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Abstract

Implantable Seizure Detector & Predictor

Neural disorders such as epilepsy are caused by malfunctioning nerve cell
activity in the brain. These malfunctions cause episodes called seizures. Epilepsy hits
more than 65 million people worldwide; nearly 80% of cases occur in developing
countries. Over a lifetime, 1 in 26 people will be diagnosed with epilepsy. Seizures
can cause a range of symptoms from momentarily staring blankly to loss of
consciousness and uncontrollable twitching. Some seizures can be milder than others,
but even minor seizures can be dangerous if they occur during activities like
swimming or even driving. Epilepsy is not fully cured yet. In some cases, seizures do
not respond to medication, also patients become drug resistive after five years

maximum. Thus, neuro-stimulation should be considered.

Hereby, this project is addressing helping these people to live normal life again by
predicting & detecting the seizures to overcome their effect.

The project outcome will be simulations of these prediction & detection algorithms on
Matlab. Following that, a complete synthesizable behavioral design written with
VHDL will be tested on FPGA Spartan-6 kit. The next phase should be a complete
ASIC (Application Specific Integrated Circuit) design that will be conducted to
produce a test chip that contains the implemented algorithms.
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Chapter 1: Introduction

Epilepsy is a neurological disorder of the brain that more than 65 million people
globally suffer from. According to the World Health Organization (WHO), epilepsy is
characterized by recurrent seizures, which are physical reactions to sudden, usually
brief, excessive electrical discharges in a group of brain cells. Uncontrolled attacks

can put patients at risk of suffering oro-facial trauma.

The data flow diagram of seizure detection system consists of several blocks as shown
in Figure 1. Data acquisition block is responsible for passing the input Intracranial
Electroencephalography (iEEG) signal with fixed rate to the following blocks. The
feature extraction block is responsible for calculating specific features for IEEG input
signal on different domains. The classifier block is responsible of monitoring the
features to make sure that the condition of the seizure is not valid. When it is valid,
the decision making block take the final call as this block gets input from each feature

and classifier.

isiti Feature Decision
Data acquisition ; - N >
& preprocessing Extraction »| Classifier Making

A 4

Fig. 1. Data flow diagram of the seizure detection system.

1.1 Historical Background

Thousands of years ago, ancient civilizations were mystified by the epileptic
condition. Ancient Greeks thought that one got epilepsy by offending the moon
goddess Selene. Ancient Romans believed that epilepsy came from the demons.
Ancient Babylonians thought similarly, but that different spirits caused the different
types of seizures. All came up with their own explanations as to who or what the

cause was because none of them could comprehend it.

In 400 BC, Hippocrates, the “Father of Medicine”, wrote On the Sacred Disease,
where he refuted the idea that epilepsy was a curse or prophetic power:

“It is thus with regard to the disease called Sacred: It appears to me to

1



be nowise more divine nor more sacred than other diseases, but has a

natural cause like other affections.”

The word “epilepsy” is derived from the Greek “epilepsia”, which means, “to
take hold of” or “to seize”. The first documented incidence of epilepsy was more than
3,000 years ago in ancient Babylonia, where the condition was referred to
as “miqtu”. In both Ancient Greece and Babylonia, people saw epilepsy as a

supernatural, but perhaps holy phenomenon.

Epilepsy has been viewed differently by various cultures. During World War I,
the Nazi Eugenics Laws mandated that persons with epilepsy must be sterilized.
Epileptics were highly discriminated against and treated very differently than

the average person. In fact, this type of discrimination still exists in today’s society.

In modern-day Africa, people with epilepsy are finding it difficult to cope with
the social consequences of the disorder as well as the exclusion from education and
employment. This is further compounded by the fact that a large proportion of
people there with epilepsy are not taking Anti-Epileptic Drugs (AEDs). The lack
of health services makes it very difficult for people with epilepsy to be a functional

part of society.

Discrimination is equally present in western culture as well. Up until 1980,
various states in America forbade epileptics to marry. The Americans with
Disabilities Act of 1990 made it illegal to discriminate against people with epilepsy
in the workplace. Those whose seizures can be effectively controlled are not
considered disabled under the act. The ability to predict and control seizure activity
would dramatically improve the lifestyle of people with epilepsy, hence the

motivation of this research.

1.2 Epilepsy Today

Epilepsy is classified as the second most serious neurological condition known
to man after stroke. It affects nearly 65 million people around the world, which is
approximately 1% of the world’s population. As many as one out of ten people will
have a seizure sometime during their lives, but the majority will not have epilepsy
as the underlying cause of the convulsions lie outside the brain. Approximately



one in 50 people will have some form of epilepsy at some point in their life. About
75 people are diagnosed with epilepsy every day. Only about 3-5% of people with
epilepsy will be affected by flashing lights (photosensitive epilepsy). It’s a common
misconception that all epileptics are affected by quick visual stimuli; this is actually
quite uncommon. Only about two out of 10,000 people in the general population

have this condition.

At the present time, it is estimated that from 1.5 to 2 million people in the
United States alone have an active form of epilepsy. Today, there are many
people living with epilepsy whose lives have been greatly improved by modern
science. In fact, many people who have had epilepsy have also been able to have
successful careers or become very famous. Alfred Nobel, founder of the Nobel
Prize and the inventor of dynamite, had epilepsy. Other famous/well-known people
with epilepsy include Fyodor Dostoevsk, Neil Young, George Gerswhin, Philip K.
Dick, Napoleon I, and Joan of Arc. These people, and many others, give the word

"disability’ a different meaning.

1.3 Epileptic Seizure Prediction

One of the most debilitating aspects of epilepsy is the lack of warning before a
seizure occurs. As a result, common day to day tasks such as driving or using
a knife become much more hazardous. In some patients, seizures occur hundreds
of times a day, but they can also be as infrequent as once every few years. These
limitations can have a debilitating effect on quality of life, and hinder basic everyday
activities.

The ability to predict seizures could lead the way to novel diagnostic and therapeutic
methods for the treatment of patients with epilepsy. Real-time prediction of epileptic
state transitions and early onset prediction provide time to administer preventive
interventions possibly terminating the seizure before it happens. Also, a lead-time
could give epileptic patients enough time to remove themselves from harms away. It
would give them the ability to do things that people without epilepsy take for granted
as they will already know that they are not facing any seizures for a while, which is

the lead-time period.



1.4 Goal: Epileptic Seizure Control

Once a robust seizure prediction algorithm is in place, a device that could
somehow control the seizure would be possible. An implanted system that activates a
mini-AED delivery system to deliver the medications directly into the epileptogenic
focus or activate a stimulator would be feasible. A so-called “brain pacemaker” which
appropriately stimulates the vagus nerve at the predicted onset time could also reduce
the frequency and ferocity of epileptic seizures. However, if the true prediction rate is
too high and the false prediction rate is too low, these medications and therapeutic
treatments would be administered too often. This would result in a whole slew of
clinical side-effects, most of which would be neuropsychological. A careful balance
of all the influential parameters is required for the optimal automated seizure
prediction algorithm which would put us on the path to the ultimate goal: Seizure

Control.

1.5 Organization

In Chapter 1, a brief introduction to the problem is given, and the goals of this

thesis are provided.

Chapter 2 provides some information on the epileptic condition
as well as some information on IEEG signals in  relation
to epilepsy. An overview of the time series analysis techniques is given. Also, a

literature review of the current progress in the field of seizure detection is presented.

Chapter 3 outlines the proposed system for seizure state prediction. Also presented
here are some new methods and algorithms that were created during the
course of this research to contribute to the field of seizure prediction.
Chapter 4 discusses the results of the seizure prediction algorithms that were
proposed in Chapter 3. The optimized feature set is presented for different types
of IEEG signals, and the strength of the dynamic real-time classification system is
discussed.

Chapter 5 summarizes the conclusions of this research and provides a discussion
about the research methods. Possible ways to improve the results and algorithms

are given as possible future work.



Chapter 2: Background

This chapter gives an overview of epilepsy and provides its relation to iIEEG
signals. The different states of a seizure are provided along with a discussion about
the brain waves during each period. In the following section, all of the numerical
methods that were implemented in the system are provided.

2.1 The Neurological Condition: Epilepsy

Epilepsy is a serious neurological disorder characterized by recurrent
unprovoked seizures due to abnormal or excessive neuronal activity in the brain. This
condition is characterized by chronic abnormal bursts of electrical spikes in the brain.
The region of seizure generating tissue, known as the epileptogenic focus, can be the
result of structural abnormalities in the brain which may or may not be genetic. In
cases where the cause is known, the epileptic condition is referred to as symptomatic
epilepsy. In cases where there is no identifiable cause, but by deduction a genetic
basis is presumed, the condition is referred to as idiopathic epilepsy. Cases that

don’t fit into either of these two categories are considered to be cryptogenic epilepsy.

Epileptic seizures are characterized by uncontrollable movements such as shaking of
the arms or legs, known as convulsions. Some may lose consciousness, which
may consist of a complete collapse or the patient simply gazing into space. Fainting
spells with incontinence, followed by excessive fatigue, is common in more serious
types of seizures. Distorted perceptions, odd sounds, and sudden feelings of fear
for no apparent reason are characteristic of the “aura”, which is felt just prior to
the seizure. These “auras” can happen anywhere from a day before the seizure to
just a few seconds prior. A select few can predict that they will have a seizure by

themselves just by understanding the “aura”.

Seizures are usually treated with medications known as Anti-Epileptic Drugs
(AEDSs). AEDs attempt to stop the occurrence of seizures, but do not serve as a cure
for epilepsy. With the correct AEDs, approximately 70% of people with epilepsy
could have their seizures controlled or stopped for maximum time of five years. For

people who cannot control their seizures with AEDs, epileptic surgery is quite



common. This type of surgery involves the resection of sections of the brain that
comprise the epileptogenic focus. It has been shown to greatly reduce the severity of
epileptic seizures in patients, or in some cases, stop them completely. Vagus Nerve
Stimulation (VNS) is a treatment of epilepsy which attenuates seizure frequency,
severity, and duration by chronic intermittent stimulation of the vagus nerve. It is
intended for use as an adjunctive treatment with AED medications. The patient is
implanted with a VNS therapy system which directly stimulates the vagus nerve at

predetermined time intervals.

2.2 Epilepsy & iEEG signals

IEEG is a recording of the electrical activity in the brain at different frequencies.
It was first developed in 1924 by Hans Berger, a German psychiatrist, who revealed
the practical and diagnostic use of this test. Special sensors are placed strategically
around the head that are connected to a machine which records the electrical impulses,
either on screen or on paper. Trained neurologists are able to look at the different
frequencies in the iEEG and recognize patterns in it which provide information about

the epileptic condition.

2.2.1 Brain Waves
Raw IEEG signals are usually described in terms of the four basic brain waves:
Alpha [7.5-13] Hz, Beta [13-30] Hz, Delta [0-3.5] Hz, and Theta [3.5-7.5] Hz. These

bands represent the most prominent activity in the brain.
Alpha Waves

Alpha waves are comprised of brain signals of the frequency range [7.5-13] Hz.
Healthy alpha waves promote mental resourcefulness, aid in the ability to mentally
coordinate, and enhance the overall sense of relaxation and fatigue. With healthy

alpha waves, one can move quickly and efficiently to accomplish tasks at hand.

Alpha waves appear to bridge the conscious and subconscious mind and are quite
prominent in normal relaxed adults. It is present throughout most of an individual’s
life, but specially beyond the 13th year when it dominates the resting tracing

(normal IEEG tracings).



The most important recorded wave in a normal adult iEEG is the occipital alpha
waves, which are best obtained from the back of the head when the subject is resting
quietly with the eyes closed, but not asleep. Interference in this band can be caused by
opening the eyes or excitement. These waves are blocked by both excitement or by

opening the eyes.
Beta Waves

Beta waves are considered “fast” brain activity (above 13Hz). These waves are
seen on both sides of the brain in a symmetrical distribution and are most evident in
the frontal region of the brain. This band may be absent or reduced in areas with
cortical damage. It is generally the normal rhythm in those who are alert, anxious, or

who have their eyes open.
Delta Waves

Delta waves are comprised of the lowest frequencies in the brain, specifically from [0-
3.5] Hz. They usually occur in the deep sleep state and in some abnormal processes
in the brain. These waves are the dominant rhythm in infants up to one year of
age and are present in stages Ill and IV of sleep. The delta band tends to be the
highest in amplitude and also the slowest of the waves. Increasing delta waves mean
a decrease in our awareness of the physical world, which is a characteristic property
of seizure activity. Our unconscious mind is also represented through delta waves.
Peak performers decrease their Delta waves when high focus and peak performance

are required.
Theta Waves

Theta activity is classified as rhythmic, slow waves from the frequency range of
[3.5-7.5] Hz. It has connection with creativity, intuition, learning, daydreaming,
fantasizing, and is a repository for memories, emotions, and sensations. The presence
of these waves reflects the state between wakefulness and sleep. Theta waves
are abnormal in awaken adults, but are perfectly normal in children up to 13 years
old and during sleep. Theta waves are also observed during anxiety, pain, behavioral
activation, and behavioral inhibition. The appearance of excess Theta waves

is an indicator of abnormalities in the brain.



2.2.2 Epileptic States
The different stages of an epileptic seizure are referred to as ictal states. These
states represent the different stages of an epileptic seizure in its most general sense.

1) Interictal State

The interictal state refers to the normal resting state containing no seizure activity,
but the IEEG is still characterized by the epileptic condition (irregular neuronal
activity). Given the possibility of seizures, the chronic interictal period is interesting
because of the presence of natural homeostatic mechanisms that prevent seizure
generation. It is unsure which factors or mechanisms try to maintain homeostasis
in the brain, and it is also unsure if these mechanisms differ for various types of
seizures and epileptic syndromes. This period comprises more than 99% of patients’
lives. In this way, the interictal period can be used by neurologists to diagnose an
epileptic condition. The IEEG tracings would normally exhibit small spikes and
other abnormalities known by neurologists as subclinical seizures. These are not

real seizures, but rather little hints from the brain that something is abnormal.
2) Preictal State [Seizure Onset]

The preictal state refers to a period of time occurring before a seizure, but does
not refer to the normal state of the brain. This state defines that a seizure is going
to occur within a certain period of time. The presence of a preictal period is
still being debated by several researchers. Lehnertz and Litt state that in some
conditions, the transition can take a considerable amount of time, opening the
potential for the application of electrophysiological techniques to predict seizure

onset anywhere from minutes to hours before occurrence.

Onset of a clinical seizure is defined as the time at which the transition between
the interictal and preictal state occurs. It is characterized by a sudden change in the
frequency characteristics of the iEEG. The alpha band has a tendency to decrease
in frequency and increase in amplitude. The transition from the preictal to the
ictal state, for a focal epileptic seizure, consists of a gradual change from chaotic
to ordered waveforms. In each type of epilepsy, the transitional period may differ,

and the transition can have significantly different characteristics.



3) Ictal State to Seizure Termination

The period of time during which the seizure is in its activation period is referred to
as the ictal state. It is characterized by an IEEG tracing that exhibits significantly
higher amplitudes and frequencies. There is an immediate alteration in
synchronization and rhythmicity that takes place across widespread areas of the
cerebral cortex. The patterns that are normally seen throughout the resting tracing
suddenly become extremely erratic and unpredictable. Loss of consciousness and
involuntary muscle twitching during this period is very common. Other symptoms
such as incontinence are also common during this state. The patient typically has

no control over their body at this point and convulsions tend to be prominent.
4) Postictal State

The end of an epileptic seizure represents a transition from the ictal state back to an
individual’s normal or interictal state. This is referred to as the postictal state and
signifies the recovery period of the brain. Focal or generalized neurological deficit,
ranging from postictal depression to aphasia or paralysis is prevalent during this
state. This period is associated with a difficulty in thinking clearly and a variety
of other cognitive defects. The postictal state could last from seconds to hours
depending on the severity of the seizure and the efficacy of the AEDs. Disturbances
or aftershocks are seen in the IEEG, which may just be the presence of natural

mechanisms acting to terminate the seizure and restore homeostasis.

Often postictal deficits are a consequence of the natural mechanisms that act
to terminate a seizure suggesting that interventions designed to exploit these same

homeostatic events could exacerbate postictal dysfunction.

Attention and concentration is generally very difficult during this period. Poor
short term memory and decreased verbal and interactive skills are noticeable. Postictal
migraine headaches are very common due to the pressure resulting from cerebral
edema. At this point, patients are unaware that they have had a seizure, but these

symptoms are evidence enough for an experienced epileptic.



2.3 Time Series Analysis

A time series is an ordered sequence of values of a variable at equally spaced
time intervals. Time series analysis is comprised of methods that attempt to identify
the nature of a phenomenon represented by a sequence of observations. This requires
that patterns of observed time series data are properly identified and mathematically
described.

2.3.1 Sampling
Sampling is the operation of transforming a time signal from the continuous to
the discrete time domain. Let X,(t) be a continuous-time signal that is sampled

uniformly at t = nT, generating the sequence x[n] where
X[n] = Xa(nT),n=0,1,2,3,... (2.1)

with T being the sampling period. The reciprocal of T is referred to as the
sampling frequency fs. In order to reconstruct the original signal completely and
accurately, the Nyquist-Shannon Sampling theorem must be adhered to. This theorem
states that a band-limited signal can be reconstructed perfectly from the discrete
sampled signal given that the sampling rate is more than twice the frequency.
Therefore, the frequency that is half of the sampling rate fs, also known
as the folding frequency or the Nyquist frequency, is the highest frequency that can be
represented in a sampled signal without being affected by aliasing or under-sampling.
In equation (2.2), also known as the Nyquist Condition, the Nyquist

frequency is denoted as Q.
Q7 >2Qn, where Qr = 27/T (2.2)

“Aliasing” is the phenomenon in which high-frequency components of a function of
time can translate into low frequencies if the sampling rate is too low. Thus, any
component in x(t) higher than the folding frequency is aliased (or folded) into the
frequencies that are below the folding frequency. Figure 2.1 illustrates the effects of

aliasing.
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Figure 2.1: Effects of aliasing on a discretely sampled signal.

As seen in Figure 2.1, the reconstructed signal contains frequencies that are
lower than those in the original signal due to aliasing. The sampled signal does not
satisfy the Nyquist Condition.

Brain waves are an example of a continuous time signal which, when sampled
with an IEEG machine, becomes a discrete time series in the form of equation (2.1).
In general, when any signal is discretely sampled, ’information’ is lost from the
resulting time series. The frequency of the sampled signal must be high enough
to preserve the frequency information from within the signal. The problem with iEEG
signals is that it is difficult to tell what the appropriate sampling frequency is because
of its unpredictable nature. According to Castellaro, most of the prominent
frequencies in IEEG signals lie between 0 and 46Hz. This means that the lowest
feasible sampling rate would be fs = 92Hz. To satisfy the Nyquist condition, all iIEEG
signals used in testing the algorithms introduced in this paper were collected at a

minimum of 250Hz —average of 256 Hz-.

2.3.2 Windowing

A window function is a function that defines a signal within a defined interval and
is zero everywhere outside. It is multiplied by the original signal to give a clearer
perspective of the signal in the frequency domain. The most basic window function is

the Rectangular Window, also known as the Dirichlet Window, stated as:
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1, —J‘II 2 n 2 J‘II.
wg(n] = (2.3)
0, otherwise.

IEEG signals cannot be classified at every discrete point collected in an iEEG signal.
There is just not enough information at each time point. The system must be given a
window of the signal with enough information to make a sensible judgement about
the state of the signal at each moment in time. The length of the window must also be
at least the Nyquist rate or else it will not be able to recognize the relevant frequencies
that are present. But it is also unclear how much of the signal is necessary to give the
system enough information to properly identify classes within the signal. iEEG
signals tend to be arbitrary by nature, and with some epileptic states, the frequency
component of the signal can vary with time depending on the severity of the
condition. During the ictal period, the frequency components of an IEEG signal
become extremely erratic and unpredictable. Due to this irregularity, a rectangular

window is more appropriate for frequency analysis of these signals.
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Chapter 3: Seizure Detection Features

In this chapter, we are discussing the different features that can be used to detect
an epileptic seizure. The features mentioned in this chapter belong either to time

domain or wavelet domain.

Detection algorithms employ mathematical operations on recorded data to demarcate
them into baseline and non-baseline (seizure) states. These mathematical operators
maybe linear or non-linear features extracted from the raw data that help enhance the

boundary of demarcation.

3.1 Time Domain Features

3.1.1 Energy
This feature reflects the instantaneous power of the signal. A sliding rectangular
window is used to calculate the instantaneous energy as described in equations (3.1)

and (3.2).

E[i] = x2(i) (3.1)

2|

Epvglk] = Z EGi+ (k—1) x N) (3.2)

In equations (3.1) and (3.2) and from this point forward, x(i) refers to the
i" sample of data given by the vector ‘x’ ,and ‘k’ represents the window number of
size ‘N’. An average of the instantaneous energy is obtained using a rectangular

window to sum the energies as shown in equation (3.2).
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3.1.2 Coastline

The coastline feature represents the sum of the absolute value of the distance between

consecutive data points; it can be described by equation (3.3).

N
CL(k) = Z abs|x[i+ (k=1 XN —x[i—1+ (k=1 xN]|  (3.3)
i=1
It is to be noted that the line length feature is an adaptation of the original fractal
dimensionality index that proposed by Michael J. Katz at 1988 and it is analogous to
the described feature. The Neuropace responsive stimulation device employs line

length as one of the tools in its detection algorithm.
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Figure 3.2: Seizure representation using coastline feature

3.1.3 Hjorth Variance Parameter

Hjorth parameters have been used extensively on iEEG based statistical calculations.

The first parameter is termed as ‘activity’ and is equal to the variance of the signal

amplitude.
Varlk] = + x ZI,(xli + (k — 1) X N] — )?
=~ x T x?[i+ (e — 1) X N] — i} (3.4)
e = ~ X XNy xli+ (k= 1) X N] (3.5)

In equations (3.4) and (3.5), the variance of a window of N samples is calculated and
averaged to obtain the mean variance. ‘k’ represents the mean of the k™ window of
data.
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3.1.4 RMS Amplitude

The root mean squared amplitude represents the average instantaneous power of the
signal. The cerebral function monitor is a widely used tool in detection of seizures.

The RMS amplitude is analogous to the amplitude integrated iEEG used by the CFM.

N
Alk] = % x sz[i+ (k= 1) X N] (3.6)

i=1

By definition, the RMS amplitude is similar to the energy estimate and can be defined
by equation (3.6), and we picked these features to study the effect of combining

mathematically similar detection features on the overall algorithm efficacy.

Figure 3.3: Seizure representation using RMS amplitude feature

3.1.5 Non-linear Autocorrelation

The autocorrelation definition is a value that represents the similarity between a signal

and a shifted version of itself. This feature is used in an algorithm that is based on the
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observation that all seizures can be identified by a repetitive spiking pattern with
similar maxima and minima.

A set of 1024 samples (window of 4 seconds with sampling rate equals 256
samples/second) is taken. Then these points are reshaped into 16 columns and 64
rows, the maximum and minimum values for each row are computed. Autocorrelation
is the difference between the maximum and the minimum value of each row with its
shifted version. So, autocorrelation matrix consists of 64 (16*4) points.

By plotting this matrix, each column represents the point and its shifted versions in
time. If there are similarities between the autocorrelation graphs this means the

seizure could be located on the similarity sample.
HV; = min[max(S;), max(max(S; + 1),max(S; + 2))] (3.7)
LV; = max[min(Si), min(min(Sl- + 1),min(S; + 2))] (3.8)

Where HV; is the i" highest value, LV; is the i™ lowest value, and max(S;) and
min(S;) are the max and min values of each row in the data matrix and stored in S;

matrix.

N
Autocorr(k) = Z(HV(i +(k—1) x N) = LV(i + (k — 1) X N)) (3.9)

i=1

3.2 Wavelet Domain Features

A wavelet is a mathematical function useful in digital signal processing and image
compression. The use of wavelets for these purposes is a recent development,
although the theory is not new. The principles are similar to those of Fourier analysis,
which was first developed in the early part of the 19th century.

In signal processing, wavelets make it possible to recover weak signals from noise.
This has proven useful specially in the processing of X-ray and magnetic-resonance
images in medical applications. Images processed in this way can be "cleaned up"

without blurring or muddling the details.
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Wavelet transform employs long time windows for more precise low frequency
information, and short time intervals for high frequency information. The wavelet
transform had better resolution and high performance for representation and
visualization of the epilepsy activity than the short time Fourier transform. We use
Discrete Wave transformations in our tests as it could analyze the signal at different
frequency bands with different resolutions. The signals are decomposed into five
different scales; we use two built-in functions in MATLAB to do this which are
"wavedec" and "detcoef". We extract three features using this domain which are:

average energy, fluctuation index and coefficient of variation.

3.2.1 Relative Energy

The relative energy indicates the strength of the signal as it gives the area under the
curve of power at any interval of time. For the Daubechies wavelet, the sum of square

of coefficients of the wavelet series is the energy of the iEEG signal. The energy of

IEEG signal with limited length is given by:

Al T
E.(D) = z D?x = (3.10)
i=1

, Where 7 is the sampling interval and N is the number of DWT coefficients

D; presented at scale L. The relative energy of the scale is computed as:

E)

Er(l) = $=1E(i)

(3.11)

, Where S is the number of the wavelet scales.
3.2.2 Coefficient of Variation
The standard deviation ¢ shows how the features' values vary compared to the mean

value u. We use mean value to measure the mean amplitude. The coefficient of

variation V. can measure the variations of the signal amplitude. The coefficient of
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variation gives smaller values in pre-seizure period and increases gradually as the

seizure comes closer. The corresponding coefficient of variance can be expressed as:

l 2
v, = (282) (3.12)

where

u(l) = (ﬁ) « > D, (3.13)

N
1
=1

and

o) = (%) " ZN:wi — u(D))? (3.14)

, Where N is the number of DWT coefficients D;presented at scale [.

3.2.3 Fluctuation Index

The fluctuation index is proposed to measure the intensity of iEEG signal’s changes.
It could be found that the fluctuation index of the IEEG during seizures usually
becomes greater than that during the non-seizure periods. The mathematical
description is as shown in equation (3.15)

N
1
FIQ) =% ) [Diey = Dl (3.15)
i=1

, Where N is the number of DWT coefficients D;presented at scale [.
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3.3 Results of Time Domain Features Analysis

As there are five time domain features being tested, we needed to avoid some of
them to get the most efficient combination of features. Thus the following survey is
done. The results illustrated in this section are obtained from a study done on five
female Long Evans rats (250-350 g). The results are normalized to the worst
performing feature in order to set the boundaries of each feature’s performance in
comparison to the reference; allowing for fair comparison. Moreover, the comparison
is done between five selected features from the previously demonstrated features in

this chapter.

3.3.1 Feature Efficacy Results

Keeping in mind the definition of false positive (FP) and false negative (FN), that is
false positive is a false warning of a seizure and false negative is a missed seizure that

is not detected.

The percentage of time spent under false positives is reported instead of the absolute
number of false positives or the false positive rate. This is in accordance with
suggestions made with regards to the utility of reporting false positive rates,
sensitivity and specificity for evaluating prediction and detection algorithms. On each

testing dataset, the detection efficacy is calculated using equation (3.16).

%FPTime + %FNTime
2

Detection Ef ficacy = (3.16)

Figure (3.4) shows a bar plot of the detection efficacy of the compared features. The
detection efficacy recorded for each animal was averaged across the five different
animals used in this study to obtain an estimate of the detection efficacy for the
feature under study. Figure (3.4) (Left) uses a box plot to illustrate the distribution of
detection efficacy across animals for each of the features compared in this study. The
median and distribution of the data around it are captured using the box plot. The false
positive and negative rates were also normalized to the worst performing feature and
do not represent the absolute numbers for each feature. The normalized plots shown in
Figure (3.4) capture the trend between the features under comparison in this study. In
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all the plots in Figure (3.4), a lower value indicates a better performance in the bar

and box plots, as noted earlier.
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Figure 3.4: (Left) Box plot showing the distribution of detection efficacy for all the
features under comparison and (Right) (Top) normalized plot of percentage time spent
in false positives for the same features and (Bottom) normalized plot of percentage

time spent in false negatives.

3.3.2 Hardware Analysis Results

The features under comparison in the prospective study were implemented using
standard CMOS digital library cells. The total power consumption and area on silicon
were normalized and averaged to calculate the hardware cost function in each case.
Figure (3.5) compares the normalized hardware cost function for each of the
compared features and also plots out the individual components contributing to the
same. The hardware cost function was calculated by averaging power and area on
chip which were already normalized with the largest power and area obtained from
the individual features (Equation (3.17)).

Norm Hardware Cost = 0.5 X (total power + area on chip) (3.17)
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Figure 3.5: (Clockwise from top, left) Bar graphs comparing cell leakage power,
average dynamic power, total area on chip and normalized hardware metric for each

of the compared features in the study.

3.3.3 Detection Algorithm Design Space (DADS)

The normalized hardware cost function was plotted with the normalized detection
efficacy to obtain the two-dimensional detection algorithm design space for the

features under comparison.

Every feature under evaluation is represented by these two coordinates in the
described design space. Features lying in the lower left corner closer to the origin
would be ideally desired as this would imply high detection efficacy combined with

low hardware cost.

Figure 3.6 plots the design space for the current study based on the results obtained
above. The presented design space is a visualization of a classical design trade-off
seen most engineering problems, and its application to adapting seizure detection

algorithms for hardware implementation.
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Figure 3.6: Design space illustrating hardware and detection efficacies for all the

compared features in the study.

3.3.4 Discussion of Results

The definition of false positives and false negatives used, which are mentioned in
Section 3.3.1, led to inherently assigning more importance to the false negatives
during the training procedure. The detection efficacy numbers reported were highly
sensitive to even a single missed seizure. The absolute numbers of percent time spent
in false warnings were therefore much lower than the corresponding false negative
numbers. The results summarized in Figure (3.4) reflect the expected penalty towards
missed seizures. The Hjorth variance parameter and the RMS amplitude parameters
turned out to be the best performing features from those compared in detecting
seizures based on their average detection rates. Detection features that were
mathematically similar understandably showed a high similarity in detection efficacy
as well. The detection efficacies reported in Figure (3.4) are absolute values, obtained
prior to normalization whereas the reported percent time spent in false positives and

false negatives are normalized.
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From the summary of hardware performance in Figure (3.5), the coastline feature
consumed the lowest average power, obtained by calculating the mean of leakage and
dynamic power consumption. The RMS amplitude feature was the most costly
feature, as can be explained by the implementation of the square root function on
chip.

The detection algorithm design space (DADS) shown in Figure (3.6) helps in
prioritizing the choice of detection algorithm based on the requirements of the
application. For example, an implantable monitoring device implementing an
algorithm to aid in screening for seizures may be able to tolerate a much higher false
positive rate in exchange for extended battery life, whereas an implanted stimulator
would want to minimize the number of false positives that trigger therapeutic

intervention, even if it meant a higher hardware cost.

Typically, a combination of features is used to increase the detection efficacy. In
choosing features to combine, it is important to consider their relative locations in this
space. We illustrate the design of one such optimized combination with an example in
the next section. We also demonstrate how the code sign of hardware and algorithm
results in a more optimal location in the DADS as compared to a blind combination.
Of the compared features in this study, the coastline method was the most hardware
efficient and the RMS feature was the least. In terms of detection efficacy, the Hjorth
variance parameter outperformed all the compared features and the non-linear
autocorrelation feature was the least effective in detection per the definitions used for

efficacy.
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Chapter 4: Seizure Classification

In this chapter, we are going to introduce the concept of classifying the results of
certain feature examination into seizure or non-seizure, going through the
classification techniques used for this purpose and reaching to the technique we are

implementing in our project.

4.1 Introduction

Features by themselves cannot tell us if there is a seizure in a specific time or
not. Of course you could see an anomaly in the feature itself but you need an

algorithm that detects the seizure buried inside the extracted feature.

Classification is the stage where we classify the feature into two groups: Seizure and
Non-Seizure. So, it is more likely to be an algorithm that is applied on a feature to

make a decision based on its results.

For example, Figure (4.1) shows raw data from iEEG signal of a patient, the red part
of the signal marks occurrence of a seizure. Figures (4.2) and (4.3) show the output
from feature extraction when two different features are examined, which are coastline
and energy respectively. Figure (4.2) can clearly approve the presence of seizure
represented by the intensity of the feature around the sample number 100, but it is not
the case in Figure (4.3), where other there are more bulks of feature intensities found
at other samples along the signal.

This confirms the need for an algorithm to operate on the output from the feature
extraction from the raw data; hereby we introduce the classifier. The classifier is
needed to precisely make the decision whether the output describes a seizure or non-

seizure.

We have used two classification techniques which are the Support Vector Machine
(SVM) and Multi-window Event Based Counting Classifier in this purpose as

discussed in the upcoming sections.
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Figure 4.2: Output of feature extraction using coastline feature

x10* Coastline

Figure 4.3: Output of feature extraction using energy feature
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4.2 Support Vector Machine (SVM) Classifier

In machine learning, SVM is a learning model with associated learning
algorithms that analyze data used for classification and regression analysis. Given a
set of training features, each marked for belonging to one of two categories (in our
case it’s either seizure or non-seizure), an SVM training algorithm builds a model that

assigns new examples into one category or the other.

Another way to look at the SVM model is that it’s a representation of the features as
points in space, mapped so that the examples of the separate categories are divided by
a clear gap that is as wide as possible. New testing features (new epochs of features
that were not used in training the SVM) are then mapped into that same space and

predicted to belong to a category based on which side of the gap they fall on.

Therefore, A Support Vector Machine (SVM) is a discriminative classifier formally
defined by a separating hyperplane. In other words, to detect the seizures after
training, The SVM just compares the new data with the trained data and puts the new
data in its best related area as shown in Figure (4.4) (Consider the red dots are

seizures and the blue dots are non-seizures).

Figure 4.4: Example for a SVM model. The training of the model creates the
threshold line which divides the space into two areas (Seizure area and not Seizure

area).
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Let us consider the following simple problem: For a linearly separable set of 2D

points which belong to one of two classes, find a separating straight line.

xzu O
o O

]

o
>

X4
Figure 4.5: An SVM model with one feature presented in space.

Note: In this example we deal with lines and points in the Cartesian plane instead of
hyperplanes and vectors in a high dimensional space. This is a simplification of the
problem. However, the same concepts apply to tasks where the examples to classify

lie in a space whose dimension is higher than two.

In Figure (4.5) you can see that there exist multiple lines that offer a solution to the
problem. We can intuitively define a criterion to estimate the worth of the lines: A
line is bad if it passes too close to the points because it will be noise sensitive and it

will not generalize correctly.

Therefore, our goal should be to find the line passing as far as possible from all
points. Then, the operation of the SVM algorithm is based on finding the hyperplane
that gives the largest minimum distance to the training examples. Twice, this distance
receives the important name of margin within SVM’s theory. Therefore, the optimal

separating hyperplane maximizes the margin of the training data.

How is the optimal hyperplane computed? Let’s introduce the notation used to define

formally a hyperplane:

fO) = B+ BTx (4.1)

where B is known as the weight vector and B as the bias.
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Figure 4.6: An SVM model with one feature presented in space where we can see the
optimal hyperplane.

The optimal hyperplane can be represented in an infinite number of different ways by
scaling of p and B’ in equation (4.1). As a matter of convention, among all the
possible representations of the hyperplane, the one chosen is represented by equation
(4.2):

1Bo+ BTx| =1 (4.2)

where x symbolizes the training examples closest to the hyperplane. In general, the
training examples that are closest to the hyperplane are called support vectors. This
representation is known as the canonical hyperplane.

Now, we use the result of geometry that gives the distance between a point x and a
hyperplane (B, fo):
1Bo + B7x|

distance = ——— 4.3
I (43)

In particular, for the canonical hyperplane, the numerator is equal to one and the
distance to the support vectors is

. 1B, + B7x| 1
distance support vectors — . 1Bl = 1Bl (4.4)
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Recall that the margin introduced in the previous section, here denoted as M, is twice

the distance to the closest examples: M = ”Zﬂ

Finally, the problem of maximizing M is equivalent to the problem of minimizing a
function L(p) subject to some constraints. The constraints model the requirement for
the hyperplane to classify correctly all the training examples x;. Formally,

minL(B) =B, vi(BTxi+Bo) = 1 (+5)

where y; in equation (4.5) represents each of the labels of the training examples.

This is a problem of Lagrangian optimization that can be solved using Lagrange
multipliers to obtain the weight vector  and the bias B, of the optimal hyperplane.

4.3 Multi-window Event Based Counting Classifier

This algorithm is much simpler than the SVM algorithm. We apply two thresholds a
and B, where a is the threshold amplitude and B denotes the lower limit for passing the

value a.
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Figure 4.7: Illustration of the multi-window event based counting classifier.

To illustrate, in Figure (4.7) 0=2000 joules (the red line) and B=12. At X=69 the
Energy(Y)=5316.5 Joules, so starting from this point we have passed the threshold a a
number of 13 consecutive times which is more than the value of threshold  which is

totally fine, but it cannot be less than 12 consecutive times. When the two thresholds
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are satisfied the classifier generates logic ‘1’s vector of length equal to or more than

the value of  as shown in the lower graph in Figure (4.7).

If we don’t satisty the two thresholds the classifier generates a vector of logic ‘0’s as
shown in the flowchart illustrated below in Figure (4.8). To illustrate, at X=31 the
Energy (Y) = 10788.982 which is more than the value of a, but we passed a only 1

time so we the classifier generates logic ‘0’s.
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Figure 4.8: Flowchart shows the flow of the modified thresholding algorithm.
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Chapter 5: Proposed Detection Algorithm

In this chapter, we will be proposing the detection algorithm that is finally
implemented in our project, reached through examining many mixed algorithms,

testing their results and comparing between them in terms of different design aspects.

5.1 Selected Features and Mixed Algorithms

To make the process of simulation smooth and domain-based, wavelet-domain
features are tested alone with SVM classifier as well as time-domain features are tested

alone with SVM classifier to compare between both types of features.

As mentioned in 3.3.4, processing the data on five features is power consuming and a
combination of the best two features out of the time-domain ones is preferable. As
shown in Figure (3.6), DADS of all time-domain features is plotted.

Based on the Figure mentioned, we illustrate the design of one such optimized
combination with an example in the next section. We also demonstrate how the co-
design of hardware and algorithm results in amore optimal location in the DADS as
compared to a blind combination.

Of the compared features in this study, the coastline feature is the most hardware
efficient and Hjorth variance parameter has the best detection efficiency. However, it
has very complicated hardware. So, we had the idea of using two features with less
detection accuracy than Hjorth parameter alone but have simpler hardware. Thus, we

chose accumulated energy and coastline features to represent time-domain features.

5.2Algorithm-hardware co-optimization

In this section, we intend to combine selected features from the analysis to
construct a highly efficient seizure detection algorithm for minimum possible
hardware cost. The energy feature was found to be the second efficient detection
feature. In order to construct an algorithm that outperforms this feature, we create a
simple combination using the energy feature as a primary feature. The addition of a

second feature in the combination comes at a hardware cost.
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In order to find the most hardware efficient way of increasing the detection efficacy,
we combine the primary feature with the lowest power consuming feature from the
compared set. In this case, the coastline feature turned out to have the lowest
hardware cost associated with it, as can be seen from the DADS in Figure (3.6).

It is to be noted that combining features located closely in the design space may not
result in an optimized solution as such combinations double the hardware cost,
decreasing the hardware efficacy by a factor of two. Any increase in detection
efficacy of the combination would now have to justify the twofold increase in
hardware. On the other hand, simple combination of a low hardware cost feature with
a highly detection efficient feature would only increase the hardware by a small
amount. In such a case, any increase in the detection efficiency of the combination
would yield a much higher detection efficacy per unit hardware cost added. This is
illustrated in the described example. The goal of the example combination is to
improve the detection efficacy of the energy feature without significantly adding to
the hardware cost. A simple combination technique was used with both ‘AND’ and
‘OR’ operations. Figure (5.1) captures the effect of this combination on the design
space. The ‘OR’ combination improves the detection efficacy while the ‘AND’

combination improves the hardware cost.
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Figure 5.1: Design space reflecting changes in detection and hardware efficacy due

to a simple OR and AND combination of two selected features.

The choice of which combination to use would depend on the specific needs of the

application. Once the combination has been set and the target detection efficacy is
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met, co-optimization of hardware and algorithm would allow for maximizing
detection efficacy for minimal hardware cost. Thus, in our design we care about

efficacy so we chose OR combination.

Now, we have two algorithms; the first one consists of average energy, fluctuation
index and coefficient of variation features followed by modified SVM classifier

representing wavelet-domain features as shown Figure (5.2).

Average Energy +
Fluctation index + SVM with
Coeffiecient of > counter
variation

Figure 5.2: First algorithm which represents wavelet-domain features with
modified SVM classifier.

The second algorithm is having accumulated energy, coastline features followed by

modified SVM classifier representing time-domain features as shown in Figure (5.3).

Accumulated Energy
SVM with
+ >
counter
Coastline

Figure 5.3: Second algorithm which represents time-domain features with modified
SVM classifier.

Finally, as the time-domain features require no domain conversion, we derived a new
algorithm; the proposed algorithm, which is the selected time-domain features —
accumulated energy and coastline- followed by multi-window event-based counting
threshold classifier without the SVM block as shown below in Figure (5.4). This is
easier to implement that using SVM. However, the thresholds become more sensitive

and they need very fine tuning.
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Figure 5.4: Third algorithm which represents time-domain features with multiwindow

event-based counting threshold without SVM block.

5.3 Input Data

This database, collected at the Children’s Hospital Boston, consists of iEEG
recordings from pediatric subjects with intractable seizures. Subjects were monitored
for up to several days following withdrawal of anti-seizure medication in order to
characterize their seizures and assess their candidacy for surgical intervention. We
tested all our algorithms on 5 patients of these dataset (Patients number 1, 3, 5, 19 and
21).

As some seizures could be in terms of tens of seconds, we needed the operating
window to be less than 5 seconds in order for the classifier to work properly.
However, we perform a division operation in the Energy feature to get the average
energy value. To optimize the hardware implementation afterwards, we thought of
choosing the window to be multiple of 2 seconds; as 2 seconds or 4 seconds. The both

options are applicable and we chose our window to be 4 seconds.

Thus, the data is divided into epochs, each epoch is 4 seconds. And each second is
represented by 256 points (the sampling frequency is 256 Hz) For training data, one
hour is taken from each patient's data and classified as shown in Table 5.1.

Patient# Seizure epochs Non- Seizure epochs
1 8 712
3 11 709
5 23 697
19 16 704
21 10 710

Table 5.1: Seizure and non-seizure epochs in the training data for each patient.
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For the testing data, they are classified as follows in Table 5.2.

Patient# Number of Hours Seizure epochs Non- Seizure epochs
1 4 Hours 50 2830
3 3 Hours 28 2132
5 4 Hours 88 2792
19 2 Hours 31 1409
21 37 Hours 59 26581

Table 5.2: Seizure and non-seizure epochs in the testing data for each patient.

5.4 Comparison Metrics

To be able to compare different algorithms, we need to settle on fair metrics for all
the algorithms. These metrics are sensitivity, specificity and accuracy. They are
calculated using four other metrics; True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN). These four metrics are obtained after
running the detection algorithm on the input iEEG data as described in equations 5.1,
5.2 and 5.3 below.

o TP
Sensitivity = TP+ FN x 100 (5.1)
Specificit v 100 5.2
=—X :
pecificity TN T FP (5.2)
TN +TP
Accuracy = x 100 (5.3)

TN+TP+FN + FP
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5.5 Results

Using MATLAB, we conduct simulations for the three algorithms using the input
data stated above and obtain the following results in Tables (5.3), (5.4) and (5.5).

Patient# TP FP TN FN Sensitivity Specificity Accuracy

1 38 0 2522 35 52% 100% 98.66%
3 8 328 26237 67 55% 98.7% 98.51%
5 52 34 2751 41  55.9% 98.77%  97.39%
19 7 0 2790 29 19.44% 100% 98.973%

21 5 66 1222 23 17.85% 94.87%  93.23%

Average 40.03% 98.46%  97.35%

Table 5.3: Results of first algorithm of wavelet-domain features with SVM classifier.

Patient# TP FP TN FN Sensitivity Specificity Accuracy

1 50 5 2547 23 68.49% 99.8% 98.93%
3 59 305 26258 16  78.66% 98.85%  98.79%
5 79 116 2671 14 84.94% 95.83%  95.48%
19 21 8 2781 15 58.33% 99.71%  99.18%

21 29 3 2003 3  90.62% 99.85% 99.7%

Average 76.2% 98.8% 98.41%

Table 5.4: Results of second algorithm of time-domain features with SVM classifier.
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Patient# TP FP TN FN Sensitivity Specificity Accuracy

1 12 5 701 1 92.64% 99.29%  99.16%
3 12 10 695 1 91.3% 98.47%  98.33%
5 16 2 694 7  68.75% 99.78%  98.75%
19 7 0 677 9  4545% 100% 98.7%

21 10 2 711 O 100% 99.76%  99.76%

Average 79.62% 99.46%  98.94%

Table 5.5: Results of third algorithm of time-domain features with multiwindow

event-based counting threshold.

5.6 Conclusion and Proposed Algorithm

Based on the previous results, it is obvious that the third algorithm exhibits the best
performance metrics; accuracy of 98.94%. Also, it requires no domain transformation

—automatic data processing- in contrary to wavelet-domain algorithm.

This algorithm shows better performance due to the removal of all complex
mathematical formulae. As both SVM & wavelet-domain features are mathematically

complex blocks and need much more processing than our proposed algorithm.

The final block diagram of the proposed algorithm —the third one- is illustrated in
Figure (5.5).

Decision making block is the responsible for deciding whether this is a seizure or not
depending on the results of thresholds block and as the result of the threshold blocks
are either '1' for seizure signal and '0' for non-seizure signal, so the decision making
block is a logic combination between threshold blocks' outputs. This logic
combination could be OR-gate or AND-gate. However, AND-gate is selective so the
algorithm could miss seizures —as they could be detected by one feature not by the
other- so the efficiency of the overall system decreases. So, the best option is OR-

gate.
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Figure 5.5: Block diagram of the proposed seizure detection algorithm.
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Chapter 6: Seizure Prediction

Prediction was our idea from the beginning. The project was about seizure
detection and stimulator only but we introduced prediction block before the detection
and stimulator. In this chapter we are going to discuss the importance of prediction

and techniques used for this purpose.

6.1 Introduction

What is the importance of prediction? What are the benefits of predicting a
seizure? Before answering these questions, what will happen if the prediction block
does not exist, the detection, which is the core of the project will work all the time
trying to detect the seizure and can’t be turned off as not t