=Annt(p2, :);  
    Tstart=regexp(Annt1, '+'); 
    Tstart=[Tstart(2:end) ANsize(2)]; 

    
    for p3=1:length(Tstart)-1 
   A=Annt1(Tstart(p3):Tstart(p3+1)-1); % TALs block  
   header.annotation.data={header.annotation.data{:} A};  

  
      % duration and starttime TALs 
       Tds=find(A==20 | A==21);  
        if length(Tds)>2 
            td=str2num(A(Tds(1)+1:Tds(2)-1));  
            if isempty(td), td=0; end 
           header.annotation.duration=[header.annotation.duration(:); 

td]; 
           

header.annotation.starttime=[header.annotation.starttime(:); 

str2num(A(2:Tds(1)-1))]; 
           header.annotation.event={header.annotation.event{:} 

A(Tds(2)+1:Tds(end)-1)}; 
          else 
           header.annotation.duration=[header.annotation.duration(:); 

0]; 
           

header.annotation.starttime=[header.annotation.starttime(:); 

str2num(A(2:Tds(1)-1))]; 
           header.annotation.event={header.annotation.event{:} 

A(Tds(1)+1:Tds(end)-1)}; 
        end 
    end 
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    end 
end 

  
% delete annotation 
a=find(cell2mat(cellfun(@length, header.annotation.event, 

'UniformOutput', false))==0); 
header.annotation.event(a)=[]; 
header.annotation.starttime(a)=[]; 
header.annotation.duration(a)=[]; 

  
end 
end 

  
header.samplerate(f)=[]; 
header.channels=header.channels-length(f); 
header.labels(f)=[]; 
header.transducer(f)=[]; 
header.units(f)=[]; 
header.physmin(f)=[]; 
header.physmax(f)=[]; 
header.digmin(f)=[]; 
header.digmax(f)=[]; 
header.prefilt(f)=[]; 
data(f)=[]; 

 

D.3 Downloading Patients’ Data 

You can find real patients‟ data on this web site: http://physionet.org/pn6/chbmit/ 

 

You will find the data of a number of patients where each patient is given a name 

chbXX, i.e: the folder chb01 belongs to the first patient. Once you open the patient‟s 

folder you will find the “.edf” data (The EEG signal). 

 

You will also find a summary for each patient -chbXX-summary.txt for in the folder 

of the first patient-and you will find a lot of information here such as the .edf files that 

contain the seizure and the moment of occurrence of that seizure. 

 

 

 

 

 

 

 

 

http://physionet.org/pn6/chbmit/
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Appendix E: Generating the full RTL Schematic from ISE 

project 

After the HDL synthesis phase of the synthesis process, you can display a schematic 

representation of your synthesized source file. This schematic shows a representation 

of the pre-optimized design in terms of generic symbols, such as adders, multipliers, 

counters, AND gates, and OR gates, that are independent of the targeted Xilinx® 

device. Viewing this schematic may help you discover design issues early in the 

design process. This can be done simply using ISE with the following steps 

 

Step1: Right Click on (View RTL Schematic) from the synthesize tab then press Run. 
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Step2: Choose Start with the Explorer Wizard 

 

 
 
 

 

Step 3: Add all the blocks that you want to be shown 
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Now you will have the RTL Schematic, so that you can understand the codes easily 

by tracking the signals to the blocks. You can also show the components of any block 

by right click on the block then click on show block contents. 

   

 

 

 

 



86 

 

Appendix F: Full VHDL Code 

F.1 Data_Path_TB (Test Bench Code) 

---------------------------------------------------------------------

----------- 

-- Company:  

-- Engineer: 

-- 

-- Create Date:   08:53:43 05/10/2016 

-- Design Name:    

-- Module Name:   

E:/Xilinx_ISE/14.5/projects/Data_Path_V2/Data_Path_V2_TB.vhd 

-- Project Name:  Data_Path_V2 

-- Target Device:   

-- Tool versions:   

-- Description:    

--  

-- VHDL Test Bench Created by ISE for module: Data_Path_V2 

--  

-- Dependencies: 

--  

-- Revision: 

-- Revision 0.01 - File Created 

-- Additional Comments: 

-- 

-- Notes:  

-- This testbench has been automatically generated using types 

std_logic and 

-- std_logic_vector for the ports of the unit under test.  Xilinx 

recommends 

-- that these types always be used for the top-level I/O of a design 

in order 

-- to guarantee that the testbench will bind correctly to the post-

implementation  

-- simulation model. 

---------------------------------------------------------------------

----------- 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

use ieee.std_logic_textio.all; 

  

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

--USE ieee.numeric_std.ALL; 

  

ENTITY Data_Path_V2_TB IS 

END Data_Path_V2_TB; 

  

ARCHITECTURE behavior OF Data_Path_V2_TB IS  

  

    -- Component Declaration for the Unit Under Test (UUT) 

  

    COMPONENT Data_Path_V2 

    PORT( 

         Clk : IN  std_logic; 

         RST : IN  std_logic; 

            Output :inout STD_LOGIC 

        ); 

    END COMPONENT;    
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   --Inputs 

   signal Clk : std_logic := '0'; 

   signal RST : std_logic := '0'; 

    signal output: std_logic := '0'; 

     

   -- Clock period definitions close to 27MHz 

   constant Clk_period : time := 37 ns;  

  

  

BEGIN 

    -- Instantiate the Unit Under Test (UUT) 

   uut: Data_Path_V2 PORT MAP ( 

          Clk => Clk, 

          RST => RST, 

             Output => Output 

        ); 

  

   -- Clock process definitions 

   Clk_process :process 

   begin 

        Clk <= '0'; 

        wait for Clk_period/2; 

        Clk <= '1'; 

        wait for Clk_period/2; 

   end process; 

  

END; 

 

F.2 Data_Path 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    08:46:12 05/10/2016  
-- Design Name:  
-- Module Name:    Data_Path_V2 - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
--              This file(module) contains our whole algorithm (Demux 

, Prediction, Detection& finite state machine (FSM)). 
--              All branches are connected together using port 

mapping. 
--              First, the data(sample) enteres the Demux.Initially, 

the Demux passes the data to the prediction block. 
--              If the prediction block sets the output to 0, the 

selection remains 0 and predictor still works, 
--              while if the prediction block sets the output to 1, 

the selection line to the Demux becomes 1 and  
--              Detection block is turned on.The data then passed 

from the Demux to the Detection block. 
--              The detection alogrithm begins determining if there 

is a seizure or not. 
--              If the detector states that there is no seizure for 

10 windows the selection becomes 0 and the predictor 
--              turns on again and the detector goes off. 
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--              If the detector states that this window is a seizure, 

the stimulator starts, then the detection continues 
--              work again till the seizure ends and the next 10 

windows pass without seizure.after that the predictor 
--              starts to work again and so on. 
--              The FSM is the responsible for the signals that are 

sent to all the blocks. 
--              The FSM consists of 4 partitions: 
--                  1- Prediction 
--                  2- Detection - Energy 
--                  3- Detection - Coastline 
--                  4- Decision making 
--               
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 

  
entity Data_Path_V2 is 
    Port (  
              Clk : in STD_LOGIC; 
              RST : in STD_LOGIC; 
              Output: inout STD_LOGIC :='0' 
             ); 
end Data_Path_V2; 

  
architecture Behavioral of Data_Path_V2 is 

  

  
constant energy_threshold1 : integer := 10;  -- 

Counter_Threshold_Energy 
constant energy_threshold2 : integer := 2000; -- 

Amplitude_Threshold_Energy 
constant coastline_threshold1 : integer := 15000; -- 

Amplitude_Threshold_Coastline 
constant coastline_threshold2 : integer := 5; -- 

Counter_Threshold_Coastline 
constant Threshold_Counter : integer := 3; --Pediction Counter 

Threshold 
constant Threshold_low : integer := 1; -- Low prediction Threshold 
constant Threshold_mid : integer := 2; -- Medium prediction Threshold 
constant Threshold_high : integer := 3; -- High prediction Threshold 

  

  
component prediction_block is 
    Port ( Input : in  integer; 
              Clk : in STD_LOGIC; 
              Clk2 : in STD_LOGIC; 
              RST_counter : in STD_LOGIC; 
              RST_adder : in STD_LOGIC; 
              RST2 : in STD_LOGIC; 
              AdderEnable : in STD_LOGIC; -- to enable summation 

process 
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              CounterEnable : in STD_LOGIC; -- to enable counter to 

count 
              RE_Comparator : in  STD_LOGIC; -- to enable data to 

comes out from the reg to the comparator 
              Comparator_Threshold : in integer; 
              Trigger_Counter : out STD_LOGIC; 
              RST_Output : in STD_LOGIC; 
           Output : inout  STD_LOGIC); 
end component; 

  
component Demux is 
Port ( 
    Input : in integer; 
    Selection : in STD_LOGIC; 
    Output_Prediction : out integer; 
    Output_Detection : out integer 
    ); 
end component; 

  
component Detection_Energy is  
port (  

  
Input:in integer; 
Output:inout std_logic; 
clk: in std_logic;  
Clk2 : in STD_LOGIC; 
enableenergy: in std_logic; 
th_eng:in std_logic; 
CounterEnable : in std_logic; 
threshold1: in integer; 
threshold2: in integer; 
reset: in std_logic; 
resetcounter: in std_logic; 
Trigger_Counter : out STD_LOGIC 
); 
end component ; 

  
component Detection_Coastline is 
port (  

  
Input:in integer; 
Output:inout std_logic; 
clk: in std_logic;  
Clk2 : in STD_LOGIC; 
transferdataenable: in std_logic; 
threshold_enable : in STD_LOGIC; 
enablecoastline: in std_logic; 
CounterEnable: in std_logic; 
threshold1: in integer; 
threshold2: in integer; 
reset: in std_logic; 
resetcounter: in std_logic; 
Trigger_Counter : out STD_LOGIC 
); 

  
end component; 

  
component Adaptive_Threshold is 
    Port ( clk:in STD_LOGIC; 
              Q:in STD_LOGIC; 
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             Input_Prediction : in  STD_LOGIC; 
           Input_Seizure : in  STD_LOGIC; 
              SelectionBlocks : in STD_LOGIC; 
           Threshold : inout  integer := Threshold_mid; 
              Threshold_Counter : in  integer; 
           Threshold_low : in  integer; 
           Threshold_mid : in  integer; 
           Threshold_high : in  integer); 
end component; 

  
-- If you want to add more inputs from the text file conveted from 

Matlab 
-- chang the size of input array to the size that you want  
-- and paste the input array below  

  
TYPE Input_Array IS ARRAY (1 to 10) OF INTEGER; 
CONSTANT InArray : Input_Array := ( 
-13 , 
-13 , 
-13 , 
-8 , 
-7 , 
-6 , 
58 , 
59 , 
60 , 
63  
); 

  
----Signals for Control Unit 
signal Input,Output_for_Prediction , Output_for_Detection : integer ; 
signal Prediction_Output , Energy_Detection_Output , 

Coastline_Detection_Output : STD_LOGIC; 
signal PreDeCounter: integer := 0; 
signal clk2 : std_logic :='0'; 
signal Selection : STD_LOGIC := '0'; --DeMux 
signal Q: STD_LOGIC; --Trigger of window counter prediction 
signal Q_energy: STD_LOGIC; --Trigger of window counter energy 
signal Q_coastline: STD_LOGIC; --Trigger of window counter coastline 
signal AdderEnable_Prediction : STD_LOGIC; 
signal AdderReset_Prediction : STD_LOGIC; 
signal RegisterReset_Predicition : STD_LOGIC := '0'; 
signal CounterEnable_Prediction : STD_LOGIC; 
signal CounterEnable_Coastline : STD_LOGIC; 
signal CounterEnable_Energy : STD_LOGIC; 
signal CounterReset_Prediction : STD_LOGIC; 
signal CounterReset_Coastline : STD_LOGIC; 
signal CounterReset_Energy : STD_LOGIC; 
signal RE_Comparator : STD_LOGIC; -- prediction 
signal enableenergy: std_logic; -- energy 
signal th_eng: std_logic; -- threshold enable for energy 
signal Reset_energy_block: std_logic; -- Reset output of energy 

algorithm 
signal transferdataenable: std_logic; -- coastline 
signal enablecoastline: std_logic; -- coastline 
signal threshold_enable : std_logic; -- threshold enable for 

coastline 
signal flag_energy: std_logic; -- to know if energy has finished 
signal flag_coastline: std_logic; -- to know if coastline has 

finished 
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signal flag_prediction: std_logic; -- to know if prediction has 

finished 
signal RST_Output : STD_LOGIC; 
signal Threshold : integer; 
signal flag_clk2 :integer:=0; 

  

  
type state is 

(unintialized,reset_prediction,prediction_state_2,prediction_state_1,

division_prediction,Rsignal1,Final_Prediction_state, --prediction 
                    

reset_coastline,coastline_state_2,coastline_state_1,threshold_coastli

ne, --coastline 
                    

reset_energy,energy_state_2,energy_state_1,threshold_energy --energy 
                    );   
signal current_state_prediction, next_state_prediction: state; 
signal current_state_energy, next_state_energy: state; 
signal current_state_coastline, next_state_coastline: state; 
signal current_state_decision, next_state_decision: state; 

  
--------------------------------------------- 
signal counterCLK2 : INTEGER := 0; 

  
begin 

  
-- This process is used to generate the clock that samples the input 

(slow clock = 250 Hz)  
process (clk) 
    begin 
        if counterCLK2 < 108000 then 
        if rising_edge(clk) then 
        counterCLK2<=counterCLK2 +1; 
        end if; 
        clk2 <= '0'; 

  
        else 
        clk2 <='1'; 
        counterCLK2 <= 0; 
        end if; 
end process; 

  

  
PROCESS(clk2)  
    VARIABLE i : INTEGER := 0; 
    BEGIN 
        IF RISING_EDGE(clk2) THEN 
            i:=i+1; 
            IF(i<10) THEN -- input array size 
                Input <= InArray(i); 
            ELSE 
                Input <= 0; 
            END IF; 
        END IF; 

  
END PROCESS; 
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process(clk,RST,clk2) 
     begin 
      if (RST = '1') then 
                current_state_prediction <= reset_prediction; 
                current_state_energy <= reset_energy; 
                current_state_coastline <= reset_coastline; 
        else 
                if(clk'event and clk='1')then 
                    current_state_prediction<=next_state_prediction; 
                    current_state_energy<=next_state_energy; 
                    current_state_coastline<=next_state_coastline; 
                end if; 

                 
                if(clk2'event and clk2='1')then 
                    flag_clk2 <= flag_clk2 + 1; 
                else  
                    flag_clk2 <= 0;  
                end if; 
        end if; 
end process; 

  

  
-- PREDICTION BRANCH FSM 
process (current_state_prediction,Selection,RST,flag_clk2,Q) 
Begin 
if (Selection ='0') then 
Case current_state_prediction is 

  
When reset_prediction => 
                RST_Output <= '0'; 
                AdderEnable_Prediction <='0'; 
                CounterEnable_Prediction <='0'; 
                AdderReset_Prediction <='1'; 
                RE_Comparator <='0'; 
                CounterReset_Prediction <='1'; 
                flag_prediction <= '0'; 
                next_state_prediction <= prediction_state_1; 

                 
When prediction_state_2 => 
                RST_Output <= '0'; 
                AdderEnable_Prediction <='1'; 
                CounterEnable_Prediction <='1'; 
                AdderReset_Prediction <='0'; 
                RE_Comparator <='0'; 
                CounterReset_Prediction <='0'; 
                flag_prediction <= '0'; 
                if (RST ='0' and Q ='0') then 
                next_state_prediction <= prediction_state_1; 
                elsif (RST ='0' and Q ='1') then 
                next_state_prediction <= division_prediction; 
                end if; 

  
When prediction_state_1 => 
                RST_Output <= '0'; 
                AdderEnable_Prediction <='0'; 
                AdderReset_Prediction <='0'; 
                CounterEnable_Prediction <='0'; 
                RE_Comparator <='0'; 
                CounterReset_Prediction <='0'; 
                flag_prediction <= '0'; 
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                if (RST ='0' and Q ='0' and flag_clk2 =1) then 
                next_state_prediction <= prediction_state_2; 
                elsif (RST ='0' and Q ='1') then 
                next_state_prediction <= division_prediction; 
                else    next_state_prediction <= prediction_state_1; 
                end if; 

  

  
When division_prediction => 
                RST_Output <= '0'; 
                AdderEnable_Prediction <='0'; 
                AdderReset_Prediction <='0'; 
                CounterEnable_Prediction <='0'; 
                RE_Comparator <='0'; 
                CounterReset_Prediction <='0'; 
                flag_prediction <= '0'; 
                next_state_prediction <= Rsignal1; 

                 
When Rsignal1 => 
                RST_Output <= '0'; 
                AdderEnable_Prediction <='0'; 
                AdderReset_Prediction <='0'; 
                CounterEnable_Prediction <='0'; 
                RE_Comparator <='1'; 
                CounterReset_Prediction <='1'; 
                flag_prediction <= '0'; 
                next_state_prediction <= Final_Prediction_state; 

                 
When Final_Prediction_state => 
                RST_Output <= '1'; 
                AdderEnable_Prediction <='0'; 
                AdderReset_Prediction <='0'; 
                CounterEnable_Prediction <='0'; 
                RE_Comparator <='0'; 
                CounterReset_Prediction <='0'; 
                flag_prediction <= '1'; 
                next_state_prediction <= reset_prediction; 

                 
when others =>  next_state_prediction <= reset_prediction;           
end case; 
end if; 
end process; 

  

  

  
-- COASTLINE BRANCH FSM 
process (current_state_coastline,Selection,RST,flag_clk2,Q_coastline) 
Begin 

  
if (Selection ='1') then 
Case current_state_coastline is 

  
When reset_coastline => 
                RegisterReset_Predicition <= '0'; 
                CounterEnable_coastline <='0'; 
                CounterReset_coastline <='1'; 
                transferdataenable <='0'; 
                threshold_enable <='0'; 
                enablecoastline <='0'; 



94 

 

                flag_coastline<='0'; 
                next_state_coastline <= coastline_state_1;               

                 

                 
When coastline_state_2 => 
                RegisterReset_Predicition <= '0'; 
                CounterEnable_coastline <='1'; 
                CounterReset_coastline <='0';                
                transferdataenable <='0'; 
                threshold_enable <='0'; 
                enablecoastline <='1'; 
                flag_coastline<='0'; 
                if (RST ='0' and Q_coastline ='0') then 
                next_state_coastline <= coastline_state_1; 
                elsif (RST ='0' and Q_coastline ='1') then 
                next_state_coastline <= threshold_coastline; 
                end if; 

  
When coastline_state_1 => 
                RegisterReset_Predicition <= '0'; 
                CounterEnable_coastline <='0'; 
                CounterReset_coastline <='0';                
                transferdataenable <='0'; 
                threshold_enable <='0'; 
                enablecoastline <='0'; 
                flag_coastline<='0'; 
                if (RST ='0' and Q_coastline ='0' and flag_clk2 =1) 

then 
                transferdataenable <='1'; 
                next_state_coastline <= coastline_state_2; 
                elsif (RST ='0' and Q_coastline ='1') then 
                enablecoastline <='1'; 
                next_state_coastline <= threshold_coastline; 
                else next_state_coastline<=coastline_state_1; 
                end if; 

  
When threshold_coastline => 
                RegisterReset_Predicition <= '1'; 
                CounterEnable_coastline <='0'; 
                CounterReset_coastline <='1';    
                transferdataenable <='0'; 
                threshold_enable <='1'; 
                enablecoastline <='0'; 
                flag_coastline<='1'; 
                next_state_coastline <= reset_coastline; 

                 
when others =>       

            
                next_state_coastline <= reset_coastline;         
end case; 
end if; 
end process; 

  

  

  
-- ENERGY BRANCH FSM 
process (current_state_energy,Selection,RST,flag_clk2,Q_energy) 
Begin 
if (Selection ='1') then 
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Case current_state_energy is 

  
When reset_energy => 
                CounterEnable_energy <='0'; 
                Reset_energy_block <= '1'; 
                CounterReset_energy <='1'; 
                enableenergy<='0'; 
                flag_energy<='0'; 
                th_eng<='0'; 
                next_state_energy <= energy_state_1;                 

                 
When energy_state_2 => 
                CounterEnable_energy <='1'; 
                Reset_energy_block <= '0'; 
                CounterReset_energy <='0'; 
                enableenergy<='1'; 
                flag_energy<='0'; 
                th_eng<='0'; 
                if (RST ='0' and Q_energy ='1') then 
                next_state_energy <= threshold_energy; 
                else next_state_energy <= energy_state_1; 
                end if; 

  
When energy_state_1 => 
                CounterEnable_energy <='0'; 
                Reset_energy_block <= '0'; 
                CounterReset_energy <='0'; 
                enableenergy<='0'; 
                flag_energy<='0'; 
                th_eng<='0'; 
                if (RST ='0' and Q_energy ='0' and flag_clk2 =1) then 
                next_state_energy <= energy_state_2; 
                elsif (RST ='0' and Q_energy ='1') then 
                next_state_energy <= threshold_energy; 
                else    next_state_energy <= energy_state_1; 
                end if; 

                 

                 
When threshold_energy => 
                CounterEnable_energy <='0'; 
                Reset_energy_block <= '0'; 
                CounterReset_energy <='1'; 
                enableenergy<='0'; 
                th_eng<='1'; 
                flag_energy<='1'; 
                next_state_energy <= reset_energy; 

  

                 
when others =>next_state_energy <= reset_energy; 
end case; 
end if; 
end process; 

  

  
-- DECISION MAKING BLOCK 
process (RST,flag_coastline,flag_energy,flag_prediction) 
Begin 

  
if(Selection = '1') then 
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Output <= Energy_Detection_Output or Coastline_Detection_Output ; 

  

  
if (Energy_Detection_Output = '0' and Coastline_Detection_Output = 

'0' and flag_energy ='1' and flag_coastline ='1') then 
    PreDeCounter <= PreDeCounter + 1 ; 
elsif ((Energy_Detection_Output = '1' or Coastline_Detection_Output = 

'1') and (flag_energy ='1' or flag_coastline ='1')) then 
    PreDeCounter <= 0; 
end if; 

  

  
if (PreDeCounter = 10) then -- Window's counter & its value here is 

10, you can change it 
    PreDeCounter <= 0; 
    Selection <= '0'; 
else 
        Selection <= '1'; 
end if; 

  
else 

  
    if(flag_prediction = '1') then 
        if (Prediction_Output = '1') then 
            Selection <= '1'; 
        else 
            Selection <= '0'; 
        end if; 
    end if; 

  
end if; 
end process; 

  

  
-- PORTMAPPING  

  
Demux_data_path: Demux port map (Input , Selection , 

Output_for_Prediction , Output_for_Detection); 
Prediction: prediction_block port map (Output_for_Prediction , Clk , 

Clk2 , CounterReset_Prediction , AdderReset_Prediction , 

RegisterReset_Predicition , AdderEnable_Prediction , 

CounterEnable_Prediction , RE_Comparator , Threshold , Q , RST_Output 

,Prediction_Output); 
Threshold_Block: Adaptive_Threshold port map (clk,Q,Prediction_Output 

, Output , Selection , Threshold , Threshold_Counter , Threshold_low 

, Threshold_mid , Threshold_high); 
Energy_Detection: Detection_Energy port map (Output_for_Detection , 

Energy_Detection_Output , Clk , Clk2 , enableenergy , th_eng , 

CounterEnable_Energy , energy_threshold1 , 

energy_threshold2,Reset_energy_block  ,CounterReset_Energy , 

Q_energy); 
Coastline_Detection : Detection_Coastline port 

map(Output_for_Detection , Coastline_Detection_Output , Clk , Clk2  , 

transferdataenable , threshold_enable , enablecoastline , 

CounterEnable_Coastline , coastline_threshold1 , coastline_threshold2 

,RST ,CounterReset_Coastline, Q_coastline); 

  

  
end Behavioral; 
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F.3 DeMUX 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    19:13:12 04/30/2016  
-- Design Name:  
-- Module Name:    Demux - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
--              The Demux has a selection line that will state which 

block will work (Prediction or Detection) 
--              It passes the input to one of the two blocks only(the 

other has zeros) 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
entity Demux is 
Port ( 
    Input : in integer; 
    Selection : in STD_LOGIC; 
    Output_Prediction : out integer; 
    Output_Detection : out integer 
    ); 
end Demux; 

  
architecture Behavioral of Demux is 

  
begin 

  
Demux_process: process(Input,Selection) 
begin 

  
if (Selection = '0') then -- predictor will work and detector is off 
Output_Prediction <= Input; 
Output_Detection <= 0; 

  
elsif (Selection ='1') then ---- detector will work and predictor is 

off 
Output_Prediction <= 0; 
Output_Detection <= Input; 

  
--else 
end if; 

  
end process; 
end Behavioral; 
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F.4 Prediction_Block 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    11:57:45 04/21/2016  
-- Design Name:  
-- Module Name:    prediction_block - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
--              This module describes the prediction branch which 

consists of the adder , division and comparator 
--              blocks.in addition to a counter that indicates the 

completing of the window. 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 

  
entity prediction_block is 
    Port ( Input : in  integer; 
              Clk : in STD_LOGIC; 
              Clk2 : in STD_LOGIC; 
              RST_counter : in STD_LOGIC; 
              RST_adder : in STD_LOGIC; 
              RST2 : in STD_LOGIC; 
              AdderEnable : in STD_LOGIC; -- to enable summation 

process 
              CounterEnable : in STD_LOGIC; -- to enable counter to 

count 
              RE_Comparator : in  STD_LOGIC; -- to enable data to 

comes out from the reg to the comparator 
              Comparator_Threshold : in integer; 
              Trigger_Counter : out STD_LOGIC; 
              RST_Output : in STD_LOGIC; 
           Output : inout  STD_LOGIC); 
end prediction_block; 

  
architecture Behavioral of prediction_block is 

  
component Prediction_Adder is 
    Port ( a : in  integer; 
           b : in  integer; 
              AdderEnable : in STD_LOGIC; 
           clk: in STD_LOGIC; 
              reset: in STD_LOGIC; 
              c : out  integer); 
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end component; 

  
component window_counter is 
    Port ( clk : in  STD_LOGIC; 
           Enable : in  STD_LOGIC; 
           RST : in  STD_LOGIC; 
           Q : out  STD_LOGIC := '0'); 
end component; 

  
component Prediction_Devision is 
    Port ( Input : in  integer; 
              Trigger : in STD_LOGIC; 
              clk: in STD_LOGIC; 
           Output : out  integer); 
end component; 

  
component Prediction_Comparator is 
    Port ( Input : in  integer; 
              Threshold : in integer; 
           RE_Comparator : in  STD_LOGIC; 
              Trigger : in STD_LOGIC; 
              clk : in  STD_LOGIC; 
           Output : inout  STD_LOGIC; 
              RST2 : in  STD_LOGIC; 
              RST_Output : in STD_LOGIC 
              ); 
end component; 

  
Signal Output_Divison :  integer := 0; 
signal Input_FlipFlop  : integer := 0; 
Signal Trigger : STD_LOGIC := '0'; 

  
begin 
Adder : Prediction_Adder port map ( Input , Input_FlipFlop , 

AdderEnable , Clk , RST_adder , Input_FlipFlop ); 
WindowCounter : window_counter port map (Clk2 , CounterEnable , 

RST_counter , Trigger); 
Divison : Prediction_Devision port map ( Input_FlipFlop , Trigger , 

CLK, Output_Divison ); 
Comparator : Prediction_Comparator port map ( Output_Divison , 

Comparator_Threshold , RE_Comparator , Trigger, clk , Output , RST2 , 

RST_Output); 
Trigger_Counter <= Trigger; 
end Behavioral; 

 

 

F.4.1 Prediction_Adder 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    19:26:45 04/19/2016  
-- Design Name:  
-- Module Name:    Prediction_Adder - Behavioral  
-- Project Name:     Seizure detector and predictor 
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-- Target Devices:  
-- Tool versions:  
-- Description:  
--              Adding the new input(sample) to the previous one and 

so on till the window finishes. 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.std_logic_unsigned.all; 
use ieee.std_logic_arith.all; 

  
entity Prediction_Adder is 
    Port ( a : in  integer; 
           b : in  integer; 
              AdderEnable : in STD_LOGIC; 
           clk: in STD_LOGIC; 
              reset: in STD_LOGIC; 
              c : out  integer:= 0);       
end Prediction_Adder; 
architecture Behavioral of Prediction_Adder is 

  
begin 
Adding_process:process(clk,reset) 
begin 

  
if(reset = '1') then 
c<= 0; 
end if; 

  
if(rising_edge(clk) and (AdderEnable = '1')) then -- AdderEnable is 

used to avoid adding undesired values as the input remains on the 

wire for a long time 
c <= abs(a + b); -- Adding In rising Edge of Clock Only!!! 
end if; 
end process; 
end Behavioral; 

  

 

F.4.2 Windows_Counter 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    03:09:07 04/23/2016  
-- Design Name:  
-- Module Name:    up_counter - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
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-- Tool versions:  
-- Description:  
--              This is the most important block as it is responsible 

for the window.In other words, this block 
--              indicates whether the window is completed or not. 
--              We are working on 256 sample/second and our window is 

4 seconds so we have 1024 sample/window. 
--              Each new input is considered as a sample so after 

1024 input the window is completed. 
--              We have 2 clocks in this project.the normal clock 

which is very fast(responsible for all operations) 
--              and the other clock is responsible for entering a new 

input,this one is much slower than the normal one 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use ieee.std_logic_arith.all; 

  
entity window_counter is 
    Port ( clk : in  STD_LOGIC; 
           Enable : in  STD_LOGIC; 
           RST : in  STD_LOGIC; 
           Q : out  STD_LOGIC := '0'); 
end window_counter; 

  
architecture Behavioral of window_counter is 

  
signal temp : integer := 0; -- the counter that counter the number of 

inputs 

  
begin 

  
process (RST,clk)  
begin  
if (RST='1') then  
    temp<=0; 
    Q<='0'; 
end if; 
if (clk'event and clk='1') then -- we need an enable to control the 

counter bec. without this enable, the counter(temp) will count with 

the fast clock not with each new input and this is wrong 
        temp <= temp + 1; 
end if; 

  
if (temp = 1000) then -- 1000 is the number of samples per window as 

discussed before 
Q<='1'; -- window is completed 
end if; 

  
end process ; 

  
end Behavioral 
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F.4.3 Division_Prediction 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    20:26:00 04/19/2016  
-- Design Name:  
-- Module Name:    Prediction_Devision - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
--          Get the average of the output of the adder (after the 

window finishes). 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use ieee.std_logic_textio.all; 

  
entity Prediction_Devision is 
    Port ( Input : in  integer; 
              Trigger : in STD_LOGIC; 
              clk: in STD_LOGIC; 
           Output : out  integer:= 1 ); 
end Prediction_Devision; 

  
-- Note This Division Block will Act as Shift Register 

  
architecture Behavioral of Prediction_Devision is 

  
begin 

  
Shift_process:process(Input,clk) 
begin 

  
if (Trigger = '1') then -- to ensure that the window has been 

finished 
Output <= Input / 1000; -- we divide by the window size (256 sample * 

4 secs) 
end if; 

  

  
end Process; 

  
end Behavioral; 
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F.4.4 Prediction_Comparator 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    20:44:53 04/19/2016  
-- Design Name:  
-- Module Name:    Prediction_Comparator - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
--              The input to the comparator(the current window) 

enters in Reg1 while Reg2 contains the old window value. 
--              According to a certain equation (includes 

Reg1,Reg2&threshold) the predictor determines whether a seizure 
--              is coming or not. 
--              After the decision is taken,the value of Reg1 is 

transfered to Reg2 and the new window value will enter 
--              Reg1 and the loop begins again. 
--              When the predictor expect a coming seizure, the 

selection line to Demux becomes 1 and detector turns on. 
--              IF no seizure is expected then the predictor 

continues to work (detector is off) and selection line to 
--              Demux remains 0. 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.std_logic_unsigned.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_textio.all; 
use std.textio.all; 

  

  
entity Prediction_Comparator is 
    Port ( Input : in  integer; 
              Threshold : in integer;                
           RE_Comparator : in  STD_LOGIC; 
              Trigger : in STD_LOGIC; 
              clk : in  STD_LOGIC; 
              Output : inout  STD_LOGIC; 
              RST2 : in  STD_LOGIC; 
              RST_Output : in  STD_LOGIC 
              ); 
end Prediction_Comparator; 

  
architecture Behavioral of Prediction_Comparator is 

  
shared variable Reg1:integer:=1; 
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shared variable Reg2:integer:=1; 

  

  
begin 

  

  
Reg1_process:process(RE_Comparator , RST_Output , RST2) 
begin 

  
if RST2='1' Then 
    Reg1:=1; 
    Reg2:=1; 

  
else 

  
    if (RST_Output = '1') Then 
        output<='0'; 

  
    else 

         
        if( RE_Comparator = '1' ) then -- to control the comparator 

block (when to be on and when to be off) 
        Reg1:=Input; 

  
            if(((Reg1)>=(Threshold*Reg2)) and (Threshold>0)) Then -- 

The equation 
            output<='1'; --Expecting a seizure (detecot will turn on 

now) 
            else 

  
            output<='0'; --Expecting no seizure (predictor continues 

work and detecot still off) 
                if((Trigger = '1')) then -- to ensure that the 

transfer happens only when the window finishes. 
                Reg2:=Reg1; 
                end if; 

  
            end if; 
        end if; 

  
    end if; 
end if; 
end process; 

  
end Behavioral; 
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F.5 Adaptive_Thrreshold 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    16:11:53 05/13/2016  
-- Design Name:  
-- Module Name:    Adaptive_Threshold - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
--          Our prediction technique is adaptive which means when the 

predictor states there is no seizure for a long 
--          time,the threshold becomes lower and vice versa , if the 

predictor states there are many seizures (false after detection) 
--          the threshold becomes higher and so on. 
--          this module is responsible for changing the threshold as 

described above. 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 

  
entity Adaptive_Threshold is 
    Port ( clk:in STD_LOGIC; 
              Q:in STD_LOGIC; 
              Input_Prediction : in  STD_LOGIC; 
           Input_Seizure : in  STD_LOGIC; 
              SelectionBlocks : in STD_LOGIC; 
           Threshold : inout  integer ; 
              Threshold_Counter : in  integer; 
           Threshold_low : in  integer; 
           Threshold_mid : in  integer; 
           Threshold_high : in  integer); 
end Adaptive_Threshold; 

  
architecture Behavioral of Adaptive_Threshold is 

  
signal counterZeros : integer := 0; -- count how many window 

expecting non seizure(predictor) 
signal counterOnes : integer := 0; -- count how many window expecting 

seizure(predictor) 
signal counterDetection : integer := 0; -- count how many false 

seizure(detector , after detection finishes) 
signal Smart_Threshold : integer := Threshold_mid; --the threshold 

which will be sent to the prediction block 
begin 

  
process(Input_Prediction , Input_Seizure , SelectionBlocks , Q) 
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begin 

  
if(Q'event and Q='1')then -- when window finishes 
if (Input_Seizure = '0' and SelectionBlocks = '1') then -- false 

positive 
    counterDetection <= counterDetection + 1; 
elsif (Input_Seizure = '1' and SelectionBlocks = '1') then --true 

seizure 
    counterDetection <= 0; 
    counterZeros <= 0; 
    counterOnes <=0; 
end if; 

  
if (SelectionBlocks = '0') then -- prediction state 
if (Input_Prediction = '0' ) then -- output of predictor is zero 

(expecting no seizure) 
    counterZeros <= counterZeros + 1; 
     counterOnes <= 0; 
elsif (Input_Prediction = '1' ) then -- output of predictor is one 

(expecting seizure) 
    counterOnes <= counterOnes + 1; 
     counterZeros <= 0; 
end if; 

  
if (counterZeros >= Threshold_Counter) then 
    counterZeros <= 0; 
      counterOnes <= 0; 
      if(Smart_Threshold = Threshold_high) then 
        Smart_Threshold <= Threshold_mid; 
        Threshold <= Smart_Threshold; 
     else 
        Smart_Threshold <= Threshold_low; 
        Threshold <= Smart_Threshold; 
     end if; 

  

      
elsif ((counterOnes >= Threshold_Counter) and (counterDetection >= 

Threshold_Counter)) then 
      counterZeros <= 0; 
    counterOnes <= 0; 
    if(Smart_Threshold = Threshold_low) then 
        Smart_Threshold <= Threshold_mid; 
        Threshold <= Smart_Threshold; 
     else 
        Smart_Threshold <= Threshold_high; 
        Threshold <= Smart_Threshold; 
     end if; 
else 
Smart_Threshold <= threshold_mid; 
Threshold <= Smart_Threshold; 

  
end if; 
end if; 

  
end if; 
end process; 

  
end Behavioral; 
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F.6 Energy_Detection 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    17:13:32 04/22/2016  
-- Design Name:  
-- Module Name:    mainEnergy - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
--              This module describes the energy branch which 

consists of the energy algorithm and thresholding 
--              block.in addition to a counter that indicates the 

completing of the window. 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 

  

  
entity Detection_Energy is  
port (  

  
Input:in integer; 
Output:inout std_logic; 
clk: in std_logic; 
Clk2 : in STD_LOGIC;  
enableenergy: in std_logic; 
th_eng:in std_logic; 
CounterEnable : in std_logic; 
threshold1: in integer; 
threshold2: in integer; 
reset: in std_logic; 
resetcounter: in std_logic; 
Trigger_Counter : out STD_LOGIC 

  

  
); 
end Detection_Energy ; 

  
------------------------------- 
Architecture behavior of Detection_Energy is  

  
component Energy is 
    Port ( clk : in  STD_LOGIC; 
           reset : in  STD_LOGIC; 
           enable : in  STD_LOGIC; 
           sample : in  integer; 
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           E : inout  integer); 
end component; 

  
component EnergyThreshold is 
    PORT( clk                               :   IN    std_logic; 
        reset                             :   IN    std_logic; 
        enable                        :   IN    std_logic; 
        th_eng                        :   IN    std_logic; 
        EnergyValue                       :   IN    integer; 
        threshold_energy_1                :   IN integer;   
        threshold_energy_2                :   IN    integer; 
        classifier_E                      :   inOUT   std_logic 
        ); 
end component; 

  
component window_counter is 
    Port ( clk : in  STD_LOGIC; 
           Enable : in  STD_LOGIC; 
           RST : in  STD_LOGIC; 
           Q : out  STD_LOGIC := '0'); 
end component; 

  
signal energy_value_signal : integer := 0; 
signal Trigger: STD_LOGIC :='0'; 

  
begin 

  
U1: energy PORT MAP (clk=>clk, reset=>reset, enable=>enableenergy, 

sample=>Input, E=>energy_value_signal); 
counter: window_counter port map 

(clk2,CounterEnable,resetcounter,Trigger); 
U2: EnergyThreshold PORT MAP (clk=>clk, th_eng=>th_eng, reset=>reset, 

enable=>Trigger, EnergyValue=>energy_value_signal, 

threshold_energy_1=>threshold1, threshold_energy_2=>threshold2, 

classifier_E=>Output); 
Trigger_Counter<=Trigger; 

  

  
END behavior; 

 

F.6.1 Energy_Block 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    17:09:39 04/22/2016  
-- Design Name:  
-- Module Name:    energy - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description: 
--          The energy algorithm is that the coming input(sample) is 

squared then add the resulted value to the previous  
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--          one and so on.Then the loop begins again till the window 

ends.  
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.numeric_std.ALL; 
use ieee.std_logic_unsigned.all; 
use ieee.std_logic_signed.all; 
use ieee.std_logic_arith.all; 

  
-- Uncomment the following library declaration if using 
-- arithmetic functions with Signed or Unsigned values 
--use IEEE.NUMERIC_STD.ALL; 

  
-- Uncomment the following library declaration if instantiating 
-- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 

  
entity Energy is 
    Port ( clk : in  STD_LOGIC; 
           reset : in  STD_LOGIC; 
           enable : in  STD_LOGIC; 
           sample : in  integer; 
           E : inout  integer :=0); 
end Energy; 

  
ARCHITECTURE rtl OF Energy IS 

  
  -- Signals 
  SIGNAL enb: std_logic; -- to enable energy block 
    signal mul_temp : integer; 

  
BEGIN 
  enb <= enable; 
  EnergyAvg_1_output : PROCESS (sample,clk,reset) 
  BEGIN 
  mul_temp<=0; 
  if (reset ='1') then 
  E<=0; 
  end if; 

   
if ((enb = '1')) then     
      mul_temp <= sample * sample; -- squaring the coming input 
      E <= E + mul_temp; -- adding the result of squaring to the 

previous one 
     end if; 

  
  END PROCESS EnergyAvg_1_output; 
END rtl; 
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F.6.2 Windows_counter  

As mentioned above in appendix F.4.2. 

 

F.6.3 Energy_Threshold  

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    17:12:39 04/22/2016  
-- Design Name:  
-- Module Name:    EnergyThreshold - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
--              This module is for thresholding of the Energy 

algorithm. 
--              The energy output of a windows is compared with an 

amplitude threshold.If it is greater than 
--              this threshold, increase a counter by 1 , if not 

reset the counter. 
--              The counter is compared with another threshold.The 

threshold is set by how many successive windows 
--              have a coastline output greater than the amplitude 

threshold. 
--              If the counter becomes greater than the second 

threshold this indicates the presence of a seizure. 
--              The TWO thresholds are determined by multiple 

simulations on matlab and they are patient specific. 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use ieee.std_logic_unsigned.ALL; 
use ieee.std_logic_textio.all; 
use std.textio.all; 
-- Uncomment the following library declaration if using 
-- arithmetic functions with Signed or Unsigned values 
--use IEEE.NUMERIC_STD.ALL; 

  
-- Uncomment the following library declaration if instantiating 
-- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 

  
ENTITY EnergyThreshold IS 
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  PORT( clk                               :   IN    std_logic; 
        reset                             :   IN    std_logic; 
        enable                        :   IN    std_logic; 
        th_eng                        :   IN    std_logic; 
        EnergyValue                       :   IN    integer;   
        threshold_energy_1                :   IN integer;   
        threshold_energy_2                :   IN    integer;   
        classifier_E                      :   inOUT   std_logic :='0'  
        ); 
END EnergyThreshold; 

  
ARCHITECTURE rtl OF EnergyThreshold IS 

  
  -- Signals 
  SIGNAL enb                              : std_logic; 
signal counter : integer :=0 ; 
signal AvgEnergyValue : integer :=0 ;  
signal Write_counter : integer := 0; 
signal Write_counter2 : integer := 0; 

  
BEGIN 
  enb <= enable; -- if enb = 1 this means the window is completed 
  EnergyThreshold_1_output : PROCESS (reset,enb,th_eng) 
 

  BEGIN 

  

  
AvgEnergyValue <= EnergyValue / 1000; -- to get average value of the 

window 

  
if (enable ='1' and th_eng='1') then  -- to enable threshold 

block(th_eng signal comes from FSM) 

      
     IF AvgEnergyValue >= threshold_energy_2 THEN -- the comparison 

with the amplitude threshold 
        counter <= counter + 1; 
     ELSE  
        counter <= 0; 
    END IF; 

     
    IF counter >= threshold_energy_1 THEN -- the comparison with the 

second threshold 
      classifier_E <= '1'; 

  
    ELSE  
      classifier_E <= '0'; 
    END IF; 

      
end if; 
  END PROCESS EnergyThreshold_1_output; 

  
END rtl; 
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F.7 Coastline_Detection 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    17:36:01 04/30/2016  
-- Design Name:  
-- Module Name:    mainCoastLine - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
--              This module describes the coastline branch which 

consists of the coastline algorithm and thresholding 
--              block.in addition to a counter that indicates the 

completing of the window. 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 

  
-- Uncomment the following library declaration if using 
-- arithmetic functions with Signed or Unsigned values 
--use IEEE.NUMERIC_STD.ALL; 

  
-- Uncomment the following library declaration if instantiating 
-- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 

  
entity Detection_Coastline is 
port (  

  
Input:in integer; 
Output:inout std_logic; 
clk: in std_logic;  
Clk2 : in STD_LOGIC; 
transferdataenable: in std_logic; 
threshold_enable : in STD_LOGIC; 
enablecoastline: in std_logic; 
CounterEnable: in std_logic; 
threshold1: in integer; 
threshold2: in integer; 
reset: in std_logic; 
resetcounter: in std_logic; 
Trigger_Counter : out STD_LOGIC 
); 

  
end entity; 
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------------------------ 
architecture Behavioral of Detection_Coastline is 

  
component CoastlineAlgorithm is 

   
  Port ( Input : in  integer; 
            CL_Value : out integer; 
           enablecoastline : in  STD_LOGIC; 
              transferData : in STD_LOGIC; 
              clk : in  STD_LOGIC; 
              RST : in  STD_LOGIC 
              ); 

  
end component; 

  

  
component Thresholding IS 
  PORT( clk                               :   IN    std_logic; 
        reset                             :   IN    std_logic; 
        enable                        :   IN    std_logic; 
          threshold_enable                   :  IN std_logic; 
        CoastLineValue                       :   IN    integer;  -- 

double 
        threshold_coastline_1                :   IN integer;  -- 

double1 
        threshold_coastline_2                :   IN    integer;  -- 

double 
        classifier_CL                     :   inOUT   std_logic -- 

double 
        ); 
END component; 

  
component window_counter is 
    Port ( clk : in  STD_LOGIC; 
           Enable : in  STD_LOGIC; 
           RST : in  STD_LOGIC; 
           Q : out  STD_LOGIC := '0'); 
end component; 

  
signal coastline_value_signal : integer := 0; 
signal adder_value : integer := 0; 
signal Trigger : std_logic := '0'; 

  
begin 

  
U1: CoastlineAlgorithm PORT MAP (clk=>clk, RST=>resetcounter, 

Input=>Input, CL_Value=>coastline_value_signal, 

transferData=>transferdataenable, enablecoastline=>enablecoastline); 
Counter: window_counter port map 

(clk2,CounterEnable,resetcounter,Trigger); 
U3: Thresholding PORT MAP(clk=>clk, reset=>reset, 

threshold_enable=>threshold_enable, enable=>Trigger, 

CoastLineValue=>coastline_value_signal, 

threshold_coastline_1=>threshold1, threshold_coastline_2=>threshold2, 

classifier_CL=>Output); 
Trigger_Counter <= Trigger; 

  
end Behavioral; 
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F.7.1 Coastline_Block 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    17:59:53 04/30/2016  
-- Design Name:  
-- Module Name:    CoastlineAlgorithm - Behavioral  
-- Project Name:   Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
--          We have in this module 2 registers (Reg1,Reg2). The 

coastline algotithm is to subtract the values in 
--          Reg1 and Reg2 then add the resulted value to the previous 

one and so on. 
--          After subtracting and adding the value in Reg2 is 

transfered to Reg1 and the new input will transfer 
--          to Reg2.Then the loop begins again till the window ends. 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 

  
use IEEE.NUMERIC_STD.ALL; 

  
-- Uncomment the following library declaration if instantiating 
-- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 

  
entity CoastlineAlgorithm is 

   
  Port ( Input : in  integer; 
            CL_Value : out integer; 
           enablecoastline : in  STD_LOGIC; 
              transferData : in STD_LOGIC; 
              clk : in  STD_LOGIC; 
              RST : in  STD_LOGIC 
              ); 

  
end CoastlineAlgorithm; 

  
architecture Behavioral of CoastlineAlgorithm is 

  
signal Reg1:integer := 0; 
signal Reg2:integer := 0; 
signal Coastline_value : integer := 0; 
begin 
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RST_Process:process(RST,clk) 
begin 
---------------------------------------------------------------------

------------------------ 
-- IF RST = 1 , the registers & coastline value (the value resulted 

from registers' subtraction are cleared) -- 
    if RST='1' Then 
    Reg1<=0; 
    Reg2<=0; 
    Coastline_value<=0; 
    end if; 

     
if(enablecoastline = '1' ) then  -- allows coastline algorithm to 

begin.this signal comes from FSM 

  
Reg2<=Input; -- input in Reg2 
Coastline_value <=  Coastline_value + abs(Reg2-Reg1); -- subtracting 

and adding 
CL_Value <= Coastline_value; -- put the result in the output 
end if; 

  
if((transferData = '1')) then -- responsible for transfering the data 

from Reg2 to Reg1 and comes from FSM 
Reg1<=Reg2; 
end if; 

  
end process; 

  
end Behavioral; 

 

 

F.7.2 Windows_counter  

As mentioned above in appendix F.4.2. 

 

 

F.7.3 Coastline_Threshold 

---------------------------------------------------------------------

------------- 
-- Company:  
-- Engineer: Ahmed Yasser - Al Moataz Bellah Refeat - Taha Shawky - 

Kareem Ayman - Mohamed Mahmoud Kamal - Mohamed Moustafa Abd El Rahman 
--  
-- Create Date:    19:59:19 04/30/2016  
-- Design Name:  
-- Module Name:    Thresholding - Behavioral  
-- Project Name:     Seizure detector and predictor 
-- Target Devices:  
-- Tool versions:  
-- Description:  
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--              This module is for thresholding of the Coastline 

algorithm. 
--              The coastline output of a windows is compared with an 

amplitude threshold.If it is greater than 
--              this threshold, increase a counter by 1 , if not 

reset the counter. 
--              The counter is compared with another threshold.The 

threshold is set by how many successive windows 
--              have a coastline output greater than the amplitude 

threshold. 
--              If the counter becomes greater than the second 

threshold this indicates the presence of a seizure. 
--              The TWO thresholds are determined by multiple 

simulations on matlab and they are patient specific. 
-- 
-- Dependencies:  
-- 
-- Revision:  
-- Revision 0.01 - File Created 
-- Additional Comments:  
-- 
---------------------------------------------------------------------

------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use ieee.std_logic_textio.all; 
use std.textio.all; 

  
-- Uncomment the following library declaration if using 
-- arithmetic functions with Signed or Unsigned values 
--use IEEE.NUMERIC_STD.ALL; 

  
-- Uncomment the following library declaration if instantiating 
-- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 

  
ENTITY Thresholding IS 
  PORT( clk:   IN    std_logic; 
        reset :   IN    std_logic; 
        enable:   IN    std_logic;  

  threshold_enable:   IN    std_logic; 
      CoastLineValue:   IN    integer;  

threshold_coastline_1  :   IN integer;              

threshold_coastline_2  :   IN    integer;          

classifier_CL  :   inOUT   std_logic := „0‟       ); 
END Thresholding; 

  

  
ARCHITECTURE rtl OF Thresholding IS 

  
  -- Signals 
  SIGNAL enb                              : std_logic; 

  
SIGNAL counter : integer :=0 ; -- Counter to count the number of 

successive windows have coastline values greater than the amplitude 

threshold 
BEGIN 
  enb <= enable; -- if enb = 1 this means the window is completed  
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  CoastlineThreshold_output : PROCESS (CoastLineValue,clk,reset) 

     
  BEGIN 

   
  if (reset ='1') then 

   
  counter <= 0; 
  classifier_CL <='0'; 
  end if; 

  

  
if (enb = '1' and threshold_enable= '1') then    -- to enable 

threshold block(threshold_enable signal comes from FSM) 

  
    IF CoastLineValue >= threshold_coastline_1 THEN -- the comparison 

with the amplitude threshold 
        counter <= counter + 1; 
    ELSE  
        counter <= 0; 

  
    END IF; 

     
    IF counter >= threshold_coastline_2 THEN -- the comparison with 

the second threshold 
      classifier_CL <= '1'; 
    ELSE  
      classifier_CL <= '0'; 
    END IF; 

      
end if; 
  END PROCESS CoastlineThreshold_output; 

  
END rtl; 

  

 

 

F.8 pin.ucf file 

 
NET CLK  LOC="AB13"; //To generate the 27 MHz master clock that is 

downsampled to get the low sampling frequnecy (250 Hz) 
NET RST  LOC="F3"; //Push Button to reset the code  

 

 

 

 

 

 

  


